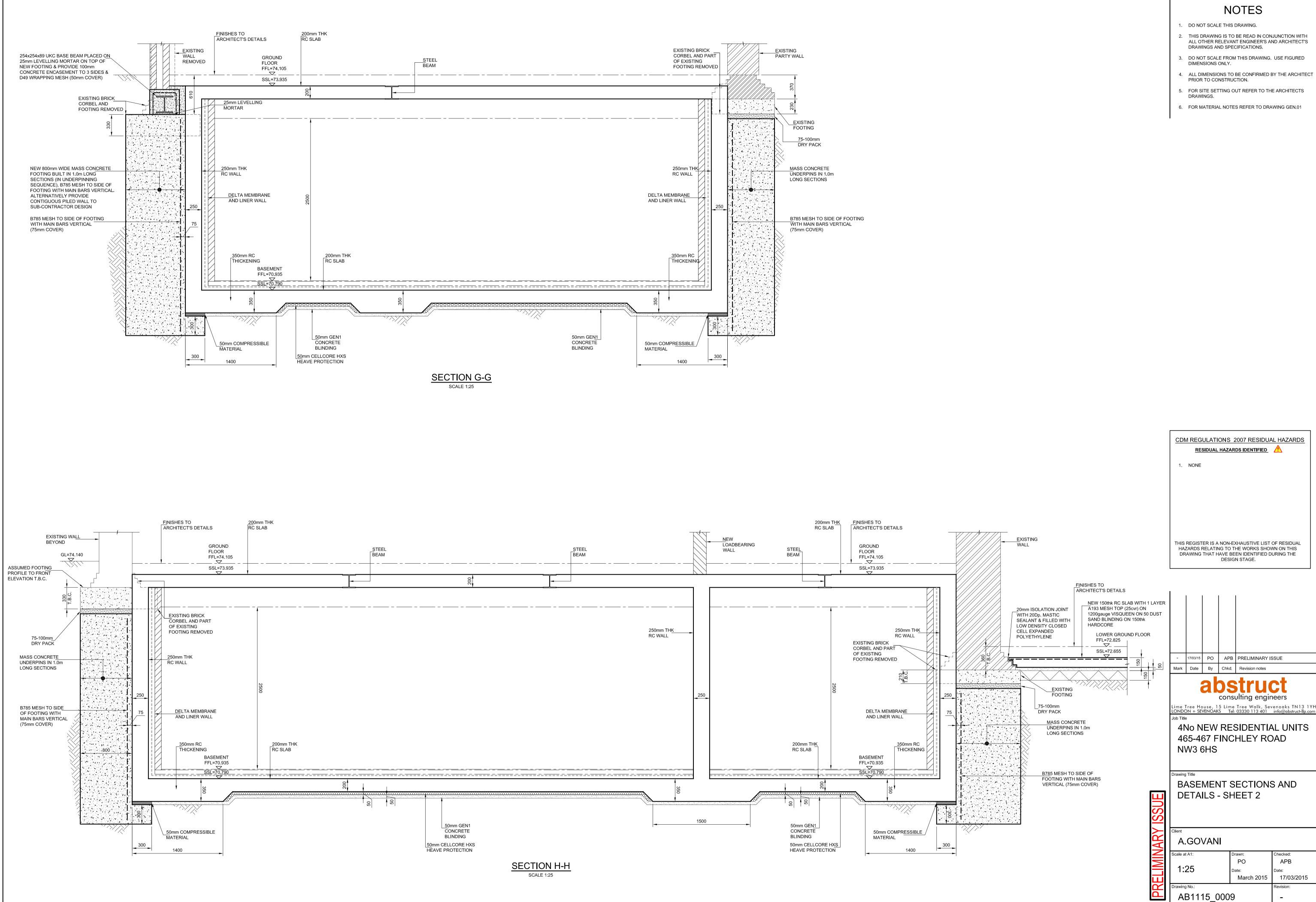


PROVISION OF BASEMENT CHANGES CLASS OF BUILDING TO 2B.

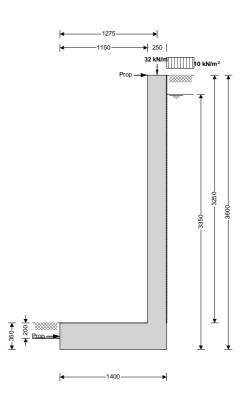
DENOTES NEW 215thk LOADBEARING MEDIUM



M
PRELI

A.GOVANI Scale at A1: hecked: PO APB 1:25 March 2015 17/03/2015 awing No. AB1115_0008 © Copyright abstruct Ilp

