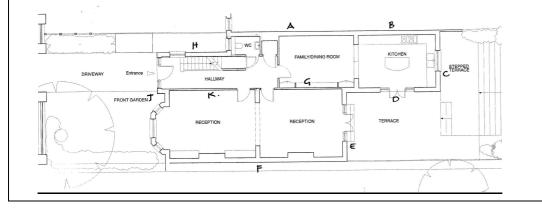
V&R	Project				Job Ref.			
VICENT & RYMILL		207 GOLDHURST TERRACE NW8 Section				15 F02 Sheet no./rev.		
	Section							
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	NE	W BASEMENT -	preliminary c	alculations		1		
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date		
SURREY GU16 6PT	TV	16/06/2015						
LOADINGS								
PITCHED ROOF	KN/m ²	<u>C</u>	EILING		KN/m ²			
Tiles	0.70	C	eiling Joists		0.10			
Felt & battens	0.05	F	lasterboard		<u>0.15</u>			
Rafters	<u>0.10</u>	C). L.		0.25 KN/m ²			
	<u>0.85</u>	Ι.	L. where ap	olicable	<u>0.25</u> KN/m ²			
30 ⁰ on plan load D. L.	1.00 KN/m ²				0.50 KN/m ²			
30 ⁰ Imposed Load	<u>0.75 </u> KN/m ²							
	1.75 KN/m ²							
FLAT ROOF	KN/m ²	т		OBS	KN/m ²			
Felt	0.25	_	limbert LO		0.20			

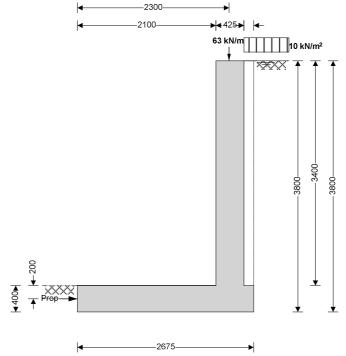
		THEFTER	1.1.1/111
Felt	0.25	Boards	0.20
Boards	0.25	Joists	0.10
Joists & firrings	0.15	Ceiling	<u>0.30</u>
Ceiling	<u>0.15</u>	D. L.	0.60 KN/m ²
D. L.	0.80 KN/m ²	I. L.	<u>1.50</u> KN/m ²
I .L.	<u>0.75</u> KN/m ²		2.10 KN/m ²
	1.55 KN/m ²		


STUDWORK

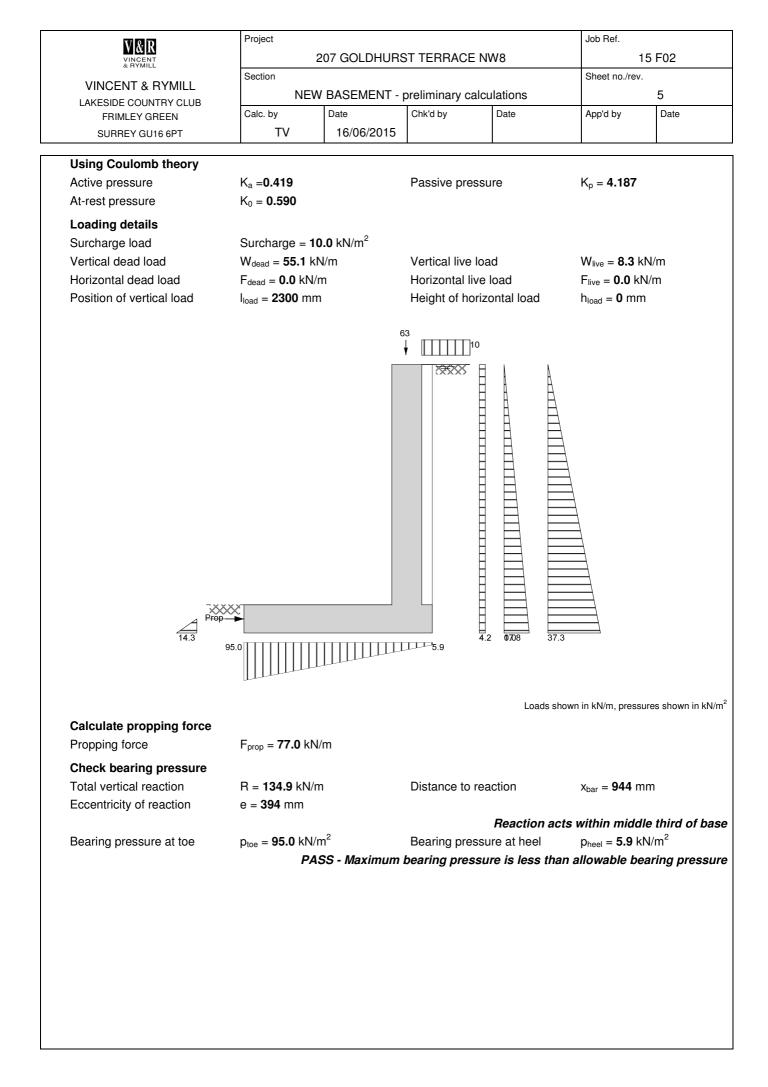
0.60KN/m²

200 RIBDECK	KN/m ²
Finish	1.80
CONCRETE	<u>4.20</u>
D. L.	6.00 KN/m ²
I. L.	<u>1.50</u> KN/m ²
	7.50 KN/m ²
MASONRY	KN/m ²
102 Brick + plaster	2.20 KN/m ²

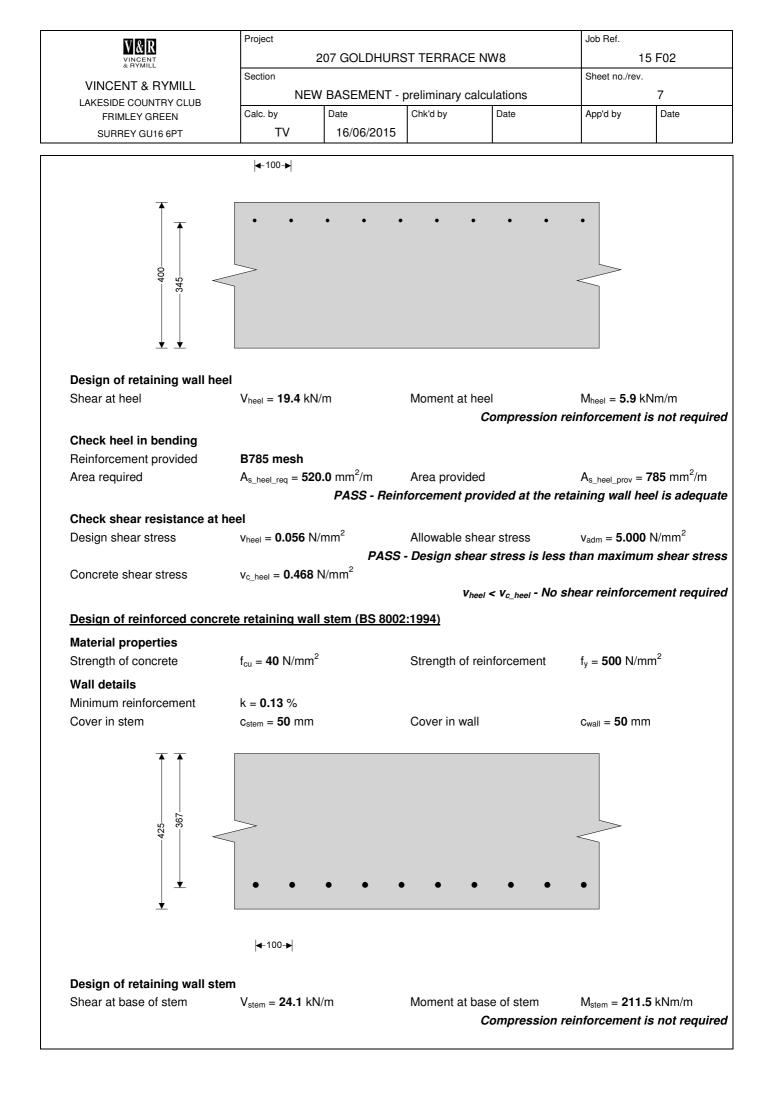
2.20 KN/m ²
4.60 KN/m ²
4.80 KN/m ²
7.00 KN/m ²


