Basement Impact Assessment

Property Details 1B St Johns Wood Park London NW8

Client Information Mike Ofori

2013 awards

constructionline

Structural Design Reviewed by	Above Ground Drainage Reviewed by	
Chris Tomlin	Phil Henry	
MEng CEng MIStructE	BEng MEng MICE	

Hydrology Report	Geology Report	
Hannah Fraser	Jon Smithson	
CGeol	CGeol	
Separate report	Separate Report	

Revision	Date	Comment	
-	July 2015	First issue	
1	Aug 2015	Drawings revised	
Regional winner			

Croft Structural Engineers Clock Shop Mews Rear of 60 Saxon Road London SE25 5EH

T: 020 8684 4744 E: <u>enquiries@croftse.co.uk</u> W: <u>www.croftse.co.uk</u>

Contents

Еx	ecutive Summary / Non-technical Summary	5
	Project Summary	5
	Stage 1 – Screening	6
	Stage 2 – Scoping	6
	Stage 3 – Site investigation and study	6
	Stage 4 – Impact assessment	7
1.	Screening Stage	8
	_and Stability	8
	Subterranean Flow	8
	Surface Flow and Flooding	8
2.	Scoping Stage	11
	_and Stability	11
	Subterranean Flow	11
	Surface Flow & Flooding	11
	Conceptual Model	11
3.	Site Investigation and Study	13
	Desk Study and Walkover Survey	13
	Proposed Development	13
	Site History	13
	Local Bombing	15
	Listed Buildings	15
	Highways, Rail and London Underground	16
	London Underground and Network Rail	16
	UK Power Networks	16
	Vicinity of Trees	16
	Nos 1 St Johns Wood Park – Property to Left	17
	Adjacent apartments Property to Right	18
	Nos 1 Middlefield – Property to Rear	19
	Local Topography	19
	Ground Investigation	19
	Geology	19

Surface Flow & Flooding	20
Areas of Hard Standing present on site	20
Rainwater down pipes, Drains, Manholes and Gulleys	21
Local Water Sources	21
Field Investigation	21
Monitoring, Reporting and Investigation	21
Land Stability	21
Site Investigation	22
4. Basement Impact Assessment	23
Subterranean Flow	23
Land Stability	23
Flood Risk Assessment	24
Site Location	25
Potential surface water (pluvial) flooding	25
Potential flooding from infrastructure failure	26
Mitigation measures	27
Summary	27
SUDS Assessment	28
Hard standing	
SUDS Assessment	
Drainage effects on Structure	
Trees	29
Root Protection Zone	
Conclusion	29
Ground Movement Assessment & Predicted Damage Category	
Burland Scale	
Monitoring	35
Risk Assessment	
Monitoring Conclusion	
Basement Design & Construction Impacts	
Foundation type	
Roads	
Intended use of structure and user requirements	
Loading Requirements (EC1-1)	

Part A3 Progressive collapse	
Lateral Stability	
Exposure and wind loading conditions	
Stability Design	
Lateral Actions	
Retained soil Parameters	40
Water Table	40
Drainage and Damp Waterproofing	40
Localised Dewatering	40
Temporary Works	41
Geological Assessment of Land Stability	41
Retaining Wall Calculation	42
pile wall 1 (Without water)	45
Retaining wall analysis & design (EN1992/EN1996/EN1997)	45
Retaining wall analysis	45
Retaining wall design	47
piled wall 1 (with water)	50
Retaining wall analysis & design (EN1992/EN1996/EN1997)	50
Retaining wall analysis	50
Retaining wall design	52
capping beam	58
RC beam analysis & design (EN1992)	58
RC beam analysis & design (EN1992-1)	58
Support A	60
Mid span 1	62
Support B	64
pile wall 2	65
internal wall 1	67
RC wall design (EN1992)	67
RC wall design	67
internal wall 2	68
wall 2 (condition 1)	69
Retaining wall analysis & design (EN1992/EN1996/EN1997)	69
Retaining wall analysis	

Ret	aining wall design	72		
wall 2	2 (condition 2)	75		
Retai	ning wall analysis & design (EN1992/EN1996/EN1997)	75		
Ret	Retaining wall analysis75			
Ret	aining wall design	77		
wall 2	2 (condition 3)	79		
Ν	Joise and Nuisance Control			
C	CTMP			
Ар	pendix A ; Construction Method Statement			
1B St	Johns Wood Park			
1.	Basement Formation Suggested Method Statement			
2.	Enabling Works			
3.	Piling Sequencing			
4.	Demolition, Recycling, Dust/Noise Control and Site Hoarding			
5.	Trench sheet design and temporary prop Calculations			
STAN	IDARD LAP TRENCH SHEETING	91		
KD4 \$	SHEETS	95		
Ар	pendix B : Structural Drawings			

Executive Summary / Non-technical Summary			
	The London Borough of Camden requires a Basement Impact Assessment (BIA) to be prepared for developments including basements and light wells within its area of responsibility. CGP4 – Basements and Light wells details the requirements for a BIA undertaken in support of proposed developments; in summary the Council will only allow basement construction to proceed if it does not:		
	 Cause harm to the built environment and local amenity; Result in flooding; Lead to ground instability. 		
	In order to comply with the above clauses a BIA must undertake 5 stages detailed in CPG 4. This report has been produced in line with the guidance of CPG4 and the associated documents supporting CGP4 such as DP23, DP26, DP25 & DP27.		
Project Description of Property			
Summary	The existing site has a series of garages that will be demolisheed to give way for new basement and new two storeys on top of basement.		
	Proposed Works		
The proposed works require the construction of:			
	 A new basement and a new two storey dwelling above basement. Light wells to the front and rear Superstructure works above the basement New two storey dwelling above basement. 		
	Croft Structural Engineers Ltd has extensive knowledge of constructing new basements. Over the last 10 years Croft Structural Engineers has been involved in the design of over 500 basements in and around London. The method to be utilised at 1B ST JOHNS WOOD PARK is:		
	1. Excavate front to allow for conveyor to be erected.		
	2. Safely and securely support the existing building above		
	3. Form lightwell with cantilevered retaining walls		

	 Slowly work from the front to the rear inserting narrow cantilevered retaining walls sequentially using well developed and understood underpinning methods. Prop retaining walls in temporary condition back to the central soil "dumpling". Prop across the width of the basement, excavate central soil "dumpling" & cast basement slab Waterproof internal space with a drained cavity system. 		
Stage 1 – Screening	Screening identified areas of concern and concluded a requirement to proceed to a scoping stable for the Land stability, Hydrology, Surface Water and flooding.		
Stage 2 – Scoping	The Scoping stage identified the potential impacts and set the parameters required for further study of the areas of concern highlighted in the Screening phase. A walk over desk survey completed by an engineer. The information from this was utilised to formulate the requirement for a ground, Geology and hydrogeology investigation.		
Stage 3 – Site investigation and study	 A Structural engineer inspected the building to determine the current condition of the property. Visual inspections were completed of the adjacent properties to determine if there were signs of structural movement. The neighbouring land has not been excavated on but an engineer has assessed the age of the adjacent properties and considered the type of foundations used for that period and assumed these in the design. A ground investigation with 12.5m deep boreholes has been completed. The formation level of the basement will be in London Clay Initial standpipe readings did not encounter any water Laboratory testing was undertaken on the soil samples. Ground water has been measured over repeat visits to determine water levels and flows. A repeat observed water at 0.5m below ground level 		

Stage 4 -

Land stability

The Geologist has concluded that the basement will not make the area unstable.

The movement assessment of the basement and its construction are SLIGHT 1-0 on the Burland scale.

It has been concluded that

The boreholes records have indicated the presence possible perched groundwater to a depth of 0.49 m bgl. However if groundwater is recorded during the construction works it anticipated that any inflow will be very modest, on the basis of the ground conditions encountered. The groundwater would be controlled by pumping to a tank prior to disposal by tanker to an approved facility. Alternatively discharge of the groundwater could be made to the sewer subject to an agreement from the local water company in terms of water quality, flow rate and quantity.

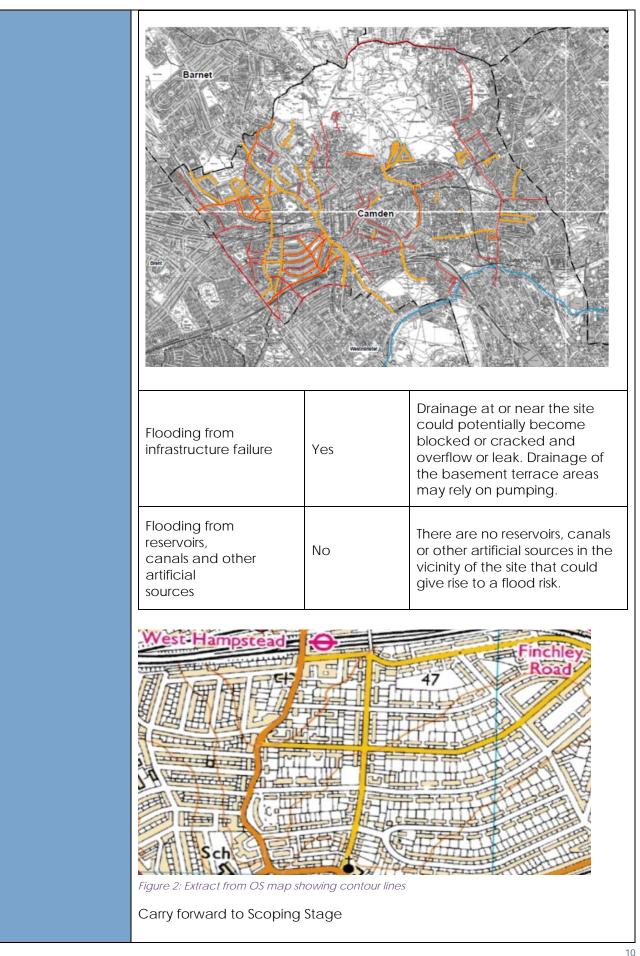
Groundwater levels should be continued to be monitored before, during and after construction. Monitoring of adjacent structures and the highway should be carried out before, during and after construction.

Hydrogeology

It is understood that the basement retaining walls will be a contiguous piled wall. Therefore excavation for the basement will be protected from instability by the piled wall. Excavation of the basement area will need to comply with appropriate health and safety criteria in terms of height and width of excavation face.

Drainage & Surface Water Flow

The risk of flooding from excess surface water is not considered to be significant.

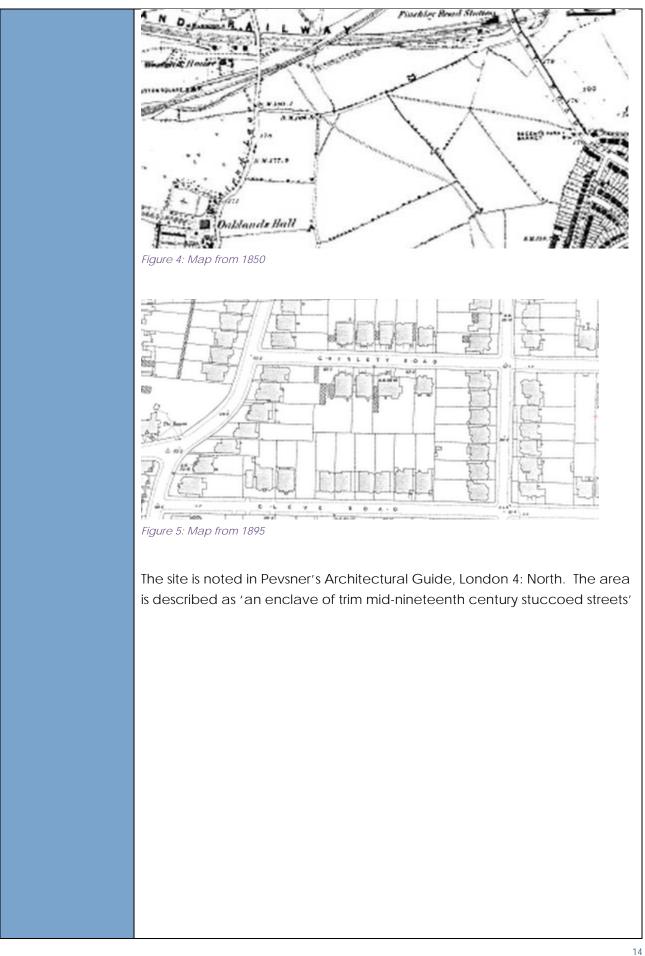


1. Screening Stage		
	This stage should identify any areas for concern and therefore focus effort for further investigation.	
	The questions below are taken from the Camden CPG 4 – Basements and Lightwells.	
Land Stability	Refer to Chartered Geologist Report.	
Subterranea n Flow	Refer to Chartered Hydrogeologist report completed by A Hydrogeologist with the "CGeol" (Chartered Geologist) qualification from the Geological Society of London.	
Surface Flow and Flooding		
	Question 1: Is the site within the catchment of the pond chains on Hampstead Heath?	
	Figure 1: Extract from Figure 14 of the Hydrological Study No. The site lies outside the areas denoted by figure 14 of the Arup report.	

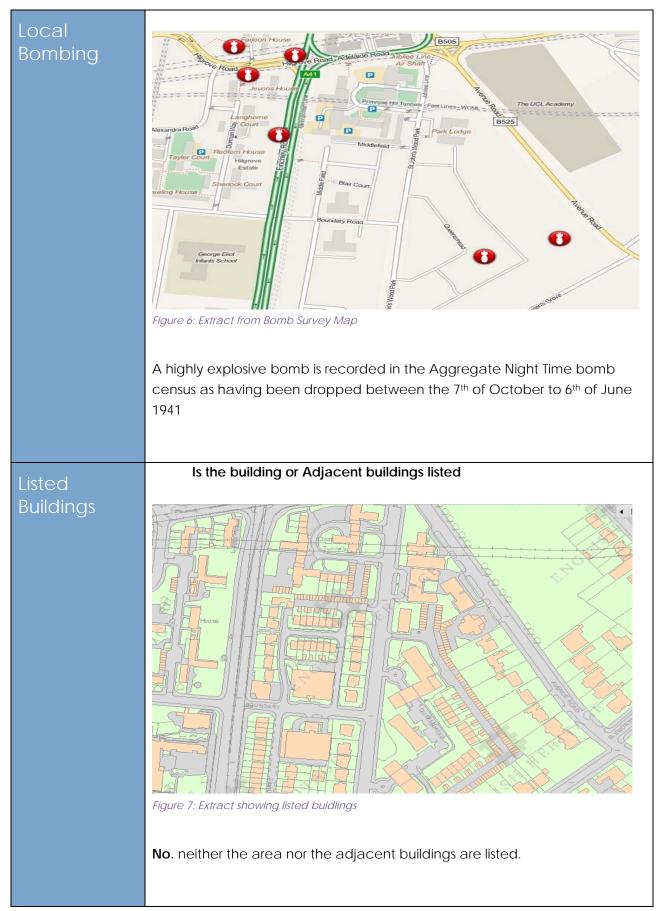
Question 2. As part of the proposed site drainage, will surface water flows(e.g. volume of rainfall and peak run-off) be materially changed from theexisting route?Due to the construction of the garden basement and the rear lightwell, theflow of water into the ground and the existing surface water drainagesystem may change.Carry forward to scoping.Question 3. Will the proposed basement development result in a change to		
the hard surfaced /paved external areas? Due to the construction of the garden basement the hard surface/paved external areas may change.		
Question 4. Will the proposed basement result in changes to the inflows (instantaneous and long term of surface water being received by adjacent properties or downstream watercourses? No. The proposed development will enter the current drainage system.		
Question 5. Will the proposed basement result in changes to the quality ofsurface water being received by adjacent properties or downstreamwatercourses?No. The quality of water is unlikely to be altered.		
Question 6 : IS the site in an area identified to have surface water flood risk according to either the Local Flood Risk Management Strategy or the Strategic Flood Risk Assessment or is it at risk from flooding, for example because the proposed basement is below the static water level of nearby surface water feature?The potential sources of flooding are summarised below:		
Potential Source	Potential Flood Risk At Site?	Justification
Fluvial flooding	No	EA Flood Mapping shows Flood Zone 1. Distance from nearest surface watercourse >1km
Tidal flooding	No	Site location is 'inland' and topography > 40mAOD.
Flooding from rising / high groundwater	No	Site is located on low permeability London Clay.
Surface water (pluvial) flooding	Yes	The 1B ST JOHNS WOOD PARK is noted on the flood street list and maps from 1975 or 2002 (shown graphically below)

W:\Project File\Project Storage\2015\150607-St Johns Wood Park\2.0.Calcs\BIA\St Johns Wood Park Camden Basement Impact Assessment.docx

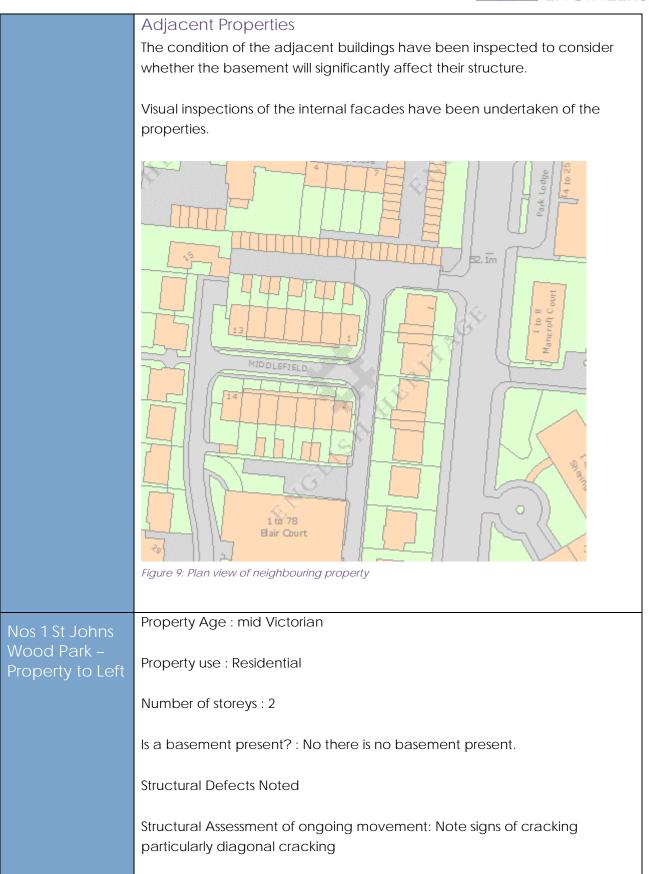
2. Scoping Stage		
	Identifies the potential impacts of the areas of concern highlighted in the Screening phase.	
Land Stability	Refer to Chartered Geologist Report.	
Subterranea n Flow	Refer to Chartered Hydrogeologist report. Completed by A Hydrogeologist with the "CGeol" (Chartered Geologist) qualification from the Geological Society of London.	
Surface Flow	Conceptual Model	
& Flooding	The proposed works at 1B ST JOHNS WOOD PARK require new basement and new two storey dwelling above basement.	
	The basement is under the footing print of the property which will not affect the overall flow.	
	Lightwells increase the hardstanding slightly which may increase flow.	
	Question 1: Is the site within the catchment of the pond chains on Hampstead Heath?	
	No further info required from Scoping stage	
	Question 2. As part of the proposed site drainage, will surface water flows (e.g. volume of rainfall and peak run-off) be materially changed from the existing route?	
	No . Due to the construction of the garden basement and the rear lightwell,	
	the flow of water into the ground and the existing surface water drainage system may change. Carry forward to scoping.	
	Question 3. Will the proposed basement development result in a change to the hard surfaced /paved external areas?	
	Unknown Due to the construction of the garden basement the hard	
	surface/paved external areas may change.	
	Question 4. Will the proposed basement result in changes to the inflows (instantaneous and long term) of surface water being received by adjacent	
	properties or downstream watercourses?	
	Unknown – The light wells may reduce the impermeable areas. Carry forward to Site Investigation & desk Study	

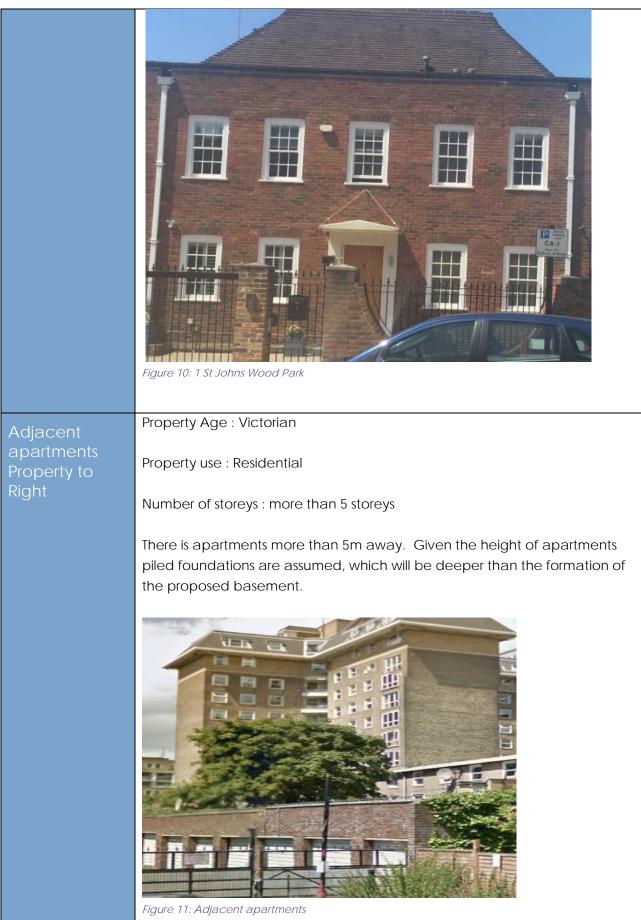

Question 5. Will the proposed basement result in changes to the quality of surface water being received by adjacent properties or downstream watercourses? No.
Question 6 : Is the site in an area identified to have surface water flood risk according to either the Local Flood Risk Management Strategy or the Strategic Flood Risk Assessment or is it at risk from flooding, for example because the proposed basement is below the static water level of nearby surface water feature?
It is evident from the screening study that the only significant flood risks at 1B ST JOHNS WOOD PARK are due surface water (pluvial) flooding and failure of existing sewers in the vicinity of the site.
Carry forward to Site Investigation & Desk Study

3. Site Inve	estigation and Study
	Identifies the relevant features of the site and its immediate surroundings providing further scoping where required.
	Desk Study and Walkover Survey The existing site has a series of garages that will be demolisheed to give way for new basement and new two storeys on top of basement. Noma Manzini, a Structural Engineer from Croft Structural Engineers visited 1B ST JOHNS WOOD PARK. Date of inspection was on the 16 th of June 2015
Proposed Development	<text></text>
Site History	What was the previous usage of the site?

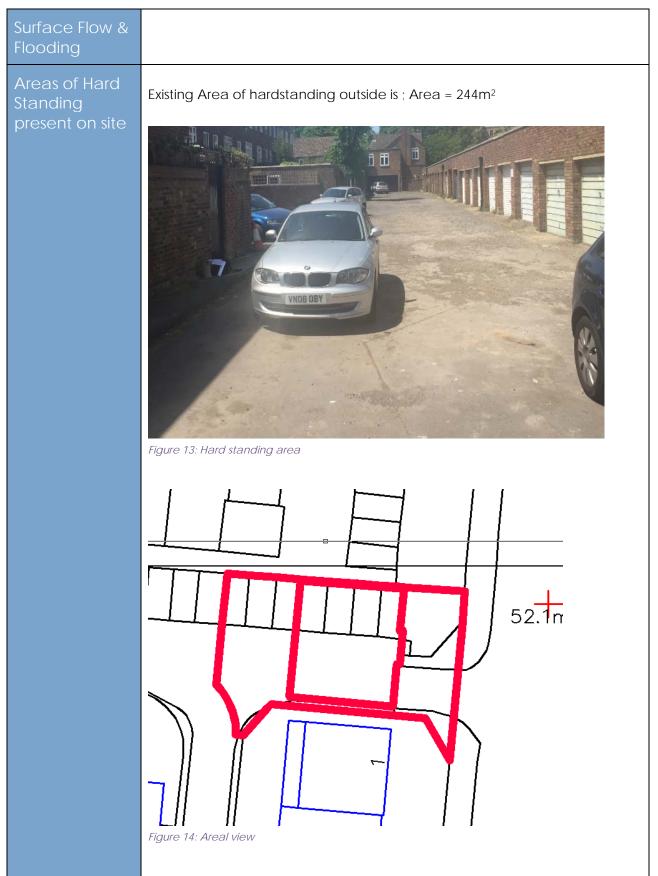

Job Number: 150607 (St Johns Wood Park) Date: 17 Jul 2015

W:\Project File\Project Storage\2015\150607-St Johns Wood Park\2.0.Calcs\BIA\St Johns Wood Park Camden Basement Impact Assessment.docx




	Highways, Rail and London Underground
	Yes. Site is within 5m of the footpath/alleyway and the road surface is further than 5m from the front lightwell.
London Underground and Network Rail	<text><text><figure></figure></text></text>
UK Power Networks	Will the basement works affect any UK Power Network Assets? No, there no significant items of electrical infrastructure (such as pylons or
	substations) in the immediate vicinity
Vicinity of Trees	Some mature trees and general vegetation in the neighbouring garden; A mature tree is also present in the neighbouring garden. There are trees close by with have tree presentation orders. These are across the road and are not present in the neighbouring gardens.

Job Number: 150607 (St Johns Wood Park) Date: 17 Jul 2015

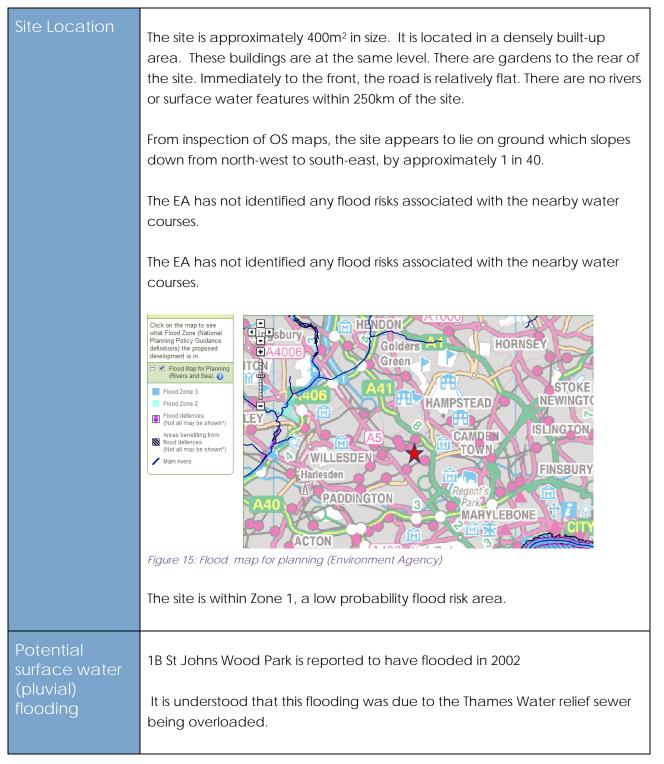


Nos 1 Middlefield – Property to Rear	Property Age : Victorian Property use :Residential Number of storeys : 2 Is a basement present? :No Structural Defects Noted: No structural defects noted externally by visual inspection.
	Fgre 12: 1 Middlefield
Local Topography	As mentioned previously, the area surrounding the property has a general slope, downwards from north-west to south-east. The slope is gradual; there are no retaining walls for sudden changes in elevation
Ground Investigation	A ground investigation see separate report.
Geology	See Ground investigation report and Geology report

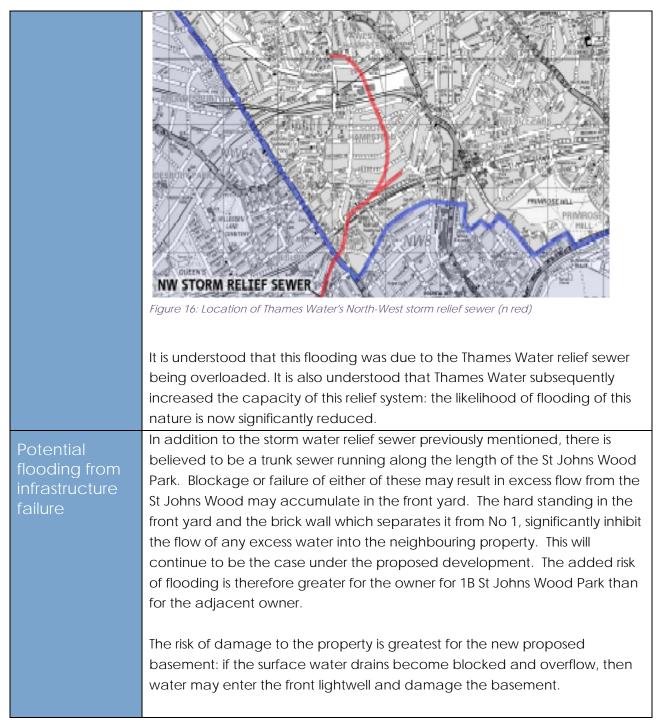
Rainwater down pipes, Drains, Manholes and Gulleys	As described previously, there is a surface water drainage gully in the front yard and pea-shingle drainage in the rear yard.
Local Water Sources	Are there any ponds lakes or water courses on the site or adjacent sites? No, there are not surface water features (natural or man-made) on the adjacent sites.
	Field Investigation
	Ground investigation specialists visited the site and subsequently produced are report for the existing ground and groundwater conditions.
	Monitoring, Reporting and Investigation
	The ground investigation report, which has data from initial site investigations and data from subsequent monitoring, is available as a separate report. Data relevant to land stability and subterranean flow is examined separate documents as described below.
Land Stability	Refer to Chartered Geologist Report for land stability issues addressed to Stage 3.
	Features and items of concern relating to data from Stage 3 are included in this report.
Subterranean Flow	Refer to Chartered Hydrogeologist report (Basement Impact Assessment: Groundwater). This is completed by a Hydrogeologist with the "CGeol" (Chartered Geologist) qualification from the Geological Society of London.
	Features and items of concern relating to data from Stage 3 are included in this report.