© Copyright abstruct llp


Appendix B – ABSTRUCT Basement Retaining Wall Calculations

Project: Job No: LONDON + absi 465-467 Finant Roko 1115 **SEVENOAKS** consulting engineers Title: Date: Sheet No: By: AB NEW BASEMENT RET WALL DESIGN MARCH 2015 BOI RETAWING WALL DESIGN CONSIDER 1.0M WISTH OF WALL GROUND FROOR COMMING FINISHES 75mm OL = = 1.80 250 RC SLAB = 6.00 CELLIGS \$ SERVICES = 0.20 8.00 klan. LL = RETAIL SHOP FLOOR (f. o K/2) BUT AUN = 5.00 K/2 ERTERAR MUSIMENT COAMING (MICHWAY) Anero = 10.0 R/a ~ 5.0m WALL DESIGN SURCHARGE 10.0 KM mi 250 5 = TARE MAY WATER MABLE. - UNDERPENS/ FORTINGS m 250 C RESLATS 1400 ROMATION ABOUT P ALCULATE P. FROM BEAM (SIREAD W WAW). POL = GND FRANCE (B. 0 K/2 × Sm/2 × 6.4m/2)/3.25m = 19.7 Km/m WALLS/WT (0.25 × 24) × 3.5M = 21.0 40.7 Km/m 11 = Gran Freore (5.0KPe × Sm/2 + 6.4m/2)/3.25m = 12.3kN/M. REFER TO ATTACHED TEDDS CALWATION. PRESSURE BELOW BASE & 100 Km ore

abstruct	Project				Job no.	
consulting engineers	465-467 Finchley Rod				1115	
ABSTRUCT LLP	Calcs for				Start page no./Revision	
LONDON + SEVENOAKS	Basement Retaining Wall RW1				RW1 / 1	
	Calcs by AB	Calcs date 04/03/2015	Checked by	Checked date	Approved by	Approved date

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Wall details

Retaining wall type Height of retaining wall stem Thickness of wall stem Length of toe Length of heel Overall length of base Thickness of base Depth of downstand Position of downstand Thickness of downstand Height of retaining wall Depth of cover in front of wall Depth of unplanned excavation Height of ground water behind wall Height of saturated fill above base Density of wall construction Density of base construction Angle of rear face of wall Angle of soil surface behind wall Effective height at virtual back of wall **Retained material details** Mobilisation factor

Cantilever propped at both

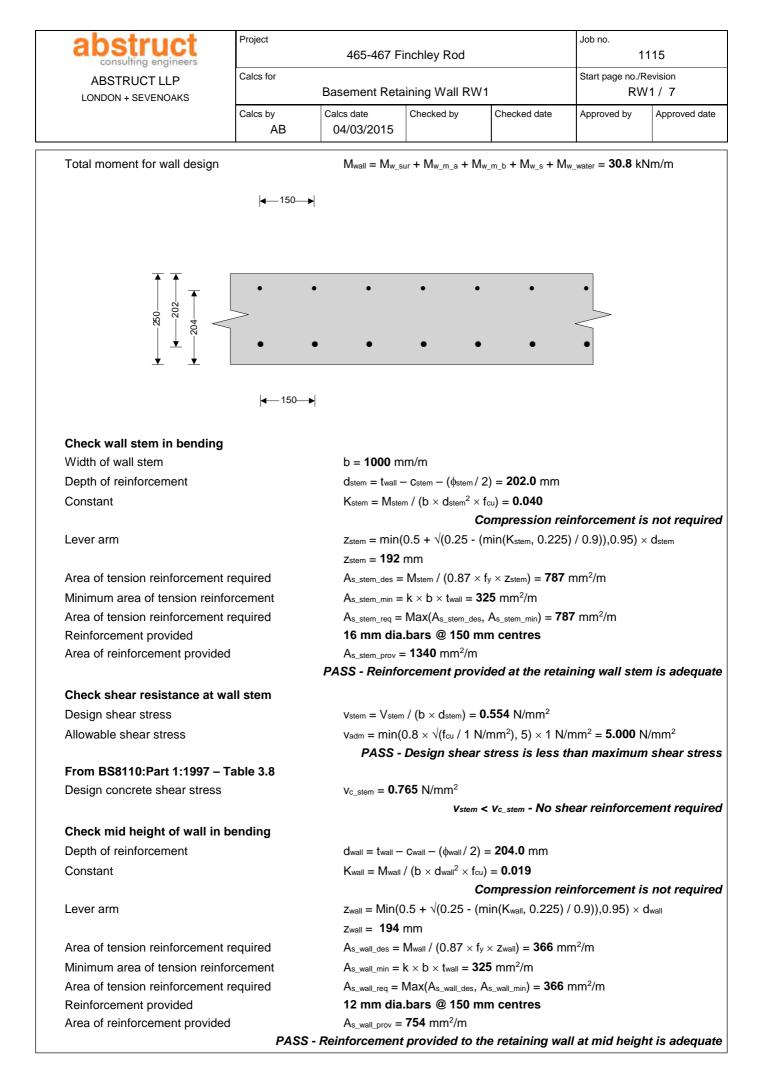
hstem = **3250** mm t_{wall} = 250 mm Itee = **1150** mm $I_{heel} = 0 \text{ mm}$ Ibase = Itoe + Iheel + twall = 1400 mm t_{base} = **350** mm $d_{ds} = 0 \text{ mm}$ l_{ds} = **1050** mm tds = 350 mm $h_{wall} = h_{stem} + t_{base} + d_{ds} = 3600 \text{ mm}$ d_{cover} = **0** mm dexc = **200** mm h_{water} = **3350** mm $h_{sat} = max(h_{water} - t_{base} - d_{ds}, 0 mm) = 3000 mm$ $\gamma_{wall} = 23.6 \text{ kN/m}^3$ $\gamma_{\text{base}} = 23.6 \text{ kN/m}^3$ $\alpha = 90.0 \text{ deg}$ $\beta = 0.0 \deg$ $h_{eff} = h_{wall} + I_{heel} \times tan(\beta) = 3600 \text{ mm}$ M = 1.5