<u>KEY PLAN</u>

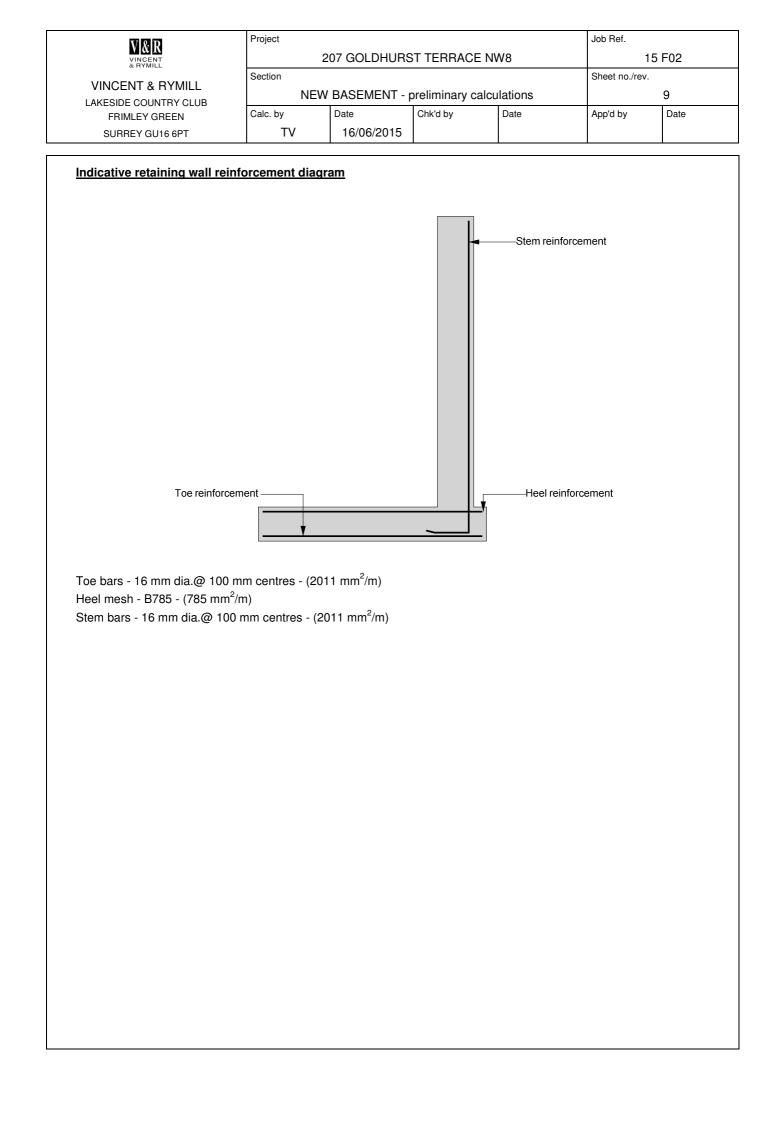
& RYMILL	1	Project 207 GOLDHURST TERRACE NW8 Section					Job Ref. 15 F02		
	Section						<i>I</i> .		
VINCENT & RYM	N	EW BASE	EMENT - p	reliminary cal	culations		2		
FRIMLEY GREEN	0 · · ·	Date		Chk'd by	Date	App'd by	Date		
SURREY GU16 6P	T TV	16/0	06/2015						
WALL LOADINGS									
WALL A									
WALL	10.5 X 4.80	=	50.40						
FLRS DL	2 X 0.6 X 1.75	=	2.10						
FLRS IL	2 X 1.5 X 1.75	=		5.25					
ROOF DL	2 X 1	=	2.00						
ROOF IL	2 X 0.75	=		<u>1.50</u>					
			54.50KM	l/m 6.75KN	/m				
WALL B									
WALL	3.5 X 3.3	=	11.55KN	√m					
ROOF DL	1.75 X 0.8	=	1.40						
ROOF IL	1.75 X 0.75	=		<u>1.30</u>					
			12.95KN		/m				
WALL C WALL	3.5 X 3.3 X 80%	=	9.5KN/n	-					
VVALL	3.5 X 3.3 X 80%	=	9.5KN/1	1					
WALL D									
WALL	3.5 X 3.3 X 80%	=	9.25KN/	'n					
ROOF DL	1.75 X 0.8	=	1.40						
ROOF IL	1.75 X 0.75	=		<u>1.30</u>					
			12.95KN	I/m 1.30KN	/m				
WALL E									
WALL	7.5 X 4.6 X 70%	=	24.15						
ROOF	3 X 1	=	3.00						
ROOF	3 X 0.75	=		<u>2.25</u>					
			27.15KN	l/m 2.25KN	/m				
WALL F									
WALL	10.5 X 4.80	=	50.40						
FLRS DL	2 X 0.6 X 2.25	=	2.70						
FLRS IL	2 X 1.5 X 2.25	=		6.75					
ROOF DL	2 X 1	=	2.00						
ROOF IL	2 X 0.75	=		<u>1.50</u>					
	e		55.10KN	V/m 8.25KN	/m				
CHIMNEY BREAST	<u>5</u> 2.4 X 1.25 X 12.5	=	37.50KN	l/m					
WALL G									
WALL	2.6 X 6.5	=	16.90						
STUD	2.6 X 0.5 0.6 X 2.5	=	1.50						
FLRS DL	4 X 0.6 X 2	=	4.80						
FLRS IL	4 X 1.5 X 2	=		<u>12.00</u>					
		-	23.20KM		N/m				


V&R		Project						Job Ref.	
VINCENT & RYMILL		207 GOLDHURST TERRACE NW8					15 F02		
		Section NEW BASEMENT - preliminary calculations						Sheet no./rev.	
VINCENT & F							lations		3
FRIMLEY GF		Calc. by	Date	e	Chk'	d by	Date	App'd by	Date
SURREY GU16 6PT		ΤV	1	6/06/2015					
WALL K									
WALL	2.6 X 6.5	5	=	16.90					
STUD	0.6 X 2.5	5	=	1.50					
FLRS DL	3 X 0.6 X	X 2	=	3.60					
FLRS IL	3 X 1.5 X	X 2	=			<u>9.00</u>			
				22.00KN	l/m	9.00KN/m			
WALL H									
WALL	10.5 X 4	.80	=	50.40					
FLRS DL	2 X 0.6 X	X 1	=	1.20					
FLRS IL	2 X 1.5 X	X 1	=			3.00			
ROOF DL	2 X 1		=	2.00					
ROOF IL	2 X 0.75		=			<u>1.50</u>			
				53.6KN/	m	4.50KN/m			
WALL J									
WALL	7 X 4.6 X	X 70%	=	22.50K	N/m				
ROOF DL	3 X 1		=	3.00					
ROOF IL	3 X 0.75		=			<u>2.25</u>			
				25.50K	N/m	2.25KN/m	ı		

