GE	Geotechnical & Environmental Associates	Ì			Tytter C	hanger House Coursers Road St Albans AL4 0PG	Site 75 Avenue Road, London, NW8 6JD		Boreho Number	er
Boring Meth Cable Percus		Casing 20	Diamete 0mm cas	r ed to 1.50m	Ground	Level (mOD)	Client Deroda Investments Ltd		Job Number J1022	
		Locatio	n		Dates 03 04	3/11/2010- 4/11/2010	Engineer Price and Myers		Sheet 3/3	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	
19.95-20.00 21.00-21.41 21.00	D28 SPT 50/255 D29	1.50	DRY	9,12/12,13,14,11		րուրադրուդի արդարություն				
22.00	D30								××	
22.50-22.95	U31					(16.05)			× ×	
22.95-23.00	D32								x x x x x x x x x x x x x x x x x x x	
24.00-24.41 24.00	SPT 50/255 D33	1.50	DRY	11,12/14,14,15,7					× ×	100
24.50	D34								××	
25.00-25.40 25.00	SPT 50/250 D35	1.50	DRY	12,13/14,15,15,6		25.45	Complete at 25.45m		× _ x _ x _ x _ x _ x _ x _ x _ x _ x _	
Remarks			<u> </u>					Scale (approx)	Logge By	d
								1:50 Figure N	MK	-
									No. 229.BH2	

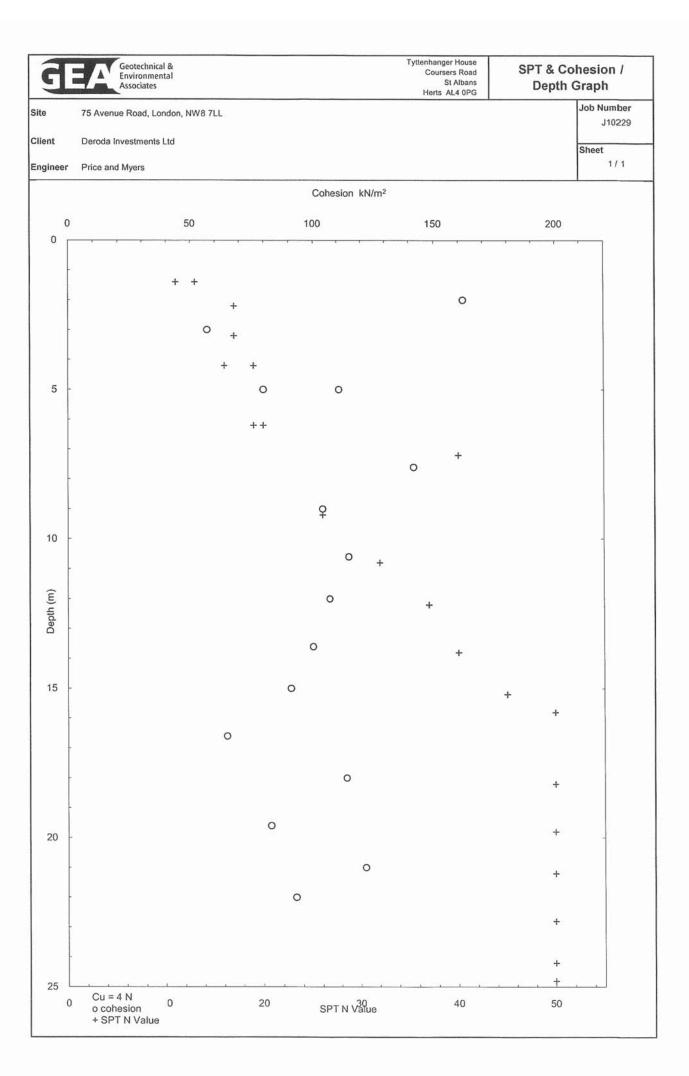
Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

Tyttenhanger House Coursers Road St Albans AL4 0PG

Standard Penetration Test Results

Site : 75 Avenue Road, London, NW8 6JD

Client : Deroda Investments Ltd


Sheet

Engineer: Price and Myers

1/1

Borehole	Base of Borehole (m)	End of Seating Drive	End of Test Drive	Test	Seatin per	g Blows 75mm	Blows fo	or each 75	nm pene	tration	Result	Comme	nte
dumber	(m)	Drive (m)	Drive (m)	Test Type	1	2	1	2	3	4	Nesuit	Comme	iits
H1	1.20	1.35	1.65	CPT	1	3	2	3	3	3	N=11		
H1	4.00	4.15	4.45	SPT	2	3	3	4	4	5	N=16		
H1	6.00	6.15	6.45	SPT	3	3	4	4	5	6	N=19		
H1	7.00	7.15	7.45	SPT	5	7	9	9	11	11	N=40		
H1	10.50	10.65	10.95	SPT	6	7	7	8	8	9	N=32		
H1	13.50	13.65	13.95	SPT	6	8	9	9	10	12	N=40		
H1	16.50	16.65	16.94	SPT	8	11	12	13	13	12	50/290mm		
H1	19.50	19.65	19.91	SPT	9	13	14	14	15	7	50/255mm		
H1	22.50	22.65	22.89	SPT	11	13	15	15	16	4	50/240mm		
Н1	24.45	24.54	24.77	SPT	12	13	15	16	18	1	25*/90mm		
Н1	25.00	25.13	25.33	SPT	13	12	17	19	14		50/227mm 25*/125mm		
12	1.20	1.35	1.65	СРТ	2	3	3	3	3	4	50/200mm N=13		
H2	2.00	2.15	2.45	CPT	2	3	4	4	4	5	N=17		
H2	3.00	3.15	3.45	CPT	2	4	4	4	4	5	N=17		
12	4.00	4.15	4.45	CPT	3	4	4	5	5	5	N=19		
H2	6.00	6.15	6.45	SPT	3	4	5	5	5	5	N=20		
H2	9.00	9.15	9.45	SPT	4	5	6	6	7	7	N=26		
12	12.00	12.15	12.45	SPT	7	8	9	9	9	10	N=37		
12	15.00	15.15	15.45	SPT	7	9	10	11	12	12	N=45		
H2	18.00	18.15	18.44	SPT	9	11	12	14	14	10	50/285mm		
H2	21.00	21.15	21.41	SPT	9	12	12	13	14	11	50/255mm		
H2	24.00	24.15	24.41	SPT	11	12	14	14	15	7	50/255mm		
H2	25.00	25.15	25.40	SPT	12	13	14	15	15	6	50/250mm		
	20.00	20.10	20.10	0.1	12	13	14	15	15	0	50/250mm		
								L					
									1				

Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

PROJECT NAME	HMM			75 AVENUE ROAD, LODON, NW8 6.JD									Date	30/11/2010
				Job Number: J10229									Approved	Same Barlo
PROJECT NO:	F NO:			GEO / 16342								11	Page	1 of 3
	Sample details	ills			Classification Tests	Density Tests	Undrained	Undrained Triaxial Compression Tests	ression Tests	S	Chemical Tests	ts		
Borehole	Depth	No.	Туре	Description	MC LL PL PI <425	Bulk Dry	Cell	Deviator	Shear	F	2:1 W/S W/S W	Ground Water SO4	Other tes	Other tests and comments
No.	(m)				(%) (%) (%)	(Mg/m³)(Mg/m³)	(kPa)	(kPa)	(kPa)			(1/6)		
BH1	1.50	D2	0	MADE GROUND: (Brown and orange slightly sandy clay with rare gravel, brick and chalk)	35 60 27 33 96									
BH1	2.00	E C	ם	Very stiff mottled grey and brown slightly sandy CLAY with occasional fine to medium gravel	15	2.01 1.75	40	324	162			$\overline{}$		
BH1	2.45	D4	٥	Brown and orange sandy gravelly CLAY	9.1									
BH1	3.00	n2	ס	Firm brown CLAY with rare light grey staining	31	2.01 1.53	09	114	57					
BH1	4.00	10	۵	Brown CLAY with rare selenite crystals	59									
BH1	4.50	D8	۵	Brown CLAY with rare selenite crystals	33									
BH1	5.00	ŝ	Э	Stiff brown CLAY with rare selenite crystals	31	1.98 1.51	100	160	80					
BH1	9.00	014	Э	Stiff dark grey CLAY	29	2.02 1.57	180	208	104					
BH1	10.50	D16	۵	Dark grey-brown CLAY	31 83 30 53 100								¥3	

AD.	
O	
-	
TESTIN	
_	
S	
111	
ш	
-	
200	
_	
A	
ICAL	
()	
$\underline{\smile}$	
-	
-	
miles	
\circ	
111	
Intel	
_	
0	
O	
111	
4 20	
O	
GEOTECH	
~	
O	
ō	
>	
01	
MARY	
1	
>	
The same of	
>	
annes.	
SU	

GEOLABS®

107

214

240

1.54

2.02

91

183

1.51

1.97

31 31

silty CLAY

Stiff fissured dark brown CLAY

 \supset

N18

12.00

BH1

 \supset

U22

15.00

BH1

114

228

2.00

29

dark brown CLAY

 \supset

U26

18.00

BH1

non Burke (Snr Tech) · J J M Powell (Tech Dir)

Watford, Hertfordshire, WD25 9XX (Tech Mgr) · G J Corio (Tech Mgr) · J Sturges (Tech Mgr) [X] Sin langer House, Courses Road, St Albans, Hertfordshire AL4 0PG 75 AVENUE ROAD, LODON, NW8 6JD Job Number: J10229 GEO / 16342 ROJECT NAME PROJECT NO:

National National			The same of the sa			Delisity Tests								
(m) (m) <th></th> <th></th> <th></th> <th>IL PL PI</th> <th></th> <th>4.95</th> <th></th> <th></th> <th>Deviator</th> <th>Shear</th> <th>표</th> <th>7 3 1 1 1 1</th> <th>round /ater</th> <th>Other tests and comments</th>				IL PL PI		4.95			Deviator	Shear	표	7 3 1 1 1 1	round /ater	Other tests and comments
21.00 U30 U Stiff grey silty CLAY 29 1.50 1.50 1.50 245 122 1.50 D2 D Motited brown and orange silghtly sandy gravelly CLAY 28 1.50	(m)	_		(%) (%)		(m/g)	=		(kPa)	(kPa)			(g) (g)	
1.50 D2 D Montteed brown and orange sandy gravelly CLAY 28 S <t< td=""><td>21.00</td><td></td><td></td><td>59</td><td></td><td></td><td></td><td>50</td><td>245</td><td>122</td><td></td><td></td><td></td><td></td></t<>	21.00			59				50	245	122				
2.50 D3 D Mottled brown and orange sandy gravelly CLAY 27 S <th< td=""><td></td><td></td><td></td><td>33</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				33										
3.50 D4 D Mottleed brown and orange sandy gravelly CLAY 27 7 6 Conv. 1.54 100 223 111 <td></td> <td></td> <td></td> <td>28</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.033</td> <td></td> <td></td>				28								0.033		
4.50 D5 D Brown and grey fine sandy CLAY 33 C.00 1.54 100 223 111 11	3.50	Ğ	 Mottled brown and orange sandy gravelly with rare rootlets	27										
5.00 U6 D Stiff brown CLAY with rare selenite crystals 27 1.54 100 1.54 100 223 111 5.50 D7 D Brown and grey CLAY with rare selenite crystals 27 1.96 1.50 150 283 142 7.50 U10 U Stiff fissured brown silty CLAY 30 1.96 1.50 150 283 142 12.50 U14 U Stiff fissured grey CLAY 30 2.00 1.53 210 230 115 12.50 U19 U Stiff grey silty CLAY 30 2.00 1.53 270 199 100 15.00 D21 D Dark grey-brown CLAY 30 26 53 100 7 7 199 100 100		Ď		33										
5.50 D7 D Brown and grey CLAY with rare selenite crystals 27 1.96 1.50 150 283 142 7.50 U10 U Stiff fissured brown slity CLAY 30 1.56 1.50 150 283 142 10.50 U14 U Stiff fissured grey CLAY 30 1.53 210 230 115 12.50 D17 D Stiff grey silty CLAY 30 2.00 1.53 270 199 100 15.00 D21 D Dark grey-brown CLAY 30 79 26 53 100 7 7 7 7 7	2.00	ž		30	7			00	223	111				
7.50 U10 U Stiff fissured brown silty CLAY 30 1.96 1.50 150 283 142 10.50 U14 U Stiff fissured grey CLAY 30 2.00 1.53 210 230 115 12.50 D17 D Stiff grey silty CLAY 30 2.00 1.53 270 199 100 15.00 D21 D Dark grey-brown CLAY 30 79 26 53 100 7	5.50	, O	 	27										
10.50 U14 U Stiff fissured grey CLAY 30 2.00 1.53 210 230 115 115 8.3 12.50 D17 D Stiff grey silty CLAY 30 2.00 1.53 270 199 100 15.00 D21 D Dark grey-brown CLAY 30 79 26 53 100 169 100	7.50	2		31	-	_		20	283	142				
12.50 D17 D Stiff grey silty CLAY 30 D21 D Dark grey-brown CLAY 30 79 26 53 100	10.50			30	2			10	230	115				
13.50 U19 U Stiff grey silty CLAY 30 2.00 1.53 270 199 15.00 D21 D Dark grey-brown CLAY 30 79 26 53 100	12.50										8.3	1.3		
15.00 D21 D Dark grey-brown CLAY 30 79 26 53	13.50			30	2			02	199	100				
	15.00			79 26 53	00									

SUMMARY OF GEOTECHNICAL TESTING

Test Report by GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX
Authorised Signatories: • J R Masters (Qual Mgr) • C F Wallace (Tech Mgr) • G J Corio (Tech Mgr) • J Sturges (Tech Mgr) [X] Simon Burke (Snr Tech) • J J M Powell (Tech Dir) Client: Geotechnical & Environmental Associates Limited, Tyttenhanger House, Courses Road, St Albans, Hertfordshire AL4 0PG

(Ref4512.335162)

30/11/2010 Save Sards 3 of 3 75 AVENUE ROAD, LODON, NW8 6JD Job Number: J10229 GEO / 16342 ROJECT NAME PROJECT NO:

Surviva Depth No. Type Description No. Li. Pr. Pr. Auge Depth No. Type Description No. Li. Pr. Pr. Auge Depth Description No. Type Type Description No. Type Type Type Description Type		Sample details	tails			Classification Tests	Density Tests		Undrained Ta	Undrained Triaxial Compression Tests	ssion Tests	Che	Chemical Tests	ssts	
(m) [16.50 U.23 U Firm dark grey CLAY 31 155 1.49 330 131 66 169 300 100	Sorehole		Š.	Туре		H H	Bulk			Deviator	Shear		The same of the	Ground	Other tests and comments
16.50 Uz3 U Firm dark grey CLAY 31 1 156 1.49 330 131 65 22.00 Uz7 U Stiff grey sifty CLAY 32 1.00 1.54 450 186 93 8.4 1.6 8.4	No.	(m)				(%)				(kPa)	(kPa)			(9/1)	
22.50 U37 U Stiff gray slity CLAY 32	BH2	16.50	N23		Firm dark grey CLAY	31		49	330	131	99				
22.50 U31 U Stiff fissured dark grey brown CLAY 30 2.00 1.54 450 186 93 8.4 1.6 24.50 D34 D Dark grey-brown CLAY 33 79 27 52 100	BH2	19.50	UZ7		Stiff grey silty CLAY	32		48	390	166	83				
22.50 U31 U Stliffissured dark grey brown CLAY 30 2.00 1.54 450 186 93 24.50 D34 D Dark grey-brown CLAY 33 79 27 52 100	BH2	22.00	D30										1.6		
24.50 D34 D Dark grey-brown CLAY 33 79 27 52 100	BH2	22.50	U31		Stiff fissured dark grey brown CLAY	30	-	54	450	186	93				
	BH2	24.50	D34		Dark grey-brown CLAY	79 27 52									
		74. 2s - 10s													
								+							
				5511											
			-												
														Ī	
								\exists						i	
	6	CANAN	5	L	OMITOUT IN OUNITOUTOU										CEDIARS®

Test Report by GEOLABS Limited Bucknalls Lane, Garston, Wattord, Hertfordshire, WD25 9XX
Authorised Signatories: • J R Masters (Qual Mgr) • C F Wallace (Tech Mgr) • G J Corio (Tech Mgr) • J Sturges (Tech Mgr) [X] Simon Burke (Snr Tech) • J J M Powell (Tech Dir) Client: Geolechnical & Environmental Associates Limited, Tyttenhanger House, Courses Road, St Albans, Hertfordshire AL4 0PG

Borehole Number: Sample Number:

Depth (m):

BH2 U31 22.50 Description:

Stiff fissured dark grey brown CLAY

Single Stage Specimen

Specimen details	Single Specimen	
Specimen condition:	Undisturbed	p e
Length (mm):	201.5	Orientation and
Diameter (mm):	101.6	ation
Moisture Content (%):	30	Orientation of position of
Bulk Density (Mg/m³):	2.00	Q SQ
Dry Density (Mg/m³):	1.54	
Test details		
Latex membrane thickness (mm):	0.3	
Membrane correction (kPa):	0.6	
Axial displacement rate (%/min):	2.0	
Cell pressure (kPa):	450	
Strain at failure (%):	8.4	
Maximum Deviator Stress (kPa):	186	
Shear Stress Cu (kPa):	93	
Mode of failure:		

Checked and Project Number: Approved Initials:

SB

Date: 30/11/2010

GEO / 16342

Job Number: J10229

75 AVENUE ROAD, LODON, NW8 6JD

GEOLABS

Test Report by GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

© GEOLABS Limited
Authorised Signatories: • J R Masters (Qual Mgr) • C F Watface (Tech Mgr) • G J Corio (Tech Mgr) • J Sturges (Tech Mgr) p) Simon Burka (Snr Tech) • J J M Powell (Tech Dir)
Client: Geotechnical & Environmental Associates Limited, Tyttenhanger House, Courses Road, St Albans, Hertfordshire AL4 0PG

(Ref4512.336343) Page 1 of 1 GEOLABS®

BS1377: Part 7: Clause 8: 1990 **Quick Undrained Triaxial Test**

Borehole Number: Sample Number:

Description: Stiff grey silty CLAY

U27 Depth (m): 19.50

BH2

Single Stage Specimen

Specimen details	Single Specimen	
Specimen condition:	Undisturbed	
Length (mm):	201.9	
Diameter (mm):	102.5	
Moisture Content (%):	32	
Bulk Density (Mg/m³):	1.95	
Dry Density (Mg/m³):	1.48	
Test details		erorecens.
Latex membrane thickness (mm):	0.3	
Membrane correction (kPa):	0.6	
Axial displacement rate (%/min):	2.0	
Cell pressure (kPa):	390	
Strain at failure (%):	8.9	
Maximum Deviator Stress (kPa):	166	
Shear Stress Cu (kPa):	83	
Mode of failure:		

Checked and Approved Initials: SB

Date: 30/11/2010

Project Number:

GEO / 16342

75 AVENUE ROAD, LODON, NW8 6JD

Job Number: J10229

GEOLABS

Test Report by GECLABS Limited Bucknalls Lane, Garston, Wetford, Hertfordshire, WD25 9XX © GECLABS Limited Authorised Signatories: • J R Masters (Quel Mgr) • C F Wallace (Tech Mgr) • G J Corio (Tech Mgr) • J Sturges (Tech Mgr) [X] Simon Burke (Snr Tech) • J J M Powell (Tech Dir) Client: Geotechnical & Environmental Associates Limited, Tyttenhanger House, Courses Road, St Albans, Hertfordshire AL4 0PG

(Ref4512.336319) Page 1 of 1 GEOLABS®

Borehole Number: Sample Number: Depth (m):

BH2 U23 16.50 Description:

Firm dark grey CLAY

Single Stage Specimen

Specimen details	Single Specimen	
Specimen condition:	Undisturbed	
Length (mm):	202.0	
Diameter (mm):	101.2	
Moisture Content (%):	31	
Bulk Density (Mg/m³):	1.95	
Dry Density (Mg/m³):	1.49	
Test details		
Latex membrane thickness (mm):	0.3	
Membrane correction (kPa):	0.5	
Axial displacement rate (%/min):	2.0	
Cell pressure (kPa):	330	
Strain at failure (%):	6.9	
Maximum Deviator Stress (kPa):	131	
Shear Stress Cu (kPa):	65	

Mod	e	of t	ail	ur	e:

Checked and Project Number: Approved

Initials: 58 Date: 30/11/2010

GEO / 16342

75 AVENUE ROAD, LODON, NW8 6JD Job Number: J10229

GEOLABS

Test Report by GEOLABS Limited Bucknalls Lane, Garston, Wetford, Herifordshire, WD25 9XX

© GEOLABS Limited Authorised Signatories: • J R Mesters (Qual Mgr) • C F Wallace (Tech Mgr) • G J Corio (Tech Mgr) • J Sturges (Tech Mgr) • J J M Powell (Tech Dir)

Client: Geotechnical & Environmental Associates Limited, Tyttenhanger House, Courses Road, St Albans, Herifordshire AL4 0PG

(Ref4512.336285) Page 1 of 1 GEOLABS®

BS1377: Part 7: Clause 8: 1990 **Quick Undrained Triaxial Test**

Borehole Number: Sample Number:

Description: Stiff grey silty CLAY

BH2 U19 Depth (m): 13.50

Single Stage Specimen

	Single Stage Specimen
Specimen details	Single Specimen
Specimen condition:	Undisturbed
Length (mm):	202.0
Diameter (mm):	101.7
Moisture Content (%):	30
Bulk Density (Mg/m³):	2.00
Dry Density (Mg/m³):	1.53
Test details	
Latex membrane thickness (mm):	0.3
Membrane correction (kPa):	0.2
Axial displacement rate (%/min):	2.0
Cell pressure (kPa):	270
Strain at failure (%):	3.0
Maximum Deviator Stress (kPa):	199
Shear Stress Cu (kPa):	100
Mode of failure:	

Project Number: Checked and Approved Initials:

SB

Date: 30/11/2010

GEO / 16342

75 AVENUE ROAD, LODON, NW8 6JD

Job Number: J10229

GEOLABS

Test Report by GEOLABS Limited Bucknalls Lene, Garston, Walford, Hertfordshire, WD25 9XX e GEOLABS Limited Authorised Signatories: • J R Masters (Qual Mgr) • C F Walface (Tech Mgr) • G J Corlo (Tech Mgr) • J Sturges (Tech Mgr) [X] Simon Burke (Snr Tech) • J J M Powell (Tech Dir) Client: Geolechnical & Environmental Associates Limited, Tytlenhanger House, Courses Road, St Albans, Hertfordshire AL4 0PG

(Ref4512.336262) Page 1 of 1 GEOLABS®

Borehole Number: Sample Number: Depth (m):

BH2 U14 10.50 Description:

Stiff fissured grey CLAY

Single Stage Specimen

Specimen details	Single Specimen
Specimen condition:	Undisturbed
Length (mm):	201.9
Diameter (mm):	101.5
Moisture Content (%):	30
Bulk Density (Mg/m³):	2.00
Dry Density (Mg/m³):	1.53
Test details	
Latex membrane thickness (mm):	0.3
Membrane correction (kPa):	0.4
Axial displacement rate (%/min):	2.0
Cell pressure (kPa):	210
Strain at failure (%):	5.0
Maximum Deviator Stress (kPa):	230
Shear Stress Cu (kPa):	115
Mode of failure:	

Checked and Project Number: Approved Initials:

SB

Date: 30/11/2010

GEO / 16342

75 AVENUE ROAD, LODON, NW8 6JD

Job Number: J10229

GEOLABS .

