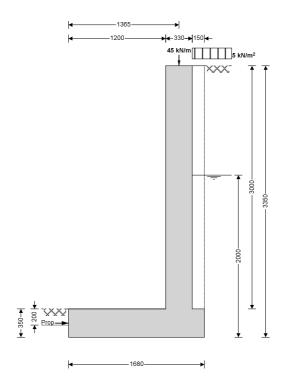
V&R	Project				Job Ref.	
VINCENT & RYMILL	21 KIDDERPORE GARDENS NW3				12/	411
VINICENT & DVMILL	Section			Sheet no./rev.		
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	PRELIMINARY WALL / BASE CALCULATIONS					1
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	13/05/2015				

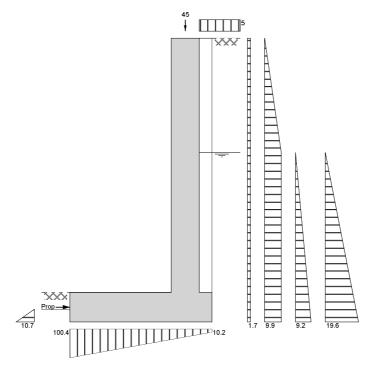

PRELIMINARY WALL BASE CALCULATIONS

1.PARTY WALL - RETAINING WALL AND BASE DESIGN

RETAINING WALL ANALYSIS & DESIGN (BS8002:1994)

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.03


Wall details			
Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 3000 mm	Wall stem thickness	$t_{wall} = $ 330 mm
Length of toe	l _{toe} = 1200 mm	Length of heel	$I_{heel} = 150 \text{ mm}$
Overall length of base	l _{base} = 1680 mm	Base thickness	$t_{base} = 350 \text{ mm}$
Height of retaining wall	$h_{wall} = 3350 \text{ mm}$		
Depth of downstand	$d_{ds} = 0 \text{ mm}$	Thickness of downstand	$t_{ds} = 350 \text{ mm}$
Position of downstand	l _{ds} = 1330 mm		
Depth of cover in front of wall	$d_{cover} = 0 \text{ mm}$	Unplanned excavation depth	$d_{exc} = 200 \text{ mm}$
Height of ground water	$h_{water} = 2000 \text{ mm}$	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	$\gamma_{\text{wall}} = 23.6 \text{ kN/m}^3$	Density of base construction	$\gamma_{base} = 23.6 \text{ kN/m}^3$
Angle of soil surface	$\beta = 0.0 \text{ deg}$	Effective height at back of wall	$h_{\text{eff}} = 3350 \text{ mm}$
Mobilisation factor	M = 1.5		
Moist density	$\gamma_{\rm m} = 21.0 \ {\rm kN/m}^3$	Saturated density	$\gamma_s = 23.0 \text{ kN/m}^3$
Design shear strength	<pre> \$\phi' = 24.2 deg </pre>	Angle of wall friction	δ = 18.6 deg
Design shear strength	$\phi'_b = $ 24.2 deg	Design base friction	$\delta_{\text{b}} = \textbf{18.6} \; \text{deg}$

V&R	Project				Job Ref.	
VINCENT & RYMILL	21 KIDDERPORE GARDENS NW3				12A11	
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	Section				Sheet no./rev.	
	PRELIMINARY WALL / BASE CALCULATIONS					2
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	13/05/2015				

Moist density	$\gamma_{mb} = 18.0 \text{ kN/m}^3$	Allowable bearing	$P_{bearing} = 125 \text{ kN/m}^2$
Using Coulomb theory			
Active pressure	$K_a = 0.369$	Passive pressure	$K_p = 4.187$
At-rest pressure	$K_0 = 0.590$		

Loading details

Surcharge load Surcharge = 5.0 kN/m^2

Loads shown in kN/m, pressures shown in kN/m²

Calculate propping force

Propping force $F_{prop} = 29.4 \text{ kN/m}$

Check bearing pressure

Total vertical reaction R = 92.9 kN/m Total moment $M_{total} = 56.9 \text{ kNm/m}$

Distance to reaction $x_{bar} = 612 \text{ mm}$ Eccentricity of reaction e = 228 mm

Reaction acts within middle third of base

Bearing pressure at toe $p_{toe} = 100.4 \text{ kN/m}^2$ Bearing pressure at heel $p_{heel} = 10.2 \text{ kN/m}^2$