Г

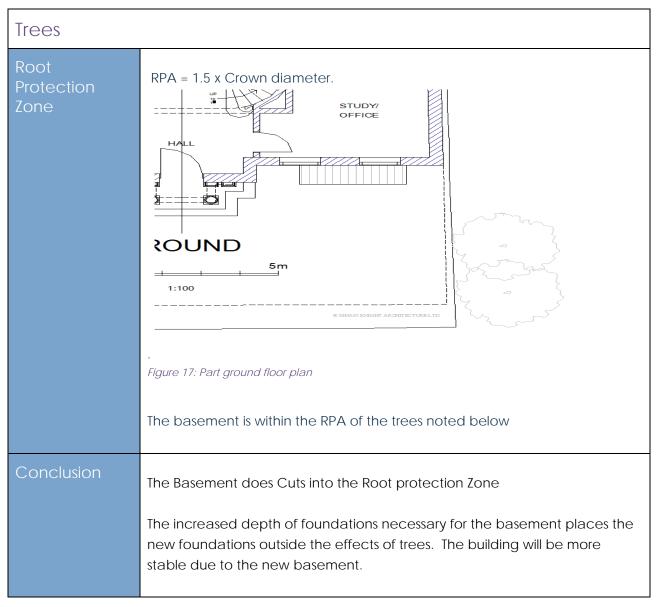
Site Investig	gation
Soil investigation Brief	The Soil investigation was completed by (Ground and Water).
	From the Scoping stage we considered that their brief should cover:
	• Two trial pits to the side and rear to confirm the existing foundations of existing garages. The purpose is to consider the effect of the works on the neighbouring properties and the find the ground conditions below the site.
	 Bore holes to a depth of 12.5m below ground level (i.e. approximately more than twice the depth of the proposed basement).
	 Stand pipe to be inserted to monitor ground water; record initial strike and the water level after 1 month.
	 Site testing to determine insitu soil parameter. SPT testing to be undertaken.
	 Laboratory testing to confirm soil make up and properties.
	 The Historic maps and walk over survey did not highlight any significant contamination sources, therefore no site test of the ground has been requested.
	Factual Report on soil conditions.
	Interpretative reports
	Calculation of bearing pressures from SPT.
	• Indication of \emptyset (angle of friction) from SPT.
	Indication of soil type
	Soil Report is provided under a separate cover.

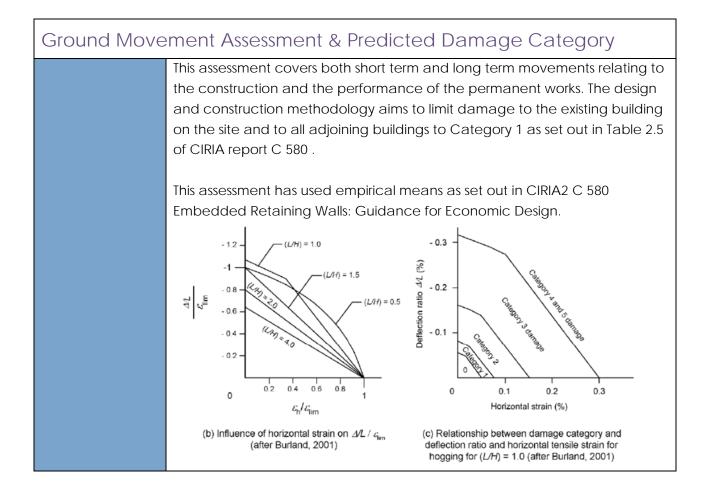


4. Basemer	nt Impact Assessment
Subterranean Flow	Refer To Hydrogeologist report : Conclusions re stated in the Executive Summary
Land Stability	Refer to Geologist Report: Conclusions restated in the Executive Summary
Conservation and Listed Buildings	If the property is in a conservation area, or it is listed then management plan for demolition and construction may be needed. This is not included with this BIA document and is not within the Croft Structural Engineers Brief.

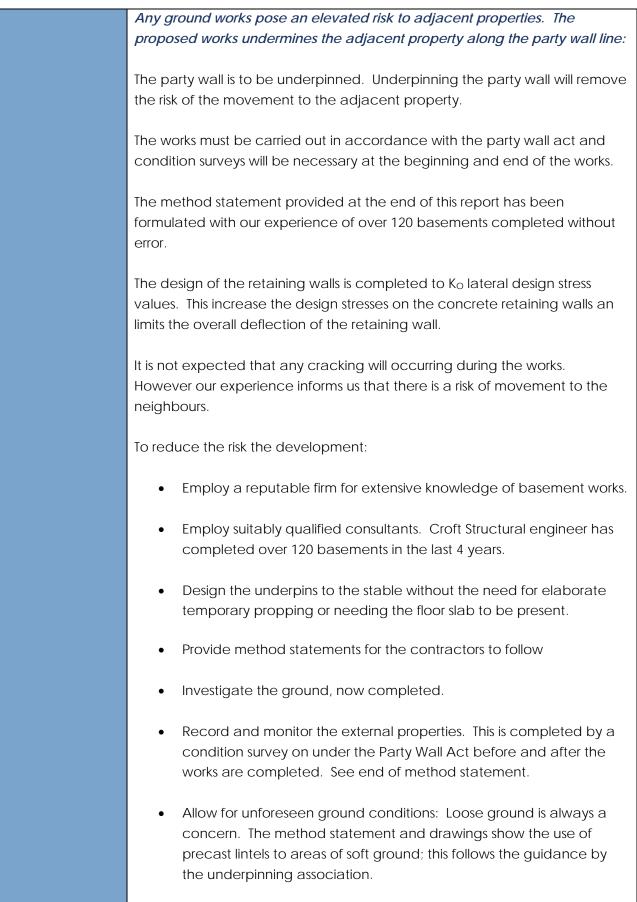


Flood Risk Ass	essment
	 In accordance with guidance from CIRIA, PPS25 and the National Planning Policy Framework, the basement will be designed to be sustainable in terms of the risk of flooding. Amongst other considerations, the design will include provisions to minimise the adverse impacts of flooding on the operation of the building, the users, the surroundings and the occupants of nearby properties. These design measures must be preceded by a Flood Risk Assessment (FRA), and is staged as follows: A screening study to identify potential sources of flooding and confirm the need for an FRA. This has been carried out in the Section 1. A subsequent scoping study to identify sources of flooding and also other features relevant to flooding. This has been done in the previous sections. An impact assessment with flood risk management options proposed. This is presented in this section.


Mitigation	This risk, and the extent of the related damage can be reduced as follows:
measures	 At ground level, an upstand can be constructed around the front lightwell.
	 A pumping mechanism will be installed for the proposed basement. There is a likelihood that this may fail and allow excess water to accumulate. If this were to occur, the build-up of water would be gradual and noticeable before it becomes a significant life-threatening hazard.
	 Install a dual pumping system to maintain operation in the event of a failure. This should include a battery backup and a suitable alarm system for warning purposes.
	 To reduce the impact of surface water flooding, sustainable drainage systems such as on site attenuation should be considered at detailed design stage.
Summary	The risk of flooding from excess surface water is not considered significant. There is a risk of flooding due to the failure of the pumping system but this
	can be reduced to acceptable levels with appropriate design and
	installation measures.


_

SUDS Assessme	ent					
Hard standing	removal of the existing garages. yard has not been designed in d could be incorporated. This wou	g in the reduction of hardstanding is the The proposed landscaping for the rear etail. It is possible that an area similar in size and result in the proportion of hard-standing alculations assume that this design feature over the worst case. $= 244 \text{ m}^2$ $= 244 \text{ m}^2$				
	Percentage Increase in Hard standing = 0 %					
SUDS Assessment	0 % Percentage Increase < 5% Percentage Increase Between 5% to 10%	No SUDS to be incorporated into scheme resent then a soil band of a minimum of 1m en SUDs is required				
Drainage effects on Structure	Not build over agreements know Flooding. The site is not in an are					


					Width, L=	12800					
					Existing b	uilding					
									Height H	9000	
	L/H =	1.42222									
								Å			
					New Base	ement		Baser	nent Hb=	3500	
								5400.			
								•			
	Horizont		mont Ac			CE00. E	mbodd	od Poto			uido to
	Horizonta Ecomon			sessmer		C 380: E	mpeda	<u>eu kela</u>	ining wa	<u>ilis - G</u>	
	ECOMON	IC Desig	<u></u>								
Potentia	l Movemen										
		_									
	Horizontal		novement :		0.05%						
	DeltaH =	0.05%	Х	3500	=	1.75	mm				
	Vertical Su	urface Mc	vement =		0.05%			1.75			
	Delta V =	0.05%	х	3500	=	1.75	mm		=	0.33333	mm/m
	Distance b	ehind wa	ll wall to ne	eglibible i	movemen	t					
	lh =	3500	х	1.5	=	5250	mm				
Potentia	l Movemen	nt Due to v	wall Excava	ation							
	Horizontal	surface m	novement	-	0.15%			5.25			-
	DeltaH =	0.15%	Х	3500	=	5.25	mm				
									=	0.375	mm/m
	Vertical Su		vement =		0.10%						
	Delta V =	0.10%	Х	3500	=	3.5	mm				
	Distance b			-							
	lh =	3500	Х	4	=	14000	mm				

Job Number: 150607 (St Johns Wood Park) Date: 17 Jul 2015

		Excavati	onmovem	ent	Installati	on move	ment		
		Distance	delta V		Distance	delta V			
lodes	Х	16000	0		6000	0			
	У	0	-2		0	-8			
0 -1 -2 -3 -4 -5 -6 -7 -8 -9	2000 40		8000 10	200 120	00 14000	16000 1			
Determi	ne Horizont	tal Mover	nent						
	delta I =	8	mm	=	0.05%				
		16000	mm						
	4 CIRIA C58								
Catego	ry of Dama	ge	Normal De	gree	-	Fensile Sti			
	0		Negligible		0.00%		0.05%		
	1		Very slight		0.05%		0.075%		
	2		Slight		0.075%		0.15%		
	3		Moderate		0.15%		0.30%		
	4 to 5		Severe to	VerySer	ver	>	0.30%		
	5								
								Slight Cate	

	With the above the maximum level of cracking anticipated is Hairline cracking which can be repaired with decorative cracking and can be repaired with decorative repairs. Under the party wall Act damage is allowed (although unwanted) to occur to a neighbouring property as long as repairs are suitability undertaken to rectify this. To mitigate this risk The				
				ed and a Party Wall Surveyor will be appointed.	
Burland Scale	Extract from The Institution of Structural Engineers "Subsidence of Low-Rise Buildings" Table 6.2 Classification of visible damage to walls with particular reference to type of repair, and rectification consideration				
	Category of Damage	Approximate crack width	Limiting Tensile strain	Definitions of cracks and repair types/considerations	
	0	Up to 0.1	0.0- 0.05	HAIRLINE – Internally cracks can be filled or covered by wall covering, and redecorated. Externally, cracks rarely visible and remedial works rarely justified.	
	1	0.2 to 2	<u>0.05-</u> <u>0.075</u>	<u>FINE</u> – Internally cracks can be filled or covered by wall covering, and redecorated. Externally, cracks may be visible, sometimes repairs required for weather tightness or aesthetics. NOTE: Plaster cracks may, in time, become visible again if not covered by a wall covering.	
	The antic	ipated dar	nage C	ategory for the new basement is 0-1	

Monitoring	
	Monitoring - In order to safeguard the existing structures during underpinning and new basement construction movement monitoring is to be undertaken.

Risk	Monitoring Level proposed	Type of Works.
Assessment	Monitoring 1 Visual inspection and production of condition survey by Party wall surveyors at the beginning of the works and also at the end of the works.	Cross wall removals, insertion of padstones Survey of LUL and Network Rail tunnels. Mass concrete, reinforced and Piled foundations to new build properties
	Monitoring 2 Visual inspection and production of condition survey by Party wall surveyors at the beginning of the works and also at the end of the works. Visual inspection of existing party wall during the works. Inspection of the footing to ensure that the footings are stable and adequate.	Removal of lateral stability and insertion of new stability fames Removal of main masonry load bearing walls. Underpinning works less than 1.2m deep
	Monitoring 3 Visual inspection and production of condition survey by Party wall surveyors at the beginning of the works and also at the end of the works. Inspection of the footing to ensure that the footings are stable and adequate. Vertical monitoring movement by standard optical equipment	Underpinning works less than 3.0m deep in clays Basements up to 2.5m deep in clays
	Monitoring 4 Visual inspection and production of condition survey by Party wall surveyors at the beginning of the works and also at the end of the works.	New basements greater than 2.5m and shallower than 4m Deep in gravels Basements up to 4.5m deep in clays

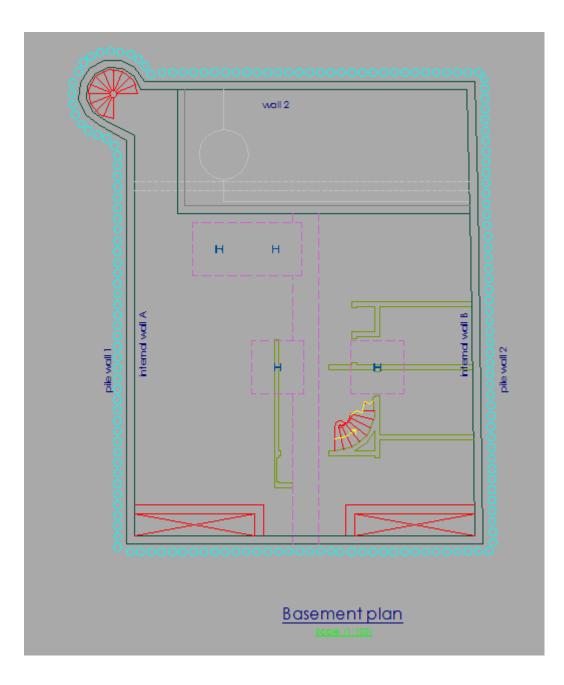
		on of the footin footings are sta ite.	0	Underpinning works to grade I listed building
Monitoring Conclusion	The level	of Monitoring C	Croft recommen	d on 1B St Johns Wood Park is:
	at the be Inspectio adequat Before th the imple • Ri • So • A • Sp • M • M • Re	pection and pro- ginning of the v n of the footing e. Vertical mon e works begin a ementation of the sk Assessment for cope of Works pplicable stand pocification for lonitoring of Exi lonitoring of mo eporting	works and also a to ensure that itoring moveme a detailed monit ne Monitoring. T to determine le dards Instrumentatio sting cracks on ovement on ad	ndition survey by Party wall surveyors at the end of the works. the footings are stable and ent by standard optical equipment toring report is required to confirm The items that this should cover are vel of Monitoring n adjacent properties jacent properties ER GREEN System
	Recomm	end levels are		
		Movement	CATEGORY	ACTION
		0mm-5mm	Green	No action required
		5mm-12mm	AMBER	Crack Monitoring: Carry out a local structural review; Preparation for the implementation of remedial measures should be required. Crack Monitoring: Implement structural support as
				required; Cease works with the exception of necessary works for the safety and stability of the structure and personnel; Review monitoring data and implement revised method of works

Basement De	sign & Construction Impacts
Foundation type	 Reinforced concrete cantilevered retaining walls The designs for the retaining walls have been calculated using software designed by TEDDS. The software is specifically designed for retaining walls and ensures the design is kept to a limit to prevent damage to the adjacent property. The overall stability of the walls are design using K_a & K_p values, while the design of the wall uses K_o values. This approach minimise the level of movement from the concrete affecting the adjacent properties. The Investigations have highlight that water is a present. The walls are designed to cope with the hydrostatic pressure. The water table was low. The design of the walls however considers the long term items. It is possible that a water main may break causing local high water table. To account for this the wall is designed for water 1m from the top of the wall. The Design also considers floatation as a risk. The design of has considered the weight of the building and the uplift resulting in a stable structure.
Roads	The basement must be designed for Yes. Site is within 5m of the footpath/alleyway and the road surface is further than 5m from the front lightwell. Highways loading allow: 10kN/m2 if within 45° of road 100kN point loads if under road or with in 1.5m 5kN/m2 if within 45° of Pavement Garden Surcharge 2.5kN/m2 Surcharge for adjacent property 1.5kN/m2 + 4kN/m2 for concrete ground bearing slab Family/domestic use
of structure and user requirements	

Loading		UDL kN/m²	Concentrated Loads kN	
Requirements	Domestic Single Dwellings	1.5	2.0	
(EC1-1)	The basement does not line withi Therefore Highways HA loading is	-		
	Number of Storeys	4		
Part A3 Progressive collapse	Is the Building Multi Occupancy?	No		
	Class 1 Single occupancy houses	not exceeding 4 st	oreys	
	To NHBC guidance compliance is change of use occurs to the prope Initial Building Class Proposed Building Class	5	1	aterial
	If class has changed material change has occurred		No	
	1	3 storey ove basement		
Lateral Stability				
Exposure and wind loading conditions	Basic wind speed Vb = 21 m/s to E Topography not considered signifi			
Stability Design	The cantilevered walls are suitable above	to carry the late	eral loading applie	ed from
Lateral Actions	The soil loads apply a lateral load	on the retaining	walls.	

	Hydrostatic pressure will be applied to the wall
	Imposed loading will surcharge the wall.
	Design overall stability to $K_a \& K_p$ values. Lateral movement necessary to
Retained soil	achieve K_a mobilisation is height/500 (from Tomlinson). This is tighter than the
Parameters	deflection limits of the concrete wall.
· · · · · · · · · · · · · · · · · · ·	Has a soil investigation been carried out Yes
Water Table	Known water table from boreholes
	Design temporary condition for water table level, If deeper than
	basement ignore
	Design Permanent condition for water table level:
	If deeper than existing, design reinforcement for water table at
	full basement depth to allow for local failure of water mains,
	drainage and storm water.
	Global uplift forces can be ignored when water table lower than
	basement. BS8102 only indicates guidance.
Drainage and	Assumed that drainage and damp proofing is by others: Details are not
Drainage and	provided within our brief.
Damp Waterproofing	
waterprooning	It is recommended that a water proofing specialist is employed to ensure all
	the water proofing requirements are met. Croft structural engineers are not
	the waterproofing designer nor act as the structural waterproof designer.
	Croft are not the structural waterproofer. The waterproofing specialist must
	name who is their structural waterproofer. The Structural waterproofer must
	inspect the structural details and confirm that are happy with the robustness.
	Due to the construction nature of the segmental basement it is not possible
	to water proof the joints. All water proofing must be made by the
	waterproofing specialist. They should make review of our details and
	recommend to us if water bars and stops are necessary.
	The waterproof design must not assume that the structure is watertight. To
	help reduce water floor through joints in the segmental pins all faces should
	be;
	 Cleaned of all debris and detritus
	 Faces between pins should be needle hammered to improve key
	 All pipe work and other penetrations should have puddle flanges
	or hydrophilic strips
Localised	Localised dewater to pins may be necessary.
Dewatering	
3	

	 Some engineers may raise the theoretical questions about pumping of water causing localised settlement. We believe that this argument is a red herring when applied to single storey basements and our reason for stating this is: The water table in the area is variable, The water level naturally rises and falls over time and does not lead to subsidence The water table has naturally been rising and falling for over the last 20,000 years, any fines that will have been removed from the soil would have done so already. If the water table rises and falls naturally why does this not cause subsidence due to fine removals every year? It does not because the soil has been soil is naturally consolidated by the rise and fall of the water table in the area. The effect of local pumping for small excavations will not affect the local area.
	 There is only a risk of subsidence from large scale pumping of soil which lowers the water table below is natural lowest level.
Temporary Works	Walls are designed to be temporarily stable. Temporary propping details will be required for the ground and soil and this must be provided by the contractor. Their details should be forwarded to Croft Structural Engineers. Particular attention should be paid to the point loads from above.
	Critical areas where point loads are present from above Cross wall Chimney Stack Door openings
Geological Assessment of Land Stability	Has the retaining wall design been assessed by a Chartered Geological Engineer? Yes inspected see supplementary report.
	1



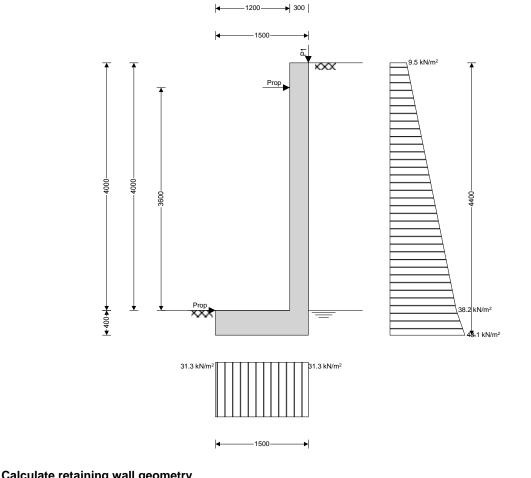
Retaining Wall Calculation

Reference								
Genera	alloa	dinas						
Ochere		angs	Cavity Walls					
Sloped Roof			100 Facing Brick =	2.2		Timbor	Partitions	
Slate =	0.6	kN/m ²	100 Pacing bick = 100 Block (16kN/m3)=	1.6		50x100 Stud		0.15
	0.02			0.18	5			
Battens = Rafers	0.02		Plaster & Skim =	0.18 3.98	kN/m2		sulation =	0.04
Felt =	0.1125		Dead Load =	3.90			r & Skim = ad Load =	0.36
Insulation =	0.02		Internel Wells			Dea	au Loau =	0.55
			Internal Walls	2				
Plaster=	0.18	kN/m2	100 Block (20kN/m3)=	2 0.36		Evicting Dr	riok Mollo	
Doof Anglo	0.9525 25		Plaster & Skim = Dead Load =	0.36 2.36	kN/m2	Existing Br		4.5
Roof Angle = Plan Dead load =	25 1.051	deg kN/m2		2.30		225 Faci	ng Brick =	4.5
Live Load =	0.6	kN/m2	Existing Internal Walls	0.1		Diastar	lotho	0.15
Live Load =	0.0		100 Brick (20kN/m3)=	2.1 0.36			& Lathe = ad Load =	0.15 4.65
			Plaster & Skim = Dead Load =	0.36 2.46	kN/m2	Dea	au Loau =	4.00
Flat Roof	0.44		Dead Load =	2.40		Plack Crew		
20mm Asphalt = Felt underlay =	0.46		Timber Floors		веата	Block Grou	m & Block	3.1
, , , , , , , , , , , , , , , , , , ,				0.15		веаг		
insulation =	0.04		18mm Ply	0.15 0.16875			Screed	1.4 0.07
Ply Sheeting =	0.1		Joists 50x225@400 =				nsulation	0.07
Firring =	0.1		100 Insulation =	0.05 0.18		Dag	Finishes ad Load =	4.62
of joists $50x200@400 =$	0.15		Plaster & Skim =	0.18 0.54875	kN/m2			
Plaster & Skim = Plan Dead load =	0.18	kN/m2	Dead Load = Live Load =	0.54875	kN/m2	LIN	/e Load =	1.5
Live Load =		kN/m2	Terrace Floor	1.5		Stondi	ng Seam	
Live Load =	0.75		Promonade Tiles =	0.4			oof Sheet	0.08
Mansard Roof			20mm Asphalt =	0.46			Insulation	0.03
	0.4		· · ·			1		0.07
Slate Tiles =	0.4		Felt underlay =	0.02			Decking Steelwork	0.2
Battens =	0.02		insulation =	0.04			ad Load =	0.8 0.95
Ply Sheeting =	0.125		Ply Sheeting =	0.1			/e Load =	0.95
Rafters = 100 Insulation =	0.125		Firring =	0.1		LIN	/e Loau =	0.8
	0.06		Roof joists 50x200@400 = Plaster & Skim =	0.175 0.18		Eillor	oist Floor	
plaster & Skim =			Dead Load =		kN/m2	riller		1.2
Felt =	0.02		Live Load =		kN/m2	Filler	Finishes Joist Floor	2.5
	0.93			1.5		riller		0.18
Roof Angle =	15	deg	50x100 Joists =	0.075			Ceiling	0.18
Plan Dead load =	45 1.316	kN/m2	100 Insulation =	0.075		Doc	Steel ad Load =	4.18
Live Load =	0.3	kN/m2	Plaster & Skim =	0.06			/e Load =	4.18 3.5
	0.3		Dead Load =		kN/m2		e Loau =	3.0
Precast Floor on Steel			Live Load =		kN/m2			
200PC Floor units =	3.6		Table 3 Liv					
60 Screed =	1.2				0%	Floor	1	0%
Finishes =	0.1		Area		0% 5%	Floors		0% 10%
Steelwork =	0.1				10%			20%
Dead Load =		kN/m2			10%			20% 30%
Live Load =		kN/m2			20%		4 5 to 10	
Live Load =	3			200	2070		5 10 10	4070

Reference	basem	nent pla	an							
Location		Area		Туре	L	Load		Load kN		
	L	W	m2	51		kN/m2	Dead	%	Live	Total
internal wall A										
roof DL	3.2	1.0	3.2	Яĸ		1.05	3.4			
roof LL				q _k		0.75			2.4	
2nd fl DL	3.2	1.0	3.2	g _k		0.63	2.0			
2nd fl LL				q _k		1.50			4.8	
partitions DL	2.7	1.0	2.7	g _k		1.05	2.8			
1st fl DL	3.2	1.0	3.2	g _k		0.63	2.0			
1st fl LL				q _k		1.50			4.8	
partitions DL	3.0	1.0	3.0	g _k		1.05	3.2			
ground fl DL	3.2	1.0	3.2	g _k		4.62	14.8			
ground fl LL				q _k		1.50			4.8	
partitions DL	3.0	1.0	3.0	9 _k		1.05	3.2			
							31.3	kN/m	16.8	kN/m
internal wall B										
roof DL	3.2	1.0	3.2	Яĸ		1.05	3.4			
roof LL				q _k		0.75			2.4	
2nd fl DL	3.2	1.0	3.2	g _k		0.63	2.0			
2nd fl LL				q _k		1.50			4.8	
partitions DL	2.7	1.0	2.7	g _k		1.05	2.8			
1st fl DL	3.2	1.0	3.2	g _k		0.63	2.0			
1st fl LL				q _k		1.50			4.8	
partitions DL	3.0	1.0	3.0	g _k		1.05	3.2			
ground fl DL	3.2	1.0	3.2	g _k		4.62	14.8			
ground fl LL				q _k		1.50			4.8	
partitions DL	3.0	1.0	3.0	Яĸ		1.05	3.2			
							31.3	kN/m	16.8	kN/m
wall 2										
ground fl DL	3.2	1.0	3.2	g _k		4.62	14.8			
ground fl LL				q _k		1.50			4.8	
partitions DL	3.0	1.0	3.0	g _k		1.05	3.2			
							17.9	kN/m	4.8	kN/m

Tedds calculation version 2.6.04

PILE WALL 1 (WITHOUT WATER)


RETAINING WALL ANALYSIS & DESIGN (EN1992/EN1996/EN1997)

RETAINING WALL ANALYSIS

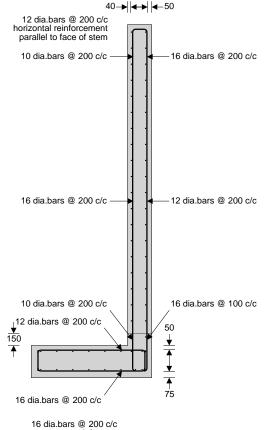
In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Retaining wall details			
Stem type	Propped cantilever		
Stem height	h _{stem} = 4000 mm		
Prop height	h _{prop} = 3600 mm		
Stem thickness	t _{stem} = 300 mm		
Angle to rear face of stem	α = 90 deg		
Stem density	$\gamma_{stem} = 25 \text{ kN/m}^3$		
Toe length	l _{toe} = 1200 mm		
Base thickness	t _{base} = 400 mm		
Base density	$\gamma_{\text{base}} = 25 \text{ kN/m}^3$		
Height of retained soil	h _{ret} = 4000 mm	Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm		
Height of water	h _{water} = 0 mm		
Water density	γw = 9.8 kN/m ³		
Retained soil properties			
Soil type	Organic clay		
Moist density	γmr = 15 kN/m ³		
Saturated density	γsr = 15 kN/m ³		
Characteristic effective shear i	resistance angle	φ'r.k = 18 deg	
Characteristic wall friction ang	$le \delta_{r,k} = 9 deg$		
Base soil properties			
Soil type	Medium dense well graded sa	nd	
Moist density	$\gamma_{mb} = 21 \text{ kN/m}^3$		
Characteristic effective shear i	resistance angle	$\phi'_{b.k} = 30 \text{ deg}$	
Characteristic wall friction ang	$le \delta_{b.k} = 15 deg$		
Characteristic base friction and	gle	$\delta_{bb.k} = 30 \text{ deg}$	
Presumed bearing capacity	P _{bearing} = 150 kN/m ²		
Loading details			
Permanent surcharge load	Surcharge _G = 10 kN/m ²		
Variable surcharge load	Surcharge _Q = 10 kN/m ²		
Vertical line load at 1500 mm	P _{G1} = 1 kN/m		
	P _{Q1} = 1 kN/m		

Calculate retaining wall geo	ometry		
Base length	l _{base} = 1500 mm		
Saturated soil height	h _{sat} = 0 mm		
Moist soil height	h _{moist} = 4000 mm		
Length of surcharge load	l _{sur} = 0 mm		
Vertical distance	x _{sur_v} = 1500 mm		
Effective height of wall	h _{eff} = 4400 mm		
Horizontal distance	x _{sur_h} = 2200 mm		
Area of wall stem	A _{stem} = 1.2 m ²	Vertical distance	x _{stem} = 1350 mm
Area of wall base	A _{base} = 0.6 m ²	Vertical distance	x _{base} = 750 mm
Using Coulomb theory			
Active pressure coefficient	K _A = 0.483	Passive pressure coefficient	K _P = 4.977
Bearing pressure check			
Vertical forces on wall			
Total	F _{total_v} = F _{stem} + F _{base} + F _{water_v}	+ F _{P_v} = 47 kN/m	
Horizontal forces on wall			
Total	F _{total_h} = F _{sat_h} + F _{moist_h} + F _{pass}	_{s_h} + F _{water_h} + F _{sur_h} = 103.6 kN/n	n
Moments on wall			
Total	$M_{total} = M_{stem} + M_{base} + M_{sat} + I$	M _{moist} + M _{water} + M _{sur} + M _P = -139	.3 kNm/m
Check bearing pressure			
Propping force to stem	F _{prop_stem} = 43.6 kN/m	Propping force to base	F _{prop_base} = 60 kN/m
Bearing pressure at toe	q _{toe} = 31.3 kN/m ²	Bearing pressure at heel	q _{heel} = 31.3 kN/m ²
Factor of safety	FoS _{bp} = 4.787		
	PASS - Allowable bearing pre	essure exceeds maximum app	lied bearing pressure