	Project	207 GOLDHURS	Job Ref. 15 F02			
	Section	BASEMENT -	Sheet no./rev.			
LAKESIDE COUNTRY CLUB FRIMLEY GREEN SURREY GU16 6PT	Calc. by TV	Date 16/06/2015	Chk'd by	Date	App'd by	Date
WALLS AND BASES PARTY WALLS – WALLS A AND DL = 55.1KN/m, IL = 8.25KN/m RETAINING WALL ANALYSIS	YSIS & DES		<u>02)</u>		TEDDS calculation	version 1.2.01.06

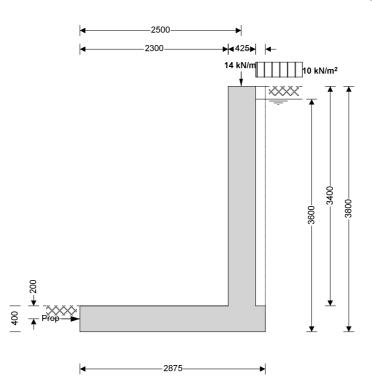


Wall details


Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 3400 mm	Wall stem thickness	$t_{wall} = 425 \text{ mm}$
Length of toe	I _{toe} = 2100 mm	Length of heel	l _{heel} = 150 mm
Overall length of base	I _{base} = 2675 mm	Base thickness	t _{base} = 400 mm
Height of retaining wall	h _{wall} = 3800 mm		
Depth of downstand	d _{ds} = 0 mm	Thickness of downstand	t _{ds} = 400 mm
Position of downstand	l _{ds} = 1100 mm		
Depth of cover in front of wall	$d_{cover} = 0 mm$	Unplanned excavation depth	d _{exc} = 200 mm
Height of ground water	h _{water} = 3800 mm	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	$\gamma_{wall} = 23.6 \text{ kN/m}^3$	Density of base construction	$\gamma_{base} = 23.6 \text{ kN/m}^3$
Angle of soil surface	$\beta = 0.0 \text{ deg}$	Effective height at back of wall	h _{eff} = 3800 mm
Mobilisation factor	M = 1.5		
Moist density	γ _m = 18.0 kN/m ³	Saturated density	$\gamma_s = 21.0 \text{ kN/m}^3$
Design shear strength	φ' = 24.2 deg	Angle of wall friction	$\delta = 0.0 \text{ deg}$
Design shear strength	φ' _b = 24.2 deg	Design base friction	$\delta_{\text{b}} = \textbf{18.6} \text{ deg}$
Moist density	γ_{mb} = 18.0 kN/m ³	Allowable bearing	$P_{\text{bearing}} = 150 \text{ kN/m}^2$

