

### **Energy, Environment & Design**

Direct Tel: 02079287888

Direct Email: kerstin.hagenhoff@watermangroup.com

17 November 2014

Our Ref: EED13325-101.R.1.1.2.KH

Your Ref: 2013/3880/P

Date:

Head of Development Management Planning Department London Borough of Camden 5 Pancras Square London N1C 4AG

Dear Sir/Madam

### RE: 2013/3880/P Condition 11 - Interim Update on Site Investigation at One Bedford Avenue

We are writing with respect to planning application 2013/3880/P relating to 251-258 Tottenham Court Road and 1 Bedford Avenue, London, W1T 7RB and specifically condition 11b which states:

### Before development commences:

- (a) a written programme of ground investigation for the presence of soil and groundwater contamination and landfill gas shall be submitted to and approved by the local planning authority in writing; and
- (b) following the approval detailed in paragraph (a), an investigation shall be carried out in accordance with the approved programme and the results and a written scheme of remediation measures [if necessary] shall be submitted to and approved by the local planning authority in writing. The remediation measures shall be implemented strictly in accordance with the approved scheme and a written report detailing the remediation shall be submitted to and approved by the local planning authority in writing prior to occupation.

A ground investigation specification 'Geotechnical and Geo-environmental Specification – Seeking discharge of part (a) of Planning Condition 11 with reference to decision notice 2013/3880/P (reference EED13325-101.S.1.1.4.KH)' was issued on the 23 July 2014 in response to condition 11(a). The specification was approved by email informally on the 10 September and formally on the 22 September 2014.

### Site Investigation

A site investigation was undertaken by Soil Consultants who were instructed by GVA Second Wall on behalf of Exemplar Properties (Bedford) Ltd between the 11 September and the 25 September 2014.

The investigation varied from the proposed and agreed site investigation strategy due to difficult ground conditions and access constraints (further details of are set out in Table 1 below). Table 1 outlines the proposed exploratory holes designations agreed prior to the start of the site investigation and exploratory locations achieved during the site investigation. The proposed exploratory hole location plan and a draft site investigation exploratory hole location plan are attached.



Table 1: Ground investigation strategy

| Layer / Target feature             | Proposed<br>Exploratory<br>Holes | Groundwater<br>Wells | Gas Wells      | Comments                                                    |
|------------------------------------|----------------------------------|----------------------|----------------|-------------------------------------------------------------|
| Lynch Hill Gravel Member<br>Gravel | BH1                              | installed            | installed      | Borehole completed                                          |
| Lynch Hill Gravel Member<br>Gravel | BH2                              | installed            | installed      | Borehole completed                                          |
| Lynch Hill Gravel Member<br>Gravel | ВН3                              | -                    | -              | Not drilled                                                 |
| Made Ground                        | TP2                              | -                    | -              | Not drilled                                                 |
| Made Ground                        | TP4                              | -                    | -              | Not completed –<br>concrete to 1950mm<br>below ground level |
| Made Ground                        | TP8                              | -                    | -              | Not completed                                               |
| Made Ground                        | TP10                             | -                    | -              | Not completed – concrete >600mm                             |
| Made Ground                        | TP12                             | Not applicable       | Not applicable | Trial pit completed                                         |
| Structural Investigation           | CH2                              | Not applicable       | Not applicable | Location not relevant to ground investigation               |
| Structural Investigation           | SI1                              | Not applicable       | Not applicable | Location not relevant to ground investigation               |

### **Ground Conditions Encountered**

Ground conditions encountered were described as Made Ground over Lynch Hill Gravel Member and London Clay Formation.

The basement slab encountered was reported to be up to 1950mm thick thus preventing effective soil sampling by hand digging.

Parts of the basement were reportedly underlain by water-filled vaults or chambers up to 6m in depth.

Both borehole BH1 and borehole BH2 were drilled from ground level through a basement void.

### **Environmental Sampling**

Shallow soil samples were collected from exploratory positions. One round of groundwater sampling has been undertaken to date. Soil and groundwater samples were sent to an UKAS accredited laboratory for chemical analysis of a suite of contaminants likely to be present at the Site.

Six rounds of ground gas monitoring are scheduled however results are currently awaited.

The chemical test results are appended.



### Preliminary Quantitative Risk Assessment

A preliminary review of the data shows soil results are generally compliant with residential end-use criteria with the exception of a number of PAHs that exceed their respective screening levels at borehole BH2, 3.55m below ground level.

Chemical laboratory data of the first groundwater monitoring round were compared against UK Drinking Water Supply Standards and the results were compliant with the screening levels.

A ground gas assessment has not yet been undertaken.

### Remaining Environmental Monitoring

Soil Consultants are scheduled to undertake one further ground water monitoring visit at the Site on Thursday, 20 November 2014. The samples will be sent to the UKAS accredited laboratory on a standard 10 day turnaround. Results of a further five rounds of monthly ground gas monitoring are awaited. The final ground gas monitoring visit is anticipated for February 2015.

### Conclusions

The assessment so far demonstrates an absence of significant contamination at the Site.

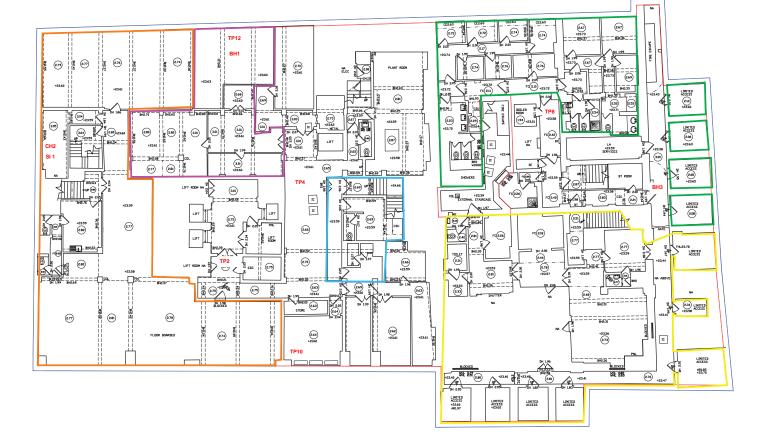
Recommendations regarding any remediation measures, if necessary, will be made once all the data are available for review and will be included in the final Environmental Quantitative Risk Assessment report that is anticipated to be issued towards the end of February 2015. Should any further ground investigation works be recommended they will be carried out following the issue of the report and during the phase 2 demolition works (which involve below ground works) scheduled for May 2015.

If you have any queries regarding the above or would like to discuss the results, please do not hesitate to contact me.

Yours sincerely

Kerstin Hagenhoff Senior Consultant

For and On Behalf of Waterman Energy, Environment & Design Ltd


Attached:

Proposed exploratory hole location plan
Exploratory hole location plan
Exploratory hole logs
Laboratory Analysis Certificates – Soils
Laboratory Analysis Certificates - Groundwater



Ask Electronics: \_\_\_\_ 09 Dec 2014 (notice to be served) **GEA GIA** Time Out: -12 Aug 2014 1,475.78m<sup>2</sup> Mr Malik - 251-256 TCR: ---09 Dec 2014 15,82.08m<sup>2</sup> Mr Malik - 257-258 TCR: \_\_\_\_\_ 09 Dec 2014 17,029.37ft<sup>2</sup> 15,885.16ft<sup>2</sup> St Giles Hotel: ---09 Dec 2014 (notice to be served) +\*\*

+<sup>OP</sup>



This drawing should not be scaled.

This drawing is to be read in conjunction with all other

|   | ABBR | EVIATIONS               |             |          |                |
|---|------|-------------------------|-------------|----------|----------------|
|   | AP   | Access Panel            | LV          | Low Wa   | u              |
|   | 3    | Brick                   | L           | Light    |                |
|   | BAL  | Balcony                 | LP          | Lang Pr  | ost            |
|   | 33   | Belishs Bescon          | LA          | Linited  | Access         |
|   | 30   | Bolland                 | MKR         | Marker   |                |
|   | BH   | Borehole or Bean Height | NA          | Not Acr  | essible        |
|   | BRD  | Boarded                 | OP.         | Overlay  | Point          |
|   | 96   | Brick Plen              | DHC         | Drenher  | ad Cables      |
|   | BRV  | Brick Retaining Vall    | P           | Post     |                |
|   | 3X   | Boxing                  | PNL         | Panel    |                |
|   | BT   | British Telecon         | PF          | Picket   | Fence          |
|   | 30   | Brick Vall              | PIT         | Trial Pt | t              |
|   | BVF  | Barbed Vire Fence       | PL          | Pavemen  | nt Light       |
|   | С    | Concrete                | PH          | Parking  | Heter          |
|   | CAB  | Cobinet                 | PRF         | Post &   | Rall Fence     |
|   | CE   | Celling Height          | PVF         | Post &   | Vine Fence     |
|   | CBV  | Concrete Block Voll     | R           | Render   |                |
|   | CU   | Cupboard                | RAD         | Radiato  | -              |
|   | CL   | Cover Level             | RE          | Recess   |                |
|   | CLF  | Chain Link Fence        | RH          | Ridge H  | elght          |
|   | COL  | Column                  | 29          | Road St  | on .           |
|   | CPF  | Concrete Panel Fence    | RWP         | Rain Va  | ter Pipe       |
|   | CPS  | Concrete Paving Slabs   | \$5         | Seconda  | ary Glazing    |
|   | CRW  | Concrete Retaining Wall | SV          | Stop V   | ALVE           |
|   |      | Celling Slopes Up       | SL          | Skylight |                |
|   |      | Cable Television        | SP          | Soll Plp |                |
|   | CV   | Concrete Vall           | SPS         | Stone I  | Paving Slaks   |
|   | эрн  | Door Bean Height        | SR          | Service  | Riser          |
|   |      | Door                    | SV.         | Shop W   | Indow          |
|   | DHL. | Door Head Level         | SVS         | Surface  | Vater Sees     |
|   | DV.  | Dumb Walter             | TOP         | Tactile  |                |
|   | EC   | Electricity Cover       | T           | TILE     | -              |
|   | EH   | Eave Height             | TB          | Telepho  | ne Box         |
|   | EP   | Electricity Pole        | TL          | Traffic  | Light          |
|   | ESG  | Electricity Switch Gear | UJ          |          | de of Roof J   |
|   | FC   | False Celling           | UR          | Underst  | de of Ridge B  |
|   | F/E  | Fire Escape             | UVP         | Undersi  | de of Vall Pla |
|   |      | Fire Hydrant            | v           | Vent     |                |
|   |      | Floor Level             | VP          | Vent P   | pe .           |
|   | FP   | Fireplace               | v           | Window   |                |
|   |      | Glazing                 | VL.         | Water    |                |
|   |      | Gully                   | VX.         | Vater    |                |
|   |      | Gas Volve               | <b>VW</b> F |          | sh Fence       |
|   | DC   | Inspection Cover        | UPF         |          | Panel Fence    |
|   | DL.  | Invert Level            | VCL         |          | CIII Level     |
|   | RF   | Iron Ralling Fence      | VHL         |          | Head Level     |
|   |      | _                       | URU         | Vooden   | Retaining Val  |
| 7 | _    | —▼Top                   |             | _        | Floor to       |
|   |      | Banks                   | (6          | .28)     | Celling Heigh  |
| 1 |      | 1                       | ٠.`         | ┙.       |                |
| _ | _    | Botton                  |             | $\sim$   | Gate           |
| _ |      | ← Fences                |             | ◬        | Survey Stat    |
| _ | _    | — - Change in Surfac    | e .         | +10.60   | Floor Level    |
| _ |      | - Edge of Vegetal       | tion 🔏      | Th       |                |
|   |      |                         | E           | فحداثه   | Tree           |
|   |      |                         |             | -        |                |

| Ref. | East       | North      | Elevatio |
|------|------------|------------|----------|
| 1    | 529718.624 | 181548.321 | -        |
| 2    | 529729.414 | 181531.458 | -        |
| 3    | 529746.319 | 181501.634 | 26.379   |
| 4    | 529793.151 | 181501.150 | 26.438   |
| 5    | 529805.703 | 181508.847 | 26.612   |
| 6    | 529775.576 | 181543,717 | -        |

### NOTES

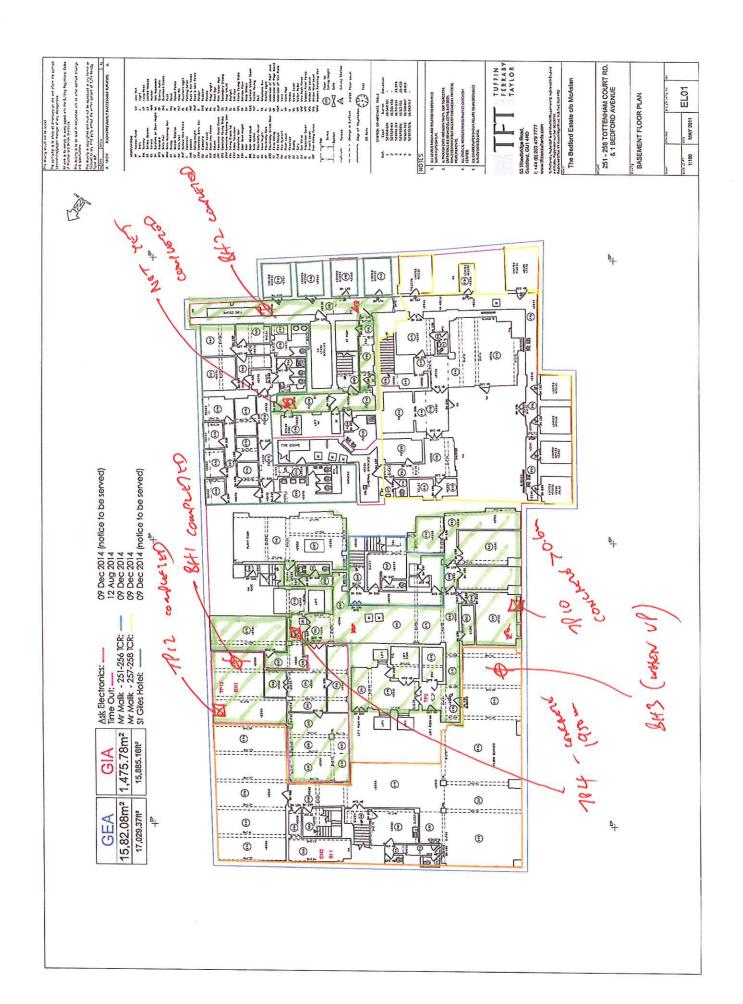
ALL LEVELS SHOWN ARE RELATED TO ORDNANCE SURVEY GPS DATUM.

ALL CRITICAL MEASUREMENTS MUST BE CHECKED VERIFIED.



65 Woodbridge Road, Gulldford, GU1 4RD

t: +44 (0) 203 479 7777 www.tftconsultants.com


Tuffin Ferraby Taylor LLP is a limited Lability partnership registered in England and Wales. Registration number: 0C306796. Nates, Registration number: UC306766. stered Office: 65 Woodbridge Road, Guildford, GU1 4RD

The Bedford Estate c/o McAslan

251 - 258 TOTTENHAM COURT RD. & 1 BEDFORD AVENUE

BASEMENT FLOOR PLAN

| drawn       | checked          | proj./drawing no. | ľ |
|-------------|------------------|-------------------|---|
| scale at A1 | date<br>MAY 2011 | EL01              |   |



**One Bedford Avenue** Site & Borehole No: BH1 Location: Bedford Avenue, Camden, London WC1B 3AU **Exemplar Properties (Bedford) Ltd** Coords (E/N): 529772.00 - 181542.00 Sheet 1 of 3 Client: Ground Level **Waterman Structures Ltd** 26.75 Report No: 9661/JRCB Engineer: Backfill / Samples & Tests Strata Field Progress & Observations Strata Description Results BH commenced: 11/09/2014 ASPHALT [100mm] over reinforced CONCRETE BH/casing dia: 150mm 0.40 26.35 Basement VOID 2 3 3.15 23.60 CONCRETE with 50mm bituminous layer at 3.35m 3.55 23.20 MADE GROUND: soft dark brown/grey, brown and pale brown Ε 3.70 slightly silty gravelly clay with brick, concrete fragments and occasional ash. Locally sandy Е 4.05 slight hydrocarbon odour В 4.05 SPT/S 4.05 N=4 N60=4 D 4.75 D 5.05 SPT/S 5.05 N=3 N60=3 Water inflow at 5.90m ['fast']: 5.90 20.85 Dense becoming medium dense brown and brown/orange sandy 6 Е 6.05 to very sandy fine to coarse, subangular to subrounded flint SPT/C 6.05 N=31 GRAVEL. Locally grades to gravelly sand В 6.05 N60=31 Water added to assist drilling between 5.90m and 7.40m 7 SPT/C 7.05 7.05 N=21 N60=21 В 7 40 19 35 Stiff brown becoming grey fissured slightly silty CLAY with orange/ D 7.55 brown staining in upper levels and occasional partings of pale grey silt. Rare pyrite nodules, selenite crystals and shell fragments BH cased to 7.90m D 7.95 8 D 8 05

Key: U = Undisturbed B = Bulk D = Small disturbed W = Water E = glass jar & plastic tub SPT/S = split spoon SPT/C = solid cone HV = Hand Vane [kPa]

PP = Pocket Penetrometer [kg/cm2] PID = Photo Ionisation Detector [ppmv] Borehole type:

Remarks :- Self-boring pressuremeter tests carried out by Cambridge Insitu at at 9.80m, 15.30m, 20.00m and 25.00m

Borehole No:

**Soil** Consultants

Cable Percussion

BH1

9

10

SPT/S

D

End of shift: 11/09/2014

Pressuremeter test at 9.80m

BH depth: 8.50m Casing depth: 7.65m Water depth: Dry Start of shift: 15/09/2014 Water depth: Dry

depth

8.05

9.00

N=25

N60=25

**One Bedford Avenue** Site & Location: BH1 Borehole No: **Bedford Avenue, Camden, London WC1B 3AU** 

Coords (E/N): 529772.00 - 181542.00 Client: **Exemplar Properties (Bedford) Ltd** Sheet 2 of 3

| сгис       | ures                                             | Ltd                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ground Level (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Report No:                       | 9661/JRCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample     | s & Tests                                        | Field                                                                                                                                                                                                                                                                                                                                                                | St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lagand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Strata Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                | Backfill /<br>Installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Туре       | Depth<br>(m)                                     | Results                                                                                                                                                                                                                                                                                                                                                              | Depth<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Level<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Legenu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Strata Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| U          | 10.55                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pale grey silt and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | small pockets of fine sand. Rare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al partings of<br>pyrite nodules | 11 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D          | 11.50                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | claystone nodule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e <u>between 11.55</u> m and 11.70m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| D<br>SPT/S | 12.05<br>12.05                                   | N=26<br>N60=26                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | 12 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D          | 13.00                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | 13 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| U          | 13.55                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| D          | 14.50                                            |                                                                                                                                                                                                                                                                                                                                                                      | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11 <b>7</b> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Very stiff grey fice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sured slightly silty CLAY occasions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | al nartings of                   | 14 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D<br>SPT/S | 16.05<br>16.05                                   | N=32<br>N60=32                                                                                                                                                                                                                                                                                                                                                       | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pale grey silt. Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cally silty with rare pyrite nodules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a parings of                     | 16 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D          | 17.00                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | 17 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| U          | 17.55                                            |                                                                                                                                                                                                                                                                                                                                                                      | 18.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Very stiff grey fiss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sured slightly silty CLAY occasions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | al pockets of                    | 18 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D          | 18.50                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×<br>×<br>×<br>×<br>×<br>×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pale grey silty fine<br>pyrite nodules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e sand and silt partings. Locally s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ilty with rare                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SPT/S<br>D | 19.05<br>19.05                                   | N=38<br>N60=38                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | 19 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |                                                  |                                                                                                                                                                                                                                                                                                                                                                      | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Continued on next sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | Sample: Type  U  D  SPT/S  U  SPT/S  D  SPT/S  D | Samples & Tests         Type       Depth (m)         U       10.55         D       11.50         D       12.05         D       13.00         U       13.55         D       14.50         D       17.00         U       17.55         D       18.50         SPT/S       19.05         D       19.05         D       19.05         D       19.05         D       19.05 | Type Depth (m)  Test Results  Test Results | Samples & Tests         Field Test Results         Depth Depth Pends Pen | Samples & Tests         Field Test         Depth (m)         Level (m)           Type         Depth (m)         Level (m)           D         11.50         Assaults         Level (m)           D         11.50         N=26 N60=26         Assaults         Assaults           D         13.00         N=26 N60=26         Assaults         Assaults         Assaults           D         14.50         N=32 N60=32         Assaults         Assaults         Assaults           D         17.00         N=32 N60=32         Assaults         Assaults         Assaults           D         18.50         N=38 N60=38         Assaults         Assaults         Assaults           D         18.50         N=38 N60=38         Assaults         Assaults         Assaults | Samples & Tests         Field Test Results         Strate Depth (m)         Level (m)           U         10.55         N=26 N60=26         Inches (m)         Inches (m) | Samples & Tests   Test   Tes | Samples & Tests                  | Samples & Tests   Field   Test   Provided   Te |

Key: U = Undisturbed B = Bulk D = Small disturbed W = Water E = glass jar & plastic tub SPT/S = split spoon SPT/C = solid cone HV = Hand Vane [kPa]

Cable Percussion PP = Pocket Penetrometer [kg/cm2] PID = Photo Ionisation Detector [ppmv] Borehole type: Remarks :- Self-boring pressuremeter tests carried out by Cambridge Insitu at at 9.80m, 15.30m, 20.00m and 25.00m

Borehole No: BH1

One Bedford Avenue

Site & Location:
Bedford Avenue, Camden, London WC1B 3AU

Borehole No: BH1

Client: Exemplar Properties (Bedford) Ltd Coords (E/N): 529772.00 - 181542.00 Sheet 3 of 3

Engineer: Waterman Structures Ltd

Ground Level (m): 26.75

Report No: 9661/JRCB

| ngineer: Waterman                                                                                                        | Struct     | tures          | Ltd             |              |              |                                         | (m):                                                         | 26.75                                                | Report No:                                           | 9661/JRC                |
|--------------------------------------------------------------------------------------------------------------------------|------------|----------------|-----------------|--------------|--------------|-----------------------------------------|--------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------|
|                                                                                                                          | Sample     | s & Tests      | Field           | St           | rata         |                                         |                                                              |                                                      | 1                                                    | Backfill<br>Installatio |
| Progress & Observations                                                                                                  | Туре       | Depth<br>(m)   | Test<br>Results | Depth<br>(m) | Level<br>(m) | Legend                                  |                                                              | Strata Descrip                                       | tion                                                 |                         |
| /ater inflow at 20.00m<br>seepage']; not sealed                                                                          | U          | 20.50          |                 |              |              | × – – – – – – – – – – – – – – – – – – – | Very stiff grey fis<br>pale grey silty fir<br>pyrite nodules | sured slightly silty CLA<br>ne sand and silt parting | AY occasional pockets of is. Locally silty with rare | 2                       |
|                                                                                                                          | D          | 22.00          |                 | 22.00        | 4.75         | ×<br>×<br>×<br>×                        | Very stiff grey fis                                          | ssured silty CLAY occas<br>dy with pockets/bands     | sional partings of pale grey<br>of fine grey sand    | 22                      |
|                                                                                                                          | D<br>SPT/S | 22.55<br>22.55 | N=44<br>N60=44  |              |              |                                         |                                                              |                                                      |                                                      | 23                      |
|                                                                                                                          | D          | 23.50          |                 |              |              | ××<br>××<br>×                           | L                                                            |                                                      |                                                      |                         |
|                                                                                                                          | D          | 23.90          |                 | 23.80        | 2.95         | ×_*_<br>×_<br>×                         | Very stiff brown,<br>CLAY with occas                         | blue/grey and red/brov<br>sional partings of silt    | wn mottled slightly silty                            | 24                      |
| essuremeter test at 25.00m<br>epth<br>I complete: 16/09/2014<br>I depth: 25.00m<br>asing depth: 7.90m<br>ater depth: Dry | D<br>U     | 24.50<br>24.55 |                 | 25.00        | 173          | ×                                       |                                                              | End of borehole at 2                                 | 75.00 m                                              | 25                      |
|                                                                                                                          |            |                |                 |              |              |                                         |                                                              |                                                      |                                                      | 26                      |
|                                                                                                                          |            |                |                 |              |              |                                         |                                                              |                                                      |                                                      | 27                      |
|                                                                                                                          |            |                |                 |              |              |                                         |                                                              |                                                      |                                                      | 28                      |
|                                                                                                                          |            |                |                 |              |              |                                         |                                                              |                                                      |                                                      | 25                      |
| r: U = Undisturbed B = Bulk D = Sm                                                                                       |            |                |                 |              |              |                                         |                                                              |                                                      |                                                      | 30                      |

Key: U = Undisturbed B = Bulk D = Small disturbed W = Water E = glass jar & plastic tub SPT/S = split spoon SPT/C = solid cone HV = Hand Vane [kPa]

PP = Pocket Penetrometer [kg/cm2] PID = Photo Ionisation Detector [ppmv]

Remarks :- Self-boring pressuremeter tests carried out by Cambridge Insitu at at 9.80m, 15.30m, 20.00m and 25.00m

Borehole No:

BH1

Cable Percussion

**One Bedford Avenue** Site & Borehole No: BH<sub>2</sub> Location: Bedford Avenue, Camden, London WC1B 3AU **Exemplar Properties (Bedford) Ltd** Coords (E/N): 529788.00 - 181515.00 Sheet 1 of 3 Client: Ground Level **Waterman Structures Ltd** Report No: 9661/JRCB Engineer: 26.80 Backfill / Samples & Tests Strata Field Progress & Observations Test Results Legend Strata Description Steel GRID/MESH BH commenced: 23/09/2014 0.03 26.77 Basement VOID BH/casing dia: 150mm 2 3.35 23.45 CONCRETE Ε 3.55 3.55 23.25 MADE GROUND: soft brown/orange slightly silty sandy gravelly to D 3.75 very gravelly clay with brick fragments and occasional ash D 4.00 SPT/S 4.00 N>503 Chiselling on claystone from 4.35 22.45 CONCRETE 4.35m to 4.55m for 1hrs
Water added to assist drilling from 4.55 Very dense becoming medium dense brown and brown/orange 4.55m to 7.00m sandy to very sandy fine to coarse, subangular to subrounded flint GRAVEL. Locally grades to gravelly sand 5.00 SPT/C 5.00 N>50\* Ε 5.00 Water added to assist drilling between 4.55m and 7.00m В 6.00 SPT/C 6.00 N>50\* Water inflow at 6.50m ['fast']; sealed at 7.90m SPT/C 7 00 N=17 N60=17 7.25 19.55 Stiff brown becoming grey fissured slightly silty CLAY with orange/ brown staining in upper levels. Occasional partings of pale grey silt and small pockets of grey fine sand. Rare pyrite nodules, D 7 45 D 7 65 selenite crystals and shell fragments SPT/S N=21 7.65 BH cased to 7 90m N60=21 8 D 8.50 9 U 9.05 10 10.00 10.00 16.80 Continued on next sheet Key: U = Undisturbed B = Bulk D = Small disturbed W = Water E = glass jar & plastic tub SPT/S = split spoon SPT/C = solid cone HV = Hand Vane [kPa] PP = Pocket Penetrometer [kg/cm2] PID = Photo Ionisation Detector [ppmv] Borehole type: Cable Percussion Remarks :-Borehole No: **BH2** [\* = full SPT penetration not achieved - see summary sheet] **Soil** Consultants

One Bedford Avenue
Site & Location:
Bedford Avenue, Camden, London WC1B 3AU
Borehole No: BH2

Client: Exemplar Properties (Bedford) Ltd Coords (E/N): 529788.00 - 181515.00 Sheet 2 of 3

Engineer: Waterman Structures Ltd Ground Level (m): 26.80 Report No: 9661/JRCB

| Engineer: Waterman                                                                                                                | Struc          | tures                                  | Ltd             |              |              |                       | Ground Level (m):                                                        | 26.80                                                              | Report No:                         | 9661/       | JRCB                 |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------|-----------------|--------------|--------------|-----------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------|-------------|----------------------|
| Durantian a Ohamatian                                                                                                             | Sample         | s & Tests                              | Field           | St           | rata         |                       |                                                                          | Charte Bereitster                                                  | 1                                  | Bac<br>Inst | ckfill /<br>allation |
| Progress & Observations                                                                                                           | Туре           | Depth<br>(m)                           | Test<br>Results | Depth<br>(m) | Level<br>(m) | Legend                |                                                                          | Strata Description                                                 |                                    |             |                      |
| End of shift: 23/09/2014<br>BH depth: 11.00m<br>Casing depth: 7.90m                                                               | SPT/S<br>D     | 10.55<br>10.55                         | N=26<br>N60=26  |              |              |                       | Stiff grey fissured sli-<br>pale grey silt and sm<br>and shell fragments | ghtly silty CLAY with occasior<br>all pockets of fine sand. Rard   | al partings of<br>e pyrite nodules |             | 11 -                 |
| Water depth: Dry<br>Start of shift: 24/09/2014<br>Water depth: Dry<br>Chiselling on claystone from<br>11.70m to 11.85m for 0.5hrs | D              | 11.50                                  |                 |              |              |                       | claystone nodule be                                                      | etween 11.70m and 11.85m                                           |                                    |             |                      |
|                                                                                                                                   | U              | 12.05                                  |                 |              |              |                       |                                                                          |                                                                    |                                    |             | 12                   |
|                                                                                                                                   | D              | 13.00                                  |                 | 13.00        | 13.80        |                       | Very stiff grey fissure pale grey silt and silt nodules                  | ed slightly silty CLAY occasion<br>y fine sand. Locally silty with | nal partings of rare pyrite        | _           | 13 -                 |
|                                                                                                                                   | SPT/S<br>D     | 13.55<br>13.55                         | N=31<br>N60=31  |              |              |                       | Exa                                                                      |                                                                    |                                    |             | 14                   |
|                                                                                                                                   | D              | 14.50                                  |                 |              | <b>,</b> •,  |                       |                                                                          |                                                                    |                                    |             |                      |
|                                                                                                                                   | U              | 15.05                                  |                 | Q            | 10)          |                       |                                                                          |                                                                    |                                    |             | 15                   |
|                                                                                                                                   | D              | 16.00                                  |                 |              |              |                       |                                                                          |                                                                    |                                    |             | 16                   |
| Water inflow at 17.00m<br>['seepage']; not sealed                                                                                 | SPT/S<br>D     | 16.55<br>16.55                         | N=35<br>N60=35  | 16.90        | 9.90         | x_~                   | pale grey silty fine sa                                                  | ed slightly silty CLAY occasion<br>and and silt partings. Locally  | nal pockets of silty with rare     |             | 17                   |
|                                                                                                                                   | D              | 17.50                                  |                 |              |              | ×                     | pyrite nodules                                                           |                                                                    |                                    |             |                      |
|                                                                                                                                   | U              | 18.05                                  |                 |              |              | X                     |                                                                          |                                                                    |                                    |             | 18                   |
|                                                                                                                                   | D              | 19.00                                  |                 |              |              | ×<br>×<br>×<br>×<br>× |                                                                          |                                                                    |                                    |             | 19                   |
|                                                                                                                                   | D<br>SPT/S     | 19.55<br>19.55                         | N=40<br>N60=40  | 20.00        | 6.80         |                       |                                                                          | Continued on next sheet                                            |                                    |             | 20                   |
| (ev: U = Undisturbed B = Bulk D = Sr                                                                                              | mall disturbed | \ \ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ |                 | . 0 -1       | h.CDT/C      | !* 6                  | DT/Clid UV U                                                             |                                                                    |                                    |             |                      |

Key: U = Undisturbed B = Bulk D = Small disturbed W = Water E = glass jar & plastic tub SPT/S = split spoon SPT/C = solid cone HV = Hand Vane [kPa]

PP = Pocket Penetrometer [kg/cm2] PID = Photo Ionisation Detector [ppmv] Borehole type: Cable Percussion

Borehole No: **BH2** 

[\* = full SPT penetration not achieved - see summary sheet]

Remarks :-

**Soil** Consultants

**One Bedford Avenue** Site & Borehole No: BH<sub>2</sub> Location: Bedford Avenue, Camden, London WC1B 3AU **Exemplar Properties (Bedford) Ltd** Coords (E/N): 529788.00 - 181515.00 Sheet 3 of 3 Client: Ground Level **Waterman Structures Ltd** Report No: 9661/JRCB Engineer: 26.80 Backfill / Samples & Tests Strata Field Progress & Observations Test Results Legend Strata Description Very stiff grey fissured slightly silty CLAY occasional pockets of pale grey silty fine sand and silt partings. Locally silty with rare pyrite nodules D 20.50 21 U 21.05 21.90 4.90 Very stiff grey fissured silty CLAY occasional partings of pale grey silt. Locally very silty and sandy with pockets/bands of fine grey D 22 00 22 SPT/S 22.55 N=42 N60=42 22.55 23 D 23.75 24 24.35 Very stiff brown, blue/grey and red/brown mottled slightly silty D 24.45 CLAY with partings of silt D 24.55 SPT/S N=60 24.55 End of shift: 24/09/2014 N60=59 BH depth: 25.00m Casing depth: 7.90m Water depth: Dry 25 Start of shift: 25/09/2014 Water depth: Dry D 25.75 26 26.25 0.55 Very stiff grey and brown silty locally sandy CLAY with occasional bands/pockets of grey silty fine sand D 26.30 SPT/S 26 55 N>503 D 26.55 27 Water inflow at 27.75m ['fast']; not D 27.80 sealed

Key: U = Undisturbed B = Bulk D = Small disturbed W = Water E = glass jar & plastic tub SPT/S = split spoon SPT/C = solid cone HV = Hand Vane [kPa]

29.00

PP = Pocket Penetrometer [kg/cm2] PID = Photo Ionisation Detector [ppmv] Borehole type: Cable Percussion

-2.20

BH2

Borehole No:

28

29

30

[\* = full SPT penetration not achieved - see summary sheet]

BH complete: 25/09/2014

BH depth: 29.00m

Remarks :-

Casing depth: 7.90m Water depth: 27.00m D

SPT/S

D

28.25

28.55

28 55

N=71 N60=70

**Soil** Consultants

End of borehole at 29.00 m

Site & One Bedford Avenue

Location Bedford Avenue, Camden, London WC1B 3AU

Report No:

9661/JRCB

### STANDARD PENETRATION TEST SUMMARY

| ЗН  | Depth | Test | 'N' value and blow-counts                                                 | N <sub>60</sub> | N <sub>60</sub> - ext | Casing    | Water     |             |
|-----|-------|------|---------------------------------------------------------------------------|-----------------|-----------------------|-----------|-----------|-------------|
| )   | [m]   | type | [Seating blows/Test blows]                                                |                 |                       | depth [m] | depth [m] | Remarks     |
| H1  | 4.05  | S    | N = 4 :1 1/ 1 0 1 2                                                       | 4               |                       | 4.05      | Dry       |             |
| H1  | 5.05  | S    | N = 3 :1 0/ 0 0 1 2                                                       | 3               |                       | 5.05      | Dry       |             |
| H1  | 6.05  | С    | N = 31 :5 6/ 7 7 8 9                                                      | 31              |                       | 6.05      | 5.50      | Water added |
| H1  | 7.05  | С    | N = 21 :4 4/ 7 6 4 4                                                      | 21              |                       | 7.06      | 5.50      | Water added |
| H1  | 8.05  | S    | N = 25 :3 4/ 5 6 7 7                                                      | 25              |                       | 7.90      | Dry       |             |
| 3H1 | 12.05 | S    | N = 26 :2 2/ 5 6 7 8                                                      | 26              |                       | 7.90      | Dry       |             |
| 3H1 | 16.05 | S    | N = 32 :3 4/ 7 8 8 9                                                      | 32              |                       | 7.90      | Dry       |             |
| 3H1 | 19.05 | S    | N = 38 :4 5/ 8 9 10 11                                                    | 38              |                       | 7.90      | Dry       |             |
| 3H1 | 22.55 | S    | N = 44 :5 6/ 9 10 12 13                                                   | 44              |                       | 7.90      | Dry       |             |
| 3H2 | 4.00  | S    | 67 :2 3/ 7 10 50                                                          | >50*            | 90**                  | 4.00      | Dry       |             |
| 3H2 | 5.00  | С    | 57 :15 14/ 25 32                                                          | >50*            | 115**                 | 5.00      | Dry       |             |
| 3H2 | 6.00  | С    | 57 :6 6/ 13 19 25                                                         | >50*            | 75**                  | 6.00      | Dry       |             |
| BH2 | 7.00  | С    | N = 17 :3 3/ 5 4 4 4                                                      | 17              |                       | 7.00      | 6.50      | Water added |
| 3H2 | 7.65  | S    | N = 21 :2 3/ 4 5 5 7                                                      | 21              |                       | 7.90      | Dry       |             |
| 3H2 | 10.55 | S    | N = 26 :3 3/ 5 6 7 8                                                      | 26              |                       | 7.90      | Dry       |             |
| 3H2 | 13.55 | S    | N = 31 :3 3/ 6 7 9 9                                                      | 31              |                       | 7.90      | Dry       |             |
| BH2 | 16.55 | S    | N = 35 :3 4/ 8 8 9 10                                                     | 35              |                       | 7.90      | Dry       |             |
| H2  | 19.55 | S    | N = 40 :4 5/ 9 9 10 12                                                    | 40              |                       | 7.90      | Dry       |             |
| H2  | 22.55 | S    | N = 42 :4 5/ 8 10 12 12                                                   | 42              |                       | 7.90      | Dry       |             |
| H2  | 24.55 | S    | N = 60 :7 8/ 12 13 16 19                                                  | 59              |                       | 7.90      | Dry       |             |
| BH2 | 26.55 | S    | 77 :9 9/ 20 25 32                                                         | >50*<br>70      | 105**                 | 7.90      | Dry       |             |
| 3H2 | 28.55 | S    | N = 71 :7 8/ 15 17 18 21                                                  | 70              |                       | 7.90      | 27.00     |             |
|     |       |      | N = 60 :7 8/ 12 13 16 19<br>77 :9 9/ 20 25 32<br>N = 71 :7 8/ 15 17 18 21 |                 |                       |           |           |             |
|     |       |      |                                                                           |                 |                       |           |           |             |
|     |       |      | X .                                                                       |                 |                       |           |           |             |
|     |       |      |                                                                           |                 |                       |           |           |             |
|     |       |      |                                                                           |                 |                       |           |           |             |
|     |       |      |                                                                           |                 |                       |           |           |             |
|     |       |      |                                                                           |                 |                       |           |           |             |
|     |       |      |                                                                           |                 |                       |           |           |             |
|     |       |      |                                                                           |                 |                       |           |           |             |
|     |       |      |                                                                           |                 |                       |           |           |             |
|     |       |      |                                                                           |                 |                       |           |           |             |
|     |       |      |                                                                           |                 |                       |           |           |             |
|     |       |      |                                                                           |                 |                       |           |           |             |
|     |       |      |                                                                           |                 |                       |           |           |             |
|     |       |      |                                                                           |                 |                       |           |           |             |
|     |       |      |                                                                           |                 |                       |           |           |             |
|     |       |      |                                                                           |                 |                       |           |           |             |
|     |       |      |                                                                           |                 |                       |           |           |             |
|     |       |      |                                                                           |                 |                       |           |           |             |
|     |       |      |                                                                           |                 |                       |           |           |             |

Standard Penetration Test: BS EN ISO 22476:2005 Part 3

Hammer Energy Ratio, Er = 59.4%

\*\* extrapolated N<sub>60</sub> value where full penetration not achieved - this is indicative only and should be used with caution

[SPT Sheet 1 of 1]



st where full penetration not achieved, the reported  $m\,N_{60}$  is based on maximum uncorrected blow-counts of 50

| Site      |                                      | Ref:      |
|-----------|--------------------------------------|-----------|
| Location: | One Bedford Avenue, London, WC1B 3AU | 9661/JRCB |

### **Results of Ground Gas/Groundwater Monitoring**

| Da  | te:                      | 02 Oct 14    |   |
|-----|--------------------------|--------------|---|
| Tin | ne [24hr]:               | 10:20        |   |
| Ba  | rometric pressure:       | 1030         |   |
| a]  | Trend [24hrs]:           | Falling      |   |
| b]  | At start [mB]:           | 1030         |   |
| c]  | At end [mB]:             | 1029         |   |
| Re  | corded by:               | MR           |   |
| Su  | rface ground conditions: | Dry          |   |
| We  | eather conditions:       | Mild, Cloudy |   |
| Am  | nbient air temp [°C]:    | 16           | \ |

### **Monitoring equipment**

Instrument: GA2000 Plus MC08/0126/00 Calibration check details: Within monitor tolerance

Next calibration date: 17/10/2014

### Notes:

- 1] Barometric pressure trend and ambient air temperature is recorded from BBC weather website on the day of the monitoring visit
- 2] Calibration check is performed at start of monitoring against ambient air and also periodically with a 5% CH4, 5% CO2 and 6% O2 gas
- 3] CH4 = methane; CO2 = carbon dioxide; CO = carbon monoxide; O2 = oxygen; H2S = hydrogen sulphide

### **Results**

| Date       | Time   | Borehole   | GW Depth | Depth to Base | CH4 | [%]    | CO2 | [%]    | 02   | [%]    | Highest | t [ppm]          | Emission Rate | Relative Pressure |
|------------|--------|------------|----------|---------------|-----|--------|-----|--------|------|--------|---------|------------------|---------------|-------------------|
|            | [24hr] |            | [m]      | [m]           | Max | Steady | Max | Steady | Min  | Steady | CO      | H <sub>2</sub> S | [l/hr]        | [mb]              |
| 02/10/2014 | 11:15  | BH1        | 3.30     | 4.29          | 0   | 0      | 0.8 | 0.7    | 19.3 | 19.6   | 0       | 0                | 0.00          | 0.00              |
|            |        | BH2 (50mm) | 3.46     | 4.50          | 0,  | Ó      | 0   | 0      | 20.5 | 20.5   | 0       | 0                | 0.00          | 0.00              |
|            |        | BH2 (19mm) | 21.89    | 25.37         | 0-1 | -      | -   | -      | -    | -      | -       | -                | -             | -                 |
|            |        |            |          |               |     |        |     |        |      |        |         |                  |               |                   |
|            |        |            |          |               |     |        |     |        |      |        |         |                  |               |                   |
|            |        |            |          |               |     |        |     |        |      |        |         |                  |               |                   |
|            |        |            |          |               |     |        |     |        |      |        |         |                  |               |                   |
|            |        |            |          |               |     |        |     |        |      |        |         |                  |               |                   |
|            |        |            |          |               |     |        |     |        |      |        |         |                  |               |                   |
|            |        |            |          |               |     |        |     |        |      |        |         |                  |               |                   |
|            |        |            |          |               |     |        |     |        |      |        |         |                  |               |                   |
|            |        |            |          |               |     |        |     |        |      |        |         |                  |               |                   |
|            |        |            |          |               |     |        |     |        |      |        |         |                  |               |                   |
|            |        |            |          |               |     |        |     |        |      |        |         |                  |               |                   |
|            |        |            |          |               |     |        |     |        |      |        |         |                  |               |                   |
|            |        |            |          |               |     |        |     |        |      |        |         |                  |               |                   |



### **SUMMARY OF CLASSIFICATION TEST RESULTS**

|       |              |      |          |                       | 50                    | ММА                | KT                    | JF CI                        | LASS                       | TLIC       | CATION TEST RESULTS                                                                                                     |
|-------|--------------|------|----------|-----------------------|-----------------------|--------------------|-----------------------|------------------------------|----------------------------|------------|-------------------------------------------------------------------------------------------------------------------------|
| BH ID | Depth<br>(m) | Туре | w<br>(%) | w <sub>L</sub><br>(%) | w <sub>P</sub><br>(%) | Pass<br>425<br>(%) | I <sub>P</sub><br>(%) | Mod<br>I <sub>P</sub><br>(%) | I <sub>L</sub><br>(%)      | LOI<br>(%) | Description                                                                                                             |
| BH1   | 7.95         | D    | 27       |                       |                       | ,                  |                       | (11)                         |                            |            | Brown fissured slightly silty CLAY with orange/brown staining in upper levels and occasional partings of pale grey silt |
| BH1   | 9.00         | D    | 26       |                       |                       |                    |                       |                              |                            |            | Grey fissured slightly silty CLAY with orange/brown staining in upper levels and occasional partings of pale grey silt  |
| BH1   | 11.50        | D    | 27       |                       |                       |                    |                       |                              |                            |            | Grey fissured slightly silty CLAY with occasional partings of pale grey silt and small pockets of fine sand             |
| BH1   | 13.00        | D    | 23       |                       |                       |                    |                       |                              |                            |            | Grey fissured slightly silty CLAY with occasional partings of pale grey silt and small pockets of fine sand             |
| BH1   | 13.55        | U    | 25       | 71                    | 27                    | >95                | 44                    |                              | -0.06                      |            | Grey fissured slightly silty CLAY with occasional partings of pale grey silt and small pockets of fine sand             |
| BH1   | 17.00        | D    | 29       |                       |                       |                    |                       |                              |                            |            | Grey fissured slightly silty CLAY occasional partings of pale grey silt.<br>Locally silty                               |
| BH1   | 17.55        | U    | 24       | 71                    | 26                    | >95                | 45                    |                              | -0.05                      |            | Grey fissured slightly silty CLAY occasional partings of pale grey silt.<br>Locally silty                               |
| BH1   | 18.50        | D    | 20       |                       |                       |                    |                       |                              |                            |            | Grey fissured slightly silty CLAY occasional pockets of pale grey silty fine sand and silt partings. Locally silty      |
| BH1   | 20.50        | D    | 25       |                       |                       |                    |                       |                              |                            |            | Grey resured slightly silty CLAY occasional pockets of pale grey silty fine sand and silt partings. Locally silty       |
| BH1   | 21.05        | U    | 22       | 61                    | 24                    | >95                | 37                    |                              | -0.05                      | V          | Grey fissured slightly silty CLAY occasional pockets of pale grey silty fine sand and silt partings. Locally silty      |
| BH1   | 22.00        | D    | 24       | 67                    | 25                    | >95                | 42                    | 25                           | <b>7</b> 0 <sub>0</sub> 04 |            | Grey fissured silty CLAY occasional partings of pale grey silt. Locally sandy with pockets/bands of fine grey sand      |
| BH1   | 23.50        | D    | 19       | 68                    | 18                    | >95                | 50                    | ( )                          | 0.03                       |            | Grey fissured silty CLAY occasional partings of pale grey silt. Locally sandy with pockets/bands of fine grey sand      |
| BH1   | 24.55        | U    | 20       | 53                    | 16                    | >95                | 37                    |                              | 0.10                       |            | Brown, blue/grey and red/brown mottled slightly silty CLAY with occasional partings of silt                             |
| BH2   | 10.00        | D    | 22       |                       |                       |                    |                       |                              |                            |            | Grey fissured slightly silty CLAY with occasional partings of pale grey silt and small pockets of fine sand             |
| BH2   | 11.50        | D    | 24       |                       |                       |                    |                       |                              |                            |            | Grey fissured slightly silty CLAY with occasional partings of pale grey silt and small pockets of fine sand             |
| BH2   | 12.05        | U    | 28       | 68                    | 29                    | >95                | 39                    |                              | -0.03                      |            | Grey fissured slightly silty CLAY with occasional partings of pale grey silt and small pockets of fine sand             |
| BH2   | 13.00        | D    | 20       |                       |                       |                    |                       |                              |                            |            | Grey fissured slightly silty CLAY occasional partings of pale grey silt and silty fine sand. Locally silty              |
| BH2   | 14.50        | D    | 20       |                       |                       |                    |                       |                              |                            |            | Grey fissured slightly silty CLAY occasional partings of pale grey silt and silty fine sand. Locally silty              |
| BH2   | 15.05        | U    | 25       | 72                    | 26                    | >95                | 46                    |                              | -0.03                      |            | Grey fissured slightly silty CLAY occasional partings of pale grey silt and silty fine sand. Locally silty              |

Testing in accordance with BS EN ISO 17892 unless specified otherwise

Modified Plasticity Index calculated in accordance with NHBC Standards Chapter 4.2 (reported if %passing 425mm <95%)

Percent passing 425µm: by estimation, by hand\* or by sieving\*\* (Classification Sheet 1 of 2)



25 Feb 14

Date:

Location Bedford Avenue, Camden, London WC1B 3AU

Report No:

9661/JRCB

### **SUMMARY OF CLASSIFICATION TEST RESULTS**

|       | SUMMARY OF CLASSIFICATION TEST RESULTS |      |          |                       |                       |                    |                       |                              |                       |            |                                                                                                                                   |
|-------|----------------------------------------|------|----------|-----------------------|-----------------------|--------------------|-----------------------|------------------------------|-----------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------|
| BH ID | Depth<br>(m)                           | Туре | w<br>(%) | W <sub>L</sub><br>(%) | W <sub>P</sub><br>(%) | Pass<br>425<br>(%) | I <sub>P</sub><br>(%) | Mod<br>I <sub>P</sub><br>(%) | I <sub>L</sub><br>(%) | LOI<br>(%) | Description                                                                                                                       |
| BH2   | 16.00                                  | D    | 20       |                       |                       |                    |                       | ,                            |                       |            | Grey fissured slightly silty CLAY occasional partings of pale grey silt and silty fine sand. Locally silty                        |
| BH2   | 17.50                                  | D    | 22       |                       |                       |                    |                       |                              |                       |            | Grey fissured slightly silty CLAY occasional pockets of pale grey silty fine sand and silt partings. Locally silty                |
| BH2   | 18.05                                  | U    | 23       |                       |                       |                    |                       |                              |                       |            | Grey fissured slightly silty CLAY occasional pockets of pale grey silty fine sand and silt partings. Locally silty                |
| BH2   | 19.00                                  | D    | 18       |                       |                       |                    |                       |                              |                       |            | Grey fissured slightly silty CLAY occasional pockets of pale grey silty fine sand and silt partings. Locally silty                |
| BH2   | 20.50                                  | D    | 19       | 79                    | 26                    | >95                | 53                    |                              | -0.13                 |            | Grey fissured slightly silty CLAY occasional pockets of pale grey silty fine sand and silt partings. Locally silty                |
| BH2   | 21.05                                  | U    | 25       | 76                    | 29                    | >95                | 47                    |                              | -0.10                 |            | Grey fissured slightly silty CLAY occasional pockets of pale grey silty fine sand and silt partings. Locally silty                |
| BH2   | 22.00                                  | D    | 20       | 71                    | 21                    | >95                | 50                    |                              | -0.02                 |            | Grey fissured silty CLAY occasional partings of pale grey silt. Locally very silty and sandy with pockets/bands of fine grey sand |
| BH2   | 23.75                                  | D    | 18       | 69                    | 19                    | >95                | 50                    |                              | -0.03                 |            | Grey fissured silty CLAY occasional partings of pale grey silt. Locally very silty and sandy with pockets/bands of fine grey sand |
| BH2   | 24.45                                  | D    | 15       | 59                    | 20                    | >95                | 39                    |                              | -0.15                 |            | Brown, blue/grey and red/brown mottled slightly silty CLAY with partings of silt                                                  |
| BH2   | 25.75                                  | D    | 16       | 62                    | 21                    | >95                | 41                    |                              | -0.13                 | 11         | Brown, blue/grey and red/brown mottled slightly silty CLAY with partings of silt                                                  |
| BH2   | 26.30                                  | D    | 9        | 26                    | 11                    | >95                | 15                    | 25                           | 0 14                  |            | Grey and brown silty sandy CLAY/very silty fine SAND [interbedded]                                                                |
| BH2   | 28.25                                  | D    | 16       | 54                    | 19                    | >95                | 35                    | ζ,                           | -0.10                 |            | Grey and brown silty locally sandy CLAY with occasional bands/pockets of grey silty fine sand                                     |
|       |                                        |      |          |                       |                       |                    |                       |                              |                       |            |                                                                                                                                   |
|       |                                        |      |          |                       |                       |                    |                       |                              |                       |            |                                                                                                                                   |
|       |                                        |      |          |                       |                       |                    |                       |                              |                       |            |                                                                                                                                   |
|       |                                        |      |          |                       |                       |                    |                       |                              |                       |            |                                                                                                                                   |
|       |                                        |      |          |                       |                       |                    |                       |                              |                       |            |                                                                                                                                   |
|       |                                        |      |          |                       |                       |                    |                       |                              |                       |            |                                                                                                                                   |
|       |                                        |      |          |                       |                       |                    |                       |                              |                       |            |                                                                                                                                   |
|       |                                        |      |          |                       |                       |                    |                       |                              |                       |            |                                                                                                                                   |