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1


Annex incorporating Nationa	a Amenument No.1	Tec	lds calculation version 2.6.04
Concrete details - Table 3.1 -	Strength and deformation	characteristics for concrete	
Concrete strength class	C28/35		
Char.comp.cylinder strength	f _{ck} = 28 N/mm ²	Mean axial tensile strength	f _{ctm} = 2.8 N/mm ²
Secant modulus of elasticity	E _{cm} = 32308 N/mm ²	Maximum aggregate size	h _{agg} = 20 mm
Design comp.concrete strength	n f _{cd} = 15.9 N/mm²	Partial factor	γc = 1.50
Reinforcement details			
Characteristic yield strength	f _{yk} = 500 N/mm ²	Modulus of elasticity	E _s = 200000 N/mm ²
Design yield strength	f _{vd} = 435 N/mm ²	Partial factor	γ _S = 1.15
Cover to reinforcement			
Front face of stem	c _{sf} = 40 mm	Rear face of stem	c _{sr} = 50 mm
Top face of base	$c_{bt} = 50 \text{ mm}$	Bottom face of base	c _{bb} = 75 mm
Check stem design at 1915 n Depth of section	h = 300 mm		
-			
Rectangular section in flexu		1/ 0.040	1/1 0 007
Design bending moment	M = 28.6 kNm/m	K = 0.018	K' = 0.207
Tens.reinforcement required	A _{sfM.reg} = 289 mm ² /m	K' > K - No compression reint	orcement is required
	AstM.req = 209 mm /m 16 dia.bars @ 200 c/c	Tons reinforcement provided	∧ <i>a</i> . – 1005
Tens.reinforcement provided mm ² /m		Tens.reinforcement provided	A _{sfM.prov} = 1005
Min.area of reinforcement	A _{sfM.min} = 345 mm ² /m	Max.area of reinforcement	A _{sfM.max} = 12000
mm ² /m		Maxarea of remotechent	
	S - Area of reinforcement p	rovided is greater than area of re	inforcement required
Deflection control - Section 7	-		
Limiting span to depth ratio	228	Actual span to depth ratio	15
	-	Span to depth ratio is less than d	-
One share that One time 7.0			
Crack control - Section 7.3	w _{max} = 0.3 mm	Maximum crack width	w _k = 0.095 mm
Limiting crack width		<i>imiting crack width</i> Check stem de	
Depth of section	h = 300 mm		sign at base of stem
-			
Rectangular section in flexue Design bending moment	M = 57.7 kNm/m	K = 0.035	K' = 0.207
Design bending moment	W = 31.1 KINIII/III	K' > K - No compression reinf	
Tens.reinforcement required	A _{sr.reg} = 578 mm²/m		or ooment to required
Tens.reinforcement provided	16 dia.bars @ 100 c/c	Tens.reinforcement provided	Asr.prov = 2011
mm²/m		· · · · · · · · · · · · · · · · · · ·	
Min.area of reinforcement	A _{sr.min} = 348 mm ² /m	Max.area of reinforcement	Asr.max = 12000
mm²/m			
PASS	S - Area of reinforcement p	provided is greater than area of re	inforcement required
Deflection control - Section 7	7.4		
Limiting span to depth ratio	77	Actual span to depth ratio	14.9
3 1 1 1	PASS - S	Span to depth ratio is less than d	
Crack control - Section 7.3		-	
Limiting crack width	w _{max} = 0.3 mm	Maximum crack width	w _k = 0.074 mm
-		crack widthRectangular section	
M() Project File) Project Store	ac) 2015) 150407 St. Johns Wood	Park 2.0 Cales NASt Johns Wood Park (47

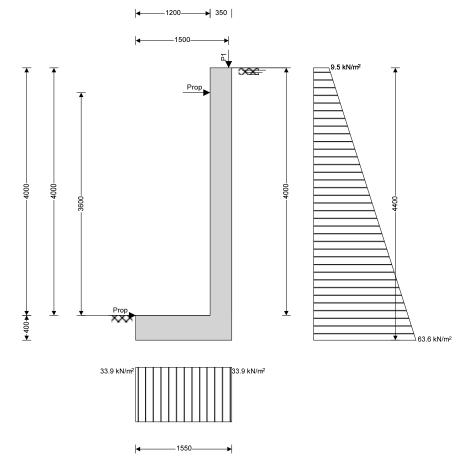
		- NY-	ENGINEERS
Design shear force	V = 88.9 kN/m	Design shear resistance	V _{Rd.c} = 118.2 kN/m
	PASS - L	Design shear resistance exceed	ls design shear force
Check stem design at prop			
Depth of section	h = 300 mm		
Rectangular section in flexu	re - Section 6 1		
Design bending moment	M = 1.2 kNm/m	K = 0.001	K' = 0.207
		K' > K - No compression reinf	
Tens.reinforcement required	A _{sr1.req} = 12 mm ² /m		•
Tens.reinforcement provided	16 dia.bars @ 200 c/c	Tens.reinforcement provided	Asr1.prov = 1005
mm²/m			
Min.area of reinforcement	A _{sr1.min} = 348 mm ² /m	Max.area of reinforcement	A _{sr1.max} = 12000
mm²/m			
PAS	S - Area of reinforcement pro	vided is greater than area of re	inforcement required
Deflection control - Section	7.4		
Limiting span to depth ratio	11682	Actual span to depth ratio	1.7
	PASS - Spa	an to depth ratio is less than de	eflection control limit
Crack control - Section 7.3			
Limiting crack width	w _{max} = 0.3 mm	Maximum crack width	w _k = 0.004 mm
PASS - Maximum crack	width is less than limiting cr	ack widthRectangular section i	n shear - Section 6.2
Design shear force	V = 36.6 kN/m	Design shear resistance	V _{Rd.c} = 118.2 kN/m
	PASS - L	Design shear resistance exceed	ls design shear force
Horizontal reinforcement pa	rallel to face of stem - Sectior	า 9.6	
Min.area of reinforcement	A _{sx.req} = 503 mm ² /m	Max.spacing of reinforcement	s _{sx_max} = 400 mm
Trans.reinforcement provided	12 dia.bars @ 200 c/c	Trans.reinforcement provided	A _{sx.prov} = 565
mm²/m			
PAS	S - Area of reinforcement pro	vided is greater than area of rea	inforcement required
Check base design at toe			
Depth of section	h = 400 mm		
Rectangular section in flexu	re - Section 6.1		
Design bending moment	M = 20.8 kNm/m	K = 0.007	K' = 0.207
		K' > K - No compression reinf	orcement is required
Tens.reinforcement required	A _{bb.req} = 159 mm ² /m		
Tens.reinforcement provided	16 dia.bars @ 200 c/c	Tens.reinforcement provided	Abb.prov = 1005
mm²/m	AFC		4 4 6 9 9 9
Min.area of reinforcement mm ² /m	A _{bb.min} = 456 mm ² /m	Max.area of reinforcement	A _{bb.max} = 16000
	S - Area of reinforcement pro	vided is greater than area of re	inforcement required
	o - Area or remorcement pro	vided is greater than area of rel	moreement required
Crack control - Section 7.3			
Limiting crack width	W _{max} = 0.3 mm	Maximum crack width ack widthRectangular section i	$w_k = 0.088 \text{ mm}$
Design shear force	V = 34.7 kN/m	Design shear resistance	$V_{Rd.c} = 141.3 \text{ kN/m}$
Design shear force		Design shear resistance exceed	
Secondary transverse reinfo	prcement to base - Section 9.3	-	i i i i i i i i i i i i i i i i i i i
Min.area of reinforcement	$A_{\text{bx.req}} = 201 \text{ mm}^2/\text{m}$	Max.spacing of reinforcement	S _{bx max} = 450 mm
Trans.reinforcement provided	$A_{bx,req} = 201 \text{ mm}^{-11}$ 16 dia.bars @ 200 c/c	Trans.reinforcement provided	$S_{bx_max} = 430$ mm $A_{bx,prov} = 1005$
mm ² /m	10 dia.ouio e 200 0/0	rano.romorooment provided	
	C Area of rainforcement area	vided is greater than area of re	inforcement required

PASS - Area of reinforcement provided is greater than area of reinforcement required

16 dia.bars @ 200 c/c transverse reinforcement in base

PILED WALL 1 (WITH WATER)

RETAINING WALL ANALYSIS & DESIGN (EN1992/EN1996/EN1997)


RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.6.04

Retaining wall details	
Stem type	Propped cantilever
Stem height	h _{stem} = 4000 mm
Prop height	h _{prop} = 3600 mm
Stem thickness	t _{stem} = 350 mm
Angle to rear face of stem	α = 90 deg
Stem density	$\gamma_{\text{stem}} = 25 \text{ kN/m}^3$
Toe length	l _{toe} = 1200 mm
Base thickness	t _{base} = 400 mm
Base density	γ _{base} = 25 kN/m ³
Height of retained soil	h _{ret} = 4000 mm
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm
Height of water	h _{water} = 4000 mm
Water density	$\gamma_{\rm w} = 9.8 \ {\rm kN/m^3}$
Retained soil properties	
Soil type	Organic clay
Moist density	$\gamma_{mr} = 15 \text{ kN/m}^3$
Saturated density	$\gamma_{sr} = 15 \text{ kN/m}^3$
Characteristic effective shear resistance angle	φ' _{r.k} = 18 deg
Characteristic wall friction angle	$\delta_{r.k} = 9 \text{ deg}$
Base soil properties	
Soil type	Medium dense well graded sand
Moist density	γ _{mb} = 18 kN/m ³
Characteristic effective shear resistance angle	φ' _{b.k} = 30 deg
Characteristic wall friction angle	$\delta_{b,k} = 15 \text{ deg}$
Characteristic base friction angle	$\delta_{bb.k} = 30 \text{ deg}$
Presumed bearing capacity	P _{bearing} = 150 kN/m ²
Loading details	
Permanent surcharge load	$Surcharge_G = 10 \text{ kN/m}^2$
Variable surcharge load	Surcharge _Q = 10 kN/m ²
Vertical line load at 1500 mm	P _{G1} = 1 kN/m
	P _{Q1} = 1 kN/m

Calculate retaining wall geometry

Base length Saturated soil height Moist soil height Length of surcharge load - Distance to vertical component Effective height of wall - Distance to horizontal component Area of wall stem - Distance to vertical component Area of wall base - Distance to vertical component **Using Coulomb theory** Active pressure coefficient

Passive pressure coefficient

Bearing pressure check

Vertical forces on wall

Wall stem Wall base Line loads Total
$$\begin{split} & l_{base} = l_{toe} + t_{stem} = \textbf{1550} \text{ mm} \\ & h_{sat} = h_{water} + d_{cover} = \textbf{4000} \text{ mm} \\ & h_{moist} = h_{ret} - h_{water} = \textbf{0} \text{ mm} \\ & l_{sur} = l_{heel} = \textbf{0} \text{ mm} \\ & x_{sur_v} = l_{base} - l_{heel} / 2 = \textbf{1550} \text{ mm} \\ & h_{eff} = h_{base} + d_{cover} + h_{ret} = \textbf{4400} \text{ mm} \\ & x_{sur_h} = h_{eff} / 2 = \textbf{2200} \text{ mm} \\ & A_{stem} = h_{stem} \times t_{stem} = \textbf{1.4} \text{ m}^2 \\ & x_{stem} = l_{toe} + t_{stem} / 2 = \textbf{1375} \text{ mm} \\ & A_{base} = l_{base} \times t_{base} = \textbf{0.62} \text{ m}^2 \\ & x_{base} = l_{base} / 2 = \textbf{775} \text{ mm} \end{split}$$

$$\begin{split} &\mathsf{K}_{A} = \sin(\alpha + \phi'_{r.k})^{2} / (\sin(\alpha)^{2} \times \sin(\alpha - \delta_{r.k}) \times [1 + \sqrt{[\sin(\phi'_{r.k} + \delta_{r.k})} \times \sin(\phi'_{r.k} - \beta) / (\sin(\alpha - \delta_{r.k}) \times \sin(\alpha + \beta))]]^{2}) = \mathbf{0.483} \\ &\mathsf{K}_{P} = \sin(90 - \phi'_{b.k})^{2} / (\sin(90 + \delta_{b.k}) \times [1 - \sqrt{[\sin(\phi'_{b.k} + \delta_{b.k})} \times \sin(\phi'_{b.k}) / (\sin(90 + \delta_{b.k}))]]^{2}) = \mathbf{4.977} \end{split}$$

$$\begin{split} F_{stem} &= A_{stem} \times \gamma_{stem} = \textbf{35} \text{ kN/m} \\ F_{base} &= A_{base} \times \gamma_{base} = \textbf{15.5} \text{ kN/m} \\ F_{P_{-}v} &= P_{G1} + P_{Q1} = \textbf{2} \text{ kN/m} \\ F_{total_{-}v} &= F_{stem} + F_{base} + F_{water_{-}v} + F_{P_{-}v} = \textbf{52.5} \text{ kN/m} \end{split}$$

Horizontal forces on wall	
Surcharge load	$\label{eq:Fsur_h} \begin{split} F_{sur_h} = K_A \times cos(\delta_{r.d}) \times (Surcharge_G + Surcharge_Q) \times h_{eff} = \textbf{42} \\ kN/m \end{split}$
Saturated retained soil	$F_{sat_h} = K_A \times cos(\delta_{r.d}) \times (\gamma_{sr} - \gamma_w) \times (h_{sat} + h_{base})^2 / 2 = 24 \text{ kN/m}$
Water	$F_{water_h} = \gamma_w \times (h_{water} + d_{cover} + h_{base})^2 / 2 = 95 \text{ kN/m}$
Moist retained soil	$F_{moist_h} = K_{A} \times cos(\delta_{r.d}) \times \gamma_{mr} \times ((h_{eff} - h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{max})^2 / 2 + (h_{eff} - h_{max})^2 / 2 + (h_{$
	$h_{base}) \times (h_{sat} + h_{base})) = 0 \text{ kN/m}$
Base soil	$F_{\text{pass_h}} = \text{-}K_{P} \times \text{cos}(\delta_{b.d}) \times \gamma_{mb} \times (d_{\text{cover}} + h_{\text{base}})^2 / 2 = \text{-}6.9 \; \text{kN/m}$
Total	Ftotal_h = Fsat_h + Fmoist_h + Fpass_h + Fwater_h + Fsur_h = 154 kN/m
Moments on wall	
Wall stem	M _{stem} = F _{stem} × x _{stem} = 48.1 kNm/m
Wall base	$M_{base} = F_{base} \times x_{base} = 12 \text{ kNm/m}$
Surcharge load	$M_{sur} = -F_{sur_h} \times x_{sur_h} = -92.4 \text{ kNm/m}$
Line loads	$M_P = (P_{G1} + P_{Q1}) \times p_1 = 3 \text{ kNm/m}$
Saturated retained soil	$M_{sat} = -F_{sat_h} \times x_{sat_h} = -35.2 \text{ kNm/m}$
Water	$M_{water} = -F_{water_h} \times x_{water_h} = -139.3 \text{ kNm/m}$
Moist retained soil	$M_{moist} = -F_{moist_h} \times x_{moist_h} = 0 \text{ kNm/m}$
Total	$M_{total} = M_{stem} + M_{base} + M_{sat} + M_{moist} + M_{water} + M_{sur} + M_{P} = -203.7$
	kNm/m
Check bearing pressure	
Propping force to stem	$F_{prop_stem} = min((F_{total_v} \times I_{base} / 2 - M_{total}) / (h_{prop} + t_{base}), F_{total_h}) =$
	61.1 kN/m
Propping force to base	Fprop_base = Ftotal_h - Fprop_stem = 92.9 kN/m
Moment from propping force	$M_{prop} = F_{prop_stem} \times (h_{prop} + t_{base}) = 244.4 \text{ kNm/m}$
Distance to reaction	$\bar{x} = I_{\text{base}} / 2 = 775 \text{ mm}$
Eccentricity of reaction	$e = \overline{x} - I_{base} / 2 = 0 mm$

Eccentricity of reaction Loaded length of base Bearing pressure at toe Bearing pressure at heel Factor of safety

 $FoS_{bp} = P_{bearing} / max(q_{toe}, q_{heel}) = 4.429$ PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

 $I_{load} = I_{base} = 1550 \text{ mm}$

 $q_{toe} = F_{total_v} \ / \ I_{base} = \textbf{33.9} \ kN/m^2$

 $q_{heel} = F_{total_v} / I_{base} = 33.9 \text{ kN/m}^2$

Tedds calculation version 2.6.04

Concrete details - Table 3.1 - Strength and deformation characteristics for concrete

Concrete strength class	C28/35
Characteristic compressive cylinder strength	f _{ck} = 28 N/mm ²
Characteristic compressive cube strength	f _{ck,cube} = 35 N/mm ²
Mean value of compressive cylinder strength	$f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 36 \text{ N/mm}^2$
Mean value of axial tensile strength	f_{ctm} = 0.3 N/mm ² × (f _{ck} / 1 N/mm ²) ^{2/3} = 2.8 N/mm ²
5% fractile of axial tensile strength	$f_{ctk,0.05} = 0.7 \times f_{ctm} = 1.9 \text{ N/mm}^2$
Secant modulus of elasticity of concrete	$E_{cm} = 22 \text{ kN/mm}^2 \times (f_{cm} / 10 \text{ N/mm}^2)^{0.3} = 32308 \text{ N/mm}^2$
Partial factor for concrete - Table 2.1N	γc = 1.50
Compressive strength coefficient - cl.3.1.6(1)	$\alpha_{cc} = 0.85$
Design compressive concrete strength - exp.3.15	$f_{cd} = \alpha_{cc} \times f_{ck} \ / \ \gamma_C = \textbf{15.9} \ N/mm^2$
Maximum aggregate size	h _{agg} = 20 mm

Reinforcement details Characteristic yield strength of reinforcement Modulus of elasticity of reinforcement Partial factor for reinforcing steel - Table 2.1N	$f_{yk} = 500 \text{ N/mm}^2$ $E_s = 200000 \text{ N/mm}^2$ $\gamma_S = 1.15$
Design yield strength of reinforcement	$f_{yd} = f_{yk} / \gamma_S = 435 \text{ N/mm}^2$
Cover to reinforcement	
Front face of stem	c _{sf} = 40 mm
Rear face of stem	c _{sr} = 50 mm
Top face of base	C _{bt} = 50 mm
Bottom face of base	_{Cbb} = 75 mm
Check stem design at 1893 mm	
Depth of section	h = 350 mm
Rectangular section in flexure - Section 6.1	
Design bending moment combination 1	M = 40.7 kNm/m
Depth to tension reinforcement	$d = h - c_{sf} - \phi_{sx} - \phi_{sfM} / 2 = 295 \text{ mm}$
	$K = M / (d^2 \times f_{ck}) = 0.017$
	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm	$z = min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 280 mm$
Depth of neutral axis	$x = 2.5 \times (d - z) = 37 \text{ mm}$
Area of tension reinforcement required	$A_{sfM.req} = M / (f_{yd} \times z) = 334 \text{ mm}^2/\text{m}$
Tension reinforcement provided	10 dia.bars @ 100 c/c
Area of tension reinforcement provided	$A_{sfM.prov} = \pi \times \phi_{sfM}^2 / (4 \times s_{sfM}) = 785 \text{ mm}^2/\text{m}$
Minimum area of reinforcement - exp.9.1N	$A_{sfM.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 424 \text{ mm}^2/\text{m}$
Maximum area of reinforcement - cl.9.2.1.1(3)	$A_{sfM.max} = 0.04 \times h = 14000 \text{ mm}^2/\text{m}$
	max(A _{sfM.req} , A _{sfM.min}) / A _{sfM.prov} = 0.54
PASS - Area of reinforcement provided is greater than area of reinforcement required	

Deflection control - Section 7.4

Reference reinforcement ratio	$\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000} = 0.005$
Required tension reinforcement ratio	$\rho = A_{sfM.req} / d = 0.001$
Required compression reinforcement ratio	$\rho' = A_{sfM.2.req} / d_2 = 0.000$
Structural system factor - Table 7.4N	K _b = 1
Reinforcement factor - exp.7.17	$K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sfM.req} / A_{sfM.prov}), 1.5) = 1.5$
Limiting span to depth ratio - exp.7.16.a	$K_s imes K_b imes [11 + 1.5 imes \sqrt{(f_{ck} / 1 N/mm^2)} imes ho_0 / ho + 3.2 imes \sqrt{(f_{ck} / 1 N/mm^2)}$
	N/mm ²) × (ρ ₀ / ρ - 1) ^{3/2}] = 251.4
Actual span to depth ratio	h _{prop} / d = 12.2
	PASS - Span to depth ratio is less than deflection control limit
Crack control - Section 7.3	
Limiting crack width	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1	$\psi_2 = 0.6$
Serviceability bending moment	M _{sis} = 28 kNm/m
Tensile stress in reinforcement	$\sigma_{s} = M_{sls} / (A_{sfM.prov} \times z) = 127.2 \text{ N/mm}^{2}$
Load duration	Long term
Load duration factor	$k_{t} = 0.4$
Effective area of concrete in tension	$A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 104375 mm^2/m$
Mean value of concrete tensile strength	$f_{ct.eff} = f_{ctm} = 2.8 \text{ N/mm}^2$
Reinforcement ratio	$\rho_{p.eff} = A_{sfM.prov} / A_{c.eff} = 0.008$
Modular ratio	$\alpha_e = E_s / E_{cm} = 6.19$

Bond property coefficient	k ₁ = 0.8
Strain distribution coefficient	k ₂ = 0.5
	k ₃ = 3.4
	k ₄ = 0.425
Maximum crack spacing - exp.7.11	$s_{r.max} = k_3 \times c_{sf} + k_1 \times k_2 \times k_4 \times \phi_{sfM} \ / \ \rho_{p.eff} = \textbf{362} \ mm$
Maximum crack width - exp.7.8	$w_k = s_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), 0.6 \times \sigma_s)$
	/ Es
	w _k = 0.138 mm
	$w_k / w_{max} = 0.46$
	PASS - Maximum crack width is less than limiting crack width
Check stem design at base of stem	
Depth of section	h = 350 mm
Rectangular section in flexure - Section 6.1	
Design bending moment combination 1	M = 83.7 kNm/m
Depth to tension reinforcement	$d = h - c_{sr} - \phi_{sr} / 2 = 292 \text{ mm}$
	$K = M / (d^2 \times f_{ck}) = 0.035$
	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm	z = min(0.5 + 0.5 × (1 - 3.53 × K) ^{0.5} , 0.95) × d = 277 mm
Depth of neutral axis	$x = 2.5 \times (d - z) = 37 \text{ mm}$
Area of tension reinforcement required	$A_{sr.req} = M / (f_{yd} \times z) = 694 \text{ mm}^2/\text{m}$
Tension reinforcement provided	16 dia.bars @ 100 c/c
Area of tension reinforcement provided	$A_{sr.prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) = 2011 \text{ mm}^2/\text{m}$
Minimum area of reinforcement - exp.9.1N	$A_{sr.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 420 \text{ mm}^2/\text{m}$
Maximum area of reinforcement - cl.9.2.1.1(3)	$A_{sr.max} = 0.04 \times h = 14000 \text{ mm}^2/\text{m}$
	max(A _{sr.req} , A _{sr.min}) / A _{sr.prov} = 0.345
PASS - Area of reinforcement provided is greater than area of reinforcement required	

Deflection control - Section 7.4

Deflection control - Section 7.4	
Reference reinforcement ratio	$\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000} = 0.005$
Required tension reinforcement ratio	$\rho = A_{sr.req} / d = 0.002$
Required compression reinforcement ratio	ρ' = A _{sr.2.req} / d ₂ = 0.000
Structural system factor - Table 7.4N	K _b = 1
Reinforcement factor - exp.7.17	$K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr.req} / A_{sr.prov}), 1.5) = 1.5$
Limiting span to depth ratio - exp.7.16.a	$ m K_s imes m K_b imes [11 + 1.5 imes \sqrt{(f_{ck} / 1 N/mm^2)} imes ho_0 / ho + 3.2 imes \sqrt{(f_{ck} / 1 N/mm^2)}$
	N/mm^2) × (ρ_0 / ρ - 1) ^{3/2}] = 77.5
Actual span to depth ratio	h _{prop} / d = 12.3
	PASS - Span to depth ratio is less than deflection control limit
Crack control - Section 7.3	
Limiting crack width	w _{max} = 0.3 mm
Variable load factor - EN1990 - Table A1.1	$\psi_2 = 0.6$
Serviceability bending moment	M _{sls} = 58.2 kNm/m
Tensile stress in reinforcement	$\sigma_{s} = M_{sls} / (A_{sr,prov} \times z) = 104.3 \text{ N/mm}^{2}$
Load duration	Long term
Load duration factor	k _t = 0.4
Effective area of concrete in tension	$A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 104500 mm^2/m$
Mean value of concrete tensile strength	$f_{ct.eff} = f_{ctm} = 2.8 \text{ N/mm}^2$
Reinforcement ratio	$\rho_{p.eff} = A_{sr.prov} / A_{c.eff} = 0.019$
Modular ratio	$\alpha_e = E_s / E_{cm} = 6.19$
Bond property coefficient	k ₁ = 0.8
	54