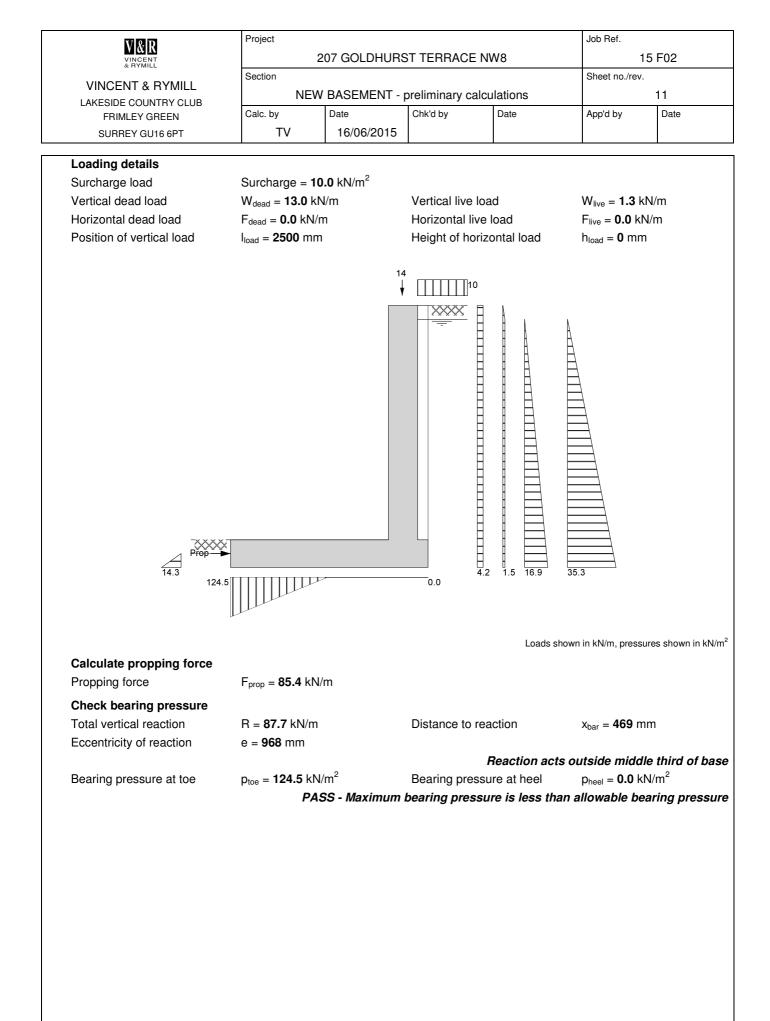
	2	207 GOLDHURS	ST TERRACE	E NW8	15 F02		
	Section				Sheet no./rev		
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	NEW	BASEMENT -	preliminary c	alculations		6	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date	
SURREY GU16 6PT	TV	16/06/2015					
RETAINING WALL DESIGN	N (BS 8002:1994)				TEDDS calculat	ion version 1.2	
Ultimate limit state load fa	ctors						
Dead load factor	$\gamma_{f_d} = 1.4$		Live load fa	ictor	$\gamma_{f_l} = 1.6$		
Earth pressure factor	$\gamma_{f_e} = 1.4$						
Calculate propping force							
Propping force	F _{prop} = 77.0 kN	/m					
Design of reinforced conc	rete retaining wal	I toe (BS 8002:1	<u>1994)</u>				
Material properties			_			2	
Strength of concrete	$f_{cu} = 40 \text{ N/mm}^2$		Strength of	reinforcement	f _y = 500 N/r	nm⁴	
Base details			_				
Minimum reinforcement	k = 0.13 %		Cover in toe	9	c _{toe} = 50 mr	m	
$\mathbf{T} = \mathbf{T}$							
2							
- 400 	$\langle \rangle$						
400- 34							
↓ 400- 34	- · ·	• • •	• •	• • •	•		
▲ ● 400- 34	•••	•••	• •	•••	•		
▲ 400- 34	•••	•••) •	• • •	•		
▲ 400- 34		•••	•	• • •	•		
Design of retaining wall to		•••		•••	•		
▲ ↓ 40		• • •	• Moment at	• • •	• • M _{toe} = 273.0	6 kNm/m	
Design of retaining wall to	e	• • •	• Moment at		• M _{toe} = 273.0 reinforcement		
Design of retaining wall to	e	• • •	• • Moment at I				
Design of retaining wall to Shear at heel Check toe in bending Reinforcement provided	e V _{toe} = 163.1 kN 16 mm dia.bat	rs @ 100 mm c	entres	Compression	reinforcement	is not requ	
Design of retaining wall to Shear at heel Check toe in bending	e V _{toe} = 163.1 kN	rs @ 100 mm co 7.0 mm²/m	entres Area provid	Compression	reinforcement	t is not requ 2011 mm²/	
Design of retaining wall to Shear at heel Check toe in bending Reinforcement provided Area required	V _{toe} = 163.1 kN 16 mm dia.bai A _{s_toe_req} = 197	rs @ 100 mm co 7.0 mm²/m	entres Area provid	Compression	reinforcement	t is not requ 2011 mm²/	
Design of retaining wall to Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at	e V _{toe} = 163.1 kN 16 mm dia.bai A _{s_toe_req} = 197	rs @ 100 mm co 7.0 mm²/m <i>PASS - Rei</i>	entres Area provid nforcement	Compression led provided at the	reinforcement A _{s_toe_prov} = retaining wall	t is not requ 2011 mm²/i toe is adeq	
Design of retaining wall to Shear at heel Check toe in bending Reinforcement provided Area required	V _{toe} = 163.1 kN 16 mm dia.bai A _{s_toe_req} = 197	rs @ 100 mm ca 7.0 mm²/m <i>PASS - Rei</i> mm²	entres Area provid nforcement Allowable s	Compression led provided at the	reinforcement A _{s_toe_prov} = retaining wall V _{adm} = 5.000	t is not requ 2011 mm²// toe is adeq 0 N/mm²	
Design of retaining wall to Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at Design shear stress	ve V _{toe} = 163.1 kN 16 mm dia.ban A _{s_toe_req} = 197 toe v _{toe} = 0.477 N/n	rs @ 100 mm cd 7.0 mm²/m <i>PASS - Rei</i> mm² PASS	entres Area provid nforcement Allowable s	Compression led provided at the	reinforcement A _{s_toe_prov} = retaining wall V _{adm} = 5.000	t is not requ 2011 mm²// toe is adeq 0 N/mm²	
Design of retaining wall to Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at	e V _{toe} = 163.1 kN 16 mm dia.bai A _{s_toe_req} = 197	rs @ 100 mm cd 7.0 mm²/m <i>PASS - Rei</i> mm² PASS	entres Area provid nforcement Allowable s - Design she	Compression led provided at the hear stress ear stress is les	reinforcement A _{s_toe_prov} = retaining wall v _{adm} = 5.000 s than maximu	t is not requ 2011 mm²// toe is adeq 0 N/mm² um shear st	
Design of retaining wall to Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at Design shear stress Concrete shear stress	V _{toe} = 163.1 kN 16 mm dia.ban $A_{s_toe_req} = 197$ toe $v_{toe} = 0.477 N/n$ $v_{c_toe} = 0.644 N$	rs @ 100 mm cd 7.0 mm²/m <i>PASS - Rei</i> mm² <i>PASS</i> //mm²	entres Area provid nforcement Allowable s - Design she	Compression led provided at the	reinforcement A _{s_toe_prov} = retaining wall v _{adm} = 5.000 s than maximu	t is not requ 2011 mm²// toe is adeq 0 N/mm² um shear st	
Design of retaining wall to Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at Design shear stress Concrete shear stress Design of reinforced conc	V _{toe} = 163.1 kN 16 mm dia.ban $A_{s_toe_req} = 197$ toe $v_{toe} = 0.477 N/n$ $v_{c_toe} = 0.644 N$	rs @ 100 mm cd 7.0 mm²/m <i>PASS - Rei</i> mm² <i>PASS</i> //mm²	entres Area provid nforcement Allowable s - Design she	Compression led provided at the hear stress ear stress is les	reinforcement A _{s_toe_prov} = retaining wall v _{adm} = 5.000 s than maximu	t is not requ 2011 mm²// toe is adeq 0 N/mm² um shear st	
Design of retaining wall to Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at Design shear stress Concrete shear stress	V _{toe} = 163.1 kN 16 mm dia.ban $A_{s_toe_req} = 197$ toe $v_{toe} = 0.477 N/n$ $v_{c_toe} = 0.644 N$	rs @ 100 mm cd 7.0 mm²/m <i>PASS - Rei</i> mm² <i>PASS</i> V/mm² I heel (BS 8002	entres Area provid nforcement Allowable s - Design she :1994)	Compression led provided at the hear stress ear stress is les	reinforcement A _{s_toe_prov} = retaining wall v _{adm} = 5.000 s than maximu	t is not requ 2011 mm²// toe is adeq 0 N/mm² um shear st rement requ	
Design of retaining wall to Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at Design shear stress Concrete shear stress Design of reinforced conc Material properties Strength of concrete	V _{toe} = 163.1 kN 16 mm dia.ban $A_{s_toe_req} = 197$ toe $v_{toe} = 0.477 N/r$ $v_{c_toe} = 0.644 N$ wrete retaining wall	rs @ 100 mm cd 7.0 mm²/m <i>PASS - Rei</i> mm² <i>PASS</i> V/mm² I heel (BS 8002	entres Area provid nforcement Allowable s - Design she :1994)	Compression led provided at the hear stress ear stress is les $v_{toe} < v_{c_toe} - No$	reinforcement A _{s_toe_prov} = retaining wall v _{adm} = 5.000 s than maximu shear reinforc	t is not requ 2011 mm²// toe is adeq 0 N/mm² um shear st rement requ	
Design of retaining wall to Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at Design shear stress Concrete shear stress Design of reinforced conc Material properties	V _{toe} = 163.1 kN 16 mm dia.ban $A_{s_toe_req} = 197$ toe $v_{toe} = 0.477 N/r$ $v_{c_toe} = 0.644 N$ wrete retaining wall	rs @ 100 mm cd 7.0 mm²/m <i>PASS - Rei</i> mm² <i>PASS</i> V/mm² I heel (BS 8002	entres Area provid nforcement Allowable s - Design she :1994)	Compression led provided at the hear stress ear stress is less $v_{toe} < v_{c_toe} - No$ reinforcement	reinforcement A _{s_toe_prov} = retaining wall v _{adm} = 5.000 s than maximu shear reinforc	t is not requ 2011 mm²// toe is adeq 0 N/mm² Im shear st rement requ mm²	

V & R	Project				Job Ref.	15 F02
VINCENT & RYMILL		207 GOLDHURST TERRACE NW8				
VINCENT & RYMILL	Section	Sheet no./rev	Sheet no./rev.			
LAKESIDE COUNTRY CLUB	NEW BASEMENT - preliminary calculations				8	
FRIMLEY GREEN	Calc. by Da		Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	16/06/2015				
Check wall stem in bendir	g					
Reinforcement provided	16 mm dia.bars @	🦻 100 mm ce	entres			
Area required	A _{s_stem_req} = 1394.6	5 mm²/m	Area provide	ed	A _{s_stem_prov} =	= 2011 mm²/m
	P	ASS - Reinf	orcement pro	ovided at the re	etaining wall st	em is adequa
Check shear resistance at	wall stem					
Design shear stress	v _{stem} = 0.066 N/mn	n ²	Allowable sh	near stress	V _{adm} = 5.00	0 N/mm²
		PASS	- Design she	ar stress is les	s than maximu	ım shear stre
Concrete shear stress	v _{c_stem} = 0.618 N/m	1m²				
			Vste	m < V _{c_stem} - No	shear reinforc	ement requir
Check retaining wall defle	ction					
Max span/depth ratio	ratio _{max} = 9.65		Actual span/	depth ratio	ratio _{act} = 9.2	26
				PASS - Spa	an to depth rati	io is acceptal

