

Energy Strategy Report

42 Caversham Road, London, NW5 2DS

April 2015

Ref: 13-426

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG18LG T: 0845 0091625 Registered Company No. 06408056

1.	EXECUTIVE SUMMARY
2.	INTRODUCTION9
3.	SITE DESCRIPTION
4.	PLANNING POLICY
5.	THE DEVELOPMENT CONFIGURATION SCHEME12
6.	BASELINE CO ₂ EMISSIONS14
7.	BE LEAN – ENERGY EFFICIENT DESIGN16
8.	BE CLEAN – CHP & DECENTRALISED ENERGY NETWORKS18
9.	BE GREEN – RENEWABLE ENERGY 20
10.	CONCLUSION
11.	APPENDIX

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG18LG T: 0845 0091625 Registered Company No. 06408056

BUILDING

carbon SMART

0,000

Trust Trust

CHAMBER AWARDS

STROMAC ERTIFIED ENERCY ASSESSOR

42 Caversham Road, London, NW5 2DS

Quality Standards Control

The signatories below verify that this document has been prepared in accordance with our quality control requirements. These procedures do not affect the content and views expressed by the originator.

This document must only be treated as a draft unless it is has been signed by the originators and approved by a director.

Revision	00
Date	01.04.2015
Prepared by	E. Jolly
Checked by	N. Paranjpe
Authorised by	N. Paranjpe

smarta 100

ENERGY

haus GREE

Limitations

Syntegra Consulting Ltd ("SC") has prepared this report for the sole use of **Dexbay Properties LLP ("Client")** in accordance with the agreement under which our services were performed. No other warranty, expressed or implied, is made as to the professional advice included in this report or any other services provided by SC.

The conclusions and recommendations contained in this report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate. Information obtained by SC has not been independently verified by SC, unless otherwise stated in the report.

The methodology adopted and the sources of information used by SC in providing its services are outlined in this report. The work described in this report was undertaken in **April 2015** and is based on the conditions encountered and the information available during the said period of time. The scope of this report and the services are accordingly factually limited by these circumstances.

This renewable report and SAP pre-assessment modelling were generated based on the provided drawings and building information assumptions. Although every effort has been made to provide accurate content within this report, SC makes no warranty or assumes no legal liability or responsibility for the accuracy or completeness of information contained in this report.

SC also wishes to make aware that this document is guidance only on energy strategy and should not be seen as a building design document. It is the responsibility of the APPOINTED BUILDING SERVICES / Design Team to develop, select and implement appropriate energy efficiency measures to ensure compliance.

Where assessments of works or costs identified in this report are made, such assessments are based upon the information available at the time and where appropriate are subject to further investigations or information which may become available.

SC disclaim any undertaking or obligation to advise any person of any change in any matter affecting the report, which may come or be brought to SC's attention after the date of the report.

Certain statements made in the report that are not historical facts may constitute estimates, projections or other forward-looking statements and even though they are based on reasonable assumptions as of the date of the report, such forward-looking statements by their nature involve risks and uncertainties that could cause actual results to differ materially from the results predicted. SC specifically does not guarantee or warrant any estimate or projections contained in this report.

Costs may vary outside the ranges quoted. Whilst cost estimates are provided for individual issues in this report these are based upon information at the time which can be incomplete. Cost estimates for such issues may therefore vary from those provided. Where costs are supplied, these estimates should be considered in aggregate only. No reliance should be made in relation to any division of aggregate costs, including in relation to any issue, site or other subdivision.

No allowance has been made for changes in prices or exchange rates or changes in any other conditions which may result in price fluctuations in the future. Where assessments of works or costs necessary to achieve compliance have been made, these are based upon measures which, in SC's experience, could normally be negotiated with the relevant authorities under present legislation and enforcement practice, assuming a pro-active and reasonable approach by site management.

Forecast cost estimates do not include such costs associated with any negotiations, appeals or other non-technical actions associated with the agreement on measures to meet the requirements of the authorities, nor are potential business loss and interruption costs considered that may be incurred as part of any technical measures.

smarta**100**

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG T: 0845 0091625 Registered Company No. 06408056 E: mail@syntegra-epc.co.uk VAT Registration No. 980016044

Copyright

© This report is the copyright of SC. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG T: 0845 0091625 Registered Company No. 06408056

arbon

ARDS

INNER

Pa

energy

smarta 100

E: mail@syntegra-epc.co.uk VAT Registration No. 980016044

0,000

1. Executive Summary

The design of the proposed development in **42 Caversham Road, London, NW5 2DS,** which is a new residential development comprised of **18No. Residential units,** located in an urban residential area in London, has incorporated building fabric enhancement (above current building regulation Part L1A 2013 requirements) to increase the energy efficiency of the building. This includes that the development uses less energy, by adopting sustainable design and construction measures and by supplying energy efficiently.

Given the complexity of calculating and assessing CO₂ emissions, the **Camden Council** requires all proposed developments to incorporate sustainable design and construction measures. All new developments are to be designed to minimise energy demand through good design and high levels of insulation and air tightness (CPG3 - Energy Efficiency: New Buildings). Schemes must: demonstrate how sustainable development principles have been incorporated into the design and proposed implementation. According to the Camden Planning Guidance, it is requested for new developments to meet Code for Sustainable Homes 'Level 4' as a minimum requirement, by achieving the minimum standards for specific categories (% of un-weighted credits) of 50% of the credits achieved under the Energy, Water and Materials sections in accordance with the Development Policy DP22: Promoting sustainable design and construction & the CPG3: Sustainability Assessment Tools (9.8). Also, according to the CS13 policy, developments need to achieve a reduction in CO₂ emissions of 20% from on site renewable energy generation.

The recommendation for the proposed development is that Efficient Combi Gas Boilers (95% efficiency) along with a total of 11.8kWp PV, which equates to approximately 36 PV panels in total (based on 327W PV output) and approximately 59 m² required roof area should be progressed. This is based on the following reasons:

- The strategy would provide an average of 28% CO₂ reduction saving (DER/TER) against Building Regulations Part L1A 2013 for the whole development. Therefore, the strategy meets BRUK-L1A requirements for the development and the minimum requirements for ENE01 – Level 4 for CSH assessment (minimum improvement of 19% over Part L1A 2013).
- The Greater London Authority's (GLA) London Plan 2011 asks for all new developments to meet a target of 40% improvement over Part L 2010 (equivalent to 35% over Part L 2013) through implementation of the Energy Hierarchy. In order for this development to meet this target, it has been calculated that approximately 80m² of photovoltaic panels would need to be installed. However, due to rooftop area availability constraints this cannot be achieved.
- The strategy would provide an average of 21% reduction of CO₂ emissions the energy demand via onsite renewable technology (PV) for the overall development. Hence, the required target of 20% reduction in CO₂ emissions through renewable onsite has been achieved.

smarta100

haus GREEN

- A separate CSH pre-assessment has been undertaken for the residential development. The CSH pre-assessment demonstrates that a "Code Level 4" rating can be achieved for all dwellings.
- After the application of the Energy Hierarchy, the regulated carbon dioxide emissions are presented on the table below:

	Carbon Dioxide emissions (Tonnes CO ₂ per annum) Regulated	
Baseline: Building Regulations 2013 Part L Compliant Development	24.98	
After energy demand reduction	23.25	
After CHP/ Communal Heating	23.25	
After renewable energy	17.98	

Table 1: Carbon Emissions following the application of the Energy Hierarchy

The chart below summarises the regulated carbon dioxide savings from each stage of the Energy Hierarchy:

	Regulated Carbon Dioxide savings			
	(Tonnes CO ₂ per annum)	(%)		
Savings from energy demand reduction	1.72	6.89%		
Savings from CHP/ Communal Heating	0	6.89%		
Savings from Renewable energy	5.28	28.02%		
Total Cumulative Savings 7.00				
Total Target Savings	4.75	19%		
Annual Surplus	2.25			

Table 2: Regulated carbon savings from the application of the Energy Hierarchy

 Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG
 T: 0845 0091625

 Registered Company No. 06408056
 T: 0845 0091625

ENERGY

GREE

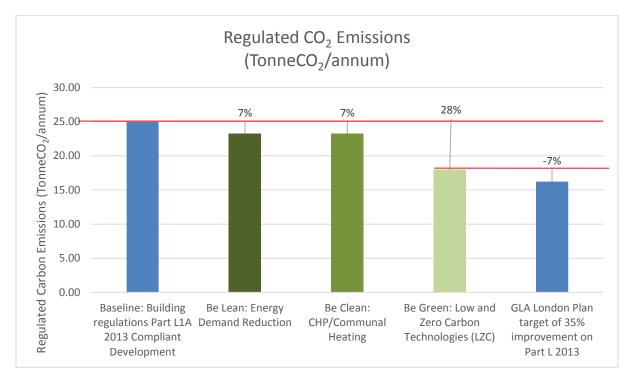


Figure 1: Graph to show improvement of Part L 2013 baseline through the implementation of the Energy Hierarchy

Meeting the Policy requirements:

- The overall score is 72.71%, thus achieving Code Level 4.
- Under the **Energy category**, the development achieves **17.7 credits out of 31 credits** available (more than 50% of the planning policy required credits).
- Under the **Water category**, the development achieves **4 credits out of 6 credits** available (more than 50% of the planning policy required credits).
- Under the **Materials category**, the development achieves **14 credits out of 24 credits** available (more than 50% of the planning policy required credits).

Please refer to the Code for Sustainable Homes pre-assessment for this development in the Appendix for further information on the targeted credits.

smarta 100

vhaus GREEN

2. Introduction

Syntegra Consulting Ltd has been appointed as energy consultants to produce an energy strategy for the **'Development consisting of 18No. New Residential units'** for the scheme at **42 Caversham Road**, **London**, **NW5 2DS** – to support the scheme design process, demonstrate Building regulations Part L 2013 compliance, intent to design to target Code Level 4 standard and intent to target a 20% reduction of CO_2 emissions reduction via onsite renewable energy technology for the overall development in accordance with planning policy requirements.

This report will outline the following:

- This report will assess the proposed development site's estimated energy demand & CO₂ emissions. It will look into the feasibility of Low Zero Carbon technologies, examining the following aspects relative to LZC/renewable technologies:
- Energy generated by Renewable/Low Zero Carbon Technologies (LZC)
- > Feasibility assessment for each Renewable/Low Zero Carbon Technologies (LZC)
- Local Planning Requirements
- Life cycle Costs & payback period for the technology investment
- > Available Grants
- The Code for Sustainable Homes (CSH) pre-assessment strategy (under the current CSH Nov 2010 guide) in terms of the intent in achieving the **overall minimum Code Level 4** strategy for the development. –In accordance with the local planning policy targets.
- 3) The proposed building fabric and Low Zero Carbon (LZC) design strategy and analysis calculations, with respect to the Standard Assessment energy assessment Procedure (SAP). Demonstration of how the design is compliant against the current 2013 Part L1A buildings regulations i.e. A 28% DER/TER CO₂ emission reduction against BRUKL Part L1A 2013 but cannot show full compliance with the London Plan 2011 target of 35% improvement over Part L 2013 through constraints and limited roof area available.
- 4) The target of **at least 20% reduction of the development's CO₂ Emissions** through the utilisation of renewable technology as per the planning policy requirements.

3. Site Description

The proposed development comprises of a five storey residential development. The development is located in the urban area of Kentish Town in London. The development is in close proximity to Kentish Town Underground and Rail Stations (approx 0.3 miles). The site is within the London Borough of Camden.

4. Planning Policy

4.1. National Planning Policy Framework (March 2012)

The National Planning Policy Framework is a key part of our reforms to make the planning system less complex and more accessible, to protect the environment and to promote sustainable growth.

4.2. London Borough of Camden, DP22 "Promoting sustainable Design & Construction"

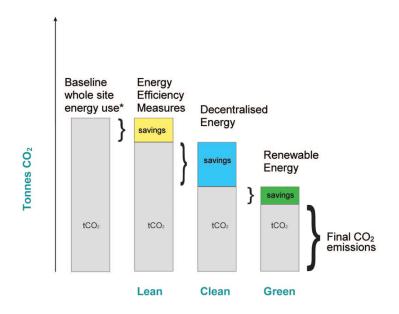
DP22 – *Promoting sustainable design and construction* contributes towards delivering the strategy in policy CS13 by providing detail of the sustainability standards we will expect development to meet.

4.3. The London Plan Renewable Energy Policy 2011 (Policy 5.2, 5.6 & 5.7)

The Mayor will and boroughs should in their DPDs adopt a presumption that developments will achieve a reduction in carbon dioxide emissions of 20% from onsite renewable energy generation according to 5.42 section of Policy 5.7 Renewable Energy (which can include sources of decentralised renewable energy). According to Policy 5.2 (clause B) all residential and non-residential buildings should show an improvement of 25% BER/TER based on 2010 Building Regulations, between 2010 and 2013 and 40% BER/TER from 2013 to 2016 (equivalent to 35% over Part L 2013), unless it can be demonstrated that such provision is not feasible. Furthermore, intent must be shown for connecting to a Decentralised energy Network according to Policy 5.6 and utilizing a Combined Heat & Power.

smarta100

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG T: 0845 0091625 Registered Company No. 06408056 E: mail@syntegra-epc.co.uk VAT Registration No. 980016044


4.4. The Energy Hierarchy

The Mayor's Energy Strategy adopts a set of principles to guide design development and decisions regarding energy, balanced with the need to optimise environmental and economic benefits. These guiding principles have been reordered since the publication of the Mayor's Energy Strategy in Feb 2004 and the adopted replacement London Plan 2011 states that 'The following hierarchy should be used to assess applications:

- Using less energy, in particular by adopting sustainable design and construction measures;
- Supplying energy efficiency, in particular by prioritizing decentralized energy generation; and
- Using renewable energy.

