David Byrne BEng (Hons) CEng MIStructE Consulting Civil and Structural Engineers

STRUCTURAL CALCULATIONS FORREMOVAL OF INTERNAL LOADBEARING WALL

AT

33 DERBY LODGE, BRITANNIA STREET, LONDON WC1X 9BP

APRIL 2015 - REF: 15013

David Byrne	Project	Job Ref. 15013				
BEng (Hons) CEng MIStructE	Section	55 DCI Dy	Lodge, Londo		Sheet no./rev	
- · · · ·		I	Index		-	
	Calc. by	Date	Chk'd by	Date	Revised	Date
	DCB	April '15				
		Ind	<u>ex</u>			
6						
Section A Introduction					A1	
Loading					A1 A2	
Loading					AZ	
Section B						
Stability					B1	
Section C - Sketches						
Sketches					C1	
Section D - Calculation						
Structural Calculations					D1	
Section E						
Construction Sketches					<i>E</i> 1	

	Project				Job Ref.		
David Byrne		33 Derby Lo	15013				
BEng (Hons) CEng MIStructE	Section				Sheet no./rev.		
		Introd	duction			4	
	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	DCB	APRIL '15					

Introduction

The existing property is a six storey block of flats of traditional construction, concrete ground floor, external solid masonry walls, internal load bearing walls, timber floors at first to roof, a traditional cut timber flat roof.

The proposed alterations are to the flat on the sixth floor, with no properties above. It is proposed to remove the wall between the kitchen and the living room. A section of wall will be left to provide stability to the outside wall as per NHBC guide - 440mm pier.

Site visit revealed the wall to be removed was loading bearing with joists spanning front to back.

Refer to sketches in section B for more information.

Codes of Practice

The following codes have been used in the design of the various structural elements:

BS6399-1	1996 Loading for Buildings
BS8110-1	Structural use of Concrete
BS5628-1	Structural use of Unreinforced Masonry
BS5950:	Structural Steel Design
BS5268-2:	2002 Structural use of Timber
BS8004	Foundations

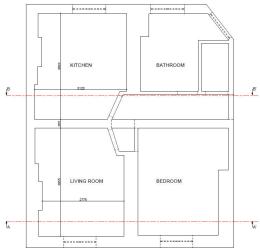
		Project				Job Ref.	
	David Byrne		33 Derby Lo	odge, London		15013	
BE	Eng (Hons) CEng MIStructE	Section		Sheet no./rev.			
			Introduction				A
		Calc. by	Date	Chk'd by	Date	App'd by	Date
		DCB	APRIL '15				

LOADING

LOADING						
				<u>DL</u> (kN/m ²)	<u>LL</u> (kN/m ²)	<u>ULT</u> (kN/m ²)
PITCHED ROOF				<u>(kN/m²)</u>	<u>(kN/m²)</u>	<u>(kN/m²)</u>
CONCRETE TILES				0.75		
INSULATION				0.05		
CEILING				0.30	0.25	
SERVICES				0.10		
TOTAL DEAD				1.20		
DL x SLOPE FACTOR 1	(cos(slope)			1.69		2.34
SUPERIMPOSED	(reduced for slope)	45	degrees		0.40	
SOI EINIMI OSED	(reduced for stope)	75	ucgrees		0.40	1.04
						3.38
FLAT ROOF						
ASPHALT				0.45		
SINGLE PLY MEMBRANE				0.05		
INSULATION				0.05		
18mm PLY DECK				0.10		
TIMBER JOISTS AND FI	RRINGS			0.15		
CEILING				0.25		
SERVICES				0.05		
TOTAL DEAD				1.10		1.54
SUPERIMPOSED					0.75	1.20
						2.74
EXTERNAL WALL						
BRICKWORK & BLOCKWORK	100mm mm 100mm THICK			4.30		
1 SIDE PLASTER	Toomin Thick			0.25		
TOTAL DEAD				4.55		6.37
EXTERNAL STUDWALI	-					
RENDER				0.50		
2 SIDES PLY				0.30		
STUDS				0.20		
INSULATION				0.05		
1 SIDE PLASTERBOARD				0.20		
TOTAL DEAD				1.15		1.61