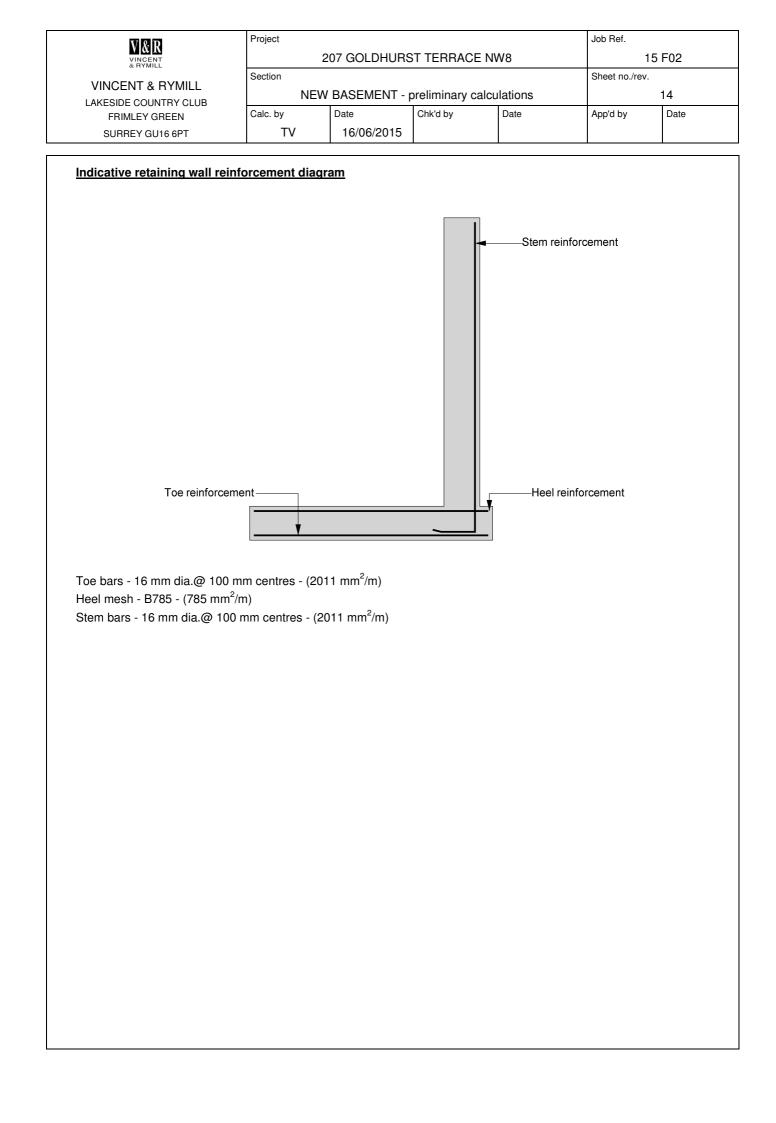

V & R	Project				Job Ref.	
VICENT VINCENT & RYMILL	20	07 GOLDHURS	15 F02			
	Section		Sheet no./rev.			
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	NEW	BASEMENT - p	10			
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	16/06/2015				

WALLS B

RETAINING WALL ANALYSIS & DESIGN (BS8002)

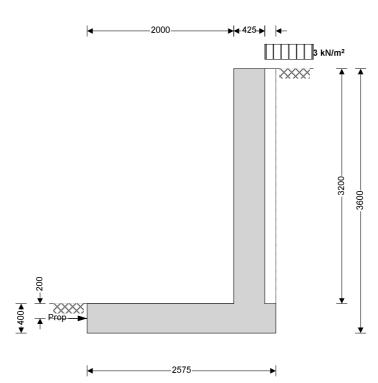

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06

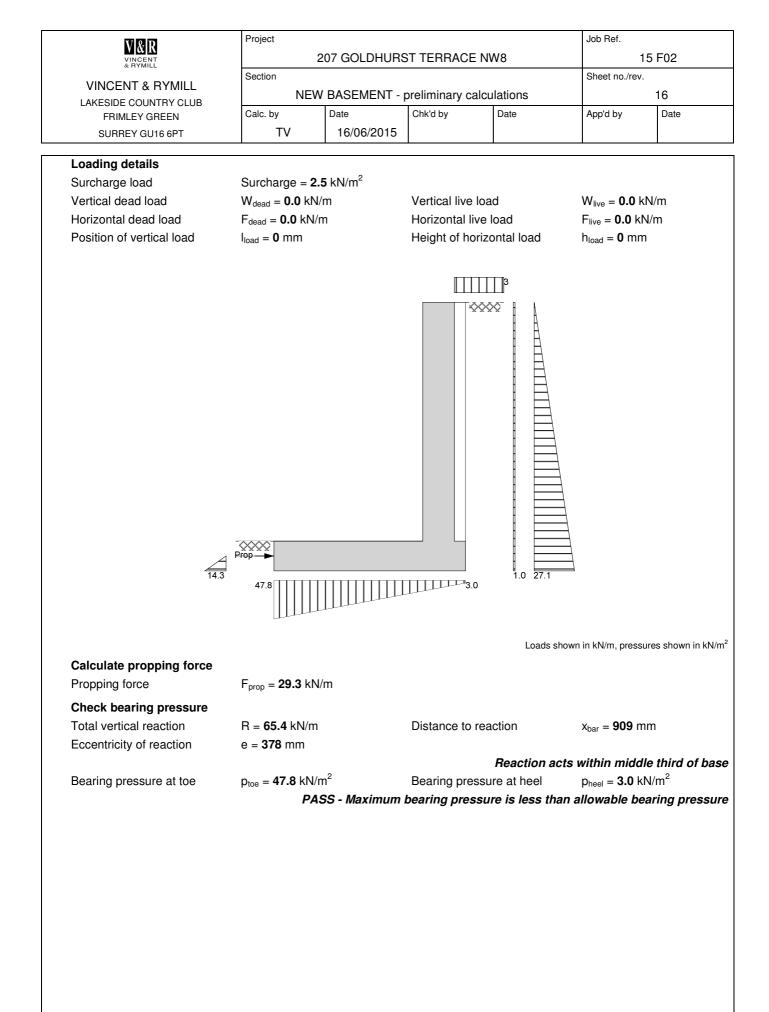

Wall details

Wall dotallo			
Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 3400 mm	Wall stem thickness	t _{wall} = 425 mm
Length of toe	I _{toe} = 2300 mm	Length of heel	I _{heel} = 150 mm
Overall length of base	l _{base} = 2875 mm	Base thickness	t _{base} = 400 mm
Height of retaining wall	h _{wall} = 3800 mm		
Depth of downstand	d _{ds} = 0 mm	Thickness of downstand	t _{ds} = 400 mm
Position of downstand	l _{ds} = 1900 mm		
Depth of cover in front of wall	d _{cover} = 0 mm	Unplanned excavation depth	d _{exc} = 200 mm
Height of ground water	h _{water} = 3600 mm	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	$\gamma_{wall} = 23.6 \text{ kN/m}^3$	Density of base construction	$\gamma_{\text{base}} = 23.6 \text{ kN/m}^3$
Angle of soil surface	$\beta = 0.0 \text{ deg}$	Effective height at back of wall	h _{eff} = 3800 mm
Mobilisation factor	M = 1.5		
Moist density	$\gamma_{m} =$ 18.0 kN/m ³	Saturated density	$\gamma_{s} = 21.0 \text{ kN/m}^{3}$
Design shear strength	φ' = 24.2 deg	Angle of wall friction	$\delta = \textbf{0.0} \text{ deg}$
Design shear strength	φ' _b = 24.2 deg	Design base friction	$\delta_{\text{b}} = \textbf{18.6} \text{ deg}$
Moist density	γ_{mb} = 18.0 kN/m ³	Allowable bearing	$P_{\text{bearing}} = 150 \text{ kN/m}^2$
Using Coulomb theory			
Active pressure	Ka = 0.419	Passive pressure	K _p = 4.187
At-rest pressure	$K_0 = 0.590$		