Test Report by GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

© GEOLABS Limited Authorised Signatories: • J R Masters (Qual Mgr) • C F Wallace (Tech Mgr) • G J Corio (Tech Mgr) • J Sturges (Tech Mgr) | XJ Simon Burke (Snr Tech) • J J M Powell (Tech Dir)

Client: Geotechnical & Environmental Associates Limited, Tyttenhanger House, Courses Road, St Albans, Hertfordshire AL4 0PG

(Ref4512.336238) Page 1 of 1 GEOLABS®

BS1377: Part 7: Clause 8: 1990 **Quick Undrained Triaxial Test**

Borehole Number: Sample Number: Depth (m):

Description:

U10 Stiff fissured brown silty CLAY 7.50

BH2

Single Stage Specimen

Specimen details	Single Specimen
Specimen condition:	Undisturbed
Length (mm):	201.8
Diameter (mm):	102.3
Moisture Content (%):	31
Bulk Density (Mg/m³):	1.96
Dry Density (Mg/m³):	1.50
Test details	
atex membrane thickness (mm):	0.3
Membrane correction (kPa):	0.4
Axial displacement rate (%/min):	2.0
Cell pressure (kPa):	150
Strain at failure (%):	5.9
Maximum Deviator Stress (kPa):	283
Shear Stress Cu (kPa):	142
Mode of failure:	

Checked and Project Number: Approved SB

Date: 30/11/2010

GEO / 16342

75 AVENUE ROAD, LODON, NW8 6JD

Job Number: J10229

GEOLABS .

Test Report by GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

G GEOLABS Limited Authorised Signatories: • J R Masters (Qual Mgg) • C F Walface (Tech Mgg) • G J Corio (Tech Mgg) • J Sturges (Tech Mgg) [X] Simon Burke (Snr Tech) • J J M Powell (Tech Dir)

Client: Geotechnical & Environmental Associates Limited, Tyttenhanger House, Courses Road, SI Albans, Hertfordshire AL4 0PG

(Ref4512.336227) Page 1 of 1 GEOLABS®

Borehole Number: Sample Number: Depth (m): BH2 U6 5.00 Description:

Stiff brown CLAY with rare selenite crystals

Single Stage Specimen

Jndisturbed 201.7 101.6 30 2.00 1.54
101.6 30 2.00
30 2.00
2.00
1.54
0.3
0.6
2.0
100
9.4
223
111

Checked and Approved Initials:

58

Date: 30/11/2010

Project Number:

GEO / 16342

75 AVENUE ROAD, LODON, NW8 6JD Job Number: J10229

Test Report by GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD259XX © GEOLABS Limited Authorised Signalories: - J R Masters (Qual Mgr) - C F Watface (Tech Mgr) - G J Corlo (Tech Mgr) - J Sturges (Tech Mgr) | X] Simon Burke (Snr Tech) - J J M Powell (Tech Dlr) Client: Geotechnical & Environmental Associates Limited, Tyttenhanger House, Courses Road, St Albans, Hertfordshire AL4 0PG

(Ref4512.336204) Page 1 of 1 GEOLABS®

BS1377 : Part 7 : Clause 8 : 1990 Quick Undrained Triaxial Test

Borehole Number: Sample Number: Depth (m): BH1

U30

21.00

Description:

Description: Stiff grey silty CLAY

Single Stage Specimen

Single Specimen	
Undisturbed	
201.7	
102.0	
29	
1.96	
1.52	
0.3	
0.5	
2.0	i i
420	
6.9	
245	
122	
	Undisturbed 201.7 102.0 29 1.96 1.52 0.3 0.5 2.0 420 6.9 245

Checked and Approved

SB

Date: 30/11/2010

Initials:

Project Number:

75 AVENUE ROAD, LODON, NW8 6JD

GEO / 16342

Job Number: J10229

GEOLABS •

Test Report by GEOLABS Limited Bucknells Lane, Gerston, Walford, Hertfordshire, WD25 9XX © GEOLABS Limited Authorised Signatories: • J R Masters (Qual Mgr) • C F Walface (Tech Mgr) • G J Corlo (Tech Mgr) • J Sturges (Tech Mgr) • [X] Simon Burke (Snr Tech) • J J M Pewell (Tech Dir) Client: Geotechnical & Environmental Associates Limited. Tyttenhanger House, Courses Road, St Albans, Hertfordshire AL4 0PG

(Ref4512.336181) Page 1 of 1 GEOLABS®

BS1377: Part 7: Clause 8: 1990 **Quick Undrained Triaxial Test** Borehole Number: BH1 Description: Sample Number: U26 Stiff fissured dark brown CLAY Depth (m): 18.00

Specimen details	Single Specimen	
Specimen condition:	Undisturbed	7.9
Length (mm):	201.7	Orientation and
Diameter (mm):	101.7	ation
Moisture Content (%):	29	ient
Bulk Density (Mg/m³):	2.00	O isod
Dry Density (Mg/m³):	1.56	
Test details		
Latex membrane thickness (mm):	0.3	
Membrane correction (kPa):	0.3	
Axial displacement rate (%/min):	2.0	
Cell pressure (kPa):	360	
Strain at failure (%):	4.2	
Maximum Deviator Stress (kPa):	228	
Shear Stress Cu (kPa):	114	
Mode of failure:		

Checked and Approved

Project Number:

GEO / 16342

75 AVENUE ROAD, LODON, NW8 6JD

Job Number: J10229

GEOLABS .

SB Date: 30/11/2010

Test Report by GECLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX © GECLABS Limited Authorised Signatories: • J R Masters (Quel Mgr) • C F Wallace (Tech Mgr) • G J Corlo (Tech Mgr) • J Sturges (Tech Mgr) [X] Simon Burke (Snr Tech) • J J M Powell (Tech Dir) Client: Geolechnical & Environmental Associates Limited, Tyttenhanger House, Courses Road, SI Albans, Hertfordshire AL4 0PG

BS1377: Part 7: Clause 8: 1990 **Quick Undrained Triaxial Test**

Borehole Number: Sample Number: Depth (m):

Description:

U22 Stiff fissured grey silty CLAY 15.00

BH1

Single Stage Specimen

Specimen details	Single Specimen	
Specimen condition:	Undisturbed	
Length (mm):	176.5	
Diameter (mm):	102.1	
Moisture Content (%):	31	
Bulk Density (Mg/m³):	1.97	
Dry Density (Mg/m³):	1.51	
Test details		
Latex membrane thickness (mm):	0.3	
Membrane correction (kPa):	0.6	
Axial displacement rate (%/min):	2.3	
Cell pressure (kPa):	300	
Strain at failure (%):	7.9	
Maximum Deviator Stress (kPa):	183	
Shear Stress Cu (kPa):	91	
Mode of failure:		

Approved Initials:

SB

Date: 30/11/2010

Checked and Project Number:

75 AVENUE ROAD, LODON, NW8 6JD

GEO / 16342

Job Number: J10229

GEOLABS .

Test Report by GECLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

DEFINITION

DEF

(Ref4512.336146) Page 1 of 1 GEOLABS®

Borehole Number: Sample Number:

Depth (m):

BH1 U18 12.00 Description:

Stiff fissured dark brown CLAY

Single Stage Specimen

Specimen details	Single Specimen	
Specimen condition:	Undisturbed	
Length (mm):	201.5	
Diameter (mm):	101.2	
Moisture Content (%):	31	
Bulk Density (Mg/m³):	2.02	
Dry Density (Mg/m³):	1.54	
Test details		
Latex membrane thickness (mm):	0.3	
Membrane correction (kPa):	0.4	- 1
Axial displacement rate (%/min):	2.0	- 1
Cell pressure (kPa):	240	
Strain at failure (%):	6.0	- 1
Maximum Deviator Stress (kPa):	214	- 1
Shear Stress Cu (kPa):	107	
Mode of failure:		
	1	- 1

Checked and Project Number: Approved

SB

Date: 30/11/2010

GEO / 16342

75 AVENUE ROAD, LODON, NW8 6JD

Job Number: J10229

GEOLABS .

Test Report by GEOLABS Limited Bucknatis Lane, Garston, Wasford, Hertfordshire, WD25 9XX

O GEOLABS Limited Authorised Signatories: • J R Masters (Qual Mgr) • C F Walface (Tech Mgr) • G J Corlo (Tech Mgr) • J Sturges (Tech Mgr) [X] Simon Burke (Snr Tech) • J J M Powell (Tech Dir)

Client: Geotechnical & Environmental Associates Limited, Tytlenhanger House, Courses Road, St Albans, Hertfordshire AL4 0PG

BS1377: Part 7: Clause 8: 1990 **Quick Undrained Triaxial Test**

Borehole Number: Sample Number: Depth (m):

BH1 U14 9.00 Description:

Stiff dark grey CLAY

Single Stage Specimen

Specimen details	Single Specimen	
Specimen condition:	Undisturbed	
Length (mm):	201.7	
Diameter (mm):	101.4	
Moisture Content (%):	29	
Bulk Density (Mg/m³):	2.02	
Dry Density (Mg/m³):	1.57	
Test details		
atex membrane thickness (mm):	0.3	
Membrane correction (kPa):	0.7	
Axial displacement rate (%/min):	2.0	
Cell pressure (kPa):	180	
Strain at failure (%):	11.4	
Maximum Deviator Stress (kPa):	208	
Shear Stress Cu (kPa):	104	
Mode of failure:		
viode or failure.		

Checked and Project Number: Approved Initials:

SB

Date: 30/11/2010

GEO / 16342

75 AVENUE ROAD, LODON, NW8 6JD

GEOLABS .

