APPENDIX D

DESIGN CALCULATIONS

	Project		Job Ref					
	34 Queens Grove NV	V8 6HN	12686					
	Drawing Ref	Calculations by	Checked by	Shoot of				
		EA		Sheet of				
	Part of Structure		Date					
	Assimptions		March 2015					
Assumptions.								
* timber	Hoos to all	levels spannin	y from front	to back				
	· · · · · · · · · · · · · · · · · · ·							
4 tasty	cricil losilici up	43 per CIRIA 1	11					
* Adjoining	property has	similar loading	reigine.					
		7						
* Adjoing	property does	not have a	basement.					
AT HOSSING	neit work loads	s when conside	ring party we	all load run				

	Project		Job Ref				
	34 Queens Grove NV	V8 6HN	12686				
GE CREEFI STRUKTURAL ENGINEERING	Drawing Ref	Calculations by EA	Checked by	Sheet			
	Part of Structure		Date				
	Loadings		March 2015				

Loadings Used (Unfactored SLS)

Flat Roof

Dead Loads Felt and chippings Boards and joists Ceiling Services Total Dead Load	0.45 kN/m ² 0.20 kN/m ² 0.20 kN/m ² 0.15 kN/m ² 1.00 kN/m²
Imposed Load	0.75 kN/m ²
Pitched Roof Dead Loads Slate and felt Boards and joists Ceiling Services Total Dead Load	0.30 kN/m ² 0.25 kN/m ² 0.25 kN/m ² 0.15 kN/m ² 1.00 kN/m²
Imposed Load Roof (maintenance) Imposed Load Ceiling Total Imposed Loading	0.75 kN/m² 0.25 kN/m² 1.00 kN/m²
Timber Floors Dead Loads Boards and joists Ceiling Services Total Dead Load Imposed Load	0.35 kN/m ² 0.25 kN/m ² 0.20 kN/m ² 0.80 kN/m ² 1.50 kN/m ²
Partitions (on plan)	0.60 kN/m ²
Beam & Block Floors Dead Loads Screed Floor swt Services Total Dead Load Imposed Load	1.80 kN/m ² 3.50 kN/m ² 0.30 kN/m ² 5.60 kN/m² 1.50 kN/m²

-	Project		Job Ref			
	34 Queens Grove NW	/8 6HN	12686			
G:EI I STRUCTURAL EI IGNEEFI IG	Drawing Ref	Calculations by EA	Checked by	Sheet		
	Part of Structure		Date			
	Loadings		March 2015			

Walls Loads (on elevation)

Stud	Partions 100/100 Cavity Wall	1.00 kN/m² 4 70 kN/m²
215	Brickwork + Plaster	5.30 kN/m ²
450	Brickwork + Plaster Brickwork + Plaster	7.40 kN/m² 10.10 kN/m²

3.3.2 Wall slenderness and restraints

Regulations $^{(2)}$ for the thickness of external and internal or party walls depended on the number of storeys and the storey height. The minimum thicknesses specified in the Metropolitan Buildings Acts of 1844 for 'first class' buildings are reproduced in Figure 6. The slendernesses of the walls were cautious by modern design standards if the wall was restrained effectively at a storey height of 8 to 10 ft (2.5 to 3.0 m) in a typical house.