$\begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$\label{eq:approximation} \hline \begin{array}{ c c c c c } \hline \hline Calcs by \\ AB \end{array} \hline \hline Calcs date \\ O4/03/2015 \hline \hline Checked by \hline \hline Checked date \\ \hline Approved by \hline Approved date \\ \hline AB \end{array} \hline \begin{array}{ c c c } \hline AB \end{array} \hline \hline Calcs date \\ \hline O4/03/2015 \hline \hline Checked by \hline \hline Checked date \\ \hline Approved by \hline Approved date \\ \hline \hline AB \end{array} \hline \begin{array}{ c c } \hline AB \end{array} \hline \hline \\ \hline AB \end{array} \hline \begin{array}{ c c } \hline Calcs date \\ \hline O4/03/2015 \hline \hline \\ \hline \\ Calcs date \\ \hline \\ \hline \\ \hline \\ Saturated density of retained material \\ \hline \hline \\ \hline $
Saturated density of retained material $\gamma_{s} = 21.0 \text{ kN/m}^{3}$ Design shear strength $\phi' = 24.2 \text{ deg}$ Angle of wall friction $\delta = 18.6 \text{ deg}$ Base material details Stiff clay Moist density $\gamma_{mb} = 18.0 \text{ kN/m}^{3}$ Design shear strength $\phi_{b} = 24.2 \text{ deg}$ Design base friction $\delta_{b} = 18.6 \text{ deg}$ Allowable bearing pressure $P_{bearing} = 100 \text{ kN/m}^{2}$ Using Coulomb theory Active pressure coefficient for retained material $K_{a} = \sin(\alpha + \phi)^{2} / (\sin(\alpha)^{2} \times \sin(\alpha - \delta) \times [1 + \sqrt{(\sin(\phi' + \delta) \times \sin(\phi' - \beta) / (\sin(\alpha - \delta) \times \sin(\alpha + \beta)))]^{2}}) = 0.369$ Passive pressure coefficient for base material $K_{p} = \sin(90 - \phi)^{2} / (\sin(90 - \delta_{b}) \times [1 - \sqrt{(\sin(\phi_{b} + \delta_{b}) \times \sin(\phi_{b}) / (\sin(90 + \delta_{b})))]^{2}}) = 4.187$ At-rest pressure At-rest pressure for retained material $K_{0} = 1 - \sin(\phi') = 0.590$ Loading details Surcharge load on plan $Surcharge = 10.0 \text{ kN/m}^{2}$ Applied vertical dead load on wall $W_{bre} = 12.3 \text{ kN/m}$ Position of applied vertical load on wall $W_{bre} = 12.3 \text{ kN/m}$ Applied horizontal dead load on wall $F_{bre} = 0.0 \text{ kN/m}$ Applied horizontal load on wall $F_{bre} = 0.0 \text{ kN/m}$ Applied horizontal load on wall $F_{bre} = 0.0 \text{ kN/m}$ Applied horizontal load on wall $F_{bre} = 0.0 \text{ kN/m}$

abstruct consulting engineers	Project 465-467 Finchley Rod				Job no. 1115	
ABSTRUCT LLP LONDON + SEVENOAKS	Calcs for	Basement Retaining Wall RW1			Start page no./Revision RW1 / 3	
	Calcs by AB	Calcs date 04/03/2015	Checked by	Checked date	Approved by	Approved date