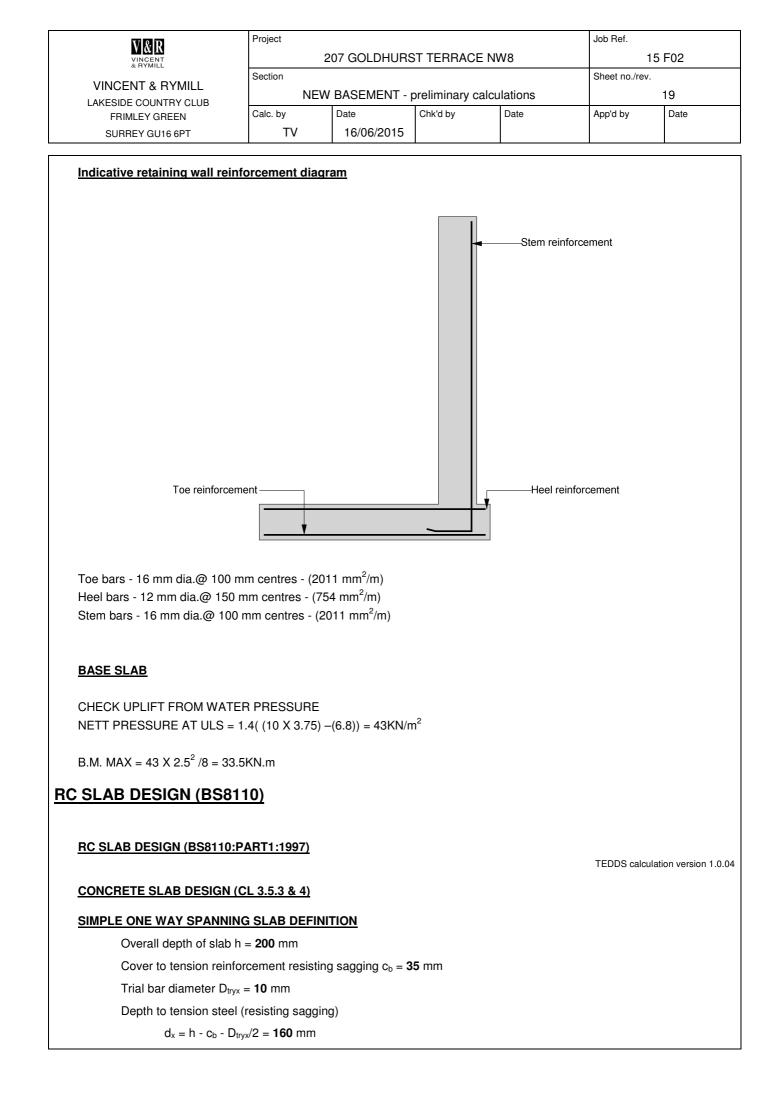
	20	7 GOLDHUR	ST TERRACE N	IW8	1	15 F02		
VINCENT & RYMILL	Section				Sheet no./rev			
LAKESIDE COUNTRY CLUB	NEW	BASEMENT -	preliminary calc	ulations		12		
FRIMLEY GREEN	,	Date	Chk'd by	Date	App'd by	Date		
SURREY GU16 6PT	TV	16/06/2015						
RETAINING WALL DESIGN (BS 8002:1994)							
Ultimate limit state load fact	ors				TEDDS calculati	on version 1.2.0		
Dead load factor	$\gamma_{f_d} = 1.4$		Live load facto	or	$\gamma_{f_{-}I} = 1.6$			
Earth pressure factor	$\gamma_{f_e} = 1.4$							
Calculate propping force								
Propping force	F _{prop} = 85.4 kN/n	n						
Design of reinforced concre	te retaining wall t	oe (BS 8002:1	<u>1994)</u>					
Material properties								
Strength of concrete	$f_{cu} = 40 \text{ N/mm}^2$		Strength of rei	nforcement	f _y = 500 N/mm ²			
Base details								
Minimum reinforcement	k = 0.13 %		Cover in toe		c _{toe} = 50 mr	n		
Design of retaining wall toe								
Shear at heel	$V_{toe} = 92.9 \text{ kN/m}$		Moment at he	el	M _{toe} = 261.6 kNm/m			
			C	Compression	reinforcement	is not requ		
Check toe in bending								
Reinforcement provided	16 mm dia.bars	-	entres					
Area required	$A_{s_{toe_{req}}} = 1884.$		Area provided		$A_{s_toe_prov} =$			
		PASS - Rei	nforcement pro	ovided at the	retaining wall	toe is adequ		
Check shear resistance at to								
Design shear stress	v _{toe} = 0.272 N/m		Allowable she		V _{adm} = 5.000			
		0	- Design shear	stress is les	s than maximu	m shear sti		
Concrete shear stress	$v_{c_{toe}} = 0.644 \text{ N/r}$	mm ⁻	V.	- V No	shear reinforc	omont roqu		
Design of reinforced concre	to rotaining wall k	nol (PE 9002		e < Vc_toe - NO	Shear reiniord	ement requ		
			.1994)					
Material properties	f _{cu} = 40 N/mm ²		Strongth of roi	nforcomont	f 500 N//	2 m ²		
Strength of concrete	$I_{cu} = 40 \text{ N/mm}$		Strength of rei	niorcement	f _y = 500 N/n	nm		
Base details			.					
Minimum reinforcement	k = 0.13 %		Cover in heel		c _{heel} = 50 m	m		
Design of retaining wall hee								
Shear at heel	V _{heel} = 19.3 kN/n	n	Moment at he		M _{heel} = 5.8 k			
			C	Compression	reinforcement	is not requ		
Check heel in bending								
Reinforcement provided	B785 mesh	0				2		
Area required	$A_{s_heel_req} = 520.0$		Area provided		A _{s_heel_prov} =			
Check shear resistance at h	مما	PASS - Rein	norcement pro	vided at the h	etaining wall h	eer is adequ		
Design shear stress	v _{heel} = 0.056 N/m	1m ²	Allowable she	ar stress	V _{adm} = 5.000) N/mm ²		
					s than maximu			
Concrete shear stress	v _{c heel} = 0.468 N/							
			Vheel	< Vc_heel - NO	shear reinforc	ement requ		