Testing in accordance with BS EN ISO 17892 unless specified otherwise

Date: 25 Feb 14

Modified Plasticity Index calculated in accordance with NHBC Standards Chapter 4.2 (reported if %passing 425mm <95%)

Percent passing 425  $\mu m\colon$  by estimation, by hand\* or by sieving\*\*

(Classification Sheet 2 of 2)



| Site    | One Bedford Avenue                      | Report | 9661/JRCB |
|---------|-----------------------------------------|--------|-----------|
| ocation | Bedford Avenue, Camden, London WC1B 3AU | No:    | 9001/JRCB |

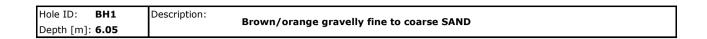
### **SUMMARY OF UNDRAINED SHEAR STRENGTH TEST RESULTS**

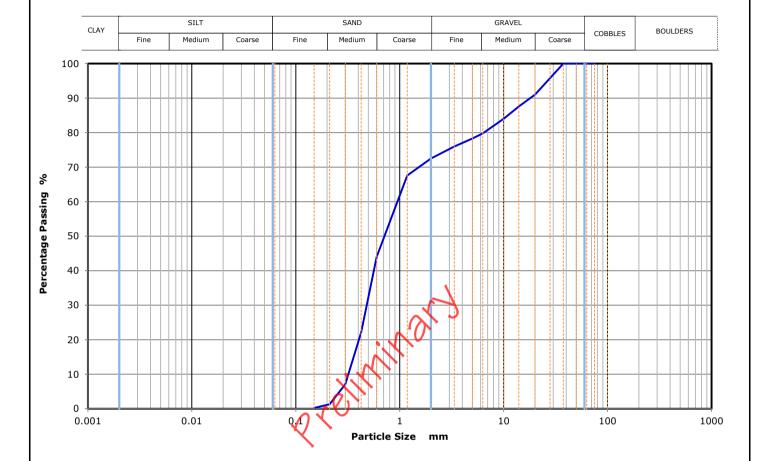
|       |              |                      |                      | 0. 0                      |                           |                                      |                          |                 |                          |         |
|-------|--------------|----------------------|----------------------|---------------------------|---------------------------|--------------------------------------|--------------------------|-----------------|--------------------------|---------|
| BH ID | Depth<br>[m] | Moisture content [%] | Bulk<br>density      | Dry<br>density<br>[Mg/m³] | Cell<br>pressure<br>[kPa] | $(\sigma_1$ - $\sigma_3)_f$<br>[kPa] | Failure<br>strain<br>[%] | Failure<br>mode | Undrained cohesion [kPa] | Remarks |
| DUIA  | 10.55        |                      | [Mg/m <sup>3</sup> ] |                           |                           | 400                                  |                          | _               | ł                        |         |
| BH1   | 13.55        | 25                   | 2.03                 | 1.63                      | 270                       | 498                                  | 3.00                     | В               | 249                      |         |
| BH1   | 17.55        | 24                   | 2.03                 | 1.64                      | 350                       | 421                                  | 3.00                     | В               | 211                      |         |
| BH1   | 21.05        | 22                   | 2.09                 | 1.71                      | 420                       | 778                                  | 4.50                     | В               | 389                      |         |
| BH2   | 12.05        | 28                   | 1.99                 | 1.56                      | 240                       | 226                                  | 2.50                     | I               | 113                      |         |
| BH2   | 15.05        | 25                   | 2.01                 | 1.61                      | 300                       | 295                                  | 2.50                     | В               | 148                      |         |
| BH2   | 18.05        | 23                   | 2.05                 | 1.66                      | 360                       | 402                                  | 2.50                     | В               | 201                      |         |
| BH2   | 21.05        | 25                   | 2.04                 | 1.64                      | 420                       | 347                                  | 2.00                     | В               | 174                      |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
| l     |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           | Q vè                      |                                      | F                        | 7               |                          |         |
|       |              |                      |                      |                           |                           |                                      | 3                        | J               |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           | (N)                                  | 1                        |                 |                          |         |
|       |              |                      |                      |                           | <b>\</b>                  | 11,                                  |                          |                 |                          |         |
|       |              |                      |                      |                           | ~?                        |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           | n K                       | ľ                                    |                          |                 |                          |         |
|       |              |                      |                      |                           | Κ,                        |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           | `                         |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      |                      |                           |                           |                                      |                          |                 |                          |         |
|       |              |                      | 1                    |                           | l                         |                                      | 1                        | 1               |                          |         |

Testing in accordance with BS EN ISO 17892 UU = unconsolidated, undrained; MUU = multistage, unconsolidated, ur Date:

Unless stated otherwise: Rate of strain = 2mm/min, Standard latex membrame used with thickness = 0.5mm

Failure modes: B = brittle, I = intermediate, P = plastic


[Triaxial Sheet 1 of 1]


06 October 14



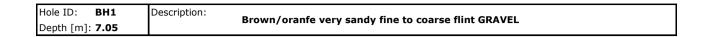
Location Bedford Avenue, Camden, London WC1B 3AU

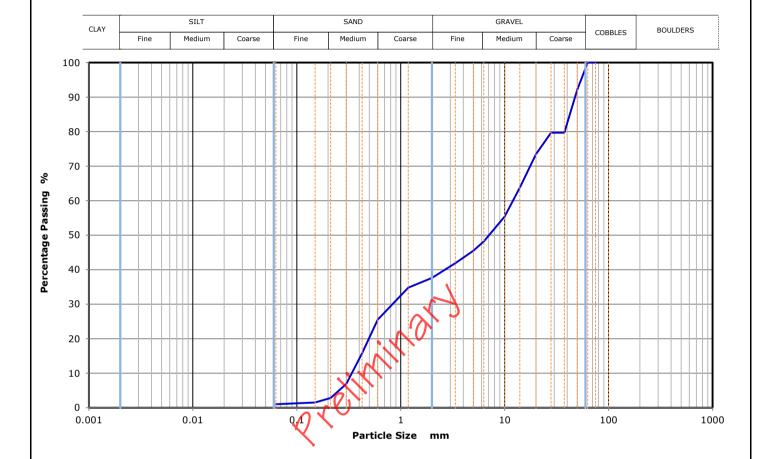
Report 9661/JRCB





| Sievii    | ng        |
|-----------|-----------|
| Size [mm] | % passing |
| 75        | 100       |
| 63        | 100       |
| 50        | 100       |
| 37.5      | 100       |
| 28        | 95.8      |
| 20        | 91        |
| 14        | 87.6      |
| 10        | 84        |
| 6.3       | 79.8      |
| 5         | 78.3      |
| 3.35      | 76        |
| 2         | 72.5      |
| 1.18      | 67.6      |
| 0.6       | 44        |
| 0.425     | 22.1      |
| 0.3       | 7.1       |
| 0.212     | 1.3       |
| 0.15      | 0.2       |
| 0.063     | #N/A      |
| 0.005     | пцп       |


| Sample proportions | %  |
|--------------------|----|
| Cobbles            | 0  |
| Gravel             | 28 |
| Sand               | 73 |
| Fines <0.063mm     | 0  |


| Grading analysis  |       |     |  |  |
|-------------------|-------|-----|--|--|
| D60               | mm    | 0.9 |  |  |
| D30               | mm    | 0.5 |  |  |
| D10               | mm    | 0.3 |  |  |
|                   |       |     |  |  |
| Uniformity Coeffi | cient | 3.0 |  |  |
| Curvature Coeffi  | cient | 0.8 |  |  |

| Test method and date                        |           |  |  |
|---------------------------------------------|-----------|--|--|
| Testing in accordance with BS EN ISO 17892: |           |  |  |
| Wet sieving method                          |           |  |  |
| Reporting date:                             | 01 Oct 14 |  |  |

Location Bedford Avenue, Camden, London WC1B 3AU

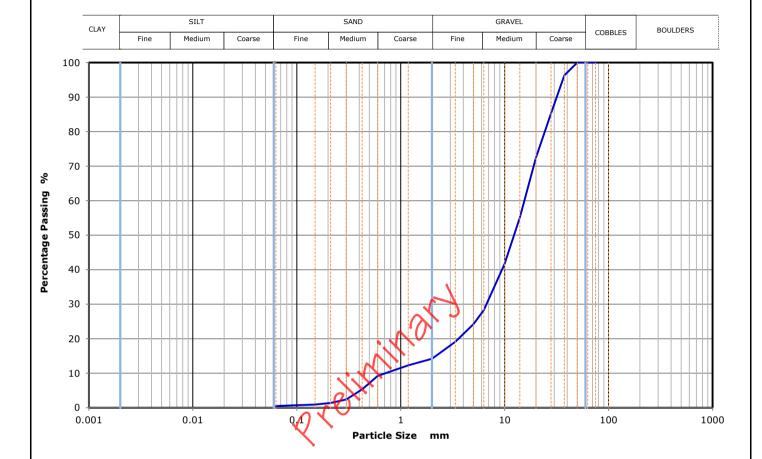
Report 9661/JRCB





| Sievir    | ng        |
|-----------|-----------|
| Size [mm] | % passing |
| 75        | 100       |
| 63        | 100       |
| 50        | 92.2      |
| 37.5      | 79.7      |
| 28        | 79.7      |
| 20        | 73.5      |
| 14        | 63.8      |
| 10        | 55.4      |
| 6.3       | 48.2      |
| 5         | 45.5      |
| 3.35      | 41.9      |
| 2         | 37.6      |
| 1.18      | 34.8      |
| 0.6       | 25.5      |
| 0.425     | 15.8      |
| 0.3       | 6.9       |
| 0.212     | 2.8       |
| 0.15      | 1.5       |
| 0.063     | 1         |
|           |           |

| Sample proportions | %  |
|--------------------|----|
| Cobbles            | 0  |
| Gravel             | 62 |
| Sand               | 37 |
| Fines <0.063mm     | 1  |


| Grading analysis  |       |      |  |  |
|-------------------|-------|------|--|--|
| D60               | mm    | 12.0 |  |  |
| D30               | mm    | 0.8  |  |  |
| D10               | mm    | 0.3  |  |  |
|                   |       |      |  |  |
| Uniformity Coeffi | cient | 35.5 |  |  |
| Curvature Coeffic | cient | 0.2  |  |  |

| Test method and date                        |           |  |  |
|---------------------------------------------|-----------|--|--|
| Testing in accordance with BS EN ISO 17892: |           |  |  |
| Wet sieving method                          |           |  |  |
| Reporting date:                             | 01 Oct 14 |  |  |

Location Bedford Avenue, Camden, London WC1B 3AU

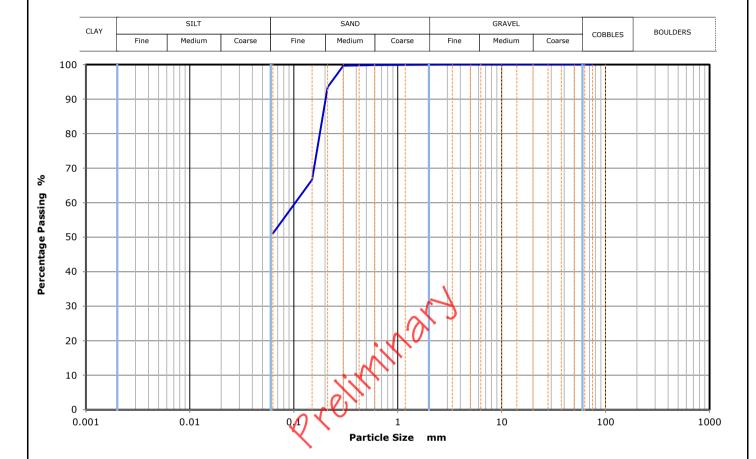
Report 9661/JRCB





| Sievir    | ıg        |
|-----------|-----------|
| Size [mm] | % passing |
| 75        | 100       |
| 63        | 100       |
| 50        | 100       |
| 37.5      | 96.3      |
| 28        | 85.3      |
| 20        | 72.5      |
| 14        | 55.1      |
| 10        | 41.7      |
| 6.3       | 28.3      |
| 5         | 24.2      |
| 3.35      | 19.1      |
| 2         | 14.2      |
| 1.18      | 12.3      |
| 0.6       | 9.2       |
| 0.425     | 5.3       |
| 0.3       | 2.4       |
| 0.212     | 1.4       |
| 0.15      | 0.9       |
| 0.063     | 0.5       |
|           |           |

| Sample proportions | %  |
|--------------------|----|
| Cobbles            | 0  |
| Gravel             | 86 |
| Sand               | 14 |
| Fines < 0.063mm    | 1  |


| Grading analysis       |    |      |  |  |  |  |  |
|------------------------|----|------|--|--|--|--|--|
| D60                    | mm | 15.5 |  |  |  |  |  |
| D30                    | mm | 6.7  |  |  |  |  |  |
| D10                    | mm | 0.7  |  |  |  |  |  |
|                        |    |      |  |  |  |  |  |
| Uniformity Coefficient |    | 21.7 |  |  |  |  |  |
| Curvature Coefficient  |    | 4.0  |  |  |  |  |  |

| Test method and date                        |           |  |  |  |  |
|---------------------------------------------|-----------|--|--|--|--|
| Testing in accordance with BS EN ISO 17892: |           |  |  |  |  |
| Wet sieving method                          |           |  |  |  |  |
| Reporting date:                             | 01 Oct 14 |  |  |  |  |

Location Bedford Avenue, Camden, London WC1B 3AU

Report 9661/JRCB





| Sievin    | 9         |
|-----------|-----------|
| Size [mm] | % passing |
| 75        | 100       |
| 63        | 100       |
| 50        | 100       |
| 37.5      | 100       |
| 28        | 100       |
| 20        | 100       |
| 14        | 100       |
| 10        | 100       |
| 6.3       | 100       |
| 5         | 100       |
| 3.35      | 100       |
| 2         | 99.98     |
| 1.18      | 99.92     |
| 0.6       | 99.86     |
| 0.425     | 99.78     |
| 0.3       | 99.68     |
| 0.212     | 93.48     |
| 0.15      | 66.68     |
| 0.063     | 51.08     |

| Sample proportions | %  |
|--------------------|----|
| Cobbles            | 0  |
| Gravel             | 0  |
| Sand               | 49 |
| Fines <0.063mm     | 51 |

| Grading analysis       |    |     |
|------------------------|----|-----|
| D60                    | mm | 0.1 |
| D30                    | mm |     |
| D10                    | mm |     |
|                        |    |     |
| Uniformity Coefficient |    |     |
| Curvature Coefficient  |    |     |

| Test method and date                        |           |  |  |  |  |
|---------------------------------------------|-----------|--|--|--|--|
| Testing in accordance with BS EN ISO 17892: |           |  |  |  |  |
| Wet sieving method                          |           |  |  |  |  |
| Reporting date:                             | 01 Oct 14 |  |  |  |  |

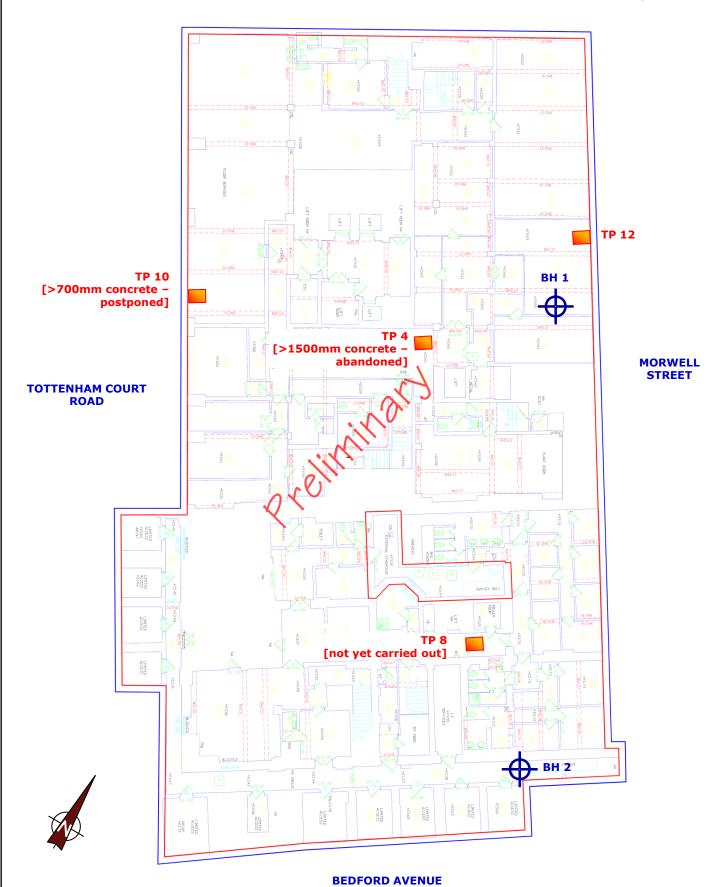
Report No: 9661/JRCB **One Bedford Avenue** Site & Bedford Avenue, Camden, London WC1B 3AU Location Undrained cohesion and SPT [N60] vs level Undrained cohesion - triaxial [kPa] 150 250 300 350 50 100 200 400 30 25 Made ground Lynch Hill Gravel 20 100, 19.55 15 Level [mOD] **London Clay** 10 0 0 5 0 **Lambeth Group Clay** -5 10 20 30 40 50 60 70 80 SPT N<sub>60</sub> Design Line Undrained cohesion SPT 'N60' value





Report No: 9661/JRCB One Bedford Avenue Site & Bedford Avenue, Camden, London WC1B 3AU Location **Natural Moisture Content and Index Properties vs level** Moisture content [%] 10 20 40 50 60 70 80 90 30 20.00 15.00 London Clay 10.00 Level [mOD] 5.00 0.00 **Lambeth Group Clay** -5.00 • NMC ◆ Liquid Limit △ Plastic Limit




Site Location

**One Bedford Avenue** Bedford Avenue, Camden, London WC1B 3AU Report No:

9661/JRCB

### Site Plan [at basement level]





### Head Office:

Chiltern House, Earl Howe Road, Holmer Green High Wycombe, Bucks HP15 6QT t: 01494 712494

e: mail@soilconsultants.co.uk

Cardiff office: 23 Romilly Road

Cardiff CF5 1FH t: 02920 403575

e: cardiff@soilconsultants.co.uk

Harwich Office: Haven House, Albemarle Street Harwich, Essex CO12 3HL t: 01255 241639

e: harwich@soilconsultants.co.uk





John Bartley Soil Consultants Ltd 8 Haven House Albemarle Street Harwich Essex CO12 3HL



### **QTS Environmental Ltd**

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

### **QTS Environmental Report No: 14-24916**

**Site Reference:** Bedford Avenue

Project / Job Ref: None Supplied

Order No: None Supplied

Sample Receipt Date: 15/09/2014

**Sample Scheduled Date:** 17/09/2014

**Report Issue Number:** 1

**Reporting Date:** 24/09/2014

**Authorised by:** 

Russell Jarvis Director

On behalf of QTS Environmental Ltd

Authorised by:

Kevin Old Director

On behalf of QTS Environmental Ltd





| Soil Analysis Certificate             |                 |               |               |               |  |
|---------------------------------------|-----------------|---------------|---------------|---------------|--|
| QTS Environmental Report No: 14-24916 | Date Sampled    | None Supplied | None Supplied | None Supplied |  |
| Soil Consultants Ltd                  | Time Sampled    | None Supplied | None Supplied | None Supplied |  |
| Site Reference: Bedford Avenue        | TP / BH No      | BH1           | BH1           | BH1           |  |
| Project / Job Ref: None Supplied      | Additional Refs | D1            | D2            | None Supplied |  |
| Order No: None Supplied               | Depth (m)       | 3.70          | 4.05          | 6.05          |  |
| Reporting Date: 24/09/2014            | QTSE Sample No  | 118337        | 118338        | 118339        |  |

| Determinand                | Unit     | RL     | Accreditation |              |              |              |  |
|----------------------------|----------|--------|---------------|--------------|--------------|--------------|--|
| Asbestos Screen            | N/a      | N/a    | ISO17025      | Not Detected | Not Detected | Not Detected |  |
| pH                         | pH Units | N/a    | MCERTS        | 7.4          | 7.9          | 8.0          |  |
| W/S Sulphate as SO4 (2:1)  | g/l      | < 0.01 | MCERTS        | 1.54         | 0.25         | 0.02         |  |
| Elemental Sulphur          | mg/kg    | < 10   | NONE          | < 10         | < 10         | < 10         |  |
| Sulphide                   | mg/kg    | < 5    | NONE          | < 5          | < 5          | < 5          |  |
| Total Organic Carbon (TOC) | %        | < 0.1  | NONE          | 0.8          | 0.6          | < 0.1        |  |
| Arsenic (As)               | mg/kg    | < 2    | MCERTS        | 12           | 8            | < 2          |  |
| Beryllium (Be)             | mg/kg    | < 0.5  | NONE          | 0.5          | < 0.5        | < 0.5        |  |
| W/S Boron                  | mg/kg    | < 1    | NONE          | < 1          | < 1          | < 1          |  |
| Cadmium (Cd)               | mg/kg    | < 0.5  | MCERTS        | < 0.5        | < 0.5        | < 0.5        |  |
| Chromium (Cr)              | mg/kg    | < 2    | MCERTS        | 35           | 25           | 6            |  |
| Chromium (hexavalent)      | mg/kg    | < 2    | NONE          | < 2          | < 2          | < 2          |  |
| Copper (Cu)                | mg/kg    | < 4    | MCERTS        | 52           | 33           | < 4          |  |
| Lead (Pb)                  | mg/kg    | < 3    | MCERTS        | 91           | 92           | 6            |  |
| Mercury (Hg)               | mg/kg    | < 1    | NONE          | 1.6          | 1.2          | < 1          |  |
| Nickel (Ni)                | mg/kg    | < 3    | MCERTS        | 46           | 24           | 6            |  |
| Selenium (Se)              | mg/kg    | < 3    | NONE          | < 3          | < 3          | < 3          |  |
| Vanadium (V)               | mg/kg    | < 2    | NONE          | 61           | 46           | 12           |  |
| Zinc (Zn)                  | mg/kg    | < 3    | MCERTS        | 62           | 50           | 15           |  |
| Total Phenols (monohydric) | mg/kg    | < 2    | NONE          | < 2          | < 2          | < 2          |  |

Analytical results are expressed on a dry weight basis where samples are dried at less than 30°C

Analysis carried out on the dried sample is corrected for the stone content

The samples have been examined to identify the presence of asbestiform minerals by polarising light microscopy and dispersion staining technique to In-House Procedures QTSE600 Determination of Asbestos in Bulk Materials; Asbestos in Soils/Sediments (fibre screening and identification)

This report refers to samples as received, and QTS Environmental Ltd, takes no responsibility for the accuracy or competence of sampling by others.

The material description shall be regarded as tentative and is not included in our scope of UKAS Accreditation.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Asbestos Analyst: Graham Revell

RL: Reporting Limit

Pinch Test: Where pinch test is positive it is reported "Loose Fibres - PT" with type(s).