PASS - Maximum bearing pressure is less than allowable bearing pressure

V & R	Project				Job Ref.	
VINCENT & RYMILL	21 KIDDERPORE GARDENS NW3				12A11	
VINCENT & RYMILL	Section			Sheet no./rev.		
	PRELIMINARY WALL / BASE CALCULATIONS				3	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	13/05/2015				

TEDDS calculation version 1.2.01.03

Ultimate limit state load factors

Dead load factor $\gamma_{f d} = 1.4$ Live load factor $\gamma_{f d} = 1.6$

Earth pressure factor $\gamma_{f_e} = 1.4$

Calculate propping force

Propping force $F_{prop} = 29.4 \text{ kN/m}$

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_v = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in toe $c_{toe} = 50 \text{ mm}$

Design of retaining wall toe

Shear at heel $V_{toe} = 116.4 \text{ kN/m}$ Moment at heel $M_{toe} = 140.7 \text{ kNm/m}$

Compression reinforcement is not required

Check toe in bending

Reinforcement provided 16 mm dia.bars @ 125 mm centres

Area required $A_{s_toe_req} = 1166.0 \text{ mm}^2/\text{m}$ Area provided $A_{s_toe_prov} = 1608 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress $v_{toe} = 0.399 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c toe} = 0.656 \text{ N/mm}^2$

 $v_{toe} < v_{c_toe}$ - No shear reinforcement required

Design of reinforced concrete retaining wall heel (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_v = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in heel $c_{heel} = 50 \text{ mm}$

Design of retaining wall heel

Shear at heel $V_{heel} = 16.9 \text{ kN/m}$ Moment at heel $M_{heel} = 4.2 \text{ kNm/m}$

Compression reinforcement is not required

Check heel in bending

Reinforcement provided B785 mesh

Area required $A_{s_heel_prov} = 455.0 \text{ mm}^2/\text{m}$ Area provided $A_{s_heel_prov} = 785 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall heel is adequate

Check shear resistance at heel

Design shear stress $v_{heel} = 0.057 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c heel} = 0.513 \text{ N/mm}^2$

V_{heel} < V_c heel - No shear reinforcement required

Project Job Ref. 21 KIDDERPORE GARDENS NW3 12A11 Section Sheet no./rev. **VINCENT & RYMILL** PRELIMINARY WALL / BASE CALCULATIONS 4 LAKESIDE COUNTRY CLUB Calc. by Date Chk'd by Date App'd by FRIMLEY GREEN TV 13/05/2015 SURREY GU16 6PT

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_v = 500 \text{ N/mm}^2$

Wall details

Minimum reinforcement k = 0.13 %

Cover in stem $c_{\text{stem}} = 50 \text{ mm}$ Cover in wall $c_{\text{wall}} = 50 \text{ mm}$

Design of retaining wall stem

Shear at base of stem $V_{\text{stem}} = 19.0 \text{ kN/m}$ Moment at base of stem $M_{\text{stem}} = 110.0 \text{ kNm/m}$

Compression reinforcement is not required

Check wall stem in bending

Reinforcement provided 16 mm dia.bars @ 100 mm centres

Area required $A_{s_stem_req} = 978.7 \text{ mm}^2/\text{m}$ Area provided $A_{s_stem_prov} = 2011 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress $v_{stem} = 0.070 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c_stem} = 0.736 \text{ N/mm}^2$

 $v_{stem} < v_{c_stem}$ - No shear reinforcement required

Check retaining wall deflection

Max span/depth ratio $ratio_{max} = 11.54$ Actual span/depth ratio $ratio_{act} = 11.03$

PASS - Span to depth ratio is acceptable

VINCENT & RYMILL LAKESIDE COUNTRY CLUB FRIMLEY GREEN SURREY GU16 6PT

Project				Job Ref.	
21 KIDDERPORE GARDENS NW3				12/	411
Section		Sheet no./rev.			
PRELIMINARY WALL / BASE CALCULATIONS					5
Calc. by	Date	Chk'd by	Date	App'd by	Date
TV	13/05/2015				

Indicative retaining wall reinforcement diagram Stem reinforcement Toe reinforcement Heel reinforcement

