Basement Impact Assessment

Property Details 35 Greville Road London NW6 5JB

Client Information Igor Gokhberg 55 Peiantho CRT Vaughan ON LGA 1G1 Canada

> Regional winner 2013 awards constructionline

Structural Design Reviewed by	Above Ground Drainage Reviewed by	
Chris Tomlin MEng CEng MIStructE	Phil Henry BEng MEng MICE	
Hydrology Report	Geology Report	
Hannah Fraser CGeol	Jon Smithson CGeol	
Separate report	Separate Report	
Report compiled by		
Noma Manzini MEng BEng		

Revision	Date	Comment	
	Aug 2015	First issue	
	Aug 2013		

Croft Structural Engineers Clock Shop Mews Rear of 60 Saxon Road London SE25 5EH

T: 020 8684 4744 E: <u>enquiries@croftse.co.uk</u> W: <u>www.croftse.co.uk</u>

1

Contents

Executive Summary / Non technical Summary	5
Project Summary	5
Stage 1 – Screening	6
Stage 2 – Scoping	6
Stage 3 – Site investigation and study	7
Stage 4 – Impact assessment	7
1. Screening Stage	9
Land Stability	9
Subterranean Flow	9
Surface Flow and Flooding	9
2. Scoping Stage	12
Land Stability	12
Subterranean Flow	12
Surface Flow & Flooding	12
Conceptual Model	12
3. Site Investigation and Study	14
Desk Study and Walkover Survey	14
Proposed Development	14
Site History	15
Local Bombing	16
Listed Buildings	16
Highways, Rail and London Underground	17
London Underground and Network Rail	17
UK Power Networks	17
Vicinity of Trees	17
Building Defects	17
Nos 37 Greville Rpad Property to right	
Local Topography	19
Ground Investigation	19
Geology	20
Surface Flow & Flooding	20
Areas of Hard Standing present on site	20
Rainwater down pipes, Drains, Manholes and Gulleys	

Local Water Sources	20
Field Investigation	20
Monitoring, Reporting and Investigation	20
Land Stability	20
Site Investigation	21
4. Basement Impact Assessment	22
Subterranean Flow	22
Land Stability	22
Flood Risk Assessment	23
Site Location	24
Potential surface water (pluvial) flooding	24
Potential flooding from infrastructure failure	25
Mitigation measures	25
Summary	25
SUDS Assessment	26
Hard standing	26
SUDS Assessment	26
SUDS Calculations	26
Mitigation Measures	26
Drainage effects on Structure	26
Trees	27
Root Protection Zone	27
Conclusion	27
Ground Movement Assessment & Predicted Damage Category	
Burland Scale	
Monitoring	
Risk Assessment	35
Monitoring Conclusion	
Basement Design & Construction Impacts	
Foundation type	
Roads	
Intended use of structure and user requirements	
Loading Requirements (EC1-1)	
Part A3 Progressive collapse	40

Lateral Stability	40
Exposure and wind loading conditions	40
Stability Design	40
Lateral Actions	40
Retained soil Parameters	40
Water Table	41
Drainage and Damp Waterproofing	41
Localised Dewatering	41
Temporary Works	
Geological Assessment of Land Stability	
Retaining Wall Calculation	
piled wall 1 (temporary case)	45
Retaining wall analysis & design (BS8002)	45
RETAINING WALL ANALYSIS (BS 8002:1994)	45
Retaining Wall Design (BS 8002:1994)	
Design of reinforced concrete retaining wall toe (BS 8002:1994)	
Design of reinforced concrete retaining wall stem (BS 8002:1994)	
Indicative retaining wall reinforcement diagram	
piled wall 1 (permanent case)	51
Retaining wall analysis & design (BS8002)	51
RETAINING WALL ANALYSIS (BS 8002:1994)	51
RETAINING WALL DESIGN (BS 8002:1994)	53
Design of reinforced concrete retaining wall toe (BS 8002:1994)	53
Design of reinforced concrete retaining wall heel (BS 8002:1994)	53
Design of reinforced concrete retaining wall stem (BS 8002:1994)	54
Indicative retaining wall reinforcement diagram	55
capping beam for piled wall 1	56
RC beam analysis & design (EN1992)	56
RC beam analysis & design (EN1992-1)	56
Support A	57
Mid span 1	58
Support B	
piled wall 2 (temporary case)	61
Retaining wall analysis & design (BS8002)	62

RE	TAINING WALL ANALYSIS (BS 8002:1994)	63
RE	TAINING WALL DESIGN (BS 8002:1994)	65
	Design of reinforced concrete retaining wall toe (BS 8002:1994)	65
	Design of reinforced concrete retaining wall heel (BS 8002:1994)	65
	Design of reinforced concrete retaining wall stem (BS 8002:1994)	66
	Indicative retaining wall reinforcement diagram	67
pileo	d wall 2 (permanent case)	
Reta	aining wall analysis & design (BS8002)	
RE	TAINING WALL ANALYSIS (BS 8002:1994)	
RE	TAINING WALL DESIGN (BS 8002:1994)	70
	Design of reinforced concrete retaining wall toe (BS 8002:1994)	70
	Design of reinforced concrete retaining wall heel (BS 8002:1994)	70
	Design of reinforced concrete retaining wall stem (BS 8002:1994)	71
	Indicative retaining wall reinforcement diagram	72
сар	ping beam for piled wall 2	73
RC k	beam analysis & design (EN1992)	73
RC	C beam analysis & design (EN1992-1)	73
	Support A	74
	Mid span 1	75
	Support B	76
	Noise and Nuisance Control	
	CTMP	
Ap	opendix A ; Construction Method Statement	
35 G	Greville Road	
1.	Basement Formation Suggested Method Statement	
2.	Enabling Works	
3.	Piling Sequencing	
4.	Demolition, Recycling, Dust/Noise Control and Site Hoarding	
5.	Trench sheet design and temporary prop Calculations	
STA	NDARD LAP TRENCH SHEETING	
KD4	SHEETS	96
Ap	opendix B : Structural Drawings	

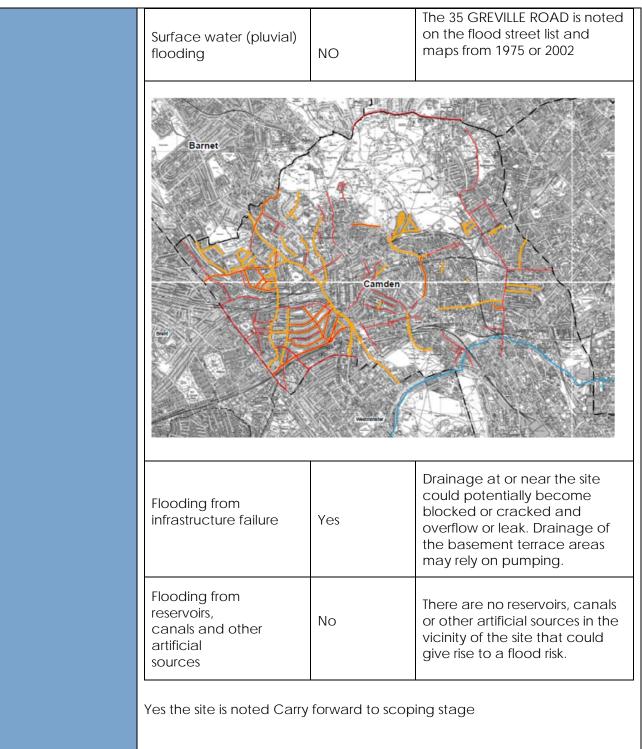
Executive Su	ummary / Non technical Summary
	 The London Borough of Camden requires a Basement Impact Assessment (BIA) to be prepared for developments including basements and light wells within its area of responsibility. CGP4 – Basements and Light wells details the requirements for a BIA undertaken in support of proposed developments; in summary the Council will only allow basement construction to proceed if it does not: Cause harm to the built environment and local amenity; Result in flooding; Lead to ground instability. In order to comply with the above clauses a BIA must undertake 5 stages detailed in CPG 4. This report has been produced in line with the guidance of CPG4 and the associated documents supporting CGP4 such as DP23, DP26, DP25 & DP27.
Project Summary	<section-header><text><text><image/></text></text></section-header>

	Proposed Works	
	The proposed works require the construction of:	
	 A new basement under the property. 	
	Light wells to the front and rear	
	 Garden basement Roof slab to the garden 	
	 SUDS (Storm water storage above the garden area) 	
	 Covering garden slab with new top soil 	
	Croft Structural Engineers Ltd has avtensive knowledge of constructing new	
	Croft Structural Engineers Ltd has extensive knowledge of constructing new	
	basements. Over the last 10 years Croft Structural Engineers has been	
	involved in the design of over 500 basements in and around London. The method to be utilised at 35 GREVILLE ROAD is:	
	method to be utilised at 35 GREVILLE ROAD IS:	
	1. Place a contiguous pile wall around the perimeter of the garden	
	area & light wells	
	2. Excavate front to allow for conveyor to be erected.	
	2. Excavate front to allow for conveyor to be elected.	
	3. Safely and securely support the existing building above	
	4. Slowly work from the front to the rear inserting narrow cantilevered	
	retaining walls sequentially using well developed and understood	
	underpinning methods.	
	 Prop retaining walls in temporary condition back to the central soil "dumpling". 	
	 Prop across the width of the basement, excavate central soil "dumpling" & cast basement slab 	
	7. Waterproof internal space with a drained cavity system.	
Stage 1 –	Screening identified areas of concern and concluded a requirement to	
Screening	proceed to a scoping stable for the Land stability, Hydrology, Surface Water	
	and flooding.	
Stage 2 –		
Scoping	The Scoping stage identified the potential impacts and set the parameters	
seeping	required for further study of the areas of concern highlighted in the	
	Screening phase.	
	The property was inspected and a walk over desk survey completed by an	
	engineer. The information from this was utilised to formulate the requirement	
	for a ground, Geology and hydrogeology investigation.	

Stage 3 – Site investigation and study	 A Chartered Structural engineer inspected the building to determine the current condition of the property. Visual inspections were completed of the adjacent properties to determine if there were signs of structural movement. The neighbouring land has not been excavated on but an engineer has assessed the age of the adjacent properties and considered the type of foundations used for that period and assumed these in the design. A ground investigation with deep boreholes has been completed. London Clay Formation Laboratory testing was undertaken on the soil samples. Ground water has been measured over repeat visits to determine water levels and flows. Perched water was found at 0.85m BGL
Stage 4 – Impact assessment	 Land stability The Geologist has concluded that the basement will not make the area unstable. The movement assessment of the basement and its construction are SuGHT 1-0 on the Burland scale. It is concluded that with the construction of the new basement at 35 Greville Road should not have significant impacts on land stability provided that: Groundwater inflow, if encountered is properly controlled and is monitored before, during and after construction. The construction of the basement is carried out by a competent who will adopt suitable measures to maintain the stability of the excavations Care is taken to minimise disturbance to trees and their roots. Concrete is designed to account for the sulphate conditions anticipated. Monitoring of the structures is carried out before, during and after
	construction. Hydrogeology Groundwater inflow if encountered is reduced to a minimum and properly controlled such that there is no significant wash out of fine material. Groundwater levels should be monitored before and during construction.

Drainage & Surface Water Flow

Ground water was not observed during drilling at the site, however, groundwater levels were observed at 0.83 and 0.94mBGL on subsequent monitoring visits. The direction of groundwater flow is not known at the site.

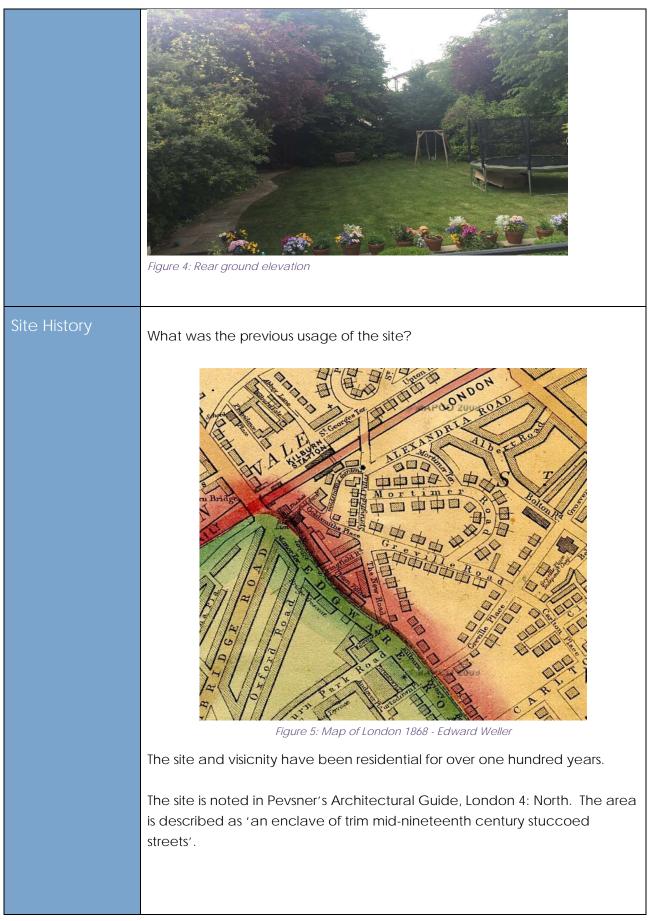


1. Screening Stage		
	This stage should identify any areas for concern and therefore focus effort for further investigation.	
	The questions below are taken from the Camden CPG 4 – Basements and Lightwells.	
Land Stability	Refer to Chartered Geologist Report.	
Subterranea n Flow	Refer to Chartered Hydrogeologist report completed by A Hydrogeologist with the "CGeol" (Chartered Geologist) qualification from the Geological Society of London.	
Surface Flow and Flooding		
	Question 1: Is the site within the catchment of the pond chains on Hampstead Heath?	
	Figure 2: Extract from Figure 14 of the Hydreological Sturdy	

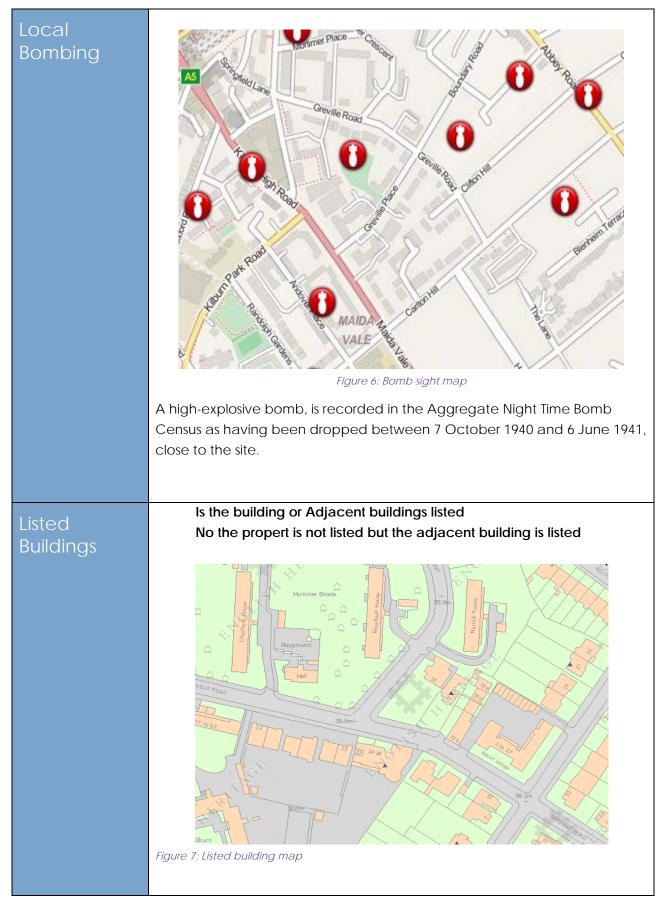
		rainage, will surface water flows be materially changed from the
Unknown –The Garden ba Carry forward to scoping	asement may reo	duce the impermeable areas.
Question 3. Will the properties the hard surfaced /paveo		levelopment result in a change to
Unknown –The Garden ba Carry forward to scoping	asement may red	duce the impermeable areas.
	term of surface w	esult in changes to the inflows vater being received by adjacent
Unknown – The light wells forward to scoping	may reduce the	impermeable areas. Carry
	ived by adjacen	esult in changes to the quality of it properties or downstream Itered.
Question 6 : IS the site in an area identified to have surface water flood risk according to either the Local Flood Risk Management Strategy or the Strategic Flood Risk Assessment or is it at risk from flooding, for example because the proposed basement is below the static water level of nearby surface water feature?The potential sources of flooding are summarised below:		
Potential Source	Potential Flood Risk at Site?	Justification
Fluvial flooding	No	EA Flood Mapping shows Flood Zone 1. Distance from nearest surface watercourse >1km
Tidal flooding	No	Site location is 'inland' and topography > 40mAOD.
Flooding from rising / high groundwater	No	Site is located on low permeability London Clay.

11

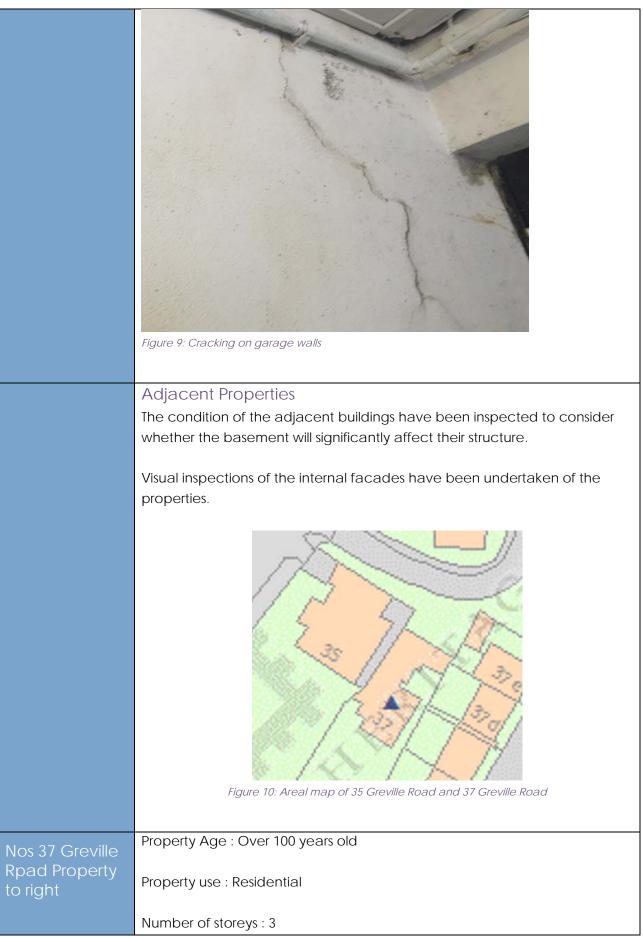
2. Scoping Stage		
	Identifies the potential impacts of the areas of concern highlighted in the Screening phase.	
Land Stability	Refer to Chartered Geologist Report.	
Subterranean Flow	Refer to Chartered Hydrogeologist report . completed by A Hydrogeologist with the "CGeol" (Chartered Geologist) qualification from the Geological Society of London.	
Surface Flow	Conceptual Model	
& Flooding	The proposed works at 35 GREVILLE ROAD require in insertion of a basement.	
	The basement is under the footing print of the property which will not affect the overall flow.	
	The basement enlarges the existing single dwelling and is not an additional unit.	
	The Garden basement may decrease the permeable areas and this may increase the surface water flows and further investigations should be undertaken.	
	Question 1: Is the site within the catchment of the pond chains on	
	Hampstead Heath?	
	No further info required from Scoping stage	
	Yes – Carry forward to Basement Impact Assessment Stage	
	Question 2. As part of the proposed site drainage, will surface water flows (e.g. volume of rainfall and peak run-off) be materially changed from the existing route?	
	Unknown –The Garden basement may reduce the impermeable areas. Carry forward to Site Investigation & desk Study	
	Question 4. Will the proposed basement result in changes to the inflows (instantaneous and long term) of surface water being received by adjacent properties or downstream watercourses? Unknown –The Garden basement may reduce the impermeable areas. Carry forward to Site Investigation & desk Study	