Subcontracted analysis (S)





| Soil Analysis Certificate - Speciated PAHs |                 |               |               |               |  |  |  |  |  |
|--------------------------------------------|-----------------|---------------|---------------|---------------|--|--|--|--|--|
| QTS Environmental Report No: 14-24916      | Date Sampled    | None Supplied | None Supplied | None Supplied |  |  |  |  |  |
| Soil Consultants Ltd                       | Time Sampled    | None Supplied | None Supplied | None Supplied |  |  |  |  |  |
| Site Reference: Bedford Avenue             | TP / BH No      | BH1           | BH1           | BH1           |  |  |  |  |  |
| Project / Job Ref: None Supplied           | Additional Refs | D1            | D2            | None Supplied |  |  |  |  |  |
| Order No: None Supplied                    | Depth (m)       | 3.70          | 4.05          | 6.05          |  |  |  |  |  |
| Reporting Date: 24/09/2014                 | QTSE Sample No  | 118337        | 118338        | 118339        |  |  |  |  |  |

| Determinand            | Unit  | RL    | Accreditation |       |       |       |      |
|------------------------|-------|-------|---------------|-------|-------|-------|------|
| Naphthalene            | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 |      |
| Acenaphthylene         | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 |      |
| Acenaphthene           | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 |      |
| Fluorene               | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 |      |
| Phenanthrene           | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 |      |
| Anthracene             | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 |      |
| Fluoranthene           | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 |      |
| Pyrene                 | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 |      |
| Benzo(a)anthracene     | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 |      |
| Chrysene               | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 |      |
| Benzo(b)fluoranthene   | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 |      |
| Benzo(k)fluoranthene   | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 |      |
| Benzo(a)pyrene         | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 |      |
| Indeno(1,2,3-cd)pyrene | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 |      |
| Dibenz(a,h)anthracene  | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 |      |
| Benzo(ghi)perylene     | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 |      |
| Coronene               | mg/kg | < 0.1 | NONE          | < 0.1 | < 0.1 | < 0.1 |      |
| Total Oily Waste PAHs  | mg/kg | < 1   | MCERTS        | < 1   | < 1   | < 1   |      |
| Total Dutch 10 PAHs    | mg/kg | < 1   | MCERTS        | < 1   | < 1   | < 1   |      |
| Total EPA-16 PAHs      | mg/kg | < 1.6 | MCERTS        | < 1.6 | < 1.6 | < 1.6 | <br> |
| Total WAC-17 PAHs      | mg/kg | < 1.7 | NONE          | < 1.7 | < 1.7 | < 1.7 |      |





| Soil Analysis Certificate - EPH Oily Waste Banded |                 |               |               |               |  |  |  |  |  |
|---------------------------------------------------|-----------------|---------------|---------------|---------------|--|--|--|--|--|
| QTS Environmental Report No: 14-24916             | Date Sampled    | None Supplied | None Supplied | None Supplied |  |  |  |  |  |
| Soil Consultants Ltd                              | Time Sampled    | None Supplied | None Supplied | None Supplied |  |  |  |  |  |
| Site Reference: Bedford Avenue                    | TP / BH No      | BH1           | BH1           | BH1           |  |  |  |  |  |
| Project / Job Ref: None Supplied                  | Additional Refs | D1            | D2            | None Supplied |  |  |  |  |  |
| Order No: None Supplied                           | Depth (m)       | 3.70          | 4.05          | 6.05          |  |  |  |  |  |
| Reporting Date: 24/09/2014                        | OTSE Sample No  | 118337        | 118338        | 118339        |  |  |  |  |  |

| Determinand             | Unit  | RL  | Accreditation |     |     |     |  |
|-------------------------|-------|-----|---------------|-----|-----|-----|--|
| Oily Waste (C6 - C10)   | mg/kg | < 1 | NONE          | < 1 | < 1 | < 1 |  |
| Oily Waste (>C10 - C25) | mg/kg | < 1 | MCERTS        | 23  | < 1 | < 1 |  |
| Oily Waste (>C25 - C40) | mg/kg | < 6 | MCERTS        | 46  | < 6 | < 6 |  |
| Oily Waste (C6 - C40)   | mg/kg | < 6 | NONE          | 69  | < 6 | < 6 |  |



| Soil Analysis Certificate - TPH CWG Banded |                 |               |               |               |  |  |  |
|--------------------------------------------|-----------------|---------------|---------------|---------------|--|--|--|
| QTS Environmental Report No: 14-24916      | Date Sampled    | None Supplied | None Supplied | None Supplied |  |  |  |
| Soil Consultants Ltd                       | Time Sampled    | None Supplied | None Supplied | None Supplied |  |  |  |
| Site Reference: Bedford Avenue             | TP / BH No      | BH1           | BH1           | BH1           |  |  |  |
| Project / Job Ref: None Supplied           | Additional Refs | D1            | D2            | None Supplied |  |  |  |
| Order No: None Supplied                    | Depth (m)       | 3.70          | 4.05          | 6.05          |  |  |  |
| Reporting Date: 24/09/2014                 | QTSE Sample No  | 118337        | 118338        | 118339        |  |  |  |

| Determinand          | Unit  | RL     | Accreditation |        |        |        |  |
|----------------------|-------|--------|---------------|--------|--------|--------|--|
| Aliphatic >C5 - C6   | mg/kg | < 0.01 | NONE          | < 0.01 | < 0.01 | < 0.01 |  |
| Aliphatic >C6 - C8   | mg/kg | < 0.05 | NONE          | < 0.05 | < 0.05 | < 0.05 |  |
| Aliphatic >C8 - C10  | mg/kg | < 1    | NONE          | < 1    | < 1    | < 1    |  |
| Aliphatic >C10 - C12 | mg/kg | < 1    | NONE          | < 1    | < 1    | < 1    |  |
| Aliphatic >C12 - C16 | mg/kg | < 1    | NONE          | < 1    | < 1    | < 1    |  |
| Aliphatic >C16 - C21 | mg/kg | < 1    | NONE          | 2      | < 1    | < 1    |  |
| Aliphatic >C21 - C34 | mg/kg | < 6    | NONE          | 15     | < 6    | < 6    |  |
| Aliphatic (C5 - C34) | mg/kg | < 12   | NONE          | 17     | < 12   | < 12   |  |
| Aromatic >C5 - C7    | mg/kg | < 0.01 | NONE          | < 0.01 | < 0.01 | < 0.01 |  |
| Aromatic >C7 - C8    | mg/kg | < 0.05 | NONE          | < 0.05 | < 0.05 | < 0.05 |  |
| Aromatic >C8 - C10   | mg/kg | < 1    | NONE          | < 1    | < 1    | < 1    |  |
| Aromatic >C10 - C12  | mg/kg | < 1    | NONE          | < 1    | < 1    | < 1    |  |
| Aromatic >C12 - C16  | mg/kg | < 1    | NONE          | < 1    | < 1    | < 1    |  |
| Aromatic >C16 - C21  | mg/kg | < 1    | NONE          | 2      | < 1    | < 1    |  |
| Aromatic >C21 - C35  | mg/kg | < 6    | NONE          | 14     | < 6    | < 6    |  |
| Aromatic (C5 - C35)  | mg/kg | < 12   | NONE          | 17     | < 12   | < 12   |  |
| Total >C5 - C35      | 3     |        | NONE          | 34     | < 24   | < 24   |  |





| Soil Analysis Certificate - BTEX / MTBE |                 |               |               |               |  |  |  |
|-----------------------------------------|-----------------|---------------|---------------|---------------|--|--|--|
| QTS Environmental Report No: 14-24916   | Date Sampled    | None Supplied | None Supplied | None Supplied |  |  |  |
| Soil Consultants Ltd                    | Time Sampled    | None Supplied | None Supplied | None Supplied |  |  |  |
| Site Reference: Bedford Avenue          | TP / BH No      | BH1           | BH1           | BH1           |  |  |  |
| Project / Job Ref: None Supplied        | Additional Refs | D1            | D2            | None Supplied |  |  |  |
| Order No: None Supplied                 | Depth (m)       | 3.70          | 4.05          | 6.05          |  |  |  |
| Reporting Date: 24/09/2014              | QTSE Sample No  | 118337        | 118338        | 118339        |  |  |  |

| Determinand  | Unit  | RL   | Accreditation |      |      |      |  |
|--------------|-------|------|---------------|------|------|------|--|
| Benzene      | ug/kg | < 2  | MCERTS        | < 2  | < 2  | < 2  |  |
| Toluene      | ug/kg | < 5  | MCERTS        | < 5  | < 5  | < 5  |  |
| Ethylbenzene | ug/kg | < 10 | MCERTS        | < 10 | < 10 | < 10 |  |
| p & m-xylene | ug/kg | < 10 | MCERTS        | < 10 | < 10 | < 10 |  |
| o-xylene     | ug/kg | < 10 | MCERTS        | < 10 | < 10 | < 10 |  |
| MTBE         | ug/kg | < 5  | MCERTS        | < 5  | < 5  | < 5  |  |





| - 1 | <b>C</b> |    | 1°1L | _, | 231 | •   |
|-----|----------|----|------|----|-----|-----|
| Tel | :        | 01 | 62   | 28 | 504 | 410 |

| Soil Analysis Certificate - Volatile Organic Compounds (VOC) |                 |               |               |               |  |  |  |
|--------------------------------------------------------------|-----------------|---------------|---------------|---------------|--|--|--|
| QTS Environmental Report No: 14-24916                        | Date Sampled    | None Supplied | None Supplied | None Supplied |  |  |  |
| Soil Consultants Ltd                                         | Time Sampled    | None Supplied | None Supplied | None Supplied |  |  |  |
| Site Reference: Bedford Avenue                               | TP / BH No      | BH1           | BH1           | BH1           |  |  |  |
| Project / Job Ref: None Supplied                             | Additional Refs | D1            | D2            | None Supplied |  |  |  |
| Order No: None Supplied                                      | Depth (m)       | 3.70          | 4.05          | 6.05          |  |  |  |
| Reporting Date: 24/09/2014                                   | QTSE Sample No  | 118337        | 118338        | 118339        |  |  |  |

| Determinand                                     | Unit           | RL          | Accreditation    |             |             |             |     |  |
|-------------------------------------------------|----------------|-------------|------------------|-------------|-------------|-------------|-----|--|
| Dichlorodifluoromethane                         | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| Vinyl Chloride                                  | ug/kg<br>ug/kg | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| Chloromethane                                   | ug/kg          | < 10        | MCERTS           | < 10        | < 10        | < 10        |     |  |
| Chloroethane                                    | ug/kg<br>ug/kg | < 5         | MCERTS           |             |             | < 10        |     |  |
| Bromomethane                                    | 0. 0           |             |                  | < 5         | < 5         |             |     |  |
|                                                 | ug/kg          | < 10        | MCERTS           | < 10        | < 10        | < 10        |     |  |
| Trichlorofluoromethane                          | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| 1,1-Dichloroethene                              | ug/kg          | < 5         | ISO17025         | < 5         | < 5         | < 5         |     |  |
| MTBE                                            | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| trans-1,2-Dichloroethene                        | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| 1,1-Dichloroethane                              | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| cis-1,2-Dichloroethene                          | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         | )   |  |
| 2,2-Dichloropropane                             | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| Chloroform                                      | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| Bromochloromethane                              | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| 1,1,1-Trichloroethane                           | 0. 0           | < 5         | MCERTS           | < 5         | < 5         | < 5         | 5   |  |
| 1,1-Dichloropropene                             | ug/kg          | < 10        | MCERTS           | < 10        | < 10        | < 10        | )   |  |
| Carbon Tetrachloride                            | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         | j . |  |
| 1,2-Dichloroethane                              | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         | 5   |  |
| Benzene                                         | ug/kg          | < 2         | MCERTS           | < 2         | < 2         | < 2         | 2   |  |
| 1,2-Dichloropropane                             | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         | 5   |  |
| Trichloroethene                                 | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| Bromodichloromethane                            | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         | 5   |  |
| Dibromomethane                                  | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| TAME                                            | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         | 5   |  |
| cis-1,3-Dichloropropene                         | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| Toluene                                         | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| trans-1,3-Dichloropropene                       | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| 1,1,2-Trichloroethane                           | ug/kg          | < 10        | MCERTS           | < 10        | < 10        | < 10        | )   |  |
| 1,3-Dichloropropane                             | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| Tetrachloroethene                               | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| Dibromochloromethane                            | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| 1,2-Dibromoethane                               | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| Chlorobenzene                                   | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| 1,1,1,2-Tetrachloroethane                       | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| Ethyl Benzene                                   | ug/kg          | < 10        | MCERTS           | < 10        | < 10        | < 10        |     |  |
| m,p-Xylene                                      | ug/kg          | < 10        | MCERTS           | < 10        | < 10        | < 10        |     |  |
| o-Xylene                                        | ug/kg          | < 10        | MCERTS           | < 10        | < 10        | < 10        |     |  |
| Styrene                                         | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| Bromoform                                       | ug/kg          | < 10        | MCERTS           | < 10        | < 10        | < 10        | )   |  |
| Isopropylbenzene                                | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| 1,1,2,2-Tetrachloroethane                       | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| 1,2,3-Trichloropropane                          | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| n-Propylbenzene                                 | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| Bromobenzene                                    | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         | _   |  |
| 2-Chlorotoluene                                 | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| 1,3,5-Trimethylbenzene                          | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| 4-Chlorotoluene                                 | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| tert-Butylbenzene                               | ug/kg          | < 5         | MCERTS           | < 5         | < 5         | < 5         |     |  |
| 1,2,4-Trimethylbenzene                          | ug/kg          | < 5<br>< 5  | MCERTS<br>MCERTS | < 5<br>< 5  | < 5<br>< 5  | < 5<br>< 5  |     |  |
| sec-Butylbenzene                                | ug/kg          |             | MCERTS           |             |             | < 5         |     |  |
| p-Isopropyltoluene                              | ug/kg          | < 5         |                  | < 5<br>< 5  | < 5<br>< 5  |             |     |  |
| 1,3-Dichlorobenzene                             | ug/kg          | < 5         | MCERTS           |             |             | < 5         |     |  |
| 1,4-Dichlorobenzene<br>n-Butylbenzene           | ug/kg<br>ug/kg | < 5<br>< 5  | MCERTS<br>MCERTS | < 5<br>< 5  | < 5<br>< 5  | < 5<br>< 5  |     |  |
|                                                 |                |             | MCERTS           |             |             |             |     |  |
| 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane | ug/kg          | < 5<br>< 10 | MCERTS           | < 5<br>< 10 | < 5<br>< 10 | < 5<br>< 10 |     |  |
| Hexachlorobutadiene                             | ug/kg          | < 10<br>< 5 | MCERTS           | < 10<br>< 5 | < 10<br>< 5 | < 10<br>< 5 |     |  |
| nexachioroputadiene                             | ug/kg          | < 5         | MCEKIS           | < 5         | < 5         | < 5         | 'I  |  |



Tel: 01622 850410

| Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC) |                 |               |
|------------------------------------------------------------------|-----------------|---------------|
| QTS Environmental Report No: 14-24916                            | Date Sampled    | None Supplied |
| Soil Consultants Ltd                                             | Time Sampled    | None Supplied |
| Site Reference: Bedford Avenue                                   | TP / BH No      | BH1           |
| Project / Job Ref: None Supplied                                 | Additional Refs | D1            |
| Order No: None Supplied                                          | Depth (m)       | 3.70          |
| Reporting Date: 24/09/2014                                       | QTSE Sample No  | 118337        |

| Compound No | Compound Name | % Match | Units | RL   | Estimated     |
|-------------|---------------|---------|-------|------|---------------|
|             |               |         |       |      | Concentration |
|             |               |         |       |      |               |
| 1           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 2           | N/a           | N/a     |       |      | < 10          |
| 3           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 4           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 5           | N/a           | N/a     | μg/kg | < 10 | < 10          |



Tel: 01622 850410

| Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC) |                       |               |
|------------------------------------------------------------------|-----------------------|---------------|
| QTS Environmental Report No: 14-24916                            | Date Sampled          | None Supplied |
| Soil Consultants Ltd                                             | Time Sampled          | None Supplied |
| Site Reference: Bedford Avenue                                   | TP / BH No            | BH1           |
| Project / Job Ref: None Supplied                                 | Additional Refs       | D2            |
| Order No: None Supplied                                          | Depth (m)             | 4.05          |
| Reporting Date: 24/09/2014                                       | <b>QTSE Sample No</b> | 118338        |

| Compound No | Compound Name | % Match | Units | RL   | Estimated     |
|-------------|---------------|---------|-------|------|---------------|
|             |               |         |       |      | Concentration |
|             |               |         |       |      |               |
| 1           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 2           | N/a           | N/a     |       |      | < 10          |
| 3           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 4           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 5           | N/a           | N/a     | μg/kg | < 10 | < 10          |



Tel: 01622 850410

| Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC) |                       |               |
|------------------------------------------------------------------|-----------------------|---------------|
| QTS Environmental Report No: 14-24916                            | Date Sampled          | None Supplied |
| Soil Consultants Ltd                                             | Time Sampled          | None Supplied |
| Site Reference: Bedford Avenue                                   | TP / BH No            | BH1           |
| Project / Job Ref: None Supplied                                 | Additional Refs       | None Supplied |
| Order No: None Supplied                                          | Depth (m)             | 6.05          |
| Reporting Date: 24/09/2014                                       | <b>QTSE Sample No</b> | 118339        |

| Compound No | Compound Name | % Match | Units | RL   | Estimated     |
|-------------|---------------|---------|-------|------|---------------|
|             |               |         |       |      | Concentration |
|             |               |         |       |      |               |
| 1           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 2           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 3           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 4           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 5           | N/a           | N/a     | μg/kg | < 10 | < 10          |





| Soil Analysis Certificate - Semi Volatile Organic Compounds (SVOC)                                         |                 |               |               |               |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|-----------------|---------------|---------------|---------------|--|--|--|--|
| QTS Environmental Report No: 14-24916 Date Sampled None Supplied None Supplied None Supplied None Supplied |                 |               |               |               |  |  |  |  |
| Soil Consultants Ltd                                                                                       | Time Sampled    | None Supplied | None Supplied | None Supplied |  |  |  |  |
| Site Reference: Bedford Avenue                                                                             | TP / BH No      | BH1           | BH1           | BH1           |  |  |  |  |
| Project / Job Ref: None Supplied                                                                           | Additional Refs | D1            | D2            | None Supplied |  |  |  |  |
| Order No: None Supplied                                                                                    | Depth (m)       | 3.70          | 4.05          | 6.05          |  |  |  |  |
| Reporting Date: 24/09/2014                                                                                 | QTSE Sample No  | 118337        | 118338        | 118339        |  |  |  |  |

| Determinand                 | Unit  | RL     | Accreditation |        |        |        |  |
|-----------------------------|-------|--------|---------------|--------|--------|--------|--|
| Phenol                      | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  | < 0.1  |  |
| 1,2,4-Trichlorobenzene      | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  | < 0.1  |  |
| 2-Nitrophenol               | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  | < 0.1  |  |
| Nitrobenzene                | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  | < 0.1  |  |
| 0-Cresol                    | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  | < 0.1  |  |
| bis(2-chloroethoxy)methane  | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  | < 0.1  |  |
| bis(2-chloroethyl)ether     | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  | < 0.1  |  |
| 2,4-Dichlorophenol          | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  | < 0.1  |  |
| 2-Chlorophenol              | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  | < 0.1  |  |
| 1,3-Dichlorobenzene         | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  | < 0.1  |  |
| 1,4-Dichlorobenzene         | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  | < 0.1  |  |
| 1,2-Dichlorobenzene         | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  | < 0.1  |  |
| 2,4-Dimethylphenol          | mg/kg | < 0.15 | ISO17025      | < 0.15 | < 0.15 | < 0.15 |  |
| Isophorone                  | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  | < 0.1  |  |
| Hexachloroethane            | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  | < 0.1  |  |
| p-Cresol                    | mg/kg | < 0.15 | MCERTS        | < 0.15 | < 0.15 | < 0.15 |  |
| 2,4,6-Trichlorophenol       | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  | < 0.1  |  |
| 2,4,5-Trichlorophenol       | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  | < 0.1  |  |
| 2-Nitroaniline              | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  | < 0.1  |  |
| 4-Chloro-3-methylphenol     | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  | < 0.1  |  |
| 2-Methylnaphthalene         | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  | < 0.1  |  |
| Hexachlorocyclopentadiene   | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  | < 0.1  |  |
| Hexachlorobutadiene         | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  | < 0.1  |  |
| 2,6-Dinitrotoluene          | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  | < 0.1  |  |
| Dimethyl phthalate          | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  | < 0.1  |  |
| 2-Chloronaphthalene         | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  | < 0.1  |  |
| 4-Chloroanaline             | mg/kg | < 0.2  | NONE          | < 0.2  | < 0.2  | < 0.2  |  |
| 4-Nitrophenol               | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  | < 0.1  |  |
| 4-Chlorophenyl phenyl ether | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  | < 0.1  |  |
| 3-Nitroaniline              | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  | < 0.1  |  |
| 4-Nitroaniline              | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  | < 0.1  |  |
| 4-Bromophenyl phenyl ether  | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  | < 0.1  |  |
| Hexachlorobenzene           | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  | < 0.1  |  |
| 2,4-Dinitrotoluene          | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  | < 0.1  |  |
| Diethyl phthalate           | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  | < 0.1  |  |
| Dibenzofuran                | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  | < 0.1  |  |
| Azobenzene                  | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  | < 0.1  |  |
| Dibutyl phthalate           | mg/kg | < 0.15 | ISO17025      | < 0.15 | < 0.15 | < 0.15 |  |
| Carbazole                   | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  | < 0.1  |  |
| bis(2-ethylhexyl)phthalate  | mg/kg | < 0.2  | MCERTS        | < 0.2  | < 0.2  | < 0.2  |  |
| Benzyl butyl phthalate      | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  | < 0.1  |  |
| Di-n-octyl phthalate        | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  | < 0.1  |  |



Tel: 01622 850410

| Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC) |                 |               |
|------------------------------------------------------------------------|-----------------|---------------|
| QTS Environmental Report No: 14-24916                                  | Date Sampled    | None Supplied |
| Soil Consultants Ltd                                                   | Time Sampled    | None Supplied |
| Site Reference: Bedford Avenue                                         | TP / BH No      | BH1           |
| Project / Job Ref: None Supplied                                       | Additional Refs | D1            |
| Order No: None Supplied                                                | Depth (m)       | 3.70          |
| Reporting Date: 24/09/2014                                             | QTSE Sample No  | 118337        |

| Compound No | Compound Name | % Match | Units | RL    | Estimated     |
|-------------|---------------|---------|-------|-------|---------------|
|             |               |         |       |       | Concentration |
|             |               |         |       |       |               |
| 1           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 2           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 3           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 4           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 5           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |



Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC) QTS Environmental Report No: 14-24916 **Date Sampled** None Supplied Soil Consultants Ltd Time Sampled None Supplied Site Reference: Bedford Avenue TP / BH No BH1 Project / Job Ref: None Supplied **Additional Refs** D2 Order No: None Supplied Depth (m) 4.05 Reporting Date: 24/09/2014 **QTSE Sample No** 118338

| Compound No | Compound Name | % Match | Units | RL    | Estimated     |
|-------------|---------------|---------|-------|-------|---------------|
|             |               |         |       |       | Concentration |
|             |               |         |       |       |               |
| 1           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 2           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 3           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 4           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 5           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |



Tel: 01622 850410

| Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC) |                       |               |
|------------------------------------------------------------------------|-----------------------|---------------|
| QTS Environmental Report No: 14-24916                                  | Date Sampled          | None Supplied |
| Soil Consultants Ltd                                                   | Time Sampled          | None Supplied |
| Site Reference: Bedford Avenue                                         | TP / BH No            | BH1           |
| Project / Job Ref: None Supplied                                       | Additional Refs       | None Supplied |
| Order No: None Supplied                                                | Depth (m)             | 6.05          |
| Reporting Date: 24/09/2014                                             | <b>QTSE Sample No</b> | 118339        |

| Compound No | Compound Name | % Match | Units | RL    | Estimated     |
|-------------|---------------|---------|-------|-------|---------------|
|             |               |         |       |       | Concentration |
|             |               |         |       |       |               |
| 1           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 2           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 3           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 4           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 5           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |





| Soil Analysis Certificate - Sample Descriptions |  |
|-------------------------------------------------|--|
| QTS Environmental Report No: 14-24916           |  |
| Soil Consultants Ltd                            |  |
| Site Reference: Bedford Avenue                  |  |
| Project / Job Ref: None Supplied                |  |
| Order No: None Supplied                         |  |
| Reporting Date: 24/09/2014                      |  |

| QTSE Sample No | TP / BH No | Additional Refs | Depth (m) | Moisture<br>Content (%) | Sample Matrix Description       |
|----------------|------------|-----------------|-----------|-------------------------|---------------------------------|
| ^ 118337       | BH1        | D1              | 3.70      | 13                      | Brown loamy clay with rubble    |
| ^ 118338       | BH1        | D2              | 4.05      | 11.5                    | Brown clayey gravel with stones |
| ^ 118339       | BH1        | None Supplied   | 6.05      | 15.9                    | Brown sandy gravel with stones  |

Moisture content is part of procedure E003 & is not an accredited test

Insufficient Sample <sup>I/S</sup>
Unsuitable Sample <sup>U/S</sup>

<sup>^</sup> no sampling date provided; unable to confirm if samples are within acceptable holding times





Soil Analysis Certificate - Methodology & Miscellaneous Information QTS Environmental Report No: 14-24916

Soil Consultants Ltd

Site Reference: Bedford Avenue Project / Job Ref: None Supplied

Order No: None Supplied Reporting Date: 24/09/2014

| Matrix | Analysed<br>On | Determinand                             | Brief Method Description                                                                                                                            | Method<br>No |
|--------|----------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Soil   | D              | Boron - Water Soluble                   | Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES                                                           | E012         |
| Soil   | AR             | BTEX                                    | Determination of BTEX by headspace GC-MS                                                                                                            | E001         |
| Soil   | D              | Cations                                 | Determination of cations in soil by aqua-regia digestion followed by ICP-OES                                                                        | E002         |
| Soil   | D              |                                         | Determination of chloride by extraction with water & analysed by ion chromatography                                                                 | E009         |
| Soil   | AR             | Chromium - Hexavalent                   | Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1.5                                          | E016         |
| Soil   | AR             | Cyanide - Complex                       | Determination of complex cyanide by distillation followed by colorimetry                                                                            | E015         |
| Soil   | AR             | Cyanide - Free                          | Determination of free cyanide by distillation followed by colorimetry                                                                               | E015         |
| Soil   | AR             | Cyanide - Total                         | Determination of total cyanide by distillation followed by colorimetry                                                                              | E015         |
| Soil   | D              | Cyclohexane Extractable Matter (CEM)    | Gravimetrically determined through extraction with cyclohexane                                                                                      | E011         |
| Soil   | AR             | Diesel Range Organics (C10 - C24)       | Determination of hexane/acetone extractable hydrocarbons by GC-FID                                                                                  | E004         |
| Soil   | AR             | Electrical Conductivity                 | Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement                            | E022         |
| Soil   | AR             | Electrical Conductivity                 | Determination of electrical conductivity by addition of water followed by electrometric measurement                                                 | E023         |
| Soil   | D              | Elemental Sulphur                       | Determination of elemental sulphur by solvent extraction followed by GC-MS                                                                          | E020         |
| Soil   | AR             |                                         | Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                                                  | E004         |
| Soil   | AR             | EPH Product ID                          | Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                                                  | E004         |
| Soil   | AR             | EPH TEXAS                               | Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                                                  | E004         |
| Soil   | D              |                                         | Determination of Fluoride by extraction with water & analysed by ion chromatography                                                                 | E009         |
| Soil   | D              | FOC (Fraction Organic Carbon)           | Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate                    | E010         |
| Soil   | D              | Loss on Ignition @ 450oC                | Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace                                      | E019         |
| Soil   | D              | Magnesium - Water Soluble               | Determination of water soluble magnesium by extraction with water followed by ICP-OES                                                               | E025         |
| Soil   | D              | Metals                                  | Determination of metals by aqua-regia digestion followed by ICP-OES                                                                                 | E002         |
| Soil   | AR             | Mineral Oil (C10 - C40)                 | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge                                                 | E004         |
| Soil   | AR             | Moisture Content                        | Moisture content; determined gravimetrically                                                                                                        | E003         |
| Soil   | D              | Nitrate - Water Soluble (2:1)           | Determination of nitrate by extraction with water & analysed by ion chromatography                                                                  | E009         |
| Soil   | D              | Organic Matter                          | (11) suipnate                                                                                                                                       | E010         |
| Soil   | AR             | PAH - Speciated (EPA 16)                | Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards               | E005         |
| Soil   | AR             |                                         | Determination of PCB by extraction with acetone and hexane followed by GC-MS                                                                        | E008         |
| Soil   | D              | Petroleum Ether Extract (PEE)           | Gravimetrically determined through extraction with petroleum ether                                                                                  | E011         |
| Soil   | AR             | pH                                      | Determination of pH by addition of water followed by electrometric measurement                                                                      | E007         |
| Soil   | AR             | Phenols - Total (monohydric)            | Determination of phenols by distillation followed by colorimetry                                                                                    | E021         |
| Soil   | D              | Phosphate - Water Soluble (2:1)         | Determination of phosphate by extraction with water & analysed by ion chromatography                                                                | E009         |
| Soil   | D              | Sulphate (as SO4) - Total               | Determination of total sulphate by extraction with 10% HCl followed by ICP-OES                                                                      | E013         |
| Soil   | D              | Sulphate (as SO4) - Water Soluble (2:1) | Determination of sulphate by extraction with water & analysed by ion chromatography                                                                 | E009         |
| Soil   | D              |                                         | Determination of water soluble sulphate by extraction with water followed by ICP-OES                                                                | E014         |
| Soil   | AR             |                                         | Determination of sulphide by distillation followed by colorimetry                                                                                   | E018         |
| Soil   | D              |                                         | Determination of total sulphur by extraction with aqua-regia followed by ICP-OES                                                                    | E024         |
| Soil   | AR             | SVOC                                    | Determination of cemi-volatile organic compounds by extraction in acetone and beyone followed by CC-                                                | E006         |
| Soil   | AR             | Thiocyanate (as SCN)                    | Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry | E017         |
| Soil   | D              | Toluene Extractable Matter (TEM)        | Gravimetrically determined through extraction with toluene                                                                                          | E011         |
| Soil   | D              | Total Organic Carbon (TOC)              | Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate                                | E010         |
| Soil   | AR             | TPH CWG                                 | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge                                                 | E004         |
| Soil   | AR             |                                         | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge                                                 | E004         |
| Soil   | AR             | VOCs                                    | Determination of volatile organic compounds by headspace GC-MS                                                                                      | E001         |
| Soil   | AR             | VPH (C6 - C10)                          | Determination of hydrocarbons C6-C10 by headspace GC-MS                                                                                             | E001         |

