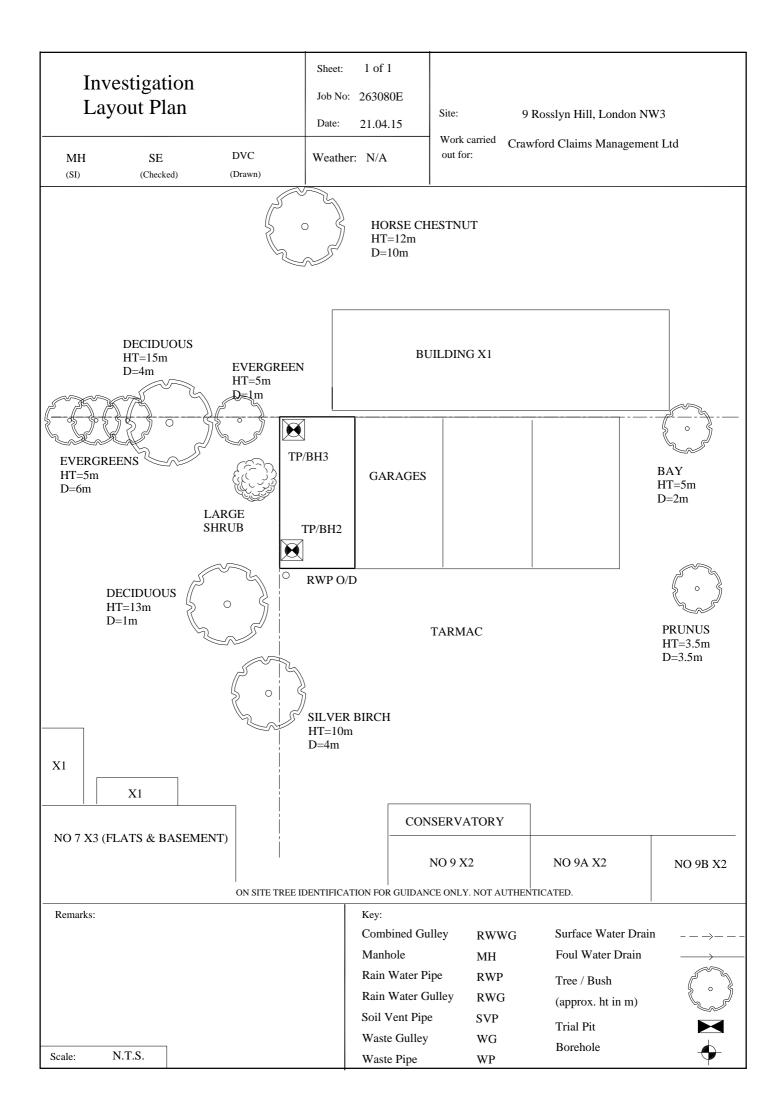
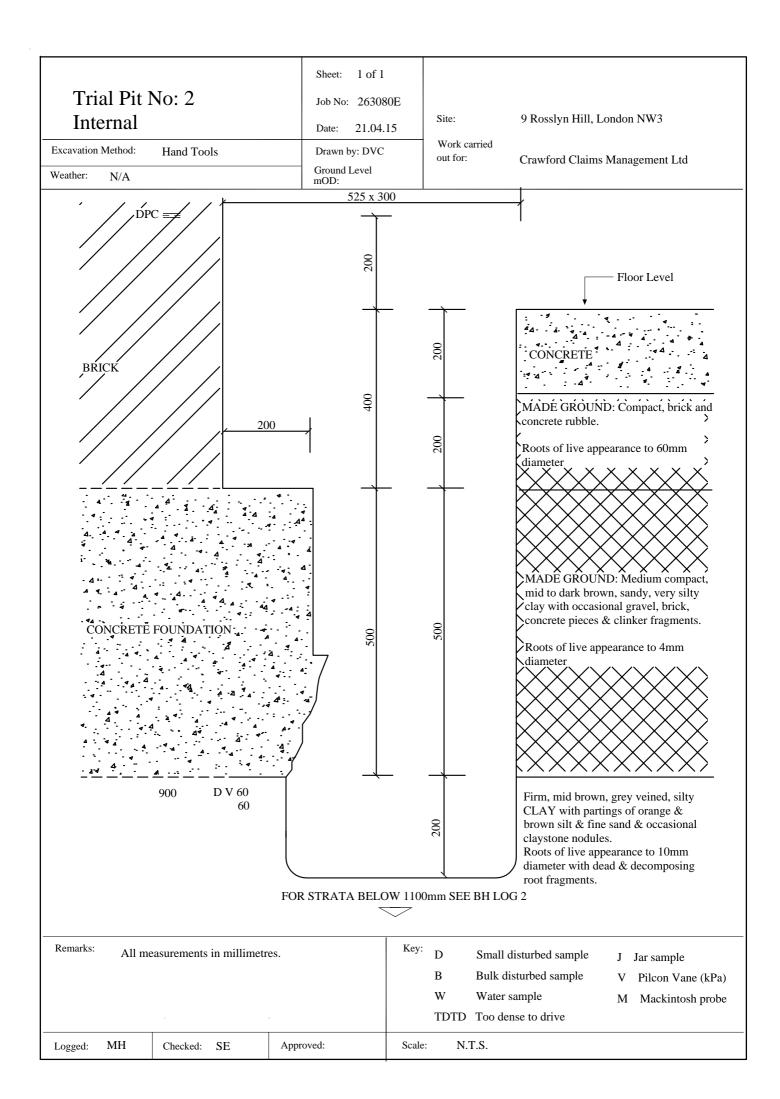