Test Report by GECLABS Limited Bucknalls Lene, Gerston, Watford, Hertfordshire, WD25 9XX © GECLABS Limited Authorised Signatories: • J R Masters (Qual Mgr) • C F Wallace (Tech Mgr) • G J Corio (Tech Mgr) • J Sturges (Tech Mgr) pq Simon Burke (Snr Tech) • J J M Powell (Tech Dir) Client: Geolechnical & Environmental Associates Limited, Tyttenhanger House, Courses Road, St Albans, Hertfordshire AL4 0PG

Job Number: J10229

(Ref4512.336111) Page 1 of 1 GEOLABS®

Borehole Number: Sample Number: Depth (m):

BH1 5.00 Description:

Stiff brown CLAY with rare selenite crystals

Single Stage Specimen

Specimen condition: Length (mm): Diameter (mm): Moisture Content (%): Bulk Density (Mg/m³): Dry Density (Mg/m³): Undisturbed 202.0 101.8 11.8 1.98 1.98 1.51	Orientation and position of sample
Diameter (mm): 101.8 Moisture Content (%): 31 Bulk Density (Mg/m³): 1.98	
Moisture Content (%): 31 Bulk Density (Mg/m³): 1.98	
Bulk Density (Mg/m³): 1.98	Orient
	0 8
Dry Density (Mg/m³):	[]
Dry Dericky (Mg/Hr).	
Test details	
Latex membrane thickness (mm): 0.3	
Membrane correction (kPa): 0.6	
Axial displacement rate (%/min): 2.0	
Cell pressure (kPa): 100	
Strain at failure (%): 9.4	
Maximum Deviator Stress (kPa): 160	
Shear Stress Cu (kPa): 80	

Checked and Project Number: Approved

SB

Date: 30/11/2010

GEO / 16342

75 AVENUE ROAD, LODON, NW8 6JD

Job Number: J10229

Test Report by GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX © GEOLABS Limited Authorised Signatories: • J R Masters (Qual Mgr) • C F Wallace (Tech Mgr) • G J Corto (Tech Mgr) • J Sturges (Tech Mgr) | PQ Simon Burke (Snr Tech) • J J M Powell (Tech Dir) Client: Geotechnicat & Environmental Associates Limited. Tytlenhanger House, Courses Road, St Albans, Hertfordshire AL4 0PG

GEOLABS .

BS1377: Part 7: Clause 8: 1990 **Quick Undrained Triaxial Test**

Borehole Number: Sample Number:

Description:

U5 Firm brown CLAY with rare light grey staining Depth (m): 3.00

Single Stage Specimen

Specimen details	Single Specimen	
Specimen condition:	Undisturbed	
Length (mm):	202.0	
Diameter (mm):	100.5	
Moisture Content (%):	31	
Bulk Density (Mg/m³):	2.01	
Dry Density (Mg/m³):	1.53	
Test details		
Latex membrane thickness (mm):	0.3	
Membrane correction (kPa):	1.1	
Axial displacement rate (%/min):	2.0	
Cell pressure (kPa):	60	
Strain at failure (%):	19.8	
Maximum Deviator Stress (kPa):	114	
Shear Stress Cu (kPa):	57	

Checked and Project Number: Approved Initials:

SB

Date: 30/11/2010

GEO / 16342

75 AVENUE ROAD, LODON, NW8 6JD

Job Number: J10229

GEOLABS

Test Réport by GEOLABS Limited Bucknalls Lane, Garston, Walford, Hertfordshire, WD25 9XX © GEOLABS LIMITED Authorised Signatories: • J R Masters (Qual Mgr) • C F Wallace (Tech Mgr) • G J Corlo (Tech Mgr) • J Sturges (Tech Mgr) [X] Simon Burke (Snr Tech) • J J M Powell (Tech Dir) Client: Geotechnical & Environmental Associates Limited, Tyttenhanger House, Courses Road, St Albans, Hertfordshire AL4 0PG

(Ref4512.335042) Page 1 of 1 GEOLABS®

Borehole Number: Sample Number: Depth (m):

BH1. 2.00 Description:

Very stiff mottled grey and brown slightly sandy CLAY with occasional fine to medium gravel

Single Stage Specimen

Specimen details	Single Specimen		-
Specimen condition:	Undisturbed	7	, e
Length (mm):	171.8	Orientalion and	of sample
Diameter (mm):	102.0	.5	jo
Moisture Content (%):	15	i di	position
Bulk Density (Mg/m³):	2.01	0	bos (
Dry Density (Mg/m³):	1.75		
Test details			L
Latex membrane thickness (mm):	0.3		
Membrane correction (kPa):	0.7		
Axial displacement rate (%/min):	2.3		
Cell pressure (kPa):	40		
Strain at failure (%):	9.9		
Maximum Deviator Stress (kPa):	324		
Shear Stress Cu (kPa):	162		
Mode of failure:		9	

Checked and Project Number:

Approved

58

Date: 30/11/2010

GEO / 16342

75 AVENUE ROAD, LODON, NW8 6JD Job Number: J10229

GEOLABS

Test Report by GEOLABS Limited Bucknalls Lene, Garston, Watford, Hertfordshire, WD25 9XX © GEOLABS LIMITED Authorised Signatories: • J R Masters (Qual Mgr) • C F Watlace (Tech Mgr) • G J Corio (Tech Mgr) • J Sturges (Tech Mgr) (X) Simon Burke (Snr Tech) • J J M Powell (Tech Dir)

(Ref4512.335995) Page 1 of 1 GEOLABS®

Depot Road Newmarket CB8 0AL Tel: 01638 606070

GEA Tyttenhanger House Coursers Road St Albans Herts AL4 0PG

FAO Mark Kentish 24 November 2010

Dear Mark Kentish

Test Report Number

121450

J10229 - 75 Avenue Rd Your Project Reference

Please find enclosed the results of analysis for the samples received 16 November 2010.

All soil samples will be retained for a period of one month and all water samples will be retained for 7 days following the date of the test report. Should you require an extended retention period then please detail your requirements in an email to customerservices@chemtest.co.uk. Please be aware that charges may be applicable for extended sample storage.

If you require any further assistance, please do not hesitate to contact the Customer Services

Yours sincerely

Darrell Hall Director Director 6 Phil Hellier Technical Manager □ Keith Jones

Quality Manager John Crawford Director □ Malcolm Avis

Authorised Signatory

ISO 14001

sira

Notes to accompany report:
The sign < means 'less than'

Tests marked 'U' hold UKAS accreditation Tests marked 'M' hold MCertS (and UKAS) accreditation
Tests marked 'N' do not currently hold UKAS accreditation

Tests marked 'S' were subcontracted to an approved laboratory n/e means 'not evaluated'

i/s means 'insufficient sample' u/s means 'unsuitable sample'

Comments or interpretations are outside of the scope of UKAS accreditation The results relate only to the items tested Stones represent the quantity of material removed prior to analysis

All results are expressed on a dry weight basis

The following lests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, phenols

For all other tests the samples were dried at < 37°C prior to analysis

Uncertainties of measurement for the determinands tested are available upon request Soil descriptions, including colour and texture, are beyond the scope of MCertS accreditation

None of the test results included in this report have been recovery corrected

Test Report 121450 Cover Sheet

Newmarket • Temworth • Glasgow Registers J in England & Wates - Registration Number 6511736 - Registered Office: 11 Depot Road Newmarket Sulfclk CB8 0A

GEA Tyttenhanger House Coursers Road St Albans Herts AL4 0PG

FAO Mark Kentish

LABORATORY TEST REPORT

Results of analysis of 2 samples received 16 November 2010 J10229 - 75 Avenue Rd

AF48481 BH2		11/11/2010	0.5m	SOIL		<0.50	10	2.6	<0.010	200	35	0.31	98	98	2.9	28	1300	<0.20	220	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.1	2.8	12	16	0.12	< 0.1	0.1	0.12	0.4	< 0.1
AF48480 BH1		11/11/2010	0.5m	SOIL		<0.50	3.6	1.3	0.018	1000	21	0.12	89	49	0.82	43	400	<0.20	96	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 10	< 0.1	< 0.1	0.12	< 0.1	0.31	< 0.1
					*	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	כ	כ	Σ	Σ	Σ	Σ	Σ	Σ	D	Σ	Σ	Σ	Σ	Σ	Σ
					Units↓	mg kg-1	mg kg-1	%	g I-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1
					CAS Not	57125	18496258		16887006	14808798	7440382	7440439	7440473	7440508	7439976	7440020	7439921	7782492	7440666										91203	208968	83329	86737	85018	120127
Chemest LIMS ID Sample ID	mple No	npling Date	oth	Matrix	SOP↓ Determinand↓	2300 Cyanide (total)	2325 Sulfide	2625 Total Organic Carbon	2220 Chloride (extractable)	2430 Sulfate (total)	2450 Arsenic	Cadmium	Chromium	Copper	Mercury	Nickel	Lead	Selenium	Zinc	76 TPH >C5-C6	TPH >C6-C7	TPH >C7-C8	TPH >C8-C10	TPH >C10-C12	TPH >C12-C16	TPH >C16-C21	TPH >C21-C35	Total Petroleum Hydrocarbons	00 Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene
	LIMS ID AF4848U AF	AF48480 BH1	AF48480 BH1 BH1 A1/11/2010 A1/11/2010 A1/11/2010 BH2	LIMS ID AF48480 BH1 Date 0.5m	AF48480 BH1 11/11/2010 0.5m SO/L	AF48480	AF48480	AF48480 BH1 BH1	AF48480 BH1	AF48480 BH1	AF48480 BH1	Inflict CAS No. Units.L. * AF48480 terminand.t. CAS No. Units.L. * 0.5m soulce (total) 57125 mg kg-¹ M <0.50	tid/S ID AF48480 late 11/11/2010 terminand Usanic (total) CAS No. Units. Units. SO/L fide 57125 Mg. No. No. No. No. No. No. No. No. No. No	Inflict APAB480 late 11/11/2010 terminand Usanic (total) CAS No. Units. Units. SO/L sanide (total) 57125 M <0.50	Inflict APAB480 late 11/11/2010 letrminand Uple 0.5m snide (total) 57125 MgG-1 M <0.50	Inflict APAB480 late 11/11/2010 letrminand Usanic (total) CAS No. Units. Units. SO/L late 57125 Mg. No. Onits. No. Onits. Mg. No. Onits. Mg. No. Onits. Mg. No. Onits.	Inflict APAB480 late 11/11/2010 letrminand Uple 0.5m smide (total) 57125 MgG-1 M -0.50 fide 9 M -0.50 -0.	11/11/2010 11/	11/11/2010 BH1	11/11/2010 11/	11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 0.5m SO/L 11/11/2010 18496258 mg kg-¹ M 3.6 M 1.3 1.3	11/11/2010 BH1	11/11/2010 11/11/2010 11/11/2010 11/11/2010 0.5m SO/L	11/11/2010 11/11/2010 11/11/2010 11/11/2010 0.5m SO/L	11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/2 11/2010 11/2 11/2010 11/2 11/2010 11/2 11/2010 11/2 11/2010 11/2 11/2010 11/2 11/2010 11/2 11/2010 11/2 11/2010 11/2 11/2010 11/201	11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/2 11/2010 11/2 11/2010 11/2 11/2010 11/2 11/2010 11/2 11/2010 11/2 11/2010 11/2 11/2010 11/2 11/2010 11/2 11/2010 11/2 11/2010 11/201	11/11/2010 11/2010 1	11/11/2010 11/11/2010 11/11/2010 11/11/2010 11/11/2010 0.5m 50/1L 11/11/2010 0.5m 50/1L 11/11/2010 18496258 mg kg-¹ M 3.6 1.3 14808798 mg kg-¹ M 1.000 14808798 mg kg-² M 1.000 1.000 1.0000 1.00000 1.0000000000	11/11/2010 PH1	Marion M	Marie CAS No. Units. T1/11/2010	11/11/2010 11/2010 1	11/11/2010 11/2010 11/20	11/11/2010 11/2010 11/201