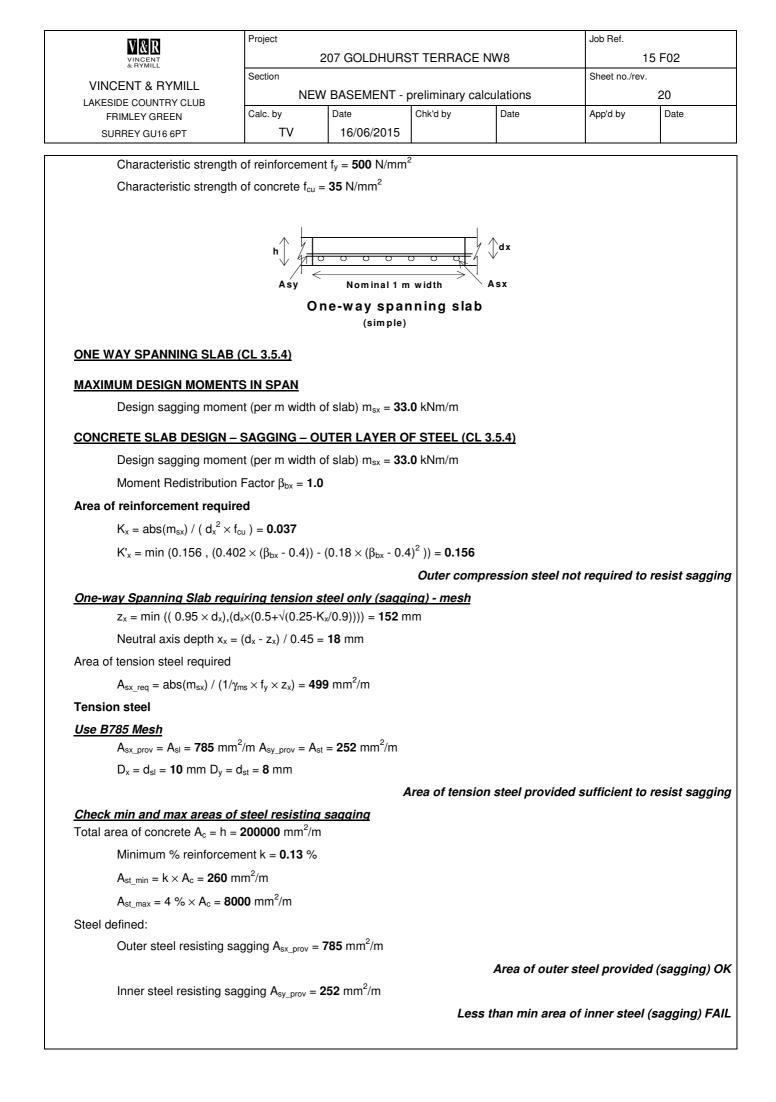

17	Project				Job Ref.		
	2	207 GOLDHURST TERRACE NW8				15 F02	
& RYMILL	Section	Section					
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	NEW	NEW BASEMENT - preliminary calculations				13	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date	
SURREY GU16 6PT	TV	16/06/2015					
Design of reinforced conc	rete retaining wall	stem (BS 8002	2:1994)				
Material properties							
Strength of concrete	f _{cu} = 40 N/mm ²		Strength of r	Strength of reinforcement		mm²	
Wall details			Ū		,		
Minimum reinforcement	k = 0.13 %						
Cover in stem	c _{stem} = 50 mm			Cover in wall		c _{wall} = 50 mm	
Design of retaining wall st	tem						
Shear at base of stem	V _{stem} = 5.8 kN/m		Moment at b	ase of stem	M _{stem} = 202	2 .7 kNm/m	
				Compression	reinforcement	is not requir	
Check wall stem in bendir	ng						
Reinforcement provided	16 mm dia.bar	s @ 100 mm c	entres				
Area required	A _{s_stem_req} = 133	86.8 mm²/m	Area provide	ed	A _{s_stem_prov} =	= 2011 mm²/m	
		PASS - Reint	forcement pro	ovided at the re	etaining wall st	em is adequa	
Check shear resistance at	wall stem						
Design shear stress	v _{stem} = 0.016 N/	/mm ²	Allowable sh	ear stress	v _{adm} = 5.00	0 N/mm ²	
		PASS	- Design she	ar stress is les	s than maximu	ım shear stre	
Concrete shear stress	Vc_stem = 0.618	N/mm²					
			Vste	m < V _{c_stem} - No	shear reinforc	ement requir	
Check retaining wall defle	ction						
Max span/depth ratio	ratio _{max} = 10.04		Actual span/	•	ratio _{act} = 9.2		
			PASS - Span to depth ratio is acc				

V&R	Project		Job Ref.	Job Ref.			
		207 GOLDHURS	ST TERRACE	NW8	1	15 F02	
VINCENT & RYMILL LAKESIDE COUNTRY CLUB FRIMLEY GREEN	Section		Sheet no./rev.	Sheet no./rev.			
	NE	W BASEMENT -		15			
	Calc. by	Date	Chk'd by	Date	App'd by	Date	
SURREY GU16 6PT	ΤV	16/06/2015					
	•	÷		-			
TYPICAL LIGHT WELL WALL							
RETAINING WALL ANAL	YSIS & DE	SIGN (BS80	<u>02)</u>				


RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06


Wall details


wan uctans			
Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 3200 mm	Wall stem thickness	$t_{wall} = 425 \text{ mm}$
Length of toe	I _{toe} = 2000 mm	Length of heel	l _{heel} = 150 mm
Overall length of base	l _{base} = 2575 mm	Base thickness	t _{base} = 400 mm
Height of retaining wall	h _{wall} = 3600 mm		
Depth of downstand	d _{ds} = 0 mm	Thickness of downstand	t _{ds} = 400 mm
Position of downstand	l _{ds} = 1900 mm		
Depth of cover in front of wall	$d_{cover} = 0 mm$	Unplanned excavation depth	d _{exc} = 200 mm
Height of ground water	h _{water} = 0 mm	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	$\gamma_{wall} = 23.6 \text{ kN/m}^3$	Density of base construction	$\gamma_{\text{base}} = 23.6 \text{ kN/m}^3$
Angle of soil surface	$\beta = 0.0 \text{ deg}$	Effective height at back of wall	h _{eff} = 3600 mm
Mobilisation factor	M = 1.5		
Moist density	$\gamma_{\rm m} =$ 18.0 kN/m ³	Saturated density	$\gamma_s = 21.0 \text{ kN/m}^3$
Design shear strength	φ' = 24.2 deg	Angle of wall friction	$\delta = 0.0 \text{ deg}$
Design shear strength	φ' _b = 24.2 deg	Design base friction	$\delta_{b} = \textbf{18.6} \text{ deg}$
Moist density	$\gamma_{mb} = $ 18.0 kN/m ³	Allowable bearing	$P_{\text{bearing}} = 150 \text{ kN/m}^2$
Using Coulomb theory			
Active pressure	Ka = 0.419	Passive pressure	K _p = 4.187
At-rest pressure	$K_0 = 0.590$		

	2	07 GOLDHUR	ST TERRACE N	IW8	1	15 F02		
VINCENT & RYMILL	Section				Sheet no./rev			
LAKESIDE COUNTRY CLUB	NEW	BASEMENT -	preliminary calc	ulations		17		
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date		
SURREY GU16 6PT	TV	16/06/2015						
RETAINING WALL DESIGN (BS 8002:1994)				TEDDS calculati	on vorsion 1.2.		
Ultimate limit state load fact	ors							
Dead load factor	$\gamma_{f_d} = 1.4$		Live load facto	or	$\gamma_{f_l} = 1.6$			
Earth pressure factor	$\gamma_{f_e} = 1.4$							
Calculate propping force								
Propping force	$F_{prop} = 29.3 \text{ kN}/$	m						
Design of reinforced concre	te retaining wall	toe (BS 8002:1	<u>1994)</u>					
Material properties								
Strength of concrete	$f_{cu} = 40 \text{ N/mm}^2$		Strength of rei	inforcement	f _y = 500 N/mm ²			
Base details								
Minimum reinforcement	k = 0.13 %		Cover in toe		c _{toe} = 50 mr	n		
Design of retaining wall toe								
Shear at heel	$V_{toe} = 65.2 \text{ kN/m}$	n	Moment at he		M _{toe} = 126. 4			
			(Compression	reinforcement	is not requ		
Check toe in bending								
Reinforcement provided	16 mm dia.bar	-	entres			0		
Area required	$A_{s_toe_req} = 894.4$		Area provided		$A_{s_toe_prov} =$			
		PASS - Rei	nforcement pr	ovided at the	retaining wall	toe is adequ		
Check shear resistance at to								
Design shear stress	v _{toe} = 0.191 N/m		Allowable she		V _{adm} = 5.000			
	0.044.5	0	- Design shear	r stress is les	s than maximu	m shear sti		
Concrete shear stress	v _{c_toe} = 0.644 N/	/mm ⁻	Vto	o e Vo too - No	shear reinforc	ement requ		
Design of reinforced concre	te retaining wall	heel (BS 8002				ementrequ		
Material properties			<u></u>					
Strength of concrete	f _{cu} = 40 N/mm ²		Strength of rei	inforcement	f _v = 500 N/r	nm ²		
-			Chongai or io		ly – 000 H/H			
Base details Minimum reinforcement	k = 0.13 %		Cover in heel		c _{heel} = 50 m	m		
			Cover in neer		$C_{heel} = 50$ m	111		
Design of retaining wall hee						N <i>i</i>		
Shear at heel	V _{heel} = 14.7 kN/	m	Moment at he		M _{heel} = 4.5			
			C C	compression	reinforcement	is not requ		
Check heel in bending								
Reinforcement provided	12 mm dia.bar					2.		
Area required	$A_{s_heel_req} = 520$		Area provided forcement pro		A _{s_heel_prov} =			
Check shear resistance at h	eel	FA33 - Neill	norcement pro		etanning wan n	eer is adequ		
Design shear stress	v _{heel} = 0.043 N/r	mm ²	Allowable she	ar stress	V _{adm} = 5.00) N/mm ²		
			- Design shear					
Concrete shear stress	v _{c_heel} = 0.463 N		3 u					
				No.	abaar rainfara			
			Vheel	< Vc_heel - INO	shear reinforc	ement requ		