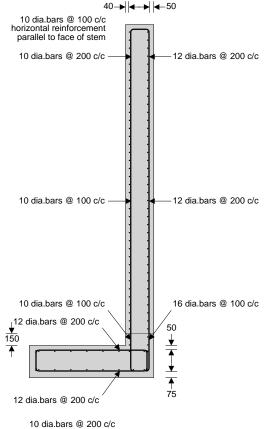
Stram distribution coefficient is $P = 0.3$ $k_x = 0.425$ Maximum crack spacing - exp.7.11 Simmer k a $\nabla c_{x} + k_{x} \times k_{x} \times k_{x} \downarrow_{p_{x},all} = 311 mm$ Maximum crack width - exp.7.8 $W_{x} = 0.097 mm$ $W_{x} = 0.097 mm$ $W_{x} W_{maxe} = 0.325$ PASS - Maximum crack width is less than limiting crack width Rectangular section in shear - Section 6.2 Design shear force V = 131 kN/m $Crd_{x} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{(200 mm / d)}, 2) = 1.828$ Longitudinal reinforcement ratio $p_{1} = min(A_{q,000} / d, 0.02) = 0.003$ $V_{min} = 0.035 N^{10}mm \times k^{32} \times t_{a}^{0.5} = 0.458 Nmm^{2}$ Design shear resistance - exp.6.2a & 6.2b $V_{max} = max(Cra_{ax} \times k \cdot (100 N/mm^{4} \times p_{1} \times t_{a})^{10}, v_{wn}) \times d$ $V_{max} = max(Cra_{ax} \times k \cdot (100 N/mm^{4} \times p_{1} \times t_{a})^{10}, v_{wn}) \times d$ $V_{max} = 0.336 kN/m$ $V / V_{Max} = 0.380$ PASS - Design shear resistance exceeds design shear force Check stem design at prop Depth of section h = 350 mm Rectangular section in floxure - Section 6.1 Design bending moment combination 1 M = 1.3 kNn/m Depth to tension reinforcement $d = h - c_{x} - q_{wr} / 2 = 234 mm$ $K = M / (d^{2} \times t_{30}) = 0.001$ K' = 0.207 K > K - No compression reinforcement is required Lever arm $Z = min(0.5 + 0.5 \times (1 - 2.53 \times K)^{6.5}, 0.95) \times d = 279 mm$ Z = 0.001 K' = 0.207 K > K - No compression reinforcement is required $A_{attypov} = \pi \times q_{att} / (4 \times s_{att}) = 565 mm^{2}m$ Minimum area of reinforcement required $A_{attypov} = \pi \times q_{att} / (4 \times s_{att}) = 565 mm^{2}m$ Maximum area of reinforcement required $A_{attypov} = \pi \times q_{att} / (4 \times s_{att}) = 565 mm^{2}m$ Maximum area of reinforcement - exp.2.11.(3) $A_{attmax} = 0.004 \times h = 14000 mm^{2}m$ $max(A_{attagw}, A_{attmaw}, A_{attmaw}, A_{attmaw}, A_{attmaw}, A_{attmaw}) / A_{attraw} / A_{attagw} / a_{attagw} / d = 0.000$ Structural system factor - tapp 7.71 K $_{x} = min(500 N/mm^{2}) (1000 = 0.005$ Required tension reinforcement ratio $p = A_{attagw} / d = $	Strain distribution coefficient	
k= 0.425Maximum crack spacing - exp.7.11Scmax - kx × Cay + k1 × k2 × k1 × k1	Strain distribution coefficient	$k_2 = 0.5$
Maximum crack spacing - exp.7.11Somma = ka × Car + kt × ka × ka × (bar / pa att = 311 mm)Maximum crack width - exp.7.8Water Somma × max($\alpha_b - k_b × (fact / pa att = 311 mm)$ Water Somma × Max($\alpha_b - k_b × (fact / pa att = 311 mm)$ Water Somma × Max($\alpha_b - k_b × (fact / pa att = 311 mm)$ Water Somma × Max($\alpha_b - k_b × (fact / pa att = 311 mm)$ Water Somma × Max($\alpha_b - k_b × (fact / pa att = 311 mm)$ Water Somma × Max($\alpha_b - k_b × (fact + k_b × k_b × ber / pa att = 311 mm)$ Water Somma × Max($\alpha_b - k_b × (fact + k_b × ber / pa att = 311 mm)$ Water Somma × Max($\alpha_b - k_b × (fact + k_b × k_b × ber / pa att = 311 mm)$ Water Somma × Max($\alpha_b - k_b × (fact + k_b × ber / pa att = 311 mm)$ Water Somma × Max($\alpha_b - k_b × (fact + k_b × k_b × ber / pa att = 311 mm)$ Water Somma × Max($\alpha_b - k_b × (fact + k_b × ber / pa att = 311 mm)$ Water Somma × Max($\alpha_b - k_b × (fact + k_b × ber / pa att = 311 mm)$ Water Somma × Max($\alpha_b - k_b × (fact + k_b × ber / pa att = 311 mm)$ Water Somma × Max($\alpha_b - k_b × (fact + k_b × ber / pa att = 311 mm)$ Water Somma × Max($\alpha_b - k_b × (fact + k_b × ber / pa att = 311 mm)$ Water Somma × Max($\alpha_b v > 0.001 mm / (fact + fact + k_b × ber / pa att = 313 km/m)$ Water = 0.380Water Somma × Max($\alpha_b v > 0.001 kt = 0.001$ K = 0.001K = K / (fact > k_b) = 0.001 kt = 0.001K = 0.001K = K / K = V (fact > k_b) = 0.001 kt = 0.001K = A / (fact > k_b) = 0.001 kt = 0.001K = A / (fact > k_b) = 0.001 kt = 0.001K = A / (fact > k_b) = 0.001 kt = 0.001K = A / (fact > k_b) = 0.001 kt = 0.001K = A / (fact > k_b) = 0.001 kt = 0.001K = A / (fact > k_b) = 0.001 kt = 0.001K = A		
Maximum crack width - exp.7.8 $y_h \in S_{nmax} \times max(m_x - k_x \langle [d_xari / p_{p,eff}]) \times (1 + m_x \times p_{p,eff}), 0.6 \times m_s] / [E]Wh = 0.097 mmy_h / V_{minec} = 0.325PASS - Maximum crack width is less than limiting crack widthRectangular section in shear - Section 6.2Design shear forceV = 131 \text{ kN/m}Crad, c = 0.18 / y_{c = 0} = 0.120k = min(1 + \sqrt{(200 mm / 0)}, 2) = 1.828Longitudinal reinforcement ratiop = min(n4_{exp,ov}/4, 0.02) = 0.003v_{mn} = 0.035 N^{12/mm} \times k^{32} \times l_n^{0.5} = 0.458 \text{ N/mm}^2Design shear resistance - exp.6.2a & 6.2bVeta = max(Ceas + k × (100 N/mm4 × p \times l_n)^{10}, v_{mn}) × dVeta = 133, 6 kV/mV / Veta = 0.980PASS - Design shear resistance exceeds design shear forceCheck stem design at propDepth of sectionh = 350 mmRectangular section in flexure - Section 6.1Design bending moment combination 1Depth to tension reinforcementd = h - c_a - 4p_{eff} / 2 = 294 \text{ mm}K = M / (d^2 \times (n_a) = 0.001K' = 0.207K > K - No compression reinforcement is requiredDepth of neutral axisx = 2.5 \times (d - 2) = 37 \text{ mm}Area of tension reinforcement providedArat mag = M / (lips x = 2) = 14000 mm2/mTension reinforcement providedArat mag = M / (lips x = 2) = 14000 mm2/mMaximum area of reinforcement requiredArat mag = M / (lips x = 2) = 14000 mm2/mMariannu area of reinforcement requiredArat mag = M / (lips x = 2) = 14000 mm2/mMarian$	Maximum crack spacing - exp.7.11	
$ \begin{array}{ll} / E_s & w_s = 0.397 \mm \\ w_s / W_{max} = 0.325 \\ \hline PASS - Maximum crack width is less than limiting crack width \\ \hline Rectangular section in shear - Section 6.2 \\ \hline Design shear force & V = 131 \mbox{ kN/m} \\ \hline Crac_s = 0.18 / y_c = 0.120 & k = min(1 + \sqrt{(200 mm / d_0, 2)} = 1.828 & min(1 + \sqrt{(200 mm / d_0, 2)} = 1.828 & min(1 + \sqrt{(200 mm / d_0, 2)} = 1.828 & min(1 + \sqrt{(200 mm / d_0, 2)} = 1.828 & min(1 + \sqrt{(200 mm / d_0, 2)} = 1.828 & min(1 + \sqrt{(200 mm / d_0, 2)} = 1.828 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.003 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.003 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.003 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.003 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.003 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.003 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.003 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.980 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.980 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.980 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.980 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.001 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.001 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.001 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.001 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.001 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.001 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.001 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.001 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.001 & min(1 + \sqrt{(200 mm / d_0, 2)} = 0.001 & min(1 + \sqrt{(200 mm / m)} & min(1 + (2$		
w, e 0.097 mm w, / wmax e 0.235VASS Maximum crack width is less than limiting crack widthRectangular section in shear - Section 6.2Design shear forceV = 131 kN/m $Circl, c = 0.18 / yc = 0.120$ $k = min(1 + \i(200 mm /0, 2) = 1.828Longitudinal reinforcement ratiop = min(nLaugow / 0, 0.02) = 0.003vmn = 0.035 N^{12}/mm \times k^{32} \times k_0^{6.5} = 0.458 N/mm^2Design shear resistance - exp.6.2 a & 6.2bVFac = max(Chack × k × (100 N/mm4 × pi × fa)10, Vmm) × dVpac = 133.6 kN/mV / Vac = 0.980PASS - Design shear resistance exceeds design shear forceCheck stem design at propDepth of sectionDesign bending moment combination 1M = 1.3 kNm/mDesign bending moment combination 1M = 1.3 kNm/mDepth of section nz = min(0.5 + 0.5 × (1 - 3.53 × K)^{16,} 0.95) × d = 279 mmK = M / (d2 × fa) = 0.001K = 0.001K = 0.001Lever armz = min(0.5 + 0.5 × (1 - 3.53 × K)^{16,} 0.95) × d = 279 mmK = M / (d2 × fa) = 0.001K = 0.001Lever armz = min(0.5 + 0.5 × (1 - 3.53 × K)^{16,} 0.95) × d = 279 mmK = M / (d2 × fa) = 0.001K = 0.001Lever armz = min(0.5 + 0.5 × (1 - 3.53 × K)^{16,} 0.95) × d = 279 mmK = M / (d2 × fa) = 0.001K = 0.001Area of tension reinforcement requiredAartman = max(0.26 × fam / y, 0.0013) × d = 423 mm2/mArea of tension reinforcement requiredAartman = max(0.26 × fam / y, 0.0013) × d = 423 mm2/mMinimum area of reinforcement requiredAartman = max(0.26 × fam / y, 0.0013) × d = 423 mm2/mMinimum area of reinforcement requiredAartman = max(0.26 × fam / y, 0.0013) × d = 423 mm2/m$		
PASS - Maximum crack width is less than limiting crack widthRetangular section in shear - Section 6.2Design shear force \vee = 131 kN/mCadd = 0.18 / γ_0 = 0.120Cadd = 0.18 / γ_0 = 0.003 ν min (Adapsor / d, 0.02) = 0.003 ν min (Adapsor / d, 0.02) = 0.003 ν max (Cadd × k < (100 NP/mm 4 x ^{3/2} f a ^{0/3} = 0.458 N/mm ²)Design shear resistance - exp.6.2 a & 6.2b ν max (Cadd × k < (100 NP/mm 4 × p) × f a ^{0/3} = 0.458 N/mm ²)Design shear resistance - exp.6.2 a & 6.2b ν max (Cadd × k < (100 NP/mm 4 × p) × f a ^{0/3} = 0.458 N/mm ²)Design shear resistance exceeds design shear forceDesign shear resistance exceeds design shear forceDesign bending moment combination 1M = 1.3 kNm/mDepth of sectionM = 1.3 kNm/mDepth of neutral axisx = 2.5 x (d - 2) = 37 mmCheck stem design at propEver armC = 2 (d a.bars @ 2000 (CArea of tension reinforcement providedArea of tension reinforcement requiredArea of tension reinforce		
Rectangular section in shear - Section 6.2Design shear force $V = 131 \text{ kN/m}$ $Chet_c = 0.140 / y_{C} = 0.120$ $k = min(1 + \sqrt{200 mn / d}), 2) = 1.828Longitudinal reinforcement ratiop_1 = min(A_{atpow} / d, 0.02) = 0.003v_{min} = 0.035 N^{10/mm} \times 8^{3/2} \times fac^{0.5} = 0.458 N/mm^2Design shear resistance - exp.6.2a & 6.2bV_{Rdc} = max(Ced_c \times k \times (100 N^2/mm^4 \times p_1 \times fac)^{1/2}, v_{min}) \times dV/k_{rdc} = 0.980PASS - Design shear resistance exceeds design shear forceCheck stem design at propDepth of sectionh = 350 \text{ mm}Rectangular section in flexure - Section 6.1Design bending moment combination 1M / V_{rdc} = 0.980K' = 0.001K' = 0.000 c/cArea of tension reinforcement requiredA at prov = \pi \times \phi_{m}^2 / (4 \times Sart) = 565 mm^2/mMinimum area of reinforcement providedA at prov = \pi \times \phi_{m}^2 / (4 \times Sart) = 565 mm^2/mMaximum area of reinforcement requiredA at prov = max(0.26 \times fam / faq, 0.0013) \times d = 423 mm^2/mMaximum area of reinforcement requiredA at prov = \pi \times \phi_{m}^2 / (4 \times Sart) = 565 mm^2/mMinimum area of reinforcement requiredA at t prov = d - 748Destore the reduce design reference reinforcement ratiop = \sqrt{(fa/ 1 N/mn^2) / 1000 = 0.005}R$		w _k / w _{max} = 0.325
Design shear forceV = 131 kN/m $C_{Rdc} = 0.18 / rcc = 0.120$ k = min(1 + $\sqrt{(200 mm / d)}, 2) = 1.828$ Longitudinal reinforcement ratio $\rho_1 = min(A_{strow}/ d, 0.02) = 0.003$ $V_{mm} = 0.035 N^{12}/mm \times k^{32} \times f_a^{0.5} = 0.458 N/mm^2$ Design shear resistance - exp.6.2a & 6.2b $V_{Rdc} = max(C_{Rdc} \times k \times (100 N^2/mm^4 \times p_1 \times f_b)^{13}, v_{min}) \times d$ $V_{Rdc} = 133.6 kN/m$ $V_{Vadc} = 0.380$ PASS - Design shear resistance exceeds design shear forceDepth of sectionh = 350 mmRectangular section in flexure - Section 6.1Design for mom combination 1Despth to tension reinforcementd = h - cur - qur 1 / 2 = 294 mm K = 0.001 K = 0.001 K = 0.001Lever armz = min(0.5 + 0.5 × (1 - 3.53 × K)^{0.5}, 0.95) × d = 279 mmDepth to tension reinforcement requiredA strineq A (d'2 × fas) = 0.001 K = 0.001Lever armz = min(0.5 + 0.5 × (1 - 3.53 × K)^{0.5}, 0.95) × d = 279 mmPara of tension reinforcement providedA strineq A (d'2 × stri) = 565 mm^2/mInternor ment providedA strineq A (d'2 × stri) = 565 mm^2/mMaximum area of reinforcement providedA strineq = M (fyd × 2) = 10 mm^2/mTeresion reinforcement providedA strineq = M (fyd × 2) = 10 mm^2/mMaximum area of reinforcement exp.9.1NA strineq = M (fyd × stri) = 565 mm^2/mMaximum area of reinforcement ratio $\rho = \sqrt{(d_x / 1 N/mn^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = \sqrt{(d_x / 1 N/mn^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = \sqrt{(d_x / 1 N/mn^2) / 1000 = 0.005}$ Reference reinforcement ratio $\rho = (d_x / 1 N/mn^2)$		PASS - Maximum crack width is less than limiting crack width
$\begin{aligned} & C_{Rd,C} = 0.18 \ / y_C = 0.120 \\ & k = \min(1 + \sqrt{200 \ m/ 0}, 0) = 1.828 \\ & Longitudinal reinforcement ratio \\ & \rho_i = \min(A_{\mathsf{u,p_{rov}}, d, 0.02) = 0.003 \\ & \forall_{rot,c} = 0.035 \ N^{1/2}(mm \times k^{3/2} \times f_{a}^{0.5} = 0.458 \ N/mm^2 \\ & Design shear resistance - exp.6.2a \& 6.2b \\ & \mathsf{V_{Rd,c} = \operatorname{max}(C_{Rd,c} \times k \times (100 \ N^2/m^4 \times p \times f_{a})^{1/3}, v_{min}) \times d \\ & \forall_{Rd,c} = 133.6 \ kNVm \\ & \forall /V_{rd,c} = 0.380 \\ & PASS \cdot Design shear resistance exceeds design shear force \\ \hline \mathsf{Destign shear tersistance networks design at prop \\ & \mathsf{Depth of section \mathbf{h} = 350 \ mm \\ \hline Rectangular section in flexure - Section 6.1 \\ & \mathsf{Destign bending moment combination 1 \\ & \mathsf{d = h \cdot c_{u} \cdot \phi_{u} + 1/2 = 294 \ mm \\ & K = M / (d^2 \times f_{e}) = 0.001 \\ & K = 0.207 \\ \hline K = N = O C M \times K = M / (d^2 \times f_{e}) = 0.001 \\ & K = 0.207 \\ \hline L A = a \ f = h = S = M = M / M + M = M = M / M + M = $	Rectangular section in shear - Section 6.2	
$ \begin{aligned} & = \min(1 + \sqrt{200 mm / d}, 2) = 1.828 \\ & = \min(A_{Asprov} / d, 0.02) = 0.003 \\ & = \min(A_{Asprov} / d, 0.02) = 0.003 \\ & = \min(A_{Asprov} / d, 0.02) = 0.003 \\ & = \min(A_{Asprov} / d, 0.02) = 0.003 \\ & = \min(A_{Asprov} / d, 0.02) = 0.003 \\ & = \min(A_{Asprov} / d, 0.02) = 0.003 \\ & = \min(A_{Asprov} / d, 0.02) = 0.003 \\ & = \min(A_{Asprov} / d, 0.02) = 0.003 \\ & = \min(A_{Asprov} / d, 0.02) = 0.003 \\ & = \min(A_{Asprov} / d, 0.02) = 0.003 \\ & = \min(A_{Asprov} / d, 0.02) = 0.003 \\ & = \min(A_{Asprov} / d, 0.02) = 0.001 \\ & = \min(A_{Asprov} / d, 0.02) = 0.001 \\ & = \min(A_{Asprov} / d, 0.02) = 0.001 \\ & = \min(A_{Asprov} / d, 0.02) = 0.001 \\ & = \min(A_{Asprov} / d, 0.02) = 0.001 \\ & = (A_{Asprov} / d, 0.02) = 0.001 \\ & = (A_{Asprov} / d, 0.02) = 0.001 \\ & = (A_{Asprov} / d, 0.03) = 0.001 \\ & = (A_{Asprov} / d, 0.03) = (A_{Asprov} / d, 0.000) = (A_{Asprov}$	Design shear force	V = 131 kN/m
Longitudinal reinforcement ratio $\rho = min(A_{atp,pov} / d, 0.02) = 0.003$ $V_{min} = 0.035 N^{12}/mm \times k^{32} \times f_{ck}^{0.5} = 0.458 N/mm^2$ Design shear resistance - exp.6.2a & 6.2b $V_{Rdz} = max(C_{Rdz} \times k \times (100 N^2/mm^4 \times p_1 \times f_{ck})^{1/3}, V_{min}) \times d$ $V_{Rdz} = 133.6 kN/m$ $V / V_{Rdz} = 0.980$ PASS - Design shear resistance exceeds design shear forceCheck stem design at prop Depth of sectionh = 350 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 1M = 1.3 kNm/m $d = h - c_{at} - q_{bt1} / 2 = 294 mm$ $K = M / (d^2 \times f_{ab}) = 0.001$ $K' = 0.207$ Lever arm $z = min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 279 mm$ $X = 2.5 \times (d - z) = 37 mm$ Area of tension reinforcement required $A_{art,aeq} = M / (f_{yd} \times z) = 10 mm^2/m$ Tension reinforcement required $A_{art,aeq} = M / (f_{yd} \times z) = 10 mm^2/m$ Area of tension reinforcement required $A_{art,aeq} = 0.04 \times h = 14000 m^{2}/m$ Minimum area of reinforcement exp.9.1N $A_{st,min} = max(0.26 \times f_{cm} / f_{yk}, 0.0013) \times d = 423 mm^2/m$ Maximum area of reinforcement - exp.9.1N $A_{st,min} = max(0.26 \times f_{cm} / f_{yk}, 0.0013) \times d = 423 mm^2/m$ Maximum area of reinforcement - exp.9.1N $A_{st,max} = 0.04 \times h = 140000 mm^2/m$ $max(A_{st,t,eeq}, A_{st,min}) / A_{st,t,pov} = 0.748$ Deflection control - Section 7.4 PASS - Area or reinforcement requiredRequired tension reinforcement ratio $\rho = \sqrt{f_{ck} / 1 N/mm^2} / 1000 = 0.005$ Required tension reinforcement ratio $\rho = A_{st,t,eeq} / d = 0.000$ Required tension reinforcement ratio $\rho = A_{st,t,eeq} / d = 0.000$ Required tension reinf		$C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$
Vmin = $0.035 N^{1/2}/mm \times k^{3/2} \times f_{ck}^{0.5} = 0.458 N/mm^2$ Design shear resistance - exp.6.2a & 6.2bVRd.c = max(CRd.c × k × (100 N ² /mm ⁴ × pi × f_ck)^{1/3}, vmin) × dVRd.c = 133.6 kN/mV / Vrd.c = 0.980PASS - Design shear resistance exceeds design shear forceCheck stem design at propDepth of sectionh = 350 mmRectangular section in flexure - Section 6.1Design bending moment combination 1M = 1.3 kNm/mDepth to tension reinforcementd = h - car - \$\pmin 1 / 2 = 294 mmK = M / (d ² × f_a) = 0.001K' = 0.001K' = 0.001K' = 0.001K' = 0.001K' = 0.001K = 0.102 K - No compression reinforcement is requiredLever armz = min(0.5 + 0.5 × (1 - 3.53 × K)^{0.5}, 0.95) × d = 279 mmPapth of neutral axisx = 2.5 × (d - z) = 37 mmArea of tension reinforcement requiredAsrt.req = M / (fyd × 2) = 10 mm ² /mTension reinforcement provided12 dia.bars @ 200 c/cArea of tension reinforcement exp.9.1NAsrt.mei = max(0.26 × f_cm / fyk, 0.0013) × d = 423 mm ² /mMaximum area of reinforcement - exp.9.1NAsrt.mei = max(0.26 × f_cm / fyk, 0.0013) × d = 423 mm ² /mMaximum area of reinforcement - exp.9.1NAsrt.mei = 0.04 × h = 14000 mm ² /mmax(Asrt.mein) / Asrt.mein / fyk, 0.0013) × d = 423 mm ² /mMaximum area of reinforcement ratiop = $\sqrt{(f_{ck} / 1 N/mm^2) / 1000 = 0.005$ Required tension reinforcement ratiop = $\sqrt{(f_{ck} / 1 N/mm^2) / f_{ck} x_{art.reg} / Asrt.get / Asrt.ge$		k = min(1 + √(200 mm / d), 2) = 1.828
Design shear resistance - exp.6.2 a & 6.2 b $V_{Rd,c} = max(C_{Rd,c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_1 \times f_{cd})^{1/3}, \text{ v_min}) \times d$ $V_{Rd,c} = 133.6 \text{ kN/m}$ $V_{Rd,c} = 133.6 \text{ kN/m}$ $V_{Rd,c} = 0.980$ Design shear resistance exceeds design shear forceCheck stem design at prop Depth of sectionh = 350 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 1 $M = 1.3 \text{ kNm/m}$ Depth to tension reinforcementM = 1.3 kNm/m $d = h - c_{ar} - \phi_{art} / 2 = 294 \text{ mm}$ $K = M / (d^2 x f_{ab}) = 0.001$ $K' = W / (d^2 x f_{ab}) = 0.001$ $K' = 0.001$ $K' = 0.001$ $K = 0.000 A art, ang = M / (y_{av} \times z) = 10 \text{ nm}^2/\text{m}R = 0.001 A art, ang = M / (y_{av} \times z) = 10 \text{ nm}^2/\text{m}R = 0.001 A art, ang = M / (y_{av} \times z) = 10 \text{ nm}^2/\text{m}R = 0.001 A art, ang = M / (y_{av} \times z) = 10 \text{ nm}^2/\text{m}R = 0.000 A art, ang A = 0.004 \times h = 14000 \text{ nm}^2/\text{m}Maximum area of reinforcement exp.9.1 NA_{art,max} = 0.04 \times h = 14000 \text{ nm}^2/\text{m}Maximum area of reinforcement ratio\rho = \sqrt{(f_{av} / 1 \text{ N/rm}^2) / 1000 = 0.005R = 0.000R = 0.000 A art, ang / d = 0.000R = 0.000R = 0.000 A art, ang / d = 0.000R = 0.000 A art, ang / d = 0.000R = 0.000 A art, ang / d = 0.000R = 0.000 A art, ang / d = 0.000R = 0.000 A art, ang / d = 0.000 A art, ang / d = 0.000R = 0.000 A art, ang / d = 0.000 A art, ang / d = 0.000 A art, ang / A art, ang / A art, $	Longitudinal reinforcement ratio	$\rho_{I} = min(A_{sf.prov} / d, 0.02) = 0.003$
$V_{Rd,c} = 133.6 \text{ kN/m}$ $V/V_{Rd,c} = 0.980$ $PASS - Design shear resistance exceeds design shear force$ $Check stem design at prop$ Depth of section h = 350 mm $Rectangular section in flexure - Section 6.1$ Design bending moment combination 1 M = 1.3 kNm/m Depth to tension reinforcement d = h - car - \$\phi_{rr1} / 2 = 294 mm K = M / (d^2 × f_{ak}) = 0.001 K' = 0.207 $K' > K - No compression reinforcement is required Lever arm z = min(0.5 + 0.5 × (1 - 3.53 × K)^{0.5}, 0.95) × d = 279 mm Depth of neutral axis x = 2.5 × (d - 2) = 37 mm Area of tension reinforcement required Astriage M / (f_{rd} × z) = 10 mm2/m Tension reinforcement provided 12 dia.bars @ 200 c/c Area of tension reinforcement - exp.9.1N Astriage = M / (f_{rd} × Sart) = 565 mm2/m Minimum area of reinforcement - exp.9.1N Astriage = 0.04 × h = 14000 mm2/m max(Astriage, Astriage) - 0.748 PASS - Area of reinforcement required is greater than area of reinforcement required Deflection control - Section 7.4 Reference reinforcement ratio p = \sqrt{(f_{ck} / 1 \text{ N/mm^2}) / 1000 = 0.005 Required tension reinforcement ratio p = \sqrt{(f_{ck} / 1 \text{ N/mm^2}) / 1000 = 0.005 Required compression reinforcement ratio p = \sqrt{(f_{ck} / 1 \text{ N/mm^2}) / 1000 = 0.005 Required tension reinforcement ratio p = \sqrt{(f_{ck} / 1 \text{ N/mm^2}) / 1000 = 0.005 Required tension reinforcement ratio p = \sqrt{(f_{ck} / 1 \text{ N/mm^2}) / 1000 = 0.005 Required tension reinforcement ratio p = \sqrt{(f_{ck} / 1 \text{ N/mm^2}) / 1000 = 0.005 Required tension reinforcement ratio p = \sqrt{(f_{ck} / 1 \text{ N/mm^2}) / (f_{bk} \times A_{sr1.teq} / $		$v_{min} = 0.035 \ N^{1/2} / mm \times k^{3/2} \times f_{ck}^{0.5} = \textbf{0.458} \ N / mm^2$
$V / V_{Rdc} = 0.980$ <i>PASS - Design shear resistance exceeds design shear forceDepth of section</i> h = 350 mm <i>Rectangular section in flexure - Section 6.1</i> Design bending moment combination 1M = 1.3 kNm/mDepth to tension reinforcementd = h - car - φart / 2 = 294 mm $K = M / (d^2 x fax) = 0.001$ $K' = 0.207$ <i>Rever arm</i> $z = min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 279 mmDepth of neutral axisx = 2.5 \times (d - 2) = 37 mmArea of tension reinforcement requiredAartareq M / (kyd × 2) = 10 mm²/mArea of tension reinforcement providedAartareq = M / (kyd × 2) = 10 mm²/mMinimum area of reinforcement providedAartareq = M / (kyd × 2) = 10 mm²/mMaximum area of reinforcement providedAartareq = M / (kyd × 2) = 10 mm²/mMaximum area of reinforcement providedAartareq = M / (kyd × 1) = 565 mm²/mMaximum area of reinforcement providedAartareq = M / (kyd × 1) = 565 mm²/mMaximum area of reinforcement requiredAartareq = M / (kyd × 1) = 765 mm²/mMaximum area of reinforcement requiredAartareq = M / (kyd × 1) = 765 mm²/mReference reinforcement requiredPa + k_1 = 0.000Required tension reinforcement requiredPa + k_1 = 0.000Required tension reinforcement ratiop = \sqrt{(k_1 / 1 N/m²) / 1000 = 0.005}Required tension reinforcement ratiop = Aartare_1 / d = 0.000Required compression reinforcement ratiop = Aartare_1 / d = 0.000Required tension reinforcement ratiop = Aartare_1 / d = 0.000Required tansion reinforcement rat$	Design shear resistance - exp.6.2a & 6.2b	$V_{\text{Rd.c}} = max(C_{\text{Rd.c}} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{\text{ck}})^{1/3}, v_{\text{min}}) \times d$
PASS - Design shear resistance exceeds design shear forceDepth of sectionh = 350 mmDesign bending moment combination 1M = 1.3 kNm/mDepth to tension reinforcementd = h - car - $\phi_{eff} / 2 = 294$ mmDepth to tension reinforcementd = h - car - $\phi_{eff} / 2 = 294$ mmK = M / (d ² × fa) = 0.001K = M / (d ² × fa) = 0.001Depth to tension reinforcementz = min(0.5 + 0.5 × (1 - 3.53 × K)^{0.5}, 0.95) × d = 279 mmLever armz = min(0.5 + 0.5 × (1 - 3.53 × K)^{0.5}, 0.95) × d = 279 mmArea of tension reinforcement requiredAsrt.eq = M / (fyd × 2) = 10 mm²/mArea of tension reinforcement providedSart.eq = M / (fyd × 2) = 10 mm²/mArea of tension reinforcement providedAsrt.eq = M / (fyd × 2) = 10 mm²/mMaximum area of reinforcement providedAsrt.eq, artmin = max(0.26 × fam / fyd, 0.0013) × d = 423 mm²/mMaximum area of reinforcement exp.9.1NAsrt.max = 0.04 × h = 14000 mm²/mMaximum area of reinforcement requiredAsrt.max, Asrt.may / Asrt.prov = 0.748Deflection control - Section 7.4Reference reinforcement ratio $\rho = \sqrt{(fa/ 1 N/mm²) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = \sqrt{(fa/ 1 N/mm²) / 1000 = 0.005}$ Required compression reinforcement ratio $\rho = \sqrt{(fa/ 2 .ang) / d = 0.000}$ Required compression reinforcement ratio $\rho = A_{art.eq} / d = 0.000$ Quired tension reinforcement ratio $\rho = A_{art.eq} / d = 0.000$ Art.eq i vangi / System factor - App.7.17Ka = min(500 N/mm² / (fyk × A_art.req / A_art.pov), 1.5) = 1.5Heinforcement factor - exp.7.17 <t< td=""><td></td><td>V_{Rd.c} = 133.6 kN/m</td></t<>		V _{Rd.c} = 133.6 kN/m
Check stem design at prop Depth of sectionh = 350 mmRectangular section in flexure - Section 6.1 $M = 1.3 \text{ kNm/m}$ Design bending moment combination 1 $M = 1.3 \text{ kNm/m}$ Depth to tension reinforcement $d = h \cdot c_{sr} \cdot \phi_{sr1} / 2 = 294 \text{ mm}$ $K = M / (d^2 \times f_{sk}) = 0.001$ $K' = 0.207$ $K' > K - No compression reinforcement is requiredLever armz = \min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 279 \text{ mm}Depth of neutral axisx = 2.5 \times (d - 2) = 37 \text{ mm}Area of tension reinforcement requiredA_{sr1,eq} = M / (f_{yd} \times 2) = 10 \text{ mm}^2/mTension reinforcement provided12 dia.bars @ 200 c/cArea of tension reinforcement providedA_{sr1,max} = 0.04 \times h = 14000 \text{ mm}^2/mMinimum area of reinforcement - exp.9.1NA_{sr1,max} = 0.04 \times h = 14000 \text{ mm}^2/mMaximum area of reinforcement - cl.9.2.1.1(3)A_{sr1,max} = 0.04 \times h = 14000 \text{ mm}^2/mmax(0.26 × f_{cm} / f_{yk}, 0.0013) × d = 423 \text{ mm}^2/m$ PASS - Area of reinforcement provided is greater than area of reinforcement requiredDeflection control - Section 7.4Reference reinforcement ratio $\rho = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = A_{sr1,req} / d = 0.000$ Structural system factor - Axp.7.17 K		
Depth of sectionh = 350 mmRectangular section in flexure - Section 6.1M = 1.3 kNm/mDesign bending moment combination 1M = 1.3 kNm/mDepth to tension reinforcementd = h - Car - $\phi_{art} / 2 = 294$ mmK = M / (d ² × f_{5k}) = 0.001K' = 0.207K' = 0.207K' + K - No compression reinforcement is requiredLever armz = 2.5 × (d - 2) = 37 mmDepth of neutral axisx = 2.5 × (d - 2) = 37 mmArea of tension reinforcement requiredAur.req = M / (fyd × 2) = 10 mm²/mTension reinforcement providedAgrit.req = M / (fyd × 2) = 10 mm²/mMinimum area of reinforcement providedAgrit.req = 0.04 × h = 14000 mm²/mMaximum area of reinforcement - exp.9.1NAgrit.min = max(0.26 × fcm / fyk, 0.0013) × d = 423 mm²/mMaximum area of reinforcement - exp.9.1NAgrit.min = max(0.26 × fcm / fyk, 0.0013) × d = 423 mm²/mMaximum area of reinforcement - exp.9.1NAgrit.min = max(0.26 × fcm / fyk, 0.0013) × d = 423 mm²/mMaximum area of reinforcement - exp.9.1NAgrit.min = max(0.26 × fcm / fyk, 0.0013) × d = 423 mm²/mMaximum area of reinforcement requiredPo = $\sqrt{(fck / 1 N/mn²) / 1000 = 0.005}$ Packs - Area of reinforcement provided is greater than area of reinforcement requiredDeflection control - Section 7.4Po = $\sqrt{(fck / 1 N/mn²) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = \sqrt{(fck / 1 N/mn²) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = \sqrt{(fck / 1 N/mn²) / (fyk × Agrit.req / Agrit.prov), 1.5) = 1.5}$ Limiting span to depth ratio - exp.7.17Ka = min(500 N/mm² / (fyk × Agrit.req / Agrit.prov), 1.5) =		PASS - Design shear resistance exceeds design shear force
Rectangular section in flexure - Section 6.1Design bending moment combination 1 $M = 1.3 \text{ kNm/m}$ Depth to tension reinforcement $d = h - c_{sr} - \phi_{sr1} / 2 = 294 \text{ mm}$ $K = M / (d^2 \times f_{sk}) = 0.001$ $K' = 0.207$ <i>K' > K - No compression reinforcement is required</i> Lever arm $z = min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 279 \text{ mm}$ Depth of neutral axis $x = 2.5 \times (d - 2) = 37 \text{ mm}$ Area of tension reinforcement required $A_{sr1.req} = M / (f_{yd} \times z) = 10 \text{ mm}^2/m$ Tension reinforcement provided12 dia.bars @ 200 c/cArea of tension reinforcement - exp.9.1N $A_{sr1.req} = x \phi_{sr1}^2 / (4 \times s_{sr1}) = 565 \text{ mm}^2/m$ Maximum area of reinforcement - exp.9.1N $A_{sr1.min} = max(0.26 \times f_{cm} / f_{yk}, 0.0013) \times d = 423 \text{ mm}^2/m$ Maximum area of reinforcement - el.9.2.1.1(3) $A_{sr1.max} = 0.04 \times h = 14000 \text{ mm}^2/m$ max(A _{sr1.req} , A _{sr1.min}) / A _{sr1.prov} = 0.748PASS - Area of reinforcement provided is greater than area of reinforcement requiredDeflection control - Section 7.4Reference reinforcement ratiopo = $\sqrt[1]{f_{ck} / 1 N/mm^2} / 1000 = 0.005$ Required compression reinforcement ratiopo = $\sqrt[1]{f_{ck} / 1 N/mm^2} / f_{yk} \times A_{sr1.req} / A_{sr1.prov}$, $1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.aKs · K _b $(11 + 1.5 \times \sqrt[1]{f_{ck} / 1 N/mm^2}) \times p_0 / p + 3.2 \times \sqrt[1]{f_{ck} / 1 N/mm^2} \times (p_0 / p - 1)^{3/2}] = 19079.5$ Actual span to depth ratio	Check stem design at prop	
Design bending moment combination 1M = 1.3 kNm/mDepth to tension reinforcementd = h - csr - $\phi_{sr1} / 2 = 294$ mmK = M / (d² × fck) = 0.001K' = 0.207K' > K - No compression reinforcement is requiredLever armz = min(0.5 + 0.5 × (1 - 3.53 × K) ^{0.5} , 0.95) × d = 279 mmDepth of neutral axisx = 2.5 × (d - z) = 37 mmArea of tension reinforcement requiredAsrt.req = M / (fyd × z) = 10 mm²/mTension reinforcement provided12 dia.bars @ 200 c/cArea of tension reinforcement - exp.9.1NAsrt.min = max(0.26 × fcm / fyk, 0.0013) × d = 423 mm²/mMaximum area of reinforcement - exp.9.1NAsrt.min = max(0.26 × fcm / fyk, 0.0013) × d = 423 mm²/mMaximum area of reinforcement - exp.9.1NAsrt.min = max(0.26 × fcm / fyk, 0.0013) × d = 423 mm²/mMaximum area of reinforcement - exp.9.1NAsrt.min = max(0.26 × fcm / fyk, 0.0013) × d = 423 mm²/mMaximum area of reinforcement - exp.9.1NAsrt.min = max(0.26 × fcm / fyk, 0.0013) × d = 423 mm²/mMaximum area of reinforcement - exp.9.1NAsrt.max = 0.04 × h = 14000 mm²/mMaximum area of reinforcement required $\rho_0 = \sqrt{(fck / 1 N/mn²) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = A_{ort.req} / d = 0.000$ Required compression reinforcement ratio $\rho' = A_{srt.2mq} / d_2 = 0.000$ Structural system factor - table 7.4NKb 0.4Reinforcement factor - exp.7.17Ks e min(500 N/mm² / (fyk × Asrt.req / Asrt.prov), 1.5) = 1.5Limiting span to depth ratio - exp.7.16.aKs × Kb × [11 + 1.5 × √(fck / 1 N/mm²) × $\rho_0 / \rho + 3.2 × √(fck / 1 N/mm²) × (\rho_0 / \rho - 1)^{3/2}] = 19079.5<$	Depth of section	h = 350 mm
Depth to tension reinforcement $d = h - c_{sr} - \phi_{sr1} / 2 = 294 \text{ mm}$ $K = M / (d^2 \times f_{ck}) = 0.001$ $K' = 0.207$ $K' > K - No compression reinforcement is requiredLever armz = min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 279 \text{ mm}Depth of neutral axisx = 2.5 \times (d - z) = 37 \text{ mm}Area of tension reinforcement requiredA_{sr1.req} = M / (f_{yd} \times z) = 10 \text{ mm}^2/mTension reinforcement provided12 dia.bars @ 200 c/cArea of tension reinforcement - exp.9.1NA_{sr1.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 423 \text{ mm}^2/mMaximum area of reinforcement - c.l.9.2.1.1(3)A_{sr1.max} = 0.04 \times h = 14000 \text{ mm}^2/mmax(A_{sr1.req}, A_{sr1.min}) / A_{art.prov} = 0.748PASS - Area of reinforcement provided is greater than area of reinforcement requiredPeflection control - Section 7.4Reference reinforcement ratio\rho = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000 = 0.005}Required tension reinforcement ratio\rho = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000 = 0.005}Required compression reinforcement ratio\rho = A_{sr1.req} / d = 0.000Structural system factor - Table 7.4NK_b = 0.4Reinforcement factor - exp.7.17K_s s min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr1.req} / A_{sr1.prov}), 1.5) = 1.5Limiting span to depth ratio - exp.7.16.aK_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2) \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^2) \times (\rho_0 / \rho - 1)^{32}}] = 19079.5Actual span to depth ratio(h_{stem - hprop}) / d = 1.4$	Rectangular section in flexure - Section 6.1	
K = M / $(d^2 \times f_{ck}) = 0.001$ K' = 0.207 <i>K</i> > <i>K</i> - <i>No compression reinforcement is required</i> Lever arm $z = min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 279 mm$ Depth of neutral axis $x = 2.5 \times (d - z) = 37 mm$ Area of tension reinforcement required $A_{sr1.req} = M / (f_{yd} \times z) = 10 mm^2/m$ Tension reinforcement provided12 dia.bars @ 200 c/cArea of tension reinforcement provided $A_{sr1.neq} = M / (f_{yd} \times z) = 565 mm^2/m$ Minimum area of reinforcement - exp.9.1N $A_{srt.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 423 mm^2/m$ Maximum area of reinforcement - cl.9.2.1.1(3) $A_{srt.max} = 0.04 \times h = 14000 mm^2/m$ $max(A_{srt.neq}, A_{srt.nin}) / A_{srt.nin} / A_{srt.nev} = 0.748$ Deflection control - Section 7.4Reference reinforcement ratio $\rho_0 = \sqrt{(f_{ck} / 1 N/mm^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = \sqrt{(f_{ck} / 1 N/mm^2) / 1000 = 0.005}$ Required compression reinforcement ratio $\rho = \sqrt{(f_{ck} / 1 N/mm^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = \sqrt{(f_{ck} / 1 N/mm^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = \sqrt{(f_{ck} / 1 N/mm^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = \sqrt{(f_{ck} / 1 N/mm^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = A_{srt.areq} / d = 0.000$ Structural system factor - Table 7.4N $K_b = 0.4$ Reinforcement factor - exp.7.17 $K_s min(500 N/mm^2 / (f_{yk} \times A_{srt.neq} / A_{srt.prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a $K_s \times K_b \geq [11 + 1.5 \times \sqrt{(f_ck} / 1$	Design bending moment combination 1	M = 1.3 kNm/m
K' = 0.207Lever armz = min(0.5 + 0.5 × (1 - 3.53 × K)^{0.5}, 0.95) × d = 279 mmDepth of neutral axisx = 2.5 × (d - z) = 37 mmArea of tension reinforcement requiredAsr1.req = M / (fyd × z) = 10 mm²/mTension reinforcement provided12 dia.bars @ 200 c/cArea of tension reinforcement providedAsr1.req × $\phi_{sr1}^2 / (4 × s_{sr1}) = 565 mm²/m$ Minimum area of reinforcement - exp.9.1NAsr1.min = max(0.26 × f_ctm / fyk, 0.0013) × d = 423 mm²/mMaximum area of reinforcement - exp.9.1NAsr1.min = max(0.26 × f_ctm / fyk, 0.0013) × d = 423 mm²/mMaximum area of reinforcement - exp.9.1NAsr1.min = max(0.26 × f_ctm / fyk, 0.0013) × d = 423 mm²/mMaximum area of reinforcement - exp.9.1NAsr1.min = max(0.26 × f_ctm / fyk, 0.0013) × d = 423 mm²/mMaximum area of reinforcement - exp.9.1NAsr1.min = max(0.26 × f_ctm / fyk, 0.0013) × d = 423 mm²/mMaximum area of reinforcement - exp.9.1NAsr1.men = max(0.26 × f_ctm / fyk, 0.0013) × d = 423 mm²/mMaximum area of reinforcement - exp.9.1NAsr1.men = max(0.26 × f_ctm / fyk, 0.0013) × d = 423 mm²/mMaximum area of reinforcement - exp.9.1NAsr1.men = max(0.26 × f_ctm / fyk, 0.0013) × d = 423 mm²/mMaximum area of reinforcement - exp.9.1NAsr1.men = 0.04 × h = 14000 mm²/mReference reinforcement ratio $\rho = \sqrt{(f_ck / 1 N/mm²) / 1000 = 0.005}$ Required compression reinforcement ratio $\rho = Asr1.req / d = 0.000$ Structural system factor - Table 7.4NKb = 0.4Reinforcement factor - exp.7.17Ks = min(500 N/mm² / (fyk × Asr1.req / Asr1.prov), 1.5) = 1.5Limiting span to depth ratio - exp.7.16.aKs × Kb ×	Depth to tension reinforcement	d = h - c _{sr} - φ _{sr1} / 2 = 294 mm
K' > K - No compression reinforcement is requiredLever arm $z = min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 279 mm$ Depth of neutral axis $x = 2.5 \times (d - z) = 37 mm$ Area of tension reinforcement required $Asr1.req = M / (f_yd \times z) = 10 mm^2/m$ Tension reinforcement provided12 dia.bars @ 200 c/cArea of tension reinforcement provided $Asr1.req = \pi \times \phi_{sr1}^2 / (4 \times Ssr1) = 565 mm^2/m$ Minimum area of reinforcement - exp.9.1N $Asr1.min = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 423 mm^2/m$ Maximum area of reinforcement - cl.9.2.1.1(3) $A_{sr1.max} = 0.04 \times h = 14000 mm^2/m$ $max(A_{sr1.req}, A_{sr1.min}) / A_{sr1.prov} = 0.748$ PASS - Area of reinforcement provided is greater than area of reinforcement requiredDeflection control - Section 7.4Reference reinforcement ratio $\rho = \sqrt{(f_{ck} / 1 N/mm^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = A_{sr1.req} / d = 0.000$ Required compression reinforcement ratio $\rho' = A_{sr1.req} / d_2 = 0.000$ Structural system factor - Table 7.4N $K_b = 0.4$ Reinforcement factor - exp.7.17 $K_s min(500 N/mm^2 / (f_{yk} \times A_{sr1.req} / A_{sr1.prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a $K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 N/mm^2) \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^2) \times (\rho_0 / \rho - 1)^{3/2}] = 19079.5}$ Actual span to depth ratio(h_{stem - hprop}) / d = 1.4		
Lever arm $z = min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 279 mm$ Depth of neutral axis $x = 2.5 \times (d - z) = 37 mm$ Area of tension reinforcement required $A_{sr1.req} = M / (f_{yd} \times z) = 10 mm^2/m$ Tension reinforcement provided12 dia.bars @ 200 o/cArea of tension reinforcement provided $A_{sr1.req} = \pi \times \phi_{sr1}^2 / (4 \times s_{sr1}) = 565 mm^2/m$ Minimum area of reinforcement - exp.9.1N $A_{sr1.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 423 mm^2/m$ Maximum area of reinforcement - cl.9.2.1.1(3) $A_{sr1.max} = 0.04 \times h = 14000 mm^2/m$ $max(A_{sr1.req}, A_{sr1.min}) / A_{sr1.min} / A_{sr1.min} = 0.04 \times h = 14000 mm^2/m$ Deflection control - Section 7.4PASS - Area of reinforcement provided is greater than area of reinforcement requiredReference reinforcement ratio $\rho = \sqrt{(f_{ck} / 1 N/mm^2) / 1000 = 0.005$ Required tension reinforcement ratio $\rho = A_{sr1.eq} / d = 0.000$ Required compression reinforcement ratio $\rho' = A_{sr1.2.req} / d_2 = 0.000$ Structural system factor - Table 7.4N $K_b = 0.4$ Reinforcement factor - exp.7.17 $K_s min(500 N/mm^2 / (f_{yk} \times A_{sr1.req} / A_{sr1.prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a $K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_ck / 1 N/mm^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^2)} \times (\rho_0 / \rho - 1)^{3/2}] = 19079.5$ Actual span to depth ratio(h_{stem} - h_{prop}) / d = 1.4		
Depth of neutral axis $x = 2.5 \times (d - z) = 37 \text{ mm}$ Area of tension reinforcement required $A_{sr1.req} = M / (f_{yd} \times z) = 10 \text{ mm}^2/\text{m}$ Tension reinforcement provided12 dia.bars @ 200 c/cArea of tension reinforcement provided $A_{sr1.prov} = \pi \times \phi_{sr1}^2 / (4 \times s_{sr1}) = 565 \text{ mm}^2/\text{m}$ Minimum area of reinforcement - exp.9.1N $A_{sr1.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 423 \text{ mm}^2/\text{m}$ Maximum area of reinforcement - cl.9.2.1.1(3) $A_{sr1.max} = 0.04 \times h = 14000 \text{ mm}^2/\text{m}$ $max(A_{sr1.req}, A_{sr1.min}) / A_{sr1.prov} = 0.748$ Person of reinforcement provided is greater than area of reinforcement requiredDeflection control - Section 7.4 Reference reinforcement ratio $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = A_{sr1.req} / d = 0.000$ Required compression reinforcement ratio $\rho' = A_{sr1.2.req} / d_2 = 0.000$ Structural system factor - Table 7.4N $K_b = 0.4$ Reinforcement factor - exp.7.17 $K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr1.req} / A_{sr1.prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a $K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2) \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^2)} \times (\rho_0 / \rho - 1)^{3/2}] = 19079.5$ Actual span to depth ratio $(h_{stem} - h_{prop}) / d = 1.4$		
Area of tension reinforcement required $A_{sr1,req} = M / (f_{yd} \times z) = 10 \text{ mm}^2/\text{m}$ Tension reinforcement provided12 dia.bars @ 200 c/cArea of tension reinforcement provided $A_{sr1,rov} = \pi \times \phi_{sr1}^2 / (4 \times s_{sr1}) = 565 \text{ mm}^2/\text{m}$ Minimum area of reinforcement - exp.9.1N $A_{sr1,min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 423 \text{ mm}^2/\text{m}$ Maximum area of reinforcement - cl.9.2.1.1(3) $A_{sr1,max} = 0.04 \times h = 14000 \text{ mm}^2/\text{m}$ $max(A_{sr1,req}, A_{sr1,min}) / A_{sr1,prov} = 0.748$ Deflection control - Section 7.4 Reference reinforcement ratio $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = A_{sr1,req} / d = 0.000$ Required compression reinforcement ratio $\rho' = A_{sr1,lreq} / d = 0.000$ Structural system factor - Table 7.4N $K_b = 0.4$ Reinforcement factor - exp.7.17 $K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr1,req} / A_{sr1,prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a $K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2) \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^2) \times (\rho_0 / \rho - 1)^{3/2}}] = 19079.5$ Actual span to depth ratio(h_{stem} - h_{prop}) / d = 1.4		
Tension reinforcement provided12 dia.bars @ 200 c/cArea of tension reinforcement provided $A_{sr1,prov} = \pi \times \phi_{sr1}^2 / (4 \times s_{sr1}) = 565 \text{ mm}^2/\text{m}$ Minimum area of reinforcement - exp.9.1N $A_{sr1,min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 423 \text{ mm}^2/\text{m}$ Maximum area of reinforcement - cl.9.2.1.1(3) $A_{sr1,max} = 0.04 \times h = 14000 \text{ mm}^2/\text{m}$ max($A_{sr1,req}, A_{sr1,min} / A_{sr1,prov} = 0.748$ PASS - Area of reinforcement provided is greater than area of reinforcement requiredDeflection control - Section 7.4Reference reinforcement ratio $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = A_{sr1,req} / d = 0.000$ Required compression reinforcement ratio $\rho' = A_{sr1,2req} / d_2 = 0.000$ Structural system factor - Table 7.4N $K_b = 0.4$ Reinforcement factor - exp.7.17 $K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr1,req} / A_{sr1,prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a $K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2) \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 M/mm^2) \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 M/mm^2) \times (\rho_0 / \rho - 1)^{3/2}}] = 19079.5$ Actual span to depth ratio $(h_{stem} - h_{prop}) / d = 1.4$	-	
Area of tension reinforcement provided $A_{sr1,prov} = \pi \times \phi_{sr1}^2 / (4 \times s_{sr1}) = 565 \text{ mm}^2/\text{m}$ Minimum area of reinforcement - exp.9.1N $A_{sr1,min} = \max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 423 \text{ mm}^2/\text{m}$ Maximum area of reinforcement - cl.9.2.1.1(3) $A_{sr1,max} = 0.04 \times h = 14000 \text{ mm}^2/\text{m}$ $\max(A_{sr1,req}, A_{sr1,min}) / A_{sr1,prov} = 0.748$ Deflection control - Section 7.4 Reference reinforcement ratio $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = A_{sr1,req} / d = 0.000$ Required compression reinforcement ratio $\rho' = A_{sr1,req} / d_2 = 0.000$ Structural system factor - Table 7.4N $K_b = 0.4$ Reinforcement factor - exp.7.17 $K_s = \min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr1,req} / A_{sr1,prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a $K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times (\rho_0 / \rho - 1)^{3/2}] = 19079.5$ Actual span to depth ratio(hstem - hprop) / d = 1.4		
Minimum area of reinforcement - exp.9.1N $A_{sr1.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 423 mm^2/m$ Maximum area of reinforcement - cl.9.2.1.1(3) $A_{sr1.max} = 0.04 \times h = 14000 mm^2/m$ $max(A_{sr1.prov} = 0.748$ PASS - Area of reinforcement provided is greater than area of reinforcement requiredDeflection control - Section 7.4Reference reinforcement ratio $\rho_0 = \sqrt{(f_{ck} / 1 N/mm^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = A_{sr1.req} / d = 0.000$ Required compression reinforcement ratio $\rho' = A_{sr1.2,req} / d_2 = 0.000$ Structural system factor - Table 7.4N $K_b = 0.4$ Reinforcement factor - exp.7.17 $K_s = min(500 N/mm^2 / (f_{yk} \times A_{sr1.req} / A_{sr1.prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a $K_b \times (f_{bt} - 1)^{3/2} = 19079.5$ Actual span to depth ratio $(h_{stem} - h_{prop}) / d = 1.4$		
Maximum area of reinforcement - cl.9.2.1.1(3) $A_{sr1.max} = 0.04 \times h = 14000 \text{ mm}^2/\text{m}$ $max(A_{sr1.req}, A_{sr1.min}) / A_{sr1.prov} = 0.748$ PASS - Area of reinforcement provided is greater than area of reinforcement requiredDeflection control - Section 7.4Reference reinforcement ratio $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = A_{sr1.req} / d = 0.000$ Required compression reinforcement ratio $\rho' = A_{sr1.2.req} / d_2 = 0.000$ Structural system factor - Table 7.4N $K_b = 0.4$ Reinforcement factor - exp.7.17 $K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr1.req} / A_{sr1.prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a $K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times (\rho_0 / \rho - 1)^{3/2}] = 19079.5$ Actual span to depth ratio(h_{stem} - h_{prop}) / d = 1.4		
$max(A_{sr1.req}, A_{sr1.min}) / A_{sr1.prov} = 0.748$ $PASS - Area of reinforcement provided is greater than area of reinforcement required$ Deflection control - Section 7.4 Reference reinforcement ratio $p_0 = \sqrt{(f_{ck} / 1 N/mm^2) / 1000 = 0.005}$ Required tension reinforcement ratio $p = A_{sr1.req} / d = 0.000$ Required compression reinforcement ratio $p' = A_{sr1.2.req} / d_2 = 0.000$ Structural system factor - Table 7.4N $K_b = 0.4$ Reinforcement factor - exp.7.17 $K_s = min(500 N/mm^2 / (f_{yk} \times A_{sr1.req} / A_{sr1.prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a $K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 N/mm^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^2)} \times (\rho_0 / \rho - 1)^{3/2}] = 19079.5$ Actual span to depth ratio $(h_{stem} - h_{prop}) / d = 1.4$		
PASS - Area of reinforcement provided is greater than area of reinforcement requiredDeflection control - Section 7.4Reference reinforcement ratio $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = A_{sr1.req} / d = 0.000$ Required compression reinforcement ratio $\rho' = A_{sr1.2.req} / d_2 = 0.000$ Structural system factor - Table 7.4N $K_b = 0.4$ Reinforcement factor - exp.7.17 $K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr1.req} / A_{sr1.prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a $K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^2)} \times (\rho_0 / \rho - 1)^{3/2}] = 19079.5$ Actual span to depth ratio $(h_{stem} - h_{prop}) / d = 1.4$		
Reference reinforcement ratio $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = A_{sr1.req} / d = 0.000$ Required compression reinforcement ratio $\rho' = A_{sr1.2.req} / d_2 = 0.000$ Structural system factor - Table 7.4N $K_b = 0.4$ Reinforcement factor - exp.7.17 $K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr1.req} / A_{sr1.prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a $K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times (\rho_0 / \rho - 1)^{3/2}] = 19079.5$ Actual span to depth ratio $(h_{stem} - h_{prop}) / d = 1.4$	PASS - Area of reinfor	
Reference reinforcement ratio $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000 = 0.005}$ Required tension reinforcement ratio $\rho = A_{sr1.req} / d = 0.000$ Required compression reinforcement ratio $\rho' = A_{sr1.2.req} / d_2 = 0.000$ Structural system factor - Table 7.4N $K_b = 0.4$ Reinforcement factor - exp.7.17 $K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr1.req} / A_{sr1.prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a $K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times (\rho_0 / \rho - 1)^{3/2}] = 19079.5$ Actual span to depth ratio $(h_{stem} - h_{prop}) / d = 1.4$	Deflection control - Section 7.4	
Required tension reinforcement ratio $\rho = A_{sr1.req} / d = 0.000$ Required compression reinforcement ratio $\rho' = A_{sr1.2.req} / d_2 = 0.000$ Structural system factor - Table 7.4N $K_b = 0.4$ Reinforcement factor - exp.7.17 $K_s = min(500 N/mm^2 / (f_{yk} \times A_{sr1.req} / A_{sr1.prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a $K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 N/mm^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^2)} \times (\rho_0 / \rho - 1)^{3/2}] = 19079.5$ Actual span to depth ratio $(h_{stem} - h_{prop}) / d = 1.4$		$\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000} = 0.005$
Required compression reinforcement ratio $\rho' = A_{sr1.2.req} / d_2 = 0.000$ Structural system factor - Table 7.4N $K_b = 0.4$ Reinforcement factor - exp.7.17 $K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr1.req} / A_{sr1.prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a $K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times (\rho_0 / \rho - 1)^{3/2}] = 19079.5$ Actual span to depth ratio $(h_{stem} - h_{prop}) / d = 1.4$		
Structural system factor - Table 7.4N $K_b = 0.4$ Reinforcement factor - exp.7.17 $K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr1.req} / A_{sr1.prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a $K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times (\rho_0 / \rho - 1)^{3/2}] = 19079.5$ Actual span to depth ratio $(h_{stem} - h_{prop}) / d = 1.4$	-	-
Reinforcement factor - exp.7.17 $K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr1.req} / A_{sr1.prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a $K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times (\rho_0 / \rho - 1)^{3/2}] = 19079.5$ Actual span to depth ratio $(h_{stem} - h_{prop}) / d = 1.4$		
Limiting span to depth ratio - exp.7.16.a $K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 N/mm^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^2)} \times (\rho_0 / \rho - 1)^{3/2}] = 19079.5$ Actual span to depth ratio $(h_{stem} - h_{prop}) / d = 1.4$		$K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr1.req} / A_{sr1.prov}), 1.5) = 1.5$
Actual span to depth ratio $(h_{stem} - h_{prop}) / d = 1.4$		
		N/mm ²) × (ρ₀ / ρ - 1) ^{3/2}] = 19079.5
PASS - Span to depth ratio is less than deflection control limit	Actual span to depth ratio	$(h_{stem} - h_{prop}) / d = 1.4$
		PASS - Span to depth ratio is less than deflection control limit