**D** Dried AR As Received



John Bartley Soil Consultants Ltd 8 Haven House Albemarle Street Harwich Essex CO12 3HL



#### **QTS Environmental Ltd**

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

#### **QTS Environmental Report No: 14-25327**

**Site Reference:** Bedford Avenue

Project / Job Ref: None Supplied

Order No: None Supplied

Sample Receipt Date: 01/10/2014

Sample Scheduled Date: 02/10/2014

**Report Issue Number:** 1

**Reporting Date:** 08/10/2014

**Authorised by:** 

Russell Jarvis Director

On behalf of QTS Environmental Ltd

Authorised by:

Kevin Old Director

On behalf of QTS Environmental Ltd





| Soil Analysis Certificate             |                 |               |               |  |  |
|---------------------------------------|-----------------|---------------|---------------|--|--|
| QTS Environmental Report No: 14-25327 | Date Sampled    | 23/09/14      | 23/09/14      |  |  |
| Soil Consultants Ltd                  | Time Sampled    | None Supplied | None Supplied |  |  |
| Site Reference: Bedford Avenue        | TP / BH No      | BH2           | BH2           |  |  |
| Project / Job Ref: None Supplied      | Additional Refs | 2/D           | 2/B           |  |  |
| Order No: None Supplied               | Depth (m)       | 3.55          | 5.00 - 5.45   |  |  |
| Reporting Date: 08/10/2014            | QTSE Sample No  | 120311        | 120312        |  |  |

| Determinand                | Unit     | RL     | Accreditation |              |              |   |  |
|----------------------------|----------|--------|---------------|--------------|--------------|---|--|
| Asbestos Screen            | N/a      | N/a    |               | Not Detected | Not Detected |   |  |
| pH                         | pH Units | N/a    | MCERTS        | 7.7          | 8.6          |   |  |
| W/S Sulphate as SO4 (2:1)  | g/l      | < 0.01 | MCERTS        | 0.18         | 0.36         |   |  |
| Elemental Sulphur          | mg/kg    | < 10   | NONE          | < 10         | < 10         |   |  |
| Sulphide                   | mg/kg    | < 5    | NONE          | < 5          | < 5          |   |  |
| Total Organic Carbon (TOC) | %        | < 0.1  | NONE          | 0.3          | 0.5          |   |  |
| Arsenic (As)               | mg/kg    | < 2    | MCERTS        | 6            | 14           |   |  |
| Beryllium (Be)             | mg/kg    | < 0.5  | NONE          | < 0.5        | < 0.5        |   |  |
| W/S Boron                  | mg/kg    | < 1    | NONE          | < 1          | < 1          |   |  |
| Cadmium (Cd)               | mg/kg    | < 0.5  | MCERTS        | 0.8          | < 0.5        |   |  |
| Chromium (Cr)              | mg/kg    | < 2    | MCERTS        | 12           | 11           |   |  |
| Chromium (hexavalent)      | mg/kg    | < 2    | NONE          | < 2          | < 2          |   |  |
| Copper (Cu)                | mg/kg    | < 4    | MCERTS        | 20           | 5            |   |  |
| Lead (Pb)                  | mg/kg    | < 3    | MCERTS        | 147          | 25           |   |  |
| Mercury (Hg)               | mg/kg    | < 1    | NONE          | < 1          | < 1          |   |  |
| Nickel (Ni)                | mg/kg    | < 3    | MCERTS        | 16           | 12           |   |  |
| Selenium (Se)              | mg/kg    | < 3    | NONE          | < 3          | < 3          |   |  |
| Vanadium (V)               | mg/kg    | < 2    | NONE          | 20           | 16           |   |  |
| Zinc (Zn)                  | mg/kg    | < 3    | MCERTS        | 199          | 42           | _ |  |
| Total Phenols (monohydric) | mg/kg    | < 2    | NONE          | < 2          | < 2          |   |  |

Analytical results are expressed on a dry weight basis where samples are dried at less than 30°C

Analysis carried out on the dried sample is corrected for the stone content

The samples have been examined to identify the presence of asbestiform minerals by polarising light microscopy and dispersion staining technique to In-House Procedures QTSE600 Determination of Asbestos in Bulk Materials; Asbestos in Soils/Sediments (fibre screening and identification)

This report refers to samples as received, and QTS Environmental Ltd, takes no responsibility for the accuracy or competence of sampling by others.

The material description shall be regarded as tentative and is not included in our scope of UKAS Accreditation.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Asbestos Analyst: Graham Revell

RL: Reporting Limit

Pinch Test: Where pinch test is positive it is reported "Loose Fibres - PT'' with type(s).

Subcontracted analysis (S)





| Soil Analysis Certificate - Speciated PAHs |                 |               |               |  |  |  |  |  |  |
|--------------------------------------------|-----------------|---------------|---------------|--|--|--|--|--|--|
| QTS Environmental Report No: 14-25327      | Date Sampled    | 23/09/14      | 23/09/14      |  |  |  |  |  |  |
| Soil Consultants Ltd                       | Time Sampled    | None Supplied | None Supplied |  |  |  |  |  |  |
| Site Reference: Bedford Avenue             | TP / BH No      | BH2           | BH2           |  |  |  |  |  |  |
| Project / Job Ref: None Supplied           | Additional Refs | 2/D           | 2/B           |  |  |  |  |  |  |
| Order No: None Supplied                    | Depth (m)       | 3.55          | 5.00 - 5.45   |  |  |  |  |  |  |
| Reporting Date: 08/10/2014                 | QTSE Sample No  | 120311        | 120312        |  |  |  |  |  |  |

| Determinand            | Unit  | RL    | Accreditation |       |       |  |   |
|------------------------|-------|-------|---------------|-------|-------|--|---|
| Naphthalene            | mg/kg | < 0.1 | MCERTS        | 1.32  | < 0.1 |  |   |
| Acenaphthylene         | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 |  |   |
| Acenaphthene           | mg/kg | < 0.1 | MCERTS        | 1.71  | < 0.1 |  |   |
| Fluorene               | mg/kg | < 0.1 | MCERTS        | 1.77  | < 0.1 |  |   |
| Phenanthrene           | mg/kg | < 0.1 | MCERTS        | 11.70 | < 0.1 |  |   |
| Anthracene             | mg/kg | < 0.1 | MCERTS        | 3.09  | < 0.1 |  |   |
| Fluoranthene           | mg/kg | < 0.1 | MCERTS        | 9.35  | < 0.1 |  |   |
| Pyrene                 | mg/kg | < 0.1 | MCERTS        | 7.16  | < 0.1 |  |   |
| Benzo(a)anthracene     | mg/kg | < 0.1 | MCERTS        | 3.64  | < 0.1 |  |   |
| Chrysene               | mg/kg | < 0.1 | MCERTS        | 2.95  | < 0.1 |  |   |
| Benzo(b)fluoranthene   | mg/kg | < 0.1 | MCERTS        | 2.60  | < 0.1 |  |   |
| Benzo(k)fluoranthene   | mg/kg | < 0.1 | MCERTS        | 1.07  | < 0.1 |  |   |
| Benzo(a)pyrene         | mg/kg | < 0.1 | MCERTS        | 2.18  | < 0.1 |  |   |
| Indeno(1,2,3-cd)pyrene | mg/kg | < 0.1 | MCERTS        | 0.87  | < 0.1 |  |   |
| Dibenz(a,h)anthracene  | mg/kg | < 0.1 | MCERTS        | 0.13  | < 0.1 |  |   |
| Benzo(ghi)perylene     | mg/kg | < 0.1 | MCERTS        | 0.67  | < 0.1 |  |   |
| Coronene               | mg/kg | < 0.1 | NONE          | 0.40  | < 0.1 |  |   |
| Total Oily Waste PAHs  | mg/kg | < 1   | MCERTS        | 13.4  | < 1   |  | · |
| Total Dutch 10 PAHs    | mg/kg | < 1   | MCERTS        | 36.8  | < 1   |  | · |
| Total EPA-16 PAHs      | mg/kg | < 1.6 | MCERTS        | 50.2  | < 1.6 |  |   |
| Total WAC-17 PAHs      | mg/kg | < 1.7 | NONE          | 50.6  | < 1.7 |  |   |





| Soil Analysis Certificate - EPH Oily Waste Banded |                 |               |               |  |  |  |  |  |
|---------------------------------------------------|-----------------|---------------|---------------|--|--|--|--|--|
| QTS Environmental Report No: 14-25327             | Date Sampled    | 23/09/14      | 23/09/14      |  |  |  |  |  |
| Soil Consultants Ltd                              | Time Sampled    | None Supplied | None Supplied |  |  |  |  |  |
| Site Reference: Bedford Avenue                    | TP / BH No      | BH2           | BH2           |  |  |  |  |  |
| Project / Job Ref: None Supplied                  | Additional Refs | 2/D           | 2/B           |  |  |  |  |  |
| Order No: None Supplied                           | Depth (m)       | 3.55          | 5.00 - 5.45   |  |  |  |  |  |
| Reporting Date: 08/10/2014                        | QTSE Sample No  | 120311        | 120312        |  |  |  |  |  |

| Determinand             | Unit  | RL  | Accreditation |     |     |  |  |
|-------------------------|-------|-----|---------------|-----|-----|--|--|
| Oily Waste (C6 - C10)   | mg/kg | < 1 | NONE          | < 1 | < 1 |  |  |
| Oily Waste (>C10 - C25) | mg/kg | < 1 | MCERTS        | 70  | < 1 |  |  |
| Oily Waste (>C25 - C40) | mg/kg | < 6 | MCERTS        | 65  | < 6 |  |  |
| Oily Waste (C6 - C40)   | mg/kg | < 6 | NONE          | 135 | < 6 |  |  |



| Soil Analysis Certificate - TPH CWG Bande | Soil Analysis Certificate - TPH CWG Banded |               |               |  |  |  |  |  |  |  |
|-------------------------------------------|--------------------------------------------|---------------|---------------|--|--|--|--|--|--|--|
| QTS Environmental Report No: 14-25327     | Date Sampled                               | 23/09/14      | 23/09/14      |  |  |  |  |  |  |  |
| Soil Consultants Ltd                      | Time Sampled                               | None Supplied | None Supplied |  |  |  |  |  |  |  |
| Site Reference: Bedford Avenue            | TP / BH No                                 | BH2           | BH2           |  |  |  |  |  |  |  |
| Project / Job Ref: None Supplied          | Additional Refs                            | 2/D           | 2/B           |  |  |  |  |  |  |  |
| Order No: None Supplied                   | Depth (m)                                  | 3.55          | 5.00 - 5.45   |  |  |  |  |  |  |  |
| Reporting Date: 08/10/2014                | QTSE Sample No                             | 120311        | 120312        |  |  |  |  |  |  |  |

| Determinand          | Unit  | RL     | Accreditation |        |        |  |
|----------------------|-------|--------|---------------|--------|--------|--|
| Aliphatic >C5 - C6   | mg/kg | < 0.01 | NONE          | < 0.01 | < 0.01 |  |
| Aliphatic >C6 - C8   | mg/kg | < 0.05 | NONE          | < 0.05 | < 0.05 |  |
| Aliphatic >C8 - C10  | mg/kg | < 1    | NONE          | < 1    | < 1    |  |
| Aliphatic >C10 - C12 | mg/kg | < 1    | NONE          | < 1    | < 1    |  |
| Aliphatic >C12 - C16 | mg/kg | < 1    | NONE          | < 1    | < 1    |  |
| Aliphatic >C16 - C21 | mg/kg | < 1    | NONE          | < 1    | < 1    |  |
| Aliphatic >C21 - C34 | mg/kg | < 6    | NONE          | 28     | < 6    |  |
| Aliphatic (C5 - C34) | mg/kg | < 12   | NONE          |        | < 12   |  |
| Aromatic >C5 - C7    | mg/kg | < 0.01 | NONE          | < 0.01 | < 0.01 |  |
| Aromatic >C7 - C8    | mg/kg | < 0.05 | NONE          | < 0.05 | < 0.05 |  |
| Aromatic >C8 - C10   | mg/kg | < 1    | NONE          | < 1    | < 1    |  |
| Aromatic >C10 - C12  | mg/kg | < 1    | NONE          | 2      | < 1    |  |
| Aromatic >C12 - C16  | mg/kg | < 1    | NONE          | 10     | < 1    |  |
| Aromatic >C16 - C21  | mg/kg | < 1    | NONE          | 26     | < 1    |  |
| Aromatic >C21 - C35  | mg/kg | < 6    | NONE          | 44     | < 6    |  |
| Aromatic (C5 - C35)  | mg/kg | < 12   | NONE          | 83     | < 12   |  |
| Total >C5 - C35      | mg/kg | < 24   | NONE          | 121    | < 24   |  |





| Soil Analysis Certificate - BTEX / MTBE |                 |               |               |  |  |  |  |  |  |  |
|-----------------------------------------|-----------------|---------------|---------------|--|--|--|--|--|--|--|
| QTS Environmental Report No: 14-25327   | Date Sampled    | 23/09/14      | 23/09/14      |  |  |  |  |  |  |  |
| Soil Consultants Ltd                    | Time Sampled    | None Supplied | None Supplied |  |  |  |  |  |  |  |
| Site Reference: Bedford Avenue          | TP / BH No      | BH2           | BH2           |  |  |  |  |  |  |  |
| Project / Job Ref: None Supplied        | Additional Refs | 2/D           | 2/B           |  |  |  |  |  |  |  |
| Order No: None Supplied                 | Depth (m)       | 3.55          | 5.00 - 5.45   |  |  |  |  |  |  |  |
| Reporting Date: 08/10/2014              | OTSE Sample No  | 120311        | 120312        |  |  |  |  |  |  |  |

| Determinand  | Unit  | RL   | Accreditation |      |      |  |  |
|--------------|-------|------|---------------|------|------|--|--|
| Benzene      | ug/kg | < 2  | MCERTS        | < 2  | < 2  |  |  |
| Toluene      | ug/kg | < 5  | MCERTS        | < 5  | < 5  |  |  |
| Ethylbenzene | ug/kg | < 10 | MCERTS        | < 10 | < 10 |  |  |
| p & m-xylene | ug/kg | < 10 | MCERTS        | < 10 | < 10 |  |  |
| o-xylene     | ug/kg | < 10 | MCERTS        | < 10 | < 10 |  |  |
| MTBE         | ug/kg | < 5  | MCERTS        | < 5  | < 5  |  |  |





Soil Analysis Certificate - Volatile Organic Compounds (VOC)
QTS Environmental Report No: 14-25327 Date San Date Sampled 23/09/14 23/09/14 Soil Consultants Ltd Time Sampled None Supplied None Supplied Site Reference: Bedford Avenue TP / BH No BH2 BH2 Project / Job Ref: None Supplied Order No: None Supplied Reporting Date: 08/10/2014 Additional Refs 2/D 2/E Depth (m) 5.00 - 5.45 QTSE Sample No 120311

| Determinand                                        | Unit           | RL          | Accreditation    |              |             |                                                  |   |
|----------------------------------------------------|----------------|-------------|------------------|--------------|-------------|--------------------------------------------------|---|
| Dichlorodifluoromethane                            | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| Vinyl Chloride                                     | ug/kg<br>ug/kg | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| Chloromethane                                      | ug/kg          | < 10        | MCERTS           | < 10         | < 10        |                                                  |   |
| Chloroethane                                       | ug/kg          | < 5         | MCERTS           | < 10<br>< 5  | < 10<br>< 5 |                                                  |   |
| Bromomethane                                       | ug/kg          | < 10        | MCERTS           | < 10         | < 10        |                                                  |   |
| Trichlorofluoromethane                             | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| 1,1-Dichloroethene                                 | ug/kg          | < 5         | ISO17025         | < 5          | < 5         |                                                  |   |
| 1,1-Dichioroediene<br>MTBE                         | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| trans-1,2-Dichloroethene                           | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| 1,1-Dichloroethane                                 | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| cis-1,2-Dichloroethene                             | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| 2,2-Dichloropropane                                | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| Chloroform                                         | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  | - |
| Bromochloromethane                                 | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| 1,1,1-Trichloroethane                              |                | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| 1,1-Dichloropropene                                | ug/kg          | < 10        | MCERTS           | < 10         | < 10        |                                                  |   |
| Carbon Tetrachloride                               | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| 1,2-Dichloroethane                                 | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| Benzene                                            | ug/kg          | < 2         | MCERTS           | < 2          | < 2         |                                                  |   |
| 1,2-Dichloropropane                                | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| Trichloroethene                                    | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| Bromodichloromethane                               | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| Dibromomethane                                     | ug/kg<br>ug/kg | < 5         | MCERTS           |              |             | <del>                                     </del> |   |
| TAME                                               |                | < 5         |                  | < 5          | < 5         |                                                  |   |
|                                                    | ug/kg          | < 5         | MCERTS<br>MCERTS | < 5          | < 5         |                                                  |   |
| cis-1,3-Dichloropropene                            | ug/kg          |             | MCERTS           | < 5          | < 5         |                                                  |   |
| Toluene                                            | ug/kg          | < 5<br>< 5  | MCERTS           | < 5          | < 5         |                                                  |   |
| trans-1,3-Dichloropropene<br>1,1,2-Trichloroethane | ug/kg          | < 10        | MCERTS           | < 5<br>< 10  | < 5         |                                                  |   |
|                                                    | ug/kg          | < 5         | MCERTS           |              | < 10        |                                                  |   |
| 1,3-Dichloropropane Tetrachloroethene              | ug/kg<br>ug/kg | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
|                                                    |                |             | MCERTS           | < 5<br>< 5   | < 5         |                                                  |   |
| Dibromochloromethane<br>1,2-Dibromoethane          | ug/kg          | < 5<br>< 5  | MCERTS           |              | < 5         |                                                  |   |
| Chlorobenzene                                      | ug/kg<br>ug/kg | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| 1,1,1,2-Tetrachloroethane                          | ug/kg          | < 5         | MCERTS           | < 5          | < 5<br>< 5  | <del>                                     </del> |   |
| Ethyl Benzene                                      |                | < 10        | MCERTS           | < 5<br>< 10  | < 10        |                                                  |   |
|                                                    | ug/kg          | < 10        | MCERTS           | < 10         | < 10        |                                                  |   |
| m,p-Xylene<br>o-Xylene                             | ug/kg<br>ug/kg | < 10        | MCERTS           | < 10<br>< 10 |             |                                                  |   |
| · · · · · · · · · · · · · · · · · · ·              |                |             |                  |              | < 10<br>< 5 |                                                  |   |
| Styrene<br>Bromoform                               | ug/kg<br>ug/kg | < 5<br>< 10 | MCERTS<br>MCERTS | < 5<br>< 10  | < 10        |                                                  |   |
| Isopropylbenzene                                   |                | < 5         | MCERTS           | < 5          | < 10<br>< 5 |                                                  |   |
| 1,1,2,2-Tetrachloroethane                          | ug/kg<br>ug/kg | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| 1,2,3-Trichloropropane                             |                | < 5         |                  | < 5          |             |                                                  |   |
| n-Propylbenzene                                    | ug/kg<br>ug/kg | < 5         | MCERTS<br>MCERTS | < 5<br>< 5   | < 5<br>< 5  |                                                  |   |
| Bromobenzene                                       | ug/kg<br>ug/kg | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| 2-Chlorotoluene                                    | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| 1,3,5-Trimethylbenzene                             | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| 4-Chlorotoluene                                    |                | < 5         | MCERTS           |              |             |                                                  |   |
| tert-Butylbenzene                                  | ug/kg          | < 5<br>< 5  | MCERTS           | < 5<br>< 5   | < 5<br>< 5  |                                                  |   |
| 1,2,4-Trimethylbenzene                             | ug/kg<br>ug/kg | < 5<br>< 5  | MCERTS           | < 5<br>< 5   | < 5<br>< 5  |                                                  |   |
| sec-Butylbenzene                                   |                | < 5<br>< 5  | MCERTS           | < 5<br>< 5   | < 5<br>< 5  |                                                  |   |
|                                                    | ug/kg          |             | MCERTS           |              |             |                                                  |   |
| p-Isopropyltoluene                                 | ug/kg          | < 5         |                  | < 5          | < 5         |                                                  |   |
| 1,3-Dichlorobenzene                                | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| 1,4-Dichlorobenzene                                |                | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| n-Butylbenzene                                     | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| 1,2-Dichlorobenzene                                | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |
| 1,2-Dibromo-3-chloropropane                        | ug/kg          | < 10        | MCERTS           | < 10         | < 10        |                                                  |   |
| Hexachlorobutadiene                                | ug/kg          | < 5         | MCERTS           | < 5          | < 5         |                                                  |   |



Tel: 01622 850410

| Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC) |                 |               |
|------------------------------------------------------------------|-----------------|---------------|
| QTS Environmental Report No: 14-25327                            | Date Sampled    | 23/09/14      |
| Soil Consultants Ltd                                             | Time Sampled    | None Supplied |
| Site Reference: Bedford Avenue                                   | TP / BH No      | BH2           |
| Project / Job Ref: None Supplied                                 | Additional Refs | 2/D           |
| Order No: None Supplied                                          | Depth (m)       | 3.55          |
| Reporting Date: 08/10/2014                                       | QTSE Sample No  | 120311        |

| Compound No | Compound Name | % Match | Units | RL   | Estimated     |
|-------------|---------------|---------|-------|------|---------------|
|             |               |         |       |      | Concentration |
|             |               |         |       |      |               |
| 1           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 2           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 3           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 4           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 5           | N/a           | N/a     | μg/kg | < 10 | < 10          |