All tests undertaken between 16-Nov-2010 and 22-Nov-2010
* Accreditation status
This report should be interpreted in conjunction with the no

AF48480 to AF48481 Column page 1 Report page 1 of 2 Report sample ID range

LABORATORY TEST REPORT

GEA Tyttenhanger House Coursers Road St Albans Herts AL4 0PG

FAO Mark Kentish

Results of analysis of 2 samples received 16 November 2010

J10229 - 75 Avenue Rd

Echemtest
Report Date
24 November 2010

	100																						
121450	AF48481	BH2	11/11/2010	0.5m	SOIL	-	1.2	0.51	0.56	0.78	0.46	0.8	< 0.1	0.43	0.43	7.1	<0.3	8.1	20.7	<0.02	brown	clay	oforos
121	AF48480	BH1	11/11/2010	0.5m	SOIL	0.23	0.27	0.18	0.23	0.21	0.15	0.27	< 0.1	0.12	0.18	2.4	<0.3	8.2	17.9	<0.02	brown	clay	00000
						Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	z	Σ	n/a	n/a	n/a	n/a	-1-
						mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	mg kg-1	,	%	%			
						206440	129000	56553	218019	205992	207089	50328	53703	193395	191242								
						Fluoranthene	Pyrene	Benzo[a]anthracene	Chrysene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Benzo[a]pyrene	Dibenzo[a,h]anthracene	Indeno[1,2,3-cd]pyrene	Benzo[g,h,i]perylene	Total (of 16) PAHs	Phenols (total)	Hd	Moisture	Stones content (>50mm)	Soil colour	Soil texture	
						2700			8		=			==		i.	2920	2010	2030		2140	•	

All tests undertaken between 16-Nov-2010 and 22-Nov-2010
* Accreditation status
This report should be interpreted in conjunction with the no

Tyttenhanger House Coursers Road St Albans

Generic Risk-Based Soil **Guideline Values**

AL4 0PG Job Number 75 Avenue Road, London, NW8 7LL J10229 Deroda Investments Ltd Sheet 1/1 Price and Myers Engineer

Proposed End Use Residential with plant uptake

Soil pH 8

Soil Organic Matter content % 2.5

Contaminant	Guideline Value mg/kg	Data Source	Contaminant	Guideline Value mg/kg	Data Source	
	Metals		Anions			
Arsenic	32	SGV	Soluble Sulphate	0.5 g/l	Structures	
Cadmium	10	SGV	Sulphide	50	Structures	
Chromium (III)	3000	LQM/CIEH	Chloride	400	Structures	
Chromium (VI)	4.3	LQM/CIEH		thers		
Copper	2,330	LQM/CIEH	Organic Carbon	6	Methanogenic potentia	
Lead	450	withdrawn SGV	Total Cyanide	140	WRAS	
Elemental Mercury	1 1	SGV	Total Mono Phenols	290	SGV	
Inorganic Mercury	170	SGV		PAH		
Nickel	130	LQM/CIEH	Naphthalene	3.70	LQM/CIEH	
Selenium	350	SGV	Acenaphthylene	400	LQM/CIEH	
Zinc	3,750	LQM/CIEH	Acenaphthene	480	LQM/CIEH	
1	Hydrocarbons		Fluorene	380	LQM/CIEH	
Benzene	0.18	SGV	Phenanthrene	200	LQM/CIEH	
Toluene	320	SGV	Anthracene	4,900	LQM/CIEH	
Ethyl Benzene	180	SGV	Fluoranthene	460	LQM/CIEH	
Xylene	120	SGV	Pyrene	1,000	LQM/CIEH	
Aliphatic C5-C6	55	LQM/CIEH	Benzo(a) Anthracene	4.7	LQM/CIEH	
Aliphatic C6-C8	160	LQM/CIEH	Chrysene	8	LQM/CIEH	
Aliphatic C8-C10	46	LQM/CIEH	Benzo(b) Fluoranthene	6.5	LQM/CIEH	
Aliphatic C10-C12	230	LQM/CIEH	Benzo(k) Fluoranthene	9.6	LQM/CIEH	
Aliphatic C12-C16	1700	LQM/CIEH	Benzo(a) pyrene	0.94	LQM/CIEH	
Aliphatic C16-C35	64,000	LQM/CIEH	Indeno(1 2 3 cd) Pyrene	3.9	LQM/CIEH	
Aromatic C6-C7	See Benzene	LQM/CIEH	Dibenzo(a h) Anthracene	0.86	LQM/CIEH	
Aromatic C7-C8	See Toluene	LQM/CIEH	Benzo (g h i) Perylene	46	LQM/CIEH	
Aromatic C8-C10	65	LQM/CIEH	Total PAH	6.3	B(a)P / 0.15	
Aromatic C10-C12	160	LQM/CIEH	Chlorina	ted Solven	its	
Aromatic C12-C16	310	LQM/CIEH	1,1,1 trichloroethane (TCA)	12.9	LQM/CIEH	
Aromatic C16-C21	480	LQM/CIEH	tetrachloroethane (PCA)	2.1	LQM/CIEH	
Aromatic C21-C35	1100	LQM/CIEH	tetrachloroethene (PCE)	2.1	LQM/CIEH	
PRO (C ₅ -C ₁₀)	646	Calc	trichloroethene (TCE)	0.22	LQM/CIEH	
DRO (C ₁₂ –C ₂₈)	66,490	Calc	1,2-dichloroethane (DCA)	0.008	LQM/CIEH	
Lube Oil (C ₂₈ -C ₄₄)	65,100	Calc	vinyl chloride (Chloroethene)	0.00064	LQM/CIEH	
TPH	500	Trigger for speciated	tetrachloromethane (Carbon tetra	0.039	LQM/CIEH	
		testing	trichloromethane (Chloroform)	1.3	LQM/CIEH	

Concentrations measured below the above values may be considered to represent 'uncontaminated conditions' which do not pose a risk to human health. Concentrations measured in excess of these valuesindicate a potential risk, and thus require further, site specific risk assessment.

SGV - Soil Guideline Value, derived from the CLEA model and published by Environment Agency 2009

withdrawn SGV - Former SGV, derived from the CLEA 2000 model and published by DEFRA pending confirmation of new approach to modeling lead

LQM/CIEH - Generic Assessment Criteria for Human Health Risk Assessment 2nd edition (2009)derived using CLEA 1.04 model 2009

Calc - sum of nearest available carbon range specified including BTEX for PRO fraction

B(a)P / 0.15 - GEA experince indicates that Benzo(a) pyrene (one of the most common and most carcenogenic of the PAHs) rarely exceeds 15% of the total PAH concentration, hence this Total PAH threshold is regarded as being conservative

Envirocheck® Report:

Datasheet

Order Details:

Order Number: 32983683_1_1

Customer Reference:

J10229

National Grid Reference:

526920, 183820

Slice:

Site Area (Ha):

Search Buffer (m):

Site Details:

75 Avenue Road LONDON NW8 6JD

Client Details:

Mr S Branch GEA Ltd Tyttenhanger House Corsers Road St Albans Herts AL4 0PG

Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service

Contents

Report Section	Page Number
Summary	-
Agency & Hydrological	1
Waste	10
Hazardous Substances	-
Geological	11
Industrial Land Use	12
Sensitive Land Use	25
Data Currency	26
Data Suppliers	33
Useful Contacts	34

Introduction

The Environment Act 1995 has made site sensitivity a key issue, as the legislation pays as much attention to the pathways by which contamination could spread, and to the vulnerable targets of contamination, as it does the potential sources of contamination. For this reason, Landmark's Site Sensitivity maps and Datasheet(s) place great emphasis on statutory data provided by the Environment Agency and the Scottish Environment Protection Agency; it also incorporates data from Natural England (and the Scottish and Welsh equivalents) and Local Authorities; and highlights hydrogeological features required by environmental and geotechnical consultants. It does not include any information concerning past uses of land. The datasheet is produced by querying the Landmark database to a distance defined by the client from a site boundary provided by the client.

In the attached datasheet the National Grid References (NGRs) are rounded to the nearest 10m in accordance with Landmark's agreements with a number of Data Suppliers.

Copyright Notice

© Landmark Information Group Limited 2010. The Copyright on the information and data and its format as contained in this Envirocheck® Report ("Report") is the property of Landmark Information Group Limited ("Landmark") and several other Data Providers, including (but not limited to) Ordnance Survey, British Geological Survey, the Environment Agency and Natural England, and must not be reproduced in whole or in part by photocopying or any other method. The Report is supplied under Landmark's Terms and Conditions accepted by the Customer. A copy of Landmark's Terms and Conditions can be found with the Index Map for this report. Additional copies of the Report may be obtained from Landmark, subject to Landmark's charges in force from time to time. The Copyright, design rights and any other intellectual rights shall remain the exclusive property of Landmark and /or other Data providers, whose Copyright material has been included in this Report.

Natural England Copyright Notice

Site of Special Scientific Interest, National Nature Reserve, Ramsar, Special Protection Area, Special Conservation Area, Marine Nature Reserve data (derived from Ordnance Survey 1:10000 raster) is provided by, and used with the permission of, Natural England who retain the copyright and Intellectual Property Rights for the data.

Ove Arup Copyright Notice

The Data provided in this report was obtained on Licence from Ove Arup & Partners Limited (for further information, contact mining.review@arup.com). No reproduction or further use of such Data is to be made without the prior written consent of Ove Arup & Partners Limited. The information and data supplied in the product are derived from publicly available records and other third party sources and neither Ove Arup & Partners nor Landmark warrant the accuracy or completeness of such information or data.

Peter Brett Associates Copyright Notice

The cavity data presented has been extracted from the PBA enhanced version of the original DEFRA national cavity databases. PBA/DEFRA retain the copyright & intellectual property rights in the data. Whilst all reasonable efforts are made to check that the information contained in the cavity databases is accurate we do not warrant that the data is complete or error free. The information is based upon our own researches and those collated from a number of external sources and is continually being augmented and updated by PBA. In no event shall PBA/DEFRA or Landmark be liable for any loss or damage including, without limitation, indirect or consequential loss or damage arising from the use of this data.

Radon Potential dataset Copyright Notice

Information supplied from a joint dataset compiled by The British Geological Survey and the Health Protection Agency.