Crack control - Section 7.3 Limiting crack width

w_{max} = **0.3** mm

Job Number: 150607 (St Johns Wood Park) Date: 17 Jul 2015

Variable load factor - EN1990 – Table A1.1	$\psi_2 = 0.6$	
Serviceability bending moment	M _{sls} = 0.7 kNm/m	
Tensile stress in reinforcement	$\sigma_{s} = M_{sls} / (A_{sr1,prov} \times z) = 4.7 \text{ N/mm}^{2}$	
Load duration	Long term	
Load duration factor	kt = 0.4	
Effective area of concrete in tension	$A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 104417 mm^2/m$	
Mean value of concrete tensile strength	$f_{ct.eff} = f_{ctm} = 2.8 \text{ N/mm}^2$	
Reinforcement ratio	$\rho_{p.eff} = A_{sr1.prov} / A_{c.eff} = 0.005$	
Modular ratio	$\alpha_{e} = E_{s} / E_{cm} = 6.19$	
Bond property coefficient	k ₁ = 0.8	
Strain distribution coefficient	k ₂ = 0.5	
	k ₃ = 3.4	
	k ₄ = 0.425	
Maximum crack spacing - exp.7.11	$s_{r.max} = k_3 \times c_{sr} + k_1 \times k_2 \times k_4 \times \phi_{sr1} / \rho_{p.eff} = 547 \text{ mm}$	
Maximum crack width - exp.7.8	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s})$	
	/ Es	
	w _k = 0.008 mm	
	$w_k / w_{max} = 0.026$	
	PASS - Maximum crack width is less than limiting crack width	
Rectangular section in shear - Section 6.2		
Design shear force	V = 49.3 kN/m	
	$C_{\text{Rd,c}} = 0.18 / \gamma_{\text{C}} = 0.120$	
	k = min(1 + √(200 mm / d), 2) = 1.825	
Longitudinal reinforcement ratio	ρι = min(A _{sf1.prov} / d, 0.02) = 0.001	
	v_{min} = 0.035 N ^{1/2} /mm × k ^{3/2} × f _{ck} ^{0.5} = 0.457 N/mm ²	
Design shear resistance - exp.6.2a & 6.2b	$V_{Rd.c}$ = max($C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}$, v_{min}) × d	
	V _{Rd.c} = 134.2 kN/m	
	V / V _{Rd.c} = 0.368	
	PASS - Design shear resistance exceeds design shear force	
Horizontal reinforcement parallel to face of ster	n - Section 9.6	
Minimum area of reinforcement – cl.9.6.3(1)	$A_{\text{sx.req}} = \text{max}(0.25 \times A_{\text{sr.prov}}, 0.001 \times t_{\text{stem}}) = \textbf{503} \text{ mm}^2\text{/m}$	
Maximum spacing of reinforcement - cl.9.6.3(2)	s _{sx_max} = 400 mm	
Transverse reinforcement provided	10 dia.bars @ 100 c/c	
Area of transverse reinforcement provided	$A_{sx,prov} = \pi \times \phi_{sx}^2 / (4 \times s_{sx}) = 785 \text{ mm}^2/\text{m}$	
PASS - Area of reinforce	ement provided is greater than area of reinforcement required	
Check base design at toe		
Depth of section	h = 400 mm	
Rectangular section in flexure - Section 6.1		
Design bending moment combination 1	M = 23.3 kNm/m	
Depth to tension reinforcement	$d = h - c_{bb} - \phi_{bb} / 2 = 319 \text{ mm}$	
Deptil to tension remotement		
	$K = M / (d^2 \times f_{ck}) = 0.008$ K' = 0.207	
Lever arm	$K' > K - No \ compression \ reinforcement \ is \ required$ z = min(0.5 + 0.5 × (1 - 3.53 × K) ^{0.5} , 0.95) × d = 303 mm	
Lever arm		
Depth of neutral axis	$x = 2.5 \times (d - z) = 40 \text{ mm}$	
Area of tension reinforcement required	$A_{bb,req} = M / (f_{yd} \times z) = 177 \text{ mm}^2/\text{m}$	
Tension reinforcement provided	12 dia.bars @ 200 c/c	
Area of tension reinforcement provided	$A_{bb,prov} = \pi \times \phi_{bb}^{2} / (4 \times s_{bb}) = 565 \text{ mm}^{2}/\text{m}$	
Minimum area of reinforcement - exp.9.1N	$A_{bb.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 459 \text{ mm}^2/\text{m}$	


Maximum area of reinforcement - cl.9.2.1.1(3)

$A_{bb.max} = 0.04 \times h = 16000 \text{ mm}^2/\text{m}$ max($A_{bb.req}$, $A_{bb.min}$) / $A_{bb.prov} = 0.811$

PASS - Area of reinforcement provided is greater than area of reinforcement required

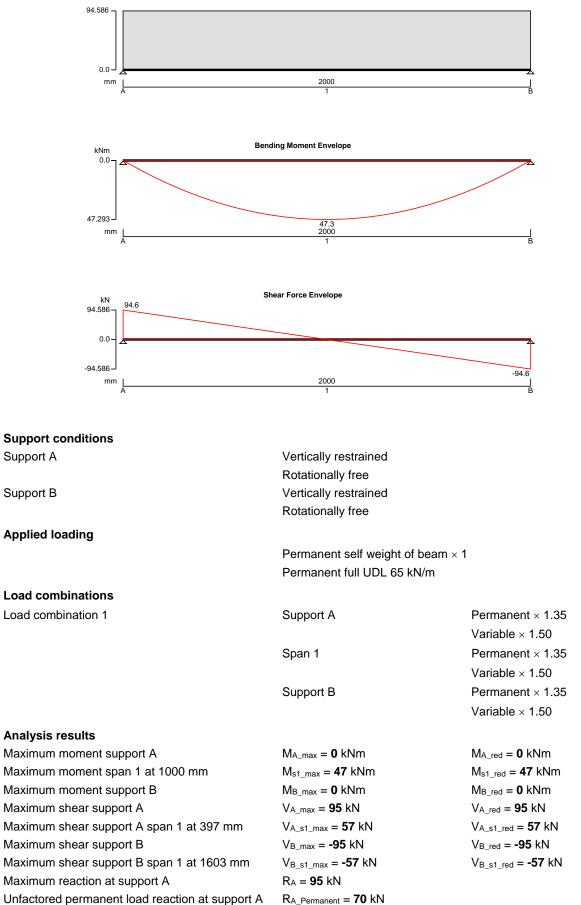
Crack control - Section 7.3	
Limiting crack width	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1	$\psi_2 = 0.6$
Serviceability bending moment	M _{sls} = 17.2 kNm/m
Tensile stress in reinforcement	$\sigma_{s} = M_{sls} / (A_{bb,prov} \times z) = 100.3 \text{ N/mm}^{2}$
Load duration	Long term
Load duration factor	k _t = 0.4
Effective area of concrete in tension	$A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 120042 \text{ mm}^2/\text{m}$
Mean value of concrete tensile strength	$f_{ct.eff} = f_{ctm} = 2.8 \text{ N/mm}^2$
Reinforcement ratio	$\rho_{p.eff} = A_{bb.prov} / A_{c.eff} = 0.005$
Modular ratio	$\alpha_{e} = E_{s} / E_{cm} = 6.19$
Bond property coefficient	k1 = 0.8
Strain distribution coefficient	k ₂ = 0.5
	k ₃ = 3.4
	k4 = 0.425
Maximum crack spacing - exp.7.11	$s_{r.max} = k_3 \times c_{bb} + k_1 \times k_2 \times k_4 \times \phi_{bb} \ / \ \rho_{p.eff} = 688 \ mm$
Maximum crack width - exp.7.8	$w_k = s_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), 0.6 \times \sigma_s)$
	/ Es
	w _k = 0.207 mm
	$w_k / w_{max} = 0.69$
	PASS - Maximum crack width is less than limiting crack width
Rectangular section in shear - Section 6.2	
Design shear force	V = 38.8 kN/m
	$C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$
	k = min(1 + √(200 mm / d), 2) = 1.792
Longitudinal reinforcement ratio	$\rho_{I} = min(A_{bb,prov} / d, 0.02) = 0.002$
	$v_{min} = 0.035 \ N^{1/2} / mm \times k^{3/2} \times f_{ck}^{0.5} = \textbf{0.444} \ N / mm^2$
Design shear resistance - exp.6.2a & 6.2b	$V_{Rd.c}$ = max($C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{ck})^{1/3}$, v_{min}) × d
	V _{Rd.c} = 141.7 kN/m
	V / V _{Rd.c} = 0.274
	PASS - Design shear resistance exceeds design shear force
Secondary transverse reinforcement to base - S	Section 9.3
Minimum area of reinforcement – cl.9.3.1.1(2)	$A_{bx,req} = 0.2 \times A_{bb,prov} = 113 \text{ mm}^2/\text{m}$
Maximum spacing of reinforcement – cl.9.3.1.1(3)	s _{bx_max} = 450 mm
Transverse reinforcement provided	10 dia.bars @ 200 c/c
Area of transverse reinforcement provided	$A_{bx,prov} = \pi \times \phi_{bx}^2 / (4 \times s_{bx}) = 393 \text{ mm}^2/\text{m}$
PASS - Area of reinforcement provided is greater than area of reinforcement required	