Project				Job Ref.		
	33 Derby L	odge, Londo	on		15013	
Section				Sheet no./rev.		
	Introduction				А	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
DCB	APRIL '15					
			0.20			
			0.05			
			0.40			
			0.65	-	0.91	
100 mm THICK						
			1 20			
			0.50			
			2.30	=	3.22	
			0.10			
			0.15			
			0.20			
			0.10			
			0.90		1.12	
			0.80	1 50	2.40	
				1.30	2.40	
				-	3.52	
				=		
	Section Calc. by DCB	Section Catc. by Date DCB APRIL '15	33 Derby Lodge, Londo Section Introduction Calc. by DCB APRIL '15	33 Derby Lodge, London Section Calc. by Date Chird by Date DCB APRIL '15 0.20 0.05 0.40 0.65 0.40 0.65 100 mm THICK 1.80 0.50 2.30 0.10 0.15 0.10	33 Derby Lodge, London Sheet no./rei Section Introduction Date App'd by Calc. by Date App'd by App'd by DCB APRIL '15 Date App'd by 0.20 0.05 0.40 0.65 - 100 mm THICK 1.80 0.50 - - 0.10 0.15 0.20 0.25 - 0.10 0.15 0.20 0.25 0.10	

	Project				Job Ref	
		33 Derby	/ Lodge, Lond	on		15013
David Byrne	Section				Sheet no.	
BEng (Hons) CEng MIStructE		Bea	m Loading			
	Calc By	Date	Checked By	Date	Revision	Date
	DCB	APRIL '15				


BUILD UP UDL FOR BEAMS

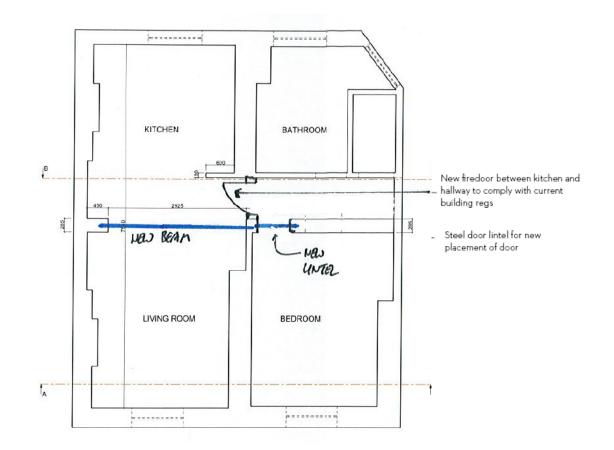
Build up UDL load element	BEAM B1 load ra	- Ridge Beam te	w or ht			SPAN (m) UDL	3.3
	kN/m	2	m		ł	kN/m	
	DL	LL		ULT	DL only	LL only	DL+LL
Wall/Roof Over	0.80	1.50	3.80	13.38	3.04	5.70	8.74
Floor over	0.80	1.50	3.80	13.38	3.04	5.70	8.74
				26.75	6.08	11.40	17.48
			Reactions (kN)	44.1	10.0	18.8	<u>28.8</u>


	Project		Job Ref.			
David Byrne BEng (Hons) CEng MIStructE		33 Derby Lo	15013			
,	Section		Sheet no./rev.			
		Sta	ability			0
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	DCB	APRIL '15				