The development's Energy Strategy has adopted the following design ethos:

- ✓ BE LEAN By using less energy and taking into account the further energy efficiency measure in comparison to the baseline building.
- ✓ BE CLEAN By supplying energy efficiently. The clean building looks at further carbon dioxide emission savings over the lean building by taking into consideration the use of decentralise energy via CHP.
- ✓ BE GREEN By integrating renewable energy into the scheme which can further reduce the carbon dioxide emission rate.

smarta100

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG T: 0845 0091625 Registered Company No. 06408056

ENERGY

E: mail@syntegra-epc.co.uk VAT Registration No. 980016044

5. The development configuration scheme

The proposed development scheme consists of the following characteristics:

5.1. The Unit Configuration

The following table presents the type, area and number of units to be assessed within this report:

Proposed units to be assessed for the development:

No. of Flats	Flat Name	No. of bedrooms	Individual Area m ²
1	U01	2	101.5
2	U02	2	89.1
3	U03	2	87.8
4	U04	2	83.0
5	U05	2	97.9
6	U06	2	63.5
7	U07	1	50.1
8	U08	1	50.0
9	U09	1	56.3
10	U10	2	65.5
11	U11	2	62.9
12	U12	2	78.7
13	U13	1	50.3
14	U14	1	50.9
15	U15	3	105.8
16	U16	2	72.6
17	U17	3	108.8
18	U18	2	85.7
Total	-	33	1360.4

Table 3: Accommodation Schedule for the proposed development

smarta 100

haus GREEN

5.2. Specification of Building Materials

The table presented below demonstrates the material properties of the building fabric that have been proposed:

Building Envelope Specification

Building Element	Proposed Specification	
External Walls U-value	0.20	
Floor U-value	0.15	
Window units (whole window) U-value	1.1 Triple glazing	
Rooflight U-value	1.1 Double glazing	
Roof U-value	0.16	
Air Permeability m ³ /(h.m ²) at 50 Pa	3	
Low Energy Lighting	100%	

Table 4

5.3. Fuel

The assessment has assumed the following fuel carbon emissions factors. The fuel carbon emissions factors used are in accordance with **SAP 2012 (for Building Regs Part L1A 2013).**

Carbon Emissions Factor	SAP 2013 kgCO ₂ /kW
Grid Electricity	0.517
Grid displaced Electricity	0.529
Manufactured smokeless fuel	0.402
Coal (traditional British Coal)	0.301
Heating Oil	0.28
LPG	0.25
Natural Gas	0.198
Wood Pellets	0.028
Bio Diesel	0.098
Bio Gas	0.019

Table 5

smarta 100

T: 0845 0091625

,000

ENERGY

haus GREEN

6. Baseline CO₂ Emissions

The baseline energy use and resulting CO₂ emissions rates of the development have been assessed using the SAP 2012 Government approved software. The SAP 2012 calculations have been produced according to the Part L1A 2013 building regulation requirements.

For the purpose of this report the baseline energy use and CO_2 emissions for the development are calculated based on the notional dwelling specifications in the Building Regulations Part L1A 2013 document (Table 4).

	ADL1A 2013 Notional Values	Proposed building values
Air Permeability m ³ /(h.m ²) at 50 Pa	5	3
Wall U value W/m ² C ⁰	0.18	0.20
Roof U value W/m ² C ⁰	0.13	0.16
Floor U value W/m ² C ⁰	0.13	0.15
Window U value W/m ² C ⁰	1.40	1.10

Table 6: table to compare the parameters used in the notional dwelling and the proposed dwelling

The baseline average energy use and CO₂ emissions for the development are presented in the tables below:

Please note that all units (No.18) have been modelled using the SAP2009 software FSAP 2012.

Building Services	Baseline CO ₂ Emissions (kg CO ₂ /m ² /yr)
Heating	761
Auxiliary	39
Lighting	184
Hot Water	509
Total regulated emissions	1492.84

Table 7

a100

 Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG
 T: 0845 0091625

 Registered Company No. 06408056
 T: 0845 0091625

E: mail@syntegra-epc.co.uk VAT Registration No. 980016044

> B CHAMBER awards 2014

Building Services	Baseline CO ₂ Emissions (kg CO ₂ /m ² /yr)	Baseline CO ₂ Emissions (Tonnes CO ₂ / yr)
Total regulated emissions (heating, hot water, lighting, fans & pumps)	17.51	24.98

Table 8

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG Registered Company No. 06408056

carbon

.energy

-Pa

sivhaus GREEN

ARDS 2

INNER

smarta 100 AWARD

E: mail@syntegra-epc.co.uk VAT Registration No. 980016044

CHAMBER

O 14

0,000

7. BE LEAN – Energy Efficient Design

This section outlines the design energy efficient measures taken in order to minimise the building's energy demand and therefore reduce energy use and CO₂ emissions further than the Baseline (Building Regulations 2013 Part L compliance).

The energy efficient measures include:

- 1. Inclusion of better U-values than the minimum U-values set in the ADL1A 2013 document.
- 2. Designing for a buildings air permeability exceeding ADL1A 2013 target values.
- 3. Utilising the highly efficient heating and hot water systems.
- 4. Utilising low energy efficient lighting such as LED lighting.

7.1. Heating Demand

The heating energy demand will be reduced by providing good insulation of the building envelope in order to minimise heat losses.

At the 'BE LEAN' stage High Efficiency Combi Boilers 95% efficient have been examined. This strategy utilizes a combi boiler in each dwelling to provide heating and DHWS.

7.2. Ventilation

A natural supply ventilation strategy will be adopted in all dwellings with extract fans in bathrooms and kitchens. Therefore, higher energy consumption and CO₂ emissions due to mechanical ventilation is avoided.

7.3. Lighting

The proposed light fittings will be low energy efficient fittings. These can be T5 fluorescent fittings with high frequency ballasts, or LED fittings.

The following table demonstrates the reduction in CO_2 emissions caused by the energy efficiency measures mentioned above.

Building Services	Baseline CO ₂ Emissions (kg CO ₂ /m²/yr)	BE LEAN Building CO ₂ Emissions (kg CO ₂ /m ² /yr)
Heating	760.73	713.71
Auxiliary	38.93	15.57
Lighting	183.75	183.73
Hot Water	509.42	475.69
Total regulated emissions	1492.84	1388.70

Table 9

CO₂ Reductions after BE LEAN stage

Regulated Emissions	Baseline CO ₂ Emissions	BE LEAN Building CO2 Emissions	% reduction in CO ₂ Emissions
kg of CO ₂ /m ² /yr	17.51	16.31	6.89%
Tonnes CO ₂ / yr	24.98	23.25	

Table 10

From the table above it can be seen that the overall CO_2 reduction due to energy efficiency is <u>6.89%</u> for the total emissions.

At the 'BE LEAN' stage of the energy hierarchy, all the maximum energy efficient measures have been incorporated into the build. Please see below more specifically:

- a. Wall u-value = 0.2
- b. Roof u-value = 0.16
- c. Floor u-value = 0.15
- d. Windows u-value = 1.1 triple glazing and double glazing (windows and roof lights respectively)

smarta100

e. 100% energy efficient lighting

8. BE CLEAN – CHP & Decentralised Energy Networks

The Energy Hierarchy encourages the use of a CHP system and the connection to District Heating system to reduce CO_2 emissions further.

8.1. CHP

The Energy Hierarchy identifies combined heat and power (CHP) as a method of producing heat and electricity with much lower emissions than separate heat and power. Also, it encourages the creation of district heating systems supplied by CHP.

The implementation of a CHP strategy should be decided according to good practice design. Key factors for the efficient implementation of the CHP system are:

- > Development with high heating load for the majority of the year.
- > CHP operation based on maximum heat load for minimum 10 hours per day.
- > CHP operation at maximum capacity of 90% of its operating period.

A CHP system will not be considered for this development due to the following reasons:

- The heating load of the building is not enough for the CHP system to run efficiently.
- Economic viability is heavily dependent on the demand for heat and power, as well as the price of electricity and gas. The heat and power demand of the proposed development is not sufficient for a CHP system to run efficiently

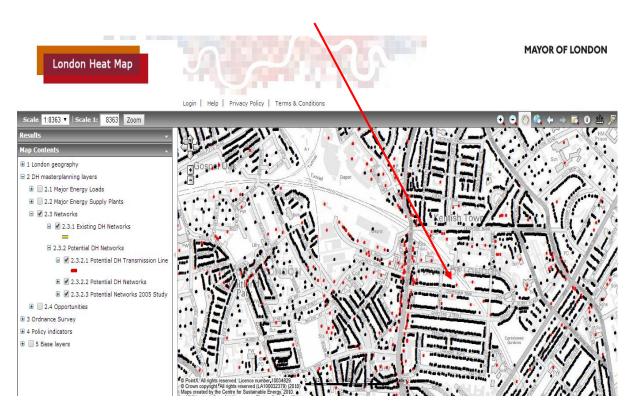
Hence, the implementation of a CHP strategy is not recommended for this development.

8.2. Micro-CHP

Micro CHP has not been considered further for this project for the following reasons:

Micro-CHP is a relatively new concept (Baxi Ecogen was made available in 2009) and issues are raised in relation to unproven technology, inefficiency for shorter run cycles and lack of technical knowledge that can limit the practical application of micro CHP at present. In addition other issues surrounding the fact that around 50% of electricity generated in domestic properties is surplus, high installation costs and estimated low life expectancy has also been taken into consideration as to its Offices, Doctor Surgery Unit & Communal Area un-viability for this development scheme. Micro-CHP also has lower FIT tariff rate and period duration and is only applicable for systems under 2kW.

8.3. Decentralised Energy Network


The feasibility of connecting into an existing heating network or providing the building with its own combined heat and power plant has been assessed alongside the London Heat Map Study For Camden Council as part of this assessment. The study does not identify the area in Caversham Road as a high potential area for a District Heating network. The development is not in close proximity to an existing nor a potential District Heating transmission line. At the moment there is no decentralized energy

network available and in particular a district heating network in the proximity of the proposed development site that would allow the development to connect to such a network. This is demonstrated clearly from the London Heat Map (http://www.londonheatmap.org.uk) snapshot below. <u>Site Location</u>

The Mayor's Energy Strategy favours community heating systems because they offer:

- Potential economies of scale in respect of efficiency and therefore reduced carbon emissions; and
- Greater potential for future replacement with Low or Zero Carbon (LZC) technologies.

For the proposed development it has been decided that due to technology and space constraints, a Be Clean proposal is not suitable for this development.

arbon

TROMA

ENERGY ASSESSOR

AWARDS 2014 National Finality, Regional Win

ivhaus GREEN

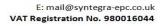
9. BE GREEN – Renewable Energy

In this section the viable renewable energy technologies that will reduce the development's CO₂ emissions are examined. Incorporating lean design measures will significantly reduce the onsite energy consumption and the CO₂ emissions of the building. Below is a review of possible renewable technologies for incorporation in the proposed development.

All of the LZC technologies are assessed against a number of criteria. Hence, LZC technology feasibility will be assessed according to the following criteria:

- ✓ Renewable energy resource or fuel availability of the LZC technology on the site.
- ✓ Space limitations due to building design and urban location of the site.
- ✓ Capital, operating and maintenance cost.
- ✓ Planning Permission
- ✓ Implementation with regards the overall M&E design strategy for building type

The renewable/LZC technologies which were found **non feasible** based on the above criteria are the following:


- Wind Turbines [See Appendix Section 11.2]
- Biomass Boilers [See Appendix Section 11.2]
- Hydrogen Fuel Cells [See Appendix Section 11.2]
- Small scale hydro power [See Appendix Section 11.2]
- Ground Source Heat Pump (GSHP) [See Appendix Section 11.2]
- CHP & Micro CHP [See Appendix Section 11.2]
- Solar Thermal

9.1. Photovoltaic (PV) – Proposed Technology

PV is the proposed renewable technology for this development. The PV system will provide selfgenerating electricity which can be sold back to the grid. The CO₂ reduction via renewables target is achieved with the implementation of PV. For the calculation of the payback period, the Feed-In-Tariffs' (FITs) has been taken into account. The PV load falls within the bracket associated with a FIT tariff applied of 13.50p per kWh for electricity generated and 4.64p per kWh for electricity exported back to the grid (over 20 years).

PV System specification - Whole Development

The PV system capacity for the development has been calculated based on the outcome of the Be Lean proposal and the area of suitable roof space available for installation.

Individual Combi Gas Boilers + 11.8kWp PV

The tables below illustrate the site and the PV panel's details:

Orientation	South	Number of Panels	36
Panel Tilt	30°	Manufacturer	Sunpower
Overshading	Less than 20 percent	Model	SPR 327NE WHT D
Proportion	50%	Туре	Monocrystalline
Exported		. // -	
Build Type	New	Area	1.631 m ²
Energy Efficiency	EPC valid and at least Band D	Power Output	327 Wp
	or higher		
Installation Type	Not a multi-installation		

System Specification :	11.8 kWp
Total Roof Area Required :	approx. 59 m ²
Annual Electricity Ouput :	9,822 kWh

This table above shows that the proposed PV specification for the residential units. It will generate 9,822kWh per year. For the 11.8 kWp system, 36 high efficiency 327W monocrystalline PV panels need to be installed. The roof area required for the PV panels is approximately 59 m².

smarta 100

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG T: 0845 0091625 Registered Company No. 06408056

haus GREEN

STROMA CERTIFIED ENERGY

11 kWp Solar PV for ROI model below

Note: PV panels are based on high output, high efficiency at 327 Watts/panel.