10 dia.bars @ 200 c/c transverse reinforcement in base

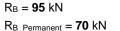
CAPPING BEAM

Propping force = 61.1kN/m Try 450x450Dp RC beam

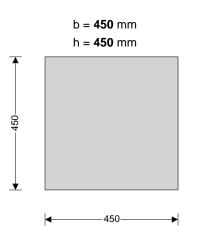
RC BEAM ANALYSIS & DESIGN (EN1992)


RC BEAM ANALYSIS & DESIGN (EN1992-1)

In accordance with UK national annex


TEDDS calculation version 2.1.15

Load Envelope - Combination 1


Maximum reaction at support B Unfactored permanent load reaction at support B

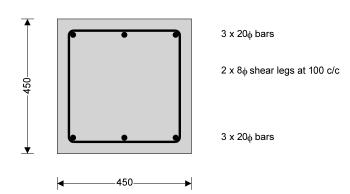
Rectangular section details

Section width Section depth

Concrete details (Table 3.1 - Strength and deformation characteristics for concrete)

Concrete strength class C28/35 f_{ck} = 28 N/mm² Characteristic compressive cylinder strength Characteristic compressive cube strength fck,cube = 35 N/mm² $f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 36 \text{ N/mm}^2$ Mean value of compressive cylinder strength $f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck}/ 1 \text{ N/mm}^2)^{2/3} = 2.8 \text{ N/mm}^2$ Mean value of axial tensile strength Ecm = 22 kN/mm² × [fcm/10 N/mm²]^{0.3} = 32308 N/mm² Secant modulus of elasticity of concrete Partial factor for concrete (Table 2.1N) γc = **1.50** Compressive strength coefficient (cl.3.1.6(1)) $\alpha_{\rm cc} = 0.85$ Design compressive concrete strength (exp.3.15) $f_{cd} = \alpha_{cc} \times f_{ck} \ / \ \gamma_C = \textbf{15.9} \ N/mm^2$ Maximum aggregate size hagg = 20 mm **Reinforcement details** Characteristic yield strength of reinforcement f_{vk} = 500 N/mm² γs = **1.15**

Partial factor for reinforcing steel (Table 2.1N) Design yield strength of reinforcement


Nominal cover to reinforcement

Nominal cover to top reinforcement Nominal cover to bottom reinforcement Nominal cover to side reinforcement

 $f_{yd} = f_{yk} / \gamma_S = 435 \text{ N/mm}^2$

Support A

Rectangular section in flexure (Section 6.1)

Minimum moment factor (cl.9.2.1.2(1))

 $\beta_1 = 0.25$

Actual tension bar spacing

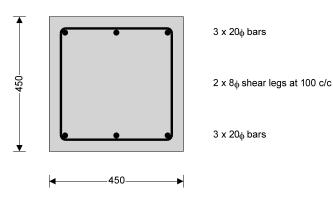
Design bending moment	$M = max(abs(M_{A_red}), \beta_1 \times abs(M_{s1_red})) = \textbf{12 kNm}$
Depth to tension reinforcement	$d = h - c_{nom_t} - \phi_v - \phi_{top} / 2 = 397 \text{ mm}$
Percentage redistribution	m _{rA} = 0 %
Redistribution ratio	$\delta = min(1 - m_{rA}, 1) = 1.000$
	$K = M / (b \times d^2 \times f_{ck}) = 0.006$
	K^{\prime} = 0.598 \times δ - 0.181 \times δ^2 - 0.21 = 0.207
	K' > K - No compression reinforcement is required
Lever arm	z = min((d / 2) × [1 + (1 - $3.53 \times K$) ^{0.5}], 0.95 × d) = 377 mm
Depth of neutral axis	x = 2.5 × (d - z) = 50 mm
Area of tension reinforcement required	$A_{s,req} = M / (f_{yd} \times z) = 72 \text{ mm}^2$
Tension reinforcement provided	$3 \times 20\phi$ bars
Area of tension reinforcement provided	A _{s,prov} = 942 mm ²
Minimum area of reinforcement (exp.9.1N)	$A_{s,min} = max(0.26 \times f_{ctm} \ / \ f_{yk}, \ 0.0013) \times b \times d = \textbf{257} \ mm^2$

Maximum area of reinforcement (cl.9.2.1.1(3)) $A_{s,max} = 0.04 \times b \times h = 8100 \text{ mm}^2$

PASS - Area of reinforcement provided is greater than area of reinforcement required

	sinch provided is greater than area of reinforcement required	
Minimum bottom reinforcement at supports		
Minimum reinforcement factor (cl.9.2.1.4(1))	β2 = 0.25	
Area of reinforcement to adjacent span	A _{s,span} = 942 mm ²	
Minimum bottom reinforcement to support	$A_{s2,min} = \beta_2 \times A_{s,span} = 236 \text{ mm}^2$	
Bottom reinforcement provided	$3 \times 20\phi$ bars	
Area of bottom reinforcement provided	A _{s2,prov} = 942 mm ²	
PASS - Area of reinforcement pro	vided is greater than minimum area of reinforcement required	
Rectangular section in shear (Section 6.2)		
Design shear force at support A	$V_{Ed,max} = abs(max(V_{A_max}, V_{A_red})) = 95 \text{ kN}$	
Angle of comp. shear strut for maximum shear	$\theta_{max} = 45 \text{ deg}$	
Maximum design shear force (exp.6.9)	$V_{Rd,max} = b \times z \times v_1 \times f_{cd} / (cot(\theta_{max}) + tan(\theta_{max})) = 717 \text{ kN}$	
PASS - Design shear force at support is less than maximum design shear force		
Design shear force span 1 at 397 mm	$V_{Ed} = max(V_{A_s1_max}, V_{A_s1_red}) = 57 \text{ kN}$	
Design shear stress	$v_{Ed} = V_{Ed} / (b \times z) = 0.334 \text{ N/mm}^2$	
Strength reduction factor (cl.6.2.3(3))	$v_1 = 0.6 \times [1 - f_{ck} / 250 \text{ N/mm}^2] = 0.533$	
Compression chord coefficient (cl.6.2.3(3))	$\alpha_{cw} = 1.00$	
Angle of concrete compression strut (cl.6.2.3)		
$\theta = \min(\max(0.5 \times$	Asin[min($2 \times v_{Ed} / (\alpha_{cw} \times f_{cd} \times v_1), 1$)], 21.8 deg), 45deg) = 21.8 deg	
Area of shear reinforcement required (exp.6.13)	$A_{sv,req} = v_{Ed} \times b / (f_{yd} \times cot(\theta)) = 138 \text{ mm}^2/\text{m}$	
Shear reinforcement provided	$2 \times 8\phi$ legs at 100 c/c	
Area of shear reinforcement provided	A _{sv,prov} = 1005 mm ² /m	
Minimum area of shear reinforcement (exp.9.5N)	$A_{sv,min}$ = 0.08 N/mm ² × b × (f _{ck} / 1 N/mm ²) ^{0.5} / f _{yk} = 381 mm ² /m	
PASS - Area of shear reinforcement provided exceeds minimum required		
Maximum longitudinal spacing (exp.9.6N)	s _{vl,max} = 0.75 × d = 298 mm	
PASS - Longitudinal spacing of shear reinforcement provided is less than maximum		
Crack control (Section 7.3)		
Maximum crack width	w _k = 0.3 mm	
Design value modulus of elasticity reinf (3.2.7(4))	E _s = 200000 N/mm ²	
Mean value of concrete tensile strength	$f_{ct,eff} = f_{ctm} = 2.8 \text{ N/mm}^2$	
Stress distribution coefficient	k _c = 0.4	
Non-uniform self-equilibrating stress coefficient	k = min(max(1 + (300 mm - min(h, b)) × 0.35 / 500 mm, 0.65), 1) = 0.90	

 $S_{bar} = (b - 2 \times (c_{nom_s} + \phi_v) - \phi_{top}) / (N_{top} - 1) = 172 \text{ mm}$


Maximum stress permitted (Table 7.3N)	σ _s = 262 N/mm ²		
Concrete to steel modulus of elast. ratio	$\alpha_{cr} = E_s / E_{cm} = 6.19$		
Distance of the Elastic NA from bottom of beam	$y = (b \times h^2 / 2 + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (h - d)) / (b \times h + A_{s,prov} \times (h - d)) / (b \times h + A_{s,prov} \times (h - d)) / (b \times h + A_{s,p$		
	1)) = 221 mm		
Area of concrete in the tensile zone	$A_{ct} = b \times y = 99424 \text{ mm}^2$		
Minimum area of reinforcement required (exp.7.1)	$A_{sc,min} = k_c \times k \times f_{ct,eff} \times A_{ct} \ / \ \sigma_s = \textbf{375} \ mm^2$		
PASS - Area of tension reinforcement provided exceeds minimum required for crack control			
Quasi-permanent value of variable action	ψ2 = 0.30		
Quasi-permanent limit state moment	$M_{QP} = abs(M_{A_c21}) + \psi_2 \times abs(M_{A_c22}) = 0 \text{ kNm}$		
Permanent load ratio	$R_{PL} = M_{QP} / M = 0.00$		
Service stress in reinforcement	$\sigma_{sr} = f_{yd} \times A_{s,req} \ / \ A_{s,prov} \times R_{PL} = \textbf{0} \ N/mm^2$		
Maximum bar spacing (Tables 7.3N)	S _{bar,max} = 300 mm		
DACO Maximum has an arise and a setup has an arise for an arise has the			

PASS - Maximum bar spacing exceeds actual bar spacing for crack control

Minimum	bar	spacing	
A 41 1			

Minimum bottom bar spacing Minimum allowable bottom bar spacing Minimum top bar spacing Minimum allowable top bar spacing
$$\begin{split} & \text{Sbot,min} = (b - 2 \times c_{\text{nom}_s} - 2 \times \phi_{\text{V}} - \phi_{\text{bot}}) / (N_{\text{bot}} - 1) = \textbf{172} \text{ mm} \\ & \text{Sbar}_\text{bot,min} = \max(\phi_{\text{bot}}, h_{\text{agg}} + 5 \text{ mm}, 20 \text{ mm}) + \phi_{\text{bot}} = \textbf{45} \text{ mm} \\ & \text{Stop,min} = (b - 2 \times c_{\text{nom}_s} - 2 \times \phi_{\text{V}} - \phi_{\text{top}}) / (N_{\text{top}} - 1) = \textbf{172} \text{ mm} \\ & \text{Sbar}_\text{top,min} = \max(\phi_{\text{top}}, h_{\text{agg}} + 5 \text{ mm}, 20 \text{ mm}) + \phi_{\text{top}} = \textbf{45} \text{ mm} \\ & \textbf{PASS - Actual bar spacing exceeds minimum allowable} \end{split}$$

<u>Mid span 1</u>

Rectangular section in flexure (Section 6.1) - Positive midspan moment

Design bending moment	M = abs(M _{s1_red}) = 47 kNm		
Depth to tension reinforcement	$d = h - c_{nom_b} - \phi_v - \phi_{bot} / 2 = 397 \text{ mm}$		
Percentage redistribution	$m_{rs1} = M_{s1_red} / M_{s1_max} - 1 = 0 \%$		
Redistribution ratio	$\delta = min(1 - m_{rs1}, 1) = 1.000$		
	$K = M / (b \times d^2 \times f_{ck}) = 0.024$		
	\textbf{K}^{\prime} = 0.598 \times δ - 0.181 \times δ^2 - 0.21 = 0.207		
	K' > K - No compression reinforcement is required		
Lever arm	z = min((d / 2) × [1 + (1 - $3.53 \times K$) ^{0.5}], 0.95 × d) = 377 mm		
Depth of neutral axis	x = 2.5 × (d - z) = 50 mm		
Area of tension reinforcement required	$A_{s,req} = M / (f_{yd} \times z) = 288 \text{ mm}^2$		
Tension reinforcement provided	$3 \times 20\phi$ bars		
Area of tension reinforcement provided	A _{s,prov} = 942 mm ²		
Minimum area of reinforcement (exp.9.1N)	$A_{s,min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times b \times d = \textbf{257} \ mm^2$		
Maximum area of reinforcement (cl.9.2.1.1(3))	$A_{s,max} = 0.04 \times b \times h = \textbf{8100} \text{ mm}^2$		
PASS - Area of reinforcement provided is greater than area of reinforcement required			

Rectangular section in shear (Section 6.2)

Shear reinforcement provided

 $2\times 8\varphi$ legs at 100 c/c


Area of shear reinforcement provided	A _{sv,prov} = 1005 mm ² /m
Minimum area of shear reinforcement (exp.9.5N)	$A_{sv,min}$ = 0.08 N/mm ² × b × (f _{ck} / 1 N/mm ²) ^{0.5} / f _{yk} = 381 mm ² /m
PASS - Area	a of shear reinforcement provided exceeds minimum required
Maximum longitudinal spacing (exp.9.6N)	$s_{vl,max} = 0.75 \times d = 298 \text{ mm}$
PASS - Longitudinal sp	pacing of shear reinforcement provided is less than maximum
Design shear resistance (assuming $cot(\theta)$ is 2.5)	$V_{prov} = 2.5 \times A_{sv,prov} \times z \times f_{yd} = \textbf{412.1 kN}$
Shear links provided valid betwee	en 0 mm and 2000 mm with tension reinforcement of 942 mm ²
Crack control (Section 7.3)	
Maximum crack width	w _k = 0.3 mm
Design value modulus of elasticity reinf (3.2.7(4))	E _s = 200000 N/mm ²
Mean value of concrete tensile strength	$f_{ct,eff} = f_{ctm} = 2.8 \text{ N/mm}^2$
Stress distribution coefficient	k _c = 0.4
Non-uniform self-equilibrating stress coefficient	k = min(max(1 + (300 mm - min(h, b)) × 0.35 / 500 mm, 0.65), 1) = 0.90
Actual tension bar spacing	$s_{bar} = (b - 2 \times (c_{nom_s} + \phi_v) - \phi_{bot}) / (N_{bot} - 1) = 172 \text{ mm}$
Maximum stress permitted (Table 7.3N)	$\sigma_{\rm s} = 262 \text{ N/mm}^2$
Concrete to steel modulus of elast. ratio	$\alpha_{\rm cr} = E_{\rm s} / E_{\rm cm} = 6.19$
Distance of the Elastic NA from bottom of beam	$y = (b \times h^2 / 2 + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) $
	1)) = 221 mm
Area of concrete in the tensile zone	$A_{ct} = b \times y = 99424 \text{ mm}^2$
Minimum area of reinforcement required (exp.7.1)	$A_{sc,min} = k_c \times k \times f_{ct,eff} \times A_{ct} / \sigma_s = 375 \text{ mm}^2$
	cement provided exceeds minimum required for crack control
Quasi-permanent value of variable action	ψ2 = 0.30
Quasi-permanent limit state moment	$M_{QP} = abs(M_{s1_c21}) + \psi_2 \times abs(M_{s1_c22}) = 35 \text{ kNm}$
Permanent load ratio	$R_{PL} = M_{QP} / M = 0.74$
Service stress in reinforcement	$\sigma_{sr} = f_{yd} \times A_{s,req} / A_{s,prov} \times R_{PL} = 99 \text{ N/mm}^2$
Maximum bar spacing (Tables 7.3N)	Sbar.max = 300 mm
	num bar spacing exceeds actual bar spacing for crack control
Minimum bar spacing	
Minimum bottom bar spacing	Sbot,min = (b - 2 × C_{nom_s} - 2 × ϕ_v - ϕ_{bot}) / (N _{bot} - 1) = 172 mm
Minimum allowable bottom bar spacing	$s_{bar_bot,min} = max(\phi_{bot}, h_{agg} + 5 \text{ mm}, 20 \text{ mm}) + \phi_{bot} = 45 \text{ mm}$
Minimum top bar spacing	$S_{top,min} = (b - 2 \times C_{nom_s} - 2 \times \phi_v - \phi_{top}) / (N_{top} - 1) = 172 \text{ mm}$
Minimum allowable top bar spacing	$s_{bar_top,min} = (0 - 2 \times c_{hom_s} - 2 \times \phi_v - \phi_{top}) / (N_{top} - 1) = 1/2$ mm $s_{bar_top,min} = max(\phi_{top}, h_{agg} + 5 mm, 20 mm) + \phi_{top} = 45 mm$
within anowable top bar spacing	PASS - Actual bar spacing exceeds minimum allowable
	PASS - Actual bal spacing exceeds minimum anowable
Deflection control (Section 7.4)	(
Reference reinforcement ratio	$\rho_{m0} = (f_{ck} / 1 \text{ N/mm}^2)^{0.5} / 1000 = 0.005$
Required tension reinforcement ratio	$\rho_m = A_{s,req} / (b \times d) = 0.002$
Required compression reinforcement ratio	ρ'_{m} = A _{s2,req} / (b × d) = 0.000
Structural system factor (Table 7.4N)	K _b = 1.0
Basic allowable span to depth ratio (7.16a)	$span_to_depth_{basic} = K_b \times [11 + 1.5 \times (f_{ck} / 1 N/mm^2)^{0.5} \times \rho_{m0} / \rho_m$
	+ 3.2 × (f _{ck} / 1 N/mm ²) ^{0.5} × (ρ_{m0} / ρ_{m} - 1) ^{1.5}] = 95.223
Reinforcement factor (exp.7.17)	$K_s = min(A_{s,prov} / A_{s,req} \times 500 \text{ N/mm}^2 / f_{yk}, 1.5) = 1.500$
Flange width factor	F1 = 1.000
Long span supporting brittle partition factor	F2 = 1.000
Allowable span to depth ratio	$span_to_depth_{allow} = min(span_to_depth_{basic} \times K_s \times F1 \times F2, 40$
	× K _b) = 40.000
Actual span to depth ratio	$span_to_depth_{actual} = L_{s1} / d = 5.038$
	PASS - Actual span to depth ratio is within the allowable limit

Job Number: 150607 (St Johns Wood Park) Date: 17 Jul 2015

Shear reinforcement provided

Support B

Rectangular section in flexure (Section 6.1)		
Minimum moment factor (cl.9.2.1.2(1))	$\beta_1 = 0.25$	
Design bending moment	$M = max(abs(M_{B_red}), \beta_1 \times abs(M_{s1_red})) = \textbf{12} \text{ kNm}$	
Depth to tension reinforcement	$d = h - c_{nom_t} - \phi_v - \phi_{top} / 2 = 397 \text{ mm}$	
Percentage redistribution	m _{rB} = 0 %	
Redistribution ratio	$\delta = min(1 - m_{rB}, 1) = 1.000$	
	$K = M / (b \times d^2 \times f_{ck}) = 0.006$	
	\textbf{K}^{\prime} = 0.598 \times δ - 0.181 \times δ^2 - 0.21 = 0.207	
	K' > K - No compression reinforcement is required	
Lever arm	z = min((d / 2) × [1 + (1 - $3.53 \times K$) ^{0.5}], 0.95 × d) = 377 mm	
Depth of neutral axis	x = 2.5 × (d - z) = 50 mm	
Area of tension reinforcement required	$A_{s,req} = M / (f_{yd} \times z) = 72 \text{ mm}^2$	
Tension reinforcement provided	$3 \times 20\phi$ bars	
Area of tension reinforcement provided	A _{s,prov} = 942 mm ²	
Minimum area of reinforcement (exp.9.1N)	$A_{s,min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times b \times d = 257 \text{ mm}^2$	
Maximum area of reinforcement (cl.9.2.1.1(3))	$A_{s,max} = 0.04 \times b \times h = \textbf{8100} \text{ mm}^2$	
PASS - Area of reinforcement provided is greater than area of reinforcement required		
Minimum bottom reinforcement at supports		
Minimum reinforcement factor (cl.9.2.1.4(1))	$\beta_2 = 0.25$	
Area of reinforcement to adjacent span	A _{s,span} = 942 mm ²	
Minimum bottom reinforcement to support	$A_{s2,min} = \beta_2 \times A_{s,span} = 236 \text{ mm}^2$	
Bottom reinforcement provided	$3 \times 20\phi$ bars	
Area of bottom reinforcement provided	A _{s2,prov} = 942 mm ²	
PASS - Area of reinforcement pro	vided is greater than minimum area of reinforcement required	
Rectangular section in shear (Section 6.2)		
Design shear force at support B	$V_{Ed,max} = abs(max(V_{B_max}, V_{B_red})) = 95 \text{ kN}$	
Angle of comp. shear strut for maximum shear	$\theta_{max} = 45 \text{ deg}$	
Maximum design shear force (exp.6.9)	$V_{Rd,max} = b \times z \times v_1 \times f_{cd} / (cot(\theta_{max}) + tan(\theta_{max})) = 717 \text{ kN}$	
PASS - Design sh	ear force at support is less than maximum design shear force	
Design shear force span 1 at 1603 mm	$V_{Ed} = abs(min(V_{B_s1_max}, V_{B_s1_red})) = 57 \text{ kN}$	
Design shear stress	$v_{Ed} = V_{Ed} / (b \times z) = 0.334 \text{ N/mm}^2$	
Strength reduction factor (cl.6.2.3(3))	v ₁ = 0.6 × [1 - f _{ck} / 250 N/mm ²] = 0.533	
Compression chord coefficient (cl.6.2.3(3))	α _{cw} = 1.00	
Angle of concrete compression strut (cl.6.2.3)		
$\theta = min(max(0.5 \times Asin[min(2 \times v_{Ed} / (\alpha_{cw} \times f_{cd} \times v_1), 1)], 21.8 \text{ deg}), 45\text{deg}) = 21.8 \text{ deg}$		
Area of shear reinforcement required (exp.6.13)	$A_{sv,req} = v_{Ed} \times b / (f_{yd} \times cot(\theta)) = 138 \text{ mm}^2/\text{m}$	

64 W:\Project File\Project Storage\2015\150607-St Johns Wood Park\2.0.Calcs\BIA\St Johns Wood Park Camden Basement Impact Assessment.docx

 $2\times 8\varphi$ legs at 100 c/c

Area of shear reinforcement provided	A _{sv,prov} = 1005 mm ² /m		
Minimum area of shear reinforcement (exp.9.5N)			
PASS - Area of shear reinforcement provided exceeds minimum required			
Maximum longitudinal spacing (exp.9.6N)	s _{vl,max} = 0.75 × d = 298 mm		
PASS - Longitudinal sp	acing of shear reinforcement provided is less than maximum		
Crack control (Section 7.3)			
Maximum crack width	w⊧ = 0.3 mm		
Design value modulus of elasticity reinf (3.2.7(4))	$E_s = 200000 \text{ N/mm}^2$		
Mean value of concrete tensile strength	$f_{ct,eff} = f_{ctm} = 2.8 \text{ N/mm}^2$		
Stress distribution coefficient	k _c = 0.4		
Non-uniform self-equilibrating stress coefficient	k = min(max(1 + (300 mm - min(h, b)) × 0.35 / 500 mm, 0.65),		
	1) = 0.90		
Actual tension bar spacing	$S_{bar} = (b - 2 \times (C_{nom_s} + \phi_v) - \phi_{top}) / (N_{top} - 1) = 172 \text{ mm}$		
Maximum stress permitted (Table 7.3N)	$\sigma_s = 262 \text{ N/mm}^2$		
Concrete to steel modulus of elast. ratio	$\alpha_{cr} = E_s / E_{cm} = 6.19$		
Distance of the Elastic NA from bottom of beam	y = (b × h ² / 2 + A _{s,prov} × (α_{cr} - 1) × (h - d)) / (b × h + A _{s,prov} × (α_{cr} -		
	1)) = 221 mm		
Area of concrete in the tensile zone	A _{ct} = b × y = 99424 mm ²		
Minimum area of reinforcement required (exp.7.1)	$A_{sc,min}$ = $k_c \times k \times f_{ct,eff} \times A_{ct} / \sigma_s$ = 375 mm ²		
PASS - Area of tension reinforcement provided exceeds minimum required for crack control			
Quasi-permanent value of variable action	$\psi_2 = 0.30$		
Quasi-permanent limit state moment	$M_{QP} = abs(M_{B_c21}) + \psi_2 \times abs(M_{B_c22}) = 0 \text{ kNm}$		
Permanent load ratio	$R_{PL} = M_{QP} / M = 0.00$		
Service stress in reinforcement	$\sigma_{sr} = f_{yd} \times A_{s,req} \ / \ A_{s,prov} \times R_{PL} = \textbf{0} \ N/mm^2$		
Maximum bar spacing (Tables 7.3N)	S _{bar,max} = 300 mm		
PASS - Maximum bar spacing exceeds actual bar spacing for crack control			
Minimum bar spacing			
Minimum bottom bar spacing	$s_{bot,min} = (b - 2 \times c_{nom_s} - 2 \times \phi_v - \phi_{bot}) / (N_{bot} - 1) = 172 \text{ mm}$		
Minimum allowable bottom bar spacing	$s_{bar_{bot,min}} = max(\phi_{bot}, h_{agg} + 5 mm, 20 mm) + \phi_{bot} = 45 mm$		

Minimum allowable bottom bar spacing $Sbd,min = (b - 2 \times chom_s - 2 \times \phi_V - \phi_{top}) / (N_{tot} - 1) = 172 mm$ Minimum allowable bottom bar spacing $S_{bar_bot,min} = max(\phi_{bot}, h_{agg} + 5 mm, 20 mm) + \phi_{bot} = 45 mm$ Minimum allowable top bar spacing $S_{top,min} = (b - 2 \times c_{nom_s} - 2 \times \phi_V - \phi_{top}) / (N_{top} - 1) = 172 mm$ Minimum allowable top bar spacing $S_{bar_top,min} = max(\phi_{top}, h_{agg} + 5 mm, 20 mm) + \phi_{top} = 45 mm$ PASS - Actual bar spacing exceeds minimum allowable

PILE WALL 2

Use same as pile wall 1

INTERNAL WALL 1

RC WALL DESIGN (EN1992)

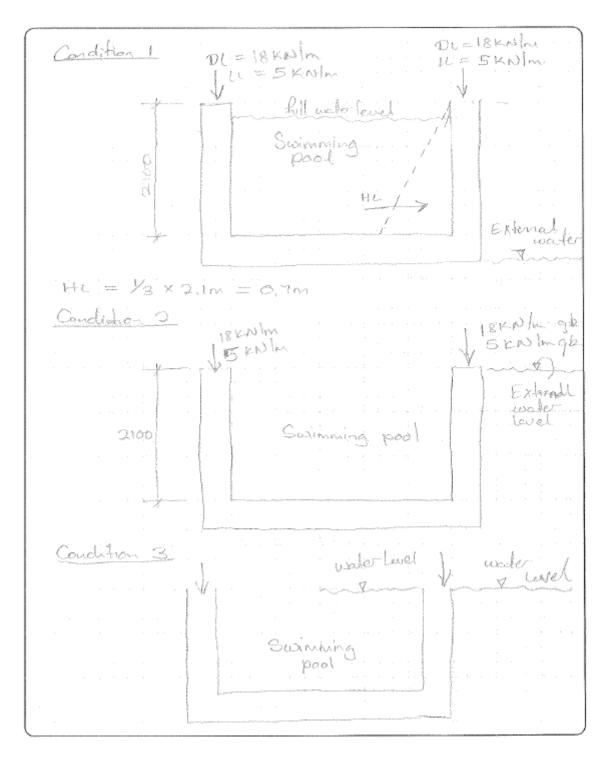
Loadings Dead loadDL=32kN/m Live loadLL=17kN/m

RC WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the UK national annex Tedds calculation version 1.0.08 sv h • • • C nom Wall geometry h = **300** mm b = **1000** mm/m Thickness Length Stability about minor axis Braced **Concrete details** Concrete strength class C28/35 Safety factor for concrete γc = **1.50** Coefficient α_{cc} $\alpha_{cc} = 0.85$ Maximum aggregate size d_g = **20** mm **Reinforcement details** Reinforcement in outer laver Vertical Nominal cover to outer layer c_{nom} = **30** mm Vertical bar diameter $\phi_{v} = 16 \text{ mm}$ Horizontal bar diameter $\phi_{h} = 10 \text{ mm}$ Spacing of vertical reinf s_v = **100** mm Spacing of horizontal reinft s_h = **100** mm Area of vertical reinft (per face) Asv = 2011 mm²/m Area of horiz. reinft (per face) A_{sh} = **785** mm²/m Partial safety factor for reinft Modulus of elasticity of reinft Es = 200000 MPa γs = 1.15 Fire resistance details Fire resistance period R = 60 min Exposure to fire Exposed on two sides Ratio of fire design axial load to design resistance $\mu_{fi} = 0.70$

Design axial load N_{Ed} = 73.5 kN/m Mt about minor axis at top $M_{top} = 7.0 \text{ kNm/m}$ Mt about minor axis at bottom Mbtm = 7.0 kNm/m Wall effective length Effective length $l_0 = 4000 \text{ mm}$ Check nominal cover for fire and bond requirements Min. cover reqd for bond c_{min,b} = **16** mm Min axis distance for fire a_{fi} = 10 mm

Axial load and bending moments from frame analysis

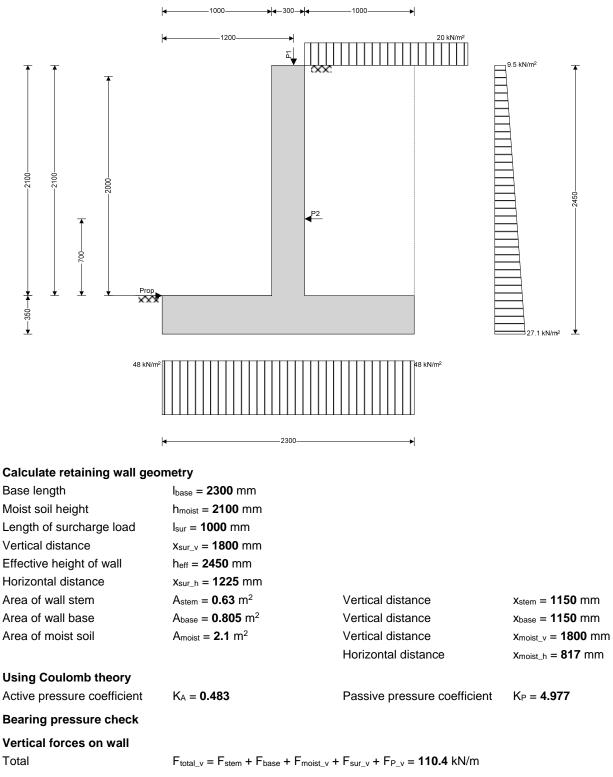

Allowance for deviations	$\Delta c_{dev} = 10 \text{ mm}$	Min allowable nominal cover	Cnom_min = 26.0 mm
	PASS - ti	he nominal cover is greater than th	he minimum required
Wall slenderness			
Slenderness ratio	$\lambda = 46.2$	Slenderness limit	$\lambda_{\text{lim}} = 103.9$
		$\lambda < \lambda_{lim}$ - Second order ef	fects may be ignored
Design bending moment			
Design mt about minor axis	M _{Ed} = 7.7 kNm/m		
Moment of resistance			
Mt of resist. about minor axis	M _{Rd} = 215.4 kNm/m		
PASS - The	moment of resistance abo	out the minor axis exceeds the des	ign bending moment

INTERNAL WALL 2

Use same as internal wall 1.