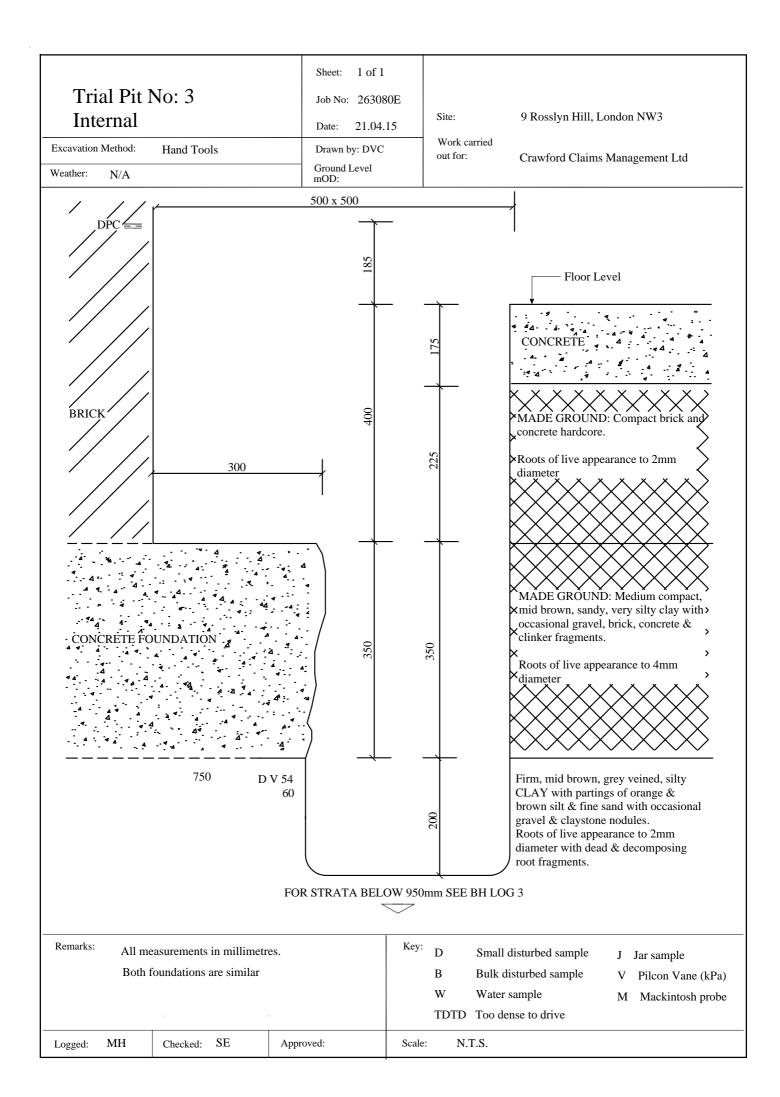
SITE INVESTIGATION FACTUAL REPORT

Report No:	263080
Client:	Crawford Claims Management
Site:	9 Rosslyn Hill, London
Client Ref:	SU1300377-
Date of Visit:	21/04/2015