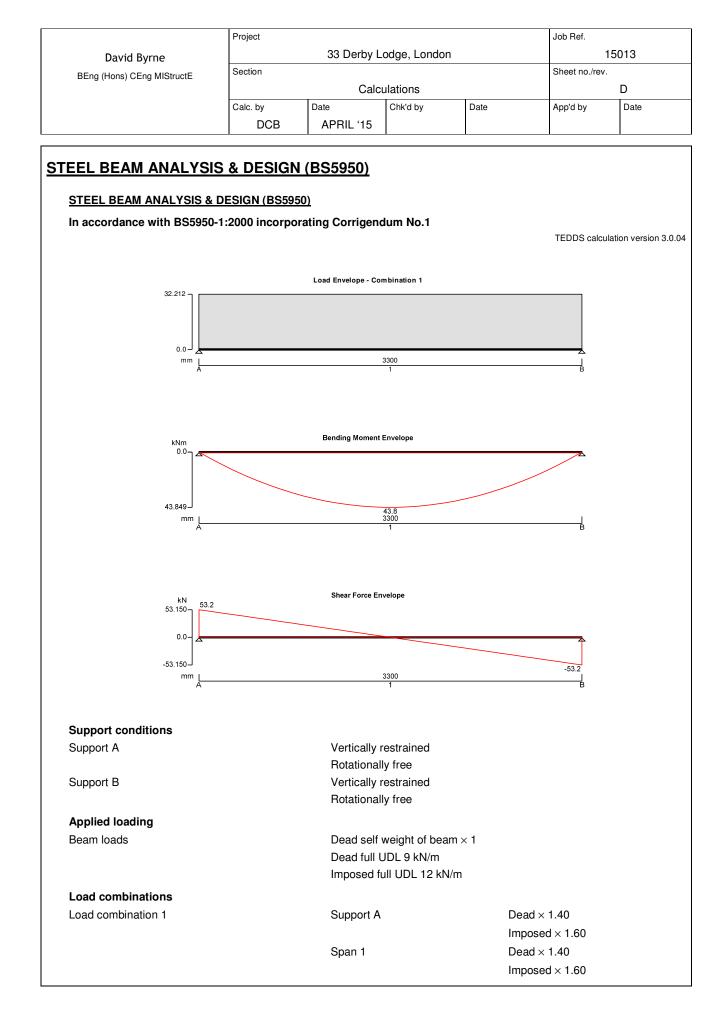
<u>Stability</u>

The wall to be removed is of masonry construction and loadbearing, supporting the timber roof over. The wall will be removed to create an opening living space between the kitchen and living room. To maintain stability to the flank wall a pier of 440mm will remain, as per NHBC guide, to prop the span of the existing wall.

Existing layout with central spine wall between kitchen and living room.



Proposed layout with central spine wall removed but 400mm pier left in either end for lateral stability.


	Project		Job Ref.			
David Byrne		33 Derby Lo	odge, London		15013	
BEng (Hons) CEng MIStructE	Section		Sheet no./rev.			
		Ske	В			
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	DCB	APRIL '15				