WALL 2 (CONDITION 1)

RETAINING WALL ANALYSIS & DESIGN (EN1992/EN1996/EN1997)



RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

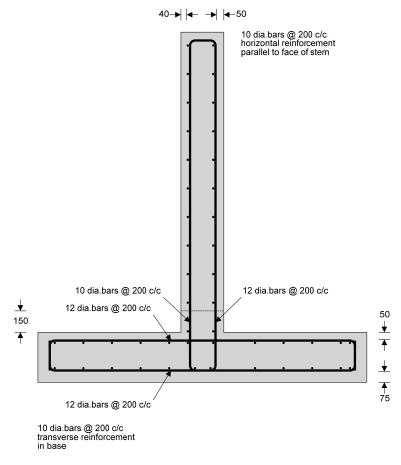
· · · · · · · · · · · · · · · · · · ·			Tedds calculation version 2.6.04
Retaining wall details			
Stem type	Cantilever		
Stem height	h _{stem} = 2100 mm		
Prop height	h _{prop} = 2000 mm		
Stem thickness	t _{stem} = 300 mm		
Angle to rear face of stem	$\alpha = 90 \deg$		
Stem density	$\gamma_{\text{stem}} = 25 \text{ kN/m}^3$		
Toe length	l _{toe} = 1000 mm		
Heel length	I _{heel} = 1000 mm		
Base thickness	t _{base} = 350 mm		
Base density	$\gamma_{\text{base}} = 25 \text{ kN/m}^3$		
Height of retained soil	h _{ret} = 2100 mm	Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm		
Retained soil properties			
Soil type	Organic clay		
Moist density	$\gamma_{mr} = 15 \text{ kN/m}^3$		
Saturated density	γsr = 15 kN/m ³		
Characteristic effective shear r	esistance angle	φ'r.k = 18 deg	
Characteristic wall friction angle $\delta_{r,k} = 9$ deg			
Base soil properties			
Soil type	Medium dense well graded sa	nd	
Moist density	γ _{mb} = 18 kN/m ³		
Characteristic effective shear r	esistance angle	φ' _{b.k} = 30 deg	
Characteristic wall friction angl	eδ _{b.k} = 15 deg		
Characteristic base friction and	le	$\delta_{bb.k} = 30 \text{ deg}$	
Presumed bearing capacity	P _{bearing} = 150 kN/m ²		
Loading details			
Permanent surcharge load	Surcharge _G = 10 kN/m ²		
Variable surcharge load	Surcharge _Q = 10 kN/m ²		
Vertical line load at 1200 mm	P _{G1} = 18 kN/m		
	P _{Q1} = 5 kN/m		
Horizontal line load at 700 mm	P _{G2} = -10 kN/m		
	P _{Q2} = -10 kN/m		

Horizontal forces on wallTotal $F_{total_h} = F_{moist_h} + F_{pass_h} + F_{sur_h} + F_{P_h} = 19.6 \text{ kN/m}$ Moments on wall $M_{total} = M_{stem} + M_{base} + M_{moist} + M_{sur} + M_P = 136.4 \text{ kNm/m}$ Total $M_{total} = M_{stem} + M_{base} + M_{moist} + M_{sur} + M_P = 136.4 \text{ kNm/m}$ Check bearing pressure $F_{prop_base} = 19.6 \text{ kN/m}$ Propping force $F_{prop_base} = 19.6 \text{ kN/m}$ Bearing pressure at toe $q_{toe} = 48 \text{ kN/m}^2$ Factor of safety $FOS_{bp} = 3.126$

PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

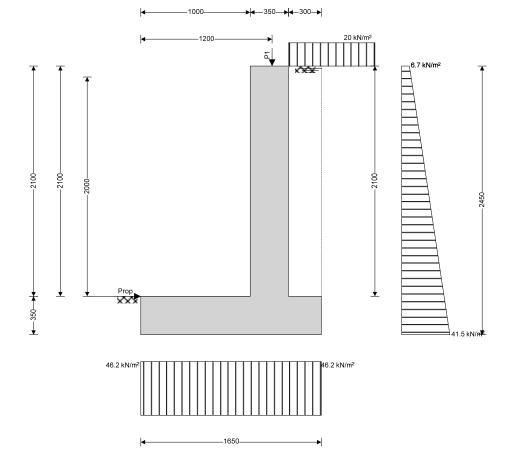

5		Ted	ds calculation version 2.6.04
Concrete details - Table 3.1 -	Strength and deformation ch	naracteristics for concrete	
Concrete strength class	C30/37		
Char.comp.cylinder strength	f _{ck} = 30 N/mm ²	Mean axial tensile strength	f _{ctm} = 2.9 N/mm ²
Secant modulus of elasticity	E _{cm} = 32837 N/mm ²	Maximum aggregate size	h _{agg} = 20 mm
Design comp.concrete strengtl	n f _{cd} = 17.0 N/mm²	Partial factor	γc = 1.50
Reinforcement details			
Characteristic yield strength	f _{yk} = 500 N/mm ²	Modulus of elasticity	E _s = 200000 N/mm ²
Design yield strength	f _{yd} = 435 N/mm ²	Partial factor	γs = 1.15
Cover to reinforcement			
Front face of stem	c _{sf} = 40 mm	Rear face of stem	c _{sr} = 50 mm
Top face of base	c _{bt} = 50 mm	Bottom face of base	c _{bb} = 75 mm
Check stem design at base of	of stem		
Depth of section	h = 300 mm		
Rectangular section in flexu	re - Section 6.1		
Design bending moment	M = 37.9 kNm/m	K = 0.021	K' = 0.207
		K' > K - No compression reinf	orcement is required
Tens.reinforcement required	A _{sr.req} = 376 mm ² /m		
Tens.reinforcement provided	12 dia.bars @ 200 c/c	Tens.reinforcement provided	A _{sr.prov} = 565 mm ² /m
Min.area of reinforcement	A _{sr.min} = 368 mm ² /m	Max.area of reinforcement	Asr.max = 12000
mm²/m			
PAS	S - Area of reinforcement pro	vided is greater than area of rei	inforcement required
Deflection control - Section	7.4		
Limiting span to depth ratio	67.1	Actual span to depth ratio	8.6
	PASS - Spa	an to depth ratio is less than de	eflection control limit
Crack control - Section 7.3			
Limiting crack width	w _{max} = 0.3 mm	Maximum crack width	w _k = 0.189 mm
	PASS - Ma	ximum crack width is less than	n limiting crack width
Rectangular section in shear	r - Section 6.2		
Design shear force	V = 39.9 kN/m	Design shear resistance	V _{Rd.c} = 123 kN/m
	PASS - D	esign shear resistance exceed	ls design shear force
Horizontal reinforcement par	rallel to face of stem - Sectior	9.6	
Min.area of reinforcement	A _{sx.req} = 300 mm ² /m	Max.spacing of reinforcement	s _{sx_max} = 400 mm
Trans.reinforcement provided	10 dia.bars @ 200 c/c	Trans.reinforcement provided	A _{sx.prov} = 393
mm²/m			
PAS	S - Area of reinforcement pro	vided is greater than area of rei	inforcement required
Check base design at toe			
Depth of section	h = 350 mm		
Rectangular section in flexu	re - Section 6.1		
Design bending moment	M = 27 kNm/m	K = 0.012	K' = 0.207
		K' > K - No compression reinf	orcement is required
Tens.reinforcement required	A _{bb.req} = 243 mm ² /m		

Tens.reinforcement provided mm ² /m	12 dia.bars @ 200 c/c	Tens.reinforcement provided	Abb.prov = 565
Min.area of reinforcement mm ² /m	A _{bb.min} = 405 mm ² /m	Max.area of reinforcement	Abb.max = 14000
PAS	S - Area of reinforcement prov	rided is greater than area of rea	inforcement required
Crack control - Section 7.3			
Limiting crack width	w _{max} = 0.3 mm	Maximum crack width	w _k = 0.259 mm
	PASS - Max	kimum crack width is less thar	n limiting crack width
Rectangular section in shear	r - Section 6.2		
Design shear force	V = 54 kN/m	Design shear resistance	V _{Rd.c} = 131.1 kN/m
	PASS - D	esign shear resistance exceed	ls design shear force
Rectangular section in flexu	re - Section 6.1		
Design bending moment	M = 8.5 kNm/m	K = 0.003	K' = 0.207
		K' > K - No compression reinf	orcement is required
Tens.reinforcement required	A _{bt.req} = 70 mm ² /m		
Tens.reinforcement provided	12 dia.bars @ 200 c/c	Tens.reinforcement provided	$A_{bt.prov} = 565 \text{ mm}^2/\text{m}$
Min.area of reinforcement mm²/m	A _{bt.min} = 443 mm ² /m	Max.area of reinforcement	A _{bt.max} = 14000
PAS	S - Area of reinforcement prov	rided is greater than area of re	inforcement required
Crack control - Section 7.3			
Limiting crack width	w _{max} = 0.3 mm	Maximum crack width	w _k = 0.043 mm
	PASS - Max	kimum crack width is less thar	n limiting crack width
Rectangular section in shear	r - Section 6.2		
Design shear force	V = 17.1 kN/m	Design shear resistance	V _{Rd.c} = 138.9 kN/m
	PASS - D	esign shear resistance exceed	ls design shear force
Secondary transverse reinfo	rcement to base - Section 9.3		
Min.area of reinforcement	A _{bx.req} = 113 mm ² /m	Max.spacing of reinforcement	s _{bx_max} = 450 mm
Trans.reinforcement provided mm ² /m	10 dia.bars @ 200 c/c	Trans.reinforcement provided	A _{bx.prov} = 393
BAS	S - Aros of rainforcomant prov	vided is greater than area of re	inforcoment required

PASS - Area of reinforcement provided is greater than area of reinforcement required

WALL 2 (CONDITION 2)

RETAINING WALL ANALYSIS & DESIGN (EN1992/EN1996/EN1997)


RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.6.04

Retaining wall details			
Stem type	Cantilever		
Stem height	h _{stem} = 2100 mm		
Prop height	h _{prop} = 2000 mm		
Stem thickness	t _{stem} = 350 mm		
Angle to rear face of stem	α = 90 deg		
Stem density	γ _{stem} = 25 kN/m ³		
Toe length	l _{toe} = 1000 mm		
Heel length	I _{heel} = 300 mm		
Base thickness	t _{base} = 350 mm		
Base density	$\gamma_{\text{base}} = 25 \text{ kN/m}^3$		
Height of retained soil	h _{ret} = 2100 mm	Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm		
Height of water	h _{water} = 2100 mm		
Water density	γ _w = 9.8 kN/m ³		
Retained soil properties			
Soil type	Medium dense well graded sa	and	
Moist density	γ _{mr} = 21 kN/m ³		
Saturated density	γsr = 23 kN/m ³		
Characteristic effective shear	resistance angle	φ'r.k = 30 deg	
Characteristic wall friction ang	$le \delta_{r.k} = 0 deg$		
Base soil properties			
Soil type	Medium dense well graded sa	and	
Moist density	γ _{mb} = 18 kN/m ³		
Characteristic effective shear	resistance angle	φ' _{b.k} = 30 deg	
Characteristic wall friction ang	$le \delta_{b.k} = 15 deg$		
Characteristic base friction an	gle	δ _{bb.k} = 30 deg	
Presumed bearing capacity	P _{bearing} = 150 kN/m ²		
Loading details			
Permanent surcharge load	Surcharge _G = 10 kN/m ²		
Variable surcharge load	Surcharge _Q = 10 kN/m ²		
Vertical line load at 1200 mm	P _{G1} = 18 kN/m		
	P _{Q1} = 5 kN/m		

Calculate	retaining	wall	geometry
oulouluto	rotannig	man	goomouy

Base length	I _{base} = 1650 mm					
Saturated soil height	h _{sat} = 2100 mm					
Moist soil height	h _{moist} = 0 mm					
Length of surcharge load	l _{sur} = 300 mm					
Vertical distance	x _{sur_v} = 1500 mm					
Effective height of wall	h _{eff} = 2450 mm					
Horizontal distance	x _{sur_h} = 1225 mm					
Area of wall stem	A _{stem} = 0.735 m ²	Vertical distance	x _{stem} = 1175 mm			
Area of wall base	A _{base} = 0.578 m ²	Vertical distance	x _{base} = 825 mm			
Area of saturated soil	A _{sat} = 0.63 m ²	Vertical distance	x _{sat_v} = 1500 mm			
		Horizontal distance	x _{sat_h} = 817 mm			
Area of water	A _{water} = 0.63 m ²	Vertical distance	x _{water_v} = 1500 mm			
		Horizontal distance	Xwater_h = 817 mm			
Using Coulomb theory						
Active pressure coefficient	Ka = 0.333	Passive pressure coefficient	K _P = 4.977			
Bearing pressure check						
Vertical forces on wall						
Total	F _{total_v} = F _{stem} + F _{base} + F _{sat_v} + F _{water_v} + F _{sur_v} + F _{P_v} = 76.3 kN/m					
Horizontal forces on wall						
Total	F _{total_h} = F _{sat_h} + F _{moist_h} + F _{pass_h} + F _{water_h} + F _{sur_h} = 53.7 kN/m					
Moments on wall						
Total	M _{total} = M _{stem} + M _{base} + M _{sat} + N	M _{moist} + M _{water} + M _{sur} + M _P = 37 kM	Nm/m			

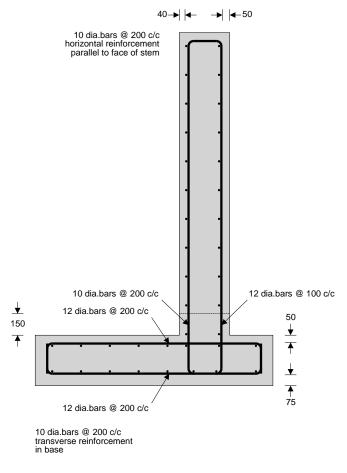
Check bearing pressure

Propping force	F _{prop_base} = 53.7 kN/m		
Bearing pressure at toe	q _{toe} = 46.2 kN/m ²	Bearing pressure at heel	q _{heel} = 46.2 kN/m ²
Factor of safety	FoS _{bp} = 3.244		
	PASS - Allowable bearing p	ressure exceeds maximum app	plied bearing pressure

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National **Annex incorporating National Amendment No.1**

Tedds calculation version 2.6.04


Concrete details - Table 3.1 - S	Strength and deformation cha C30/37	aracteristics for concrete	
Char.comp.cylinder strength	f _{ck} = 30 N/mm ²	Mean axial tensile strength	f _{ctm} = 2.9 N/mm ²
Secant modulus of elasticity	E _{cm} = 32837 N/mm ²	Maximum aggregate size	h _{agg} = 20 mm
Design comp.concrete strength	f _{cd} = 17.0 N/mm ²	Partial factor	γc = 1.50
Reinforcement details			
Characteristic yield strength	f _{yk} = 500 N/mm ²	Modulus of elasticity	E _s = 200000 N/mm ²
Design yield strength	f _{yd} = 435 N/mm ²	Partial factor	γs = 1.15
Cover to reinforcement			
Front face of stem	c _{sf} = 40 mm	Rear face of stem	c _{sr} = 50 mm
Top face of base	c _{bt} = 50 mm	Bottom face of base	c _{bb} = 75 mm
Check stem design at base of	f stem		
Depth of section	h = 350 mm		
Rectangular section in flexure	e - Section 6.1		
Design bending moment	M = 50.6 kNm/m	K = 0.019	K' = 0.207
		K' > K - No compression reinfo	prcement is required
Tens.reinforcement required	A _{sr.req} = 416 mm ² /m		
Tens.reinforcement provided mm ² /m	12 dia.bars @ 100 c/c	Tens.reinforcement provided	A _{sr.prov} = 1131
Min.area of reinforcement	A _{sr.min} = 443 mm ² /m	Max.area of reinforcement	A _{sr.max} = 14000
mm²/m			
PASS	- Area of reinforcement prov	ided is greater than area of rei	nforcement required
Deflection control - Section 7.	.4		
Limiting span to depth ratio	76.8	Actual span to depth ratio	7.1
	PASS - Spa	n to depth ratio is less than de	eflection control limit
Crack control - Section 7.3			
Limiting crack width	w _{max} = 0.3 mm	Maximum crack width	w _k = 0.115 mm
	PASS - Max	imum crack width is less than	limiting crack width
Rectangular section in shear	- Section 6.2		
Design shear force	V = 62.2 kN/m	Design shear resistance	V _{Rd.c} = 138.9 kN/m
	PASS - De	esign shear resistance exceed	s design shear force
Horizontal reinforcement para	allel to face of stem - Section	9.6	
Min.area of reinforcement	A _{sx.req} = 350 mm ² /m	Max.spacing of reinforcement	s _{sx_max} = 400 mm
Trans.reinforcement provided	10 dia.bars @ 200 c/c	Trans.reinforcement provided	A _{sx.prov} = 393
mm²/m			
PASS	- Area of reinforcement prov	ided is greater than area of rei	nforcement required
Check base design at toe			
Depth of section	h = 350 mm		

Rectangular section in flexu	re - Section 6.1		
Design bending moment	M = 25.7 kNm/m	K = 0.012	K' = 0.207
		K' > K - No compression reinf	orcement is required
Tens.reinforcement required	A _{bb.req} = 231 mm ² /m		
Tens.reinforcement provided mm ² /m	12 dia.bars @ 200 c/c	Tens.reinforcement provided	A _{bb.prov} = 565
Min.area of reinforcement mm ² /m	A _{bb.min} = 405 mm ² /m	Max.area of reinforcement	A _{bb.max} = 14000
PAS	S - Area of reinforcement pro	vided is greater than area of rea	inforcement required
Crack control - Section 7.3			
Limiting crack width	w _{max} = 0.3 mm	Maximum crack width	w _k = 0.247 mm
	PASS - Ma	ximum crack width is less thar	n limiting crack width
Rectangular section in shea	r - Section 6.2		
Design shear force	V = 51.3 kN/m	Design shear resistance	V _{Rd.c} = 131.1 kN/m
	PASS - L	Design shear resistance exceed	ls design shear force
Rectangular section in flexu	re - Section 6.1		
Design bending moment	M = 1.9 kNm/m	K = 0.001	K' = 0.207
		K' > K - No compression reinf	orcement is required
Tens.reinforcement required	A _{bt.req} = 16 mm ² /m		
Tens.reinforcement provided	12 dia.bars @ 200 c/c	Tens.reinforcement provided	$A_{bt,prov} = 565 \text{ mm}^2/\text{m}$
Min.area of reinforcement mm ² /m	A _{bt.min} = 443 mm ² /m	Max.area of reinforcement	A _{bt.max} = 14000
PAS	S - Area of reinforcement pro	vided is greater than area of re	inforcement required
Crack control - Section 7.3			
Limiting crack width	w _{max} = 0.3 mm	Maximum crack width	w _k = 0.013 mm
	PASS - Ma	ximum crack width is less thar	n limiting crack width
Rectangular section in shea	r - Section 6.2		
Design shear force	V = 12.7 kN/m	Design shear resistance	V _{Rd.c} = 138.9 kN/m
	PASS - L	Design shear resistance exceed	ls design shear force
Secondary transverse reinfo	rcement to base - Section 9.3	3	
Min.area of reinforcement	A _{bx.req} = 113 mm ² /m	Max.spacing of reinforcement	S _{bx_max} = 450 mm
Trans.reinforcement provided mm ² /m	10 dia.bars @ 200 c/c	Trans.reinforcement provided	A _{bx.prov} = 393
PAS	S - Area of reinforcement pro	vided is greater than area of re-	inforcement required

PASS - Area of reinforcement provided is greater than area of reinforcement required

WALL 2 (CONDITION 3)

Water is on both sides of the wall therefer the wall is more stable

Reference				[]								
	Uplift						_					
		/										
	Wall DL		kN/m					Wall DL	54	kN/m		
	VV =	0.3	m									
				Span=	6.4	m			_ ↓			
		\longleftrightarrow				<u> </u>					1	
										Water =	3.2	m
					H =	ļ.,	3.2	m				
	[]			[]								
		- 10 C	Slab Thicl									
Heel=	0			Slab =	6.4							
	←→					> ↓	,					
				Ţ							♦	
		/	Toe =		m							
		<u> </u>	Toewidth=	0	m							
			<u> </u>			<u> </u>				ļ		
<u>Uplift C</u>	alc	/										
Total De	ead Loac		Slab=		kN/m							
		Toe ;	and heel =		kN/m							
			Wall =	48								
			Soil=(+		0) x 2=	0		6.4	
			ead load =		kN/m							
Total Up	<u>olift Force</u>	<u>)=</u>		224	kN/m			f.o.s.=	1.08	No Globa	al Uplift	
						<u> </u>						
<u>Slab Up</u>	<u>əlift</u>	/										
			Slab =	10	kN/m			Uplift =	32			
		Service	Moment =	-112.64	kNm/m							
		-	n moment =		kNm/m							
	Fact	ored Desi	ign shear =	-83.84	kN/m							
<u>Global</u>	<u>Heave</u>			ļ'								
		-	f building =		kN/m							
	Weig	ht of soil r	removed =	403.2	<u> </u>			I				
				L								
			% change			pla	_				eave prote	
	Wide of	Heavepr	otection =	4.04861	m	pla	се	4.05	m of Slab	o area as	heave pro	otection

Noise and Nuisance Control	The contractor is to follow the good working practices and guidance laid down in the "Considerate Constructors Scheme". The hours of working will be limited to those allowed; 8am to 5pm Monday to Friday and Saturday Morning 8am to 1pm. None of the practices cause undue noise that one would typically expect from a construction site. The conveyor belt typically runs at around 70dB. The site has car parking to the front to which the skip will be stored. The site will be hoarded with 8' site hoarding to prevent access. The hours of working will further be defined within the Party Wall Act. The site is to be hoarded to minimise the level of direct noise from the site. Ground floor slab is not being removed minimising the vibration and sound to adjacent properties. While working in the basement the work generally requires hand tools to be used. The level of noise generally will be no greater than that of digging of soil. The noise is reduced and muffled by the working heing undertaken undertare under the level of and a cond muffled by the
	works being undertaken underground. A level of noise from a basement is lower than typical ground level construction due to this.
СТМР	The council may require a Construction Traffic Management plan to be produced. This is outside the brief of the Basement impact assessment and is not covered within Croft's Brief

Appendix A ; Construction Method Statement

Basement Method Statement

1B St Johns Wood Park: London W8

Client Information: Mike Ofori

Contents

1.0	<u>1B St Johns Wood Park</u>	86
<u>1.</u>	Basement Formation Suggested Method Statement.	86
<u>2.</u>	Enabling Works	87
<u>3.</u>	Piling Sequencing	87
<u>4.</u>	Demolition, Recycling, Dust/Noise Control and Site Hoarding	89
<u>5.</u>	Trench sheet design and temporary prop Calculations	90
2.0	Standard Lap Trench Sheeting	91
3.0	KD4 sheets	95

1B St Johns Wood Park

1. Basement Formation Suggested Method Statement.

- 1.1. This method statement provides an approach which will allow the basement design to be correctly considered during construction, and the temporary support to be provided during the works. The Contractor is responsible for the works on site and the final temporary works methodology and design on this site and any adjacent sites.
- 1.2. This method statement for 1B St Johns Wood Park has been written by a Chartered Engineer. The sequencing has been developed considering guidance from ASUC.
- 1.3. This method has been produced to allow for improved costings and for inclusion in the party wall Award. Should the contractor provide alternative methodology the changes shall be at their own costs, and an Addendum to the Party Wall Award will be required. 4.0
- 1.4. Contact party wall surveyors to inform them of any changes to this method statement.
- 1.5. The approach followed in this design is; to remove load from above and place loads onto supporting steelwork, then to cast retaining walls in underpin sections at the new basement level.
- 1.6. A soil investigation has been undertaken. The soil conditions are London Clay formation 5.0
- 1.7. The Chemical laboratory testing revealed below. Lead specialists are to be called in before work commences to remove the lead from the ground and treat the soil. Work should only commence once lead contamination has been eliminated.
 6.0

Chemical laboratory testing revealed an elevated level of lead in one sample of Made Ground. A level of 470mg/kg was noted within BH1/0.30m bgl in excess of the LQM/CIEH S4ULs of 210mg/kg for a *"Residential with homegrown produce"* scenario.

- 1.8. The bearing pressures have been limited to 150kN/m². This is standard loadings for local ground conditions and acceptable to building control and their approvals.
- 1.9. The water table is expected to encountered at 0.5m BGL 7.0
- 1.10. Structural Water proofer (Not Croft) must comment on the design proposed and ensure they are satisfied that proposals will provide adequate water proofing.
 8.0
- 1.1. Provide engineers with concrete mix, supplier, deliver and placement methods 2 weeks prior to first pour. Site mixing of concrete should not be employed apart from in small sections <1m³. Contractor must provide method on how to achieve site mixing to correct specification, contractor must undertake tool box talks with staff to ensure site quality is maintained.

2. Enabling Works

- 2.1. The site is to be hoarded with ply sheet to 2.2m to prevent unauthorised public access.
- 2.2. Licenses for Skips and conveyors to be posted on hoarding
- 2.3. Provide protection to public where conveyor extends over footpath. Depending on the requirements of the local authority, construct a plywood bulkhead onto the pavement. Hoarding to have a plywood roof covering, night-lights and safety notices.
 9.0
- 2.4. Dewater: Water is expected at 0.5 depths
 - 10.0

2.4.1.Place a bore hole to the rear of the property down to a depth of 6m

2.4.2. Pump water away from site.

2.5. On commencement of construction the contractor should report any discrepancies to the structural engineer in order that the detailed design may be modified as necessary.

3. Piling Sequencing

- 3.1. Piles are to be installed at different levels and positions around the development. All piles are installed from the same level and cut down as required.
 - 11.0
 - 3.1.1.Prior to bringing the piling rig on site, check with the piling contractor the requirements of a working platform and install to their design and specification if required.
 - 3.1.2. Mark out datum line to determine various surface heights
 - 12.0
 - 3.1.3. Mark out pile sequence locations as specified by Engineer's drawings.

13.0

3.1.4. Following the sequencing guidance from the Engineers drawings mark out proposed pile position with a pair of reference markers at 1.0m from the pile pin, approximately 90 degrees apart.

14.0

3.1.5.Rig operator to set up over the pile pin position and position auger relative to reference marks. Directed and checked by banks man.

15.0

3.1.6.The flap at the tip of the auger is closed and secured. Auger tip lowered to ground level and position rechecked. Drilling to commence upon banks man approval.

16.0

3.1.7.Concrete is prepared while piling gang grout up concrete pump, hoses and flight, concrete pump operator to check concrete complies with design mix. Concrete held in agitator.

17.0

3.1.8.Rig operator augers to require design depth. Reference makers are to be used to check pile position during the first few meters of drilling.

18.0

3.1.9. If obstruction encountered, Engineer to be notified of pile number and depth. Move rig to next pile position whilst obstruction removal is dealt with. Contractor to be

advised on procedure should obstruction not be removable. If necessary, pile bores to be backfilled and made safe. Open excavation to be protected when open.

19.0

- 20.0
 - 3.1.10. When design depth reached, the auger is to be kept rotating to allow spoil in the bore to rise.
- 3.1.11. Concrete can be pumped to rig while rig operator monitors instrumentation and adjust auger rate of withdrawal accordingly.

21.0

3.1.12. Pressure, concrete flow and over-break to be monitored throughout operation.

22.0

3.1.13. During the withdrawal the rig operator is to activate the flight cleaner. If an automatic cleaner is not fitted to the rig then the piling gang must clean the flight manually to prevent spoil/ arising travelling above head height – this will be controlled by the piling foreman who must ensure the auger is not rotating when it is manually cleaned.

23.0

3.1.14. When auger tip reaches platform level, concrete pumping is stopped.

24.0

- 3.1.15. Attendant excavator as directed by the banks man clears spoil and concrete slurry from pile heap.
- 25.0
- 3.1.16. Banks man to check position of the cage in the pile, centrering where necessary. Reinforcement generally to be installed flush with Piling Platform Level (PPL). Anchor pile reinforcement or threaded bars that project above piling platform to have protective caps.