Figure 6 Thickness of walls in accordance with the London Building Acts of 1844

Licensed copy:ST HELENS COLLEGE, 24/02/2011, Uncontrolled Copy, $^{\odot}$ CIRIA

		Project						_				Job	Ref					
		31 0	IGONG	Grove		R 6H	N					126	386					
	Drawing Ref Calculations by					Che	cked	nv.		01	()T							
G	CSE STRUCTURAL FICHIERING			ations t) y						Che	ereu	Uy		She	eet No.		
				ΕA														
		Part of	Structure	9								Date	2					
		Existi	na Pro	pertv	Load	Run	n Do	wn				Ма	rch	2015				
				1					1								LOAD	ING
			01		1)	1	1	0									DEAD	LIVE
			Party	W	211	how	X	12.0	~	40	un.	-						
	0 0 0	1 2	11-11	. 1 2			-	0										
4	Kog VEI	ENM	LL-1	ENM	Spe	211 =	T	Un	1.								2.5	
	6x = X7									_							512	
	0 11/ 7									-								3.5
	Up= x+	F																
1		a b	eth	DIE	- SIL -	a	11	= 7	11	N.	a	So		= 7.0	om			
×	LOWER ETON	0.8	77	-		100		100	- i ba-	-10		101	-AVI				16.8.	
	OF - OXT	OID A	2	-														
	DE 625	212	27	-														441
	ag- orl	ZUIX	2															
ste	Darty 1h	1 5/																
	Lowes ason	d B	NLOZE	d. (450	Bu	K)	DL	=1	0.14	Nu							
	$6_0 = 10.1 \times$	3=	0								1						30.3	
	Ground -	> the	bi	(33	50	BUR	0 (L=	7.4	KN	2							
	60 = 714 Y	q =								1							66.6	
	- P-																	
	Third ->	Roop	C	215	Bwik)	PL	=5	310	NN	2								
	6K = 513×1	5 =															32.	
												_						
+	Total =																150	48.
							_											
					_	_												
													_					
									-									
								1										
										-								
			1							1				1				

	Project		Job Ref	
	34 Queens Grove NV	/8 6HN	12686	
GREEN STRUCTUPAL	Drawing Ref	Calculations by	Checked by	Sheet of
ENGLI LEPING		EA		
	Part of Structure	1	Date	
	Retaining Wall	Design.	March 2015	
0				
Ketaining L	bell Design.		N .	
			1010	Jun -
			V	
		A		
				liom.
		5	R	
		115m.		
	Pap			
	nop.			
Permenant	State.			
X III 6 2	ISDRUM Due	- LISTENIUS		
A W OR	ISOEMIM OHR	- Tok IM.		
* 6. W.4 1.0	on below groun	d		
T Prop at	Dase.			
* Surcharge	2 = IOKNIM			
Tel parros	Ct-t-			
Temporary =				
+ No G.W.L				
	1301411 (04			
7 W 92 =	1 DURNIM (Party	wall s/w)-		

© MasterSeries PowerPad - 34 Queens Grove NW8 6HN	1	Retaining Wall Design								
Green Structural Engineering Ltd Unit 5 Quayside Lodge William Morris Way Fulham, SW6 2UZ	Job ref: 12686Sheet: C/Made By: EADate: March 2015Checked:Approved:									
Structural Design	Structural Design									
Prop Reaction Maximum Prop Reaction (Ultimate) 95.5 kN @ Base Wall Design (Inner Steel)										
Critical SectionCritical @ 0 mm from base, Case 2Steel Provided (Cover)Main B12@125 (30 mm) Dist. B10@200 (4Compression Steel Provided (Cover)Main B10@300 (30 mm) Dist. B10@300 (4Leverarm z=fn(d,b,As,fy,Fcu)264 mm, 1000 mm, 905 mm², 460 N/mm²,Mr=fn(above,As',d',x,x/d)262 mm², 35 mm, 33 mm, 0.12	42 mm) 905 mm ² 40 mm) 262 mm ² , 30.0 N/mm ² 249 mm 98.6 kN.m	ОК								
Moment Capacity Check (M/Mr) M 93.9 kN.m, Mr 98.6 kN.m Wall Axail Design (N/Ncap) N 322.1 kN, Ncap 3600.0 kN Wall Slenderness λ Leff/tk = 2.00x3500.0/300.0 Kmin = (Nuz-N)/(Nuz-Nbal) Min(1.0, 4000.0 - 322.1)/(4000.0 - 1555.0) M _{add} = N.Kmin.h. $\lambda^2/2000$ 322.1x1.0x300.0x23.3 ² /2000 Mu Madd 120.0 kN Mu Madd 120.0 kN	0.952 0.089 23.3 1.0 26.1kN.m	OK OK OK								
Shear Capacity Check F 79.7 kN, vc 0.521 N/mr², Fvr 137.7 kN	0.58	OK								
Base Top Steel DesignSteel Provided (Cover)Main B10@150 (50 mm) Dist. B10@150 (7Compression Steel Provided (Cover)Main B20@100 (50 mm) Dist. B10@150 (7Leverarm z=fn(d,b,As,fy,Fcu)295 mm, 1000 mm, 524 mm², 460 N/mm²,Mr=fn(above,As',d',x,X/d)3142 mm², 60 mm, 19 mm, 0.06Moment Capacity Check (M/Mr)M 0.0 kN.m, Mr 64.1 kN.m	60 mm) 524 mm² 70 mm) 3142 mm² , 30 N/mm² 280 mm 64.1 kN.m 0.000	ок								
Shear Capacity Check F 0.0 kN, vc 0.407 N/mm ² , Fvr 120.1 kN	0.00	OK								
Dase bollom Steel Design Steel Provided (Cover) Main B20@100 (50 mm) Dist. B10@150 (7 Compression Steel Provided (Cover) Main B10@150 (50 mm) Dist. B10@150 (6 Leverarm z=fn(d,b,As,fy,Fcu) 290 mm, 1000 mm, 3142 mm², 460 N/mm² Mr=fn(above,As',d',x,x/d) 524 mm², 55 mm, 114 mm, 0.39	70 mm) 3142 mm ² 60 mm) 524 mm ² ² , 30 N/mm ² 239 mm 327.9 kN.m	ОК								
Moment Capacity Check (M/Mr)M 104.8 kN.m, Mr 327.9 kN.mShear Capacity CheckF 203.0 kN, vc 0.747 N/mm², Fvr 216.8 kN	0.320 0.94	OK OK								