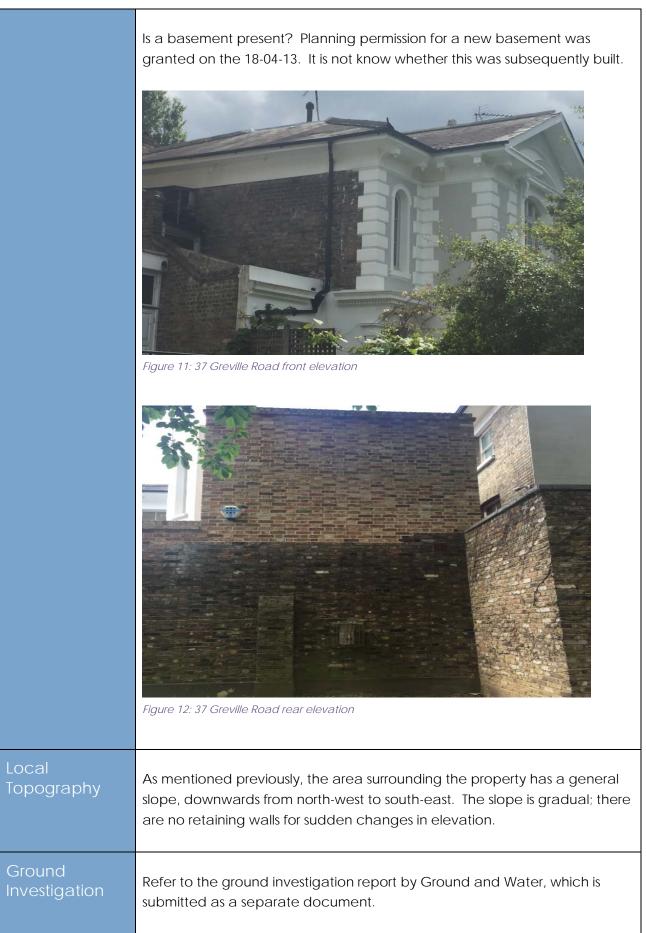


Question 5. Will the proposed basement result in changes to the quality of
surface water being received by adjacent properties or downstream
watercourses?
No.
Question 6 : Is the site in an area identified to have surface water flood risk according to either the Local Flood Risk Management Strategy or the Strategic Flood Risk Assessment or is it at risk from flooding, for example because the proposed basement is below the static water level of nearby surface water feature?
It is evident from the screening study that the only significant flood risks at 35 GREVILLE ROAD are due surface water (pluvial) flooding and failure of existing sewers in the vicinity of the site.
Carry forward to Site Investigation & Desk Study



3. Site Inve	estigation and Study
	Identifies the relevant features of the site and its immediate surroundings providing further scoping where required.
	Desk Study and Walkover Survey
	Noma Manzini, an Engineer from Croft Structural Engineers visited 35 GREVILLE ROAD.
	Date of inspection was on the 16 th of June
Proposed Development	The existing property is a detached dwerlling over three floors with a loft storage space area. The construction is load bearing masonry walls externally and internally with concrete floors at lower ground floor, ground floor and at first floor. Timber floors in loft storage space.
	Location
	<text><image/><image/></text>

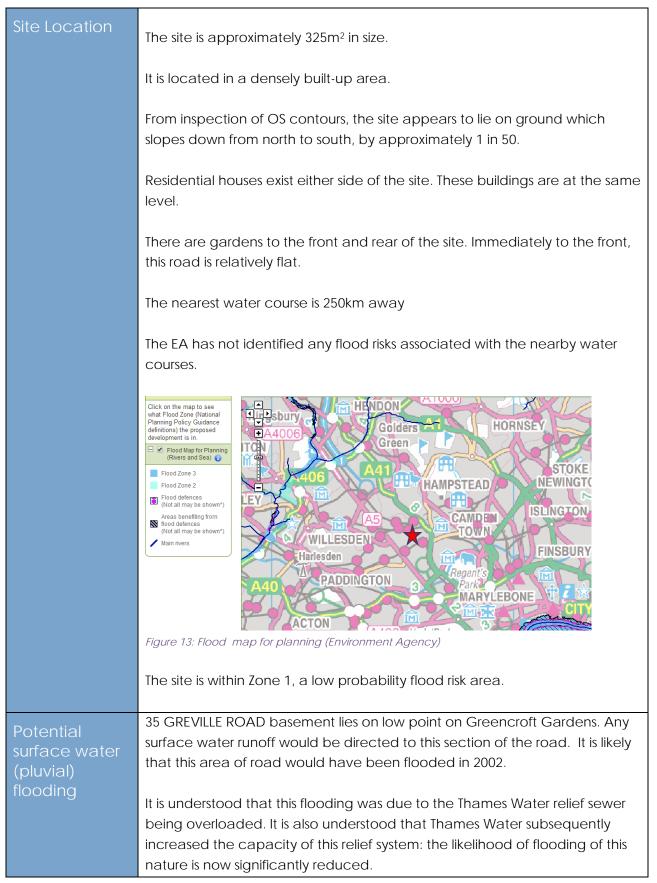




	Highways, Rail and London Underground
	Yes. Site is within 5m of the footpath/alleyway and the road surface is further than 5m from the front lightwell.
London Underground and Network Rail	Is the site over (or within the exclusion zone) of any tunnels, e.g. railway lines? No. Nearest is the Overground Rail, +/- 65m from site.
	fice @ primark High Road @ provide Liquer Kilburn High Road @ provide Liquer Control of the Betsy Smith Bet Kilburn Kilburn High Road @ provide Liquer Local of the Betsy Smith Bet Kilburn Kilburn High Road @ provide Liquer Local of the Betsy Smith Bet Kilburn Kilburn High Road @ provide Liquer Source Strate
UK Power Networks	Will the basement works affect any UK Power Network Assets? (Substations etc)
Vicinity of Trees	Some shrubbery and general vegetation in the neighbouring garden; A mature tree is also present in the neighbouring garden.
	Are any trees to be removed due to the basement? No trees will be removed
Building Defects	A visual inspection was undertaken of the existing building with particular attention given to movement to the building. The defects noted were:
	 Fine cracking was noted above ground floor door lintel Fine to moderate cracking was noted on the garage walls
	Structural Assessment of ongoing movement:

Geology	Refer to the ground investigation report, the hydrogeology report and the land stability assessment, submitted separately.
Surface Flow & Flooding	Refer to the ground investigation report, the hydrogeology report and the land stability assessment, submitted separately.
Areas of Hard Standing present on site	Existing Area of hardstanding outside is ; Area = approximately 325m ²
Rainwater down pipes, Drains, Manholes and Gulleys	As described previously, there is a surface water drainage gully in the front yard and pea-shingle drainage in the rear yard.
Local Water Sources	Are there any ponds lakes or water courses on the site or adjacent sites?
	No, there are not surface water features (natural or man-made) on the adjacent sites
	Field Investigation
	Ground investigation specialists visited the site and subsequently produced are report for the existing ground and groundwater conditions.
	Monitoring, Reporting and Investigation
	Ground investigation specialists visited the site and subsequently produced are report for the existing ground and groundwater conditions.
Land Stability	Refer to Chartered Geologist Report for land stability issues addressed to Stage 3.
	Features and items of concern relating to data from Stage 3 are included in this report.
Subterranean Flow	Refer to Chartered Hydrogeologist report (Basement Impact Assessment: Groundwater). This is completed by a Hydrogeologist with the "CGeol" (Chartered Geologist) qualification from the Geological Society of London.

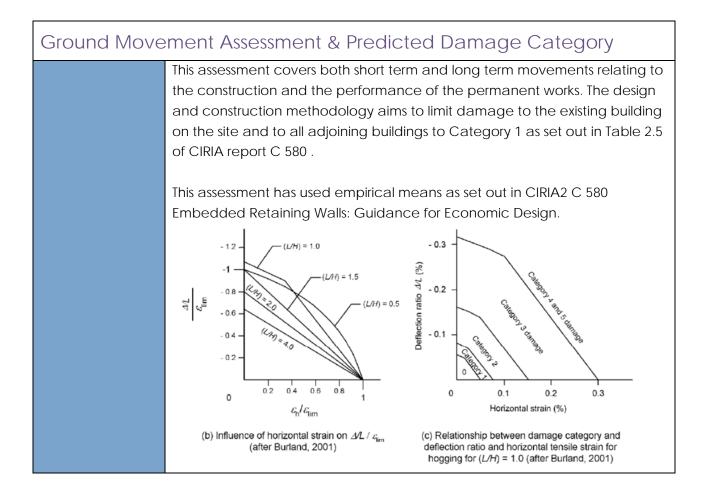
	Features and items of concern relating to data from Stage 3 are included in this report.								
Site Investig	gation								
Soil investigation Brief	The Soil investigation was completed by (Soil investigation Company). From the Scoping stage we considered that their brief should cover:								
	 A trial pit to the front side to confirm the existing foundations. The purpose is to consider the effect of the works on the neighbouring properties and the find the ground conditions below the site. It would have been preferred to complete two bore holes on this 								
	site With the size of site, and our knowledge of the area it is not expect for there to be a large variation across the small site, therefore one borehole 5m deep was completed.								
	 Stand pipe to be inserted to monitor ground water; record initial strike and the water level after 1 month. 								
	 Site testing to determine insitu soil parameter. SPT testing to be undertaken. 								
	 Laboratory testing to confirm soil make up and properties. 								
	 The Historic maps and walk over survey did not highlight any significant contamination sources, therefore no site test of the ground has been requested. 								
	Factual Report on soil conditions.								
	Interpretative reports								
	 Calculation of Bearing pressures from SPT. 								
	 Indication of Ø (angle of friction) from SPT. 								
	 Indication of soil type 								
	Soil Report is provided under a separate cover.								


4. Basement Impact Assessment							
Subterranean Flow	Summary						
Land Stability	Refer to Geologist Report: Conclusions re stated in the Executive Summary						
Conservation and	If the property is in a conservation area, or it is listed then management plan						
Listed Buildings	for demolition and construction may be needed. This is not included with						
	the this BIA document and is not within the Croft Structural Engineers Brief.						

ſ

Flood Risk Ass	essment
	 In accordance with guidance from CIRIA, PPS25 and the National Planning Policy Framework, the basement will be designed to be sustainable in terms of the risk of flooding. Amongst other considerations, the design will include provisions to minimise the adverse impacts of flooding on the operation of the building, the users, the surroundings and the occupants of nearby properties. This must be preceded by a Flood Risk Assessment (FRA), and is staged as follows: A subsequent scoping study to consider further the identified sources, assessing the risks proposing measures to mitigate them.

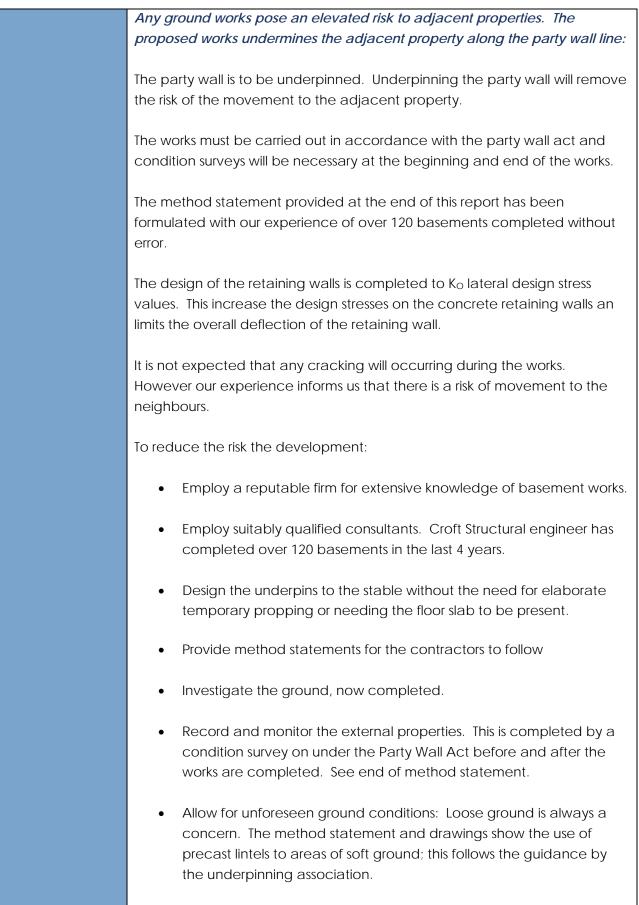
Potential flooding from infrastructure failure	In addition to the storm water relief sewer previously mentioned, there is believed to be a trunk sewer running along the length of 35 GREVILLE ROAD. Blockage or failure of either of these may result in the following sequential events:
	 Excess flow from 35 GREVILLE ROAD may accumulate in the area of road in front of the site.
	• This flow would travel in the direction away from the front elevation of the property owing to the site being on a slightly higher level than the opposite side of the street, and the raised level of the pavement above the road (see photo below).
	The likelihood of flow into the front light wells is also reduced by the existing landscaped areas in the front garden: these would partially relieve any excess flow that would migrate towards the front of the building.
	A pumping mechanism will be installed for the proposed basement. There is a likelihood that this may fail and allow excess water to accumulate. If this were to occur, the build-up of water would be gradual and noticeable before it becomes a significant life-threatening hazard.
Mitigation measures	We would recommend the following measures to reduce the risks mentioned above:
	 Install a dual pumping system to maintain operation in the event of a failure. This should include a battery backup and a suitable alarm system for warning purposes.
Summary	The risk of flooding from excess surface water is not considered significant. There is a risk of flooding due to the failure of the pumping system but this can be reduced to acceptable levels with appropriate design and installation measures.



SUDS Assessm	ent						
Hard standing	Existing Hard Standing = 325 m ² Proposed Hardstanding = 328 m ² Percentage Increase in Hard standing = 0.9 %						
SUDS Assessment	From review of the existing and proposed hardstanding the increase will be?						
	Percentage Increase No SUDS to be incorporated into scheme Percentage Increase Between 5% to 10% No SUDS to be incorporated into scheme Where garden basements are present then a soil band of a minimum of 1m should be provided. No SUDS to be incorporated into scheme Where the soil cover is greater than 1m of soil is not present then SUDs is not required Suppose the soil cover is greater than 1m of soil is not present then SUDS is not required						
SUDS Calculations	As explained above. SUDS calculation is not required						
Mitigation Measures	As explained above. SUDS calculation is not required						
Drainage effects on Structure	Not build over agreements known of. Flooding. The site is not in an area of high risk flooding.						

Trees	
Root Protection Zone	RPA = 1.5 x Crown diameter. The basement is within the RPA of the trees.
Conclusion	The Basement does Not Cuts into the Root protection Zone The increased depth of foundations necessary for the basement places the new foundations outside the effects of trees. The building will be more stable due to the new basement.

	Wall DL	203	kN/m				Wall DL	203	kN/m		
	W an DL	0.3					waii DL	203	NIN7111		
	vv —	0.5	111	6000	1.4						
			4	Span=	14	m	>	*			
							-			T	
									Water =	3.6	m
					H =	3	m				
			Slab Thic	kness =	0.4						
Heel=	0			Slab =	11.2						
	←→		•	→ ←		→ ↓					
				1		•	1			•	
			Toe =	0.35	m					•	
			Toewidth=	1.4							
			ioomatii								
<u>Uplift C</u>	aic										
Total De	ead Loac	<u> = k</u>	Slab=		kN/m						
		Toe	and heel =	29.75	kN/m						
			Wall =	45							
			Soil=(0	+	C) x 2=	0		-0.72	
		Total De	ead load =	592.75	kN/m						
Total U	olift Force)=		525.6	kN/m		f.o.s.=	1.13	No Glob	al Uplift	
Slab Up	olift										
			Slab =	10	kN/m		Uplift =	36			
				10			Spine -				
		Sonulae	Moment =	607	kNm/m						
		Service	woment =	-037							
	Ec t.			740 7	LeNing (ma						
		-	n moment =		kNm/m						
	Fact	ored Desi	ign shear =	-214.2	kN/m						
	<u> </u>										
Global	<u>Heave</u>										
	١	Weight of	f building =	170	kN/m						
	Weig	ht of soil r	emoved =	788.4							
			% change	78%		place	78%	of Slab a	irea as he	eave prote	ection
	Wide of	Heave pr	otection =	11.4519	m	place	11.45	m of Slab	area as	heave pro	otection



					Width, L=	14000					
					Existing b	uilding					
									Height H	9200	
	L/H =	1.52174									
								▲			
					New Base	ement		Baser	nent Hb=	3600	
					non bao			Badol			
								•			
	Horizont	almovo	ement Ass	sossmor		C 5 9 0 · E	mbodd	od Potai		alle Ci	uido to
	Ecomon			sessmer		<u>C 300. E</u>	mbeuu	eu kela		<u>1115 - G</u>	
	LCOMON	IC Desig	<u>,</u>								
Detentio				4							
Potentia	ntial Movement Due to wall installation										
			novement		0.05%						
	DeltaH =	0.05%	Х	3600	=	1.8	mm				
	Vertical Su				0.05%			1.8			
	Delta V =	0.05%	Х	3600	=	1.8	mm		=	0.33333	mm/m
	Distance b	ehind wa	ill wall to ne	-		nt					
	lh =	3600	Х	1.5	-	5400	mm				
Potentia	l Movemen	t Due to	wall Excava	ation							
	Horizont al	surface m	novement	=	0.15%			5.4			-
	DeltaH =	0.15%	Х	3600	=	5.4	mm				
									=	0.375	mm/m
	Vertical Surface Movement =			0.10%							
	Delta V =	0.10%	Х	3600	=	3.6	mm				
											
			ill wall to ne	-							
	lh =	3600	Х	4	=	14400	mm				

		The second			1				
		_	ion movem	ent		on movement			
		Distance			Distance				
Nodes	Х	14400			5400	0			
	У	0	-1.8		0	-7.2			
0								ļ	
0	2000	4000 600	00 8000	10000	12000	14000 1	6000	ļ	
-1								ļ	
-2									
-3									
-4	/						_		
-5									
-6									
-7		_					_		
-8									
-8	1								
Determi	ine Horizoni	tal Mover	nant		-				
	delta I =		mm =		0.05%				
		14400		-	0.0070				
		11100	111111						
Table 2.4	4 CIRIA C58	} ∩							
	ry of Dama		Normal De	aree	Limiting T	ensile Str	ain %		
÷	0		Negligible	-	0.00%		0.05%		
	1		Very slight		0.05%		0.075%		
	2		Slight		0.075%	-	0.15%		
	3		Moderate		0.15%	-	0.30%		1
	4 to 5		Severe to	Very Ser	ver	>	0.30%		1
	5								
	_								
								Slight Category	

	With the above the maximum level of cracking anticipated is Hairline cracking which can be repaired with decorative cracking and can be repaired with decorative repairs. Under the party wall Act damage is allowed (although unwanted) to occur to a neighbouring property as long as repairs are suitability undertaken to rectify this. To mitigate this risk The Party Wall Act is to be followed and a Party Wall Surveyor will be appointed.				
Burland Scale	and ScaleExtract from The Institution of Structural Engineers "Subsiden Buildings" Table 6.2 Classification of visible damage to walls with parti to type of repair, and rectification consideration				
	Category of Damage	Approximate crack width	Limiting Tensile strain	Definitions of cracks and repair types/considerations	
	0	Up to 0.1	0.0- 0.05	HAIRLINE – Internally cracks can be filled or covered by wall covering, and redecorated. Externally, cracks rarely visible and remedial works rarely justified.	
	1	0.2 to 2	<u>0.05-</u> <u>0.075</u>	<u>FINE</u> – Internally cracks can be filled or covered by wall covering, and redecorated. Externally, cracks may be visible, sometimes repairs required for weather tightness or aesthetics. NOTE: Plaster cracks may, in time, become visible again if not covered by a wall covering.	
	The anticipated damage Category for the new basement is 0-1				

Monitoring	
	Monitoring - In order to safeguard the existing structures during underpinning and new basement construction movement monitoring is to be undertaken.