Investment in 11.8kWp System: *		£ 8,318.75
First Year:	Income from Feed-In Generation Tariff @ 11.71p/kWh:	£ 1,150.19
	Income from exporting energy @ 4.85p/kWh:	£ 238.19
	Electricity Saving:	£ 663.99
	Total Benefit:	£ 2,052.37
Payback Time:		3y 9m
Total Profit Over 20 years:		£ 51,699.70 31.07% per year (9.88% AER)

Assumptions:

- Illustrative solar PV performance figures only. Figures are given in good faith but do not constitute "Financial Advice".
- Exact PV subsidy figures may depend on grants available at particular locations and other factors.
- Your property has an Energy Performance Certificate (EPC) rating of level D or better.
- Yearly PV output uses a factored degradation over time based on industry estimates.
- Tariffs shown presume installation after at the new FiT rates
- VAT is included (at 5% where appropriate) unless a new build is specified.
- Photovoltaic Panels will not be shaded (e.g. by Trees or Buildings) as shading affects PV output.
- Exact equipment costs are estimated based on retail prices in 2012 and will vary by installer/supplier.
- Installation costs are based on industry averages for installation type/size. Every install is different and you should obtain 3 quotes.
- Assuming that you pay 13.52p per unit and that around 50% of the solar electricity that you generate will be used in your home, having an export meter (you can change such assumptions above).

In order to qualify both the installer and the equipment must be certified under the Microgeneration Certification Scheme (MCS).

smarta 100

PV plant location(s) – To be located on the roof area.

CO2 Emissions Reduction by PV

The table below demonstrate the results of the CO_2 emissions and energy use after the implementation of the PV technology. The target according to the London Plan 2011 is to meet a 20% reduction in CO_2 emissions from renewable technology.

The following tables demonstrate the reductions achieved by PV technology for the two heating options:

Building Services	BE LEAN CO2 Emissions (kg of CO2/m²/yr)	BE GREEN Building CO ₂ Emissions (kg of CO ₂ /m ² /yr)
Heating	713.71	713.71
Auxiliary	15.57	15.57
Lighting	183.73	183.73
Hot Water	475.69	475.69
Energy generated by renewables	0	-293.13
Total (regulated)	1388.70	1095.76

Individual Combi gas boilers + 11.8kWp PV BE GREEN stage

Table 13

CO₂ Reductions after BE GREEN stage

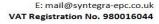
Degulated Emissions	BE LEAN Building CO ₂	BE GREEN Building CO ₂	% reduction in CO ₂
Regulated Emissions	Emissions	Emissions	Emissions
kgr of CO ₂ /m ² /yr	16.31	12.60	~23%
Tonnes CO ₂ / yr	23.25	17.98	

Table 14

From the table above it can be seen that the overall CO₂ reduction due to the installation of low or zero carbon technologies is approx. 23% for the total emissions.

smarta100

GREE



10. Conclusion

Due to the site spatial limitations, location and the other issues identified previously in the report technologies such as Ground Source Heat Pump, Biomass, Solar Thermal, Hydroelectricity and Wind turbines are immediately unfeasible. The design has incorporated building fabric enhancement (above current building regulations requirements) to increase the energy efficiency of the building.

The recommendation for the proposed development at **42 Caversham Road, London, NW5 2DS**, is that **Efficient Combi Gas Boilers (95% efficiency) along with a total of 11.8kWp PV, which equals to 36 PV panels in total (based on 327W PV output) and approximately 59 m² required roof area should be progressed. This is based on the following reasons:**

- PV plant location(s) The plant would be located on the roof. The PV panels are based on high output, high efficiency Sunpower 327 watts. PV layouts and allocation of roof areas are yet to be finalised.
- The strategy would provide an average of 28.02% CO₂ reduction saving (DER/TER) against Building Regulations Part L1A 2013 for the whole development. Therefore, the strategy meets BRUK-L1A requirements for the development and the minimum requirements for ENE01 Level 4 for CSH assessment.
- The strategy would provide an average of approx. 23% reduction of CO₂ emissions the energy demand via onsite renewable technology (PV) for the overall development. Hence, the required target of 20% reduction in CO₂ emissions through renewable onsite has been achieved also enabling 2 credits to be awarded in the ENE07 section of the CSH report.
- The strategy would provide an average Fabric Energy Efficiency of 47.58. Therefore, 3.1 credits can be awarded under ENEO2 section of the CSH report.
- A separate CSH pre-assessment has been undertaken for the residential development. The CSH pre-assessment demonstrates that a "Code Level 4" rating can be achieved for all dwellings with 50% of available Energy, Water and Materials credits being targeted. [See the Appendix for the CSH pre-assessment report].
- It has been calculated that approximately 80m² of rooftop photovoltaics would be required to meet the GLA London Plan 2011 target of 40% improvement over the Part L 2010 baseline (equivalent to 35% over Part L 2013), however due to limited space availability and constraints this cannot be implemented and this target is not achievable for the proposed development.

• After the application of the Energy Hierarchy, the regulated carbon dioxide emissions are presented on the table below:

	Carbon Dioxide emissions (Tonnes CO2 per annum) Regulated
Baseline: Building Regulations 2013 Part L Compliant Development	24.98
After energy demand reduction	23.25
After CHP/ Communal Heating	23.25
After renewable energy	17.98
GLA London plan target of 35% improvement on Part L 2013	16.23

Table17: Carbon dioxide Emissions after each stage of the Energy Hierarchy

The chart below summarizes the regulated carbon dioxide savings from each stage of the Energy Hierarchy:

	Regulated Carbon Dioxide savings		
	(Tonnes CO₂ per annum)	(%)	
Savings from energy demand reduction	1.72	6.89%	
Savings from CHP/ Communal Heating	0	6.89%	
Savings from Renewable energy	5.28	28.02%	
Total Cumulative Savings 7.00			
Total Target Savings	4.75	19%	
Annual Surplus	2.25		

Table18: Regulated carbon dioxide savings from each stage of the Energy Hierarchy

The key metrics currently envisaged for the development are listed below:

- a. The carbon saving attributable to energy efficiency measures: approx. 7%
- b. The carbon saving attributable to clean measures: 0%
- c. The carbon saving attributable to renewable energy technologies: approx. 28%
- d. **The proposed development's overall improvement over the baseline:** approx. 28% As can be seen from the table above.

Figure 1 below illustrates the hierarchical approach adopted and the resultant reduction in overall CO₂ emissions.

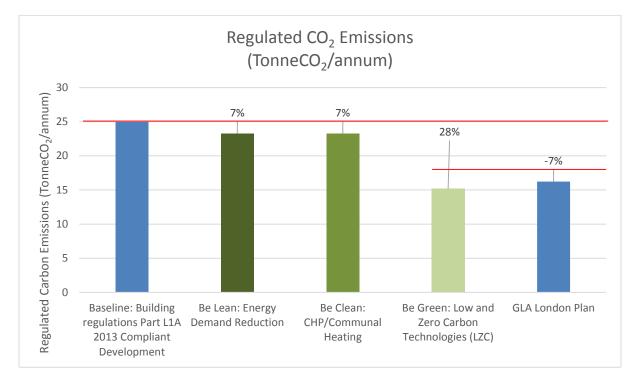


Figure 1: Graph to show the improvement in carbon emissions as a result of the application of the Energy Hierarchy

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG T: 0845 0091625 Registered Company No. 06408056

arbon

smarta 100

E: mail@syntegra-epc.co.uk VAT Registration No. 980016044

STROMA CERTIFIED ESSESSOR

0,000 mall

Pa

11. Appendix

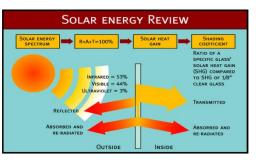
- ✓ Low & Zero Carbon Energy Systems
- ✓ Typical SAP checklist
- ✓ CSH pre-assessment

11.1. Low & Zero Carbon Energy Systems

The following section is an overview of the LZC energy systems that are available and can be implemented to the building environment. Firstly, a brief description of the types of renewable energy (zero carbon energy) that can be harnessed with technology will be presented. In addition, the renewable energy system technologies that harness the renewable energy and convert it to electricity, heating and hot water etc, to be consumed in buildings will be presented as well.

The second part of this section will provide an indication of the available low carbon technologies that can be installed on a building to minimise carbon emissions and reduce energy costs.

11.2. Zero Carbon (Renewable) Energy Overview


Renewable energy is the energy that is grasped by the earth's abundant natural sources. Renewable energy can be harnessed with the appropriate use of technology to satisfy the human energy needs. Solar, wind, wave, tide and bio energy are termed as renewable. These renewable energy sources can be classified as 'active' or 'passive'. Active RES are the renewable sources which with the use of renewable energy systems technology (REST) can generate power and heat to satisfy the energy and heating demands of buildings. Passive RES are the renewable sources which with the use of static building elements can enhance the natural ventilation and the heating of a building.

✓ Solar Energy

Solar energy is the energy of sun light. The temperature of the Sun's surface reaches to a value of approximately 5,762K. The Earth's perimeter of 40,000 km results in an intersected sun power of

174,000TW. Attenuation by the atmosphere results in peak intensity at sea level of around 1kW/m2, giving a 24 hour annual average of 0.2kW/m2 and a 24 hour annual average power of 102,000 TW.

This commands the environment and maintains the life support system of Earth's ecosystem and all forms of renewable energy with the exception of geothermal

energy. The solar energy reaching the earth's surface surpasses 10,000 times the current global energy demand.

To be more specific in terms of harnessing solar energy we are interested with the irradiance. Irradiance is the energy of light incident on a solar collector. Irradiance is measured in energy per area,

smarta100

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG T: 0845 0091625 Registered Company No. 06408056 E: mail@syntegra-epc.co.uk VAT Registration No. 980016044

✓ Wind Energy

Wind energy is the energy found in the wind that is grasped by REST in order to generate power for human benefit. Wind turbines are the REST used to collect the wind resource and generate power. Today, wind turbines are used to generate electricity from the wind. There are two types of wind turbines, the horizontal axis turbine which is the most common one and the vertical axis turbine. The HAWT is the most efficient and cost effective. Most of the wind turbines used for electricity generation is of this type. Wind turbines can be found in many sizes and outputs, from small battery charging turbines (say a rotor diameter of 1 or 2 metres with an output of a few hundred Watts)

to the largest machines used to supply electricity to the grid (Rotor diameters in excess of 70m and output powers of over two MW).

✓ Bio-energy

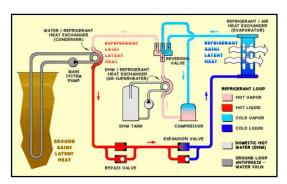
Bio-energy is the energy produced from biomass. Biomass is available from materials derived from biological sources. Biomass is any organic material which has stored sunlight in the form of chemical

energy. As a fuel it may include wood, wood waste, straw, manure, sugar cane, and many other by products from a variety of agricultural processes. Energy from biomass is produced by burning organic matter.

Biomass is the solid form of 'bioenergy', but liquid fuels can also be generated from plant matter and this is referred to as 'biofuel'. Biomass is carbon-based so when used as fuel it also generates carbon emissions. However, the carbon that is released during combustion is

equivalent to the amount that was absorbed during growth, and so the technology is carbon-neutral.

smarta100


28 | Page

✓ Geothermal Energy

Geothermal energy is the heat from the Earth. It's clean and sustainable. Resources of geothermal

energy range from the shallow ground to hot water and hot rock found a few miles beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma. Almost everywhere, the shallow ground or upper 10 feet of the Earth's surface maintains a nearly constant temperature between 10° and 16°C. Geothermal heat pumps can tap into this resource to heat and cool buildings. A geothermal heat pump system consists of

a heat pump, an air delivery system (ductwork), and a heat exchanger-a system of pipes buried in the shallow ground near the building. In the winter, the heat pump removes heat from the heat exchanger and pumps it into the indoor air delivery system. In the summer, the process is reversed, and the heat pump moves heat from the indoor air into the heat exchanger. The heat removed from the indoor air during the summer can also be used to provide a free source of hot water.

11.2.1. Zero Carbon Technologies

In this section the zero carbon technologies also known as Renewable Energy System Technologies (REST) are described.

- Photovoltaics (PV)
- Solar Water Heating
- Wind Turbines
- Small scale Hydro Power
- Biomass Heating

11.2.1.1. Photovoltaic Systems

Description of PV Systems

Photovoltaic systems convert energy from the sun directly into electricity. They are composed of photovoltaic cells, usually a thin wafer or strip of semiconductor material that generates a small current when sunlight strikes them. Multiple cells can be assembled into modules that can be wired in an array of any size. These flat-plate PV arrays can be mounted at a fixed angle facing south, or they can be mounted on a tracking device

that follows the sun, allowing them to capture the most sunlight over the course of a day, or even in the form of a solar PV facade. Several connected PV arrays can provide enough power for a household/building.

Thin film solar cells use layers of semiconductor materials only a few micrometers thick. Thin film technology has made it possible for solar

smarta100

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG T: 0845 0091625 Registered Company No. 06408056 E: mail@syntegra-epc.co.uk VAT Registration No. 980016044

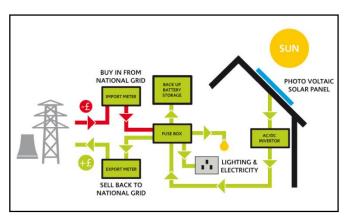
2014 Regional Winner

cells to now double as rooftop shingles, roof tiles, building facades, or the glazing for skylights or atria. The solar cell version of items such as shingles offer the same protection and durability as ordinary asphalt shingles.

Advantages

The PV systems are relatively simple, modular, and highly reliable due to the lack of moving parts. Moreover, PV systems do not produce any greenhouse gases, on the contrary they save approximately 325kg of CO₂ per year kWp they generate.

Best Practice Design


PV installations performance is proportional to the active area (area covered by PVs). The desirable location for PV panels is on a south facing roof or façade, as long as no other building or tall trees overshadows it, resulting in reduced PV efficiency. PV panels are require strong structurally roofs due to their heavy weight, especially if the panels are placed on top of existing tiles. The area of PV panels required to generate 1 kWp varies but generally 6-8m² for mono-crystalline and

10m² for polycrystalline panels will generate 1kWp(kWp-energy generated at full sunlight) of electricity.