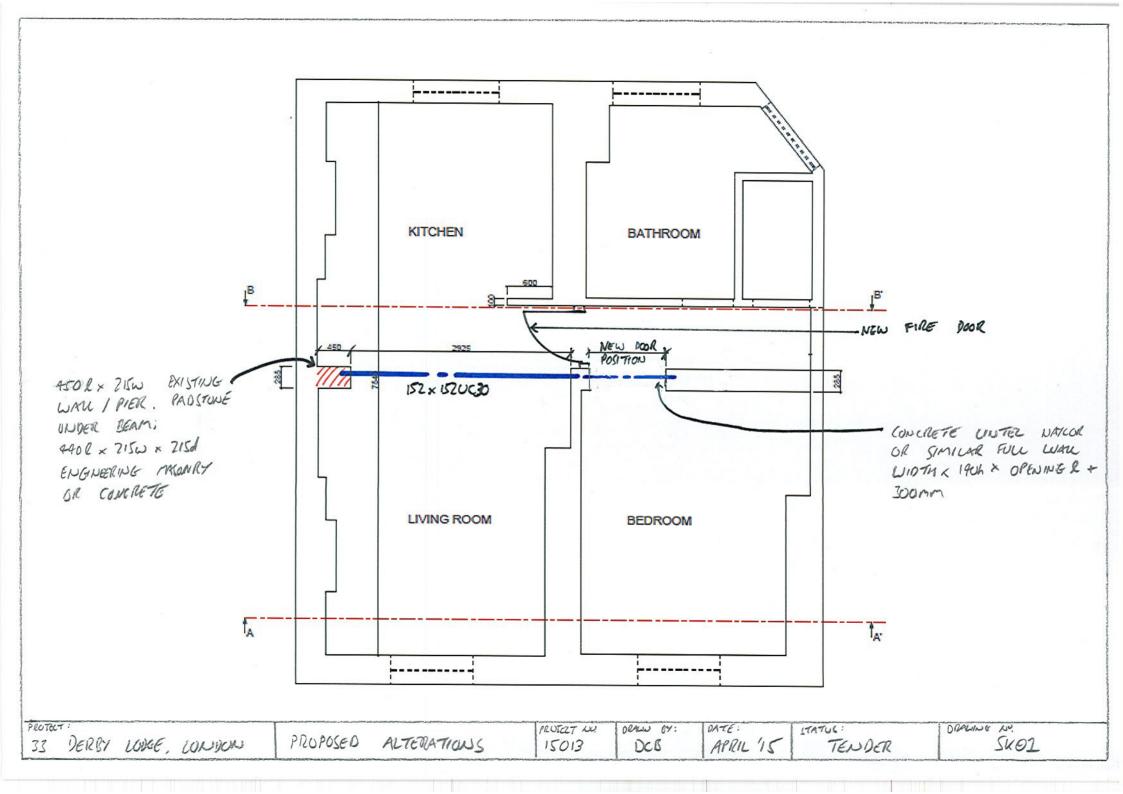
<u>Sketch</u>

Flat No.33 Floor Plan indicating changes

New Steel beam over existing wall to be removed to create open plan living.

F	Project				Job Ref.	
David Byrne		33 Derby L	odge, Londo		15013	
BEng (Hons) CEng MIStructE	Section	Oala			Sheet no./re	
	ala hu		lations	Data	Angelei hu	D
	,	Date	Chk'd by	Date	App'd by	Date
	DCB	APRIL '15				
		Support B		De	ad × 1.40	
				Im	posed $ imes$ 1.60	
Analysis results						
Maximum moment		M _{max} = 43.	B kNm	Mm	_{nin} = 0 kNm	
Maximum shear		V _{max} = 53.2	2 kN		_{in} = -53.2 kN	
Deflection		δ _{max} = 5.2	mm	δ _{mi}	_n = 0 mm	
Maximum reaction at support A		R _{A_max} = 53	3.2 kN	RA	_min = 53.2 kN	
Unfactored dead load reaction at	support A	$R_{A_Dead} = 1$	5.3 kN			
Unfactored imposed load reaction	at support A	R _{A_Imposed} =	= 19.8 kN			
Maximum reaction at support B		$R_{B_{max}} = 53$		R _B	_min = 53.2 kN	
Unfactored dead load reaction at		$R_{B_{Dead}} = 1$				
Unfactored imposed load reaction	at support B	R _{B_Imposed} =	= 19.8 kN			
Section details						
Section type		UKC 152x	152x30 (Coi	rus Advance)		
Steel grade		S355				
From table 9: Design strength p	y					
Thickness of element		max(T, t) =				
Design strength		p _y = 355 N				
Modulus of elasticity		E = 20500	UN/mm ⁻			
	I					
	▲ 6 ★					
	T					
	157.6	-	▶			
	1		八			
	<u>↓</u> <u>6</u> <u>↓</u> <u>↓</u>					
	Т		152.9	. 1		
	A		152.9	•		
Lateral restraint						
-		Span 1 has	s lateral rest	raint at supports	sonly	
Effective length factors		·			-	
Effective length factor in major ax	S	K _x = 1.00				
Effective length factor in minor ax		K _y = 1.00				
Effective length factor for lateral-to			0			
Classification of cross sections						
		ε = √[275 Ν	$\sqrt{mm^2 / p_y} =$	- 0.88		
hatemal community and the	61. 4 4	0 - 12/01	- [Yun - Py] -	5.00		
Internal compression parts - Ta Depth of section		d 102 C	m m			
Depth of section		d = 123.6 r	11(11			
		d/+ 010	$\times \epsilon \le 80 \times$	· ·	ass 1 plastic	