Risk	Monitoring Level proposed	Type of Works.
Assessment	Monitoring 1 Visual inspection and production of condition survey by Party wall surveyors at the beginning of the works and also at the end of the works.	Loft conversions, cross wall removals, insertion of padstones Survey of LUL and Network Rail tunnels. Mass concrete, reinforced and Piled foundations to new build properties
	Monitoring 2 Visual inspection and production of condition survey by Party wall surveyors at the beginning of the works and also at the end of the works. Visual inspection of existing party wall during the works. Inspection of the footing to ensure that the footings are stable and adequate.	Removal of lateral stability and insertion of new stability fames Removal of main masonry load bearing walls. Underpinning works less than 1.2m deep
	Monitoring 3 Visual inspection and production of condition survey by Party wall surveyors at the beginning of the works and also at the end of the works. Visual inspection of existing party wall during the works. Inspection of the footing to ensure that the footings are stable and adequate. Vertical monitoring movement by standard optical equipment	Lowering of existing basement and cellars more than 2.5m Underpinning works less than 3.0m deep in clays Basements up to 2.5m deep in clays
	Monitoring 4 Visual inspection and production of condition survey by Party wall surveyors at the beginning of the	New basements greater than 2.5m and shallower than 4m Deep in gravels

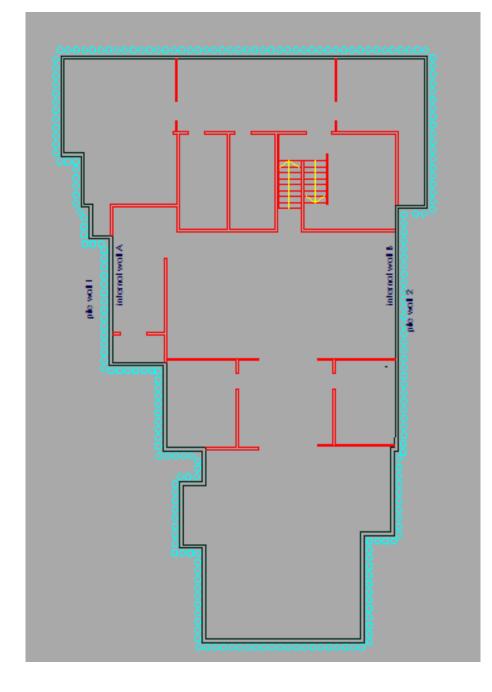
works and also at the end of the works. Visual inspection of existing party wall during the works. Inspection of the footing to ensure that the footings are stable and adequate. Vertical monitoring movement by standard optical equipment Lateral movement between walls by laser measurements	Basements up to 4.5m deep in clays Underpinning works to grade I listed building
Monitoring 5 Visual inspection and production of condition survey by Party wall surveyors at the beginning of the works and also at the end of the works. Visual inspection of existing party wall during the works. Inspection of the footing to ensure that the footings are stable and adequate. Vertical & Lateral monitoring movement by theodolite at specific times during the projects.	Underpinning works to Grade I listed buildings Basements to Listed building Basements deeper than 4m in Gravels Basements deeper than 4.5m in clays Underpinning, basements to buildings that are expressing defects.
Monitoring 6 Visual inspection and production of condition survey by Party wall surveyors at the beginning of the works and also at the end of the works. Visual inspection of existing party wall during the works. Inspection of the footing to ensure that the footings are stable and adequate. Vertical & Lateral monitoring movement by electronic means with live data gathering. Weekly interpretation	Double storey basements supported by piled retaining walls in gravels and soft sands. (N<12)

	Monitoring 7 Visual inspection and production of condition survey by Party wall surveyors at the beginning of the works and also at the end of the works. Visual inspection of existing party wall during the works. Inspection of the footing to ensure that the footings are stable and adequate. Vertical & Lateral monitoring movement by electronic means with live data gathering with data transfer.	Larger Multi storey basements on particular projects.
Monitoring Conclusion	The level of Monitoring Croft recomment Monitoring 4 Visual inspection and production of condition survey by Party wall surveyors at the beginning of the works and also at the end of the	nd on 35 Greville Road is: New basements greater than 2.5m and shallower than 4m Deep in gravels Basements up to 4.5m deep in
	works. Visual inspection of existing party wall during the works. Inspection of the footing to ensure that the footings are stable and adequate. Vertical monitoring movement by standard optical equipment Lateral movement between walls by laser measurements	clays Underpinning works to grade I listed building
	Before the works begin a detailed moni the implementation of the Monitoring. Risk Assessment to determine le Scope of Works Applicable standards Specification for Instrumentatio	The items that this should cover are evel of Monitoring

Recor	 Monitoring of Existing cracks Monitoring of movement Reporting Trigger Levels using a RED AMBER GREEN System 						
	Movement	CATEGORY	ACTION				
	0mm-5mm	Green	No action required				
	5mm-12mm	AMBER	Crack Monitoring: Carry out a local structural review; Preparation for the implementation of remedial measures should be required.				
	>12mm	RED	Crack Monitoring: Implement structural support as required; Cease works with the exception of necessary works for the safety and stability of the structure and personnel; Review monitoring data and implement revised method of works				

Basement Des	sign & Construction Impacts
Foundation	Reinforced concrete cantilevered retaining walls
type	The designs for the retaining walls have been calculated using software designed by TEDDS. The software is specifically designed for retaining walls and ensures the design is kept to a limit to prevent damage to the adjacent property.
	The overall stability of the walls are design using $K_a \& K_p$ values, while the design of the wall uses K_o values. This approach minimise the level of movement from the concrete affecting the adjacent properties.
	The Investigations have highlight that water is a present. The walls are designed to cope with the hydrostatic pressure. The water table was low. The design of the walls however considers the long term items. It is possible that a water main may break causing local high water table. To account for this the wall is designed for water 1m from the top of the wall.
	The Design also considers floatation as a risk. The design of has considered the weight of the building and the uplift forces from the water. The weight of the building is greater than the uplift resulting in a stable structure.
Roads	The basement must be designed for
	Yes. Site is within 5m of the footpath/alleyway and the road surface is further than 5m from the front lightwell.
	Highways loading allow: 10kN/m2 if within 45° of road 100kN point loads if under road or with in 1.5m 5kN/m2 if within 45° of Pavement Garden Surcharge 2.5kN/m2 Surcharge for adjacent property 1.5kN/m2 + 4kN/m2 for concrete ground bearing slab
Intended use of structure and user requirements	Family/domestic use
Loading Requirements (EC1-1)	UDLConcentratedkN/m²Loads kNDomestic Single Dwellings1.52.0

	The basement does not line within a 45° angle of the highway.					
	Therefore Highways HA loading is not required to be applied.					
Part A3	Number of Storeys 4					
Progressive						
collapse	Is the Building Multi Occupancy? No					
Collapse						
	Class 1 Single occupancy houses not exceeding 4 storeys					
	To NHBC guidance compliance is only required to other floors if a material					
	change of use occurs to the property.					
	Initial Building Class 1					
	Proposed Building Class 1					
	If class has changed material No					
	change has occurred					
	3 storey over					
	basement					
Lateral Stability						
Evpocuro and	Basic wind speed Vb = 21 m/s to EC1-2					
Exposure and	Topography not considered significant.					
wind loading						
conditions						
	The cantilevered walls are suitable to carry the lateral loading applied from					
Stability Design	above					
Lateral Actions	The soil loads apply a lateral load on the retaining walls.					
	Hydrostatic pressure will be applied to the wall					
	Imposed loading will surcharge the wall.					
	Design overall stability to $K_a \& K_p$ values. Lateral movement necessary to					
Retained soil	achieve K_a mobilisation is height/500 (from Tomlinson). This is tighter than the					
Parameters	deflection limits of the concrete wall.					


	Has a soil investigation been carried out Yes
Water Table	Known water table from boreholes
	Design temporary condition for water table level, If deeper than
	basement ignore
	Design Permanent condition for water table level:
	If deeper than existing, design reinforcement for water table at
	full basement depth to allow for local failure of water mains,
	drainage and storm water.
	Global uplift forces <u>can</u> be ignored when water table lower than
	basement. BS8102 only indicates guidance.
	Assumed that drainage and damp proofing is by others: Details are not
Drainage and	provided within our brief.
Damp	
Waterproofing	It is recommended that a water proofing specialist is employed to ensure all
	the water proofing requirements are met. Croft structural engineers are not
	the waterproofing designer nor act as the structural waterproof designer.
	the waterproofing designer not act as the structural waterproof designer.
	Croft are not the structured waterpreafor. The waterpreafing specialist must
	Croft are not the structural waterproofer. The waterproofing specialist must
	name who is their structural waterproofer. The Structural waterproofer must
	inspect the structural details and confirm that are happy with the robustness.
	Due to the construction nature of the segmental basement it is not possible
	to water proof the joints. All water proofing must be made by the
	waterproofing specialist. They should make review of our details and
	recommend to us if water bars and stops are necessary.
	The waterproof design must not assume that the structure is watertight. To
	help reduce water floor through joints in the segmental pins all faces should
	 Cleaned of all debris and detritus
	 Faces between pins should be needle hammered to improve key
	 All pipe work and other penetrations should have puddle flanges
	or hydrophilic strips
	Localised dewater to pins may be necessary.
Localised	
Dewatering	Some engineers may raise the theoretical questions about pumping of water
	causing localised settlement. We believe that this argument is a red herring
	when applied to single storey basements and our reason for stating this is:
	 The water table in the area is variable, The water level naturally rises and falls over time and does not lead
	to subsidence
	 The water table has naturally been rising and falling for over the
	last 20,000 years, any fines that will have been removed from the
	soil would have done so already.
	 If the water table rises and falls naturally why does this not cause subsidence due to fine removals overviver? It does not because
	subsidence due to fine removals every year? It does not because

	 the soil has been soil is naturally consolidated by the rise and fall of the water table in the area. The effect of local pumping for small excavations will not affect the local area. There is only a risk of subsidence from large scale pumping of soil which lowers the water table below is natural lowest level.
Temporary Works	 Walls are designed to be temporarily stable. Temporary propping details will be required for the ground and soil and this must be provided by the contractor. Their details should be forwarded to Croft Structural Engineers. Particular attention should be paid to the point loads from above. Critical areas where point loads are present from above Cross wall Chimney Stack Door openings
Geological Assessment of Land Stability	Has the retaining wall design been assessed by a Chartered Geological Engineer? Yes inspected see supplementary report.

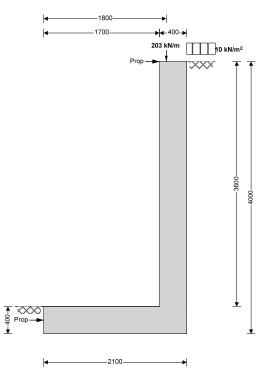
Retaining Wall Calculation

Reference							
Genera		dings		<u></u>			
			Cavity Walls				
Sloped Roof	0.4	kN/m²	100 Facing Brick =	2.2	<u> </u>	Timber Partitions	-
Slate =	0.6	KIN7111	100 Block (16kN/m3)=	1.6	<u> </u>	50x100 Studs @ 400 =	
Battens =	0.02	<u> </u>	Plaster & Skim =	0.18	1-81/	Insulation =	
Rafers	0.1125	ļ	Dead Load =	3.98	kN/m2	Plaster & Skim =	
Felt =	0.02	ļ	hternel Welle	(Dead Load =	= 0.55
Insulation =	0.02	ļ	Internal Walls				
Plaster=	0.18	1 31 (100 Block (20kN/m3)=	2			
DeefAnglo	0.9525	kN/m2	Plaster & Skim =	0.36	1-81/	Existing Brick Walls	-
Roof Angle =	25	deg	Dead Load =	2.36	kN/m2	225 Facing Brick =	= 4.5
Plan Dead load =	1.051	kN/m2	Existing Internal Walls	0.1	<u> </u>		01
Live Load =	0.6	kN/m2	100 Brick (20kN/m3)=	2.1	<u> </u>	Plaster & Lathe =	
		ļ	Plaster & Skim =	0.36	1-81/	Dead Load =	= 4.65
Flat Roof	0.46		Dead Load =	2.46	kN/m2		
20mm Asphalt =	0.46		Tirsher Fleers		Beame	& Block Ground Floors	-
Felt underlay =	0.02		Timber Floors			Beam & Block	
insulation =	0.04		18mm Ply			Screed	
Ply Sheeting =	0.1		Joists 50x225@400 =	0.16875		Insulation	
Firring =	0.1		100 Insulation =	0.05		Finishes	
of joists 50x200@400 =	0.15		Plaster & Skim =	0.18		Dead Load =	
Plaster & Skim =	0.18		Dead Load =	0.54875	kN/m2	Live Load =	= 1.5
Plan Dead load =		5 kN/m2	Live Load =	1.5	kN/m2		
Live Load =	0.75	5 kN/m2	Terrace Floor			Standing Seam	
			Promonade Tiles =	0.4		Roof Sheet	
Mansard Roof	/		20mm Asphalt =	0.46		Insulation	
Slate Tiles =	0.4		Felt underlay =	0.02		Decking	
Battens =	0.02		insulation =	0.04		Steelwork	
Ply Sheeting =	0.125		Ply Sheeting =	0.1		Dead Load =	
Rafters =	0.125		Firring =	0.1		Live Load =	= 0.6
100 Insulation =	0.06		Roof joists 50x200@400 =	0.175			
plaster & Skim =	0.18		Plaster & Skim =	0.18		Filler joist Floor	-
Felt =	0.02		Dead Load =	1.475	5 kN/m2	Finishes	s 1.2
	0.93		Live Load =	1.5	5 kN/m2	Filler Joist Floor	r 2.5
	1		Ceiling			Ceiling	g 0.18
Roof Angle =	45	deg	50x100 Joists =	0.075	,	Steel	0.3
Plan Dead load =	1.316	kN/m2	100 Insulation =	0.06	<u>ر</u>	Dead Load =	4.1
Live Load =	0.3	kN/m2	Plaster & Skim =	0.18	3	Live Load =	_
		1	Dead Load =	0.315	5 kN/m2		
Precast Floor on Steel		1	Live Load =		5 kN/m2		
200PC Floor units =	3.6		Table 3 Liv	ve Load Re		1	<u> </u>
60 Screed =	1.2	2	Area	0	0%	Floors 1	1 0%
Finishes =	0.1				0 5%		2 10%
Steelwork =	0.6				0 10%		3 20%
Dead Load =		5 kN/m2) 15%		1 30%
Live Load =		3 kN/m2			0 20%	5 to 10	

PILED WALL 1 (TEMPORARY CASE)

Location		Area		Туре	L	Load	Load kN			
	L	W	m2			kN/m2	Dead	%	Live	Total
pile wall 1										
roof DL	4.0	1.0	4.0	Яĸ		1.05	4.2			
roof LL				q _k		0.75			3.0	
loft DL	4.0	1.0	4.0	Яĸ		0.63	2.5			
loft DL				q _k		1.50			6.0	
2nd fl DL	4.0	1.0	4.0	g _k		4.62	18.5			
2nd fl LL				q _k		1.50			6.0	
2nd fl partitions	3.0	1.0	3.0	Яĸ		2.60	7.8			
1st fl DL	4.0	1.0	4.0	Яĸ		4.62	18.5			
1st fl LL				q _k		1.50			6.0	
1st fl partitions	3.0	1.0	3.0	Яĸ		2.60	7.8			
ground fl DL	4.0	1.0	4.0	g _k		4.62	18.5			
ground fl LL				Qk		1.50			6.0	
grd fl partitions	3.0	1.0	3.0	g _k		2.60	7.8			
walls	9.0	1.0	9.0	g _k		10.00	90.0			
							175.6	kN/m	27.0	kN/m

RETAINING WALL ANALYSIS & DESIGN (BS8002)


Loadings Dead loadDL=176kN/m Live loadLL=27kN/m

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Job Number: 150525 (35 Greville Road) Date: 24 Aug 15

Wall details Retaining wall type Height of wall stem Length of toe Overall length of base Height of retaining wall Depth of downstand Position of downstand Depth of cover in front of wall Height of ground water Density of wall construction Angle of soil surface Mobilisation factor Moist density Design shear strength Design shear strength Moist density

Using Coulomb theory Active pressure At-rest pressure

Loading details

Surcharge load Vertical dead load Horizontal dead load Position of vertical load

Cantilever

$$\begin{split} h_{stem} &= 3600 \text{ mm} \\ l_{toe} &= 1700 \text{ mm} \\ l_{base} &= 2100 \text{ mm} \\ h_{wall} &= 4000 \text{ mm} \\ d_{ds} &= 0 \text{ mm} \\ d_{ds} &= 1500 \text{ mm} \\ d_{cover} &= 0 \text{ mm} \\ h_{water} &= 0 \text{ mm} \\ \gamma_{wall} &= 23.6 \text{ kN/m}^3 \\ \beta &= 0.0 \text{ deg} \\ M &= 1.5 \\ \gamma_m &= 18.0 \text{ kN/m}^3 \\ \varphi' &= 24.2 \text{ deg} \\ \varphi'_{b} &= 24.2 \text{ deg} \\ \gamma_{mb} &= 18.0 \text{ kN/m}^3 \end{split}$$

 $K_a = 0.419$ $K_0 = 0.590$

Surcharge = **10.0** kN/m² W_{dead} = **176.0** kN/m F_{dead} = **0.0** kN/m I_{load} = **1800** mm

Length of heel $I_{heel} = 0 \text{ mm}$ Base thickness $t_{base} = 400 \text{ mm}$ Thickness of downstand $t_{ds} = 400 \text{ mm}$ Unplanned excavation depth $d_{exc} = 0 \text{ mm}$ Density of water $\gamma_{water} = 9.81 \text{ kN/m}^3$ Density of base construction $\gamma_{base} = 23.6 \text{ kN/m}^3$ Effective height at back of wall $h_{eff} = 4000 \text{ mm}$

Saturated density Angle of wall friction Design base friction Allowable bearing

Wall stem thickness

Passive pressure

Vertical live load

Horizontal live load

Height of horizontal load

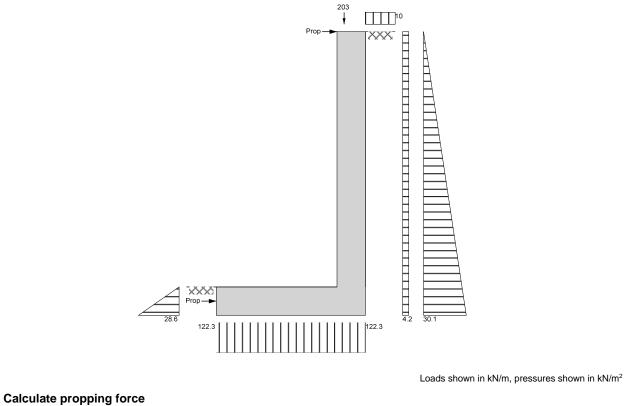
W_{live} = **27.0** kN/m F_{live} = **0.0** kN/m

 $\gamma_{s} = 21.0 \text{ kN/m}^{3}$

 $\delta = 0.0 \deg$

Kp = **4.187**

 $\delta_{b} = 18.6 \text{ deg}$


Pbearing = 130 kN/m²

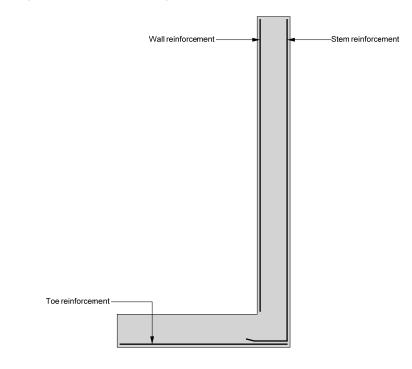
t_{wall} = **400** mm

 $h_{load} = 0 \text{ mm}$

kN/m

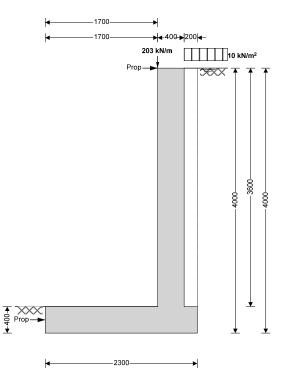
Calculate propping force			
Propping force	F _{prop} = 0.0 kN/m		
Check bearing pressure			
Total vertical reaction	R = 256.8 kN/m	Distance to reaction	x _{bar} = 1050 mm
Eccentricity of reaction	e = 0 mm		
		Reaction acts within	middle third of base
Bearing pressure at toe	p _{toe} = 122.3 kN/m ²	Bearing pressure at heel	p _{heel} = 122.3 kN/m ²
	PASS - Maximum bearin	g pressure is less than allowal	ble bearing pressure
Calculate propping forces to to	pp and base of wall		
Propping force to top of wall	F _{prop_top} = -4.921 kN/m	Propping force to base of wall	Fprop_base = 4.921

RETAINING WALL DESIGN (BS 8002:1994)