Tel: 01622 850410

| Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC) |                 |               |
|------------------------------------------------------------------|-----------------|---------------|
| QTS Environmental Report No: 14-25327                            | Date Sampled    | 23/09/14      |
| Soil Consultants Ltd                                             | Time Sampled    | None Supplied |
| Site Reference: Bedford Avenue                                   | TP / BH No      | BH2           |
| Project / Job Ref: None Supplied                                 | Additional Refs | 2/B           |
| Order No: None Supplied                                          | Depth (m)       | 5.00 - 5.45   |
| Reporting Date: 08/10/2014                                       | QTSE Sample No  | 120312        |

| Compound No | Compound Name | % Match | Units | RL   | Estimated     |
|-------------|---------------|---------|-------|------|---------------|
|             |               |         |       |      | Concentration |
|             |               |         |       |      |               |
| 1           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 2           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 3           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 4           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 5           | N/a           | N/a     | μg/kg | < 10 | < 10          |





| Soil Analysis Certificate - Semi Volatile Organic Compounds (SVOC) |                 |               |               |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------|-----------------|---------------|---------------|--|--|--|--|--|--|--|--|
| QTS Environmental Report No: 14-25327                              | Date Sampled    | 23/09/14      | 23/09/14      |  |  |  |  |  |  |  |  |
| Soil Consultants Ltd                                               | Time Sampled    | None Supplied | None Supplied |  |  |  |  |  |  |  |  |
| Site Reference: Bedford Avenue                                     | TP / BH No      | BH2           | BH2           |  |  |  |  |  |  |  |  |
| Project / Job Ref: None Supplied                                   | Additional Refs | 2/D           | 2/B           |  |  |  |  |  |  |  |  |
| Order No: None Supplied                                            | Depth (m)       | 3.55          | 5.00 - 5.45   |  |  |  |  |  |  |  |  |
| Reporting Date: 08/10/2014                                         | QTSE Sample No  | 120311        | 120312        |  |  |  |  |  |  |  |  |

| Determinand                 | Unit  | RL     | Accreditation |        |        |  |
|-----------------------------|-------|--------|---------------|--------|--------|--|
| Phenol                      | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |  |
| 1,2,4-Trichlorobenzene      | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  |  |
| 2-Nitrophenol               | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |  |
| Nitrobenzene                | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |  |
| 0-Cresol                    | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |  |
| bis(2-chloroethoxy)methane  | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |  |
| bis(2-chloroethyl)ether     | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |  |
| 2,4-Dichlorophenol          | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |  |
| 2-Chlorophenol              | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  |  |
| 1,3-Dichlorobenzene         | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  |  |
| 1,4-Dichlorobenzene         | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  |  |
| 1,2-Dichlorobenzene         | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  |  |
| 2,4-Dimethylphenol          | mg/kg | < 0.15 | ISO17025      | < 0.15 | < 0.15 |  |
| Isophorone                  | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |  |
| Hexachloroethane            | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |  |
| p-Cresol                    | mg/kg | < 0.15 | MCERTS        | < 0.15 | < 0.15 |  |
| 2,4,6-Trichlorophenol       | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |  |
| 2,4,5-Trichlorophenol       | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |  |
| 2-Nitroaniline              | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |  |
| 4-Chloro-3-methylphenol     | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |  |
| 2-Methylnaphthalene         | mg/kg | < 0.1  | MCERTS        | 0.2    | < 0.1  |  |
| Hexachlorocyclopentadiene   | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |  |
| Hexachlorobutadiene         | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  |  |
| 2,6-Dinitrotoluene          | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |  |
| Dimethyl phthalate          | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |  |
| 2-Chloronaphthalene         | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |  |
| 4-Chloroanaline             | mg/kg | < 0.2  | NONE          | < 0.2  | < 0.2  |  |
| 4-Nitrophenol               | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |  |
| 4-Chlorophenyl phenyl ether | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |  |
| 3-Nitroaniline              | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |  |
| 4-Nitroaniline              | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |  |
| 4-Bromophenyl phenyl ether  | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |  |
| Hexachlorobenzene           | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |  |
| 2,4-Dinitrotoluene          | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |  |
| Diethyl phthalate           | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |  |
| Dibenzofuran                | mg/kg | < 0.1  | MCERTS        | 0.5    | < 0.1  |  |
| Azobenzene                  | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |  |
| Dibutyl phthalate           | mg/kg | < 0.15 | ISO17025      | < 0.15 | < 0.15 |  |
| Carbazole                   | mg/kg | < 0.1  | ISO17025      | 0.7    | < 0.1  |  |
| bis(2-ethylhexyl)phthalate  | mg/kg | < 0.2  | MCERTS        | 0.2    | < 0.2  |  |
| Benzyl butyl phthalate      | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |  |
| Di-n-octyl phthalate        | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |  |



Tel: 01622 850410

| Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC) |                 |               |
|------------------------------------------------------------------------|-----------------|---------------|
| QTS Environmental Report No: 14-25327                                  | Date Sampled    | 23/09/14      |
| Soil Consultants Ltd                                                   | Time Sampled    | None Supplied |
| Site Reference: Bedford Avenue                                         | TP / BH No      | BH2           |
| Project / Job Ref: None Supplied                                       | Additional Refs | 2/D           |
| Order No: None Supplied                                                | Depth (m)       | 3.55          |
| Reporting Date: 08/10/2014                                             | QTSE Sample No  | 120311        |

| Compound No | Compound Name | % Match | Units | RL    | Estimated     |
|-------------|---------------|---------|-------|-------|---------------|
|             |               |         |       |       | Concentration |
|             |               |         |       |       |               |
| 1           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 2           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 3           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 4           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 5           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |



Tel: 01622 850410

| Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC) |                 |               |
|------------------------------------------------------------------------|-----------------|---------------|
| QTS Environmental Report No: 14-25327                                  | Date Sampled    | 23/09/14      |
| Soil Consultants Ltd                                                   | Time Sampled    | None Supplied |
| Site Reference: Bedford Avenue                                         | TP / BH No      | BH2           |
| Project / Job Ref: None Supplied                                       | Additional Refs | 2/B           |
| Order No: None Supplied                                                | Depth (m)       | 5.00 - 5.45   |
| Reporting Date: 08/10/2014                                             | QTSE Sample No  | 120312        |

| Compound No | Compound Name | % Match | Units | RL    | Estimated     |
|-------------|---------------|---------|-------|-------|---------------|
|             |               |         |       |       | Concentration |
|             |               |         |       |       |               |
| 1           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 2           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 3           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 4           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 5           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |



| Soil Analysis Certificate - PCB (7 Congeners) |                 |               |               |  |  |  |  |  |  |
|-----------------------------------------------|-----------------|---------------|---------------|--|--|--|--|--|--|
| QTS Environmental Report No: 14-25327         | Date Sampled    | 23/09/14      | 23/09/14      |  |  |  |  |  |  |
| Soil Consultants Ltd                          | Time Sampled    | None Supplied | None Supplied |  |  |  |  |  |  |
| Site Reference: Bedford Avenue                | TP / BH No      | BH2           | BH2           |  |  |  |  |  |  |
| Project / Job Ref: None Supplied              | Additional Refs | 2/D           | 2/B           |  |  |  |  |  |  |
| Order No: None Supplied                       | Depth (m)       | 3.55          | 5.00 - 5.45   |  |  |  |  |  |  |
| Reporting Date: 08/10/2014                    | QTSE Sample No  | 120311        | 120312        |  |  |  |  |  |  |

| Determinand             | Unit  | RL      | Accreditation |         |         |  |
|-------------------------|-------|---------|---------------|---------|---------|--|
| PCB Congener 28         | mg/kg | < 0.008 | NONE          | < 0.008 | < 0.008 |  |
| PCB Congener 52         | mg/kg | < 0.008 | NONE          | < 0.008 | < 0.008 |  |
| PCB Congener 101        | mg/kg | < 0.008 | NONE          | < 0.008 | < 0.008 |  |
| PCB Congener 118        | mg/kg | < 0.008 | NONE          | < 0.008 | < 0.008 |  |
| PCB Congener 138        | mg/kg | < 0.008 | NONE          | < 0.008 | < 0.008 |  |
| PCB Congener 153        | mg/kg | < 0.008 | NONE          | < 0.008 | < 0.008 |  |
| PCB Congener 180        | mg/kg | < 0.008 | NONE          | < 0.008 | < 0.008 |  |
| Total PCB (7 Congeners) | mg/kg | < 0.1   | NONE          | < 0.1   | < 0.1   |  |

Analytical results are expressed on a dry weight basis where samples are dried at less than 30°C





| Soil Analysis Certificate - Sample Descriptions |  |
|-------------------------------------------------|--|
| QTS Environmental Report No: 14-25327           |  |
| Soil Consultants Ltd                            |  |
| Site Reference: Bedford Avenue                  |  |
| Project / Job Ref: None Supplied                |  |
| Order No: None Supplied                         |  |
| Reporting Date: 08/10/2014                      |  |

| QTSE Sample No | TP / BH No | Additional Refs | Depth (m)   | Moisture<br>Content (%) | Sample Matrix Description       |
|----------------|------------|-----------------|-------------|-------------------------|---------------------------------|
| 120311         | BH2        | 2/D             | 3.55        | 6.8                     | Brown clayey gravel with stones |
| 120312         | BH2        | 2/B             | 5.00 - 5.45 | 5.2                     | Brown sandy gravel with stones  |

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample  $^{\rm I/S}$  Unsuitable Sample  $^{\rm U/S}$ 





Soil Analysis Certificate - Methodology & Miscellaneous Information QTS Environmental Report No: 14-25327

Soil Consultants Ltd

Site Reference: Bedford Avenue Project / Job Ref: None Supplied

Order No: None Supplied Reporting Date: 08/10/2014

| Matrix | Analysed<br>On | Determinand                             | Brief Method Description                                                                                                                             | Method<br>No |
|--------|----------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Soil   | D              | Boron - Water Soluble                   | Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES                                                            | E012         |
| Soil   | AR             | BTEX                                    | Determination of BTEX by headspace GC-MS                                                                                                             | E001         |
| Soil   | D              | Cations                                 | Determination of cations in soil by aqua-regia digestion followed by ICP-OES                                                                         | E002         |
| Soil   | D              | Chloride - Water Soluble (2:1)          | Determination of chloride by extraction with water & analysed by ion chromatography                                                                  | E009         |
| Soil   | AR             | Chromium - Hexavalent                   | Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry | E016         |
| Soil   | AR             | Cvanide - Complex                       | Determination of complex cyanide by distillation followed by colorimetry                                                                             | E015         |
| Soil   | AR             |                                         | Determination of free cyanide by distillation followed by colorimetry                                                                                | E015         |
| Soil   | AR             |                                         | Determination of total cyanide by distillation followed by colorimetry                                                                               | E015         |
| Soil   | D              |                                         | Gravimetrically determined through extraction with cyclohexane                                                                                       | E011         |
| Soil   | AR             |                                         | Determination of hexane/acetone extractable hydrocarbons by GC-FID                                                                                   | E004         |
| Soil   | AR             | Electrical Conductivity                 | Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement                             | E022         |
| Soil   | AR             | Electrical Conductivity                 | Determination of electrical conductivity by addition of water followed by electrometric measurement                                                  | E023         |
| Soil   | D              | Elemental Sulphur                       | Determination of elemental sulphur by solvent extraction followed by GC-MS                                                                           | E020         |
| Soil   | AR             | EPH (C10 - C40)                         | Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                                                   | E004         |
| Soil   | AR             |                                         | Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                                                   | E004         |
| Soil   | AR             | EPH TEXAS                               | Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                                                   | E004         |
| Soil   | D              |                                         | Determination of Fluoride by extraction with water & analysed by ion chromatography                                                                  | E009         |
| Soil   | D              | FOC (Fraction Organic Carbon)           | Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate                     | E010         |
| Soil   | D              | Loss on Ignition @ 450oC                | Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace                                       | E019         |
| Soil   | D              | Magnesium - Water Soluble               | Determination of water soluble magnesium by extraction with water followed by ICP-OES                                                                | E025         |
| Soil   | D              | Metals                                  | Determination of metals by aqua-regia digestion followed by ICP-OES                                                                                  | E002         |
| Soil   | AR             | Mineral Oil (C10 - C40)                 | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge                                                  | E004         |
| Soil   | AR             | Moisture Content                        | Moisture content; determined gravimetrically                                                                                                         | E003         |
| Soil   | D              | Nitrate - Water Soluble (2:1)           | Determination of nitrate by extraction with water & analysed by ion chromatography                                                                   | E009         |
| Soil   | D              | Organic Matter                          | Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate                                 | E010         |
| Soil   | AR             | PAH - Speciated (EPA 16)                | Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards                | E005         |
| Soil   | AR             |                                         | Determination of PCB by extraction with acetone and hexane followed by GC-MS                                                                         | E008         |
| Soil   | D              | Petroleum Ether Extract (PEE)           | Gravimetrically determined through extraction with petroleum ether                                                                                   | E011         |
| Soil   | AR             | pH                                      | Determination of pH by addition of water followed by electrometric measurement                                                                       | E007         |
| Soil   | AR             | Phenols - Total (monohydric)            | Determination of phenols by distillation followed by colorimetry                                                                                     | E021         |
| Soil   | D              | Phosphate - Water Soluble (2:1)         | Determination of phosphate by extraction with water & analysed by ion chromatography                                                                 | E009         |
| Soil   | D              | Sulphate (as SO4) - Total               | Determination of total sulphate by extraction with 10% HCl followed by ICP-OES                                                                       | E013         |
| Soil   | D              | Sulphate (as SO4) - Water Soluble (2:1) | Determination of sulphate by extraction with water & analysed by ion chromatography                                                                  | E009         |
| Soil   | D              | Sulphate (as SO4) - Water Soluble (2:1) | Determination of water soluble sulphate by extraction with water followed by ICP-OES                                                                 | E014         |
| Soil   | AR             | Sulphide                                | Determination of sulphide by distillation followed by colorimetry                                                                                    | E018         |
| Soil   | D              |                                         | Determination of total sulphur by extraction with aqua-regia followed by ICP-OES                                                                     | E024         |
| Soil   | AR             | SVOC                                    | Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS                                               | E006         |
| Soil   | AR             | Thiocyanate (as SCN)                    | Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry  | E017         |
| Soil   | D              | Toluene Extractable Matter (TEM)        | Gravimetrically determined through extraction with toluene                                                                                           | E011         |
| Soil   | D              | Total Organic Carbon (TOC)              | Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate                                 | E010         |
| Soil   | AR             | TPH CWG                                 | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge                                                  | E004         |
| Soil   | AR             | -                                       | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge                                                  | E004         |
| Soil   | AR             |                                         | Determination of volatile organic compounds by headspace GC-MS                                                                                       | E001         |
| Soil   | AR             | VPH (C6 - C10)                          | Determination of hydrocarbons C6-C10 by headspace GC-MS                                                                                              | E001         |

D Dried **AR As Received** 



John Bartley Soil Consultants Ltd 8 Haven House Albemarle Street Harwich Essex CO12 3HL



#### **QTS Environmental Ltd**

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

#### **QTS Environmental Report No: 14-25397**

**Site Reference:** Bedford Avenue

Project / Job Ref: None Supplied

Order No: None Supplied

Sample Receipt Date: 03/10/2014

**Sample Scheduled Date:** 06/10/2014

**Report Issue Number:** 1

**Reporting Date:** 10/10/2014

**Authorised by:** 

Russell Jarvis Director

On behalf of QTS Environmental Ltd

**Authorised by:** 

Kevin Old Director

On behalf of QTS Environmental Ltd





| Soil Analysis Certificate             |                 |               |  |  |  |  |  |  |  |  |
|---------------------------------------|-----------------|---------------|--|--|--|--|--|--|--|--|
| QTS Environmental Report No: 14-25397 | Date Sampled    | None Supplied |  |  |  |  |  |  |  |  |
| Soil Consultants Ltd                  | Time Sampled    | None Supplied |  |  |  |  |  |  |  |  |
| Site Reference: Bedford Avenue        | TP / BH No      | TP12          |  |  |  |  |  |  |  |  |
| Project / Job Ref: None Supplied      | Additional Refs | None Supplied |  |  |  |  |  |  |  |  |
| Order No: None Supplied               | Depth (m)       | 6.50          |  |  |  |  |  |  |  |  |
| Reporting Date: 10/10/2014            | QTSE Sample No  | 120671        |  |  |  |  |  |  |  |  |

| Determinand                | Unit     | RL     | Accreditation |              |   |  |
|----------------------------|----------|--------|---------------|--------------|---|--|
| Asbestos Screen            | N/a      | N/a    | ISO17025      | Not Detected |   |  |
| pH                         | pH Units | N/a    | MCERTS        | 8.2          |   |  |
| W/S Sulphate as SO4 (2:1)  | g/l      | < 0.01 | MCERTS        | 0.08         |   |  |
| Elemental Sulphur          | mg/kg    | < 10   | NONE          | < 10         |   |  |
| Sulphide                   | mg/kg    | < 5    | NONE          | < 5          |   |  |
| Total Organic Carbon (TOC) | %        | < 0.1  | NONE          | 0.3          |   |  |
| Arsenic (As)               | mg/kg    | < 2    | MCERTS        | 5            |   |  |
| Beryllium (Be)             | mg/kg    | < 0.5  | NONE          | < 0.5        |   |  |
| W/S Boron                  | mg/kg    | < 1    | NONE          | < 1          |   |  |
| Cadmium (Cd)               | mg/kg    | < 0.5  | MCERTS        | < 0.5        |   |  |
| Chromium (Cr)              | mg/kg    | < 2    | MCERTS        | 16           |   |  |
| Chromium (hexavalent)      | mg/kg    | < 2    | NONE          | < 2          |   |  |
| Copper (Cu)                | mg/kg    | < 4    | MCERTS        | 20           |   |  |
| Lead (Pb)                  | mg/kg    | < 3    | MCERTS        | 13           |   |  |
| Mercury (Hg)               | mg/kg    | < 1    | NONE          | < 1          |   |  |
| Nickel (Ni)                | mg/kg    | < 3    | MCERTS        | 16           |   |  |
| Selenium (Se)              | mg/kg    | < 3    | NONE          | < 3          |   |  |
| Vanadium (V)               | mg/kg    | < 2    | NONE          | 23           | • |  |
| Zinc (Zn)                  | mg/kg    | < 3    | MCERTS        | 38           |   |  |
| Total Phenols (monohydric) | mg/kg    | < 2    | NONE          | < 2          |   |  |

Analytical results are expressed on a dry weight basis where samples are dried at less than 30°C

Analysis carried out on the dried sample is corrected for the stone content

The samples have been examined to identify the presence of asbestiform minerals by polarising light microscopy and dispersion staining technique to In-House Procedures QTSE600 Determination of Asbestos in Bulk Materials; Asbestos in Soils/Sediments (fibre screening and identification)

This report refers to samples as received, and QTS Environmental Ltd, takes no responsibility for the accuracy or competence of sampling by others.

The material description shall be regarded as tentative and is not included in our scope of UKAS Accreditation.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Asbestos Analyst: Javeed Malik RL: Reporting Limit

Pinch Test: Where pinch test is positive it is reported "Loose Fibres - PT'' with type(s).

Subcontracted analysis (S)





| Soil Analysis Certificate - Speciated PAHs |                 |               |  |  |  |  |  |  |  |
|--------------------------------------------|-----------------|---------------|--|--|--|--|--|--|--|
| QTS Environmental Report No: 14-25397      | Date Sampled    | None Supplied |  |  |  |  |  |  |  |
| Soil Consultants Ltd                       | Time Sampled    | None Supplied |  |  |  |  |  |  |  |
| Site Reference: Bedford Avenue             | TP / BH No      | TP12          |  |  |  |  |  |  |  |
| Project / Job Ref: None Supplied           | Additional Refs | None Supplied |  |  |  |  |  |  |  |
| Order No: None Supplied                    | Depth (m)       | 6.50          |  |  |  |  |  |  |  |
| Reporting Date: 10/10/2014                 | QTSE Sample No  | 120671        |  |  |  |  |  |  |  |

| Determinand            | Unit  | RL    | Accreditation |       |   |   |      |
|------------------------|-------|-------|---------------|-------|---|---|------|
| Naphthalene            | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |   |      |
| Acenaphthylene         | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |   |      |
| Acenaphthene           | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |   |      |
| Fluorene               | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |   |      |
| Phenanthrene           | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |   |      |
| Anthracene             | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |   |      |
| Fluoranthene           | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |   |      |
| Pyrene                 | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |   |      |
| Benzo(a)anthracene     | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |   |      |
| Chrysene               | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |   |      |
| Benzo(b)fluoranthene   | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |   |      |
| Benzo(k)fluoranthene   | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |   |      |
| Benzo(a)pyrene         | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |   |      |
| Indeno(1,2,3-cd)pyrene | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |   |      |
| Dibenz(a,h)anthracene  | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |   |      |
| Benzo(ghi)perylene     | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |   |      |
| Coronene               | mg/kg | < 0.1 | NONE          | < 0.1 |   |   |      |
| Total Oily Waste PAHs  | mg/kg | < 1   | MCERTS        | < 1   |   |   | ·    |
| Total Dutch 10 PAHs    | mg/kg | < 1   | MCERTS        | < 1   | • |   | ·    |
| Total EPA-16 PAHs      | mg/kg | < 1.6 | MCERTS        | < 1.6 |   |   | <br> |
| Total WAC-17 PAHs      | mg/kg | < 1.7 | NONE          | < 1.7 |   | _ |      |





| Soil Analysis Certificate - EPH Oily Waste Banded |                 |               |   |  |  |  |  |  |  |
|---------------------------------------------------|-----------------|---------------|---|--|--|--|--|--|--|
| QTS Environmental Report No: 14-25397             | Date Sampled    | None Supplied |   |  |  |  |  |  |  |
| Soil Consultants Ltd                              | Time Sampled    | None Supplied |   |  |  |  |  |  |  |
| Site Reference: Bedford Avenue                    | TP / BH No      | TP12          |   |  |  |  |  |  |  |
| Project / Job Ref: None Supplied                  | Additional Refs | None Supplied |   |  |  |  |  |  |  |
| Order No: None Supplied                           | Depth (m)       | 6.50          |   |  |  |  |  |  |  |
| Reporting Date: 10/10/2014                        | QTSE Sample No  | 120671        | • |  |  |  |  |  |  |

| Determinand             | Unit  | RL  | Accreditation |     |  |  |
|-------------------------|-------|-----|---------------|-----|--|--|
| Oily Waste (C6 - C10)   | mg/kg | < 1 | NONE          | < 1 |  |  |
| Oily Waste (>C10 - C25) | mg/kg | < 1 | MCERTS        | < 1 |  |  |
| Oily Waste (>C25 - C40) | mg/kg | < 6 | MCERTS        | < 6 |  |  |
| Oily Waste (C6 - C40)   | mg/kg | < 6 | NONE          | < 6 |  |  |



| Soil Analysis Certificate - TPH CWG Banded |                 |               |  |  |  |  |  |  |
|--------------------------------------------|-----------------|---------------|--|--|--|--|--|--|
| QTS Environmental Report No: 14-25397      | Date Sampled    | None Supplied |  |  |  |  |  |  |
| Soil Consultants Ltd                       | Time Sampled    | None Supplied |  |  |  |  |  |  |
| Site Reference: Bedford Avenue             | TP / BH No      | TP12          |  |  |  |  |  |  |
| Project / Job Ref: None Supplied           | Additional Refs | None Supplied |  |  |  |  |  |  |
| Order No: None Supplied                    | Depth (m)       | 6.50          |  |  |  |  |  |  |
| Reporting Date: 10/10/2014                 | QTSE Sample No  | 120671        |  |  |  |  |  |  |

| Determinand          | Unit  | RL     | Accreditation |        |  |  |
|----------------------|-------|--------|---------------|--------|--|--|
| Aliphatic >C5 - C6   | mg/kg | < 0.01 | NONE          | < 0.01 |  |  |
| Aliphatic >C6 - C8   | mg/kg | < 0.05 | NONE          | < 0.05 |  |  |
| Aliphatic >C8 - C10  | mg/kg | < 1    | NONE          | < 1    |  |  |
| Aliphatic >C10 - C12 | mg/kg | < 1    | NONE          | < 1    |  |  |
| Aliphatic >C12 - C16 | mg/kg | < 1    | NONE          | < 1    |  |  |
| Aliphatic >C16 - C21 | mg/kg | < 1    | NONE          | < 1    |  |  |
| Aliphatic >C21 - C34 | mg/kg | < 6    | NONE          | < 6    |  |  |
| Aliphatic (C5 - C34) | mg/kg | < 12   | NONE          | < 12   |  |  |
| Aromatic >C5 - C7    | mg/kg | < 0.01 | NONE          | < 0.01 |  |  |
| Aromatic >C7 - C8    | mg/kg | < 0.05 | NONE          | < 0.05 |  |  |
| Aromatic >C8 - C10   | mg/kg | < 1    | NONE          | < 1    |  |  |
| Aromatic >C10 - C12  | mg/kg | < 1    | NONE          | < 1    |  |  |
| Aromatic >C12 - C16  | mg/kg | < 1    | NONE          | < 1    |  |  |
| Aromatic >C16 - C21  | mg/kg | < 1    | NONE          | < 1    |  |  |
| Aromatic >C21 - C35  | mg/kg | < 6    | NONE          | < 6    |  |  |
| Aromatic (C5 - C35)  | mg/kg | < 12   | NONE          | < 12   |  |  |
| Total >C5 - C35      | 5/ 5/ |        | NONE          | < 24   |  |  |





| Soil Analysis Certificate - BTEX / MTBE |                 |               |  |  |  |  |  |  |
|-----------------------------------------|-----------------|---------------|--|--|--|--|--|--|
| QTS Environmental Report No: 14-25397   | Date Sampled    | None Supplied |  |  |  |  |  |  |
| Soil Consultants Ltd                    | Time Sampled    | None Supplied |  |  |  |  |  |  |
| Site Reference: Bedford Avenue          | TP / BH No      | TP12          |  |  |  |  |  |  |
| Project / Job Ref: None Supplied        | Additional Refs | None Supplied |  |  |  |  |  |  |
| Order No: None Supplied                 | Depth (m)       | 6.50          |  |  |  |  |  |  |
| Reporting Date: 10/10/2014              | QTSE Sample No  | 120671        |  |  |  |  |  |  |

| Determinand  | Unit  | RL   | Accreditation |      |  |
|--------------|-------|------|---------------|------|--|
| Benzene      | ug/kg | < 2  | MCERTS        | < 2  |  |
| Toluene      | ug/kg | < 5  | MCERTS        | < 5  |  |
| Ethylbenzene | ug/kg | < 10 | MCERTS        | < 10 |  |
| p & m-xylene | ug/kg | < 10 | MCERTS        | < 10 |  |
| o-xylene     | ug/kg | < 10 | MCERTS        | < 10 |  |
| MTBE         | ug/kg | < 5  | MCERTS        | < 5  |  |





| Soil Analysis Certificate - Volatile Organic Compounds (VOC) |                 |               |  |  |  |  |  |  |  |
|--------------------------------------------------------------|-----------------|---------------|--|--|--|--|--|--|--|
| QTS Environmental Report No: 14-25397                        | Date Sampled    | None Supplied |  |  |  |  |  |  |  |
| Soil Consultants Ltd                                         | Time Sampled    | None Supplied |  |  |  |  |  |  |  |
| Site Reference: Bedford Avenue                               | TP / BH No      | TP12          |  |  |  |  |  |  |  |
| Project / Job Ref: None Supplied                             | Additional Refs | None Supplied |  |  |  |  |  |  |  |
| Order No: None Supplied                                      | Depth (m)       | 6.50          |  |  |  |  |  |  |  |
| Reporting Date: 10/10/2014                                   | QTSE Sample No  | 120671        |  |  |  |  |  |  |  |

| Determinand                 | Unit           | RL         | Accreditation |      |  |  |
|-----------------------------|----------------|------------|---------------|------|--|--|
| Dichlorodifluoromethane     | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| Vinyl Chloride              | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| Chloromethane               | ug/kg          | < 10       | MCERTS        | < 10 |  |  |
| Chloroethane                | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| Bromomethane                | ug/kg          | < 10       | MCERTS        | < 10 |  |  |
| Trichlorofluoromethane      | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
|                             |                | < 5        | ISO17025      |      |  |  |
| 1,1-Dichloroethene          | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| MTBE                        | ug/kg          |            |               | < 5  |  |  |
| trans-1,2-Dichloroethene    | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| 1,1-Dichloroethane          | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| cis-1,2-Dichloroethene      |                | < 5        | MCERTS        | < 5  |  |  |
| 2,2-Dichloropropane         | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| Chloroform                  | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| Bromochloromethane          | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| 1,1,1-Trichloroethane       | · · ·          | < 5        | MCERTS        | < 5  |  |  |
| 1,1-Dichloropropene         | ug/kg          | < 10       | MCERTS        | < 10 |  |  |
| Carbon Tetrachloride        | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| 1,2-Dichloroethane          | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| Benzene                     | ug/kg          | < 2        | MCERTS        | < 2  |  |  |
| 1,2-Dichloropropane         | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| Trichloroethene             | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| Bromodichloromethane        | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| Dibromomethane              | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| TAME                        | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| cis-1,3-Dichloropropene     | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
|                             |                | < 5        | MCERTS        |      |  |  |
| Toluene                     | ug/kg          |            |               | < 5  |  |  |
| trans-1,3-Dichloropropene   | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| 1,1,2-Trichloroethane       | ug/kg          | < 10       | MCERTS        | < 10 |  |  |
| 1,3-Dichloropropane         | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| Tetrachloroethene           | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| Dibromochloromethane        | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| 1,2-Dibromoethane           |                | < 5        | MCERTS        | < 5  |  |  |
| Chlorobenzene               | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| 1,1,1,2-Tetrachloroethane   | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| Ethyl Benzene               | ug/kg          | < 10       | MCERTS        | < 10 |  |  |
| m,p-Xylene                  | ug/kg          | < 10       | MCERTS        | < 10 |  |  |
| o-Xylene                    | ug/kg          | < 10       | MCERTS        | < 10 |  |  |
| Styrene                     | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| Bromoform                   | ug/kg          | < 10       | MCERTS        | < 10 |  |  |
| Isopropylbenzene            | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| 1,1,2,2-Tetrachloroethane   | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| 1,2,3-Trichloropropane      | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| n-Propylbenzene             | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| Bromobenzene                | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| 2-Chlorotoluene             | ug/kg<br>ug/kg | < 5        | MCERTS        | < 5  |  |  |
| 1,3,5-Trimethylbenzene      | ug/kg<br>ug/kg | < 5        | MCERTS        | < 5  |  |  |
|                             |                | < 5<br>< 5 |               |      |  |  |
| 4-Chlorotoluene             | ug/kg          |            | MCERTS        | < 5  |  |  |
| tert-Butylbenzene           | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| 1,2,4-Trimethylbenzene      | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| sec-Butylbenzene            | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| p-Isopropyltoluene          |                | < 5        | MCERTS        | < 5  |  |  |
| 1,3-Dichlorobenzene         | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| 1,4-Dichlorobenzene         | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| n-Butylbenzene              | ug/kg          | < 5        | MCERTS        | < 5  |  |  |
| 1,2-Dichlorobenzene         |                | < 5        | MCERTS        | < 5  |  |  |
| 1,2-Dibromo-3-chloropropane | ug/kg          | < 10       | MCERTS        | < 10 |  |  |
| Hexachlorobutadiene         |                | < 5        | MCERTS        | < 5  |  |  |