Cost & Maintenance

Prices for PV systems vary, depending on the size of the system to be installed, type of PV cell used and the nature of the actual building on which the PV is mounted. The size of a PV system depends on the buildings electricity demand. For an average domestic system, costs of a PV system can be around £4000 -£9000 per kWp installed, with most domestic systems usually between 1.5 and 2 kWp. Solar tiles cost more than conventional panels, and

panels that are integrated into a roof are more expensive than those that sit on top. Grid connected systems require very little maintenance, generally limited to ensuring that the panels are kept relatively clean and that shade from trees does not obstruct the sunlight path. However, the wiring and system components should be checked regularly by a qualified technician.

Available Grants

ASSESSOR

The Feed - In - Tariffs have been introduced in order to give an incentive for PV generated electricity. The Feed-In-Tariffs scheme is based on the principle that the energy supplier pays generation tariff for

smarta100

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG T: 0845 0091625 Registered Company No. 06408056 E: mail@syntegra-epc.co.uk VAT Registration No. 980016044

vhaus GREE

every kWh the PV system generates and an export tariff for every kWh of electricity supplied back to the national grid.

Technology	Scale	Standard generation tariff	Multi-installation tariff	Lower tariff if energy efficiency requirement not met
PV	≤4 kW (new build)	16.0	14.4	7.1
PV	≤4 kW (retrofit)	16.0	14.4	7.1
PV	>4-10 kW	14.5	13.05	7.1
PV	Stand alone system	7.1	N/A	N/A

Tariff level for new Solar PV installations after 1^{st} August 2012 (pence/kWh). For non PV technologies there will be new rates as of October 2012

Description of Solar Water Heating System

Solar water heating systems use solar energy to heat water. Depending on the type of solar collector used, the weather conditions, and the hot water demand, the temperature of the water heated can vary from tepid to nearly boiling. Most solar systems are meant to furnish 20 to 85% of the annual demand for hot water, the remainder being met by conventional heating sources, which either raise the temperature of the water further or provide hot water when the solar water heating system cannot meet demand.

11.2.1.2. Solar Thermal Systems

Solar systems can be used wherever moderately hot water is required. Off-the-shelf packages provide hot water to the bathroom and kitchen of a house; custom systems are designed for bigger loads, such as multi-unit apartments.

The most common collector is called a flat-plate collector. Mounted on the roof, it consists of a thin, flat, rectangular box with a transparent cover that faces the sun. Small tubes run through the box and carry the fluid – either water or other fluid, such as an antifreeze solution – to be heated. The tubes are attached to an absorber plate, which is painted black to absorb the heat. As heat builds up in the collector, it heats the fluid passing through the tubes.

Advantages

Solar water heating can provide about a third of a typical dwellings/business hot water needs. The average domestic system reduces CO₂ by 325 kg per year approximately and around £50 a year of hot water bills, when installed in a gas heated home.

Fuel Displaced	£ Saving per year	CO ₂ saving per year kg
Gas	50	325
Electricity	80	635

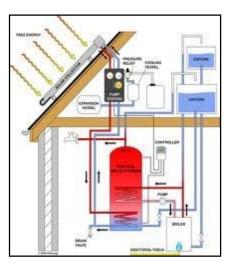
Table 4

a100

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG Registered Company No. 06408056

The savings presented on the previous table are approximate and are based on the hot water heating demand of a 3 bed semi-detached house.

Best Design Practice


For domestic systems a 3-4 m² of southeast to southwest facing roof receiving direct sunlight for the main part of the day is required. Also, more space will be needed if a water cylinder is required.

Planning Issues

In England, changes to permitted development rights for micro generation technologies introduced on 6th April 2008 have lifted the requirements for planning permission for most solar water heating installations. Roof mounted and stand alone systems can now be installed in most dwellings, as long as they follow certain size criteria. Listed, English Heritage and buildings in conservation areas are exempted.

Cost & Maintenance

A typical installation cost for a domestic SHW system is £3000-£5000. Evacuated tube systems are more expensive due to their higher manufacturing cost.

SWH systems in general have a 5-10 years warranty and require little maintenance. A yearly check by the owner of the system and a more detailed maintenance check by a qualified installer every 3-5 years should be adequate.

Available Grants

In March 2011, the UK Government announced the details of their Renewable Heat Incentive (RHI). RHI is designed to provide financial support that encourages individuals, communities and businesses to switch from using fossil fuel for heating, to renewables such as wood fuel.

There will be two phases for domestic customers:

Phase 1 (available from July 2011) - "RHI Premium Payment"

This is called the "RHI Premium Payment" and will be worth around £15m and available to 25,000 householders in Great Britain who install from July 2011.

The exact amounts available to consumers are confirmed:

* Solar Thermal - £300/unit

These are one off payments; so not annual. DECC plan to publish details of the "Phase 2 RHI Payment" and how this will apply next year. Recipients of this payment will need to ensure that:

smarta100

* They have a well-insulated property based on its energy performance certificate;

* They agree to give feedback on how the equipment performs.

Phase 2 (available from October 2012) – RHI tariffs

People in receipt of the Renewable Heat Premium Payments will be able to receive long term RHI tariff support once these tariffs are introduced, as will anybody who has installed an eligible technology since 15th July 2009.

These tariff payments will start alongside the Green Deal from October 2012 to allow a more wholehouse approach to heat production and energy saving.

11.2.1.3. Wind Turbines

Description of Wind Turbine

Wind energy systems convert the kinetic energy of moving air into electricity or mechanical power. They can be used to provide power to central grids or isolated grids, or to serve as a remote power supply or for water pumping. Wind turbines are commercial units available in a vast range of sizes. The turbines used to charge batteries and pump water off-grid tend to be small, ranging from as small as 50 W up to

10 kW. For isolated grid applications, the turbines are typically larger, ranging from about 10 to 200 kW. Wind turbines are mounted on a tower to harness the most energy. At 30 meters or more aboveground, they can capture the faster and less turbulent wind in an urban environment. Turbines harness the wind's energy with their propeller-like blades. In most of the cases, two or three blades are mounted on a shaft to form a rotor.

There are two types of wind turbines that can be used for buildings:

- Mast mounted which are free standing and located near the building that will be consuming the generated electricity.
- Roof Mounted which can be installed on house roofs and other buildings.

Planning Issues

Planning issues such as visual impact, noise and conservation issues also have to be considered. System installation normally requires permission from the local authority.

Cost & Maintenance

 Roof mounted turbines cost from £3000. The amount of energy and carbon that roof top micro wind turbines save depends on size, location, wind speed, nearby buildings and the local landscape. At the moment there is not enough data from existing wind turbine installations to provide a figure of how much energy and CO₂ could typically be saved. The Energy saving trust

is monitoring up to 100 installations nationwide which will give ball park figures of carbon savings.

- Mast Mounted turbines in the region of 2.5kW to 6kW would cost approximately £11000-£19000. These costs are inclusive of the turbine, mast, inverters, battery storage and installation cost. It should be noted that these costs vary depending on location, size and type of system to be installed.
- Turbines have an operational lifetime of up to 22.5 years but require service checks every few years to ensure efficient operation. For battery storage systems, typical battery life is around 6-10 years, depending on the type, so batteries may have to be replaced at some point in the system's life.

Available Grants

The Feed - In – Tariffs have been introduced in order to give an incentive for wind generated electricity. The Feed-In-Tariffs scheme is based on the principle that the energy supplier pays generation tariff for every kWh the wind system generates and an export tariff for every kWh of electricity supplied back to the national grid.

- Generation Tariff: 28.0 36.20 pence/kWh depending on installed rated output (up to 15KW)
- Export Tariff: 3.10pence/kWh
- Tariff period duration is 20 years

11.2.1.4. Small Scale Hydro

Description of Small scale Hydro System

Small hydro systems convert the potential and kinetic energy of moving water into electricity, by using a turbine that drives a generator. As water moves from a higher to lower elevation, such as in rivers and waterfalls, it carries energy with it; this energy can be harnessed by small hydro systems. Used for over one hundred years, small hydro systems are a reliable and well-

understood technology that can be used to provide power to a central grid, an isolated grid or an offgrid load, and may be either run-of-river systems or include a water storage reservoir.

In a residential small scale hydro system the constant flow of water is critical to the success of the project. The energy available from a hydro turbine is proportional to the flow rate of the water and the head height. Since the majority of the cost of a small hydro project stems from up front expenses in construction and equipment purchase, a hydro project can generate large quantities of electricity with very low operating costs and modest maintenance expenditures for 50 years or longer.

Advantages

For houses with no mains connection but with access to a micro hydro site, a good hydro system can generate a steady, more reliable electricity supply than other renewable technologies at lower cost.

smarta100

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG T: 0845 0091625 Registered Company No. 06408056 E: mail@syntegra-epc.co.uk VAT Registration No. 980016044

Total system costs can be high but often less than the cost of a grid connection and with no electricity bills to follow.

Cost & Maintenance

Small hydro schemes are very site specific and are related to energy output. For low heat systems, costs may lie in the region of £4,000 per kW installed up to about 10kW and would drop per kW for larger schemes.

For medium heads, there is a fixed cost of about £10,000 and about £2,500 per kW up to around 10kW – so a typical 5kW domestic scheme might cost £20-£25,000.

Unit costs drop for larger schemes. Maintenance costs vary but small scale hydro systems are very reliable.

Available Grants

The Feed - In – Tariffs have been introduced in order to give an incentive for hydroelectric generated electricity. The Feed-In-Tariffs scheme is based on the principle that the energy supplier pays generation tariff for every kWh the hydroelectric system generates and an export tariff for every kWh of electricity supplied back to the national grid.

- Generation Tariff: 20.90 pence/kWh depending on installed rated output (up to 15KW)
- Export Tariff: 3.10pence/kWh
- Tariff period duration is 20 years

11.2.1.5. Biomass Heating

Description of Biomass Heating System

Biomass heating systems also known as biomass boilers burn organic matter—such as wood chips, agricultural residues or municipal waste to generate heat for buildings. They are highly efficient heating systems, achieving near complete combustion of the biomass fuel through control of the fuel and air supply, and often incorporating automatic fuel handling transport systems. Biomass boilers consist of a boiler, a heat distribution system, and a fuel transportation system. The biomass

heating system typically makes use of multiple heat sources, including a waste heat recovery system, a biomass combustion system, a peak load boiler, and a back-up boiler. The heat distribution system conveys hot water or steam from the heating plant to the loads that may be located within the same building as the heating plant, as in a system for a single institutional or industrial building, or, in the case of a "district heating" system, clusters of buildings located in the vicinity of the heating plant.

smarta100

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG18LG T: 0845 0091625 Registered Company No. 06408056 E: mail@syntegra-epc.co.uk VAT Registration No. 980016044

Biomass heating systems have higher capital costs than conventional boilers and need diligent operators. Balancing this, they can supply large quantities of heat on demand with very low fuel costs, depending on the origin of the fuel.

Best Design Practice

It's important to have storage space for the fuel and appropriate access to the boiler for loading the fuel. A local fuel supplier should be present in order to make the scheme viable.

The vent material must be specifically designed for wood appliances and there must be sufficient air movement for proper operation of the stove. Chimneys can be fitted with a lined flue.

A Biomass heating system installation should comply with all safety and building regulations. Wood can only be burned in exempted appliances, under the Clean Air Act.

Advantages

Producing energy from Biomass has both environmental and economic advantages. Although Biomass produces CO_2 it only releases the same amount that is absorbed whilst growing, which is why it is considered to be carbon neutral. Furthermore, Biomass can contribute to waste management by harnessing energy from products that are often disposed at landfill sites.

It is most cost effective and sustainable when a local fuel source is used, which results in local investment and employment, which in addition minimizes transport emissions.

Planning Issues

If the building is listed or is in an area of outstanding natural beauty, then it is required that the Local Authority Planning department is notified before a flue is fitted.

Cost & Maintenance

Stand alone room heaters cost £2,000 to £4,000. Savings will depend on how much they are used and which fuel you are replacing. A Biomass stove which provides a detached home with 10% of annual space heating requirements could save around 840kg of CO₂ when installed in an electrically heated home. Due to the higher cost of Biomass pellets compared with other heating fuels, and the relatively low efficiency of the stove compared to a central heating system it will cost more to run.

The cost of Biomass boilers varies depending on the system choice; a typical 15kW pellet boiler would cost about £5,000-£14,000 installed, including the cost of the flue and commissioning process. A manual log feed system of the same size would be slightly cheaper. A wood pellet boiler could save around £750 a year in energy bills and around 6 tons of CO_2 per year when installed in an electrically heated home.

smarta100

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG T: 08 Registered Company No. 06408056

T: 0845 0091625

In terms of biomass fuel costs, they generally depend on the distance between the dwelling and the supplier and whether large quantities can be bought.

Available Grants

In March 2011, the UK Government announced the details of their Renewable Heat Incentive (RHI). RHI is designed to provide financial support that encourages individuals, communities and businesses to switch from using fossil fuel for heating, to renewables such as wood fuel.

The RHI is in two phases:

Phase 1 (available from July 2011) - "RHI Premium Payment"

This is called the "RHI Premium Payment" and will be worth around £15m and available to 25,000 householders in Great Britain who install from July 2011.

The exact amounts available to consumers have yet to be confirmed. However the Department of Energy and Climate Change (DECC) have announced that the following amounts may be available:

* Biomass boilers - £950/unit (available only to off-gas installations)

These are one off payments; so not annual. DECC plan to publish details of the "Phase 2 RHI Payment" and how this will apply next year. Recipients of this payment will need to ensure that:

- * They have a well-insulated property based on its energy performance certificate;
- * They agree to give feedback on how the equipment performs.

Phase 2 (available from October 2012) - RHI tariffs

People in receipt of the Renewable Heat Premium Payments will be able to receive long term RHI tariff support once these tariffs are introduced, as will anybody who has installed an eligible technology since 15th July 2009.