© Mas	sterSeries PowerPad - 34 Queens Grov	re NW8 6HN		Reta	ining Wall Design						
C	GREEN GREEN STRUCTURAL ENGINEERING William M Fulham, S	Job ref Sheet Made By Date Checked Approved	: 12686 : C/ : EA : March 2015 :								
	Structural Design										
Pr M	op Reaction laximum Prop Reaction (Ultimate) all Design (Inner Stee	66.1 kN @ Base									
Cr St Cc Le	ritical Section teel Provided (Cover) ompression Steel Provided (Cover) everarm z=fn(d,b,As,fy,Fcu) Ir=fn(above,As',d',x,x/d)	Critical @ 0 mm from base, Case 2 Main B12@125 (30 mm) Dist. B10@200 (4 Main B10@300 (30 mm) Dist. B10@300 (4 264 mm, 1000 mm, 905 mm ² , 460 N/mm ² , 262 mm ² , 35 mm, 33 mm, 0.12	ł2 mm) ł0 mm) 30.0 N/mm²	905 mm² 262 mm² 249 mm 98.6 kN.m	ОК						
M W W Kr M	loment Capacity Check (M/Mr) /all Axail Design (N/Ncap) /all Slenderness λ min = (Nuz-N)/(Nuz-Nbal) I _{add} = N.Kmin.h. $\lambda^2/2000$ M+Madd)/Mr _{Avial}	M 75.1 kN.m, Mr 98.6 kN.m N 217.3 kN, Ncap 3600.0 kN Leff/tk =2.00x3500.0/300.0 Min(1.0, 4000.0 - 217.3)/(4000.0 - 1555.0) 217.3x1.0x300.0x23.3 ² /2000 M+Madd 92.8 kN. Mr _{Aval} 123.1 kN.m		0.762 0.060 23.3 1.0 17.7kN.m 0.754	OK OK OK						
Šł	hear Capacity Check	F 57.4 kN, vc 0.521 N/mm², Fvr 137.7 kN	0.42	OK							
St Co Le M	ase Top Steel Design teel Provided (Cover) ompression Steel Provided (Cover) everarm z=fn(d,b,As,fy,Fcu) Ir=fn(above,As',d',x,x/d) Ioment Capacity Check (M/Mr)	Main B10@150 (50 mm) Dist. B10@150 (6 Main B20@100 (50 mm) Dist. B10@150 (7 295 mm, 1000 mm, 524 mm ² , 460 N/mm ² , 3142 mm ² , 60 mm, 19 mm, 0.06 M 0.0 kN.m. Mr 64.1 kN.m	50 mm) 70 mm) 30 N/mm²	524 mm² 3142 mm² 280 mm 64.1 kN.m 0.000	ок						
S	hear Capacity Check	F 0.0 kN, vc 0.407 N/mm ² , Fvr 120.1 kN		0.00	OK						
St Co Le	ase Bottom Steel Designed teel Provided (Cover) compression Steel Provided (Cover) everarm z=fn(d,b,As,fy,Fcu) Ir=fn(above,As',d',x,x/d)	GN Main B20@100 (50 mm) Dist. B10@150 (2 Main B10@150 (50 mm) Dist. B10@150 (6 290 mm, 1000 mm, 3142 mm ² , 460 N/mm 524 mm ² , 55 mm, 114 mm, 0.39	70 mm) 60 mm) ², 30 N/mm²	3142 mm² 524 mm² 239 mm 327.9 kN.m	ОК						
M SI	Ioment Capacity Check (M/Mr) hear Capacity Check	M 79.1 kN.m, Mr 327.9 kN.m F 147.9 kN, vc 0.747 N/mm², Fvr 216.8 kN		0.241 0.68	OK OK						