26.0

- 3.1.17. Concrete testing cube samples to be taken as per engineering specification. 27.0
- 3.1.18. Rig is moved onto next pile in the sequence and positioned as above, with piles installed as per points 3.1.5 3.1.12

28.0

3.1.19. Equipment to be cleaned and maintained as per normal methods.

29.0

3.1.20. This sequence of piling is to continue until all perimeter piles have been installed.

30.0

- 3.1.21. Cast internal bases and columns from basement to ground floor level. 31.0
- 3.2. Once all piles have been installed, bases and steel columns have been installed and additional temporary piles included, the next step sequence is to cast capping beams and install the steelwork at ground level that which in permanent condition will prop the external perimeter of the basement.
- 3.3. When steelwork has been set up, the excavation of the central mass can begin using mechanic excavators (an opening big enough to allow for access for machinery and spoil removal should be left.
 32.0
- 3.4. As excavation continues down, a dewatering system will need to be considered. There are several method of doing this but the most common method is to install well points from which ground water can be pumped as mentioned in point 2.4.1 33.0

3.5. Once excavation is level done to the intermediate floor level the steelwork is installed: this will prop the external perimeter of the basement in permanent condition as the ground floor steelwork. Effectively the basement is constructed in a top down method for other works to be the development to be undertaken at the same time as the basement dig out. 34.0

4. Demolition, Recycling, Dust/Noise Control and Site Hoarding

- 4.1. Demolition work is to take place within the hoarded confines of the materials such as stock bricks, timber etc. are to be recycled where possible. To minimise dust and dirt from demolition the following measures shall be implemented:
 - 4.1.1. Any debris or dust or dirt falling on the street and public highway will be cleared as it occurs by designated cleaners and washed down fully every night.
 - 4.1.2. Demolished materials are to be removed to a skip placed in front of the site which will be emptied regularly as required.
 - 4.1.3. All brickwork and concrete demolition work is to be constantly watered to reduce airborne dust
- 4.2. Building work which can be heard at the boundary of the site will not be carried out on Sundays or bank holidays and will be carried out within working hours as agreed by the council.

5. Trench sheet design and temporary prop Calculations

This calculation has been provided for the trench sheet and prop design of standard underpins in the temporary condition. There are gaps left between the sheeting and as such no water pressure will occur. Any water present will flow through the gaps between the sheeting and will be required to pump out.

Trench sheets should be placed at centres to deal with the ground. It is expected that the soil between the trench sheeting will arch. Looser soil will required tighter centres. It is typical for underpins to be placed at 1200c/c, in this condition the highest load on a trench sheet is when 2 nos trench sheets are used. It is for this design that these calculations have been provided.

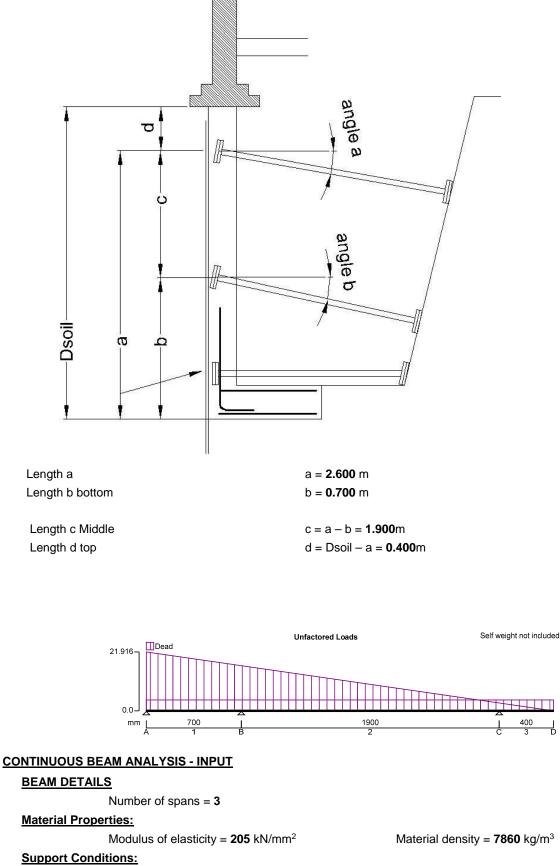
Soil and ground conditions are variable. Typically one finds that in the temporary condition clays are more stable and the C_u (cohesive) values in clay reduce the risk of collapse. It is this cohesive nature that allows clays to be cut into a vertical slope. For these calculations weak sand and gravels have been assumed The soil properties are:

Surcharge	sur = 10. kN/m ²	
Soil density	$\delta = 20 \text{ kN/m}^3$	
Angle of friction Soil depth	φ = 25 ° Dsoil = 3000.000 mm	
	$\begin{aligned} k_a &= (1 - \sin(\phi)) \ / \ (1 + \sin(\phi)) \\ k_p &= 1 \ / \ k_a \end{aligned}$	= 0.406 = 2.464
Soil Pressure bottom Surcharge pressure	soil = k _a * δ * Dsoil surcharge = sur * k _a	= 21.916 kN/m ² = 4.059 kN/m ²

STANDARD LAP TRENCH SHEETING

STANDARD LAP

The overlapping trench sheeting profile is designed primarily for construction work and also temporary deployment.



Effective width per sheet (mm)	330
Thickness (mm)	3.4
Depth (mm)	35
Weight per linear metre (kg/m)	10.8
Weight per m² (kg)	32.9
Section modulus per metre width (cm³)	48.3
Section modulus per sheet (cm³)	15.9
I value per metre width (cm*)	81.7
I value per sheet (cm²)	26.9
Total rolled metres per tonne	92.1

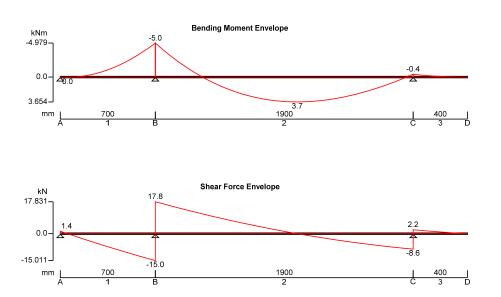
Sxx = 15.9 cm³ py = 275N/mm² lxx = 26.9cm⁴ A = (1m² * 32.9kg/m²) / (330mm * 7750kg/m³) = **12864.125**mm²

Support AVertically "Restrained"Rotationally "Free"Support BVertically "Restrained"Rotationally "Free"Support CVertically "Restrained"Rotationally "Free"

92

Support D	Vertically "Fi	ree"			Rotational	y "Free"		
Span Definiti	ons:							
Span 1	Length = 700	mm	Cross-sectiona	al area = 12	2864 mm ²	Moment of	inertia = 269.×1	1 0 3 mm4
Span 2	Length = 190	0 mm	Cross-sectiona	al area = 12	864 mm ²	Moment of	inertia = 269.×1	1 0 3 mm4
Span 3	Length = 400	mm	Cross-sectiona	al area = 12	2864 mm ²	Moment of	inertia = 269.×1	1 0 3 mm4
LOADING DE	TAILS							
Beam Loads:	-							
Load 1	UDL Dead loa	ad 4.1 kN/	m					
Load 2	VDL Dead loa	ad 21.9 kN	/m to 0.0 kN/m					
LOAD COMB	INATIONS							
Load combin	ation 1							
Span 1	1×Dead							
Span 2	1×Dead							
Span 3	1×Dead							
CONTINUOUS B	EAM ANALYSI	S - RESUI	<u>_TS</u>					
Unfactored s	upport reaction	<u>15</u>						
	Dead (kN)							
Support A	-1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Support B	-32.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Support C	-10.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Support D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Support Read	ctions - Combin	nation Su	<u>mmary</u>					
Support A	Max react = -	1.4 kN	Min react = -1	.4 kN	Max mom =	• 0.0 kNm	Min mom = 0	. 0 kNm
Support B	Max react = -	32.8 kN	Min react = -	32.8 kN	Max mom =	• 0.0 kNm	Min mom = 0	. 0 kNm
Support C	Max react = -	10.8 kN	Min react = -1	1 0.8 kN	Max mom =	• 0.0 kNm	Min mom = 0	. 0 kNm

Max react =	0.0 kN	Min react =	0.0 kN


Beam Max/Min results - Combination Summary
--

Support D

Maximum shear = **17.8** kN Maximum moment = **3.7** kNm Maximum deflection = **21.0** mm Minimum shearF_{min} = -15.0 kN Minimum moment = -5.0 kNm Minimum deflection = -14.3 mm

Min mom = 0.0 kNm

Max mom = 0.0 kNm

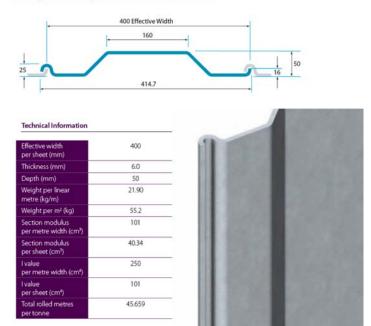
93 W:\Project File\Project Storage\2015\150607-St Johns Wood Park\2.0.Calcs\BIA\St Johns Wood Park Camden Basement Impact Assessment.docx

Number of sheets Nos = 2

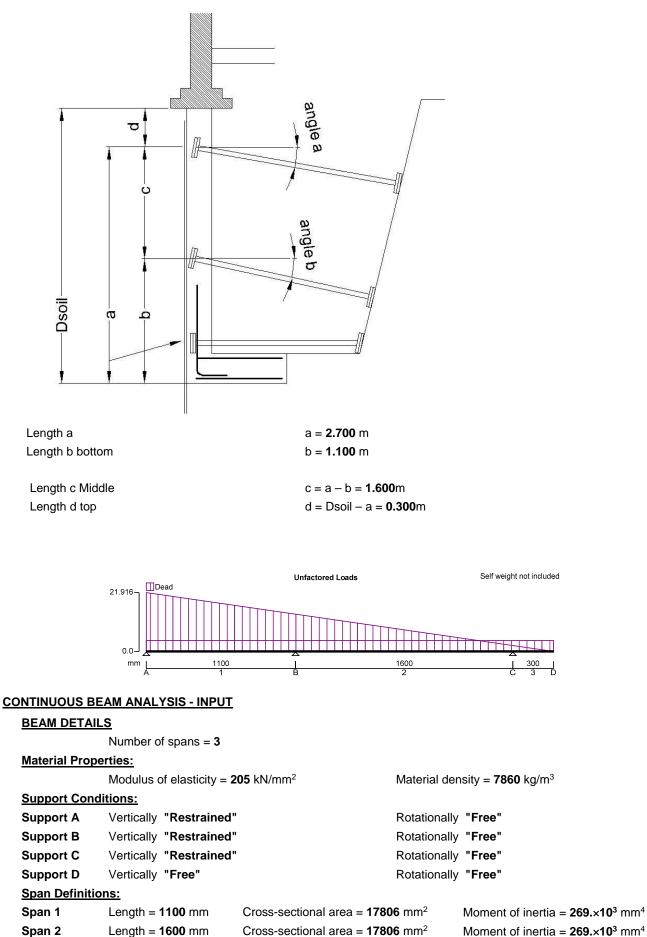
Mallowable = Sxx * py * Nos = 8.745kNm

Sale working loads for Ac	row Props — loads	give	n in k	N							L	SI	كر/ ي	4.(
For normal purposes 1 kilo Newton (kN) = 100 kg	Height	m ft	2.0 6.6	2.25 7.4	2.5 8.2	2.75 9.0	3.0 9.8	3.25 10.7	3.5 11.5	3.75 12.3	4.0 13.1	4.25 13.9	4.5 14.8	4.75 15.6
TABLE A Props loaded concentrically	Prop size 1 or 2		35	35	35	34	27	23						
and erected vertically	Prop size 3					34	27	23	21	19	17			
	Prop size 4							32	25	21	18	16	14	12
TABLE B Props loaded concentrically and erected 13° max. out of	Prop size 1 or 2 or 3		35	32	26	23	19	17	15	13	12			
vertical	Prop size 4							24	19	15	12	11	10	9
TABLE C Props loaded 25 mm eccentricity and erected 1}°	Prop size 1 or 2 or 3		17	17	17	17	15	13	11	10	9			
max. out of vertical	Prop size 4							17	14	11	10	9	8	7
TABLE D Props loaded concentrically and erected 11° out of	Prop size 3					35	33.	32	28	24	20			
vertical and laced with scaffold tubes and fittings	Prop size 4							35.	35.	35	35	27	25 ·	21

Shear V = (14.6kN + 13.4kN) /2 = 14.000kN

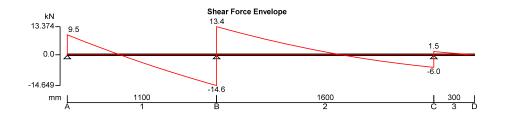

Any Acro Prop is accetpable

KD4 SHEETS


KD4

The overlapping trench sheeting profile is a heavier version of the Standard Lap, with a wider gauge and width coverage, designed in large for construction work.

Sxx = 48.3cm³ py = 275N/mm² lxx = 26.9cm⁴ A = (1m² * 55.2kg/m²) / (400mm * 7750kg/m³) = **17806.452**mm²



96 W:\Project File\Project Storage\2015\150607-St Johns Wood Park\2.0.Calcs\BIA\St Johns Wood Park Camden Basement Impact Assessment.docx

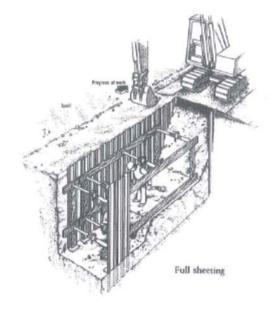
Span 3	Length = 300 mm	Cross-sectional area = 178	306 mm ² Moment of	inertia = 269.×10 ³ mm ⁴
LOADING DE	TAILS			
Beam Loads:				
Load 1	VDL Dead load 21.9 kN/r	m to 0.0 kN/m		
Load 2	UDL Dead load 4.1 kN/m	I		
LOAD COMB	INATIONS			
Load combin	ation 1			
Span 1	1×Dead			
Span 2	1×Dead			
Span 3	1×Dead			
CONTINUOUS B	EAM ANALYSIS - RESUL	<u>TS</u>		
Support Read	ctions - Combination Sum	imary		
Support A	Max react = -9.5 kN	Min react = -9.5 kN	Max mom = 0.0 kNm	Min mom = 0.0 kNm
Support B	Max react = -28.0 kN	Min react = -28.0 kN	Max mom = 0.0 kNm	Min mom = 0.0 kNm
Support C	Max react = -7.5 kN	Min react = -7.5 kN	Max mom = 0.0 kNm	Min mom = 0.0 kNm
Support D	Max react = 0.0 kN	Min react = 0.0 kN	Max mom = 0.0 kNm	Min mom = 0.0 kNm
Beam Max/Mi	in results - Combination S	Summary		
	Maximum shear = 13.4 k	N	Minimum shearF _{min} = -1	4.6 kN
	Maximum moment = 2.0	kNm	Minimum moment = -3.	6 kNm
	Maximum deflection = 7.	7 mm	Minimum deflection = -4	1.9 mm
	kNm	Bending Moment Envelope -3.6		
	-3.640	\wedge		
			-0.2	
	0.0		*	
	2.021 J 1.8 mm J 1100	1	2.0 1600	300
	A 1	В	2 C	3 D

Number of sheets Nos = 2

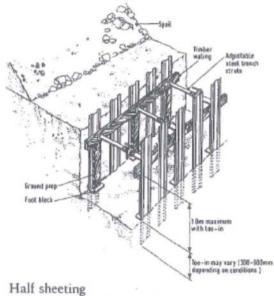
Mallowable = Sxx * py * Nos = 26.565kNm

Sale working loads for Ac	row Props — loads	give	n in k	N							L	SI	كرار با	4.0
For normal purposes 1 kilo Newton (kN) = 100 kg	Height	m ft	2.0 6.6	2.25 7.4	2.5 8.2	2.75 9.0	3.0 9.8	3.25 10.7	3.5 11.5	3.75 12.3	4.0 13.1	4.25 13.9	4.5 14.8	4.75 15.6
TABLE A Props loaded concentrically	Prop size 1 or 2		35	35	35	34	27	23						
and erected vertically	Prop size 3					34	27	23	21	19	17			
	Prop size 4							32	25	21	18	16	14	12
TABLE B Props loaded concentrically and erected 13° max. out of	Prop size 1 or 2 or 3		35	32	26	23	19	17	15	13	12			
vertical	Prop size 4							24	19	15	12	11	10	9
TABLE C Props loaded 25 mm sccentricity and erected 13°	Prop size 1 or 2 or 3		17	17	17	17	15	13	11	10	9			
max. out of vertical	Prop size 4							17	14	11	10	9	8	7
TABLE D Props loaded concentrically and erected 13° out of	Prop size 3						33. [,]	32	28	24	20			
vertical and laced with icaffold tubes and fittings	Prop size 4							35,	35,	35	35	27	25 ·	21

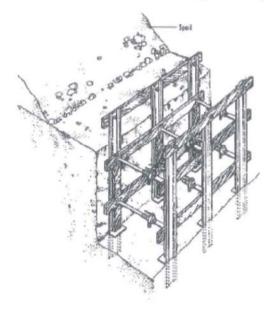
Shear V = (14.6kN + 13.4kN) /2 = 14.000kN


Any Acro Prop is accetpable

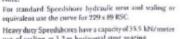
Sheeting requirements


Ground	Tren	ch Depth, D		
Туре	ess than 1 m(1)	1.2 to 3m	3 to 4.5m	4.5 to 6 m
Sands and gravels Silt Soft Clay High compressibility Peat	Close, 14. 14. 16 pr nil	Close	Close	Close
Firm/stiff Clay Low compressibility Peat	44. 1/8 or nit	1/2 OF 1/4	1/2 or 1/4	Close or ½
Rock ⁽²⁾	From 1/2 for incomp	petent rock to	nil for compet	ent rock ⁽³⁾

Sheeting requirements


Sheeting requirements

11/04/28hown for 1.5 m deep trench

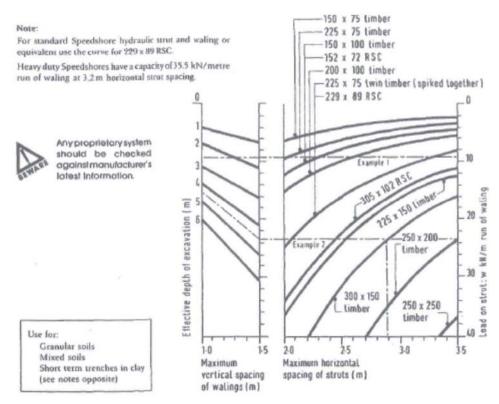

Sheeting requirements

11/Quarter sheeting

Design to CIRIA 97

Note:

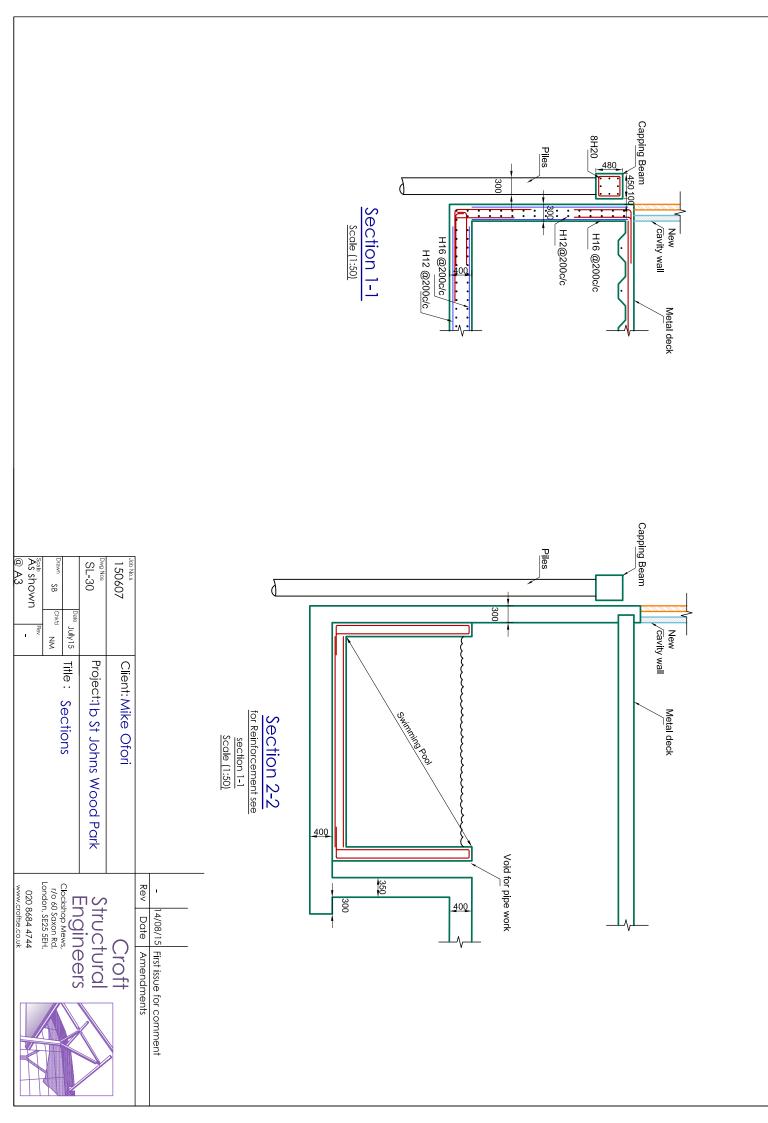
200 x 100 timber run of walling at 3.2 m horizontal strut spacing. 225 x 75 twin timber (spiked together) -229 x 89 RSC 0 0 Any proprietary system should be checked against manufacturer's 10 st intormation a 150 Limber Nr. Effective depth of excavation (m) 20 125 ß 250 x 200 timber kW/m 30 3 strul 300 x 150 250 x 250 Limber timber LO PEO Use for: Granular soils Mixed soils 2.5 30 10 15 20 Maximum Maximers hor contail Short term trenches in clay (see notes opposite) vertical spacing spacing # struts (m) of walings (m)

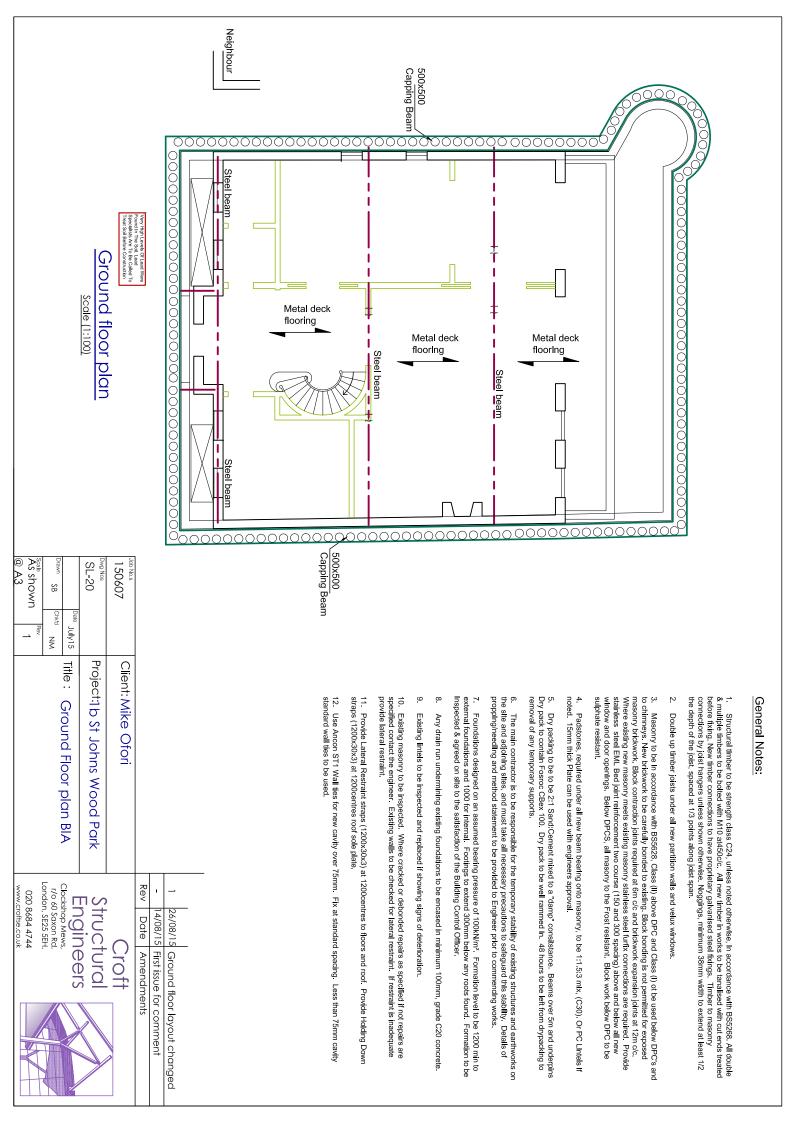

150 x 75 timber 225 x 75 timber

150 x 100 timber 152 x 72 RSC

10

Job Number: 150607 (St Johns Wood Park) Date: 17 Jul 2015





Appendix B : Structural Drawings

- 1:100 Basement Plan on A3 Showing Neighbouring basements if present
- 1:100 Ground Floor plan on A3 Showing Neighbouring property
- 1:50 Section on A3 Including section through Neighbouring Footings

1. USE ONLY FIGURED DIMENSIONS. All dimensions in mm's. Refer to Architect's drawings for setting out. This drawing is to be read in conjunction with all relevant Architects, subcontractors and engineers drawings and specifications. Final co-ordination of cladding, drainage, insulation,

reported immediately to Engineer All dimensions and levels shown are based on survey drawings. The contractor is to satisy themselves that dimensions levels etc are sufficiently
accurate to complete construction to the necessary tolerances. Existing structure to be verified on site by the contractor and <u>any discrepancies</u>

3. Domestic jobs: the contractor is to notify the local H.S.E. area office of the works using form F10 (rev.) in accordance with the C.D.M. regulations, 2007. A copy of the notification is to be displayed on site and copied to the Engineer. The client must appoint a CDM co-ordinator and comply with CDM Regulations for all projects which are not their private residency.

Imposed load design Typical Domestic 1.5kN/m²

or every pour, and 1 tested at 28 days with the results provided to the engineer designation C35N/mm²) unless noted otherwise.Minimum Cement contents 320kg/m3, Water cement ratio 0.55.2 Cubes to be taken for every 10m3, strength 35N/mm², 20mm maximum aggregate size, 75mm slump and ordinary Portland Cement). Reinforced concrete to be RC28/35 min (previous Concrete to be in accordance with BS8110. Concrete for mass concrete foundations to be To FND 3 in accordance with BS8500 (minimum

BS8666:2005or BS EN ISO 3766 6. Reinforcement required is noted on the drawings or in the calculations as either areas of reinforcement or bar/mesh requirements. Schedules are to be completed by the contractor and provided tot he engineer 1 week before ordering. Reinforcement schedules to be completed in accordance with

added to the plans. review our drawings and design and if greater waterproofing resistance is required then Croft are to be informed and the additional requirements will be responsibility of the specialist waterproofing contractor. Croft are not the Structural Water-proofer. The specialist water proofing contractor must Water proofing, damp proofing and all weather proofing are not the responsibility of Croft Structural Engineers. Basement water proofing is the

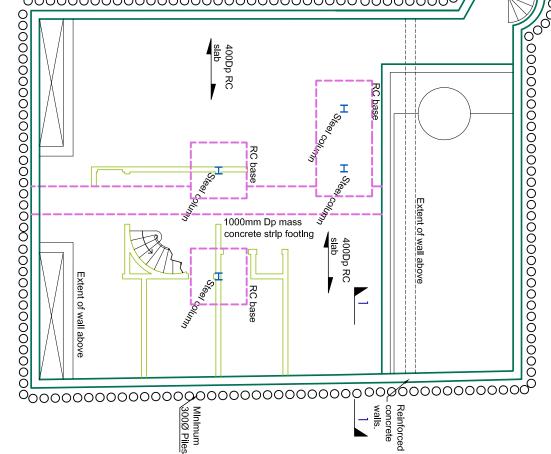
7.1. The Specialist water-proofer must provide their drainage layout and sump locations to Croft Structural Engineers 2 weeks prior to installation

7.3 7.2. Pipes below slab to have be encased in 150mm of concrete. Pipes within slab to have a minimum of 150mm concrete around them. Grace Adcor ES waterstop is to be added to all day joints and construction joints in the basement. If high water table encountered include

7.4. Dewatering must be turned off 2 weeks before internal drain cavity is fixed. Any leaks are to be plugged in accordance to SIKA's specifications Caltite admixture to the concrete

 Structural steelwork to be in accordance with ADVANCED275JR Internally, for high grade steel use ADVANCED355JR Internally. BS5950 fi design detail and workmanship. Steelwork must be fabricated in accordance with BS EN 1090. Fabricated Steelwork must be provided with a CE Mark, FPC, RWC and WQMS. All structural work and fire protection to the satisfaction of the Building Control Officer. BS5950 for

external use and ADVANCED355J0 above 11mm External Steel - ADVANCED275JR up to 15mm, above 15mm use ADVANCED275J0. For high grade steel use ADVANCED355JR up to 11mm for


Galvafroid or similar. Concrete Encased steelwork to have 2 additional site coats of bitumen paint. cavity to be galvanised inaccordance to EN ISO 1461 with a minimum 85 µm thickness. Site repairs to galvanising to be completed with Cold and touch up as necessary using high build zinc phosphate modified alkyd to 60 microns. Thicknesses are dry film thicknesses. Steelwork built into 9. All Steel to be painted: prepared by grit blasting in accordance with BS7079, the standard of surface cleanliness is to Swedish Standard SA2.5. Paint specification to be in accordance with BS5493. In shop applied high build Red zinc phosphate modified alkyd, to 75 microns. On site, degrease

the national steelwork specification and results provided to the engineer ResIn Anchors at 450c/c staggered either side of flange. Welding to comply with BS EN 288. Site welding if essential to be tested in accordance with unless noted otherwise. Bolt all double beams together with M16 at 600c/c with Spacer tubes. Where columns sit against masonry bolt back with M16 Factored Shear loads, M = Factored Moments. Connection Calculations, Fabrication details are to be provided by fabricator to the Engineer prior to 10. fabrication for connection approval and to the Architect for setting out approval. Minimum 2M16 per connection and take 75kN tie force, 80kN shear & Connection design is the responsibility of the contractor and details where shown are indicative. Where loads are shown on the drawings, V = Unless noted otherwise, steelwork welds to be minimum 6mm fillet weld, all bolts to be grade 8.8 with minimum 16mm diameter. Overall lengths

appearance to be agreed with the architect. 11. Contractor MUST provide fabrication drawings & connection calculations to the engineers two weeks prior to fabrication for approval, final

		2 (28/08/15 Basement floor plan changed
		1 26/08/15 Basement floor plan changed
		- 14/08/15 First issue for comment
		Rev Date Amendments
1 50607	Client: Mike Ofori	Croft
SL-10	Project:1b St Johns Wood Park	Structural
Date July15	Title : Basement plan BIA	
awn SB Chkłd NM		r/o 60 Saxon Rd, Iondon SF25 5FH
AS Shown Rev A3 A3		020 8684 4744

steelwork, and other elements is the responsibility of the contractor.

Basement plan Scale (1:100

© ∑°

Drav

S Top