These tariff payments will start alongside the Green Deal from October 2012 to allow a more wholehouse approach to heat production and energy saving.

smarta100

11.2.1.6. Low Carbon Technologies

In this section the low carbon technologies are described.

- Air Source Heat Pumps
- Ground Source Heat Pumps (GSHP)
- Combined Heat and Power (CHP)

- Micro CHP
- Fuel Cells

11.2.1.7. Air Source Heat Pumps (ASHP) Description of Air Source Heat Pumps

Air source heat pumps work in a very similar way to fridges and air conditioners and absorb heat from the air. They are ideally suited to work with under floor heating systems because of the lower

design temperatures of under floor systems. The lower the water temperature, the higher the COP. Air source heat pumps use air. They are fitted outside a house; generally perform better at slightly warmer air temperatures. The seasonal efficiencies of air source heat pumps are between 200% - 400%. Heat pumps can operate at outside temperatures down to -15 degC, although there is a drop in COP.

Advantages

- A reduction in carbon emission.
- No boiler flues and danger of carbon monoxide leakage.
- Maintenance is carried outside the premises.
- No annual boiler servicing and safety checks.
- Heat pump life expectancy about 25 years compared to a boiler of 15 years

Costs & Savings

Operating Cost Savings around 15% in comparison with a typical gas fired condensing boiler installation with HWS cylinder and an electrically driven Community air to water heat pump.

Available Grants

In March 2011, the UK Government announced the details of their Renewable Heat Incentive (RHI).

RHI is designed to provide financial support that encourages individuals, communities and businesses to switch from using fossil fuel for heating, to renewables such as wood fuel.

The RHI is in two phases:

Phase 1 (available from July 2011) - "RHI Premium Payment"

This is called the "RHI Premium Payment" and will be worth around £15m and available to 25,000 householders in Great Britain who install from July 2011.

smarta100

The exact amounts available to consumers are confirmed:

* Air Source Heat Pumps - £850/unit (available only for off-gas installations)

E: mail@syntegra-epc.co.uk VAT Registration No. 980016044

These are one off payments; so not annual. DECC plan to publish details of the "Phase 2 RHI Payment" and how this will apply next year. Recipients of this payment will need to ensure that:

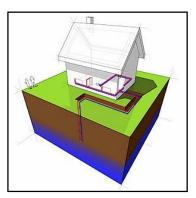
- * They have a well-insulated property based on its energy performance certificate;
- * They agree to give feedback on how the equipment performs.

Phase 2 (available from October 2012) - RHI tariffs

People in receipt of the Renewable Heat Premium Payments will be able to receive long term RHI tariff support once these tariffs are introduced, as will anybody who has installed an eligible technology since 15th July 2009.

Whilst Air source heat pumps will be eligible for the Renewable Premium Payment, a decision on whether or not they'll be included in the tariff payments will be based upon consumer feedback on the performance of the technologies. This should be clarified towards the end of 2011.

These tariff payments will start alongside the Green Deal from October 2012 to allow a more wholehouse approach to heat production and energy saving.


11.2.1.8. Ground Source Heat Pumps (GSHP) Description of Ground Source Heat Pumps

Ground-source heat pumps provide low temperature heat by extracting it from the ground or a body of water and provide cooling by reversing this process. Their principal application is space heating and cooling, though many also supply domestic hot water. They can even be used to maintain the integrity of building foundations in permafrost conditions, by keeping them frozen through the summer.

A ground-source heat pump (GSHP) system has three major components: the earth connection, a heat pump, and the heating or cooling distribution system. The earth connection is where heat transfer occurs. One common type of earth connection comprises tubing buried in horizontal trenches or vertical boreholes, or alternatively, submerged in a lake or pond. An antifreeze mixture, water or another heat-transfer fluid is circulated from the heat pump, through the tubing, and back to the heat pump in a "closed loop." "Open loop" earth connections draw water from a well or a body of water, transfer heat to or from the water, and then return it to the ground or the body of water.

smarta100

Since the energy extracted from the ground exceeds the energy used to run the heat pump, GSHP "efficiencies" can exceed 100%, and routinely average 200 to 500% over a season. Due to the stable, moderate temperature of the ground, GSHP systems are more efficient than air-source heat pumps, which exchange heat with the outside air. GSHP systems are also more efficient than conventional heating and Air-conditioning technologies, and typically have lower maintenance costs. They require less space, especially when a liquid building loop replaces voluminous air ducts, and, since the tubing is located underground, are not prone to vandalism like conventional

haus GREE

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG T: 0845 0091625 Registered Company No. 06408056 E: mail@syntegra-epc.co.uk VAT Registration No. 980016044

rooftop units. Peak electricity consumption during cooling season is lower than with conventional airconditioning, so utility demand charges may be reduced. Heat pumps typically range in cooling capacity from 3.5 to 35 kW (1 to 20 tons of Cooling). A single unit in this range is sufficient for a house or small Commercial units Building. The heat pump usually generates hot or cold air to be distributed locally by conventional ducts.

Advantages

The efficiency of GSHP system is measured by the coefficient of performance (COP). This is the ratio of units of heat output for each unit of electricity used to drive the compressor and pump for the ground loop. Average COP known as seasonal efficiency, is around 3-4 although some systems may produce a greater rate of efficiency. This means that for every unit of electricity used to pump the heat, 3-4 units of heat are produced, making it an efficient way of heating a building. If grid electricity is used for the compressor and pump, then a range of energy suppliers should be consulted in order to benefit from the lower running costs.

Cost & Savings

A typical 8-12kW system costs $\pm 6,000 \pm 12,000$ (not including the price of distribution system). This can vary with property and location. When installed in an electrically heated home a GSHP could save as much as ± 900 a year on heating bills and almost 7 tonnes of CO₂ a year. Savings will vary depending on what fuel is being replaced.

Available Grants

In March 2011, the UK Government announced the details of their Renewable Heat Incentive (RHI). RHI is designed to provide financial support that encourages individuals, communities and businesses to switch from using fossil fuel for heating, to renewables such as wood fuel.

There will be two phases for domestic customers:

Phase 1 (available from July 2011) - "RHI Premium Payment"

This is called the "RHI Premium Payment" and will be worth around £15m and available to 25,000 householders in Great Britain who install from July 2011.

The exact amounts available to consumers are confirmed:

*Ground Source Heat Pumps - £1,250/unit (available for off-gas installations only)

These are one off payments; so not annual. DECC plan to publish details of the "Phase 2 RHI Payment" and how this will apply next year. Recipients of this payment will need to ensure that:

smarta100

- * They have a well-insulated property based on its energy performance certificate;
- * They agree to give feedback on how the equipment performs.

Phase 2 (available from October 2012) - RHI tariffs

People in receipt of the Renewable Heat Premium Payments will be able to receive long term RHI tariff support once these tariffs are introduced, as will anybody who has installed an eligible technology since 15th July 2009.

These tariff payments will start alongside the Green Deal from October 2012 to allow a more wholehouse approach to heat production and energy saving

11.2.1.9. Combined Heat and Power (CHP) & Micro CHP Description of CHP

The principle behind combined heat and power (cogeneration) is to recover the waste heat generated by the combustion of a fuel6 in an electricity generation system. This heat is often rejected to the environment, thereby wasting a significant portion of the energy available in the fuel that can otherwise be used for space heating and cooling, water heating, and industrial process heat and cooling loads in the vicinity of the plant. This cogeneration of

electricity and heat greatly increases the overall efficiency of the system, anywhere from 25-55% to 60-90% depending on the equipment used, and the application.

A CHP installation comprises four subsystems: the power plant, the heat recovery and distribution system, an optional system for satisfying heating and/or cooling loads and a control system. A wide range of equipment can be used in the power plant, with the sole restriction being that the power equipment rejects heat at a temperature high enough to be useful for the thermal loads at hand. In a CHP system, heat may be recovered and distributed as hot water, conveyed from the plant to low temperature thermal loads in pipes for domestic hot water, or for space heating.

Advantages

CHP can significantly reduce primary energy consumption, and can therefore have a major impact on CO2 emissions associated with the combustion of fossil fuels in conventional boilers. Each 1 kW of electrical capacity provided by CHP plant using fossil fuels has the potential to reduce annual CO2 emissions by around 0.6 tonnes compared to gas-fired boilers and fully grid-derived electricity. For plant which is fuelled by renewable energy sources the potential is much greater.

Costs & Savings

Capital costs for CHP installations are higher than for alternative systems, but this can be recovered over a relatively short period of time (typically 5–10 years) for installations where there is a demand for heat and power for 4500 hours or more each year. The cost effectiveness is very sensitive to the relative price of electricity and fossil fuel which have been subject to frequent variations since deregulation of the energy supply industries.

smarta100

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG T: 0845 0091625 Registered Company No. 06408056 E: mail@syntegra-epc.co.uk VAT Registration No. 980016044

Micro CHP

Micro CHP (Combined Heat & Power) is the simultaneous production of useful heat and power within the home. It works very much like the gas boiler in a central heating system and heats the home in just the same way. However, at the same time it generates electricity, some of which will be used in the dwelling and the remainder will be exported to the electricity grid. Effectively the micro CHP unit replaces the gas central heating boiler and provides heat and hot water as usual, but additionally provides the majority of the home's electricity needs. Although individual units produce, by definition, relatively small amounts of

electricity, the significance of micro CHP lies in the potentially huge numbers of systems which may ultimately be installed in the millions of homes in the UK where natural gas is currently the dominant heating fuel.

Available Grants

The Feed - In – Tariffs have been introduced in order to give an incentive for micro CHP generated electricity. The Feed-In-Tariffs scheme is based on the principle that the energy supplier pays generation tariff for every kWh the micro CHP system generates and an export tariff for every kWh of electricity supplied back to the national grid.

- Generation Tariff: 10.50 pence/kWh depending on installed rated output (up to 2KW)
- Export Tariff: 3.10pence/kWh
- Tariff period duration is 10 years

11.2.1.10. Fuel Cells

Description of Fuel Cells

A fuel cell is a device that generates more electricity by a chemical reaction. Every fuel cell has two electrodes, one positive and one negative, called, respectively, the anode and cathode. The reactions that produce electricity take place at the electrodes.

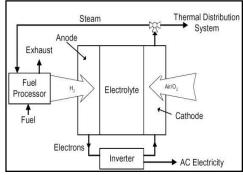
Every fuel cell also has an electrolyte, which carries electrically charged particles from one electrode to the other, and a catalyst, which speeds the reactions at the electrodes. Hydrogen is the basic fuel, but fuel cells also require oxygen.

One great appeal of fuel cells is that they generate electricity with very little pollution—much of the hydrogen and oxygen used in generating electricity ultimately combine to form a harmless by product, namely water.

smarta100

Fuel Cell Operation

The purpose of a fuel cell is to produce an electrical current that can be directed outside the cell to do work, such as powering an electric motor or illuminating a light bulb or a city. Because of the way electricity behaves, this current returns to the fuel cell, completing an electrical circuit. The chemical reactions that produce this current are the key to how a fuel cell works.


There are several kinds of fuel cells, and each operates a bit differently. But in general terms, hydrogen atoms enter a fuel cell at the anode where a chemical reaction strips them of their electrons. The hydrogen atoms are now "ionized," and carry a positive electrical charge. The negatively charged electrons provide the current through wires to do work. If alternating current (AC) is needed, the DC output of the fuel cell must be routed through a conversion device called an inverter.

Advantages

Even better, since fuel cells create electricity chemically, rather than by combustion, they are not subject to the thermodynamic laws that limit a conventional power plant. Therefore, fuel cells are more efficient in extracting energy from a fuel. Waste heat from some cells can also be harnessed, boosting system efficiency still further.

Fuel Cells with Hydrogen from Renewable Sources

Fuel cells can be used as CHP systems in buildings. There are currently several different systems under development using different chemical processes, which operate at different temperatures. They currently use natural gas as the fuel, which is reformed to produce hydrogen, the required fuel for the fuel cell. When and if hydrogen becomes available from renewable energy, fuel cell CHP from renewable sources may be possible in buildings.

11.2.1.11. Be Green – Renewable Technology

In this section the viable renewable energy technologies that will reduce the development's CO_2 emissions further by 20% are examined. Incorporating green design measures will significantly reduce the onsite energy consumption and the CO^2 emissions of the building. The 'London Plan' states that a further CO^2 reduction of 20% must be achieved by the installation of renewable technologies. Below is a review of possible renewable technologies for incorporation in the proposed development.

All of the LZC technologies are assessed against a number of criteria. Hence, LZC technology feasibility will be assessed according to the following criteria:

I. Renewable energy resource or fuel availability of the LZC technology on the site.

smarta100

- II. Space limitations due to building design and urban location of the site.
- III. Capital, operating and maintenance cost.
- IV. Planning Permission

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG T: 0845 0091625 Registered Company No. 06408056

vhaus GREE

V. Implementation with regards the overall M&E design strategy for building type

The **<u>ADDITIONAL</u>** renewable/LZC technologies which were found non feasible based on the above criteria are the following:

- Wind Turbines
- Biomass Boilers
- Micro CHP
- Hydrogen Fuel Cells
- Small Scale Hydro Power
- Grd. Source Heat Pump (GSHP)

Wind Turbines

Wind turbines are not feasible for the development since it does not meet the criteria mentioned above. Since the development is located in a dense residential and commercial units area; the wind resource may be restricted due to the adjacent large trees and air turbulence generated between them. The yearly average wind speed is quite low at 10 meters above ground.

smarta100

4.9	5.3	5.6
4.8	4.8	5
4.9	4.8	4.9

Wind speed at 25m above ground level (m/s)

5.7	6	6.3
5.6	5.6	5.8
5.7	5.6	5.7

 Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG
 T: 0845 0091625

 Registered Company No. 06408056
 T: 0845 0091625

haus GREEN

Wind speed at 45m above ground level (m/s)

6.2	6.5	6.7
6.1	6.2	6.3
6.1	6.1	6.2

Squares surrounding the central square correspond to wind speeds for surrounding grid squares.