RETAINING WALL DESIGN	TEDDS	TEDDS calculation version 1.2.01.06	
Ultimate limit state load fac	tors		
Dead load factor	γ _{f d} = 1.4	Live load factor	γ _{f_l} = 1.6
Earth pressure factor	γ _{f_e} = 1.4		1 -
Calculate propping force			
Propping force	F _{prop} = 0.0 kN/m		
Calculate propping forces to t	op and base of wall		
Propping force to top of wall kN/m	$F_{prop_top_f} = -8.313 \text{ kN/m}$	Propping force to base of wall	F _{prop_base_f} = 48.764
Design of reinforced concre	ete retaining wall toe (BS 8002	<u>:1994)</u>	
Material properties			
Strength of concrete	f _{cu} = 35 N/mm ²	Strength of reinforcement	f _y = 500 N/mm ²
Base details			
Minimum reinforcement	k = 0.13 %	Cover in toe	c _{toe} = 30 mm
 ▲ ▲ 362 	► • • • •	• • • • •	
Design of retaining wall toe Shear at heel	V _{toe} = 273.0 kN/m	Moment at heel	M _{toe} = 289.8 kNm/m
Shear at neer		Compression reinforce	
Check toe in bending			
Reinforcement provided	16 mm dia.bars @ 100 mm (centres	
Area required	As_toe_req = 1978.9 mm²/m	Area provided	As_toe_prov = 2011
mm²/m			
	PASS - Reinforce	ement provided at the retaining	wall toe is adequate
Check shear resistance at te	oe		
Design shear stress	v _{toe} = 0.750 N/mm ²	Allowable shear stress	V _{adm} = 4.733 N/mm ²
		ign shear stress is less than m	aximum shear stress
Concrete shear stress	v _{c_toe} = 0.490 N/mm ²	V _{toe} > V _{c_toe} - Shear rei	inforcomont required
			morcement required
Design of reinforced concre	ete retaining wall stem (BS 800	<u>)2:1994)</u>	
Material survey anti-			
Material properties			
Strength of concrete	f _{cu} = 35 N/mm ²	Strength of reinforcement	f _y = 500 N/mm ²
	f _{cu} = 35 N/mm ²	Strength of reinforcement	f _y = 500 N/mm ²
Strength of concrete Wall details Minimum reinforcement	k = 0.13 %	-	
Strength of concrete Wall details		Strength of reinforcement	f _y = 500 N/mm ² _{Cwall} = 30 mm

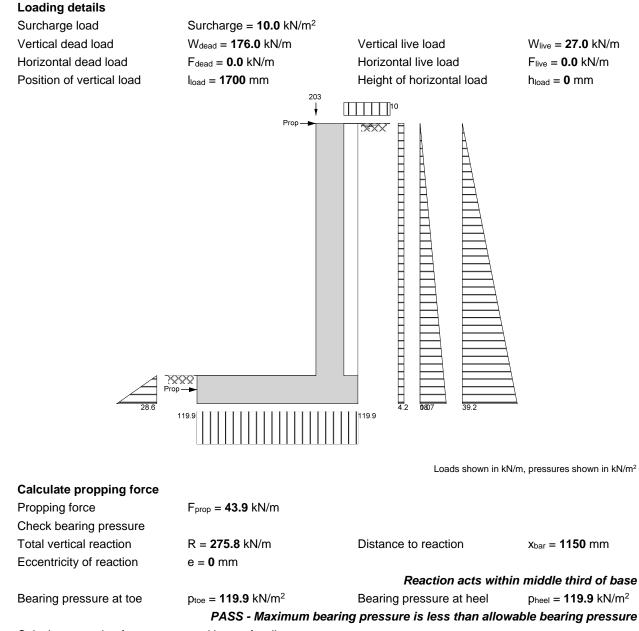
	∢ —200►		
	• •	• • •	
		-	\langle
	• •	• • •	
	⊲ 200►		
Design of retaining wall ster	n		
Shear at base of stem	V _{stem} = 96.1 kN/m	Moment at base of stem	M _{stem} = 69.5 kNm/m
			cement is not required
Check wall stem in bending		,	· · · · · · · · · · · · · · · · · · ·
Reinforcement provided	12 mm dia.bars @ 200 mm c	centres	
Area required	$A_{s \text{ stem req}} = 520.0 \text{ mm}^2/\text{m}$	Area provided	As_stem_prov = 565
mm²/m	o_stom_toq		e_elen_plet = = =
	PASS - Reinforcen	nent provided at the retaining	wall stem is adequate
Check shear resistance at w	all stem		
Design shear stress	V _{stem} = 0.264 N/mm ²	Allowable shear stress	V _{adm} = 4.733 N/mm ²
	PASS - Desi	ign shear stress is less than i	maximum shear stress
Concrete shear stress	V _{c_stem} = 0.428 N/mm ²		
		Vstem < Vc_stem - No shear r	einforcement required
Design of retaining wall at m	nid height		
Moment at mid height	M _{wall} = 31.4 kNm/m		
		-	cement is not required
Reinforcement provided	12 mm dia.bars @ 200 mm d		
Area required mm ² /m	A _{s_wall_req} = 520.0 mm ² /m	Area provided	$A_{s_wall_prov} = 565$
111117/111	PASS - Reinforcement prov	vided to the retaining wall at I	mid height is adequate
Choole notoining wall define the	-	nasa to the retaining wall at i	ina noigin is adequale
Check retaining wall deflect	on ratio _{max} = 30.94	Actual span/depth ratio	ratio _{act} = 9.89
Max span/depth ratio	1 au Umax = 30.34		pth ratio is acceptable
		1 A00 - Span 10 de	

Indicative retaining wall reinforcement diagram


Toe bars - 16 mm dia.@ 100 mm centres - $(2011 \text{ mm}^2/\text{m})$ Wall bars - 12 mm dia.@ 200 mm centres - $(565 \text{ mm}^2/\text{m})$ Stem bars - 12 mm dia.@ 200 mm centres - $(565 \text{ mm}^2/\text{m})$

PILED WALL 1 (PERMANENT CASE)

RETAINING WALL ANALYSIS & DESIGN (BS8002)


RETAINING WALL ANALYSIS (BS 8002:1994)

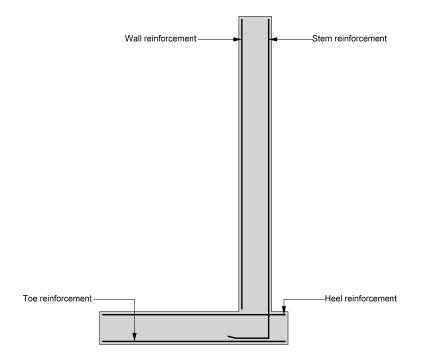
TEDDS calculation version 1.2.01.06

Wall details			
Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 3600 mm	Wall stem thickness	t _{wall} = 400 mm
Length of toe	l _{toe} = 1700 mm	Length of heel	I _{heel} = 200 mm
Overall length of base	I _{base} = 2300 mm	Base thickness	t _{base} = 400 mm
Height of retaining wall	h _{wall} = 4000 mm		
Depth of downstand	d _{ds} = 0 mm	Thickness of downstand	t _{ds} = 400 mm
Position of downstand	l _{ds} = 1200 mm		
Depth of cover in front of wall	d _{cover} = 0 mm	Unplanned excavation depth	$d_{exc} = 0 mm$
Height of ground water	h _{water} = 4000 mm	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	$\gamma_{wall} = 23.6 \text{ kN/m}^3$	Density of base construction	γ _{base} = 23.6 kN/m ³
Angle of soil surface	$\beta = 0.0 \text{ deg}$	Effective height at back of wall	h _{eff} = 4000 mm
Mobilisation factor	M = 1.5		
Moist density	γ _m = 18.0 kN/m ³	Saturated density	$\gamma_{s} = 21.0 \text{ kN/m}^{3}$
Design shear strength	φ' = 24.2 deg	Angle of wall friction	$\delta = 0.0 \text{ deg}$
Design shear strength	φ' _b = 24.2 deg	Design base friction	δ_b = 18.6 deg
Moist density	γ _{mb} = 18.0 kN/m ³	Allowable bearing	$P_{\text{bearing}} = 130 \text{ kN/m}^2$
Using Coulomb theory			
Active pressure	Ka = 0.419	Passive pressure	K _p = 4.187
At-rest pressure	K ₀ = 0.590		

Calculate propping forces to top and base of wall Propping force to top of wall $F_{prop_top} = 19.600 \text{ kN/m}$ kN/m

Propping force to base of wall Fprop_base = 24.310

RETAINING WALL DESIGN (BS 8002:1994) TEDDS calculation version 1.2.01.06 Ultimate limit state load factors Dead load factor Live load factor γ_f | = **1.6** γf d = **1.4** Earth pressure factor γf_e = **1.4** Calculate propping force Propping force Fprop = 43.9 kN/m Calculate propping forces to top and base of wall Propping force to base of wall Fprop_base_f = 76.087 F_{prop_top_f} = **21.216** kN/m Propping force to top of wall kN/m Design of reinforced concrete retaining wall toe (BS 8002:1994) **Material properties** Strength of concrete $f_{cu} = 35 \text{ N/mm}^2$ Strength of reinforcement f_v = **500** N/mm² **Base details** Minimum reinforcement k = 0.13 % Cover in toe ctoe = **30** mm 00 100 **∢**-100-**▶** Design of retaining wall toe Shear at heel Vtoe = 267.2 kN/m Moment at heel M_{toe} = **283.7** kNm/m Compression reinforcement is not required Check toe in bending Reinforcement provided 16 mm dia.bars @ 100 mm centres Area required As_toe_req = **1933.8** mm²/m Area provided As_toe_prov = 2011 mm²/m PASS - Reinforcement provided at the retaining wall toe is adequate Check shear resistance at toe Design shear stress vtoe = 0.734 N/mm² Allowable shear stress Vadm = 4.733 N/mm² PASS - Design shear stress is less than maximum shear stress Concrete shear stress Vc toe = 0.428 N/mm² *v*_{toe} > *v*_{c_toe} - Shear reinforcement required Design of reinforced concrete retaining wall heel (BS 8002:1994) Material properties f_{cu} = 35 N/mm² Strength of concrete Strength of reinforcement f_v = 500 N/mm² **Base details** Minimum reinforcement k = 0.13 % Cover in heel $C_{heel} = 30 \text{ mm}$


As the moment is negative the design of the retaining wall heel is beyond the scope of this calculation

Material properties Strength of concrete	f _{cu} = 35 N/mm ²	Strength of reinforcement	f _y = 500 N/mm ²
-		Strength of Ternorcement	ly – 300 N/IIIII
Wall details Minimum reinforcement	k = 0.13 %		
Cover in stem	C _{stem} = 30 mm	Cover in wall	Cwall = 30 mm
	 ↓ 		
	1 1		
	•••	• • •	•
	• • •	• • •	•
	∢ —150— →		
Design of retaining wall ste	em		
Shear at base of stem	V _{stem} = 140.4 kN/m	Moment at base of stem	M _{stem} = 91.6 kNm/m
		Compression reinfor	cement is not required
Check wall stem in bending	g		
Reinforcement provided	12 mm dia.bars @ 150 mm	centres	
Area required	A _{s_stem_req} = 608.9 mm ² /m	Area provided	$A_{s_stem_prov} = 754$
mm²/m	PASS - Reinforce	ment provided at the retaining	n wall stom is adoquato
		ment provided at the retaining	y wan stenn is adequate
Check shear resistance at Design shear stress	v _{stem} = 0.386 N/mm ²	Allowable shear stress	Vadm = 4.733 N/mm ²
Design shear siless		sign shear stress is less than	
Concrete shear stress	Vc_stem = 0.428 N/mm ²		
		V _{stem} < V _{c_stem} - No shear I	reinforcement required
Design of retaining wall at	mid height		
Moment at mid height	M _{wall} = 42.8 kNm/m		
-		Compression reinfor	cement is not required
Reinforcement provided	12 mm dia.bars @ 150 mm	centres	
Area required mm ² /m	$A_{s_wall_req} = \textbf{520.0} \text{ mm}^2\text{/m}$	Area provided	$A_{s_wall_prov} = 754$
	PASS - Reinforcement pro	ovided to the retaining wall at	mid height is adequate
Check retaining wall deflect	tion		
Max span/depth ratio	ratio _{max} = 32.77	Actual span/depth ratio	ratio _{act} = 9.89
		PASS - Span to de	epth ratio is acceptable

Indicative retaining wall reinforcement diagram

Toe bars - 16 mm dia.@ 100 mm centres - (2011 mm²/m) The design of the retaining wall heel is beyond the scope of this calculation! Wall bars - 12 mm dia.@ 150 mm centres - (754 mm²/m) Stem bars - 12 mm dia.@ 150 mm centres - (754 mm²/m)

CAPPING BEAM FOR PILED WALL 1


Propping force = 43.9kN/m

RC BEAM ANALYSIS & DESIGN (EN1992)

RC BEAM ANALYSIS & DESIGN (EN1992-1)

In accordance with UK national annex

TEDDS calculation version 2.1.15

 $\text{Variable} \times 1.50$

Analysis results			
Maximum moment support A		$M_{A_{max}} = 0 \text{ kNm}$	$M_{A_{red}} = 0 \text{ kNm}$
Maximum moment span 1 a	at 1500 mm	M _{s1_max} = 78 kNm	M _{s1_red} = 78 kNm
Maximum moment support	В	M _{B_max} = 0 kNm	M _{B_red} = 0 kNm
Maximum shear support A		V _{A_max} = 104 kN	V _{A_red} = 104 kN
Maximum shear support A	span 1 at 449 mm	V _{A_s1_max} = 73 kN	V _{A_s1_red} = 73 kN
Maximum shear support B		V _{B_max} = -104 kN	V _{B_red} = -104 kN
Maximum shear support B	span 1 at 2551 mm	V _{B_s1_max} = -73 kN	V _{B_s1_red} = -73 kN
Maximum reaction at suppo	ort A	R _A = 104 kN	
Maximum reaction at suppo	ort B	R _B = 104 kN	
Rectangular section detail	ils		
Section width	b = 500 mm	Section depth	h = 500 mm
	-200		

Concrete details (Table 3.1 - Strength and deformation characteristics for concrete)

4

.

Concrete strength class	C28/35	·····,	
Char.comp.cylinder strength	f _{ck} = 28 N/mm ²	Char.comp.cube strength	f _{ck,cube} = 35 N/mm ²
Mean comp.cylinder strength	f _{cm} = 36 N/mm ²	Mean axial tensile strength	f _{ctm} = 2.8 N/mm ²
Secant modulus of elasticity	E _{cm} = 32308 N/mm ²	Maximum aggregate size	h _{agg} = 20 mm
Partial factor for concrete	γc = 1.50	Comp.strength coefficient	α _{cc} = 0.85
Design compressive strength	f _{cd} = 15.9 N/mm ²		
Reinforcement details			
Characteristic yield strength	f _{yk} = 500 N/mm ²	Partial factor for reinforcment	γs = 1.15
Design yield strength	f _{yd} = 435 N/mm ²		
Nominal cover to reinforcem	ent		
Nominal cover to top	c _{nom_t} = 35 mm	Nominal cover to bottom	Cnom_b = 35 mm
Nominal cover to sides	C _{nom_s} = 35 mm		
Support A			
Ĩ		$4 \text{ x } 16_{\varphi}$ bars	
		$2 \; x \; 8_{\varphi}$ shear legs at 200 c/c	
Let a		$4 \text{ x } 20_{\varphi}$ bars	

500-

Rectangular section in flexure (Section 6.1) -

-500-

		pro yy	
Design bending moment	M = 19 kNm	K = 0.007	K' = 0.207
0		K' > K - No compression reinfo	prcement is required
Tens.reinforcement required	A _{s,req} = 105 mm ²	-	
Tens.reinforcement provided	$4 \times 16\phi$ bars	Tens.reinforcement provided	A _{s,prov} = 804 mm ²
Min area of reinforcement	$A_{s,min} = 323 \text{ mm}^2$	Max area of reinforcement	A _{s,max} = 10000 mm ²
PASS	S - Area of reinforcement prov	ided is greater than area of rei	nforcement required
Minimum bottom reinforcem	ent at supports (cl.9.2.1.4(1))		
Adj span reinforcement	$A_{s,span} = 1257 \text{ mm}^2$	Min btm reinforcement rqd	A _{s2,min} = 314 mm ²
Btm reinforcement provided	$4 \times 20\phi$ bars	Btm reinforcement provided	$A_{s2,prov} = 1257 \text{ mm}^2$
•		eater than minimum area of rei	
Rectangular section in shear (S			in ei eennent i equit eu
Des.shear force at support sup		V _{Ed.max} = 104 kN	Max.design shear
force	V _{Rd.max} = 901 kN		
		t support is less than maximun	n design shear force
Des.shear span 1 at 449 mm	V _{Ed} = 73 kN		C
Shear reinforcement required	A _{sv,req} = 157 mm ² /m	Min shear reinforcement	A _{sv,min} = 423 mm ² /m
Shear reinforcement provided	$2 \times 8\phi$ legs at 200 c/c	Shear reinforcement provided	A _{sv,prov} = 503
mm²/m			
	PASS - Area of shear r	einforcement provided exceed	ls minimum required
Max longitudinal spacing	s _{vl,max} = 337 mm	-	
PAS	S - Longitudinal spacing of sl	hear reinforcement provided is	less than maximum
Crack control (Section 7.3)			
Maximum crack width	w _k = 0.3 mm	Modulus of elasticity reinf	E _s = 200000 N/mm ²
Mean conc. tensile strength	$f_{ct,eff} = f_{ctm} = 2.8 \text{ N/mm}^2$	Stress distribution coefficient	kc = 0.4
Self-equilibrating stress coef	k = 0.86	Actual tension bar spacing	s _{bar} = 133 mm
Max stress permitted (T.7.3N)	σs = 294 N/mm ²	Conc/steel mod of elast. ratio	α _{cr} = 6.19
Distance of the ENA	y = 247 mm	Area of conc in tensile zone	A _{ct} = 123366 mm ²
Min area of reinf reqd (exp.7.1)) A _{sc,min} = 399 mm ²		
PASS - Area	of tension reinforcement pro	vided exceeds minimum requi	red for crack control
Quasi-perm value	ψ2 = 0.30	Quasi-perm limit state moment	Mqp = 0 kNm
Permanent load ratio	R _{PL} = 0.00	Service stress in reinf	$\sigma_{sr} = 0 \text{ N/mm}^2$
Max bar spacing (Table 7.3N)	Sbar,max = 300 mm		
	PASS - Maximum bar sp	acing exceeds actual bar spac	ing for crack control
Minimum bar spacing			
Minimum bottom bar spacing	s _{bot,min} = 131 mm	Min allowable bottom spacing	S _{bar_bot,min} = 45 mm
Minimum top bar spacing	Stop,min = 133 mm	Min allowable top spacing	Sbar bot,min = 45 mm
	•	S - Actual bar spacing exceeds	- /
		, 0	
<u>Mid span 1</u>			
Ť	ا م م م م	4 x 16 ϕ bars	
- 500-		2 x 8 $_{\varphi}$ shear legs at 150 c/c	

Rectangular section in flexure (Section 6.1) - - Positive midspan moment

--

—500—

×.