Home Emergency Response - Subsidence Investigation - Drainage Services – Crack & Level Monitoring – Property Video Surveys


Unit E2 First Floor Suite, Boundary Court Willow Farm Business Park, Castle Donington Leicestershire, DE74 2NN 🖀 0843 2272362

 \bowtie enquiries@cet-uk.com


www.cet-uk.com

CET is the trading name of CET Structures Ltd Registered in England No. 02527130

Bor	ehole No:	: 2		Sheet: Job No:	1 of 1 263080)E	Site:		9 Ros	slyn Hill	
Boring Method: Diameter: 75mm		Hand Auger Coordinates:		Date: Ground I	21.04.1 Level	15	Work Carried		Crawford Claims Management Ltd		
Depth (m)		Description of Strata		mOD: Thick- ness (m)	Legend	Sample		: Fest Result	Depth (m)	Field Records/Comments (m)	
1.10	As Trial Pit 2			1.10							
	with partings o	n, grey veined, silty f orange & brown sil casional claystone no	lt &	1.10	X X 	D	V V	86 94 102	1.50 2.00	Roots of live appearance to 1mm diameter to 2.2m	
2.20	Stiff, as above,	with occasional crys	stals.	0.80	X	D	v	110 112 122	2.50	Dead & decomposing root fragments to 3m	
3.00	Borehol	e ends at 3m				D	v	130+ 130+	3.00		
Remar		e dry and open on co	ompletion	<u> </u>	I	D Sn	hall dis lk distu	D. Too I turbed sa 1rbed san nple	mple	D Drive J Jar sample V Pilcon Vane (kPa) M Mackintosh Probe	
Logged	: MH	Checked: SE	Typed by:	DVC		Scale:		NTS		Weather: N/A	

Bor	ehole No	: 3			1 of 1 263080)F	Site:		9 Ros	slyn Hill	
Boring	Method:	Hand Auger		Date:	21.04.1		Site.		<i>J</i> R 03	Siyii Tilli	
Diameter: 75mm		Coordinates:		Ground I mOD:			Work Carried out for:		Crawford Claims Management Ltd		
Depth (m)		Description of Strata		Thick- ness (m)	Legend	Sample	1	rest Result	Depth (m)	Field Records/Comments (m)	
	As Trial Pit 3			0.95							
	with partings of	wn, grey veined, silty of orange & brown sil casional claystone		0.25	X 	D	V	74 74	1.00	Roots of live appearance to 1.5mm diameter to 2m	
1.70	Stiff, as above.			0.50	 	D	v	112 120	1.50		
	with partings of fine sand, occa	vn, grey veined, silty (of orange & brown sil asional claystone		1.30	x 	D	V V	130+ 130+ 130+		Roots of live appearance to 1mm diameter to 2.5m Dead & decomposing root	
3.00	nodules and cr	ystals. le ends at 3m			x. 	D	V	130+ 120 124	3.00	fragments to 3m	
	Boreno							124			
Remar		le dry and open on co	mpletion			D Sr B Bu	nall dist	D. Too I turbed sa Irbed sar nple	mple	D Drive J Jar sample V Pilcon Vane (kPa) M Mackintosh Probe	
Logged	: MH	Checked: SE	Typed by:	DVC		Scale:		NTS		Weather: N/A	

Laboratory Testing Results

Our Ref :

Date Sampled: 21/04/2015

Date Received : 22/04/2015

Date Tested :

23/04/2015

Date of Report : 08/05/2015

Location : 9, Rosslyn Hill, London

263080

Work carried Crawford Claims Management

out for:

TP/BH	ample Ref Depth	Туре	Moisture Content	Soil Fraction	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Modified Plasticity	Soil Class	Filter Paper Contact	Soil Sample	In situ Shear Vane	Organic Content	pH Value	Sulphate	/1)	Class
No	(m)		(%)[1]	> 0.425mm (%) [2]	(%)[3]	(%)[4]	(%)[5]	[5]	Index (%)[6]	[7]	Time (h) [8]	Suction (kPa)	Strength (kPa) [9]	(%)[10]	[11]	so ₃ [12]	so ₄ [13]	[14]
2	0.90(U/S)	D	34	<5	72	27	45	0.17	45	CV	168	150	60					
	1.5	D	32	<5							168	381	90					
	2.0	D	34	<5	82	29	53	0.10	53	CV	168	345	106					
	2.5	D	33	<5							168	364	117					
	3.0	D	30	<5	74	25	49	0.09	49	CV	168	371	> 130					
[1] BS 137 [2] Estimat	thods / Notes 7 : Part 2 : 1990, Test 1 ed if <5%, otherwise n 17 : Part 2 : 1990, Test	neasured			 [9] Values of shear a Pilcon hand v [10] BS 1377 : Part [11] BS 1377 : Part 	ane or Geonor va 3 : 1990, Test N	ane (GV). o 4	CET using						В	Disturbed san Disturbed san Undisturbed s	ple (bulk)		
[4] BS 137 [5] BS 137	7 : Part 2 : 1990, Test 7 : Part 2 : 1990, Test igest 240 : 1993	No 5.3 No 5.4			[12] BS 1377 : Part [13] SO ₄ = $1.2 \times SO$ [14] BRE Special E	3 : 1990, Test N D ₃	o 5.6	Ground) August 2	005					W ENP	Groundwater	sample on-Plastic by ins	spection	

[7] BS 5930 : 1981 : Figure 31 - Plasticity Chart for the classification

of fine soils [8] In-house method S9a adapted from BRE IP 4/93 [14] BRE Special Digest One (Concrete in Aggressive Ground) August 2005 Note that if the SO₄ content falls into the DS-4 or DS-5 class, it would be prudent to consider the sample as falling

into the DS-4m or DS-5m class respectively unless water soluble magnesium testing is undertaken to prove otherwise

Laboratory Testing Results

Our Ref :

9, Rosslyn Hill, London

Crawford Claims Management Work carried

[7] BS 5930 : 1981 : Figure 31 - Plasticity Chart for the classification

[8] In-house method S9a adapted from BRE IP 4/93

of fine soils

out for:

Location :

S	ample Ref.		Moisture	Soil	Liquid	Plastic	Plasticity	Liquidity	Modified	Soil	Filter Paper	Soil	In situ	Organic	pH	Sulphate	Content	
P/BH	Depth	Туре	Content	Fraction	Limit	Limit	Index	Index	Plasticity	Class	Contact	Sample	Shear Vane	Content	Value	(g. SO3	/1) so ₄	Class
No.	(m)		(%)[1]	> 0.425mm (%) [2]	(%)[3]	(%)[4]	(%)[5]	[5]	Index (%)[6]	[7]	Time (h) [8]	Suction (kPa)	Strength (kPa) [9]	(%)[10]	[11]	[12]	[13]	[14
3	0.75(U/S)	D	25	<5	65	19	46	0.13	46	СН	168	101	57					
	1.0	D	31	<5							168	356	74					
	1.5	D	27	<5							168	928	116					
	2.0	D	30	<5	84	28	56	0.03	56	CV	168	841	>130					
	2.5	D	32	<5							168	657	> 130					
	3.0	D	34	<5	84	31	53	0.05	53	CV	168	514	122					
	thods / Notes				[9] Values of shear	strength were dete	ermined in situ by	CET using						Key				
Estimate	7 : Part 2 : 1990, Test I ed if <5%, otherwise n	neasured			[10] BS 1377 : Part		o 4							В	Disturbed san Disturbed san	ple (bulk)		
	7 : Part 2 : 1990, Test 7 : Part 2 : 1990, Test				[11] BS 1377 : Part [12] BS 1377 : Part									U W	Undisturbed s Groundwater			
BS 137	7 : Part 2 : 1990, Test igest 240 : 1993				[13] $SO_4 = 1.2 \times SO_4$ [14] BRE Special D	D ₃			005					ENP		on-Plastic by ins	spection	