Report Version v47.0

Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Agency & Hydrological					
Contaminated Land Register Entries and Notices					
Discharge Consents	pg 1				1
Enforcement and Prohibition Notices					
Integrated Pollution Controls					
Integrated Pollution Prevention And Control					
Local Authority Integrated Pollution Prevention And Control					
Local Authority Pollution Prevention and Controls	pg 1			2	15
Local Authority Pollution Prevention and Control Enforcements					
Nearest Surface Water Feature	pg 3			Yes	
Pollution Incidents to Controlled Waters	pg 3				2
Prosecutions Relating to Authorised Processes					
Prosecutions Relating to Controlled Waters					
Registered Radioactive Substances	pg 4				6
River Quality	pg 5				1
River Quality Biology Sampling Points					
River Quality Chemistry Sampling Points					
Substantiated Pollution Incident Register					
Water Abstractions	pg 5			1	2 (*14)
Water Industry Act Referrals					
Groundwater Vulnerability	pg 9	Yes	n/a	n/a	n/a
Source Protection Zones	pg 9	1		1	
Extreme Flooding from Rivers or Sea without Defences				n/a	n/a
Flooding from Rivers or Sea without Defences				n/a	n/a
Areas Benefiting from Flood Defences				n/a	n/a
Flood Water Storage Areas				n/a	n/a
Flood Defences				n/a	n/a
Waste					
BGS Recorded Landfill Sites					
Historical Landfill Sites					
Integrated Pollution Control Registered Waste Sites					
Licensed Waste Management Facilities (Landfill Boundaries)					
Licensed Waste Management Facilities (Locations)					
Local Authority Recorded Landfill Sites					
Registered Landfill Sites					
Registered Waste Transfer Sites					
Registered Waste Treatment or Disposal Sites					

Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Hazardous Substances					
Control of Major Accident Hazards Sites (COMAH)					
Explosive Sites					
Notification of Installations Handling Hazardous Substances (NIHHS)					
Planning Hazardous Substance Consents					
Planning Hazardous Substance Enforcements					
Geological					
BGS Recorded Mineral Sites					
BGS 1:625,000 Solid Geology	pg 11	Yes	n/a	n/a	n/a
Brine Compensation Area			n/a	n/a	n/a
Coal Mining Affected Areas			n/a	n/a	n/a
Mining Instability			n/a	n/a	n/a
Man-Made Mining Cavities					
Natural Cavities					
Non Coal Mining Areas of Great Britain				n/a	n/a
Potential for Collapsible Ground Stability Hazards				n/a	n/a
Potential for Compressible Ground Stability Hazards				n/a	n/a
Potential for Ground Dissolution Stability Hazards				n/a	n/a
Potential for Landslide Ground Stability Hazards	pg 11	Yes		n/a	n/a
Potential for Running Sand Ground Stability Hazards				n/a	n/a
Potential for Shrinking or Swelling Clay Ground Stability Hazards	pg 11	Yes		n/a	n/a
Radon Potential - Radon Affected Areas			n/a	n/a	n/a
Radon Potential - Radon Protection Measures			n/a	n/a	n/a
Industrial Land Use					
Contemporary Trade Directory Entries	pg 12			12	129
Fuel Station Entries	pg 23			1	3

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Sensitive Land Use					
Areas of Adopted Green Belt					
Areas of Unadopted Green Belt					
Areas of Outstanding Natural Beauty					
Environmentally Sensitive Areas					
Forest Parks					
Local Nature Reserves	pg 25				1
Marine Nature Reserves					
National Nature Reserves					
National Parks					
Nitrate Sensitive Areas					
Nitrate Vulnerable Zones					
Ramsar Sites					
Sites of Special Scientific Interest					
Special Areas of Conservation					
Special Protection Areas					

Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service

Agency & Hydrological

Page 1 of 34

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
1	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	Thames Water Utilities Ltd Reservoir/Borehole Site Barrow Hill Environment Agency, Thames Region Not Supplied Temp.0018 1 15th September 1989 15th September 1989 5th October 2000 Trade Effluent Freshwater Stream/River River Thames Authorisation revokedRevoked	A14SE (E)	680	1	527600 183600
2	Local Authority Pol Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Located by supplier to within 100m Iution Prevention and Controls Ivy Dry Cleaner 4 Queens Terrace, London, Nw8 6dx Westminster City Council, Environmental Health Department 06/40583/EE1EP 14th September 2007 Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Manually positioned to the address or location	A13SW (SW)	347	2	526672 183539
3	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Iution Prevention and Controls Kings 25 Winchester Road, London, E4 London Borough of Waltham Forest, Environmental Health Department DC05 Not Supplied Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Manually positioned to the address or location	A18SW (N)	470	3	526812 184310
4	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	lution Prevention and Controls Swiss Cottage Dry Cleaners 121 Finchley Road, London, Nw3 6hy London Borough of Camden, Pollution Projects Team PPC/DC10 12th January 2007 Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Located by supplier to within 10m	A18SW (NW)	515	4	526626 184270
5	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	lution Prevention and Controls Johnsons Cleaners 69 St Johns Wood High Street, London, Nw8 7nl Westminster City Council, Environmental Health Department 06/40583/EE1EP 7th September 2007 Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Manually positioned to the address or location	A8NE (S)	559	2	526938 183230
5	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Iution Prevention and Controls Madame George 9 Circus Road, London, Nw8 6nx Westminster City Council, Environmental Health Department 06/39117/EE1EP 7th September 2007 Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Manually positioned to the address or location	A8NW (S)	562	2	526902 183227
6	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Iution Prevention and Controls Masterclean Dry Cleaners 6 Langtry Walk, London, Nw8 0du London Borough of Camden, Pollution Projects Team PPC/DC38 12th January 2007 Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Located by supplier to within 10m	A12NE (W)	565	4	526352 184004

Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service

Agency & Hydrological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
7	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	ution Prevention and Controls Tempo Dry Cleaners 98 St Johns Wood High Street, London, Nw8 7sh Westminster City Council, Environmental Health Department 06/38279/EE1EP 7th September 2007 Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Manually positioned to the address or location	A8NE (S)	614	2	527019 183184
8	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	ution Prevention and Controls Connoisseur Dry Cleaners 3-5 Fairhazel Gardens, London, Nw6 3qe London Borough of Camden, Pollution Projects Team PPC/DC11 12th January 2007 Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Located by supplier to within 10m	A12NE (NW)	692	4	526262 184119
8	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Sqweaky Clean Professional Dry Cleaners 13 Fairhazel Gardens, London, Nw6 3qe London Borough of Camden, Pollution Projects Team PPC/DC37 12th January 2007 Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Located by supplier to within 10m	A12NW (NW)	721	4	526237 184134
9	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Lution Prevention and Controls Elias Dry Cleaners 68 St Johns Wood High Street, London, Nw8 7sh Westminster City Council, Environmental Health Department 08/15232/EE1EP 6th March 2008 Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Manually positioned to the address or location	A8SE (S)	698	2	527077 183110
10	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Ution Prevention and Controls Bp Filling Station 21-41 Wellington Road, St John's Wood, LONDON, NW8 9SP Westminster City Council, Environmental Health Department VR8 7th May 1999 Local Authority Air Pollution Control PG1/14 Petrol filling station Authorised Manually positioned to the address or location	A8SW (S)	710	2	526864 183080
11	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Abbey Dry Cleaners 11 Blenheim Terrace, London, Nw8 0eh Westminster City Council, Environmental Health Department 07/T192/EE1EP 25th September 2007 Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Manually positioned to the address or location	A7NE (SW)	745	2	526303 183355
12	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	ution Prevention and Controls Siciliana 6 Blenheim Terrace, London, Nw8 0eb Westminster City Council, Environmental Health Department 06/48997/EE1EP 25th September 2007 Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Manually positioned to the address or location	A7NW (SW)	808	2	526198 183395

Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service Page 2 of 34

Agency & Hydrological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Local Authority Poll	ution Prevention and Controls				
13	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	B P Harmony 104a Finchley Road, London, NW3 5EY London Borough of Camden, Pollution Projects Team Not Given 1st July 1999 Local Authority Air Pollution Control PG1/14 Petrol filling station Authorised Automatically positioned to the address	A17NE (NW)	837	4	526471 184554
	Local Authority Poll	ution Prevention and Controls				
13	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Bp Harmony 104a Finchley Road, LONDON, NW3 5EY London Borough of Camden, Pollution Projects Team PPC18 1st July 1999 Local Authority Pollution Prevention and Control PG1/14 Petrol filling station Permitted Automatically positioned to the address	A17NE (NW)	837	4	526471 184554
	Local Authority Poll	ution Prevention and Controls				
14	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Chequers Textile Care Ltd 48 Englands Lane, London, Nw3 4ue London Borough of Camden, Pollution Projects Team PPC/DC47 5th December 2006 Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Located by supplier to within 10m	A19NW (NE)	920	4	527498 184580
	Local Authority Poll	ution Prevention and Controls				
15	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Bromptons Of Windsor Street 91 Boundary Road, London, Nw8 0rg Westmister City Council, Environmental Health Department 06/3826/EE1EP 14th September 2007 Local Authority Pollution Prevention and Control PG6/46 Dry cleaning Permitted Manually positioned to the address or location	A12SW (W)	925	2	525983 183617
	Nearest Surface Wa	ter Feature				
			A18SW (N)	443	-	526776 184270
16	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given LONDON, NW8 Environment Agency, Thames Region Oils - Unknown Not Supplied 2nd February 1996 SE960054 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A8NW (S)	599	1	526800 183200
	Pollution Incidents	to Controlled Waters				
17	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	Not Given LONDON, NW8 Environment Agency, Thames Region Miscellaneous - Natural Not Supplied 10th September 1996 SE960481 Not Given Not Given Not Given Category 3 - Minor Incident Located by supplier to within 100m	A9NW (SE)	705	1	527300 183200

Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service Page 3 of 34 Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service

Agency & Hydrological

Page 4 of 34

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
18	Registered Radioac Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Humana Hospital Wellington 27 Circus Road, LONDON, Greater London, NW8 9JG Environment Agency, Thames Region AB8520 31st March 1991 Authorisation under S13 RSA for the disposal of Radioactive waste (was RSA60 S7) Authorisation under RSA in respect of a registration under S7 when Technetium 99M is used being =< 10 gigabecquerels Authorisation either revoked or cancelledCancelled	A8SW (S)	666	1	526794 183133
18	Registered Radioac Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Wellington Hospital 8a Wellington Place, LONDON, NW8 9LE Environment Agency, Thames Region Bw7716 1st December 2003 Authorisation under S13 RSA for the disposal of Radioactive waste (was RSA60 S7) Minor variation to authorisation under RSA Application has been authorised and any conditions apply to the operatorAuthorised	A8SW (S)	669	1	526814 183127
18	Registered Radioac Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Wellington Hospital 8a Wellington Place, LONDON, NW8 9LE Environment Agency, Thames Region Br5558 28th March 2002 Registration under S7 RSA for the keeping and use of Radioactive materials (was RSA60 S1) Registration under the Act of an open source which is also the subject of an authorisation Application has been authorised and any conditions apply to the operator Authorised Automatically positioned to the address	A8SW (S)	669	1	526814 183127
18	Registered Radioac Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Wellington Hospital 8a Wellington Place, LONDON, NW8 9LE Environment Agency, Thames Region Br5531 28th March 2002 Authorisation under S13 RSA for the disposal of Radioactive waste (was RSA60 S7) Authorisation under RSA Authorisation superseded by a substantial or non substantial variationSuperseded Automatically positioned to the address	A8SW (S)	669	1	526814 183127
19	Registered Radioac Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Wynn Institute For Metabolic Research Flat 21, Cavendish House, 21 Wellington Road, LONDON, Greater London, NW8 9SQ Environment Agency, Thames Region AC0591 31st March 1991 Authorisation under S13 RSA for the disposal of Radioactive waste (was RSA60 S7) Authorisation under RSA Authorisation either revoked or cancelledCancelled	A8SW (S)	764	1	526898 183025
20	Registered Radioac Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Humana Hospital Wellington 8A Wellington Place, LONDON, Greater London, NW8 9LE Environment Agency, Thames Region AB8511 31st March 1991 Authorisation under S13 RSA for the disposal of Radioactive waste (was RSA60 S7) Authorisation under RSA Authorisation either revoked or cancelledCancelled	A8SW (S)	828	1	526918 182961