Loads shown in kN/m, pressures shown in kN/m²

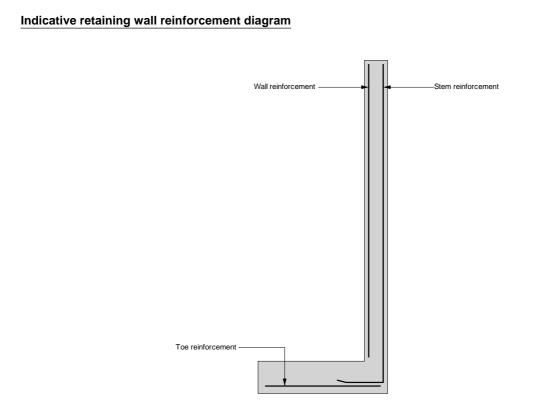
Vertical forces on wall	
Wall stem	$w_{wall} = h_{stem} \times t_{wall} \times \gamma_{wall} = 19.2 \text{ kN/m}$
Wall base	wbase = $I_{base} \times t_{base} \times \gamma_{base}$ = 11.6 kN/m
Applied vertical load	$W_v = W_{dead} + W_{live} = 32.3 \text{ kN/m}$
Total vertical load	$W_{total} = W_{wall} + W_{base} + W_v = 63 \text{ kN/m}$
Horizontal forces on wall	
Surcharge	$F_{sur} = K_a \times cos(90 - \alpha + \delta) \times Surcharge \times h_{eff} = 12.6 \text{ kN/m}$
Moist backfill above water table	$F_{m_a} = 0.5 \times K_a \times cos(90 - \alpha + \delta) \times \gamma_m \times (h_{eff} - h_{water})^2 = 0.2 \text{ kN/m}$
Moist backfill below water table	$F_{m_b} = K_a \times cos(90 - \alpha + \delta) \times \gamma_m \times (h_{eff} - h_{water}) \times h_{water} = 5.3 \text{ kN/m}$
Saturated backfill	$F_s = 0.5 \times K_a \times cos(90 - \alpha + \delta) \times (\gamma_{s} - \gamma_{water}) \times h_{water}^2 = 22 \text{ kN/m}$
Water	$F_{water} = 0.5 \times h_{water}^2 \times \gamma_{water} = 55 \text{ kN/m}$
Total horizontal load	$F_{total} = F_{sur} + F_{m_a} + F_{m_b} + F_s + F_{water} = 95.1 \text{ kN/m}$
Calculate total propping force	
Passive resistance of soil in front of wall	$F_{p} = 0.5 \times K_{p} \times cos(\delta_{b}) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^{2} \times \gamma_{mb} = 0.8 \text{ kN/m}$
Propping force	$F_{prop} = max(F_{total} - F_p - (W_{total} - W_{live}) \times tan(\delta_b), 0 \text{ kN/m})$
	F _{prop} = 77.2 kN/m
Overturning moments	
Surcharge	M_{sur} = F_{sur} × (h _{eff} - 2 × d _{ds}) / 2 = 22.7 kNm/m
Moist backfill above water table	$M_{m_a} = F_{m_a} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) / 3 = 0.7 \text{ kNm/m}$
Moist backfill below water table	$M_{m_b} = F_{m_b} \times (h_{water} - 2 \times d_{ds}) / 2 = 8.8 \text{ kNm/m}$
Saturated backfill	$M_s = F_s \times (h_{water} - 3 \times d_{ds}) / 3 = 24.5 \text{ kNm/m}$
Water	$M_{water} = F_{water} \times (h_{water} - 3 \times d_{ds}) / 3 = 61.5 \text{ kNm/m}$
Total overturning moment	$M_{ot} = M_{sur} + M_{m_a} + M_{m_b} + M_s + M_{water} = 118.2 \text{ kNm/m}$
Restoring moments	
Wall stem	$M_{wall} = w_{wall} \times (I_{toe} + t_{wall} / 2) = 24.4 \text{ kNm/m}$
Wall base	Mbase = wbase × lbase / 2 = 8.1 kNm/m
Design vertical dead load	$M_{dead} = W_{dead} \times I_{load} = 25.5 \text{ kNm/m}$
Total restoring moment	$M_{rest} = M_{wall} + M_{base} + M_{dead} = 58 \text{ kNm/m}$
Check bearing pressure	
Total vertical reaction	R = W _{total} = 63.0 kN/m
Distance to reaction	x _{bar} = I _{base} / 2 = 700 mm
Eccentricity of reaction	e = abs((l _{base} / 2) - x _{bar}) = 0 mm
	Reaction acts within middle third of bas
Bearing pressure at toe	$p_{\text{toe}} = (R \mid I_{\text{base}}) - (6 \times R \times e \mid I_{\text{base}}^2) = 45 \text{ kN/m}^2$
Bearing pressure at heel	$p_{\text{heel}} = (R / I_{\text{base}}) + (6 \times R \times e / I_{\text{base}}^2) = 45 \text{ kN/m}^2$
• •	SS - Maximum bearing pressure is less than allowable bearing pressur


 $F_{prop_top} = (M_{ot} - M_{rest} + R \times I_{base} / 2 - F_{prop} \times t_{base} / 2) / (h_{stem} + t_{base} / 2) = 26.497 \text{ kN/m}$ $P_{prop_base} = F_{prop_top} - F_{prop_top} = 50.703 \text{ kN/m}$