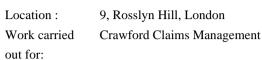
Note that if the SO4 content falls into the DS-4 or DS-5 class, it would be prudent to consider the sample as falling

into the DS-4m or DS-5m class respectively unless water soluble magnesium testing is undertaken to prove otherwise

21/04/2015

Date Received : 22/04/2015

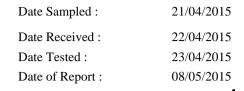
23/04/2015


Date of Report : 08/05/2015

Date Sampled :

Date Tested :

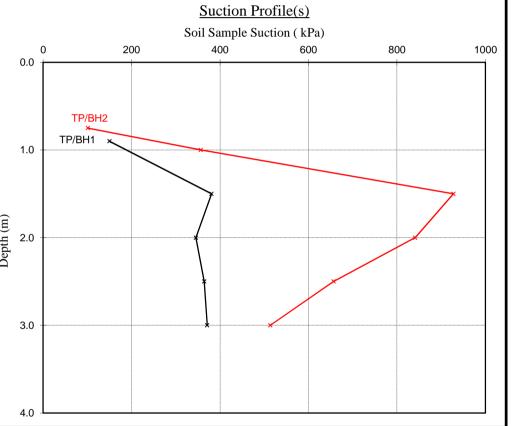
263080

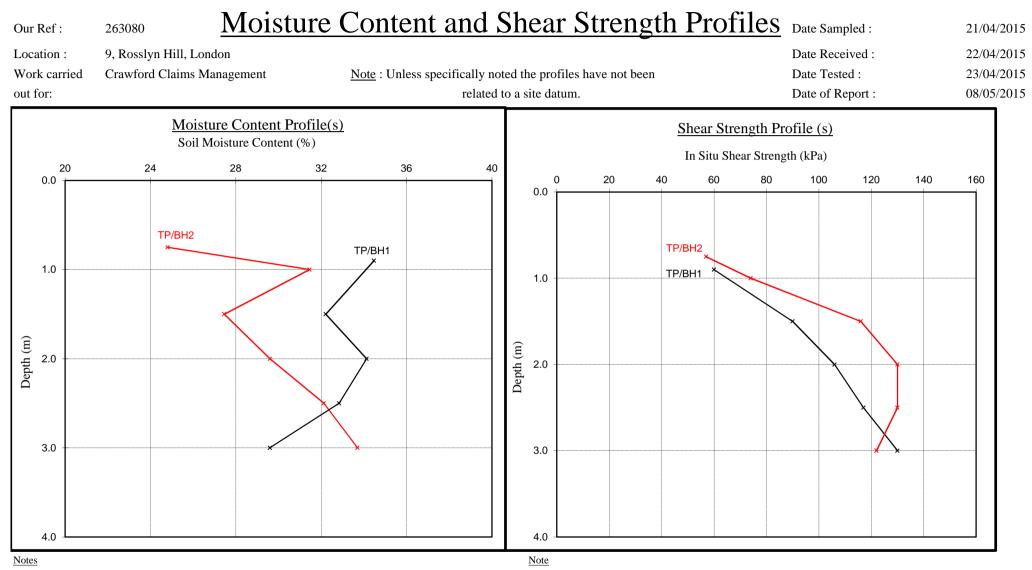

Moisture Content and Suction Profiles



263080

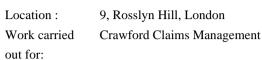
Our Ref :


<u>Note</u> : Unless specifically noted the profiles have not been related to a site datum.


Notes

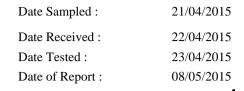
1. If plotted, 0.4 LL and PL+2 (after Driscoll, 1983) should only be applied to London Clay (and similarly overconsolidated clays) at shallow depths.