Tel: 01622 850410

| Soil Analysis Certificate - Volatile Organic Compounds TIC (VOC) |                 |               |
|------------------------------------------------------------------|-----------------|---------------|
| QTS Environmental Report No: 14-25397                            | Date Sampled    | None Supplied |
| Soil Consultants Ltd                                             | Time Sampled    | None Supplied |
| Site Reference: Bedford Avenue                                   | TP / BH No      | TP12          |
| Project / Job Ref: None Supplied                                 | Additional Refs | None Supplied |
| Order No: None Supplied                                          | Depth (m)       | 6.50          |
| Reporting Date: 10/10/2014                                       | QTSE Sample No  | 120671        |

| Compound No | Compound Name | % Match | Units | RL   | Estimated     |
|-------------|---------------|---------|-------|------|---------------|
|             |               |         |       |      | Concentration |
|             |               |         |       |      |               |
| 1           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 2           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 3           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 4           | N/a           | N/a     | μg/kg | < 10 | < 10          |
| 5           | N/a           | N/a     | μg/kg | < 10 | < 10          |





| Soil Analysis Certificate - Semi Volatile Org | Soil Analysis Certificate - Semi Volatile Organic Compounds (SVOC) |               |  |  |  |  |  |  |  |
|-----------------------------------------------|--------------------------------------------------------------------|---------------|--|--|--|--|--|--|--|
| QTS Environmental Report No: 14-25397         | Date Sampled                                                       | None Supplied |  |  |  |  |  |  |  |
| Soil Consultants Ltd                          | Time Sampled                                                       | None Supplied |  |  |  |  |  |  |  |
| Site Reference: Bedford Avenue                | TP / BH No                                                         | TP12          |  |  |  |  |  |  |  |
| Project / Job Ref: None Supplied              | Additional Refs                                                    | None Supplied |  |  |  |  |  |  |  |
| Order No: None Supplied                       | Depth (m)                                                          | 6.50          |  |  |  |  |  |  |  |
| Reporting Date: 10/10/2014                    | QTSE Sample No                                                     | 120671        |  |  |  |  |  |  |  |

| Datamainand                   | 11    | DI.            | A sous ditation       |                |   |   |   |
|-------------------------------|-------|----------------|-----------------------|----------------|---|---|---|
| Determinand                   | Unit  | RL             | Accreditation<br>NONE | . 0.1          | 1 | I | ı |
| Phenol 1.2.4-Trichlorobenzene | mg/kg | < 0.1          | ISO17025              | < 0.1          |   |   |   |
| , ,                           | mg/kg |                |                       | < 0.1          |   |   |   |
| 2-Nitrophenol                 | mg/kg | < 0.1<br>< 0.1 | NONE                  | < 0.1          |   |   |   |
| Nitrobenzene                  | mg/kg |                | MCERTS<br>NONE        | < 0.1          |   |   |   |
| 0-Cresol                      | mg/kg | < 0.1<br>< 0.1 | MCERTS                | < 0.1<br>< 0.1 |   |   |   |
| bis(2-chloroethoxy)methane    | mg/kg |                |                       |                |   |   |   |
| bis(2-chloroethyl)ether       | mg/kg | < 0.1          | MCERTS                | < 0.1          |   |   |   |
| 2,4-Dichlorophenol            | mg/kg | < 0.1          | MCERTS<br>ISO17025    | < 0.1          |   |   |   |
| 2-Chlorophenol                | mg/kg | < 0.1          |                       | < 0.1          |   |   |   |
| 1,3-Dichlorobenzene           | mg/kg | < 0.1          | ISO17025              | < 0.1          |   |   |   |
| 1,4-Dichlorobenzene           | mg/kg | < 0.1          | ISO17025              | < 0.1          |   |   |   |
| 1,2-Dichlorobenzene           | mg/kg | < 0.1          | ISO17025              | < 0.1          |   |   |   |
| 2,4-Dimethylphenol            | mg/kg | < 0.15         | ISO17025              | < 0.15         |   |   |   |
| Isophorone                    | mg/kg | < 0.1          | NONE                  | < 0.1          |   |   |   |
| Hexachloroethane              | mg/kg | < 0.1          | MCERTS                | < 0.1          |   |   |   |
| p-Cresol                      | 5, 5  | < 0.15         | MCERTS                | < 0.15         |   |   |   |
| 2,4,6-Trichlorophenol         | mg/kg | < 0.1          | MCERTS                | < 0.1          |   |   |   |
| 2,4,5-Trichlorophenol         | mg/kg | < 0.1          | MCERTS                | < 0.1          |   |   |   |
| 2-Nitroaniline                | mg/kg | < 0.1          | NONE                  | < 0.1          |   |   |   |
| 4-Chloro-3-methylphenol       | mg/kg | < 0.1          | NONE                  | < 0.1          |   |   |   |
| 2-Methylnaphthalene           | mg/kg | < 0.1          | MCERTS                | < 0.1          |   |   |   |
| Hexachlorocyclopentadiene     | mg/kg | < 0.1          | NONE                  | < 0.1          |   |   |   |
| Hexachlorobutadiene           | mg/kg | < 0.1          | ISO17025              | < 0.1          |   |   |   |
| 2,6-Dinitrotoluene            | mg/kg | < 0.1          | MCERTS                | < 0.1          |   |   |   |
| Dimethyl phthalate            | mg/kg | < 0.1          | NONE                  | < 0.1          |   |   |   |
| 2-Chloronaphthalene           | mg/kg | < 0.1          | MCERTS                | < 0.1          |   |   |   |
| 4-Chloroanaline               | mg/kg | < 0.2          | NONE                  | < 0.2          |   |   |   |
| 4-Nitrophenol                 | mg/kg | < 0.1          | NONE                  | < 0.1          |   |   |   |
| 4-Chlorophenyl phenyl ether   | mg/kg | < 0.1          | MCERTS                | < 0.1          |   |   |   |
| 3-Nitroaniline                | mg/kg | < 0.1          | NONE                  | < 0.1          |   |   |   |
| 4-Nitroaniline                | mg/kg | < 0.1          | NONE                  | < 0.1          |   |   |   |
| 4-Bromophenyl phenyl ether    | mg/kg | < 0.1          | MCERTS                | < 0.1          |   |   |   |
| Hexachlorobenzene             | mg/kg | < 0.1          | MCERTS                | < 0.1          |   |   |   |
| 2,4-Dinitrotoluene            | mg/kg | < 0.1          | MCERTS                | < 0.1          |   |   |   |
| Diethyl phthalate             | mg/kg | < 0.1          | MCERTS                | < 0.1          |   |   |   |
| Dibenzofuran                  | mg/kg | < 0.1          | MCERTS                | < 0.1          |   |   |   |
| Azobenzene                    | mg/kg | < 0.1          | NONE                  | < 0.1          |   |   |   |
| Dibutyl phthalate             | mg/kg | < 0.15         | ISO17025              | < 0.15         |   |   |   |
| Carbazole                     | mg/kg | < 0.1          | ISO17025              | < 0.1          |   |   |   |
| bis(2-ethylhexyl)phthalate    | mg/kg | < 0.2          | MCERTS                | < 0.2          |   |   |   |
| Benzyl butyl phthalate        | mg/kg | < 0.1          | MCERTS                | < 0.1          |   |   |   |
| Di-n-octyl phthalate          | mg/kg | < 0.1          | MCERTS                | < 0.1          |   |   |   |



Tel: 01622 850410

| Soil Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC) |                 |               |
|------------------------------------------------------------------------|-----------------|---------------|
| QTS Environmental Report No: 14-25397                                  | Date Sampled    | None Supplied |
| Soil Consultants Ltd                                                   | Time Sampled    | None Supplied |
| Site Reference: Bedford Avenue                                         | TP / BH No      | TP12          |
| Project / Job Ref: None Supplied                                       | Additional Refs | None Supplied |
| Order No: None Supplied                                                | Depth (m)       | 6.50          |
| Reporting Date: 10/10/2014                                             | QTSE Sample No  | 120671        |

| Compound No | Compound Name | % Match | Units | RL    | Estimated     |
|-------------|---------------|---------|-------|-------|---------------|
|             |               |         |       |       | Concentration |
|             |               |         |       |       |               |
| 1           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 2           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 3           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 4           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |
| 5           | N/a           | N/a     | mg/kg | < 0.1 | < 0.1         |



Soil Analysis Certificate - PCB (7 Congeners)

QTS Environmental Report No: 14-25397 Date Sampled None Supplied

Soil Consultants Ltd Time Sampled None Supplied

Site Reference: Bedford Avenue TP / BH No TP12

Project / Job Ref: None Supplied Additional Refs None Supplied

Order No: None Supplied Depth (m) 6.50

Reporting Date: 10/10/2014 QTSE Sample No 120671

| Determinand             | Unit  | RL      | Accreditation |         |  |  |
|-------------------------|-------|---------|---------------|---------|--|--|
| PCB Congener 28         | mg/kg | < 0.008 | NONE          | < 0.008 |  |  |
| PCB Congener 52         | mg/kg | < 0.008 | NONE          | < 0.008 |  |  |
| PCB Congener 101        | mg/kg | < 0.008 | NONE          | < 0.008 |  |  |
| PCB Congener 118        | mg/kg | < 0.008 | NONE          | < 0.008 |  |  |
| PCB Congener 138        | mg/kg | < 0.008 | NONE          | < 0.008 |  |  |
| PCB Congener 153        | mg/kg | < 0.008 | NONE          | < 0.008 |  |  |
| PCB Congener 180        | mg/kg | < 0.008 | NONE          | < 0.008 |  |  |
| Total PCB (7 Congeners) | mg/kg | < 0.1   | NONE          | < 0.1   |  |  |





| Soil Analysis Certificate - Sample Descriptions |  |
|-------------------------------------------------|--|
| QTS Environmental Report No: 14-25397           |  |
| Soil Consultants Ltd                            |  |
| Site Reference: Bedford Avenue                  |  |
| Project / Job Ref: None Supplied                |  |
| Order No: None Supplied                         |  |
| Reporting Date: 10/10/2014                      |  |

| QTSE Sample No | TP / BH No | Additional Refs | Depth (m) | Moisture<br>Content (%) | Sample Matrix Description             |
|----------------|------------|-----------------|-----------|-------------------------|---------------------------------------|
| ^ 120671       | TP12       | None Supplied   | 6.50      | 6.7                     | Light brown clayey gravel with stones |

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample <sup>I/S</sup>
Unsuitable Sample <sup>U/S</sup>

<sup>^</sup> no sampling date provided; unable to confirm if samples are within acceptable holding times





Soil Analysis Certificate - Methodology & Miscellaneous Information QTS Environmental Report No: 14-25397

Soil Consultants Ltd

Site Reference: Bedford Avenue Project / Job Ref: None Supplied Order No: None Supplied Reporting Date: 10/10/2014

| Matrix | Analysed<br>On | Determinand                          | Brief Method Description                                                                                                                             | Method<br>No |
|--------|----------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Soil   | D              | Boron - Water Soluble                | Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES                                                            | E012         |
| Soil   | AR             | BTEX                                 | Determination of BTEX by headspace GC-MS                                                                                                             | E001         |
| Soil   | D              | Cations                              | Determination of cations in soil by aqua-regia digestion followed by ICP-OES                                                                         | E002         |
| Soil   | D              | Chloride - Water Soluble (2:1)       | Determination of chloride by extraction with water & analysed by ion chromatography                                                                  | E009         |
| Soil   | AR             | Chromium - Hexavalent                | Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry | E016         |
| Soil   | AR             | Cyanide - Complex                    | Determination of complex cyanide by distillation followed by colorimetry                                                                             | E015         |
| Soil   | AR             | Cyanide - Free                       | Determination of free cyanide by distillation followed by colorimetry                                                                                | E015         |
| Soil   | AR             |                                      | Determination of total cyanide by distillation followed by colorimetry                                                                               | E015         |
| Soil   | D              | Cyclohexane Extractable Matter (CEM) | Gravimetrically determined through extraction with cyclohexane                                                                                       | E011         |
| Soil   | AR             | Diesel Range Organics (C10 - C24)    | Determination of hexane/acetone extractable hydrocarbons by GC-FID                                                                                   | E004         |
| Soil   | AR             | Electrical Conductivity              | Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement                             | E022         |
| Soil   | AR             | Electrical Conductivity              | Determination of electrical conductivity by addition of water followed by electrometric measurement                                                  | E023         |
| Soil   | D              | Elemental Sulphur                    | Determination of elemental sulphur by solvent extraction followed by GC-MS                                                                           | E020         |
| Soil   | AR             |                                      | Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                                                   | E004         |
| Soil   | AR             |                                      | Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                                                   | E004         |
| Soil   | AR             |                                      | Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                                                   | E004         |
| Soil   | D              |                                      | Determination of Fluoride by extraction with water & analysed by ion chromatography                                                                  | E009         |
| Soil   | D              | FOC (Fraction Organic Carbon)        | Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate                     | E010         |
| Soil   | D              | Loss on Ignition @ 450oC             | Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace                                       | E019         |
| Soil   | D              | Magnesium - Water Soluble            | Determination of water soluble magnesium by extraction with water followed by ICP-OES                                                                | E025         |
| Soil   | D              | Metals                               | Determination of metals by aqua-regia digestion followed by ICP-OES                                                                                  | E002         |
| Soil   | AR             | Mineral Oil (C10 - C40)              | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge                                                  | E004         |
| Soil   | AR             | Moisture Content                     | Moisture content; determined gravimetrically                                                                                                         | E003         |
| Soil   | D              | Nitrate - Water Soluble (2:1)        | Determination of nitrate by extraction with water & analysed by ion chromatography                                                                   | E009         |
| Soil   | D              | Organic Matter                       | Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate                                 | E010         |
| Soil   | AR             | PAH - Speciated (EPA 16)             | Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards                | E005         |
| Soil   | AR             | PCB - 7 Congeners                    | Determination of PCB by extraction with acetone and hexane followed by GC-MS                                                                         | E008         |
| Soil   | D              | Petroleum Ether Extract (PEE)        | Gravimetrically determined through extraction with petroleum ether                                                                                   | E011         |
| Soil   | AR             | pH                                   | Determination of pH by addition of water followed by electrometric measurement                                                                       | E007         |
| Soil   | AR             | Phenols - Total (monohydric)         | Determination of phenols by distillation followed by colorimetry                                                                                     | E021         |
| Soil   | D              | Phosphate - Water Soluble (2:1)      | Determination of phosphate by extraction with water & analysed by ion chromatography                                                                 | E009         |
| Soil   | D              |                                      | Determination of total sulphate by extraction with 10% HCl followed by ICP-OES                                                                       | E013         |
| Soil   | D              | . ,                                  | Determination of sulphate by extraction with water & analysed by ion chromatography                                                                  | E009         |
| Soil   | D              |                                      | Determination of water soluble sulphate by extraction with water followed by ICP-OES                                                                 | E014         |
| Soil   | AR             |                                      | Determination of sulphide by distillation followed by colorimetry                                                                                    | E018         |
| Soil   | D              |                                      | Determination of total sulphur by extraction with aqua-regia followed by ICP-OES                                                                     | E024         |
| Soil   | AR             | SVOC                                 | Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS                                               | E006         |
| Soil   | AR             | Thiocyanate (as SCN)                 | Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry  | E017         |
| Soil   | D              | Toluene Extractable Matter (TEM)     | Gravimetrically determined through extraction with toluene                                                                                           | E011         |
| Soil   | D              | Total Organic Carbon (TOC)           | Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate                                 | E010         |
| Soil   | AR             | TPH CWG                              | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge                                                  | E004         |
| Soil   | AR             | TPH LQM                              | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge                                                  | E004         |
| Soil   | AR             | VOCs                                 | Determination of volatile organic compounds by headspace GC-MS                                                                                       | E001         |
| Soil   | AR             | VPH (C6 - C10)                       | Determination of hydrocarbons C6-C10 by headspace GC-MS                                                                                              | E001         |

D Dried AR As Received







**QTS Environmental Ltd** 

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN

t: 01622 850410 russell.jarvis@gtsenvironmental.com

#### **QTS Environmental Report No: 14-25909**

**Site Reference:** Bedford Avenue

**Project / Job Ref:** 9661

**Order No:** None Supplied

**Sample Receipt Date:** 23/10/2014

**Sample Scheduled Date:** 23/10/2014

**Report Issue Number:** 1

**Reporting Date:** 31/10/2014

**Authorised by:** 

Russell Jarvis Director

On behalf of QTS Environmental Ltd

**Authorised by:** 

Kevin Old Director

On behalf of QTS Environmental Ltd





**Water Analysis Certificate** 22/10/14 22/10/14 QTS Environmental Report No: 14-25909 **Date Sampled** None Supplied Soil Consultants Ltd **Time Sampled** None Supplied TP / BH No Site Reference: Bedford Avenue WS1 WS2 **Additional Refs** Project / Job Ref: 9661 None Supplied None Supplied Order No: None Supplied None Supplied None Supplied Depth (m) Reporting Date: 31/10/2014 **QTSE Sample No** 123064 123063

| Determinand                 | Unit      | RL     | Accreditation |        |        |  |  |
|-----------------------------|-----------|--------|---------------|--------|--------|--|--|
| рН                          | pH Units  | N/a    |               | 7.4    | 7.4    |  |  |
| Sulphate as SO <sub>4</sub> | mg/l      | < 1    | ISO17025      | 152    | 149    |  |  |
| Sulphide                    | mg/l      | < 0.1  | NONE          | < 0.1  | < 0.1  |  |  |
| Ammonium as NH <sub>4</sub> | ug/l      | < 50   | NONE          | 60     | < 50   |  |  |
| Chloride                    | mg/l      | < 1    | ISO17025      | 65     | 85     |  |  |
| Nitrate as NO <sub>3</sub>  | mg/l      | < 0.5  | ISO17025      | 32.4   | 97.1   |  |  |
| Hardness - Total            | mgCaCO3/l | < 1    | NONE          | 564    | 496    |  |  |
| Arsenic (dissolved)         | ug/l      | < 10   | NONE          | < 10   | < 10   |  |  |
| Barium (dissolved)          | ug/l      | < 20   | NONE          | 95     | 127    |  |  |
| Beryllium (dissolved)       | ug/l      | < 1    | NONE          | < 1    | < 1    |  |  |
| Boron (dissolved)           | ug/l      | < 50   | NONE          | 132    | 110    |  |  |
| Cadmium (dissolved)         | ug/l      | < 0.5  | NONE          | < 0.5  | < 0.5  |  |  |
| Chromium (dissolved)        | ug/l      | < 5    | NONE          | < 5    | < 5    |  |  |
| Copper (dissolved)          | ug/l      | < 10   | NONE          | < 10   | < 10   |  |  |
| Iron (dissolved)            | ug/l      | < 25   | NONE          | 299    | 150    |  |  |
| Lead (dissolved)            | ug/l      | < 5    | NONE          | < 5    | < 5    |  |  |
| Mercury (dissolved)         | ug/l      | < 0.05 | NONE          | < 0.05 | < 0.05 |  |  |
| Nickel (dissolved)          | ug/l      | < 7    | NONE          | < 7    | < 7    |  |  |
| Selenium (dissolved)        | ug/l      | < 5    | NONE          | < 5    | < 5    |  |  |
| Vanadium (dissolved)        | ug/l      | < 5    | NONE          | < 5    | < 5    |  |  |
| Zinc (dissolved)            |           | < 5    | NONE          | < 5    | < 5    |  |  |