Propping force to base of wall

abstruct consulting engineers	Project	465-467 F	inchley Rod		Job no. 1	1115		
ABSTRUCT LLP LONDON + SEVENOAKS	Calcs for	Basement Reta	aining Wall RV	V1	Start page no./I RV	Revision V1/4		
	Calcs by AB	Calcs date 04/03/2015	Checked by	Checked date	Approved by	Approved da		
RETAINING WALL DESIGN	(BS 8002:1994)	<u>)</u>						
Ultimate limit state load fac	tors				TEDDS calculation	on version 1.2.0		
Dead load factor		$\gamma_{f_d} = 1.4$						
Live load factor		γ _{f_l} = 1.6						
Earth and water pressure fact	tor	γ _{f_e} = 1.4						
Factored vertical forces on	wall							
Wall stem		Wwall $f = \gamma f d$	\times h _{stem} \times t _{wall} \times	γ _{wall} = 26.8 kN/n	n			
Wall base				< γ _{base} = 16.2 kN				
Applied vertical load		-		W _{live} = 47.7 kN/n				
Total vertical load		•	•	W _{v_f} = 90.7 kN/m				
Factored horizontal at-rest	forces on wall			_				
Surcharge		$F_{sur} f = V f + 2$	Ko × Surchar	ne × h _{eff} = 34 kN/	/m			
Moist backfill above water tab	$\begin{aligned} F_{sur_{f}} &= \gamma_{f_{-}I} \times K_{0} \times Surcharge \times h_{eff} = \textbf{34 kN/m} \\ F_{m_a_f} &= \gamma_{f_e} \times 0.5 \times K_{0} \times \gamma_{m} \times (h_{eff} - h_{water})^{2} = \textbf{0.5 kN/m} \end{aligned}$							
Moist backfill below water tab	$F_{m_b_f} = \gamma_{f_e} \times K_0 \times \gamma_m \times (heff - hwater) \times hwater = 12.5 kN/m$							
Saturated backfill								
WaterFwater_f = $\gamma f_e \times 0.5 \times hwater^2 \times \gamma water = 77.1 k$								
Total horizontal load		$F_{total_f} = F_{sur_f} + F_{m_a_f} + F_{m_b_f} + F_{s_f} + F_{water_f} = 175.8 \text{ kN/m}$						
Calculate total propping for	CO		· · ·u_, · · · .					
Passive resistance of soil in f		F- 4 - 14 - X	$0.5 \times K_{-} \times cos$	$s(\delta_b) \times (d_{cover} + t_{ba})$		× w== 1 1		
kN/m		• p_i — ∦i_e ∧	0.0 Λ τφ Λ 000		ise i dus dexc)	× 1110 - 111		
Propping force		F _{prop_f} = ma F _{prop_f} = 15		(Wtotal_f - $\gamma f_I \times W$	$V_{\sf live}) imes tan(\delta_{\sf b}), C$) kN/m)		
Factored overturning mome	onts	1 1-						
Surcharge	,	Msur f = Fsu	f x (heff - 2 x (d _{ds}) / 2 = 61.2 kN	lm/m			
Moist backfill above water tab	le		,	< h _{water} - 3 × d _{ds}) /		n		
Moist backfill below water tab				$\times d_{ds}) / 2 = 20.9$				
Saturated backfill		$M_{s_f} = F_{s_f} \times (h_{water} - 3 \times d_{ds}) / 3 = 57.9 \text{ kNm/m}$						
Water		$M_{water_f} = F_{water_f} \times (h_{water} - 3 \times d_{ds}) / 3 = 86.1 \text{ kNm/m}$						
Total overturning moment		$M_{ot_f} = M_{sur_f} + M_{m_af} + M_{m_bf} + M_{s_f} + M_{water_f} = 227.6 \text{ kNm/m}$						
Restoring moments								
Wall stem		Mwall f = Ww	all f × (Itoe + two	/ 2) = 34.2 kNm/	m			
Wall base			-	-				
Design vertical load		$M_{base_f} = w_{base_f} \times I_{base} / 2 = 11.3 \text{ kNm/m}$ $M_{v_f} = W_{v_f} \times I_{load} = 60.8 \text{ kNm/m}$						
Total restoring moment		$M_{rest_{f}} = M_{wall_{f}} + M_{base_{f}} + M_{v_{f}} = 106.4 \text{ kNm/m}$						
Factored bearing pressure		_	_					
Total vertical reaction		R _f = W _{total} f	= 90.7 kN/m					
Distance to reaction		_	/ 2 = 700 mm					
Eccentricity of reaction			_{ase} / 2) - x _{bar_f}) :	= 0 mm				
				Reaction acts	within middle	e third of ba		
Bearing pressure at toe		$p_{toe_f} = (R_f)$	$^{\prime}$ Ibase) - (6 $ imes$ Rf	\times ef / Ibase ²) = 64.	8 kN/m²			
Bearing pressure at heel		pheel_f = (Rf	/ Ibase) + ($6 \times F$	$R_f \times e_f / I_{base}^2$) = 64	4.8 kN/m²			
Rate of change of base reaction	ion	rate = (p_{toe})	_f - p _{heel_f}) / I _{base}	a = 0.00 kN/m ² /m				
	е	rate = (p _{toe_f} - p _{heel_f}) / I _{base} = 0.00 kN/m ² /m p _{stem_toe_f} = max(p _{toe_f} - (rate × I _{toe}), 0 kN/m ²) = 64.8 kN/m ²						