•

 $4 \text{ x} 20_{\varphi} \text{ bars}$

Tens.reinforcement provided $4 \times 16\phi$ bars

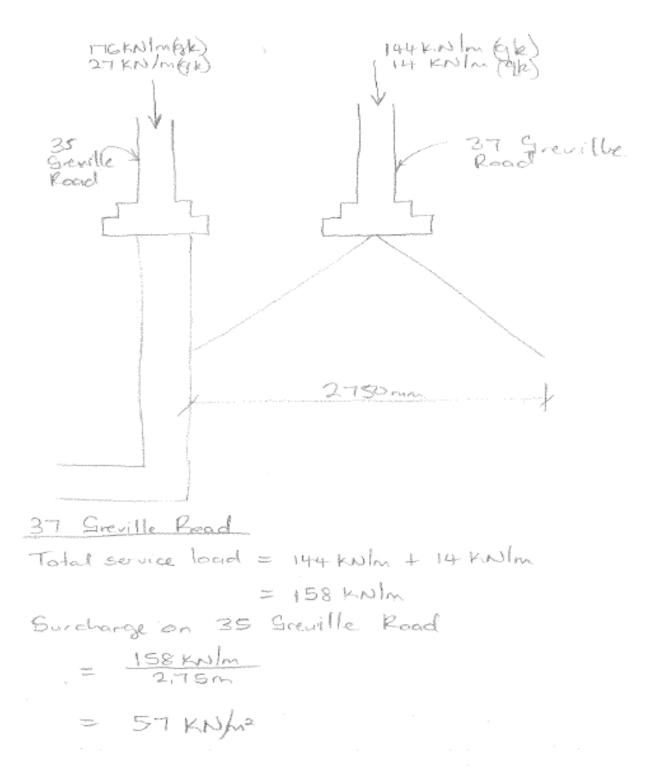
Min area of reinforcement

 $A_{s,min} = 323 \text{ mm}^2$

		- AV	EINGINEERS
Design bending moment	M = 78 kNm	K = 0.028	K' = 0.207
5 5		K' > K - No compression reinfo	prcement is required
Tens.reinforcement required	A _{s,req} = 422 mm ²	·	
Tens.reinforcement provided	$4 \times 20\phi$ bars	Tens.reinforcement provided	A _{s,prov} = 1257 mm ²
Min area of reinforcement	$A_{s.min} = 321 \text{ mm}^2$	Max area of reinforcement	$A_{s,max} = 10000 \text{ mm}^2$
	-,	vided is greater than area of rei	
Rectangular section in shear (S	=		
Shear reinforcement provided		Shear reinforcement provided	Asy prov = 670
mm ² /m			
Min shear reinforcement	Asy.min = 423 mm ² /m		
		reinforcement provided exceed	ls minimum required
Max longitudinal spacing	S _{vl,max} = 335 mm		o minimum required
		shear reinforcement provided is	less than maximum
Crack control (Section 7.3)	e zongraama opaomig or c		
Maximum crack width	w _k = 0.3 mm	Modulus of elasticity reinf	E _s = 200000 N/mm ²
Mean conc. tensile strength	$f_{ct,eff} = f_{ctm} = 2.8 \text{ N/mm}^2$	Stress distribution coefficient	k _c = 0.4
Self-equilibrating stress coef	k = 0.86	Actual tension bar spacing	s _{bar} = 131 mm
Max stress permitted (T.7.3N)		Conc/steel mod of elast, ratio	$\alpha_{\rm cr} = 6.19$
Distance of the ENA	y = 245 mm	Area of conc in tensile zone	$A_{ct} = 122496 \text{ mm}^2$
Min area of reinf reqd (exp.7.1)	•	Area of conc in tensile zone	Act - 122490 mm
		ovided exceeds minimum requi	red for crack control
	-	-	
Quasi-perm value	$\psi_2 = 0.30$	Quasi-perm limit state moment	
Permanent load ratio	R _{PL} = 0.74	Service stress in reinf	σ _{sr} = 108 N/mm ²
Max bar spacing (Table 7.3N)			
	PASS - Maximum bar s	pacing exceeds actual bar spac	ing for crack control
Minimum bar spacing			
Minimum bottom bar spacing	Sbot,min = 131 mm	Min allowable bottom spacing	Sbar_bot,min = 45 mm
Minimum top bar spacing	Stop,min = 133 mm	Min allowable top spacing	Sbar_bot,min = 45 mm
	PAS	SS - Actual bar spacing exceeds	minimum allowable
Deflection control (Section 7.4)			
Allowable span to depth ratio	<pre>span_to_depthallow = 40.0</pre>	Actual span to depth ratio	span_to_depthactual
= 6.7			
	PASS - Ad	ctual span to depth ratio is with	in the allowable limit
Support B			
T		4 x 16 $_{ m \varphi}$ bars	
- 500		$2 \; x \; 8_{\varphi}$ shear legs at 200 c/c	
Ļ		4 x 20 $_{\phi}$ bars	
	◄		
Rectangular section in flexure	(Section 6.1) -		
Design bending moment	M = 19 kNm	K = 0.007	K' = 0.207
		K' > K - No compression reinfo	prcement is required
Tens.reinforcement required	A _{s,req} = 105 mm ²		

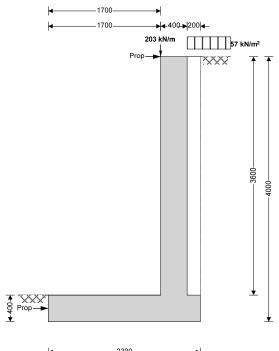
Tens.reinforcement provided $A_{s,prov} = 804 \text{ mm}^2$ Max area of reinforcement $A_{s,max} = 10000 \text{ mm}^2$

Minimum bottom reinforcem	ent at supports (cl.9.2.1.4(1))		
Adj span reinforcement	A _{s,span} = 1257 mm ²	Min btm reinforcement rqd	A _{s2,min} = 314 mm ²
Btm reinforcement provided	$4 \times 20\phi$ bars	Btm reinforcement provided	$A_{s2,prov} = 1257 \text{ mm}^2$
PASS - Area of	reinforcement provided is gre	eater than minimum area of rei	nforcement required
Rectangular section in shear (S	Section 6.2)		
Des.shear force at support sup	port	V _{Ed,max} = 104 kN	Max.design shear
force	V _{Rd,max} = 901 kN		
	PASS - Design shear force as	t support is less than maximur	n design shear force
Des.shear span 1 at 2551 mm	V _{Ed} = 73 kN		
Shear reinforcement required	A _{sv,req} = 157 mm ² /m	Min shear reinforcement	A _{sv,min} = 423 mm ² /m
Shear reinforcement provided mm ² /m	$2\times 8 \varphi$ legs at 200 c/c	Shear reinforcement provided	A _{sv,prov} = 503
	PASS - Area of shear r	einforcement provided exceed	ls minimum required
Max longitudinal spacing	S _{vl,max} = 337 mm		
PAS	SS - Longitudinal spacing of sl	hear reinforcement provided is	less than maximum
Crack control (Section 7.3)			
Maximum crack width	w _k = 0.3 mm	Modulus of elasticity reinf	E _s = 200000 N/mm ²
Mean conc. tensile strength	$f_{ct,eff} = f_{ctm} = 2.8 \text{ N/mm}^2$	Stress distribution coefficient	k _c = 0.4
Self-equilibrating stress coef	k = 0.86	Actual tension bar spacing	S _{bar} = 133 mm
Max stress permitted (T.7.3N)	σs = 294 N/mm²	Conc/steel mod of elast. ratio	$\alpha_{cr} = 6.19$
Distance of the ENA	y = 247 mm	Area of conc in tensile zone	A _{ct} = 123366 mm ²
Min area of reinf reqd (exp.7.1)) A _{sc,min} = 399 mm ²		
PASS - Area	of tension reinforcement pro	vided exceeds minimum requi	red for crack control
Quasi-perm value	ψ2 = 0.30	Quasi-perm limit state moment	M _{QP} = 0 kNm
Permanent load ratio	R _{PL} = 0.00	Service stress in reinf	$\sigma_{sr} = 0 \text{ N/mm}^2$
Max bar spacing (Table 7.3N)	Sbar,max = 300 mm		
	PASS - Maximum bar sp	acing exceeds actual bar spac	ing for crack control
Minimum bar spacing			
Minimum bottom bar spacing	s _{bot,min} = 131 mm	Min allowable bottom spacing	S _{bar_bot,min} = 45 mm
Minimum top bar spacing	Stop,min = 133 mm	Min allowable top spacing	Sbar_bot,min = 45 mm
	PAS	S - Actual bar spacing exceeds	minimum allowable


PASS - Area of reinforcement provided is greater than area of reinforcement required

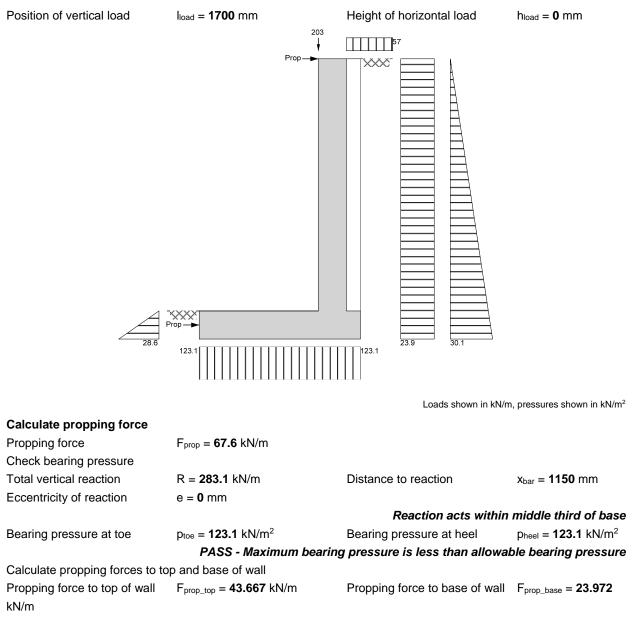
PILED WALL 2 (TEMPORARY CASE)

Location		Area		Туре	L	L Load	Load kN			
	L	W	m2			kN/m2	Dead	%	Live	Total
pile wall 2										
roof DL	4.0	1.0	4.0	g _k		1.05	4.2			
roof LL				q _k		0.75			3.0	
loft DL	4.0	1.0	4.0	g _k		0.63	2.5			
loft DL				q _k		1.50			6.0	
2nd fl DL	4.0	1.0	4.0	Яĸ		4.62	18.5			
2nd fl LL				q _k		1.50			6.0	
2nd fl partitions	3.0	1.0	3.0	g _k		2.60	7.8			
1st fl DL	4.0	1.0	4.0	Яĸ		4.62	18.5			
1st fl LL				q _k		1.50			6.0	
1st fl partitions	3.0	1.0	3.0	g _k		2.60	7.8			
ground fl DL	4.0	1.0	4.0	Яĸ		4.62	18.5			
ground fl LL				q _k		1.50			6.0	
grd fl partitions	3.0	1.0	3.0	g _k		2.60	7.8			
walls	9.0	1.0	9.0	Яĸ		10.00	90.0			
							175.6	kN/m	27.0	kN/m
37 greville road										
roof DL	2.0	1.0	2.0	g _k		1.05	2.1			_
roof LL				q _k		0.75			1.5	_
loft DL	2.0	1.0	2.0	g _k		0.63	1.3			
loft DL				q _k		1.50			3.0	_
2nd fl DL	2.0	1.0	2.0	g _k		4.62	9.2			
2nd fl LL				q _k		1.50			3.0	_
2nd fl partitions	3.0	1.0	3.0	g _k		2.60	7.8			_
1st fl DL	2.0	1.0	2.0	g _k	_	4.62	9.2			
1st fl LL				q _k	_	1.50			3.0	
1st fl partitions	3.0	1.0	3.0	g _k		2.60	7.8			
ground fl DL	2.0	1.0	2.0	g _k	_	4.62	9.2			
ground fl LL				q _k	_	1.50			3.0	
grd fl partitions	3.0	1.0	3.0	g _k		2.60	7.8			
walls	9.0	1.0	9.0	g _k		10.00	90.0			
							144.5	kN/m	13.5	kN/m


RETAINING WALL ANALYSIS & DESIGN (BS8002)

Loadings Dead loadDL=176kN/m Live loadLL=27kN/m

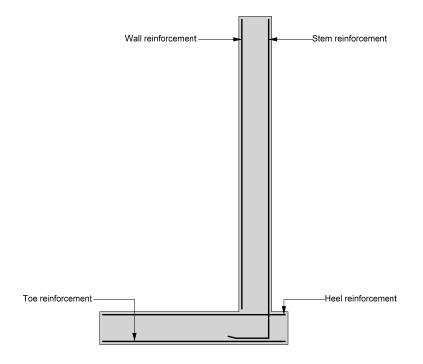
Surcharge from 37 Greville Road


RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06

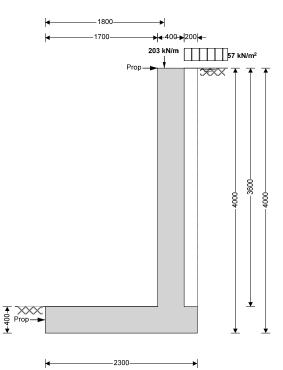
	₹2300	→	
Wall details			
Retaining wall type	Cantilever		
Height of wall stem	$h_{\text{stem}} = 3600 \text{ mm}$	Wall stem thickness	t _{wall} = 400 mm
•	l _{toe} = 1700 mm		
Length of toe	Itoe = 1700 mm	Length of heel Base thickness	I _{heel} = 200 mm
Overall length of base	.5466 _000	Base inickness	t _{base} = 400 mm
Height of retaining wall	h _{wall} = 4000 mm	This last of shows stored	400
Depth of downstand	$d_{ds} = 0 \text{ mm}$	Thickness of downstand	t _{ds} = 400 mm
Position of downstand	l _{ds} = 1250 mm		
Depth of cover in front of wall	d _{cover} = 0 mm	Unplanned excavation depth	d _{exc} = 0 mm
Height of ground water	h _{water} = 0 mm	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	γ _{wall} = 23.6 kN/m ³	Density of base construction	γ _{base} = 23.6 kN/m ³
Angle of soil surface	$\beta = 0.0 \deg$	Effective height at back of wall	h _{eff} = 4000 mm
Mobilisation factor	M = 1.5		
Moist density	γm = 18.0 kN/m ³	Saturated density	γs = 21.0 kN/m ³
Design shear strength	φ' = 24.2 deg	Angle of wall friction	$\delta = 0.0 \text{ deg}$
Design shear strength	φ' _b = 24.2 deg	Design base friction	$\delta_b = 18.6 \text{ deg}$
Moist density	$\gamma_{mb} = 18.0 \text{ kN/m}^3$	Allowable bearing	P _{bearing} = 130 kN/m ²
Using Coulomb theory			
Active pressure	Ka = 0.419	Passive pressure	Kp = 4.187
At-rest pressure	K ₀ = 0.590		
Loading details			
Surcharge load	Surcharge = 57.0 kN/m ²		
Vertical dead load	W _{dead} = 176.0 kN/m	Vertical live load	W _{live} = 27.0 kN/m
Horizontal dead load	F _{dead} = 0.0 kN/m	Horizontal live load	F _{live} = 0.0 kN/m

RETAINING WALL DESIGN (BS 8002:1994)


RETAINING WALL DESIGN (BS 8002:1994)			calculation version 1.2.01.06
Ultimate limit state load fact			
Dead load factor	γ _{f_d} = 1.4	Live load factor	γ _{f_l} = 1.6
Earth pressure factor	γ _{f_e} = 1.4		
Calculate propping force			
Propping force	F _{prop} = 67.6 kN/m		
Calculate propping forces to to			
Propping force to top of wall 128.378 kN/m	F _{prop_top_f} = 82.573 kN/m	Propping force to base of wall	F _{prop_base_f} =
	te retaining wall toe (BS 8002:	<u>1994)</u>	
Material properties			(500 N// ²
Strength of concrete	f _{cu} = 35 N/mm ²	Strength of reinforcement	f _y = 500 N/mm ²
Base details	k 042 0/		20
Minimum reinforcement	k = 0.13 %	Cover in toe	c _{toe} = 30 mm
362	>		
		<	
▼	• • • • •		
	L 100 L		
	← 100- →		
Design of retaining wall toe			
Shear at heel	V _{toe} = 276.1 kN/m	Moment at heel	M _{toe} = 293.2 kNm/m
		Compression reinforce	ement is not required
Check toe in bending			
Reinforcement provided	16 mm dia.bars @ 100 mm c	entres	
Area required	As_toe_req = 2003.8 mm ² /m	Area provided	$A_{s_toe_prov} = 2011$
mm²/m	DASS Deinforce	mont provided of the retaining	well too in adaguate
		ment provided at the retaining	wall toe is adequate
Check shear resistance at to	De Vtoe = 0.759 N/mm ²	Allowable shear stress	V _{adm} = 4.733 N/mm ²
Design shear stress		gn shear stress is less than ma	
Concrete shear stress	v _{c_toe} = 0.490 N/mm ²		
		V _{toe} > V _{c_toe} - Shear rei	inforcement required
Design of reinforced concre	te retaining wall heel (BS 8002	2:1994)	
Material properties		<u>,</u>	
Strength of concrete	f _{cu} = 35 N/mm²	Strength of reinforcement	f _y = 500 N/mm ²
Base details		,	
Minimum reinforcement	k = 0.13 %	Cover in heel	Cheel = 30 mm
		ng wall heel is beyond the sco	

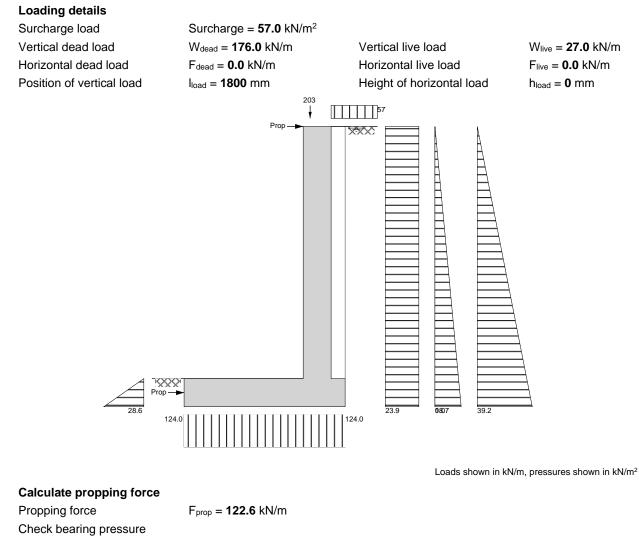
Design of reinforced concre	ete retaining wall stem (BS 800	<u>)2:1994)</u>	
Material properties			
Strength of concrete	f _{cu} = 35 N/mm ²	Strength of reinforcement	f _y = 500 N/mm ²
Wall details			
Minimum reinforcement	k = 0.13 %		
Cover in stem	C _{stem} = 30 mm	Cover in wall	c _{wall} = 30 mm
	∢ —150— →		
▲ 100 100 100 100 100 100 100 10	• • • •	• • • •	
	≼ 100- >		
Design of retaining wall ste			
Shear at base of stem	V _{stem} = 196.0 kN/m	Moment at base of stem	M _{stem} = 145.4
kNm/m		Compression reinford	ement is not required
Check wall stem in bending	I		
Reinforcement provided	12 mm dia.bars @ 100 mm (centres	
Area required	A _{s_stem_req} = 966.5 mm ² /m	Area provided	$A_{s_stem_prov} = 1131$
mm²/m			
	PASS - Reinforcen	nent provided at the retaining	wall stem is adequate
Check shear resistance at v			
Design shear stress	v _{stem} = 0.538 N/mm ²	Allowable shear stress	v _{adm} = 4.733 N/mm ²
		ign shear stress is less than n	naximum shear stress
Concrete shear stress	vc_stem = 0.490 N/mm ²	Chaose	- information of warming of
		Vstem > Vc_stem - Shear re	einforcement required
Design of retaining wall at r	-		
Moment at mid height	M _{wall} = 74.1 kNm/m	0	
Reinforcement provided	12 mm dia.bars @ 150 mm (-	ement is not required
Area required	A _{s_wall_req} = 520.0 mm ² /m	Area provided	As_wall_prov = 754
mm ² /m		Alea plovided	As_wall_prov – POH
	PASS - Reinforcement pro	vided to the retaining wall at n	nid height is adequate
Check retaining wall deflec	-		
Max span/depth ratio	ratio _{max} = 27.03	Actual span/depth ratio	ratio _{act} = 9.89
			oth ratio is acceptable

Indicative retaining wall reinforcement diagram


Toe bars - 16 mm dia.@ 100 mm centres - (2011 mm²/m) The design of the retaining wall heel is beyond the scope of this calculation! Wall bars - 12 mm dia.@ 150 mm centres - (754 mm²/m) Stem bars - 12 mm dia.@ 100 mm centres - (1131 mm²/m)

PILED WALL 2 (PERMANENT CASE)

RETAINING WALL ANALYSIS & DESIGN (BS8002)