What does this mean?

Power generated is related to wind-speed by a cubic ratio. That means if you halve the wind-speed, the power goes down by a factor of 8 (which is $2 \times 2 \times 2$). A quarter of the wind-speed gives you a 64^{th} of the power ($4 \times 4 \times 4$).

As a rough guide, if your turbine is rated at producing 1KW at 12m/s then it will produce 125W at 6m/s and 15W at 3m/s

Please Note! Bear in mind that the NOABL wind-speed dataset used here is a model of wind-speeds across the country, assuming **completely flat terrain**. It isn't a database of measured wind-speeds. Other factors such as hills, houses, trees and other obstructions in your vicinity need to be considered as well as they can have a significant effect.

An actual wind-speed measurement using an anemometer has not been used for the purpose of this energy strategy report.

The central square highlighted in yellow demonstrates the average wind speed in m/s for the site. Squares surrounding the central square correspond to wind speeds for surrounding grid squares. From the above table it is shown that the average wind speed on the development according to **NOABL database was estimated at 4.8m/s at 10m high above ground and 5.6m/s at 25m above ground.**

Wind turbine(s) have been discounted for this development scheme for the following reasons:

smarta100

- A large mast horizontal axis wind turbine will not be able to generate electricity at optimal operating range since it requires higher average wind speeds. Furthermore, the installation of small scale wind turbines won't be feasible due to low average wind speed at 10 meters height, 25m & 45metre heights.
- Due to the close proximity of neighboring Commercial units & residential properties and trees.
- In addition, the low frequency noise generated by wind turbines might cause inconvenience to the neighboring residents. However, the level a person can be affected by low frequency noise varies from individual to individual.
- Due to the size and the required height of a potential wind turbine scheme there is also an issue with the propellers' impacting bird traffic, obtrusiveness, shadow flicker which means that generally large wind turbines need to be located at least 300m from any residential properties, which would not be possible on this site.
- Roof mounted units are limited in size due to wind induced stresses which are transmitted to the building structure. Most roof mounted turbines currently on the market are approximately 2m diameter and capable of producing 1-1.5kW each. However, the output is dependent on the surrounding obstructions and local wind speed. Thus small scale wind turbines would not make any meaningful impact on a site such as this.
- There are likely to be planning issues associated with wind turbines of a size necessary to affect any significant CO2 savings or energy savings.
- Because of the above the investment case with regards this technology solution is not viable compared to other solutions with a more attractive ROI.
- Finally, the installation of wind turbines on the development requires planning permission (and is likely to instigate neighborhood committee interest regarding its aesthetics and acoustic issues).

Biomass Boilers

Biomass boilers should not be considered for this project due to the following reasons:

• Furthermore, in common with other types of combustion appliances, biomass boilers are potentially a source of air pollution. Pollutants associated with biomass combustion include particulate matter (PM₁₀/ PM_{2.5}) and nitrogen oxides (NO_x) EMISSIONS. These pollution emissions can have an impact on local air quality and affect human health. Biomass has recently been rejected by many London Boroughs as means of obtaining the on-site renewable contribution (and this will soon send ripples out to other regions). This is because of their associated flue emissions (which can be significantly higher than gas fired boilers) and the difficulty of ensuring the boiler will operate at its optimum efficiency, which is often quoted by designers at the initial design stages. Biomass flue emissions are often difficult to control because the quality of fuel can vary significantly between suppliers. Given this a bio fuel system may not be acceptable to the Council on planning grounds (e.g. concerns about associated flue emissions/impact on local 'Air Quality', increase in road traffic from pellet delivery lorries).

smarta100

Syntegra Consulting Ltd, Syntegra House, 63 Milford Road, Reading, Berkshire, RG1 8LG T: 0845 0091625 Registered Company No. 06408056 E: mail@syntegra-epc.co.uk VAT Registration No. 980016044

- Biomass fuel requires more onerous and frequent wood fuel silo (site storage issues) replenishing by delivery trucks- which in turn can cause site transportation issues that will need to be considered and addressed along with the impact on the other residents and neighborhood infrastructure.
- Restrictions on the type of fuel and appliance may apply to the development and according to studies commissioned by DEFRA the levels of particles emitted by the burning of wood chip or waste would be considered to outweigh the benefits of carbon reduction especially in an urban environment such as the proposed development site.
- Dependent on a fuel supply chain contract being confirmed.
- There is no suitable location for the plant and storage of the pellets on site at present.
- The whole of London Borough of Hillington is in a smoke control zone.

Hydrogen Fuel Cells

No commercial units viable yet - As a result this solution will not be assessed any further. The BlueGen product is a ceramic fuel cell and has recently entered the UK market this year. Using ceramic fuel cells, BlueGen[®] electrochemically converts natural gas into electricity at up to 60 per cent electrical efficiency. Electricity is consumed locally, with unused power being exported to the grid. When the integrated heat recovery system is connected, the waste heat from BlueGen can be used to produce hot water - which improves the total efficiency to approximately 85 per cent.

Small Scale Hydro

Small scale hydro-electric will not be studied any further because of the location and the spatial limitations of the development. There is no river or lake within the development site boundaries. As a result this solution will not be assessed any further.

Ground Source Heat Pump (GSHP)

GSHP will not be studied any further for the following reasons:

- If an open loop configuration was to be adopted, a test borehole would be needed to assess the available resource. The test resource process is expensive and of course does not guarantee an acceptable resource in the ground. Additionally, a closed loop borehole configuration could not be used due to spatial limitations of the site.
- There are likely to be planning issues associated with borehole excavation and drilling.
- Running costs and maintenance may be minimal. However, installation is a costly affair. A GSHP solution would represent a relatively expensive option in comparison to other renewable technologies available.
- Additional electric immersion and pumps would be required to heat the GSHP water up to suitable temperature to be used around the building and it's likely a centralised plant area will also be required to house the circulation pumps.

smarta100

- This technology is not recommended due to the increased plant energy consumption requirements in turn impacting the DER/TER score for the required energy strategy objectives.
- Furthermore, boreholes also destabilize the ground surface and may be considered a minus for environmentally friendly endeavours.

CHP & Micro CHP

CHP has not been considered further for this project for the following reasons:

- The average maximum heating load of a new apartment (built to 2013 building regs) is approximately 3kW and therefore most individual heating systems with independent condensing gas boilers would be incapable of working at optimal efficiencies or achieving their stated SEDBUK rating due to boiler cycling.
- Traditional CHP should not be considered for this project due to the spatial constraints of the development plot and dwelling layouts. There is not suitable space in the development for CHP plant.
- Heat from the CHP plant could be utilized to drive an absorption chiller during the summer months (tri-generation), but due to the sustainable design of the building fabric, and the use of natural ventilation wherever possible, we anticipate that the cooling load will be minimal, making this a non-viable proposition.
- Micro-CHP is a relatively new concept (Baxi Ecogen was made available in 2009) and issues are raised in relation to unproven technology, inefficiency for shorter run cycles and lack of technical knowledge that can limit the practical application of micro CHP at present. In addition other issues surrounding the fact that around 50% of electricity generated in domestic properties is surplus, high installation costs and estimated low life expectancy has also been taken into consideration as to its commercial unit's un-viability for this development scheme. Micro-CHP also has a lower FIT tariff rate and period duration and is only applicable for systems under 2kW.

smarta 100

Code for Sustainable Homes TG November 2010 Addendum 2014 EN - Full Technical Guide Pre-Assessment Report

Syntegra House, 63 Milford Road, Reading, Berkshire RG1 8LG

Report Reference: Site Registration: Site Name: Assessor Number: Company: Assessor:

13-426 003939-140203-114-1157 42 Caversham Road STRO003939 Syntegra Consulting Ltd Alan King

Site Details

Site Name: Site Registration: Site Address: 42 Caversham Road 003939-140203-114-1157 Caversham Road

City/Town:	Londo
County:	Greate
Postcode:	NW5 2
No. of Dwellings:	18
No. of Dwelling Typ	es: 1
Planning Authority:	Camde
Funding Body:	

ondon ireater London W5 2DS 8

Camden Council

Assessor Details

Company:	Syntegra Consulting Ltd
Assessor Name:	Alan King
Cert Number:	STRO003939
Address:	Syntegra House
	63 Milford Road
	England
City/Town:	Reading
County:	Berkshire
Postcode:	RG1 8LG
Tel:	08450091625
Email:	alan@syntegra-epc.co.uk

Client Details

Company:	Dexbay Properties
Contact Name:	Dexbay Properties
Job Title:	Developer/ Client
Email:	
Tel:	
Address:	c/o 3d Linthorpe Road
City/Town:	London
County:	Greater London
Postcode:	N16 5RE

London Greater London

N16 5RE

Architect Details

City/Town:

County: Postcode:

Architect Details								
Company:	Norton Mayfields Architects							
Contact Name:	Kate Clear							
Job Title:	Architect							
Email:	kateclear@nortonmayfield.co.uk							
Tel:	0114 270 0014							
Address:	Spaceworks, Harland Works							
	John Street							
City/Town:								
County:	Sheffield							
Postcode:	S2 4QU							
Developer Details								
Company:	Dexbay Properties							
Contact Name:	Dexbay Properties							
Job Title:	Developer/ Client							
Email:								
Tel:								
Address:	c/o 3d Linthorpe Road							

Dwelling ID	Plot No.	Address	Social Unit
1	1	42 Caversham Road	No
2	2	42 Caversham Road	No
3	3	42 Caversham Road	No
4	4	42 Caversham Road	No
5	5	42 Caversham Road	No
6	6	42 Caversham Road	No
7	7	42 Caversham Road	No
8	8	42 Caversham Road	No
9	9	42 Caversham Road	No
10	10	42 Caversham Road	No
11	11	42 Caversham Road	No
12	12	42 Caversham Road	No
13	13	42 Caversham Road	No
14	14	42 Caversham Road	No
15	15	42 Caversham Road	No
16	16	42 Caversham Road	No
17	17	42 Caversham Road	No
18	18	42 Caversham Road	No

Development Summary & Ratings

Dwelling ID	Dwelling Type	Description	Level	Score
1	Pre-assessment		4	72.71
2	Pre-assessment		4	72.71
3	Pre-assessment		4	72.71
4	Pre-assessment		4	72.71
5	Pre-assessment		4	72.71
6	Pre-assessment		4	72.71
7	Pre-assessment		4	72.71
8	Pre-assessment		4	72.71
9	Pre-assessment		4	72.71
10	Pre-assessment		4	72.71
11	Pre-assessment		4	72.71
12	Pre-assessment		4	72.71
13	Pre-assessment		4	72.71
14	Pre-assessment		4	72.71
15	Pre-assessment		4	72.71
16	Pre-assessment		4	72.71
17	Pre-assessment		4	72.71
18	Pre-assessment		4	72.71

Deviations from Standard

No deviations from standard

Code for Sustainable Homes Pre-Assessment Report (Report Reference: 13-426)

						Sc	0	re	S	Sh	ee	et	fo	r.	42	2 (Ca	Ve	ers	sh	ar	n	R	08	ad									
			ENI	Ξ				W	AT	Ν	/IAT	Γ	รเ	JR	V	VA	S	P	DL		HE	ΕA			MA	٩N			1	ECO	C		Sum	mary
Dwelling ID	1 2 3	4	5	6	7	8	9	1	2	1	2	3	1	2	1	2	3	1	2	1	2	3	4	1	2	3	4	1	2	3	4	5		Level
1	3.6 3.1 2	1	2	2	2	2	1	3	1	10	3	1	0	2	4	2	1	1	3	3	3	1	4	3	1	2	2	1	1	1	2	2	72.71	4
2	3.6 3.1 2	1	2	2	2	2	1	3	1	10	3	1	0	2	4	2	1	1	3	3	3	1	4	3	1	2	2	1	1	1	2	2	72.71	4
3	3.6 3.1 2	1	2	2	2	2	1	3	1	10	3	1	0	2	4	2	1	1	3	3	3	1	4	3	1	2	2	1	1	1	2	2	72.71	4
4	3.6 3.1 2	1	2	2	2	2	1	3	1	10	3	1	0	2	4	2	1	1	3	3	3	1	4	3	1	2	2	1	1	1	2	2	72.71	4
5	3.6 3.1 2	1	2	2	2	2	1	3	1	10	3	1	0	2	4	2	1	1	3	3	3	1	4	3	1	2	2	1	1	1	2	2	72.71	4
6	3.6 3.1 2	1	2	2	2	2	1	3	1	10	3	1	0	2	4	2	1	1	3	3	3	1	4	3	1	2	2	1	1	1	2	2	72.71	4
7	3.6 3.1 2	1	2	2	2	2	1	3	1	10	3	1	0	2	4	2	1	1	3	3	3	1	4	3	1	2	2	1	1	1	2	2	72.71	4
8	3.6 3.1 2	1	2	2	2	2	1	3	1	10	3	1	0	2	4	2	1	1	3	3	3	1	4	3	1	2	2	1	1	1	2	2	72.71	4
9	3.6 3.1 2	1	2	2	2	2	1	3	1	10	3	1	0	2	4	2	1	1	3	3	3	1	4	3	1	2	2	1	1	1	2	2	72.71	4
10	3.6 3.1 2	1	2	2	2	2	1	3	1	10	3	1	0	2	4	2	1	1	3	3	3	1	4	3	1	2	2	1	1	1	2	2	72.71	4
11	3.6 3.1 2	1	2	2	2	2	1	3	1	10	3	1	0	2	4	2	1	1	3	3	3	1	4	3	1	2	2	1	1	1	2	2	72.71	4
12	3.6 3.1 2	1	2	2	2	2	1	3	1	10	3	1	0	2	4	2	1	1	3	3	3	1	4	3	1	2	2	1	1	1	2	2	72.71	4
13	3.6 3.1 2	1	2	2	2	2	1	3	1	10	3	1	0	2	4	2	1	1	3	3	3	1	4	3	1	2	2	1	1	1	2	2	72.71	4
14	3.6 3.1 2	1	2	2	2	2	1	3	1	10	3	1	0	2	4	2	1	1	3	3	3	1	4	3	1	2	2	1	1	1	2	2	72.71	4
15	3.6 3.1 2	1	2	2	2	2	1	3	1	10	3	1	0	2	4	2	1	1	3	3	3	1	4	3	1	2	2	1	1	1	2	2	72.71	4
16	3.6 3.1 2	1	2	2	2	2	1	3	1	10	3	1	0	2	4	2	1	1	3	3	3	1	4	3	1	2	2	1	1	1	2	2	72.71	4
17	3.6 3.1 2	1	2	2	2	2	1	3	1	10	3	1	0	2	4	2	1	1	3	3	3	1	4	3	1	2	2	1	1	1	2	2	72.71	4
18	3.6 3.1 2	1	2	2	2	2	1	3	1	10	3	1	0	2	4	2	1	1	3	3	3	1	4	3	1	2	2	1	1	1	2	2	72.71	4