abstruct	Project	465-467 F	inchley Rod		Job no. 1	115			
ABSTRUCT LLP	Calcs for				Start page no./F				
LONDON + SEVENOAKS		Basement Reta	aining Wall RV	V1	RV	V1/5			
	Calcs by AB	Calcs date 04/03/2015	Checked by	Checked date	Approved by	Approved			
Bearing pressure at mid stem	1	pstem_mid_f =	max(p _{toe_f} - (ra	$te \times (I_{toe} + t_{wall} / 2)$	2)), 0 kN/m²) = 0	6 4.8 kN/m			
Bearing pressure at stem / he	el	Pstem_heel_f =	= max(p _{toe_f} - (ra	ate × (Itoe + twall)),	0 kN/m ²) = 64 .	8 kN/m²			
Calculate propping forces to	o top and base	of wall							
Propping force to top of wall									
	Fprop_top_f =	= (M _{ot_f} - M _{rest_f} + R	$_{\rm f} imes I_{\rm base} / 2$ - Fp	$_{rop_f} imes t_{base}$ / 2) / (h	n _{stem} + t _{base} / 2)	= 46.239			
Propping force to base of wal	ļ	Fprop_base_f =	= Fprop_f - Fprop_t	op_f = 104.573 kN	l/m				
Design of reinforced concre	ete retaining wa	all toe (BS 8002:1	994)						
Material properties									
Characteristic strength of con	crete	fcu = 40 N/r	nm²						
Characteristic strength of rein	forcement	f _y = 500 N/	mm²						
Base details									
Minimum area of reinforceme	nt	k = 0.13 %							
Cover to reinforcement in toe		c _{toe} = 75 m	m						
Calculate shear for toe desi	gn								
Shear from bearing pressure		$V_{toe_bear} = ($	$V_{toe_bear} = (p_{toe_f} + p_{stem_toe_f}) \times I_{toe} / 2 = 74.5 \text{ kN/m}$						
Shear from weight of base		V _{toe_wt_base} =	$V_{toe_wt_base} = \gamma_{f_d} \times \gamma_{base} \times I_{toe} \times t_{base} = 13.3 \text{ kN/m}$						
Total shear for toe design		$V_{toe} = V_{toe_{-}}$	$V_{toe} = V_{toe_bear} - V_{toe_wt_base} = 61.2 \text{ kN/m}$						
Calculate moment for toe de	esign								
Moment from bearing pressur	e	$M_{toe_bear} = ($	$2 \times p_{toe_f} + p_{ste}$	m_mid_f) \times (Itoe + twa	$(11)^2 / 6 = 52.$	7 kNm/m			
Moment from weight of base		M _{toe_wt_base}	= ($\gamma_{f_d} \times \gamma_{base} \times$	$t_{base} imes (I_{toe} + t_{wall})$	(2) ² / 2) = 9.4 k	Nm/m			
Total moment for toe design		$M_{toe} = M_{toe}$	_bear - Mtoe_wt_bas	_e = 43.3 kNm/m					
→ 350 269 →									
	•	• •	• •	•	•				
<u> </u>									
	┥──150──	▶							
Check toe in bending	 ← 150—	•							
Check toe in bending Width of toe	∢ —150—	► b = 1000 m	nm/m						
-	 4 —150—	b = 1000 n dtoe = tbase -	– Сtoe – (фtoe / 2)						
Width of toe	 4 —150—	b = 1000 n dtoe = tbase -	- Ctoe - (ϕ toe / 2) / (b × dtoe ² × fcu) = 0.015					
Width of toe Depth of reinforcement Constant	 4 —150—	b = 1000 n dtoe = tbase - Ktoe = Mtoe a	- Ctoe - (ϕ toe / 2) / (b × dtoe ² × fcu) = 0.015 Compression re		-			
Width of toe Depth of reinforcement	 4 —150—	b = 1000 m dtoe = tbase - Ktoe = Mtoe ztoe = min(0	$- c_{toe} - (\phi_{toe} / 2)$ / (b × d_{toe} ² × fcu 0.5 + $\sqrt{0.25}$ - () = 0.015		-			
Width of toe Depth of reinforcement Constant Lever arm		$b = 1000 \text{ m}$ $d_{toe} = t_{base} - K_{toe} = M_{toe}$ $Z_{toe} = min(0)$ $Z_{toe} = 256 \text{ m}$	$- c_{toe} - (\phi_{toe} / 2)$ / (b × d _{toe} ² × fcu 0.5 + $\sqrt{0.25}$ - (mm) = 0.015 Compression re min(K _{toe} , 0.225) /	′ 0.9)),0.95) × c	-			
Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement	required	$b = 1000 \text{ m}$ $d_{\text{toe}} = t_{\text{base}} - t_{\text{toe}}$ $K_{\text{toe}} = M_{\text{toe}}$ $z_{\text{toe}} = min(0)$ $z_{\text{toe}} = 256 \text{ m}$ $A_{\text{s_toe_des}} = 0$	$- c_{toe} - (\phi_{toe} / 2) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (0.25 + \sqrt{0.25 - (mm)}) / (0.87 \times f_{cu}) / (0.87 \times f_$) = 0.015 Compression re min(K _{toe} , 0.225) / / × z _{toe}) = 389 mr	′ 0.9)),0.95) × c	-			
Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinforcement	required	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{bas} - t_{bas} - t_{base} - t_{base} - t_{base} - t_{base} - t_{bas$	$- c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{0.25} - (mm)$ $M_{toe} / (0.87 \times f_{toe})$ $k \times b \times t_{base} = 4$) = 0.015 <i>Compression re</i> min(K _{toe} , 0.225) / / × Z _{toe}) = 389 mr 455 mm ² /m	′ 0.9)),0.95) × c n²/m	-			
Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement	required	b = 1000 m $dtoe = tbase - tbas$	$- c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{0.25} - (mm)$ $M_{toe} / (0.87 \times f_{toe})$ $k \times b \times t_{base} = 4$) = 0.015 <i>Compression re</i> min(K _{toe} , 0.225) / / × ztoe) = 389 mr 155 mm ² /m A _{s_toe_min}) = 455 r	′ 0.9)),0.95) × c n²/m	-			
Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement Minimum area of tension reinforcement	required forcement required	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{toe} = M_{toe} + t_{toe}$ $z_{toe} = M_{toe} + t_{toe} = 256 \text{ m}$ $A_{s_toe_des} = A_{s_toe_des} = A_{s_toe_req} = t_{12} \text{ mm dia}$	$- \text{Ctoe} - (\phi_{\text{toe}} / 2)$ $/ (b \times \text{dtoe}^2 \times \text{fcu})$ $0.5 + \sqrt{(0.25 - (mmmm))}$ $M_{\text{toe}} / (0.87 \times \text{fg})$ $k \times b \times \text{tbase} = 4$ $Max(A_{s_{\text{toe}}\text{-des}}, mm)$) = 0.015 <i>Compression re</i> min(K _{toe} , 0.225) / / × ztoe) = 389 mr 155 mm ² /m A _{s_toe_min}) = 455 r	′ 0.9)),0.95) × c n²/m	-			