David Byrne		33 Derby l	.odge, Londor	า		15013	
BEng (Hons) CEng MIStructE	Section				Sheet no./rev.		
		Calc	ulations			D	
	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	DCB	APRIL '15					
Outstand flanges - Table 11							
Width of section		b = B / 2 =	- 76.5 mm				
		b / T = 9.2	2×ε <= 10×ε	c Cl	ass 2 compact		
					Section is c	lass 2 com	
Shear capacity - Section 4.2.3	}						
Design shear force		$F_v = max($	abs(V _{max}), abs	$s(V_{min})) = 53.2$	kN		
		d / t < 70 :	×ε				
				es not need to	be checked for	shear buck	
Shear area			= 1024 mm ²				
Design shear resistance			$p_y \times A_v = 218$				
		PA	SS - Design :	shear resistar	nce exceeds des	ign shear f	
Moment capacity - Section 4.	2.5						
Design bending moment				$abs(M_{s1_min})) =$			
Moment capacity low shear - cl	4.2.5.2	M _c = min($p_y \times S_{xx}$, 1.2 ×	$p_y \times Z_{xx}) = 87.$	9 kNm		
Effective length for lateral-ton	sional bucklir	ng - Section 4.3	5				
Effective length for lateral torsic	nal buckling		L _{s1} = 3300 m	m			
Slenderness ratio		$\lambda = L_E / r_y$	<i>,</i> = 86.224				
Equivalent slenderness - Sec	tion 4.3.6.7						
Buckling parameter		u = 0.849					
Torsional index		x = 15.99	-	2-0.25			
Slenderness factor		-	+ 0.05 × (λ / x)	^{[2]^{0.20} = 0.799}			
Ratio - cl.4.3.6.9	0.7	β _W = 1.00		E0 46E			
Equivalent slenderness - cl.4.3. Limiting slenderness - Annex B			$\lambda \times \lambda \times \sqrt{[\beta_W]} = \langle (\pi^2 \times E / p_v)^0 \rangle$				
Limiting siendemess - Annex B	.2.2				de for lateral-tor	cional hucl	
Dending a lange the Occurrent of		$\chi_{L1} = \chi_{L0}$	Allowance			Sional Ducr	
Bending strength - Section 4.	3.6.5						
Robertson constant Perry factor		$\alpha_{LT} = 7.0$	$(\alpha - \chi () -)$	_{L0}) / 1000, 0) =	0 109		
Euler stress		•	$(\alpha_{L}) \times (\lambda_{L})^{2} = 591.$, ,	0.190		
				_E) / 2 = 532 N/r	nm²		
Bending strength - Annex B.2.1				$^{2} - p_{\rm E} \times p_{\rm v})^{0.5}$ =			
Equivalent uniform moment f	actor - Soctio		-y (⊺⊑i ' (ΨLI	FF: FA) / -			
Moment at quarter point of seg		M ₂ = 32.9	kNm				
Moment at centre-line of segme		M ₂ = 61 .8					
Moment at three quarter point of		M ₄ = 32.9					
Maximum moment in segment		$M_{abs} = 43$					
Maximum moment governing b	uckling resistar	nce M _{LT} = M _{ab}	_s = 43.8 kNm				
Equivalent uniform moment fac	tor for lateral-to						
		m _{LT} = max	(0.2 + (0.15 ×	$M_2 + 0.5 \times M_3$	+ 0.15 \times M ₄) / M _a	_{bs} , 0.44) = 0	
Buckling resistance moment	- Section 4.3.6	6.4					
Buckling resistance moment		$M_b = p_b \times$	S _{xx} = 64.9 kN	m			
			70.1 kNm				
		PASS - Buck	ling resistan	ce moment ex	ceeds design be	ending mor	
Check vertical deflection - Se							


		Project				Job Ref.	
David Byrne	vid Byrne	33 Derby Lodge, London				15013	
BEng (Hons) CEng MIStructE		Section				Sheet no./rev.	
		Calculations				D	
		Calc. by	Date	Chk'd by	Date	App'd by	Date
		DCB	APRIL '15				

Limiting deflection	$\delta_{\text{lim}} = L_{s1} / 360 = 9.167 \text{ mm}$
Maximum deflection span 1	$\delta = max(abs(\delta_{max}), abs(\delta_{min})) = \textbf{5.171} mm$

PASS - Maximum deflection does not exceed deflection limit

	Project				Job Ref.	
David Byrne	33 Derby Lodge, London				15013	
BEng (Hons) CEng MIStructE	Section				Sheet no./rev.	
	Construction Sketches				E	
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	DCB	APRIL '15				

Construction Sketches