Summary Score Sheet Dwelling Type: Pre-assessment

Dwelling IDs: 1 to 18

			Score As	sessment			
	Credit Score	Credits Available	Sub Total	Credits Available	%	Weighting Factor	Points Score
Energy & CO2 Emissions	000.0	- Trailable		, wanabie			000.0
ENE 1 Dwelling Emission Rate	3.6	10	18.7	31	60.32	36.4	21.96
ENE 2 Fabric Energy Efficiency	3.1	9					
ENE 3 Energy Display Device	2	2					
ENE 4 Drying Space	1	1					
ENE 5 Energy Labelled White Goods	2	2					
ENE 6 External Lighting	2	2					
ENE 7 Low or Zero Carbon Energy Technologies	2	2					
ENE 8 Cycle Storage	2	2					
ENE 9 Home Office	1	1					
Water			I				
WAT 1 Internal Water Use	3	5	4	6	66.67	9	6
WAT 2 External Water Use	1	1					
Vaterials		•					
MAT 1 Environmental Impact of Materials	10	15	14	24	58.33	7.2	4.2
MAT 2 Responsible Sourcing (Basic Building Elements)	3	6	14	24	50.55	1.2	4.2
MAT 2 Responsible Sourcing (Finishing Elements)	1	3					
	I I	3					
Surface Water Run-off	-		_				
SUR 1 Management of Surface Water Run-Off from Site	0	2	2	4	50	2.2	1.1
SUR 2 Flood Risk	2	2					
Waste							
WAS 1 Household Waste Storage and Recycling Facilities	4	4	7	8	87.5	6.4	5.6
WAS 2 Construction Site Waste Management	2	3					
WAS 3 Composting	1	1					
Pollution			I				
POL 1 Global Warming Potential of Insulants	1	1	4	4	100	2.8	2.8
POL 2 NOx Emissions	3	3					
Health & Wellbeing							
HEA 1 Daylighting	3	3	11	12	91.67	14	12.83
HEA 2 Sound Insulation	3	4					
HEA 3 Private Space	1	1					
HEA 4 Lifetime Homes	4	4					
Management							
MAN 1 Home User Guide	3	3	8	9	88.89	10	8.89
MAN 2 Considerate Constructors Scheme	1	2	-				
MAN 3 Construction Site Impacts	2	2					
MAN 4 Security	2	2					
Ecology			l				
ECOIDgy ECO 1 Ecological Value of Site	1	1	7	9	77.78	12	9.33
ECO 1 Ecological Value of Site ECO 2 Ecological Enhancement	1			7	11.10	١Z	7.33
ECO 2 Ecological Enhancement ECO 3 Protection of Ecological Features	1	1 1					
ECO 4 Change of Ecological Value of Site	2	4					
ECO 5 Building Footprint	2	2					
	Le	vel	Тс	tal Poin	its Sco	red: 72.7	1
	Achio	ved: 4	i C		1.3 300	IGU. 72.7	1

Evidence for ENE 1 (Dwelling Emission Rate) - Pre-assessment

Improvement above Part L Building Regulations 2010. 3.6 credits allocated

SAPs have been completed using the accredited software (Stroma FSAP 2012) which confirm that through the following measures, this development shows an improvement of 19.93% better than Part L 2013 and therefore the minimum requirement to achieve Level 4 for this credit can be targeted at this stage:

- efficienct design

- efficient boilers for heating and domestic hot water

- roof top photovoltaic panels this development

Assumptions for ENE 1

Evidence for ENE 2 (Fabric Energy Efficiency) - Pre-assessment

Mid Terrace

3.1 credits allocated

SAPs have been completed using the accredited software (Stroma FSAP 2012) which confirms that through effienct design the dwelling will achieve a Dwelling Fabric Energy Efficiency (DFEE) of 47.58 kW/sqm/yr.

Assumptions for ENE 2

Evidence for ENE 3 (Energy Display Device) - Pre-assessment

Correctly specified display device showing current primary heating fuel consumption data.

Correctly specified display device showing current consumption data.

It has been agreed by the design team that Energy display devices will be installed to display either electricity or primary heating (mains gas) consumed by the dwelling

Assumptions for ENE 3

Evidence for ENE 4 (Drying Space) - Pre-assessment

Compliant internal & external drying space

Some of the dwellings have external space available to them to install drying lines. Where suitable external space is not available, internal drying lines will be installed in an appropriate location that meets the credit criteria.

Assumptions for ENE 4

Evidence for ENE 5 (Energy Labelled White Goods) - Pre-assessment

A+ rated fridge & freezers or fridge/freezer

A rated washing machine and dishwasher, AND EITHER a tumble dryer (a washer-dryer would be an acceptable alternative to a standalone tumble dryer) with a B rating or where a tumble dryer is not provided, the EU Energy Efficiency Labelling Scheme Information will be provided.

The design team have commited to specifying highly energy rated white goods throughout this development.

- A+ rated fridges, freezers and/or both

A rated washing machines, dishwasher

- B rated tumble dryer or EU energy efficiency labelling scheme information will be provided where a tumble dryer is not provided

Assumptions for ENE 5

Evidence for ENE 6 (External Lighting) - Pre-assessment

Compliant space lighting Compliant security lighting

The design team have agreed to aim to specify compliant space lighting and security lighting where appropriate for the development.

Assumptions for ENE 6

Evidence for ENE 7 (Low or Zero Carbon Energy Technologies) - Pre-assessment

Contribution of low or zero carbon technologies greater than or equal to 15%

SAPs have been completed using the accredited software (Stroma FSAP 2012) which confirm that through the installation of No.36 photovoltaic panel (approx. 60 sqm of roofspace) an improvement of more than 15% contribution can be targeted at this stage.

Assumptions for ENE 7

Evidence for ENE 8 (Cycle Storage) - Pre-assessment

Studio or 1 bedroom dwelling - Storage for 1 cycle per dwelling

2 or 3 bedroom dwelling - Storage for 2 cycles per dwelling

The design team are to provide up to 34 cycle spaces for the development. The acommodation schedule shows that there are 13No. of 2 or 3 bedroom units and 5No. of 1 bedroom units, there are no 4 bedroom units, therefore a minimum of 31 spaces are required to meet the requirements for 2 credits to be targeted.

Assumptions for ENE 8

Evidence for ENE 9 (Home Office) - Pre-assessment

Compliant home office

The design team have agreed to aim to provide a suitable home office area for each dwelling of this development.

Assumptions for ENE 9

Evidence for WAT 1 (Internal Water Use) - Pre-assessment

Internal water use less than or equal to 105 litres per person per day

The design team have agreed to specify efficient and low flow/consumption fiittings for the following items where present in the assessed dwellings in order to meet the target of minimum of 105 litre/person/day:

- Basing taps
- kitchen taps
 Showers
- Baths
- washing machines/washer dryers
- dishwashers

Assumptions for WAT 1

Evidence for WAT 2 (External Water Use) - Pre-assessment

Compliant individual rainwater collection system

No individual garden space

13No. of dwellings have private gardens/terraces associated and will have a rainwater collection system included. 3No. of dwellings have juliette balconies and 1No. dwelling has no private space provided therefore this credit can be targeted for this development.

Assumptions for WAT 2

Evidence for MAT 1 (Environmental Impact of Materials) - Pre-assessment

Mandatory requirements met: At least 3 elements rated A+ to D, 10 credits scored

The design team have agreed to specify materials rating A+ - D in the Green Guide to Specification for at least 3 of the following elements of the building envelope:

- roof

- external walls
- internal walls (including seperating walls)
- upper and ground floors (including separating floors)

- Windows

Assumptions for MAT 1

Pre-Assessment Report (Report Reference: 13-426)

Evidence for MAT 2 (Responsible Sourcing (Basic Building Elements)) - Pre-assessment

3 credits scored

The design team have agreed to specify 80% of the following assessed materials be responsibly sourced, where feasible:

- frame
- ground floor
- upper floors (including seperate floors)
- roof
- external walls
- internal walls (including seperate walls)
 foundation/substructure (excluding sub-base materials)
- staircase

Additionally, 100% of timber will be leagally sourced.

Assumptions for MAT 2

Evidence for MAT 3 (Responsible Sourcing (Finishing Elements)) - Pre-assessment

1 credit scored

The design team have agreed to specify 80% of the following assessed materials be responsibly sourced, where feasible:

- staircase
- windows
- external & internal doors
- skirting - panelling
- furniture
- fascias
- any other significant use

Additionally, 100% of timber will be leagally sourced.

Assumptions for MAT 3

Evidence for SUR 1 (Management of Surface Water Run-Off from Site) - Pre-assessment

Mandatory Met: Peak rate of run-off and annual volume of run-off is no greater for the developed than for the pre-development. The system has also been designed for local drainage system failure.

Credits not sought, water quality criteria not met/sought.

A Flood Risk Assessment will be carried out for the proposed development post-planning submission. The team have confirmed that the mandatory requirements for this credit will be met.

Assumptions for SUR 1

Evidence for SUR 2 (Flood Risk) - Pre-assessment

Low flood risk - zone 1

Using the Environment Agency online Flood Map, it can be said at this stage that the site is of low flood risk. However, a Flood Risk Assessment will be carried out post planning.

Assumptions for SUR 2

Evidence for WAS 1 (Household Waste Storage and Recycling Facilities) - Pre-assessment

Mandatory requirements met: Adequate storage of household waste with accessibility in line with checklist WAS 1. Local authority collection: After collection sorting with appropriate internal storage of recyclable materials

It is assumed the mandatory criteria will be met for each dwelling household waste.

It has been assumed that there is a local authority recylcing collection scheme (at least fortnightly) where materials are sorted before collection in at least 3No. dedicated internal storage recylcing bin at least 7 litres each (30litres capaccity).

Assumptions for WAS 1

Evidence for WAS 2 (Construction Site Waste Management) - Pre-assessment

Compliant site waste management plan containing benchmarks, procedures and commitments for the minimizing and diverting 50% waste from landfill in line with the criteria and with Checklist WAS 2a, 2b & 2c

It has been assumed that the appointed contractor will have a code compliant SWMP and meet the code criteria for the following elements: minimising construction waste, diverting waste from landfill (by at least 50% of weight or volume of non-hazardous construction waste generated of the project being diverted from landfill).

Assumptions for WAS 2

Evidence for WAS 3 (Composting) - Pre-assessment

Communal/community composting service, with a management plan in place

Assumed a code compliant waste composting facility with a management plan in place will be provided.

Assumptions for WAS 3

Evidence for POL 1 (Global Warming Potential of Insulants) - Pre-assessment

All insulants have a GWP of less than 5

All insulants GWP or less.

Assumptions for POL 1

Evidence for POL 2 (NOx Emissions) - Pre-assessment

NOx emissions less than or equal to 40mg/kWh

It has been assumed that the gas boilers will emit less than or equal to 40mg/kWh NOx emissions.

Assumptions for POL 2

Evidence for HEA 1 (Daylighting) - Pre-assessment

Kitchen: Average daylight factor of at least 2% Living room: Average daylight factor of at least 1.5% Dining room: Average daylight factor of at least 1.5% Home office: Average daylight factor of at least 1.5%

All rooms (kitchen, living, dining and where applicable the home office) have 80% of the working plane with direct light from the sky

It is assumed that all kithcens, living/dining rooms, home office areas achieve a daylight factor of 1.5% and that all rooms (kitchen,living room, and home office) have 80% of the working plane in direct light from the sky.

Specialist reports required: Code compliant daylighting calculaitons report

Assumptions for HEA 1

Evidence for HEA 2 (Sound Insulation) - Pre-assessment

Robust details have been incorporated

Airborne 5dB higher, impact 5dB lower

The development are targeting 5dB for the proposed development and intend to carry out sound testing at construction completion.

Assumptions for HEA 2

Evidence for HEA 3 (Private Space) - Pre-assessment

Individual private space provided.

Individual private space has been provided to majority of the units, therefore this credit can be targeted.

Assumptions for HEA 3

Evidence for HEA 4 (Lifetime Homes) - Pre-assessment

All criteria of Lifetime Homes in line with all 16 principals of Lifetime Homes

Assumed lifetime homes criteria will be met.

Assumptions for HEA 4

Evidence for MAN 1 (Home User Guide) - Pre-assessment

All criteria inline with checklist MAN 1 Part 1 - Operational Issues will be met

All criteria inline with checklist MAN 1 Part 2 - Site and Surroundings will be met

It is assumed a code compliant Home User Guide will be produced and made available in the appropriate formats to residents. It is assumed that the Home User Guide meets the criteria for operational issues and site & surrounds.

Specialist report required: A code compliant Home User Guide will be required to be implemented.

Assumptions for MAN 1

Evidence for MAN 2 (Considerate Constructors Scheme) - Pre-assessment

Considerate constructors scheme: Best practise only, a score of between 25 - 34, and at least a score of 5 in each section*

Assumed the contractor will be onboard the considerate constructors scheme and score between 25-34 credits and at least 5 in each section.