ection NEW BA alc. by Dat	SEMENT - µ e 6/06/2015	ST TERRACE N preliminary calcu Chk'd by 2:1994)		App'd by	5 F02 18 Date	
NEW BA alc. by Dat TV 1 etaining wall ster	e 6/06/2015	Chk'd by				
alc. by Dat TV 1 etaining wall ste	e 6/06/2015	Chk'd by		App'd by		
TV 1	6/06/2015		Date	App'd by	Date	
etaining wall ste		<u>::1994)</u>				
	m (BS 8002	<u>::1994)</u>				
= 40 N/mm ²						
		Strength of reinforcement		f _y = 500 N/m	f _v = 500 N/mm ²	
= 0.13 %						
c _{stem} = 50 mm		Cover in wall		c _{wall} = 50 mm		
_{ttem} = 11.5 kN/m		Moment at base of stem				
		С	ompression	reinforcement	is not requir	
6 mm dia.bars @	100 mm ce	entres				
$A_{s_stem_req} = 725.5 \text{ mm}^2/\text{m}$ A		Area provided		$A_{s_stem_prov} =$	2011 mm ² /m	
PA	ASS - Reinf	orcement provi	ded at the re	taining wall ste	em is adequa	
stem						
v _{stem} = 0.031 N/mm ²		Allowable shear stress		v _{adm} = 5.000 N/mm ²		
	PASS	- Design shear	stress is less	s than maximur	m shear stre	
_stem = 0.618 N/m	m²					
		V _{stem} <	: V _{c_stem} - No :	shear reinforce	ement require	
tio _{max} = 14.00		Actual span/de	pth ratio	ratio _{act} = 8.7	2	
			PASS - Spa	n to depth ratic) is acceptab	
	tem = 11.5 kN/m 5 mm dia.bars @ _stem_req = 725.5 n PA stem em = 0.031 N/mm _stem = 0.618 N/mi	tem = 11.5 kN/m 5 mm dia.bars @ 100 mm ce _stem_req = 725.5 mm ² /m <i>PASS - Reinf</i> stem em = 0.031 N/mm ² <i>PASS</i> _stem = 0.618 N/mm ²	tem = 11.5 kN/m Moment at bas 6 mm dia.bars @ 100 mm centres _stem_req = 725.5 mm ² /m Area provided PASS - Reinforcement provi stem em = 0.031 N/mm ² Allowable shear PASS - Design shear _stem = 0.618 N/mm ²	tem = 11.5 kN/mMoment at base of stem Compression in Compression in Co	tem = 11.5 kN/mMoment at base of stem $M_{stem} = 110.$ G mm dia.bars @ 100 mm centres _stem_req = 725.5 mm²/mArea provided $A_{s_stem_prov} =$ $PASS - Reinforcement provided at the retaining wall steestemem = 0.031 N/mm²Allowable shear stressv_{adm} = 5.000PASS - Design shear stress is less than maximumstem = 0.618 N/mm²$	

V & D	Project Job Ref.					
	2	07 GOLDHURS	T TERRACE N	W8	15	F02
VINCENT & RYMILL	Section				Sheet no./rev.	
LAKESIDE COUNTRY CLUB		BASEMENT - p	-			21
	Calc. by TV	Date 16/06/2015	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	IV	10/00/2015				
CONCRETE SLAB DEFLECTION	ON CHECK (CI	<u>3.5.7)</u>				
Slab span length $I_x = 2.3$	500 m					
Design ultimate momer	nt in shorter spar	n per m width m	_{sx} = 33 kNm/m			
Depth to outer tension s	steel d _x = 160 m	m				
Tension steel						
Area of outer tension re	inforcement pro	vided $A_{sx_prov} = $	785 mm²/m			
Area of tension reinforc	ement required	A _{sx_req} = 499 mn	n²/m			
Moment Redistribution	Factor $\beta_{bx} = 1.00$)				
Modification Factors						
Basic span / effective depth rati	o (Table 3.9) rat	io _{span_depth} = 20				
The modification factor for span	s in excess of 1	0m (ref. cl 3.4.6	.4) has not beer	n included.		
$f_{s} = 2 \times f_{y} \times A_{sx_req} \ / \ (3 \times A_{sx_prov})$	$\times \beta_{bx}$) = 212.0 N	J/mm ²				
$factor_{tens} = min (2, 0.55 + (477))$	7 N/mm ² - f _s) / (120 × (0.9 N/m	$m^2 + m_{sx} / d_x^2)))$) = 1.559		
Calculate Maximum Span						
This is a simplified approach an 3.4.6.4 and 3.4.6.7.	d further attentio	on should be giv	en where speci	al circumstances	exist. Refer to	clauses
Maximum span I _{max} = r	atio _{span depth} \times fa	$\operatorname{ctor}_{\operatorname{tens}} \times \operatorname{d}_{\operatorname{x}} = 4.$	99 m			
Check the actual beam span						
Actual span/depth ratio	l _x / d _x = 15.63					
Span depth limit ratio _{spa}		s = 31.17				
				Span/I	Depth ratio ch	eck satisfied
CHECK OF NOMINAL COVER	(SAGGING) – (BS8110:PT 1,	<u> FABLE 3.4)</u>			
Slab thickness h = 200	mm					
Effective depth to botton	m outer tension	reinforcement d	_x = 160.0 mm			
Diameter of tension reir	oforcomont D	10 mm				
Diameter of links L _{diax} =						
Cover to outer tension reinforce						
$c_{tenx} = h - d_x - D_x / 2 = 3$	5.0 mm					
Nominal cover to links steel	0					
$c_{nomx} = c_{tenx} - L_{diax} = 35.0$. (〒	2.4			
Permissable minimum nominal	cover to all reint	orcement (Table	9 3.4)			
c _{min} = 35 mm				Cover over	steel resisting	a sagging OK
						,
2 LAYERS A393 TOP 1 LAYER						
2 LATENO AUGO IOFILATE						