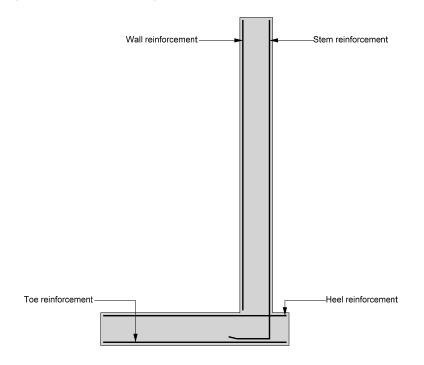

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Wall details			
Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 3600 mm	Wall stem thickness	t _{wall} = 400 mm
Length of toe	l _{toe} = 1700 mm	Length of heel	I _{heel} = 200 mm
Overall length of base	l _{base} = 2300 mm	Base thickness	t _{base} = 400 mm
Height of retaining wall	h _{wall} = 4000 mm		
Depth of downstand	d _{ds} = 0 mm	Thickness of downstand	t _{ds} = 400 mm
Position of downstand	l _{ds} = 1200 mm		
Depth of cover in front of wall	d _{cover} = 0 mm	Unplanned excavation depth	$d_{exc} = 0 mm$
Height of ground water	h _{water} = 4000 mm	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	$\gamma_{wall} = 23.6 \text{ kN/m}^3$	Density of base construction	$\gamma_{\text{base}} = 23.6 \text{ kN/m}^3$
Angle of soil surface	$\beta = 0.0 \text{ deg}$	Effective height at back of wall	h _{eff} = 4000 mm
Mobilisation factor	M = 1.5		
Moist density	γ _m = 18.0 kN/m ³	Saturated density	$\gamma_{s} = 21.0 \text{ kN/m}^{3}$
Design shear strength	φ' = 24.2 deg	Angle of wall friction	$\delta = 0.0 \text{ deg}$
Design shear strength	φ' _b = 24.2 deg	Design base friction	δ_b = 18.6 deg
Moist density	γ _{mb} = 18.0 kN/m ³	Allowable bearing	$P_{\text{bearing}} = 130 \text{ kN/m}^2$
Using Coulomb theory			
Active pressure	Ka = 0.419	Passive pressure	K _p = 4.187
At-rest pressure	K ₀ = 0.590		

Total vertical reaction	R = 285.2 kN/m	Distance to reaction	x _{bar} = 1150 mm
Eccentricity of reaction	e = 0 mm		
		Reaction acts within	middle third of base
Bearing pressure at toe	p _{toe} = 124.0 kN/m ²	Bearing pressure at heel	p _{heel} = 124.0 kN/m ²
	PASS - Maximum bearin	ng pressure is less than allowa	ble bearing pressure
Calculate propping forces to te	op and base of wall		
Propping force to top of wall	F _{prop_top} = 55.083 kN/m	Propping force to base of wall	Fprop_base = 67.508
kN/m			

RETAINING WALL DESIGN (BS 8002:1994)


RETAINING WALL DESIGN (DS 8002.1994)		TEDDS	calculation version 1.2.01.06	
Ultimate limit state load factors				
Dead load factor	γf_d = 1.4	Live load factor	γ _{f_l} = 1.6	
Earth pressure factor	γf_e = 1.4			
Calculate propping force				
Propping force	F _{prop} = 122.6 kN/m			
Calculate propping forces to te	•			
Propping force to top of wall 181.283 kN/m	F _{prop_top_f} = 93.516 kN/m	Propping force to base of wall	F _{prop_base_f} =	
Design of reinforced concre	ete retaining wall toe (BS 8002	<u>:1994)</u>		
Material properties	· · · · · · · · · · · · · · · · · · ·		6 - - - - - - - - - -	
Strength of concrete	f _{cu} = 35 N/mm ²	Strength of reinforcement	f _y = 500 N/mm ²	
Base details		6		
Minimum reinforcement	k = 0.13 %	Cover in toe	c _{toe} = 30 mm	
Ţ Ţ				
360				
-40036		<		
Design of retaining wall toe Shear at heel	V _{toe} = 278.3 kN/m	Moment at heel	M _{toe} = 295.5 kNm/m	
	$v_{toe} = 270.3 \text{ Kin/III}$	Compression reinforce		
Check toe in bending		<i>p</i>		
Reinforcement provided	20 mm dia.bars @ 100 mm centres			
Area required	$A_{s_{toe_{req}}} = 2034.7 \text{ mm}^2/\text{m}$	Area provided	$A_{s_{toe_prov}} = 3142$	
mm²/m				
	PASS - Reinforce	ement provided at the retaining	wall toe is adequate	
Check shear resistance at to	oe			
Design shear stress	Vtoe = 0.769 N/mm ²	Allowable shear stress	V _{adm} = 4.733 N/mm ²	
	_	ign shear stress is less than m	aximum shear stress	
Concrete shear stress	v _{c_toe} = 0.521 N/mm ²	the second se	info vo o mont vo avvivo d	
		V _{toe} > V _{c_toe} - Shear rel	inforcement required	
Design of reinforced concre	ete retaining wall heel (BS 800	<u>2:1994)</u>		
Material properties				
Strength of concrete	f _{cu} = 35 N/mm ²	Strength of reinforcement	f _y = 500 N/mm ²	
Base details				
Minimum reinforcement	k = 0.13 %	Cover in heel	Cheel = 30 mm	
As the moment is neg	gative the design of the retain	ing wall heel is beyond the sco	pe of this calculation	

Material properties			
Strength of concrete	f _{cu} = 35 N/mm ²	Strength of reinforcement	f _y = 500 N/mm ²
Wall details			
Minimum reinforcement	k = 0.13 %		
Cover in stem	c _{stem} = 30 mm ←150>	Cover in wall	c _{wall} = 30 mm
	• • •	• • •	•
	◀──150──▶		
Design of retaining wall ste			
Shear at base of stem kNm/m	V _{stem} = 240.2 kN/m	Moment at base of stem	M _{stem} = 167.5
		Compression reinfor	cement is not required
Check wall stem in bending	g		
Reinforcement provided	16 mm dia.bars @ 150 mm		
Area required mm ² /m	A _{s_stem_req} = 1119.4 mm ² /m	Area provided	$A_{s_stem_prov} = 1340$
11111 /111	PASS - Reinforcer	ment provided at the retaining	wall stem is adequate
Check shear resistance at	wall stem		
Design shear stress	v _{stem} = 0.664 N/mm ²	Allowable shear stress	v _{adm} = 4.733 N/mm ²
	PASS - Des	ign shear stress is less than i	maximum shear stress
Concrete shear stress	Vc_stem = 0.521 N/mm ²		
		Vstem > Vc_stem - Shear r	einforcement required
Design of retaining wall at	mid height		
Moment at mid height	$M_{wall} = 85.5 \text{ kNm/m}$	Compression reinfor	cement is not required
Reinforcement provided	12 mm dia.bars @ 150 mm centres		
Area required mm²/m	$A_{s_wall_req} = 568.4 \text{ mm}^2/\text{m}$	Area provided	$A_{s_wall_prov} = 754$
	PASS - Reinforcement pro	vided to the retaining wall at I	mid height is adequate
	•	-	
Check retaining wall deflect	tion		

Indicative retaining wall reinforcement diagram

Toe bars - 20 mm dia. @ 100 mm centres - (3142 mm²/m)

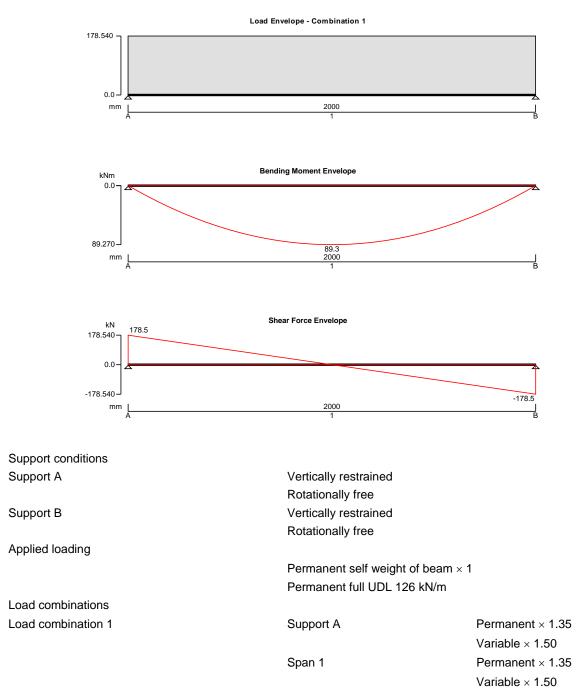
The design of the retaining wall heel is beyond the scope of this calculation!

Wall bars - 12 mm dia.@ 150 mm centres - (754 mm²/m)

Stem bars - 16 mm dia.@ 150 mm centres - (1340 mm²/m)

CAPPING BEAM FOR PILED WALL 2

RC BEAM ANALYSIS & DESIGN (EN1992)


Prop forceDL=122.6kN/m

RC BEAM ANALYSIS & DESIGN (EN1992-1)

In accordance with UK national annex

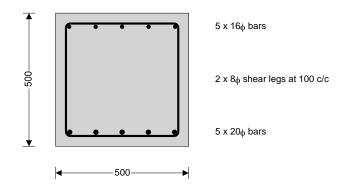
TEDDS calculation version 2.1.15

73

		Support B		nent × 1.35 e × 1.50	
Analysis results Maximum moment support A Maximum moment span 1 at 1000 mm Maximum moment support B Maximum shear support A Maximum shear support A span 1 at 449 mm Maximum shear support B Maximum shear support B span 1 at 1551 mm Maximum reaction at support A Maximum reaction at support B			M _{s1_red} M _{B_red} = VA_red = VA_s1_re V _{B_red} =	$M_{A_red} = 0 \text{ kNm}$ $M_{s1_red} = 89 \text{ kNm}$ $M_{B_red} = 0 \text{ kNm}$ $V_{A_red} = 179 \text{ kN}$ $V_{A_s1_red} = 98 \text{ kN}$ $V_{B_red} = -179 \text{ kN}$ $V_{B_s1_red} = -98 \text{ kN}$	
Rectangular section details Section width	b = 500 mm	Section depth		h = 500 mm	
		500			
Concrete details (Table 3.1 -	Strength and defor	mation characteristics for cond	crete)		
Concrete strength class Char.comp.cylinder strength Mean comp.cylinder strength Secant modulus of elasticity Partial factor for concrete Design compressive strength	C28/35 $f_{ck} = 28 \text{ N/mm}^2$ $f_{cm} = 36 \text{ N/mm}^2$ $E_{cm} = 32308 \text{ N/mm}^2$ $\gamma_C = 1.50$ $f_{cd} = 15.9 \text{ N/mm}^2$	Char.comp.cube str Mean axial tensile s Maximum aggregate Comp.strength coef	trength e size	$f_{ck,cube} = 35 N/mm^{2}$ $f_{ctm} = 2.8 N/mm^{2}$ $h_{agg} = 20 mm$ $\alpha_{cc} = 0.85$	
Reinforcement details Characteristic yield strength Design yield strength	f _{yk} = 500 N/mm ² f _{yd} = 435 N/mm ²	Partial factor for reir	nforcment	γs = 1.15	
Nominal cover to reinforcem Nominal cover to top Nominal cover to sides	eent C _{nom_t} = 35 mm C _{nom_s} = 35 mm	Nominal cover to be	ottom	c _{nom_b} = 35 mm	
Support A		$5 \times 16_{\phi}$ bars $2 \times 8_{\phi}$ shear legs at 100 c $5 \times 20_{\phi}$ bars	:/c		

____**5**00_____►

Rectangular section in flexure	(Section 6.1) -		
Design bending moment	M = 22 kNm	K = 0.008	K' = 0.207
		K' > K - No compression reinf	
Tens.reinforcement required	A _{s,req} = 120 mm ²		
Tens.reinforcement provided	$5 \times 16\phi$ bars	Tens.reinforcement provided	A _{s,prov} = 1005 mm ²
Min area of reinforcement	A _{s,min} = 323 mm ²	Max area of reinforcement	A _{s,max} = 10000 mm ²
PASS	S - Area of reinforcement pro	ovided is greater than area of rei	nforcement required
Minimum bottom reinforcem	ent at supports (cl.9.2.1.4(1))	
Adj span reinforcement	A _{s,span} = 1571 mm ²	Min btm reinforcement rqd	A _{s2,min} = 393 mm ²
Btm reinforcement provided	5 × 20 bars	Btm reinforcement provided	$A_{s2,prov} = 1571 \text{ mm}^2$
PASS - Area of	reinforcement provided is g	reater than minimum area of rei	nforcement required
Rectangular section in shear (
Des.shear force at support sup	oport	V _{Ed,max} = 179 kN	Max.design shear
force	V _{Rd,max} = 901 kN		
	PASS - Design shear force	at support is less than maximu	n design shear force
Des.shear span 1 at 449 mm	V _{Ed} = 98 kN		
Shear reinforcement required	A _{sv,req} = 212 mm ² /m	Min shear reinforcement	A _{sv,min} = 423 mm ² /m
Shear reinforcement provided	$2\times 8\phi$ legs at 100 c/c	Shear reinforcement provided	Asv,prov = 1005
mm²/m			
	PASS - Area of shea	r reinforcement provided exceed	ls minimum required
Max longitudinal spacing	Svl,max = 337 mm		
PAS	SS - Longitudinal spacing of	shear reinforcement provided is	less than maximum
Crack control (Section 7.3)			
Maximum crack width	w _k = 0.3 mm	Modulus of elasticity reinf	E _s = 200000 N/mm ²
Mean conc. tensile strength	$f_{ct,eff} = f_{ctm} = 2.8 \text{ N/mm}^2$	Stress distribution coefficient	k _c = 0.4
Self-equilibrating stress coef	k = 0.86	Actual tension bar spacing	s _{bar} = 99 mm
Max stress permitted (T.7.3N)	σs = 320 N/mm²	Conc/steel mod of elast. ratio	αcr = 6.19
Distance of the ENA	y = 246 mm	Area of conc in tensile zone	A _{ct} = 122966 mm ²
Min area of reinf reqd (exp.7.1			
	a of tension reinforcement p	rovided exceeds minimum requi	
Quasi-perm value	ψ ₂ = 0.30	Quasi-perm limit state moment	: M _{QP} = 0 kNm
Permanent load ratio	R _{PL} = 0.00	Service stress in reinf	$\sigma_{sr} = 0 \text{ N/mm}^2$
Max bar spacing (Table 7.3N)			
	PASS - Maximum bar s	spacing exceeds actual bar spac	ing for crack control
Minimum bar spacing			

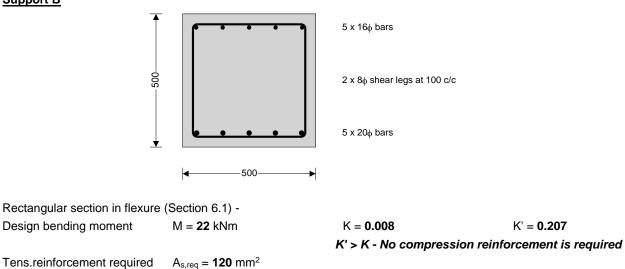

Minimum bar spacing

Minimum top bar spacing

Minimum bottom bar spacing

	PASS - Actual bar spacing exceeds	minimum allowable
Stop,min = 99 mm	Min allowable top spacing	Sbar_bot,min = 45 mm
Sbot,min = 98 mm	Min allowable bottom spacing	Sbar_bot,min = 45 mm

<u>Mid span 1</u>



W:\Project File\Project Storage\2015\150525-35 Greville Road\2.0.Calcs\BIA\35 Greville Road Basement Impact Assessment.docx

Rectangular section in flexure (Section 6.1) Positive midspan moment				
Design bending moment	M = 89 kNm	K = 0.032	K' = 0.207	
		K' > K - No compression reinfo	prcement is required	
Tens.reinforcement required	A _{s,req} = 484 mm ²			
Tens.reinforcement provided	$5 \times 20\phi$ bars	Tens.reinforcement provided	A _{s,prov} = 1571 mm ²	
Min area of reinforcement	A _{s,min} = 321 mm ²	Max area of reinforcement	$A_{s,max} = 10000 \text{ mm}^2$	
PASS	S - Area of reinforcement prov	ided is greater than area of rei	nforcement required	
Rectangular section in shear (S	Section 6.2)			
Shear reinforcement provided	$2\times 8\varphi$ legs at 100 c/c	Shear reinforcement provided	Asv,prov = 1005	
mm²/m				
Min shear reinforcement	A _{sv,min} = 423 mm ² /m			
	PASS - Area of shear r	einforcement provided exceed	s minimum required	
Max longitudinal spacing	S _{vl,max} = 335 mm			
PAS	S - Longitudinal spacing of sl	hear reinforcement provided is	less than maximum	
Crack control (Section 7.3)				
Maximum crack width	w _k = 0.3 mm	Modulus of elasticity reinf	Es = 200000 N/mm ²	
Mean conc. tensile strength	$f_{ct,eff} = f_{ctm} = 2.8 \text{ N/mm}^2$	Stress distribution coefficient	k _c = 0.4	
Self-equilibrating stress coef	k = 0.86	Actual tension bar spacing	s _{bar} = 98 mm	
Max stress permitted (T.7.3N)	σs = 321 N/mm²	Conc/steel mod of elast. ratio	α _{cr} = 6.19	
Distance of the ENA	y = 244 mm	Area of conc in tensile zone	A _{ct} = 121889 mm ²	
Min area of reinf reqd (exp.7.1)) A _{sc,min} = 361 mm ²			
PASS - Area	of tension reinforcement pro	vided exceeds minimum requi	red for crack control	
Quasi-perm value	ψ2 = 0.30	Quasi-perm limit state moment	M _{QP} = 66 kNm	
Permanent load ratio	R _{PL} = 0.74	Service stress in reinf	σ _{sr} = 99 N/mm ²	
Max bar spacing (Table 7.3N)	Sbar,max = 300 mm			
	PASS - Maximum bar sp	acing exceeds actual bar space	ing for crack control	
Minimum bar spacing				
Minimum bottom bar spacing	Sbot,min = 98 mm	Min allowable bottom spacing	Sbar_bot,min = 45 mm	
Minimum top bar spacing	Stop,min = 99 mm	Min allowable top spacing	Sbar_bot,min = 45 mm	
	PAS	S - Actual bar spacing exceeds	minimum allowable	
Deflection control (Section 7.4))			
Allowable span to depth ratio	span_to_depth _{allow} = 40.0	Actual span to depth ratio	span_to_depth _{actual}	
= 4.5				

Support B

Tens.reinforcement required $A_{s,req} = 120$ nTens.reinforcement provided $5 \times 16\phi$ bars

Tens.reinforcement provided A_{s,prov} = **1005** mm²

PASS - Actual span to depth ratio is within the allowable limit

Min area of reinforcement	A _{s,min} = 323 mm ²	Max area of reinforcement	A _{s,max} = 10000 mm ²
PASS	S - Area of reinforcement prov	vided is greater than area of rei	nforcement required
Minimum bottom reinforcem	ent at supports (cl.9.2.1.4(1))		
Adj span reinforcement	A _{s,span} = 1571 mm ²	Min btm reinforcement rqd	A _{s2,min} = 393 mm ²
Btm reinforcement provided	$5 \times 20\phi$ bars	Btm reinforcement provided	$A_{s2,prov} = 1571 \text{ mm}^2$
PASS - Area of	reinforcement provided is gro	eater than minimum area of rei	nforcement required
Rectangular section in shear (Section 6.2)		
Des.shear force at support sup	pport	V _{Ed,max} = 179 kN	Max.design shear
force	V _{Rd,max} = 901 kN		
	-	t support is less than maximun	n design shear force
Des.shear span 1 at 1551 mm			
Shear reinforcement required	A _{sv,req} = 212 mm ² /m	Min shear reinforcement	A _{sv,min} = 423 mm ² /m
Shear reinforcement provided	$2\times 8\phi$ legs at 100 c/c	Shear reinforcement provided	Asv,prov = 1005
mm²/m			
		reinforcement provided exceed	s minimum required
Max longitudinal spacing	S _{vl,max} = 337 mm		
	SS - Longitudinal spacing of s	hear reinforcement provided is	less than maximum
Crack control (Section 7.3)			
Maximum crack width	$w_k = 0.3 \text{ mm}$	Modulus of elasticity reinf	E _s = 200000 N/mm ²
Mean conc. tensile strength	$f_{ct,eff} = f_{ctm} = 2.8 \text{ N/mm}^2$	Stress distribution coefficient	k _c = 0.4
Self-equilibrating stress coef	k = 0.86	Actual tension bar spacing	s _{bar} = 99 mm
Max stress permitted (T.7.3N)		Conc/steel mod of elast. ratio	$\alpha_{\rm cr} = 6.19$
Distance of the ENA	y = 246 mm	Area of conc in tensile zone	A _{ct} = 122966 mm ²
Min area of reinf reqd (exp.7.1)		ovided exceeds minimum requi	rad far araak aantral
	$\psi_2 = 0.30$	Quasi-perm limit state moment	
Quasi-perm value	1	•	
Permanent load ratio	R _{PL} = 0.00	Service stress in reinf	$\sigma_{sr} = 0 \text{ N/mm}^2$
Max bar spacing (Table 7.3N)		acing exceeds actual bar spac	ing for groat control
	PASS - Maximum bar sp	acing exceeds actual bar space	
Minimum bar spacing			
Minimum bottom bar spacing	Sbot,min = 98 mm	Min allowable bottom spacing	Sbar_bot,min = 45 mm
Minimum top bar spacing	Stop,min = 99 mm	Min allowable top spacing	Sbar_bot,min = 45 mm
	PAS	S - Actual bar spacing exceeds	minimum allowable