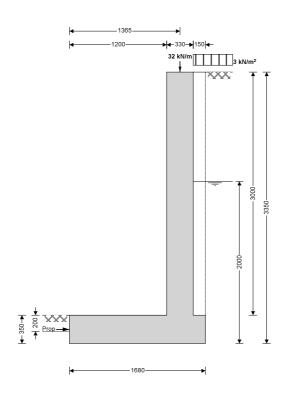
Toe bars - 16 mm dia.@ 125 mm centres - $(1608 \text{ mm}^2/\text{m})$

Heel mesh - B785 - (785 mm²/m)

Stem bars - 16 mm dia.@ 100 mm centres - (2011 mm²/m)

V&R VINCENT & RYMILL
VINCENT & RYMILL
LAKESIDE COUNTRY CLUB
FRIMLEY GREEN

SURREY GU16 6PT


Project				Job Ref.	
21 KIDDERPORE GARDENS NW3			12/	4 11	
Section S					
PRELIMINARY WALL / BASE CALCULATIONS					6
Calc. by	Date	Chk'd by	Date	App'd by	Date
TV	13/05/2015				

2.OTHER EXTERNAL WALLS - WALL AND BASE DESIGN

RETAINING WALL ANALYSIS & DESIGN (BS8002)

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.03

Wall details	
--------------	--

At-rest pressure

Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 3000 mm	Wall stem thickness	$t_{\text{wall}} = $ 330 mm
Length of toe	$I_{toe} = 1200 \text{ mm}$	Length of heel	$I_{heel} = 150 \text{ mm}$
Overall length of base	l _{base} = 1680 mm	Base thickness	$t_{base} = 350 \text{ mm}$
Height of retaining wall	$h_{wall} = 3350 \text{ mm}$		
Depth of downstand	$d_{ds} = 0 \text{ mm}$	Thickness of downstand	$t_{ds} = 350 \text{ mm}$
Position of downstand	l _{ds} = 1250 mm		
Depth of cover in front of wall	$d_{cover} = 0 \text{ mm}$	Unplanned excavation depth	$d_{exc} = 200 \text{ mm}$
Height of ground water	$h_{water} = 2000 \text{ mm}$	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	$\gamma_{wall} = 23.6 \text{ kN/m}^3$	Density of base construction	$\gamma_{base} = 23.6 \text{ kN/m}^3$
Angle of soil surface	$\beta = 0.0 \text{ deg}$	Effective height at back of wall	$h_{eff} = 3350 \text{ mm}$
Mobilisation factor	M = 1.5		
Moist density	$\gamma_{m} = 21.0 \text{ kN/m}^{3}$	Saturated density	$\gamma_{s} = 23.0 \text{ kN/m}^{3}$
Design shear strength	φ' = 24.2 deg	Angle of wall friction	δ = 18.6 deg
Design shear strength	φ' _b = 24.2 deg	Design base friction	δ_b = 18.6 deg
Moist density	$\gamma_{mb} = $ 18.0 kN/m ³	Allowable bearing	$P_{bearing} = 125 \text{ kN/m}^2$
Using Coulomb theory			
Active pressure	$K_a = 0.369$	Passive pressure	$K_p = 4.187$

 $K_0 = 0.590$

V&R	Project				Job Ref.	
VINCENT & RYMILL	21 KIDDERPORE GARDENS NW3				12A11	
	Section			Sheet no./rev.		
	PRELIMINARY WALL / BASE CALCULATIONS			7		
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	13/05/2015				

Loading details			
Surcharge load	Surcharge = 2.5 kN/m ²		
Vertical dead load	$W_{dead} = 32.0 \text{ kN/m}$	Vertical live load	$W_{live} = 0.0 \text{ kN/m}$
Horizontal dead load	$F_{dead} = 0.0 \text{ kN/m}$	Horizontal live load	$F_{live} = 0.0 \text{ kN/m}$
Position of vertical load	$I_{load} = 1365 \text{ mm}$	Height of horizontal load	$h_{load} = 0 \text{ mm}$
	3	2	
		* * *	
	Prop—		
	10.7	0.9 9.9 9.2 19.6	ı
	97.2	0.0	

Loads shown in kN/m, pressures shown in kN/m 2

Calculate propping force

Propping force $F_{prop} = 30.9 \text{ kN/m}$

Check bearing pressure

Total vertical reaction R = 79.6 kN/m Total moment $M_{total} = 43.4 \text{ kNm/m}$

Distance to reaction $x_{bar} = 546 \text{ mm}$ Eccentricity of reaction e = 294 mm