apstruct consulting engineers	Project	465-467 F	inchley Rod		Job no. 1	115		
ABSTRUCT LLP	Calcs for Start page no./Revision Basement Retaining Wall RW1 RW1 RW1 / 6							
LONDON + SEVENOAKS		Basement Ret	aining Wall RV	V1	RW1/6			
	Calcs by AB	Calcs date 04/03/2015	Checked by	Checked date	Approved by	Approved		
Check shear resistance at	toe		·	•	·	÷		
Design shear stress		v _{toe} = V _{toe} /	$(b \times d_{toe}) = 0.2$	28 N/mm ²				
Allowable shear stress		Vadm = min((0.8 × √(fcu / 1 I	N/mm²), 5) × 1 N/	/mm ² = 5.000 N	N/mm ²		
		PASS -	Design shea	r stress is less i	than maximun	n shear st		
From BS8110:Part 1:1997 -	- Table 3.8		_					
Design concrete shear stress	S	Vc_toe = 0.5						
			Vt	oe < Vc_toe - NO SI	near reinforce	ment requ		
Design of reinforced concr	ete retaining wa	all stem (BS 8002	2:1994)					
Material properties								
Characteristic strength of con	ncrete	fcu = 40 N/r	mm²					
Characteristic strength of rei	$f_y = 500 \text{ N/}$	mm²						
Wall details								
Minimum area of reinforceme		k = 0.13 %						
Cover to reinforcement in ste	c _{stem} = 40 mm							
Cover to reinforcement in wa	all	Cwall = 40 m	ım					
Factored horizontal at-rest	forces on stem							
Surcharge			$arge \times (h_{eff} - t_{base})$	-				
Moist backfill above water tal	$F_{s_m_a_f} = 0.5 \times \gamma_{f_e} \times K_0 \times \gamma_m \times (h_{eff} - t_{base} - d_{ds} - h_{sat})^2 = 0.5 \text{ kN/m}$							
Moist backfill below water tak	ole	$F_{s_m_b_f} = \gamma_{f_e} \times K_0 \times \gamma_m \times (h_{eff} - t_{base} - d_{ds} - h_{sat}) \times h_{sat} = 11.2 \text{ kN/m}$						
Saturated backfill			$F_{s_s_f} = 0.5 \times \gamma f_e \times K_0 \times (\gamma s_ \gamma water) \times hsat^2 = 41.6 kN/m$					
Water		$F_{s_water_f} = 0$	$0.5 imes\gamma_{f_e} imes\gamma_{wate}$	er × h _{sat} ² = 61.8 kN	N/m			
Calculate shear for stem de	esign							
Surcharge			$\times F_{s_sur_f} / 8 = $					
Moist backfill above water ta	ble			$5 \times L^2$) - b ²) / (5 >	-			
Moist backfill below water tak	ole			² × (4 - n))) / 8 =				
Saturated backfill				$(1 - (a^2 \times ((5 \times L) - a) / (20 \times L^3))) = 34.3 \text{ kN/m}$				
Water		V _{s_water_f} = F _{s_water_f} × (1 - (a _i ² × ((5 × L) - a _i) / (20 × L ³))) = 51 kN/m V _{stem} = V _{s_sur_f} + V _{s_m_a_f} + V _{s_m_b_f} + V _{s_s_f} + V _{s_water_f} = 112 kN/m						
Total shear for stem design		$V_{stem} = V_{s_s}$	sur_f + Vs_m_a_f +	$V_{s_m_b_f} + V_{s_s_f}$	- Vs_water_f = 11 2	2 kN/m		
Calculate moment for stem	n design							
Surcharge			$_{sur_f} \times L / 8 = 1$					
Moist backfill above water ta		$M_{s_m_a} = F_{s_m_a_f} \times b_I \times ((5 \times L^2) - (3 \times b_I^2)) / (15 \times L^2) = 0 \text{ kNm/m}$						
Moist backfill below water tak	ole	$M_{s_mb} = F_{s_mb} + x_{al} \times (2 - n)^2 / 8 = 5.1 \text{ kNm/m}$ $M_{s_mb} = F_{s_mb} + (2 + n)^2 / (4 - n)^2 / (2 $						
Saturated backfill		$M_{s_s} = F_{s_s_f} \times a_{l} \times ((3 \times a_{l}^2) - (15 \times a_{l} \times L) + (20 \times L^2))/(60 \times L^2) = 19.1 \text{ kNm/m}$ $M_{s_water} = F_{s_water_f} \times a_{l} \times ((3 \times a_{l}^2) - (15 \times a_{l} \times L) + (20 \times L^2))/(60 \times L^2) = 28.4$						
Water		Ms_water = F	s_water_f ×ai×((3>	<aŕ)-(15×ai×l)+(2< td=""><td>⊻∪×L∸))/(б0×L²)</td><td>= 28.4</td></aŕ)-(15×ai×l)+(2<>	⊻∪×L∸))/(б0×L²)	= 28.4		
kNm/m Total moment for stem desig	in	Mator - M-	sur + Ma m a + M	1/s_m_b + Ms_s + M	s water - 65 7 LN	Jm/m		
-			<u></u> 111_8 1"	•io_iii_0 + 1¥15_8 ⊤ 1¥1				
Calculate moment for wall Surcharge	นชอเมท	M		28 = 7.4 kNm/m				
Moist backfill above water ta	hle			20 = 7.4 kinit/m $(bi\times[(bi^3+5\times ai\times L^2))$	/(5×1 ³)-0 577 ^{2/}	3] _ N 1		
kNm/m		iviw_m_a = F	s_iii_a_i ^ U.U<i>I I</i> ×	wi∧l(ni +0∧ai×∟)	(UAL)-0.077 /	oj – 0.1		
Moist backfill below water tal	ole	Mwmh=F	smbf× a r×[//	8-n²×(4-n))² /16)-	4+n×(4-n)1/8 =	2.8 kNm/n		
Saturated backfill	-			L)-a _l)/(20×L ³)-(x-l				
Water			-	≍/((5×L)-aı)/(20×L	, , ,			
kNm/m				······································	, , , , , , , , , , , , , , , , , , , ,	/ .		