Subcontracted analysis <sup>(S)</sup>
Insufficient sample <sup>1/S</sup>
Unsuitable Sample <sup>U/S</sup>



| Water Analysis Certificate - Speciated PAH |                 |               |               |  |  |  |  |  |  |
|--------------------------------------------|-----------------|---------------|---------------|--|--|--|--|--|--|
| QTS Environmental Report No: 14-2          | Date Sampled    | 22/10/14      | 22/10/14      |  |  |  |  |  |  |
| Soil Consultants Ltd                       | Time Sampled    | None Supplied | None Supplied |  |  |  |  |  |  |
| Site Reference: Bedford Avenue             | TP / BH No      | WS1           | WS2           |  |  |  |  |  |  |
| Project / Job Ref: 9661                    | Additional Refs | None Supplied | None Supplied |  |  |  |  |  |  |
| Order No: None Supplied                    | Depth (m)       | None Supplied | None Supplied |  |  |  |  |  |  |
| Reporting Date: 31/10/2014                 | QTSE Sample No  | 123063        | 123064        |  |  |  |  |  |  |

| Determinand            | Unit | RL     | Accreditation |        |        |  |  |
|------------------------|------|--------|---------------|--------|--------|--|--|
| Naphthalene            | ug/l | < 0.01 | NONE          | < 0.01 | < 0.01 |  |  |
| Acenaphthylene         | ug/l | < 0.01 | NONE          | < 0.01 | < 0.01 |  |  |
| Acenaphthene           | ug/l | < 0.01 | NONE          | < 0.01 | < 0.01 |  |  |
| Fluorene               | ug/l | < 0.01 | NONE          | < 0.01 | < 0.01 |  |  |
| Phenanthrene           | ug/l | < 0.01 | NONE          | < 0.01 | < 0.01 |  |  |
| Anthracene             | ug/l | < 0.01 | NONE          | < 0.01 | < 0.01 |  |  |
| Fluoranthene           | ug/l | < 0.01 | NONE          | < 0.01 | < 0.01 |  |  |
| Pyrene                 | ug/l | < 0.01 | NONE          | < 0.01 | < 0.01 |  |  |
| Benzo(a)anthracene     | ug/l | < 0.01 | NONE          | < 0.01 | < 0.01 |  |  |
| Chrysene               | ug/l | < 0.01 | NONE          | < 0.01 | < 0.01 |  |  |
| Benzo(b)fluoranthene   | ug/l | < 0.01 | NONE          | < 0.01 | < 0.01 |  |  |
| Benzo(k)fluoranthene   | ug/l | < 0.01 | NONE          | < 0.01 | < 0.01 |  |  |
| Benzo(a)pyrene         | ug/l | < 0.01 | NONE          | < 0.01 | < 0.01 |  |  |
| Indeno(1,2,3-cd)pyrene | ug/l | < 0.01 | NONE          | < 0.01 | < 0.01 |  |  |
| Dibenz(a,h)anthracene  | ug/l | < 0.01 | NONE          | < 0.01 | < 0.01 |  |  |
| Benzo(ghi)perylene     | ug/l | < 0.01 | NONE          | < 0.01 | < 0.01 |  |  |
| Total EPA-16 PAHs      | ug/l | < 0.01 | NONE          | < 0.01 | < 0.01 |  |  |



| Water Analysis Certificate - TPH CWG Banded |                 |               |               |  |  |  |  |  |  |
|---------------------------------------------|-----------------|---------------|---------------|--|--|--|--|--|--|
| QTS Environmental Report No: 14-25909       | Date Sampled    | 22/10/14      | 22/10/14      |  |  |  |  |  |  |
| Soil Consultants Ltd                        | Time Sampled    | None Supplied | None Supplied |  |  |  |  |  |  |
| Site Reference: Bedford Avenue              | TP / BH No      | WS1           | WS2           |  |  |  |  |  |  |
| Project / Job Ref: 9661                     | Additional Refs | None Supplied | None Supplied |  |  |  |  |  |  |
| Order No: None Supplied                     | Depth (m)       | None Supplied | None Supplied |  |  |  |  |  |  |
| Reporting Date: 31/10/2014                  | QTSE Sample No  | 123063        | 123064        |  |  |  |  |  |  |

| Determinand          | Unit | RL    | Accreditation |       |       |  |
|----------------------|------|-------|---------------|-------|-------|--|
| Aliphatic >C5 - C6   | ug/l | < 10  | NONE          | < 10  | < 10  |  |
| Aliphatic >C6 - C8   | ug/l | < 10  | NONE          | < 10  | < 10  |  |
| Aliphatic >C8 - C10  | ug/l | < 10  | NONE          | < 10  | < 10  |  |
| Aliphatic >C10 - C12 | ug/l | < 10  | NONE          | < 10  | < 10  |  |
| Aliphatic >C12 - C16 | ug/l | < 10  | NONE          | < 10  | < 10  |  |
| Aliphatic >C16 - C21 | ug/l | < 10  | NONE          | < 10  | < 10  |  |
| Aliphatic >C21 - C34 | ug/l | < 10  | NONE          | < 10  | < 10  |  |
| Aliphatic (C5 - C34) | ug/l | < 70  | NONE          | < 70  | < 70  |  |
| Aromatic >C5 - C7    | ug/l | < 10  | NONE          | < 10  | < 10  |  |
| Aromatic >C7 - C8    | ug/l | < 10  | NONE          | < 10  | < 10  |  |
| Aromatic >C8 - C10   | ug/l | < 10  | NONE          | < 10  | < 10  |  |
| Aromatic >C10 - C12  | ug/l | < 10  | NONE          | < 10  | < 10  |  |
| Aromatic >C12 - C16  | ug/l | < 10  | NONE          | < 10  | < 10  |  |
| Aromatic >C16 - C21  | ug/l | < 10  | NONE          | < 10  | < 10  |  |
| Aromatic >C21 - C35  | ug/l | < 10  | NONE          | < 10  | < 10  |  |
| Aromatic (C5 - C35)  | ug/l | < 70  | NONE          | < 70  | < 70  |  |
| Total >C5 - C35      | ug/l | < 140 | NONE          | < 140 | < 140 |  |





| Water Analysis Certificate - BTEX / MTBE |                 |               |               |  |  |  |  |  |
|------------------------------------------|-----------------|---------------|---------------|--|--|--|--|--|
| QTS Environmental Report No: 14-25909    | Date Sampled    | 22/10/14      | 22/10/14      |  |  |  |  |  |
| Soil Consultants Ltd                     | Time Sampled    | None Supplied | None Supplied |  |  |  |  |  |
| Site Reference: Bedford Avenue           | TP / BH No      | WS1           | WS2           |  |  |  |  |  |
| Project / Job Ref: 9661                  | Additional Refs | None Supplied | None Supplied |  |  |  |  |  |
| Order No: None Supplied                  | Depth (m)       | None Supplied | None Supplied |  |  |  |  |  |
| Reporting Date: 31/10/2014               | QTSE Sample No  | 123063        | 123064        |  |  |  |  |  |

| Determinand  | Unit | RL   | Accreditation |      |      |  |  |
|--------------|------|------|---------------|------|------|--|--|
| Benzene      | ug/l | < 1  | ISO17025      | < 1  | < 1  |  |  |
| Toluene      | ug/l | < 5  | ISO17025      | < 5  | < 5  |  |  |
| Ethylbenzene | ug/l | < 5  | ISO17025      | < 5  | < 5  |  |  |
| p & m-xylene | ug/l | < 10 | ISO17025      | < 10 | < 10 |  |  |
| o-xylene     | ug/l | < 5  | ISO17025      | < 5  | < 5  |  |  |
| MTBE         | ug/l | < 10 | ISO17025      | < 10 | < 10 |  |  |





Water Analysis Certificate - Volatile Organic Compounds (VOC) QTS Environmental Report No: 14-25909 22/10/14 22/10/14 Date Sampled Time Sampled Soil Consultants Ltd None Supplied None Supplied Site Reference: Bedford Avenue TP / BH No WS1 WS2 Additional Refs None Supplied Project / Job Ref: 9661 None Supplied Order No: None Supplied Depth (m) None Supplied None Supplied Reporting Date: 31/10/2014 QTSE Sample No 123063 123064

| Reporting Date: 31/10/20              | )14  |             | QTSE Sample No | 123063 | 123064 |                                                  |  |
|---------------------------------------|------|-------------|----------------|--------|--------|--------------------------------------------------|--|
|                                       |      |             |                |        |        |                                                  |  |
| Determinand                           | Unit | RL          | Accreditation  |        |        |                                                  |  |
| Dichlorodifluoromethane               | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| Vinyl Chloride                        | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| Chloromethane                         | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| Chloroethane                          | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| Bromomethane                          | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| Trichlorofluoromethane                | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| 1,1-Dichloroethene                    | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| MTBE                                  | ug/l | < 10        | ISO17025       | < 10   | < 10   |                                                  |  |
| trans-1,2-Dichloroethene              | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| 1,1-Dichloroethane                    | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| cis-1,2-Dichloroethene                | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| 2,2-Dichloropropane                   | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| Chloroform                            | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| Bromochloromethane                    | ug/l | < 10        | ISO17025       | < 10   | < 10   |                                                  |  |
| 1,1,1-Trichloroethane                 | ug/l | < 5         | ISO17025       | < 5    | < 5    | <del> </del>                                     |  |
| 1,1-Dichloropropene                   | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| Carbon Tetrachloride                  | ug/l | < 5         | ISO17025       | < 5    | < 5    | -                                                |  |
| 1,2-Dichloroethane                    | ug/l | < 10        | ISO17025       | < 10   | < 10   |                                                  |  |
| Benzene                               | ug/l | < 1         | ISO17025       | < 1    | < 1    |                                                  |  |
| 1,2-Dichloropropane                   | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| Trichloroethene                       | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| Bromodichloromethane                  | ug/l | < 5         | ISO17025       | < 5    | < 5    | <del>                                     </del> |  |
| Dibromomethane                        | ug/l | < 5         | ISO17025       | < 5    | < 5    | <del>                                     </del> |  |
| TAME                                  | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| cis-1,3-Dichloropropene               | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| Toluene                               | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| trans-1,3-Dichloropropene             |      | < 5         |                | < 5    | < 5    | <del>                                     </del> |  |
| 1,1,2-Trichloroethane                 |      |             |                |        |        | <del>                                     </del> |  |
|                                       |      | < 10<br>< 5 |                |        |        |                                                  |  |
| 1,3-Dichloropropane Tetrachloroethene | ug/l | < 5<br>< 5  |                | < 5    | < 5    | <del>                                     </del> |  |
|                                       | ug/l |             | ISO17025       | < 5    | < 5    | <del>                                     </del> |  |
| Dibromochloromethane                  | ug/l | < 5         | ISO17025       | < 5    | < 5    | <del>                                     </del> |  |
| 1,2-Dibromoethane                     | ug/l | < 5<br>< 5  | ISO17025       | < 5    | < 5    | <del>                                     </del> |  |
| Chlorobenzene                         | ug/l |             |                | < 5    | < 5    | <del>                                     </del> |  |
| 1,1,1,2-Tetrachloroethane             | ug/l | < 5         | ISO17025       | < 5    | < 5    | <del>                                     </del> |  |
| Ethyl Benzene                         | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| m,p-Xylene                            | ug/l | < 10        |                | < 10   | < 10   | <del>                                     </del> |  |
| o-Xylene                              | ug/l | < 5         |                | < 5    | < 5    | <del>                                     </del> |  |
| Styrene                               | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| Bromoform                             | ug/l | < 10        |                | < 10   | < 10   | <del>                                     </del> |  |
| Isopropylbenzene                      | ug/l | < 5         | ISO17025       | < 5    | < 5    | <del>                                     </del> |  |
| 1,1,2,2-Tetrachloroethane             | ug/l | < 10        |                | < 10   | < 10   |                                                  |  |
| 1,2,3-Trichloropropane                | ug/l | < 5         | ISO17025       | < 5    | < 5    | <del>                                     </del> |  |
| n-Propylbenzene                       | ug/l | < 5         | ISO17025       | < 5    | < 5    | <del> </del>                                     |  |
| Bromobenzene                          | ug/l | < 5         | ISO17025       | < 5    | < 5    | <del> </del>                                     |  |
| 2-Chlorotoluene                       | ug/l | < 5         | ISO17025       | < 5    | < 5    | <del> </del>                                     |  |
| 1,3,5-Trimethylbenzene                | ug/l | < 5         | ISO17025       | < 5    | < 5    | <del>                                     </del> |  |
| 4-Chlorotoluene                       | ug/l | < 5         | ISO17025       | < 5    | < 5    | <del> </del>                                     |  |
| tert-Butylbenzene                     | ug/l | < 5         | ISO17025       | < 5    | < 5    | i                                                |  |
| 1,2,4-Trimethylbenzene                |      | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| sec-Butylbenzene                      | ug/l | < 5         | ISO17025       | < 5    | < 5    | <b>.</b>                                         |  |
| p-Isopropyltoluene                    | ug/l | < 5         | ISO17025       | < 5    | < 5    | <b>.</b>                                         |  |
| 1,3-Dichlorobenzene                   | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| 1,4-Dichlorobenzene                   | ug/l | < 5         | ISO17025       | < 5    | < 5    | <b>.</b>                                         |  |
| n-Butylbenzene                        | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| 1,2-Dichlorobenzene                   | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
| 1,2-Dibromo-3-chloropropane           | ug/l | < 10        | ISO17025       | < 10   | < 10   |                                                  |  |
| Hexachlorobutadiene                   | ug/l | < 5         | ISO17025       | < 5    | < 5    |                                                  |  |
|                                       |      |             |                |        |        |                                                  |  |



Tel: 01622 850410

| Water Analysis Certificate - Volatile Organic Compounds TIC (VOC) |                       |               |
|-------------------------------------------------------------------|-----------------------|---------------|
| QTS Environmental Report No: 14-25909                             | Date Sampled          | 22/10/14      |
| Soil Consultants Ltd                                              | Time Sampled          | None Supplied |
| Site Reference: Bedford Avenue                                    | TP / BH No            | WS1           |
| Project / Job Ref: 9661                                           | Additional Refs       | None Supplied |
| Order No: None Supplied                                           | Depth (m)             | None Supplied |
| Reporting Date: 31/10/2014                                        | <b>QTSE Sample No</b> | 123063        |

| Compound No | Compound Name | % Match | Units | RL  | Estimated     |
|-------------|---------------|---------|-------|-----|---------------|
|             |               |         |       |     | Concentration |
| 1           | N/a           | N/a     | μg/l  | < 5 | < 5           |
| 2           | N/a           | N/a     |       |     | < 5           |
| 3           | N/a           | N/a     |       | _   | < 5           |
| 4           | N/a           | N/a     |       |     | < 5           |
| 5           | N/a           | N/a     |       |     | < 5           |



Tel: 01622 850410

| Water Analysis Certificate - Volatile Organic Compounds TIC (VOC) |                       |               |
|-------------------------------------------------------------------|-----------------------|---------------|
| QTS Environmental Report No: 14-25909                             | Date Sampled          | 22/10/14      |
| Soil Consultants Ltd                                              | Time Sampled          | None Supplied |
| Site Reference: Bedford Avenue                                    | TP / BH No            | WS2           |
| Project / Job Ref: 9661                                           | Additional Refs       | None Supplied |
| Order No: None Supplied                                           | Depth (m)             | None Supplied |
| Reporting Date: 31/10/2014                                        | <b>QTSE Sample No</b> | 123064        |

| Compound No | Compound Name | % Match | Units | RL  | Estimated     |
|-------------|---------------|---------|-------|-----|---------------|
|             |               |         |       |     | Concentration |
| 1           | N/a           | N/a     | μg/l  | < 5 | < 5           |
| 2           | N/a           | N/a     | μg/l  | < 5 | < 5           |
| 3           | N/a           | N/a     | μg/l  | < 5 | < 5           |
| 4           | N/a           | N/a     | μg/l  | < 5 | < 5           |
| 5           | N/a           | N/a     | μg/l  | < 5 | < 5           |



| Water Analysis Certificate - Semi Volatile Organic Compounds (SVOC) |                 |               |               |  |  |  |  |  |
|---------------------------------------------------------------------|-----------------|---------------|---------------|--|--|--|--|--|
| QTS Environmental Report No: 14-25909                               | Date Sampled    | 22/10/14      | 22/10/14      |  |  |  |  |  |
| Soil Consultants Ltd                                                | Time Sampled    | None Supplied | None Supplied |  |  |  |  |  |
| Site Reference: Bedford Avenue                                      | TP / BH No      | WS1           | WS2           |  |  |  |  |  |
| Project / Job Ref: 9661                                             | Additional Refs | None Supplied | None Supplied |  |  |  |  |  |
| Order No: None Supplied                                             | Depth (m)       | None Supplied | None Supplied |  |  |  |  |  |
| Reporting Date: 31/10/2014                                          | QTSE Sample No  | 123063        | 123064        |  |  |  |  |  |

| Determinand                 | Unit | RL    | Accreditation |       |       |  |
|-----------------------------|------|-------|---------------|-------|-------|--|
| Phenol                      | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 1,2,4-Trichlorobenzene      | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 2-Nitrophenol               | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| Nitrobenzene                | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 0-Cresol                    | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| bis(2-chloroethoxy)methane  | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| bis(2-chloroethyl)ether     | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 2,4-Dichlorophenol          | 5.   | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 2-Chlorophenol              | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 1,3-Dichlorobenzene         | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 1,4-Dichlorobenzene         | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 1,2-Dichlorobenzene         | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 2,4-Dimethylphenol          | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| Isophorone                  | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| Hexachloroethane            | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| p-Cresol                    | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 2,4,6-Trichlorophenol       | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 2,4,5-Trichlorophenol       | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 2-Nitroaniline              | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 4-Chloro-3-methylphenol     | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 2-Methylnaphthalene         | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| Hexachlorocyclopentadiene   | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| Hexachlorobutadiene         | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 2,6-Dinitrotoluene          | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| Dimethyl phthalate          | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 2-Chloronaphthalene         | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 4-Chloroanaline             | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 4-Nitrophenol               | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 4-Chlorophenyl phenyl ether | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 3-Nitroaniline              | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 4-Nitroaniline              | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 4-Bromophenyl phenyl ether  | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| Hexachlorobenzene           | ug/l |       | NONE          | < 0.1 | < 0.1 |  |
| 2,4-Dinitrotoluene          | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| Diethyl phthalate           | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| Dibenzofuran                | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| Azobenzene                  | ug/l |       | NONE          | < 0.1 | < 0.1 |  |
| Dibutyl phthalate           | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| Carbazole                   | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| bis(2-ethylhexyl)phthalate  |      |       | NONE          | < 0.1 | < 0.1 |  |
| Benzyl butyl phthalate      |      |       | NONE          | < 0.1 | < 0.1 |  |
| Di-n-octyl phthalate        | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |



Tel: 01622 850410

| Water Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC) |                       |               |
|-------------------------------------------------------------------------|-----------------------|---------------|
| QTS Environmental Report No: 14-25909                                   | Date Sampled          | 22/10/14      |
| Soil Consultants Ltd                                                    | Time Sampled          | None Supplied |
| Site Reference: Bedford Avenue                                          | TP / BH No            | WS1           |
| Project / Job Ref: 9661                                                 | Additional Refs       | None Supplied |
| Order No: None Supplied                                                 | Depth (m)             | None Supplied |
| Reporting Date: 31/10/2014                                              | <b>QTSE Sample No</b> | 123063        |

| Compound No | Compound Name | % Match | Units | RL    | Estimated     |
|-------------|---------------|---------|-------|-------|---------------|
|             |               |         |       |       | Concentration |
| 1           | N/a           | N/a     | μg/l  | < 0.1 | < 0.1         |
| 2           | N/a           | N/a     | μg/l  | < 0.1 | < 0.1         |
| 3           | N/a           | N/a     |       |       | < 0.1         |
| 4           | N/a           | N/a     | μg/l  | < 0.1 | < 0.1         |
| 5           | N/a           | N/a     |       |       | < 0.1         |



Tel: 01622 850410

| Water Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC) |                       |               |
|-------------------------------------------------------------------------|-----------------------|---------------|
| QTS Environmental Report No: 14-25909                                   | Date Sampled          | 22/10/14      |
| Soil Consultants Ltd                                                    | Time Sampled          | None Supplied |
| Site Reference: Bedford Avenue                                          | TP / BH No            | WS2           |
| Project / Job Ref: 9661                                                 | Additional Refs       | None Supplied |
| Order No: None Supplied                                                 | Depth (m)             | None Supplied |
| Reporting Date: 31/10/2014                                              | <b>QTSE Sample No</b> | 123064        |

| Compound No | Compound Name | % Match | Units | RL    | Estimated     |
|-------------|---------------|---------|-------|-------|---------------|
|             |               |         |       |       | Concentration |
| 1           | N/a           | N/a     | μg/l  | < 0.1 | < 0.1         |
| 2           | N/a           | N/a     | μg/l  | < 0.1 | < 0.1         |
| 3           | N/a           | N/a     | μg/l  | < 0.1 | < 0.1         |
| 4           | N/a           | N/a     |       |       | < 0.1         |
| 5           | N/a           | N/a     | μg/l  | < 0.1 | < 0.1         |



| Water Analysis Certificate - PCB (7 Congeners) |                 |               |               |  |  |  |  |
|------------------------------------------------|-----------------|---------------|---------------|--|--|--|--|
| QTS Environmental Report No: 14-25909          | Date Sampled    | 22/10/14      | 22/10/14      |  |  |  |  |
| Soil Consultants Ltd                           | Time Sampled    | None Supplied | None Supplied |  |  |  |  |
| Site Reference: Bedford Avenue                 | TP / BH No      | WS1           | WS2           |  |  |  |  |
| Project / Job Ref: 9661                        | Additional Refs | None Supplied | None Supplied |  |  |  |  |
| Order No: None Supplied                        | Depth (m)       | None Supplied | None Supplied |  |  |  |  |
| Reporting Date: 31/10/2014                     | QTSE Sample No  | 123063        | 123064        |  |  |  |  |

| Determinand             | Unit | RL    | Accreditation |       |       |  |
|-------------------------|------|-------|---------------|-------|-------|--|
| PCB Congener 28         | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| PCB Congener 52         | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| PCB Congener 101        | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| PCB Congener 118        | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| PCB Congener 138        | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| PCB Congener 153        | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| PCB Congener 180        | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| Total PCB (7 Congeners) | ug/l | < 0.7 | NONE          | < 0.7 | < 0.7 |  |



| Water Analysis Certificate - Speciated Phenols |                 |               |               |  |  |  |
|------------------------------------------------|-----------------|---------------|---------------|--|--|--|
| QTS Environmental Report No: 14-25909          | Date Sampled    | 22/10/14      | 22/10/14      |  |  |  |
| Soil Consultants Ltd                           | Time Sampled    | None Supplied | None Supplied |  |  |  |
| Site Reference: Bedford Avenue                 | TP / BH No      | WS1           | WS2           |  |  |  |
| Project / Job Ref: 9661                        | Additional Refs | None Supplied | None Supplied |  |  |  |
| Order No: None Supplied                        | Depth (m)       | None Supplied | None Supplied |  |  |  |
| Reporting Date: 31/10/2014                     | QTSE Sample No  | 123063        | 123064        |  |  |  |

| Determinand               | Unit | RL    | Accreditation |       |       |  |
|---------------------------|------|-------|---------------|-------|-------|--|
| 2, 3, 5-trimethylphenol   | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 2, 3, 6-trimethylphenol   | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 2, 3-xylenol              | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 2, 4, 6-trimethylphenol   | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 2, 4-xylenol              | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 2, 5-xylenol              | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 2, 6-xylenol              | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 2-ethylphenol             | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 2-isopropylphenol         | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 3, 4, 5-trimethylphenol   | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 3, 4-xylenol              | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 3, 5-xylenol              | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 3-ethylphenol             | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 3-isopropylphenol         | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 4-ethylphenol             | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| 4-isopropylphenol         | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| m-cresol (3-methylphenol) | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| o-cresol (2-methylphenol) | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| p-cresol (4-methylphenol) | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |
| phenol                    | ug/l | < 0.1 | NONE          | < 0.1 | < 0.1 |  |





4480

| Soil Analysis Certificate - Methodology | & Miscellaneous Information |
|-----------------------------------------|-----------------------------|
|-----------------------------------------|-----------------------------|

QTS Environmental Report No: 14-25909

Soil Consultants Ltd

Site Reference: Bedford Avenue
Project / Job Ref: 9661

Order No: None Supplied
Reporting Date: 31/10/2014

| Matrix   | Analysed<br>On | Determinand                   | Brief Method Description                                                                                                                 |      |  |  |  |
|----------|----------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|
| Water    | UF             | Alkalinity                    | Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end point                              | E103 |  |  |  |
| Water    | UF             | BTEX                          | Determination of BTEX by headspace GC-MS                                                                                                 | E101 |  |  |  |
| Water    | F              | Cations                       | Determination of cations by filtration followed by ICP-MS                                                                                | E102 |  |  |  |
| Water    | UF             | Chemical Oxygen Demand (COD)  | Determination using a COD reactor followed by colorimetry                                                                                | E112 |  |  |  |
| Water    | F              | Chloride                      | Determination of chloride by filtration & analysed by ion chromatography                                                                 | E109 |  |  |  |
| Water    | F              | Chromium - Hexavalent         | Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by colo                                | E116 |  |  |  |
| Water    | UF             | Cyanide - Complex             | Determination of complex cyanide by distillation followed by colorimetry                                                                 | E115 |  |  |  |
| Water    | UF             | Cyanide - Free                | Determination of free cyanide by distillation followed by colorimetry                                                                    | E115 |  |  |  |
| Water    | UF             | Cyanide - Total               | Determination of total cyanide by distillation followed by colorimetry                                                                   | E115 |  |  |  |
| Water    | UF             |                               | Gravimetrically determined through liquid:liquid extraction with cyclohexane                                                             | E111 |  |  |  |
| Water    | F              |                               | Determination of liquid:liquid extraction with hexane followed by GI-FID                                                                 | E104 |  |  |  |
| Water    | F              |                               | Determination of DOC by filtration followed by low heat with persulphate addition followed by IR detection                               | E110 |  |  |  |
| Water    | UF             | Electrical Conductivity       | Determination of electrical conductivity by electrometric measurement                                                                    | E123 |  |  |  |
| Water    | F              |                               | Determination of liquid:liquid extraction with hexane followed by GI-FID                                                                 | E104 |  |  |  |
| Water    | F              | EPH TEXAS                     | Determination of liquid:liquid extraction with hexane followed by GI-FID                                                                 | E104 |  |  |  |
| Water    | F              | Fluoride                      | Determination of Fluoride by filtration & analysed by ion chromatography                                                                 | E109 |  |  |  |
| Water    | F              | Hardness                      | Determination of Ca and Mg by ICP-MS followed by calculation                                                                             | E102 |  |  |  |
| Leachate | F              |                               | Based on National Rivers Authority leaching test 1994                                                                                    | E301 |  |  |  |
| Leachate | F              |                               | Based on BS EN 12457 Pt1, 2, 3                                                                                                           | E302 |  |  |  |
| Water    | F              |                               | Determination of metals by filtration followed by ICP-MS                                                                                 | E102 |  |  |  |
| Water    | F              |                               | Determination of liquid:liquid extraction with hexane followed by GI-FID                                                                 | E104 |  |  |  |
| Water    | F              | , ,                           | Determination of nitrate by filtration & analysed by ion chromatography                                                                  | E109 |  |  |  |
| Water    | UF             |                               | Determination of phenols by distillation followed by colorimetry                                                                         | E121 |  |  |  |
| Water    | F              | ,                             | · · · · · · · · · · · · · · · · · · ·                                                                                                    | E105 |  |  |  |
| Water    | F              | PCB - 7 Congeners             | Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethane for                                 | E108 |  |  |  |
| Water    | UF             | Petroleum Ether Extract (PEE) | Gravimetrically determined through liquid:liquid extraction with petroleum ether                                                         | E111 |  |  |  |
| Water    | UF             |                               | Determination of pH by electrometric measurement                                                                                         | E107 |  |  |  |
| Water    | F              | Phosphate                     | Determination of phosphate by filtration & analysed by ion chromatography                                                                | E109 |  |  |  |
| Water    | UF             | Redox Potential               | Determination of redox potential by electrometric measurement                                                                            | E113 |  |  |  |
| Water    | F              | Sulphate (as SO4)             | Determination of sulphate by filtration & analysed by ion chromatography                                                                 | E109 |  |  |  |
| Water    | UF             | Sulphide                      | Determination of sulphide by distillation followed by colorimetry                                                                        | E118 |  |  |  |
| Water    | F              | SVOC                          | Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS | E106 |  |  |  |
| Water    | UF             |                               | Gravimetrically determined through liquid:liquid extraction with toluene                                                                 | E111 |  |  |  |
| Water    | UF             | Total Organic Carbon (TOC)    | Low heat with persulphate addition followed by IR detection                                                                              | E110 |  |  |  |
| Water    | F              | TPH CWG                       | Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID                                         | E104 |  |  |  |
| Water    | F              |                               | Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID                                         | E104 |  |  |  |
| Water    | UF             | VOCs                          | Determination of volatile organic compounds by headspace GC-MS                                                                           | E101 |  |  |  |
| Water    | UF             | VPH (C6 - C10)                | Determination of hydrocarbons C6-C10 by headspace GC-MS                                                                                  | E101 |  |  |  |

<u>Key</u>

F Filtered UF Unfiltered