Reaction acts outside middle third of base

Bearing pressure at toe $p_{toe} = 97.2 \text{ kN/m}^2$ Bearing pressure at heel $p_{heel} = 0.0 \text{ kN/m}^2$

PASS - Maximum bearing pressure is less than allowable bearing pressure

V&R	Project				Job Ref.	
VINCENT & RYMILL	21 KIDDERPORE GARDENS NW3				12A11	
VINCENT & RYMILL	Section			Sheet no./rev.		
	PRELIMINARY WALL / BASE CALCULATIONS			8		
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	13/05/2015				

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.03

Ultimate limit state load factors

Dead load factor $\gamma_{f d} = 1.4$ Live load factor $\gamma_{f d} = 1.6$

Earth pressure factor $\gamma_{fe} = 1.4$

Calculate propping force

Propping force $F_{prop} = 30.9 \text{ kN/m}$

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_v = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in toe $c_{toe} = 50 \text{ mm}$

Design of retaining wall toe

Shear at heel $V_{toe} = 97.6 \text{ kN/m}$ Moment at heel $M_{toe} = 127.6 \text{ kNm/m}$

Compression reinforcement is not required

Check toe in bending

Reinforcement provided 16 mm dia.bars @ 125 mm centres

Area required $A_{s_toe_req} = 1057.4 \text{ mm}^2/\text{m}$ Area provided $A_{s_toe_prov} = 1608 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress $v_{toe} = 0.334 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c toe} = 0.656 \text{ N/mm}^2$

 $v_{toe} < v_{c_toe}$ - No shear reinforcement required

Design of reinforced concrete retaining wall heel (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_v = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in heel $c_{heel} = 50 \text{ mm}$

Design of retaining wall heel

Shear at heel $V_{heel} = 16.3 \text{ kN/m}$ Moment at heel $M_{heel} = 4.1 \text{ kNm/m}$

Compression reinforcement is not required

Check heel in bending

Reinforcement provided B785 mesh

Area required $A_{s_heel_req} = 455.0 \text{ mm}^2/\text{m}$ Area provided $A_{s_heel_prov} = 785 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall heel is adequate

Check shear resistance at heel

Design shear stress $v_{heel} = 0.055 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c heel} = 0.513 \text{ N/mm}^2$

V_{heel} < V_c heel - No shear reinforcement required

V&R	Project				Job Ref.	
VINCENT & RYMILL	21 KIDDERPORE GARDENS NW3				12A11	
VINCENT & RYMILL	Section			Sheet no./rev.		
	PRELIN	IINARY WALL	BASE CALCUL	ATIONS		9
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	13/05/2015				

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_v = 500 \text{ N/mm}^2$

Wall details

Minimum reinforcement k = 0.13 %

Cover in stem $c_{\text{stem}} = 50 \text{ mm}$ Cover in wall $c_{\text{wall}} = 50 \text{ mm}$

Design of retaining wall stem

Shear at base of stem $V_{\text{stem}} = 13.7 \text{ kN/m}$ Moment at base of stem $M_{\text{stem}} = 98.1 \text{ kNm/m}$

Compression reinforcement is not required

Check wall stem in bending

Reinforcement provided 16 mm dia.bars @ 125 mm centres

Area required $A_{s_stem_req} = 873.2 \text{ mm}^2/\text{m}$ Area provided $A_{s_stem_prov} = 1608 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress $v_{stem} = 0.050 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c_stem} = 0.683 \text{ N/mm}^2$

 $v_{stem} < v_{c_stem}$ - No shear reinforcement required

Check retaining wall deflection

Max span/depth ratio $ratio_{max} = 11.61$ Actual span/depth ratio $ratio_{act} = 11.03$

PASS - Span to depth ratio is acceptable

VINCENT & RYMILL LAKESIDE COUNTRY CLUB FRIMLEY GREEN SURREY GU16 6PT

Project				Job Ref.		
	21 KIDDERPOR	12A11				
Section Sheet no./rev.						
PRELIMINARY WALL / BASE CALCULATIONS				10		
Calc. by	Date	Chk'd by	Date	App'd by	Date	
TV	13/05/2015					

Toe reinforcement Toe reinforcement Toe reinforcement Toe reinforcement

Toe bars - 16 mm dia.@ 125 mm centres - $(1608 \text{ mm}^2/\text{m})$

Heel mesh - B785 - (785 mm²/m)

Stem bars - 16 mm dia.@ 125 mm centres - (1608 mm²/m)