Job Number: 150525 (35 Greville Road) Date: 24 Aug 15

Wall DL	203	kN/m	φ	30		Wall DL	203	kN/m		
VV =	0.3	m	δ	18						
10	1		Span=	14	m		•	Sur2 =	10	
ł	←→				†				↑	
				H 2=		3 m		Water =	3.6	m
		H 1=	3	m						
		Slab Thic								
0			Slab =	11.2						<u> </u>
←→	1	←		<u></u>	> ↓					ļ/
			Ţ						♦	[]
	<u>ا</u> ا	Toe =	0.35	m						
		Toewidth=	1.4	m						<u> </u>
	57.0050									<u> </u>
										<u> </u>
					-					<u> </u>
Ka =	0.33333	'	<u> '</u>							[]
Thrust fro	m left =	19				 Thrust frc	om Right	19		
ance fror	n Left =	162					-			
	Fauilibric	um check	Kp from I	Right Ade	ouate					
	Lqquine									
	W= 10 0 ↓ ↓ kp = ka = Ihrust from	W = 0.3 10 ● 0 ● 0 ● 0 ● 57.2958 S kp = 3 ka = 0.33333 Ihrust from left = ance from Left =	W= 0.3 m 10 Image: Constraint of the second s	W =0.3m δ 10Span=10H1=H1=3Slab Thickness =Slab =Slab Thickness =Slab =Slab Thickness =Slab =Slab Thickness =Slab =10Toe =0.35Toewidth =1.457.2958Ince from left =101.410Ince from left =1910Ince from Left =16210Ince from Left =162	W=0.3m $\widehat{\delta}$ 1810Span=1410Fraction of the second	W = 0.3 m δ 18 10 Span= 14 m 10 Image: Span= 14 m Image: Span= Image: Span= Image: Span= Image: Span= Image: Span= Image: Image: Image: Span= Image: Image: Image: Span= Image: Imag	W =0.3m δ 1810Span=14m10Span=14m10H2=3m11H1=3m111Slab Thickness =0.4110Slab =11.2110Toe =0.35m10Toewidth=1.4m10Toewidth=1.4m11Toewidth=1.4m11StabToe =1.411Toewidth=1.4m11Toewidth=1.4m11Toewidth=1.4m12Toewidth=1.4m13Toewidth=1.414Thrust fromThrust from15162Resitance from14162Resitance from15162Resitance from	W =0.3m δ 1810Span=14m10Span=14m10H2=3mH1=3mISlab Thickness =0.4ISlab Thickness =0.4ISlab Thickness =0.4IImage: Slab Thickness =0.4Image: Slab Thickness =Image: Slab Thickness =0.35Image: Slab Thickness =Image: Slab Thickness =<	W=0.3m δ 18Image: state of the sta	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Noise and Nuisance Control	The contractor is to follow the good working practices and guidance laid down in the "Considerate Constructors Scheme". The hours of working will be limited to those allowed; 8am to 5pm Monday to Friday and Saturday Morning 8am to 1pm. None of the practices cause undue noise that one would typically expect from a construction site. The conveyor belt typically runs at around 70dB. The site has car parking to the front to which the skip will be stored. The site will be hoarded with 8' site hoarding to prevent access. The hours of working will further be defined within the Party Wall Act. The site is to be hoarded to minimise the level of direct noise from the site. Ground floor slab is not being removed minimising the vibration and sound to adjacent properties. While working in the basement the work generally requires hand tools to be used. The level of noise generally will be no greater than that of digging of soil. The noise is reduced and muffled by the
	greater than that of digging of soil. The noise is reduced and muffled by the works being undertaken underground. A level of noise from a basement is lower than typical ground level construction due to this.
СТМР	The council may require a Construction Traffic Management plan to be produced. This is outside the brief of the Basement impact assessment and is not covered within Croft's Brief

Appendix A ; Construction Method Statement

Basement Method Statement

35 Greville Road London NW6 5JB

Client Information Igor Gokhberg 55 Peiantho CRT Vaughan ON LGA 1G1 Canada

Contents

Executive Summary / Non technical Summary	5
Project Summary	5
Stage 1 – Screening	6
Stage 2 – Scoping	6
Stage 3 – Site investigation and study	7
Stage 4 – Impact assessment	7
1. Screening Stage	9
Land Stability	9
Subterranean Flow	9
Surface Flow and Flooding	9
2. Scoping Stage1	2
Land Stability	2
Subterranean Flow	2
Surface Flow & Flooding1	2
Conceptual Model1	2
3. Site Investigation and Study1	4
Desk Study and Walkover Survey1	4
Proposed Development1	4
Site History1	5
Local Bombing1	6
Listed Buildings1	6
Highways, Rail and London Underground1	7
London Underground and Network Rail1	7
UK Power Networks1	7
Vicinity of Trees1	7
Building Defects1	7
Nos 37 Greville Rpad Property to right1	8
Local Topography1	9
Ground Investigation1	9
Geology2	0
Surface Flow & Flooding	0
Areas of Hard Standing present on site	0

Rainwater down pipes, Drains, Manholes and Gulleys	20
Local Water Sources	20
Field Investigation	20
Monitoring, Reporting and Investigation	20
Land Stability	20
Site Investigation	21
4. Basement Impact Assessment	22
Subterranean Flow	22
Land Stability	22
Flood Risk Assessment	23
Site Location	24
Potential surface water (pluvial) flooding	24
Potential flooding from infrastructure failure	25
Mitigation measures	25
Summary	25
SUDS Assessment	26
Hard standing	26
SUDS Assessment	26
SUDS Calculations	26
Mitigation Measures	26
Drainage effects on Structure	26
Trees	27
Root Protection Zone	27
Conclusion	27
Ground Movement Assessment & Predicted Damage Category	28
Burland Scale	
Monitoring	
Risk Assessment	35
Monitoring Conclusion	
Basement Design & Construction Impacts	
Foundation type	
Roads	
Intended use of structure and user requirements	
Loading Requirements (EC1-1)	

Part A3 Progressive collapse	40
Lateral Stability	40
Exposure and wind loading conditions	40
Stability Design	40
Lateral Actions	40
Retained soil Parameters	40
Water Table	41
Drainage and Damp Waterproofing	41
Localised Dewatering	41
Temporary Works	42
Geological Assessment of Land Stability	42
Retaining Wall Calculation	42
piled wall 1 (temporary case)	45
Retaining wall analysis & design (BS8002)	45
RETAINING WALL ANALYSIS (BS 8002:1994)	45
RETAINING WALL DESIGN (BS 8002:1994)	
Design of reinforced concrete retaining wall toe (BS 8002:1994)	
Design of reinforced concrete retaining wall stem (BS 8002:1994)	
Indicative retaining wall reinforcement diagram	50
piled wall 1 (permanent case)	51
Retaining wall analysis & design (BS8002)	51
RETAINING WALL ANALYSIS (BS 8002:1994)	51
RETAINING WALL DESIGN (BS 8002:1994)	53
Design of reinforced concrete retaining wall toe (BS 8002:1994)	53
Design of reinforced concrete retaining wall heel (BS 8002:1994)	53
Design of reinforced concrete retaining wall stem (BS 8002:1994)	54
Indicative retaining wall reinforcement diagram	55
capping beam for piled wall 1	56
RC beam analysis & design (EN1992)	56
RC beam analysis & design (EN1992-1)	56
Support A	57
Mid span 1	
Support B	59
piled wall 2 (temporary case)	61

Reta	iining wall analysis & design (BS8002)	62
RE	TAINING WALL ANALYSIS (BS 8002:1994)	63
RE	TAINING WALL DESIGN (BS 8002:1994)	65
	Design of reinforced concrete retaining wall toe (BS 8002:1994)	65
	Design of reinforced concrete retaining wall heel (BS 8002:1994)	65
	Design of reinforced concrete retaining wall stem (BS 8002:1994)	66
	Indicative retaining wall reinforcement diagram	67
piled	d wall 2 (permanent case)	68
Reta	iining wall analysis & design (BS8002)	68
RE	TAINING WALL ANALYSIS (BS 8002:1994)	68
RE	TAINING WALL DESIGN (BS 8002:1994)	70
	Design of reinforced concrete retaining wall toe (BS 8002:1994)	70
	Design of reinforced concrete retaining wall heel (BS 8002:1994)	70
	Design of reinforced concrete retaining wall stem (BS 8002:1994)	71
	Indicative retaining wall reinforcement diagram	72
сар	ping beam for piled wall 2	73
RC k	beam analysis & design (EN1992)	73
RC	C beam analysis & design (EN1992-1)	73
:	Support A	74
	Mid span 1	75
:	Support B	76
	Noise and Nuisance Control	79
	CTMP	79
Ap	opendix A ; Construction Method Statement	80
35 G	ireville Road	87
1.	Basement Formation Suggested Method Statement.	87
2.	Enabling Works	
3.	Piling Sequencing	
4.	Demolition, Recycling, Dust/Noise Control and Site Hoarding	
5.	Trench sheet design and temporary prop Calculations	
STA	NDARD LAP TRENCH SHEETING	
KD4	SHEETS	96
Ap	opendix B : Structural Drawings	

35 Greville Road

1. Basement Formation Suggested Method Statement.

- 1.1. This method statement provides an approach which will allow the basement design to be correctly considered during construction, and the temporary support to be provided during the works. The Contractor is responsible for the works on site and the final temporary works methodology and design on this site and any adjacent sites.
- 1.2. This method statement for 35 Greville Road has been written by a Chartered Engineer. The sequencing has been developed considering guidance from ASUC.
- 1.3. This method has been produced to allow for improved costings and for inclusion in the party wall Award. Should the contractor provide alternative methodology the changes shall be at their own costs, and an Addendum to the Party Wall Award will be required.
 1.0
- 1.4. Contact party wall surveyors to inform them of any changes to this method statement.
- 1.5. The approach followed in this design is; to remove load from above and place loads onto supporting steelwork, then to cast retaining walls in underpin sections at the new basement level.
- 1.6. A soil investigation has been undertaken. The soil conditions are London Clay formation
- 1.7. The bearing pressures have been limited to 130-150kN/m². This is standard loadings for local ground conditions and acceptable to building control and their approvals.
- 1.8. The water table is expected to encountered at 0.8m BGL 2.0
- 1.9. Structural Water proofer (Not Croft) must comment on the design proposed and ensure they are satisfied that proposals will provide adequate water proofing.
 3.0
- 1.1. Provide engineers with concrete mix, supplier, deliver and placement methods 2 weeks prior to first pour. Site mixing of concrete should not be employed apart from in small sections <1m³. Contractor must provide method on how to achieve site mixing to correct specification, contractor must undertake tool box talks with staff to ensure site quality is maintained.

88

2. Enabling Works

- 2.1. The site is to be hoarded with ply sheet to 2.2m to prevent unauthorised public access.
- 2.2. Licenses for Skips and conveyors to be posted on hoarding
- 2.3. Provide protection to public where conveyor extends over footpath. Depending on the requirements of the local authority, construct a plywood bulkhead onto the pavement. Hoarding to have a plywood roof covering, night-lights and safety notices.
 4.0
- 2.4. Dewater: Water is expected at 0.5 depths
 - 5.0

2.4.1.Place a bore hole to the rear of the property down to a depth of 6m 2.4.2.Pump water away from site.

2.5. On commencement of construction the contractor should report any discrepancies to the structural engineer in order that the detailed design may be modified as necessary.

3. Piling Sequencing

- 3.1. Piles are to be installed at different levels and positions around the development. All piles are installed from the same level and cut down as required.
 - 6.0
 - 3.1.1.Prior to bringing the piling rig on site, check with the piling contractor the requirements of a working platform and install to their design and specification if required.
 - 3.1.2. Mark out datum line to determine various surface heights

7.0

3.1.3. Mark out pile sequence locations as specified by Engineer's drawings.

8.0

3.1.4. Following the sequencing guidance from the Engineers drawings mark out proposed pile position with a pair of reference markers at 1.0m from the pile pin, approximately 90 degrees apart.

9.0

3.1.5.Rig operator to set up over the pile pin position and position auger relative to reference marks. Directed and checked by banks man.

10.0

- 3.1.6.The flap at the tip of the auger is closed and secured. Auger tip lowered to ground level and position rechecked. Drilling to commence upon banks man approval.
- 11.0
 - 3.1.7.Concrete is prepared while piling gang grout up concrete pump, hoses and flight, concrete pump operator to check concrete complies with design mix. Concrete held in agitator.

12.0

3.1.8.Rig operator augers to require design depth. Reference makers are to be used to check pile position during the first few meters of drilling.

13.0

3.1.9. If obstruction encountered, Engineer to be notified of pile number and depth. Move rig to next pile position whilst obstruction removal is dealt with. Contractor to be

advised on procedure should obstruction not be removable. If necessary, pile bores to be backfilled and made safe. Open excavation to be protected when open.

14.0

- 15.0
 - 3.1.10. When design depth reached, the auger is to be kept rotating to allow spoil in the bore to rise.
- 3.1.11. Concrete can be pumped to rig while rig operator monitors instrumentation and adjust auger rate of withdrawal accordingly.

16.0

3.1.12. Pressure, concrete flow and over-break to be monitored throughout operation.

17.0

3.1.13. During the withdrawal the rig operator is to activate the flight cleaner. If an automatic cleaner is not fitted to the rig then the piling gang must clean the flight manually to prevent spoil/arising travelling above head height – this will be controlled by the piling foreman who must ensure the auger is not rotating when it is manually cleaned.

18.0

- 3.1.14. When auger tip reaches platform level, concrete pumping is stopped.
- 19.0
- 3.1.15. Attendant excavator as directed by the banks man clears spoil and concrete slurry from pile heap.
- 20.0
- 3.1.16. Banks man to check position of the cage in the pile, centrering where necessary. Reinforcement generally to be installed flush with Piling Platform Level (PPL). Anchor pile reinforcement or threaded bars that project above piling platform to have protective caps.

21.0

- 3.1.17. Concrete testing cube samples to be taken as per engineering specification. 22.0
- 3.1.18. Rig is moved onto next pile in the sequence and positioned as above, with piles installed as per points 3.1.5 3.1.12

23.0

3.1.19. Equipment to be cleaned and maintained as per normal methods.

24.0

3.1.20. This sequence of piling is to continue until all perimeter piles have been installed.

25.0

- 3.1.21. Cast internal bases and columns from basement to ground floor level. 26.0
- 3.2. Once all piles have been installed, bases and steel columns have been installed and additional temporary piles included, the next step sequence is to cast capping beams and install the steelwork at ground level that which in permanent condition will prop the external perimeter of the basement.
- 3.3. When steelwork has been set up, the excavation of the central mass can begin using mechanic excavators (an opening big enough to allow for access for machinery and spoil removal should be left. 27.0
- 3.4. As excavation continues down, a dewatering system will need to be considered. There are several method of doing this but the most common method is to install well points from which ground water can be pumped as mentioned in point 2.4.1 28.0

3.5. Once excavation is level done to the intermediate floor level the steelwork is installed: this will prop the external perimeter of the basement in permanent condition as the ground floor steelwork. Effectively the basement is constructed in a top down method for other works to be the development to be undertaken at the same time as the basement dig out. 29.0

4. Demolition, Recycling, Dust/Noise Control and Site Hoarding

- 4.1. Demolition work is to take place within the hoarded confines of the materials such as stock bricks, timber etc. are to be recycled where possible. To minimise dust and dirt from demolition the following measures shall be implemented:
 - 4.1.1. Any debris or dust or dirt falling on the street and public highway will be cleared as it occurs by designated cleaners and washed down fully every night.
 - 4.1.2. Demolished materials are to be removed to a skip placed in front of the site which will be emptied regularly as required.
 - 4.1.3. All brickwork and concrete demolition work is to be constantly watered to reduce airborne dust

30.0

4.2. Building work which can be heard at the boundary of the site will not be carried out on Sundays or bank holidays and will be carried out within working hours as agreed by the council.

5. Trench sheet design and temporary prop Calculations

This calculation has been provided for the trench sheet and prop design of standard underpins in the temporary condition. There are gaps left between the sheeting and as such no water pressure will occur. Any water present will flow through the gaps between the sheeting and will be required to pump out.

Trench sheets should be placed at centres to deal with the ground. It is expected that the soil between the trench sheeting will arch. Looser soil will required tighter centres. It is typical for underpins to be placed at 1200c/c, in this condition the highest load on a trench sheet is when 2 nos trench sheets are used. It is for this design that these calculations have been provided.

Soil and ground conditions are variable. Typically one finds that in the temporary condition clays are more stable and the C_u (cohesive) values in clay reduce the risk of collapse. It is this cohesive nature that allows clays to be cut into a vertical slope. For these calculations weak sand and gravels have been assumed The soil properties are:

Surcharge	sur = 10. kN/m ²	
Soil density	$\delta = 20 \text{ kN/m}^3$	
Angle of friction Soil depth	φ = 25 ° Dsoil = 3000.000 mm	
	$\begin{aligned} k_{a} &= (1 - \sin(\phi)) \ / \ (1 + \sin(\phi)) \\ k_{p} &= 1 \ / \ k_{a} \end{aligned}$	= 0.406 = 2.464
Soil Pressure bottom Surcharge pressure	soil = $k_a * \delta * Dsoil$ surcharge = sur * k_a	= 21.916 kN/m ² = 4.059 kN/m ²

STANDARD LAP TRENCH SHEETING

STANDARD LAP

The overlapping trench sheeting profile is designed primarily for construction work and also temporary deployment.