APPENDIX E

CONSTRUCTION PRINCIPAL DRAWINGS

 \vdash

		12686			34 QUEEN'S GROVE, NW8					GREEN	Unit 5 Quayside Lodge,	CONST	SEQ. F	OR A 1
	P1 30.03.15	DESCRIPTION INITIAL ISSUE	REV	DATE	DESCRIPTION	REV	DATE	DESCRIPTION	_		William Morris Way, Fulham, SW6 2UZ	DRAWN	CHECKED	DAT
ı										www.gseltd.co.uk	020 3405 3120	КМ	GG	30.03

STAGE 8 CAST BASEMENT SLAB AND LET CURE

STAGE 9 ALL PROPS REMOVED

DO NOT SCALE FROM THIS DRAWING

 \vdash

ITIS	DRAWING	S SUBJECT TO COPTRIGHT												
		12686		34 QUEEN'S GROVE, NW8				GREEN	Unit 5 Quayside Lodge,	CONST. SEQ. FOR A TY				
REV P1	DATE 30.03.15	DESCRIPTION INITIAL ISSUE	REV	DATE	DESCRIPTION		REV	DATE DESCRIPTION		STRUCTURAL ENGINEERING	William Morris Way, Fulham, SW6 2UZ	DRAWN	CHECKED	DATE
										www.gseltd.co.uk	020 3405 3120	КМ	GG	30.03.15
_														

APPENDIX F

UNDERPINNING SPECIFICATION

Specification:	Underpinning
Project:	34 Queens Grove
Date of issue:	March 2015
Prepared by:	E. Alexander

Revision:

General Underpinning Specification

- 1. The walls to the perimeter of the new basement shall be underpinned in reinforced concrete. The underpins shall take the vertical loads from the walls and horizontal loads from the earth.
- 2. Underpinning bases shall be excavated in short sections not exceeding 1000mm in width.
- 3. The sequence of the underpinning shall be such that any given underpin will be completed, drypacked and a minimum period of 48 hours lapsed before an adjacent excavation commenced to form another underpin.
- 4. In the event that the existing foundations to the wall are found to be unstable, sacrificial steel jacks shall be installed underneath the foundation to prop the bottom few courses of bricks. These steel jacks shall be left in place and shall be incorporated into the concrete stem.
- 5. In the event that the ground is unstable, lateral propping shall be provided as required to the rear of the excavation and to the sides of the excavated working trench. The front and side faces of the excavation shall be propped using trench sheeting or plywood, timber boards and acrow props as appropriate. Sacrificial back shutters shall be used to the rear face of the excavation (i.e. underneath the wall) if required. Cementitious grout will be poured behind the back shutters to fill up the voids behind the back shutters.
- 6. Excavation for an underpin section shall be dug in a day, and the concrete to the base shall be poured by the end of the same day.
- 7. The concrete to the stem of the underpin shall be poured the following day. This shall be poured up to within 50 75mm of the underside of the existing wall foundations.
- 8. On the following day, the gap between the concrete and the underside of the existing foundation shall be drypacked with C35 concrete using 5 10mm coarse aggregate and "Combex 100" expanding admixture by Fosroc UK Ltd in accordance with their instructions.
- 9. Once the drypack has gained sufficient strength, any protrusions of the footings into our site shall be carefully trimmed back using hand tools to avoid causing any damage to the foundation. The protrusions shall be trimmed back to be flush in-line with the face of the wall above.
- 10. A minimum of 48 hours shall be allowed before adjacent sections are excavated to form a new underpin.
- 11. Adjacent underpins shall be connected using T12 dowel bars 800mm long, 400mm embedment each side, at 300mm vertical centres.
- 12. Concrete cover to reinforcement shall be 35mm for cast against shutter or the top surface of the basement slab, 50mm for cast against blinding and 75mm for cast against earth.
- 13. Grade of concrete shall be C35 with minimum cement content 300kg/m³, maximum free water to cement ratio 0.60, slump 100mm.