abstruct consulting engineers	Project	465-467 Fi	Job no. 1115			
ABSTRUCT LLP LONDON + SEVENOAKS	Calcs for Basement Retaining Wall RW1			Start page no./Revision RW1 / 8		
	Calcs by AB	Calcs date 04/03/2015	Checked by	Checked date	Approved by	Approved date

Check retaining wall def	lection	
Basic span/effective depth	n ratio	ratio _{bas} = 20
Design service stress		$f_s = 2 \times f_y \times A_{s_stem_req} / (3 \times A_{s_stem_prov}) = 195.8 \text{ N/mm}^2$
Modification factor	factor _{tens} = min(0.55 + (477 N/mm ² - f _s)/(120 × (0.9 N/mm ² + (M _{stem} /(b × d _{stem} ²)))),2) = 1.48
Maximum span/effective of	lepth ratio	ratio _{max} = ratio _{bas} × factor _{tens} = 29.67
Actual span/effective dept	th ratio	ratio _{act} = h _{stem} / d _{stem} = 16.09
		PASS - Span to depth ratio is acceptable

abstruct	Project				Job no.		
consulting engineers	465-467 Finchley Rod				1	1115	
ABSTRUCT LLP	Calcs for S					Start page no./Revision	
LONDON + SEVENOAKS	Basement Retaining Wall RW1			RW1/9			
	Calcs by AB	Calcs date 04/03/2015	Checked by	Checked date	Approved by	Approved date	

Toe bars - 12 mm dia.@ 150 mm centres - (754 mm²/m) Wall bars - 12 mm dia.@ 150 mm centres - (754 mm²/m) Stem bars - 16 mm dia.@ 150 mm centres - (1340 mm²/m)

Appendix C - Southern Testing Laboratories Ltd (Report No. STL: J12147 dated March 2015).