Note


When shown, the theoretical equilibrium suction profiles are based on conventional assumptions associated with London Clay (and similarly overconsolidated clays) at shallow depths. Note that the sample disturbance component is dependant on the method of sampling and any subsequent recompaction. The above plots show this to be 100kPa which is the value suggested by the BRE on the basis of their limited number of tests on recompacted samples. This may or may not be appropriate in this instance and judgement should be exercised.

1. If plotted, 0.4 LL and PL+2 (after Driscoll, 1983) should only be applied to London Clay (and similarly overconsolidated clays) at shallow depths.

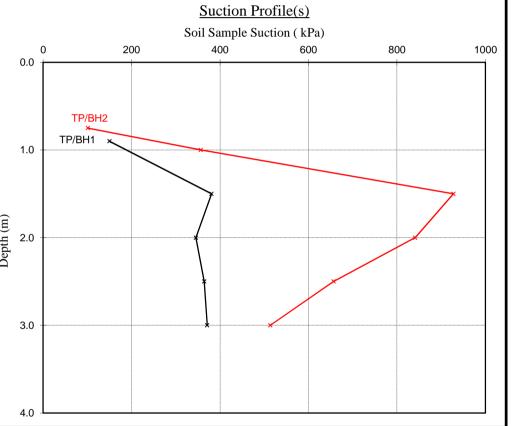
Unless otherwise stated, values of Shear Strength were determined in situ by CET using a Pilcon Hand Vane the calibration of which is limited to a maximum reading of 130 kPa.


Moisture Content and Suction Profiles



263080

Our Ref :


<u>Note</u> : Unless specifically noted the profiles have not been related to a site datum.

Notes

1. If plotted, 0.4 LL and PL+2 (after Driscoll, 1983) should only be applied to London Clay (and similarly overconsolidated clays) at shallow depths.

Note

When shown, the theoretical equilibrium suction profiles are based on conventional assumptions associated with London Clay (and similarly overconsolidated clays) at shallow depths. Note that the sample disturbance component is dependant on the method of sampling and any subsequent recompaction. The above plots show this to be 100kPa which is the value suggested by the BRE on the basis of their limited number of tests on recompacted samples. This may or may not be appropriate in this instance and judgement should be exercised.

EPSL European Plant Science Laboratory		Sheet: 1 of 1 Job No: 263080 Date: 23/04/2015	Site: 9 Rosslyn Hill, London, Work carried	
-	, ,	Order No: 695234 EPSL Ref: R11334	out for: Crawford Claims MGM	IT SUS
		Certificate	of Analysis	
	pes of tree or shrub from	n which they may have or T	bot samples were obtained in sealed pack iginated. Y ree, shrub or climber m which root originates	tets from the above site with no Result of starch test
number				
TP2 (USF)	5 mm		Acer spp. 2 roots	Positive
TP2 (USF)	10 mm		Fraxinus spp. 3 roots	Positive
BH2 (to 2.2m)	<1 mm		Acer spp.	Positive
BH2 (to 2.2m)	1 mm		Fraxinus spp. 2 roots	Positive
TP3 (USF)	2 mm		Tilia spp. 5 roots	Positive
BH3 (to 2.0m)	1.5 mm		Tilia spp. 4 roots	Positive
BH3 (to 2.5m)	<1 mm		probably Acer spp. *	Negative

* Rather juvenile & decayed.

Acer spp. are maples, including sycamore, Norway maple, and Japanese maples. Fraxinus spp. include common ash. Tilia spp. are limes.

MDM

M.P. Denne

MPD

Address for correspondence: EPSL, Intec, Parc Menai, Bangor, Gwynedd, North Wales, LL57 4FGTelephone: 01248 672 652e-mail: lab@innovation-environmental.co.ukHead of Laboratory Services : M D Mitchell B.Sc. (Hons), M.Phil.Plant Anatomist : Dr G S Turner B.Sc. (Hons), M.Sc., Ph.DPlant Anatomist : Dr D P Aebischer B.Sc. (Hons), M.Sc., Ph.DConsultant: Dr M P Denne B.Sc. (Hons), M.Sc., Ph.D

Registered in England. No 3256771, Registered Office: Yarmouth House, 1300 Parkway, Solent Business Park, Hampshire, PO15 7AE