Agency & Hydrological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	River Quality					
	Name: GQA Grade: Reach: Estimated Distance (km): Flow Rate: Flow Type:	Guc (Paddington Arm) River Quality E Canal Feeder - Camden Road 10.5 Flow greater than 80 cumecs Canal	A9NW (SE)	716	1	527377 183244
	Year:	2000				
21	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	London Borough Of Camden 28/39/39/0219 1 Swiss Cottage Open Space- Borehole Environment Agency, Thames Region Municipal Grounds: Spray Irrigation - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Swiss Cottage Open Space, Winchester Road, London. 01 January 31 December 1st April 2008 Not Supplied Located by supplied Located by supplier to within 10m	A18SW (N)	445	1	526800 184280
	Water Abstractions					
22	Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Thames Water Utilities Ltd 28/3/39/0231 1 Barrow Hill Pumping Station - Borehole Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Barrow Hill Pumping Station 01 January 31 December 1st April 2007 Not Supplied Located by supplier to within 10m	A14SE (E)	694	1	527640 183690
	Water Abstractions					
22	-	Thames Water Utilities Ltd 28/39/39/0202 1 Barrow Hill Pumping Station - Borehole Environment Agency, Thames Region Public Water Supply: Potable Water Supply - Direct Water may be abstracted from a single point Groundwater Not Supplied Not Supplied Not Supplied Barrow Hill Pumping Station 01 January 31 December 26th September 2002 Not Supplied Located by supplier to within 10m	A14SE (E)	694	1	527640 183690
	Water Abstractions Operator:		A10NW	1125	1	528000
	Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date:	Zoological Society Of London 28/39/39/0035 100 Borehole At Regent'S Park, London Nw1 Environment Agency, Thames Region Zoos/Kennels/Stables: Animal Watering & General Use (Non Agricultural) Water may be abstracted from a single point Groundwater 59 681 Regent'S Park, London Nw1 01 January 31 December 4th April 1966 Not Supplied Located by supplier to within 100m	(E)	1125		183400

Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service

Agency & Hydrological

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit End Date: Permit End Date: Positional Accuracy:	Bellnorth Limited 28/39/39/0021 101 Two Boreholes At Dorset House, Gloucester Place, London. W1 Environment Agency, Thames Region Household Water Supply: Drinking; Cooking; Sanitary; Washing; (Small Garden) Water may be abstracted from a single point Groundwater 318 56370 Dorset House, Gloucester Place, London W1 01 January 31 December 10th January 1994 Not Supplied Located by supplier to within 100m	(SE)	1997	1	527800 182000
	Groundwater Vulne Geological Classification: Soil Classification: Map Sheet: Scale:	Non Aquifer (Negligibly permeable) - Formations which are generally regarded as containing insignificant quantities of groundwater. However, groundwater flow through such rocks, although imperceptible, does take place and needs to be considered in assessing the risk associated with persistent pollutants Not classified Sheet 39 West London 1:100,000	A13NW (SE)	0	1	526922 183822
	Drift Deposits None					
23	Source Protection 2 Name: Source: Reference: Type:	Not Supplied Environment Agency, Head Office Not Supplied Zone II (Outer Protection Zone): Either 25% of the source area or a 400 day travel time whichever is greater.	A13NW (SE)	0	1	526922 183822
24	Source Protection 2 Name: Source: Reference: Type:	Not Supplied Environment Agency, Head Office Not Supplied Zone I (Inner Protection Zone): Travel time of 50 days or less to the groundwater source.	A14SW (E)	402	1	527357 183771
	Extreme Flooding for None	rom Rivers or Sea without Defences				
	Flooding from Rive None	rs or Sea without Defences				
	Areas Benefiting fro	om Flood Defences				
	Flood Water Storag None	e Areas				
	Flood Defences None					

Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service Page 9 of 34

Waste

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Local Authority Landfill Coverage				
	Name: London Borough of Camden - Has no landfill data to supply		0	7	526922 183822
	Local Authority Landfill Coverage				
	Name: Westminster City Council - Has supplied landfill data		52	2	526878 183750

Geological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS 1:625,000 Solid	d Geology London Clay	A13NW	0	5	526922
	Description.	London Glay	(SE)	0	5	183822
	Coal Mining Affecte	d Areas				
	In an area which may	y not be affected by coal mining				
	_	eas of Great Britain				
	No Hazard					
	Potential for Collap	sible Ground Stability Hazards				
	No Hazard					
		ressible Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13NW (SE)	0	5	526922 183822
	Potential for Groun	d Dissolution Stability Hazards				
	No Hazard					
	Potential for Lands	lide Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NW (SE)	0	5	526922 183822
	Potential for Runnin	ng Sand Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13NW (SE)	0	5	526922 183822
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	Moderate British Geological Survey, National Geoscience Information Service	A13NW (SE)	0	5	526922 183822
	Radon Potential - R	adon Affected Areas				
	Affected Area:	The property is not in a radon affected area, as less than 1% of homes are above the action level	A13NW (SE)	0	5	526922 183822
	Source:	British Geological Survey, National Geoscience Information Service				
	Radon Potential - R					
		No radon protective measures are necessary in the construction of new dwellings or extensions	A13NW (SE)	0	5	526922 183822
	Source:	British Geological Survey, National Geoscience Information Service				

Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service Page 10 of 34 Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service Page 11 of

Industrial Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
25	Location: Classification: Status:	Directory Entries Ivy Dry Cleaner 4, Queens Terrace, London, NW8 6DX Dry Cleaners Active Automatically positioned to the address	A13SW (SW)	346	-	526673 183539
26	Location: Classification: Status:	E Directory Entries Fairfax Engineering 1, Regency Parade, Finchley Road, London, NW3 5EQ Catering Equipment Inactive Automatically positioned to the address	A18SW (NW)	391	-	526694 184166
26	Location: Classification: Status:	E Directory Entries Medoroux Medical Ltd 11, Regency Parade, Finchley Road, London, NW3 5EG Medical Equipment Manufacturers Active Automatically positioned to the address	A18SW (NW)	391	-	526694 184166
26	Location: Classification: Status:	Directory Entries Balco Ltd 8, Regency Parade, Finchley Road, London, NW3 5EG Ventilators & Ventilation Systems Active Automatically positioned to the address	A18SW (NW)	391	-	526694 184166
26	Location: Classification: Status:	Directory Entries Oxyvita Ltd 11, Regency Parade, Finchley Road, London, NW3 5EG Medical Instruments - Manufacturers Inactive Automatically positioned to the address	A18SW (NW)	391	-	526694 184166
26	Contemporary Trade Name: Location: Classification: Status:		A18SW (NW)	414	-	526652 184162
27	Contemporary Trade Name: Location: Classification: Status:		A8NW (S)	407	-	526819 183393
28	Contemporary Trade Name: Location: Classification: Status:	**	A18SW (N)	408	-	526882 184260
29	Location: Classification: Status:	B Directory Entries Buzy Cleaning 18-22, Finchley Road, London, NW8 6EB Cleaning Services - Domestic Inactive Automatically positioned to the address	A8NW (SW)	426	-	526615 183484
30	Location: Classification: Status:	e Directory Entries 24 Hr Waste Disposal St. Johns Wood Ter, London, NW8 6LP Waste Disposal Services Inactive Manually positioned to the road within the address or location	A8NE (SE)	431	-	527122 183412
31	Location: Classification: Status:	Directory Entries Arrow Enterprises (Uk) Ltd 13, Lower Merton Rise, London, NW3 3RA Chemicals & Allied Products Inactive Automatically positioned to the address	A18SE (NE)	484	-	527235 184231
31	Location: Classification: Status:	e Directory Entries Swan Dry Cleaners 19, Lower Merton Rise, London, NW3 3RA Dry Cleaners Inactive Automatically positioned to the address	A18SE (NE)	500	-	527226 184259

Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service Page 12 of 34

Industrial Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
32	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Swiss Cottage Dry Cleaners 121, Finchley Road, London, NW3 6HY Dry Cleaners Active Automatically positioned to the address	A18SW (NW)	516	-	526623 184270
32	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Fuji Photo Film (Uk) Ltd 125, Finchley Road, London, NW3 6HY Photographic Equipment & Supplies - Wholesale Inactive Automatically positioned to the address	A18SW (NW)	533	-	526612 184282
32	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Primary Industries Station House, 9-13, Swiss Terrace, London, NW6 4RR Metal Industries - Primary Active Manually positioned to the address or location	A18SW (NW)	579	-	526599 184329
33	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Urgent Detergent 16-18 Circus Rd, London, NW8 6PG Cleaning Services - Domestic Active Manually positioned to the address or location	A8NW (S)	530	-	526893 183259
34	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Parks 76-78, Allitsen Road, London, NW8 7BG Candle Manufacturers & Suppliers Inactive Automatically positioned to the address	A8NE (S)	531	-	527121 183301
35	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Snappy Snaps 140, St. Johns Wood High Street, London, NW8 7SE Photographic Processors Inactive Automatically positioned to the address	A8NE (S)	537	-	526958 183254
35	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Johnson Cleaners (Uk) Ltd 69-71, St. Johns Wood High Street, London, NW8 7NL Dry Cleaners Active Automatically positioned to the address	A8NE (S)	564	-	526935 183226
35	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Supasnaps 69-71, St. Johns Wood High Street, London, NW8 7NL Photographic Processors Inactive Automatically positioned to the address	A8NE (S)	564	-	526935 183226
35	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Shirt Makers England Ltd Cochrane Mews, London, NW8 6NY Shirt Makers Inactive Manually positioned to the road within the address or location	A8NE (S)	571	-	526925 183218
36	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Drown & Co Ltd 73, Loudoun Road, London, NW8 0DQ Art Restoration & Picture Cleaning Inactive Automatically positioned to the address	A12NE (W)	568	-	526346 183997
36	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Francis Butlin 73, Loudoun Road, London, NW8 0DQ Art Restoration & Picture Cleaning Inactive Automatically positioned to the address	A12NE (W)	568	-	526346 183997
36	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Thorne Henderson 79, Loudoun Road, London, NW8 0DQ Distribution Services Active Automatically positioned to the address	A12NE (W)	568	-	526346 183997

Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service Page 13 of 34

Industrial Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
86	Name: Location: Classification: Status: Positional Accuracy:	Red Grey Ltd 32, Englands Lane, London, NW3 4UE Electrical Goods Sales, Manufacturers & Wholesalers Active Automatically positioned to the address	A19NW (NE)	971	-	527522 184625
	Contemporary Trad	e Directory Entries				
86	Name: Location: Classification: Status: Positional Accuracy:	Allchin Pharmacy 28, Englands Lane, London, NW3 4UE Pharmaceutical Manufacturers & Distributors Active Automatically positioned to the address	A19NW (NE)	981	-	527536 184627
	Contemporary Trad	e Directory Entries				
87	Name: Location: Classification: Status: Positional Accuracy:	Technomarine A, 8, Hamilton Gardens, London, NW8 9PU Jewellery Manufacturers & Repairers Inactive Automatically positioned to the address	A7SE (SW)	979	-	526449 182927
	Contemporary Trad	e Directory Entries				
88	Name: Location: Classification: Status: Positional Accuracy:	Gayle Mcvay 52, Belsize Park Gardens, London, NW3 4ND Hats & Caps - Manufacturers Inactive Automatically positioned to the address	A19NW (NE)	981	-	527379 184728
	Contemporary Trad	e Directory Entries				
89	Name: Location: Classification: Status: Positional Accuracy:	John Chambers 4, Nugent Terrace, London, NW8 9QB Antiques - Repairing & Restoring Inactive Automatically positioned to the address	A7SE (SW)	984	-	526304 183015
	Contemporary Trad					
89	Name: Location: Classification: Status:	My Fair Laundry Services 8, Nugent Terrace, London, NW8 9QB Laundries & Launderettes Active Automatically positioned to the address	A7SE (SW)	988	-	526310 183006
	Contemporary Trad	**				
90	Name: Location: Classification: Status:	Spellbound Entertainment Ltd 6, Primrose Mews, Sharpleshall Street, London, NW1 8YW Television & Video Manufacturers & Wholesalers Inactive Automatically positioned to the address	A14NE (E)	986	-	527925 184028
	Contemporary Trad	e Directory Entries				
91	Name: Location: Classification: Status: Positional Accuracy:	Map Print Ltd 96a, Clifton Hill, London, NW8 0JT Printers Textile Inactive Automatically positioned to the address	A7NW (W)	990	-	525966 183453
	Contemporary Trad	e Directory Entries				
92	Name: Location: Classification: Status: Positional Accuracy:	Perfect Clean Flat 12, Lavington, 24, Greville Place, London, NW6 5JU Carpet, Curtain & Upholstery Cleaners Active Automatically positioned to the address	A12SW (W)	996	-	525935 183522
	Fuel Station Entries	S				
93	Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Boundary Road Service Station 150 Loudon Road, St Johns Wood, LONDON, NW8 0DH Total Not Applicable Obsolete Automatically positioned to the address	A12NE (W)	484	-	526423 183961
	Fuel Station Entries	;				
94	Name: Location: Brand: Premises Type: Status:	Loudon Road Service Station 21a, Loudon Road, St Johns Wood, London, Greater London, NW8 0NB Unbranded Not Applicable Obsolete Manually positioned to the address or location	A12SE (W)	534	-	526375 183661

Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service Page 23 of 34

Industrial Land Use

Map ID		Details		Estimated Distance From Site	Contact	NGR
0.5	Fuel Station Entries		4.0014	740		50004
95	Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Wellington Service Station 21-41, WELLINGTON ROAD, ST JOHNS WOOD, LONDON, GREATER LONDON, NW8 9SQ BP Petrol Station Open Manually positioned to the address or location	A8SW (S)	710	-	526864 183080
	Fuel Station Entries					
96	Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Hampstead Service Station 104a Finchley Road, Hampstead, LONDON, Greater London, NW3 5EY BP Petrol Station Open Automatically positioned to the address	A17NE (NW)	837	-	526471 184554

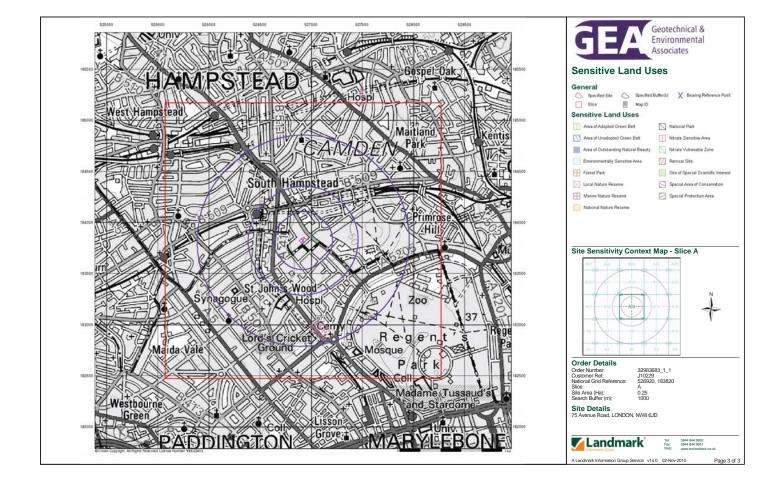
Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service Page 24 of 34

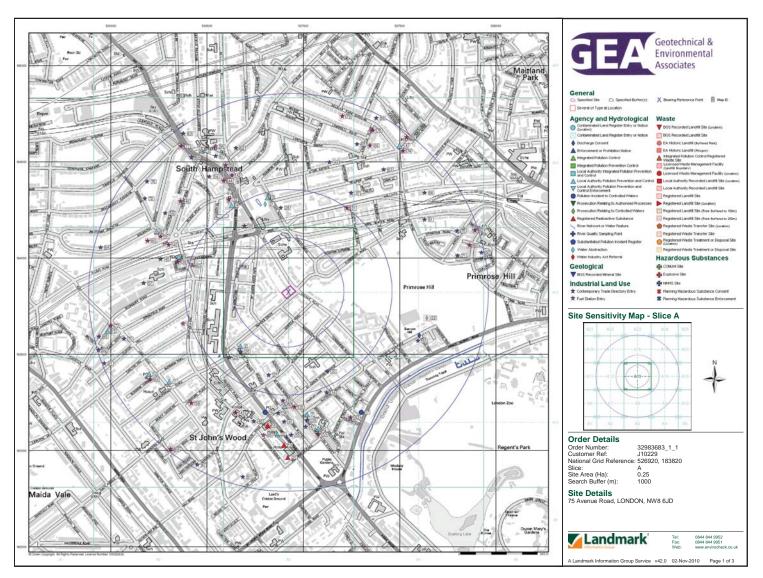
Sensitive Land Use

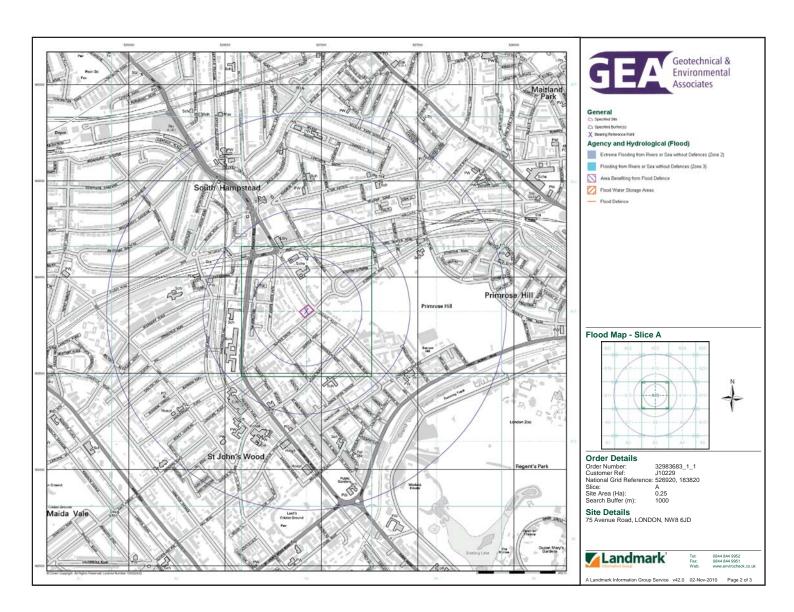
Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
97	Name: Nultiple Area: Area (m2): Source: Designation Date:	rves St John'S Wood Church Grounds N 19887.75 Natural England 1st January 1998	A8SE (S)	753	6	527088 183057



Useful Contacts


Contact	Name and Address	Contact Details
1	Environment Agency - National Customer Contact Centre (NCCC)	Telephone: 08708 506 506 Email: enquiries@environment-agency.gov.uk
	PO Box 544, Templeborough, Rotherham, S60 1BY	
2	Westminster City Council - Environmental Health Department	Telephone: 020 7641 1317 Fax: 020 7641 1142 Website: www.westminster.gov.uk
	Council House, Marylebone Road, London, NW1 5PT	
3	London Borough of Waltham Forest - Environmental Health Department	Telephone: 020 8496 3000 Fax: 0181 524 8960 Website: www.lbwf.gov.uk
	154 Blackhorse Road, Walthamstow, London, E17 6NW	-
4	London Borough of Camden - Pollution Projects Team	Telephone: 020 7278 4444 Fax: 020 7860 5713
	Seventh Floor, Town Hall Extension, Argyle Street, London, WC1H 8EQ	Website: www.camden.gov.uk
5	British Geological Survey - Enquiry Service	Telephone: 0115 936 3143 Fax: 0115 936 3276
	British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, Nottinghamshire, NG12 5GG	Email: enquiries@bgs.ac.uk Website: www.bgs.ac.uk
6	Natural England	Telephone: 0845 600 3078 Fax: 01733 455103
	Northminster House, Northminster Road, Peterborough, Cambridgeshire, PE1 1UA	Email: enquiries@naturalengland.org.uk Website: www.naturalengland.org.uk
7	London Borough of Camden	Telephone: 020 7974 4444 Fax: 020 7974 6866
	Town Hall, Judd Street, London, WC1H 9JE	Email: info@camden.gov.uk Website: www.camden.gov.uk
-	Health Protection Agency - Radon Survey, Centre for Radiation, Chemical and Environmental Hazards	Telephone: 01235 822622 Fax: 01235 833891
	Chilton, Didcot, Oxfordshire, OX11 0RQ	Email: radon@hpa.org.uk Website: www.hpa.org.uk
-	Landmark Information Group Limited	Telephone: 0844 844 9952
	The Smith Centre, Henley On Thames, Oxfordshire, RG9 6AB	Fax: 0844 844 9951 Email: customerservices@landmarkinfo.co.uk Website: www.landmarkinfo.co.uk


Please note that the Environment Agency / SEPA have a charging policy in place for enquiries.


Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service Page 25 of 34 Order Number: 32983683_1_1 Date: 02-Nov-2010 rpr_ec_datasheet v47.0 A Landmark Information Group Service Page 34 of 34