Assumptions for MAN 2

Evidence for MAN 3 (Construction Site Impacts) - Pre-assessment

Monitor, report and set targets for CO2 production or energy use from site activities Monitor, report and set targets for water consumption from site activities Adopt best practise policies in respects to air (dust) pollution from site activities 80% of timer reclaimed, re-used or responsibly sourced

It is assumed that during site works the contractor will, as part of the live SWMP document, monitor/report/set targets for the following: Adopt best practise policies in respect to air (dust) pollution from site activites

80% of timber reclaimed, re-used or responsibly sourced

energy and water consumption targeted and monitored from site activities.

Assumptions for MAN 3

Evidence for MAN 4 (Security) - Pre-assessment

Secured by design section 2 compliant

It has been assumed that an ALO/CPDA from the local police force is consulted at the design stage and their reccomendations will be incorporated into the design of the development. Also that Section 2 of the Physical security from secured by design -new homes is complied with.

Assumptions for MAN 4

Evidence for ECO 1 (Ecological Value of Site) - Pre-assessment

Land of low ecological value, achieved through checklist ECO 1. Development site has been identified as low ecological value by a suitably qualified ecologist

It is assumed that an ecologist will be appointed and confirm that the land is of low ecological value.

Specialist report requried: Code ecology report

Assumptions for ECO 1

Evidence for ECO 2 (Ecological Enhancement) - Pre-assessment

Key recommendations and 30% additional recommendations by a suitably qualified ecologist

It is assumed that the client will undertake key recommendations outlined by the ecologist along with 30% of additonal recommendations.

Specialist report requried: Code ecology report

Assumptions for ECO 2

Evidence for ECO 3 (Protection of Ecological Features) - Pre-assessment

Ecological features will be adequately protected and maintained

It is assumed that an ecologist will be appointed and confirm that the land is of low ecological value/any ecological features will be protected and maintained during construction.

Specialist report requried: Code ecology report

Assumptions for ECO 3

Evidence for ECO 4 (Change of Ecological Value of Site) - Pre-assessment

Neutral: Greater than -3 and less than or equal to +3

It is assumed that an ecologist will be appointed and confirm that the land is of low ecological value/any ecological features will be protected and maintained during construction.

Specialist report requried: Code ecology report

Assumptions for ECO 4

Evidence for ECO 5 (Building Footprint) - Pre-assessment

Flats ratio of 4:1

The NIA for the development is 1426.2sqm The NIGFA for the development is 269.81sqm.

Therefore, the ratio or NIA:NIGFA for this development is 4.20:1 and 2 credits can be targeted at this stage

Assumptions for ECO 5

Assessor Declaration

I Alan King, can confirm that I have compiled this report to the best of my ability, I have based all findings on the information that is referenced within this report, and that this report is appropriate for the registered site.

To the best of my knowledge all the information contained within this report is correct and accurate. I have within my possession all the reference material that relates to this report, which is available for inspection by the client, the clients representative or Stroma Certification for Quality Assurance monitoring.

Signed:

Stallarly

Alan King Syntegra Consulting Ltd 12 May 2015

Information about Code for Sustainable Homes

The Code for Sustainable Homes (the Code) is an environmental assessment method for rating and certifying the performance of new homes. It is a national standard for use in the design and construction of new homes with a view to encouraging continuous improvement in sustainable home building. The Code is based on EcoHomes©.

It was launched in December 2006 with the publication of 'Code for Sustainable Homes: A stepchange in sustainable home building practice' (Communities and Local Government, 2006), and became operational in England from April 2007.

The Code for Sustainable Homes covers nine categories of sustainable design. Each category includes a number of environmental issues. Each issue is a source of impact on the environment which can be assessed against a performance target and awarded one or more credits. Performance targets are more demanding than the minimum standards needed to satisfy Building Regulations or other legislation. They represent good or best practice, are technically feasible, and can be delivered by the building industry. The issues and categories are as follows:

- Energy & CO2 Emissions
 - Dwelling Emission Rate
 - Building Fabric
 - Internal Lighting
 - Drying Space
 - Energy Labelled White Goods
 - External Lighting
 - Low or Zero Carbon Technologies
 - Cycle Storage
 - Home Office
- Water
 - Internal Water Use
 - External Water Use
- Materials
 - Environmental Impact of Materials
 - Responsible Sourcing of Materials Basic Building Elements
 - Responsible Sourcing of Materials Finishing Elements
- Surface Water Run-off
 - Management of Surface Water Run-off from the Development
 - Flood Risk
- Waste
 - Storage of Non-Recyclable Waste and Recyclable Household Waste
 - Construction Site Waste Management
 - Composting
- Pollution
 - Global Warming Potential of Insulants
 - NOx Emissions

- Health & Wellbeing
 - Daylighting
 - Sound Insulation
 - Private Space
 - Lifetime Homes
- Management
 - Home User Guide
 - Considerate Constructors Scheme
 - Construction Site Impacts
 - Security
- Ecology
 - Ecological Value of Site
 - Ecological Enhancement
 - $\circ~$ Protection of Ecological Features
 - Change in Ecological Value of Site
 - Building Footprint

The Code assigns one or more performance requirements (assessment criteria) to all of the above environmental issues. When each performance requirement is achieved a credit is awarded (with the exception of the four mandatory requirements which have no associated credits). The total number of credits available to a category is the sum of credits available for all the issues within it.

Mandatory minimum performance standards are set for some issues. For four of these, a single mandatory requirement is set which must be met, whatever Code level rating is sought. Credits are not awarded for these issues. Confirmation that the performance requirements are met for all four is a minimum entry requirement for achieving a level 1 rating. The four un-credited issues are:

- Environmental Impacts of Materials
- Management of Surface Water Run-off from Developments
- Storage of Non-Recyclable Waste and Recyclable Household Waste
- Construction Site Waste Management

If the mandatory minimum performance standard is met for the four un-credited issues, four further mandatory issues need to be considered. These are agreed to be such important issues that separate Government policies are being pursued to mitigate their effects. For two of these, credits are awarded for every level of achievement recognised within the Code, and minimum mandatory standards increase with increasing rating levels.

The two issues with increasing mandatory minimum standards are:

- Dwelling Emission Rate
- Indoor Water Use

For one issue a mandatory requirement at Level 5 or 6:

• Fabric Energy Efficiency

The final issue with a mandatory requirement for Level 6 of the Code is:

Lifetime Homes

Further credits are available on a free-choice or tradable basis from other issues so that the developer may choose how to add performance credits (converted through weighting to percentage points) achieve the rating which they are aiming for.

The environmental impact categories within the Code are not of equal importance. Their relative value is conveyed by applying a consensus-based environmental weighting factor (see details below) to the sum of all the raw credit scores in a category, resulting in a score expressed as percentage points. The points for each category add up to 100.

The weighting factors used in the Code have been derived from extensive studies involving a wide range of stakeholders who were asked to rank (in order of importance) a range of environmental impacts. Stakeholders included international experts and industry representatives.

It is also important to note that achieving a high performance in one category of environmental impact can sometimes result in a lower level of performance for another. For instance, if biomass is used to meet heating demands, credits will be available for performance in respect of energy supplied from a renewable source, but credits cannot be awarded for low NOX emission. It is therefore impossible to achieve a total percentage points score of 100.

The Code uses a rating system of one to six stars. A star is awarded for each level achieved. Where an assessment has taken place by where no rating is achieved, the certificate states that zero stars have been awarded:

Code Levels	Total Points Score (Equal to or Greater Than)
Level 1 ★☆☆☆☆	∴ 36 Points
Level 2 ★★☆☆☆	A 48 Points
Level 3 ★★★☆☆☆	57 Points
Level 4 ★★★☆☆	☆68 Points
	A 84 Points
	90 Points

Formal assessment of dwellings using the Code for Sustainable Homes may only be carried out using Certified assessors, who are qualified 'competent persons' for the purpose of carrying out Code assessments.

Energy & CO2 Emissions

ENE 1:Dwelling Emission Rate

Available Credits:10

Aim: To limit CO2 emissions arising from the operation of a dwelling and its services in line with current policy on the future direction of regulations.

ENE 2:Fabric Energy Efficiency

Available Credits:9

Aim: To improve fabric energy efficiency performance thus future-proofing reductions in CO2 for the life of the dwelling.

ENE 3:Energy Display Device

Available Credits:2

Aim:To promote the specification of equipment to display energy consumption data, thus empowering dwelling occupants to reduce energy use.

ENE 4:Drying Space

Available Credits:1

Aim: To promote a reduced energy means of drying clothes.

ENE 5: Energy Labelled White Goods

Available Credits:2

Aim: To promote the provision or purchase of energy efficient white goods, thus reducing the CO2 emissions from appliance use in the dwelling.

ENE 6:External Lighting

Available Credits:2

Aim: To promote the provision of energy efficient external lighting, thus reducing CO2 emissions associated with the dwelling.

ENE 7: Low or Zero Carbon Technologies

Available Credits:2

Aim: To limit CO2 emissions and running costs arising from the operation of a dwelling and its services by encouraging the specification of low and zero carbon energy sources to supply a significant proportion of energy demand.

ENE 8:Cycle Storage

Available Credits:2

Aim: To promote the wider use of bicycles as transport by providing adequate and secure cycle storage facilities, thus reducing the need for short car journeys and the associated CO2 emissions.

ENE 9:Home Office

Available Credits:1

Aim: To promote working from home by providing occupants with the necessary space and services thus reducing the need to commute.

Water

WAT 1:Indoor Water Use

Available Credits:5

Aim: To reduce the consumption of potable water in the home from all sources, including borehole well water, through the use of water efficient fittings, appliances and water recycling systems.

WAT 2: External Water Use

Available Credits:1

Aim: To promote the recycling of rainwater and reduce the amount of mains potable water used for external water uses.

Materials

MAT 1: Environmental Impact of Materials

Available Credits:15

Aim: To specify materials with lower environmental impacts over their life-cycle.

MAT 2: Responsible Sourcing of Materials - Basic Building Elements

Available Credits:6

Aim: To promote the specification of responsibly sourced materials for the basic building elements.

MAT 3:Responsible Sourcing of Materials - Finishing Elements

Available Credits:3

Aim: To promote the specification of responsibly sourced materials for the finishing elements.

Surface Water Run-off

SUR 1:Management of Surface Water Run-off from developments

Available Credits:2

Aim: To design surface water drainage for housing developments which avoid, reduce and delay the discharge of rainfall run-off to watercourses and public sewers using SuDS techniques. This will protect receiving waters from pollution and minimise the risk of flooding and other environmental damage in watercourses.

SUR 2:Flood Risk

Available Credits:2

Aim: To promote housing development in low flood risk areas, or to take measures to reduce the impact of flooding on houses built in areas with a medium or high risk of flooding.

Waste

WAS 1:Storage of non-recyclable waste and recyclable household waste

Available Credits:4

Aim:To promote resource efficiency via the effective and appropriate management of construction site waste.

WAS 2: Construction Site Waste Management

Available Credits:3

Aim: To promote resource efficiency via the effective and appropriate management of construction site waste.

WAS 3:Composting

Available Credits:1

Aim: To promote the provision of compost facilities to reduce the amount of household waste send to landfill.

Pollution

POL 1:Global Warming Potential of Insulants

Available Credits:1

Aim: To promote the reduction of emissions of gases with high GWP associated with the manufacture, installation, use and disposal of foamed thermal and acoustic insulating materials.

POL 2:NOx Emissions

Available Credits:3

Aim: To promote the reduction of nitrogen oxide (NOX) emissions into the atmosphere.

Health & Wellbeing

HEA 1:Daylighting

Available Credits:3

Aim: To promote good daylighting and thereby improve quality of life and reduce the need for energy to light the home.

HEA 2:Sound Insulation

Available Credits:4

Aim: To promote the provision of improved sound insulation to reduce the likelihood of noise complaints from neighbours.

HEA 3:Private Space

Available Credits:1

Aim: To improve quality of life by promoting the provision of an inclusive outdoor space which is at least partially private.

HEA 4:Lifetime Homes

Available Credits:4

Aim: To encourage the construction of homes that are accessible and easily adaptable to meet the changing needs of current and future occupants.

Management

MAN 1:Home User Guide

Available Credits:3

Aim: To promote the provision of guidance enabling occupants to understand and operate their home efficiently and make the best use of local facilities.

MAN 2:Considerate Constructors Scheme

Available Credits:3

Aim:To promote the environmentally and socially considerate, and accountable management of construction sites.

MAN 3:Construction Site Impacts

Available Credits:2

Aim: To promote construction sites managed in a manner that mitigates environmental impacts.

MAN 4:Security

Available Credits:2

Aim:To promote the design of developments where people feel safe and secure- where crime and disorder, or the fear of crime, does not undermine quality of life or community cohesion.

Ecology

ECO 1: Ecological value of site

Available Credits:1

Aim: To promote development on land that already has a limited value to wildlife, and discourage the development of ecologically valuable sites.

ECO 2: Ecological enhancement

Available Credits:1

Aim: To enhance the ecological value of a site.

ECO 3: Protection of ecological features

Available Credits:1

Aim: To promote the protection of existing ecological features from substantial damage during the clearing of the site and the completion of construction works.

ECO 4:Change in ecological value of site

Available Credits:4

Aim: To minimise reductions and promote an improvement in ecological value.

ECO 5:Building footprint

Available Credits:2

Aim: To promote the most efficient use of a building's footprint by ensuring that land and material use is optimised across the development.

Disclaimer

The contents of this publication reflect the assessment produced by the licensed Code assessor. Stroma Certification Ltd is not liable for any loss or damage sustained as a consequence of this report or any related information.

Copyright

The Code for Sustainable Homes, name, logo and associated documentation are owned by the Department for Communities and Local Government.

All software, calculation tools, templates and all related material provided by Stroma Certification remains the property of Stroma Certification Ltd.