Effective width per sheet (mm)	330
Thickness (mm)	3.4
Depth (mm)	35
Weight per linear metre (kg/m)	10.8
Weight per m² (kg)	32.9
Section modulus per metre width (cm³)	48.3
Section modulus per sheet (cm³)	15.9
value per metre width (cm²)	81.7
I value per sheet (cm²)	26.9
Fotal rolled metres per tonne	92.1

Sxx = 15.9 cm³ py = 275N/mm² lxx = 26.9cm⁴ A = (1m² * 32.9kg/m²) / (330mm * 7750kg/m³) = **12864.125**mm²

93

CONTINUOUS BEAM ANALYSIS - INPUT

BEAM DETAILS Number of spans = 3 Material Properties:

 Modulus of elasticity = 205 kN/mm²
 Material density = 7860 kg/m³

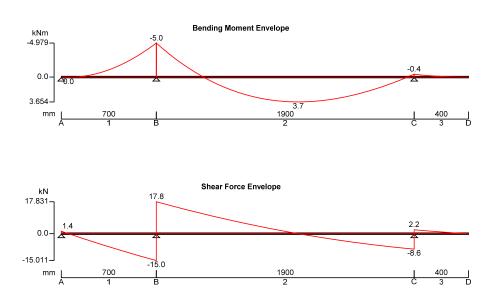
 Support Conditions:
 Rotationally "Free"

 Support B
 Vertically "Restrained"
 Rotationally "Free"

 Support C
 Vertically "Restrained"
 Rotationally "Free"

Support D	Vertically "Fre	ee"			Rotationally	/ "Free"					
<u>Span Definition</u>	ons:										
Span 1	Length = 700 i	mm	Cross-sectiona	al area = 12	864 mm²	Moment of	inertia = 269.×1	0 ³ mm ⁴			
Span 2	Length = 1900	mm	Cross-sectiona	al area = 12	864 mm²	Moment of inertia = 269.×10 ³ mm ⁴					
Span 3	Length = 400 i	mm	Cross-sectiona	al area = 12	864 mm²	Moment of	inertia = 269.×1	0 ³ mm ⁴			
LOADING DE	TAILS										
Beam Loads:											
Load 1	UDL Dead loa	d 4.1 kN/n	n								
Load 2	VDL Dead load 21.9 kN/m to 0.0 kN/m										
LOAD COMBI	NATIONS										
Load combination	ation 1										
Span 1	1×Dead										
Span 2	1×Dead										
Span 3	1×Dead										
CONTINUOUS BE	EAM ANALYSIS	- RESUL	<u>TS</u>								
Unfactored su	upport reaction	<u>s</u>									
	Dead (kN)										
Support A	-1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Support B	-32.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Support C	-10.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Support D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Support Reac	tions - Combin	ation Sun	nmary								
Support A	Max react = -1	.4 kN	Min react = -1	I.4 kN	Max mom =	0.0 kNm	Min mom = 0	. 0 kNm			
Support B	Max react = -3	2.8 kN	Min react = -	32.8 kN	Max mom =	0.0 kNm	Min mom = 0	.0 kNm			
Support C	Max react = -1	0.8 kN	Min react = -1	10.8 kN	Max mom =	0.0 kNm	Min mom = 0	.0 kNm			

Max react = 0.0 kN	Min react = 0.0 kN


Beam Max/Min results - Combination Summary

Support D

Maximum shear = **17.8** kN Maximum moment = **3.7** kNm Maximum deflection = **21.0** mm Minimum shearF_{min} = -15.0 kN Minimum moment = -5.0 kNm Minimum deflection = -14.3 mm

Min mom = **0.0** kNm

Max mom = 0.0 kNm

Number of sheets Nos = 2

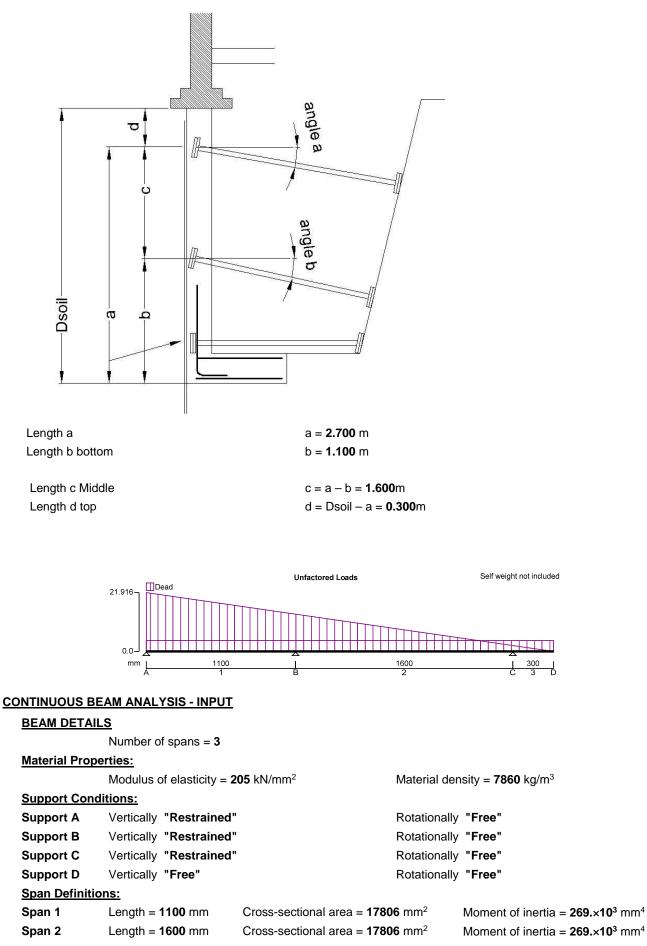
Mallowable = Sxx * py * Nos = 8.745kNm

Sa{e working loads for Acrow Props — loads given in kN									SRUA.C					
For normal purposes 1 kilo Newton (kN) = 100 kg	Height	m ft	2.0 6.6	2.25 7.4	2.5 8.2	2.75 9.0	3.0 9.8	3.25 10.7	3.5 11.5	3.75 12.3	4.0 13.1	4.25 13.9	4.5 14.8	4.75 15.6
TABLE A Props loaded concentrically and erected vertically	Prop size 1 or 2		35	35	35	34	27	23						
	Prop size 3					34	27	23	21	19	17			
	Prop size 4							32	25	21	18	16	14	12
TABLE B Props loaded concentrically and erected 13° max. out of vertical	Prop size 1 or 2 or 3		35	32	26	23	19	17	15	13	12			
	Prop size 4							24	19	15	12	11	10	9
TABLE C Props loaded 25 mm eccentricity and erected 11° max. out of vertical	Prop size 1 or 2 or 3		17	17	17	17	15	13	11	10	9			
	Prop size 4							17	14	11	10	9	8	7
TABLE D Props loaded concentrically and erected 13° out of vertical and laced with scalfold tubes and fittings	Prop size 3					35	33.	32	28	24	20			
	Prop size 4							35.	35.	35	35	27	25 ·	21

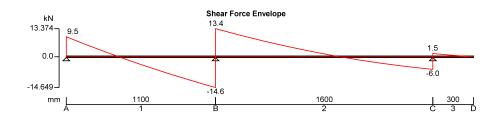
Shear V = (14.6kN + 13.4kN) /2 = 14.000kN

Any Acro Prop is accetpable

KD4 SHEETS


KD4

The overlapping trench sheeting profile is a heavier version of the Standard Lap, with a wider gauge and width coverage, designed in large for construction work.


Sxx = 48.3cm³ py = 275N/mm² lxx = 26.9cm⁴ A = (1m² * 55.2kg/m²) / (400mm * 7750kg/m³) = **17806.452**mm²

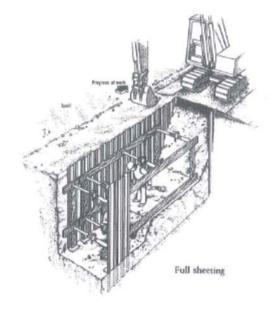
•		• • • • • •	2	44 H 666 462 4
Span 3	Length = 300 mm	Cross-sectional area = 17	806 mm ² Moment c	f inertia = 269.×10 ³ mm ⁴
LOADING DE				
<u>Beam Loads</u>	_			
Load 1	VDL Dead load 21.9 kN	/m to 0.0 kN/m		
Load 2	UDL Dead load 4.1 kN/r	n		
LOAD COME	BINATIONS			
Load combir	nation 1			
Span 1	1×Dead			
Span 2	1×Dead			
Span 3	1×Dead			
CONTINUOUS E	BEAM ANALYSIS - RESUL	<u>.TS</u>		
Support Rea	ctions - Combination Sur	nmary		
Support A	Max react = -9.5 kN	Min react = -9.5 kN	Max mom = 0.0 kNm	Min mom = 0.0 kNm
Support B	Max react = -28.0 kN	Min react = -28.0 kN	Max mom = 0.0 kNm	Min mom = 0.0 kNm
Support C	Max react = -7.5 kN	Min react = -7.5 kN	Max mom = 0.0 kNm	Min mom = 0.0 kNm
Support D	Max react = 0.0 kN	Min react = 0.0 kN	Max mom = 0.0 kNm	Min mom = 0.0 kNm
Beam Max/M	lin results - Combination	Summary		
	Maximum shear = 13.4	kN	Minimum shearF _{min} = -	14.6 kN
	Maximum moment = 2.0	kNm	Minimum moment = -3	.6 kNm
	Maximum deflection = 7	.7 mm	Minimum deflection = -	- 4.9 mm
	kNm	Bending Moment Envelope -3.6		
	-3.640	\bigwedge		
			-0.	2
	0.0-		2	
	2.021 1.8		2.0	200
	mm <u> 1100</u> A 1	B	1600 I 2 C	<u>300 J</u> 3 D

Number of sheets Nos = 2

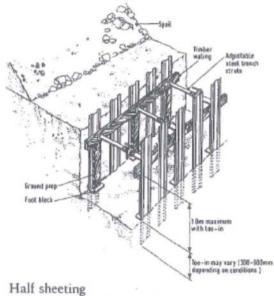
Mallowable = Sxx * py * Nos = 26.565kNm

1

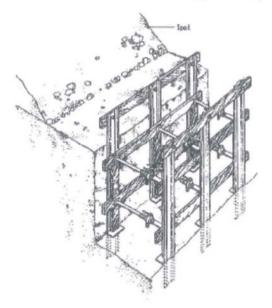
For normal purposes 1 kilo Newton (kN) = 100 kg	Height	m ft	2.0 6.6	2.25 7.4	2.5 8.2	2.75 9.0	3.0 9.8	3.25 10.7	3.5 11.5	3.75 12.3	4.0 13.1	4.25 13.9	4.5 14.8	4.75 15.6
TABLE A Props loaded concentrically and erected vertically	Prop size 1 or 2		35	35	35	34	27	23						
	Prop size 3					34	27	23	21	19	17			
	Prop size 4							32	25	21	18	16	14	12
TABLE B Props loaded concentrically and erected 13° max. out of vertical	Prop size 1 or 2 or 3		35	32	26	23	19	17	15	13	12			
	Prop size 4							24	19	15	12	11	10	9
TABLE C Props loaded 25 mm eccentricity and erected 11° max. out of vertical	Prop size 1 or 2 or 3		17	17	17	17	15	13	11	10	9			
	Prop size 4							17	14	11	10	9	8	7
TABLE D Props loaded concentrically and erected 1% out of vertical and laced with scaffold tubes and fittings	Prop size 3					35	33. <i>-</i>	32	28	24	20			
	Prop size 4							35,	35.	35	35	27	25 ·	21


Mabey 25 acros and piles to be used

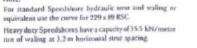
Sheeting requirements

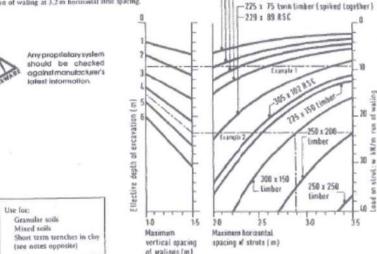

Count	Tren			
Ground Type	ess than 1 m(1)	1.2 to 3m	3 to 4.5m	4.5 to 6 m
Sands and gravels Silt Soft Clay High compressibility Peat	Clost, 1 4, 4 pr nil	Close	Close	Close
Firm/stiff Clay Low compressibility Peat	44. 1/8 or m	½ or ¼	½ or ¼	Close or ½
Rock ⁽²⁾	From 1/2 for incomp	petent rock to	nil for compet	tent rock ⁽³⁾

Sheeting requirements


Sheeting requirements

11/04/28hown for 1.5 m deep trench


Sheeting requirements



11/Quarter sheeting

Design to CIRIA 97

Note:

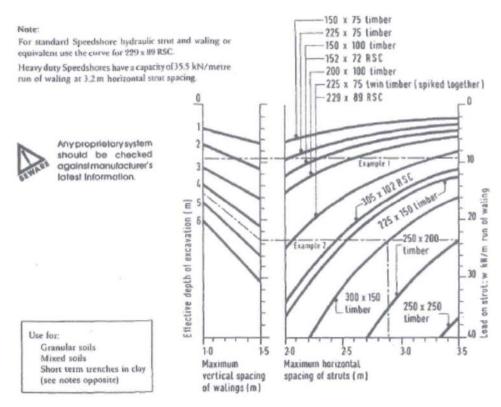
of walings (m)

150 x 75 timber 225 x 75 timber

150 x 100 timber 152 x 72 RSC

200 x 100 timber

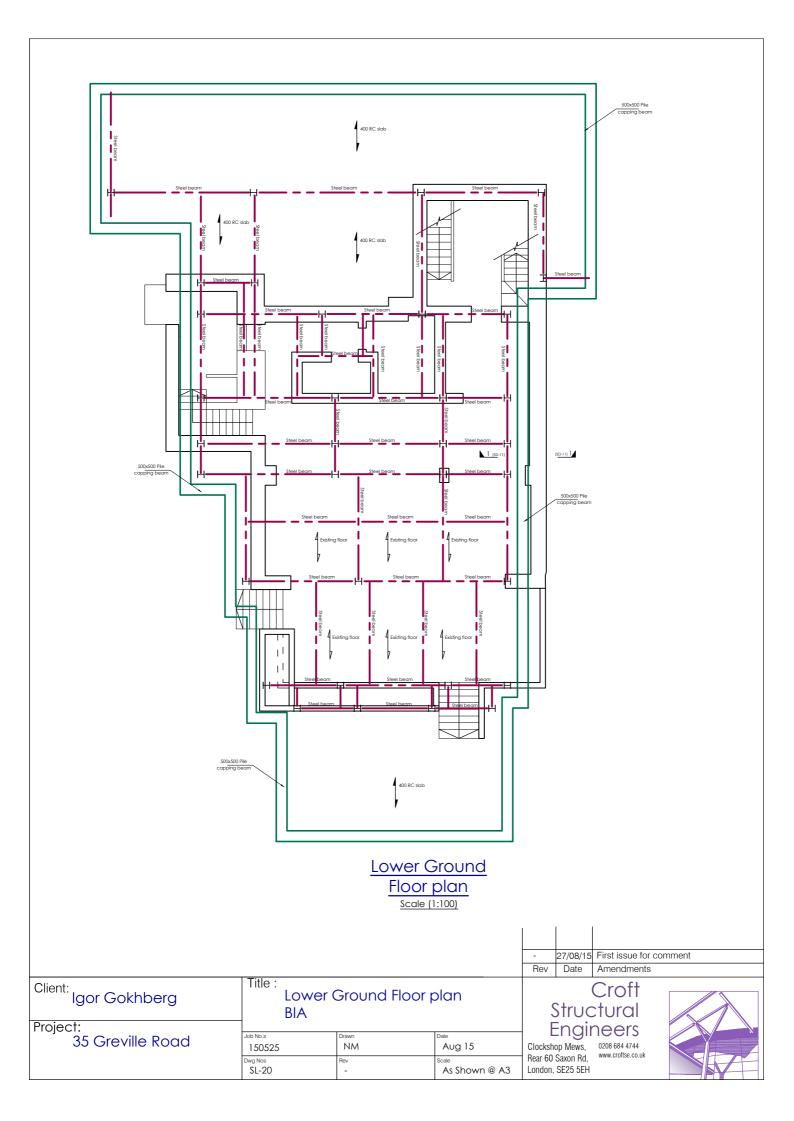
101 W:\Project File\Project Storage\2015\150525-35 Greville Road\2.0.Calcs\BIA\35 Greville Road Basement Impact Assessment.docx

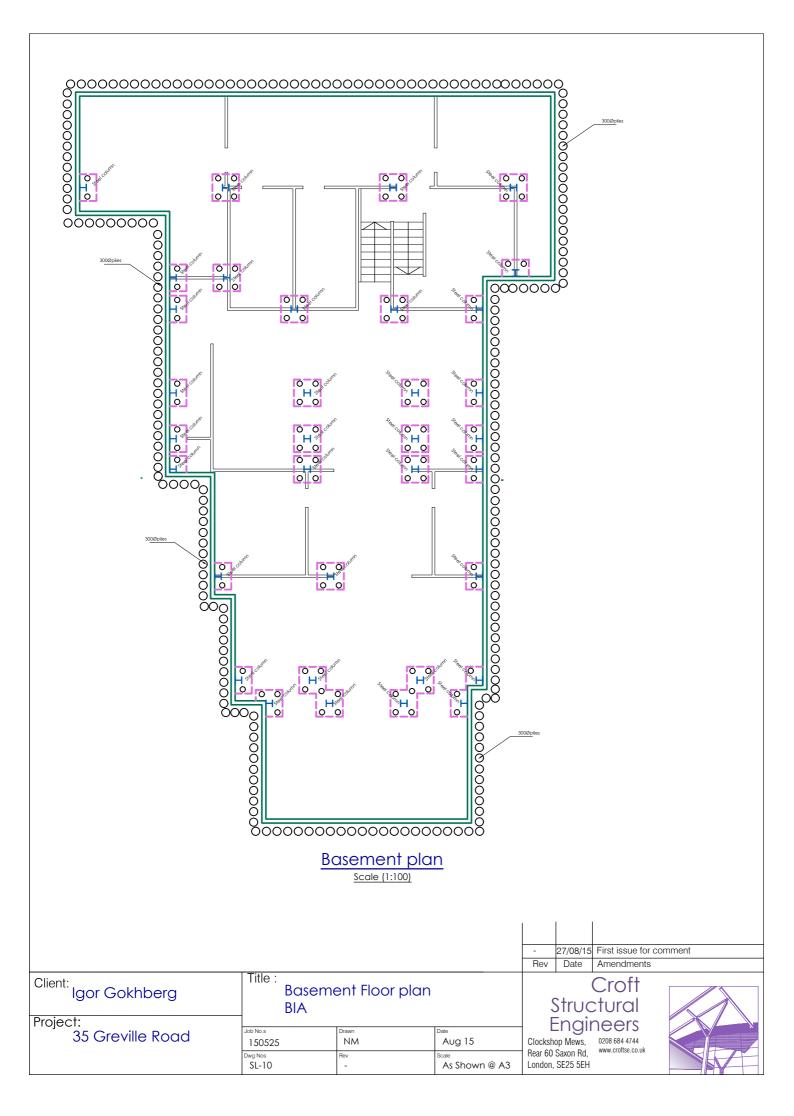

10 2

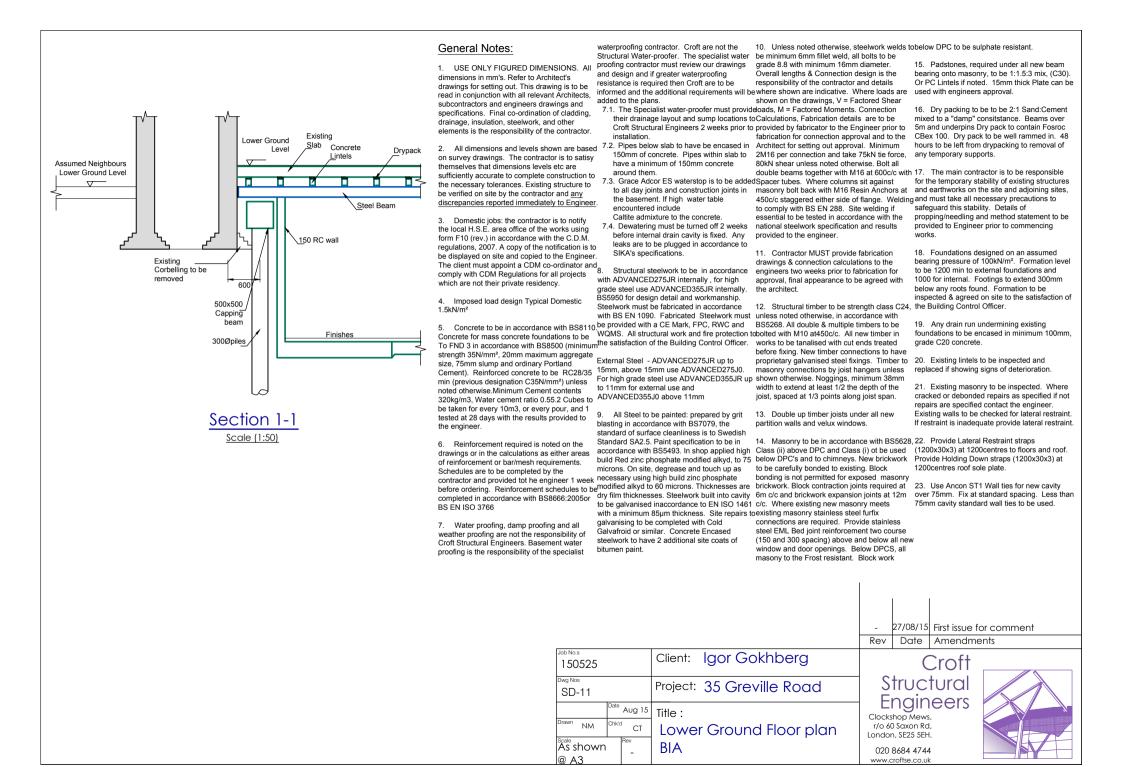
kW/m

3 strul

Job Number: 150525 (35 Greville Road) Date: 24 Aug 15







Appendix B : Structural Drawings

1:100 Basement Plan on A3 Showing Neighbouring basements if present1:100 Ground Floor plan on A3 Showing Neighbouring property1:50 Section on A3 Including section through Neighbouring Footings

