

Walsh Associates

Camden Lock Village, London

Basement Impact Assessment – Area D & E

Revision 2

March, 2015

Card Geotechnics Limited 4 Godalming Business Centre, Woolsack Way, Godalming, Surrey, GU7 1XW Telephone: 01483 310 600 www.cgl-uk.com

Copyright: Card Geotechnics Limited

Card Geotechnics Limited ("CGL") has prepared this report in accordance with the instructions of Walsh Associates ("the Client") under the terms of its appointment for consulting engineering services by the Client dated 24th September 2014. The report is for the sole and specific use of the Client, and CGL shall not be responsible for any use of the report or its contents for any purpose other than that for which it was prepared and provided. Should the Client require to pass copies of the report to other parties for information, the whole of the report should be so copied, but no professional liability or warranty shall be extended to other parties by CGL in this connection without the explicit written agreement thereto by CGL.

Author	James Morrice, Engineer <i>MSc BEng (Hons) MCSM</i> Joseph Slattery, Senior Engineer <i>BEng MEng FGS</i>			Joseph Sla	ttery
Checked	Richard Ball, Principal Engineer BSc MSc CEng MICE FGS			(A)	
Approved	Ian Marychurch, Director MSc BSc CEng MICE CGeol FGS CMgr MCMI MIOD Dip IOD			Ion Ma	nyclust
Reference	CG/18067a	Revision	0	Issue Date	February 2015
			1	Issue Date	March 2015
			2	Issue Date	March 2015

CONTENTS

1.	I	NTRODUCTION	4
2.	ġ	SITE CONTEXT	5
	2.1	Site location	5
	2.2	Site layout	5
	2.3	Proposed development	5
	2.4	Historical Development	6
	2.5	Bomb damage and unexploded ordnance	6
	2.6	Anticipated ground conditions	7
	2	2.6.1 Published and unpublished geology	7
	2.7	Hydrogeology	8
	2.8	Hydrology	8
3.	9	SCREENING (STAGE 1)	10
	3.1	Introduction	10
	3.2	Subterranean (Groundwater) flow	10
	3.3	Slope/land stability	11
	3.4	Surface flow and flooding.	13
	3	8.4.1 Conclusions	15
4.	9	SCOPING (STAGE 2)	16
5.	(GROUND INVESTIGATION (STAGE 3)	17
	5.1	Introduction	17
	5.2	Summary	17
	, ,	5.2.1 Made Ground	18
	Ľ	5.2.2 London Clay Formation	18
	5.3	Groundwater	19
	5.4	Geotechnical Design Parameters	20
	5.5	Conceptual site model (Stage 3)	20
6.	1	BASEMENT IMPACT ASSESSMENT – LAND STABILITY (STAGE 4)	22
	6.1	Introduction	22
	6.2	Critical sections for analysis	22
	6	5.2.1 Section adjacent to Network Rail viaduct	22
	6	5.2.2 Section adjacent to London Underground tube tunnels	22
	6	5.2.3 Section adjacent to National Grid cables and Grand Union Canal wall	23
	6.3	Ground movements arising from basement excavation	23
	6.4	Ground movement due to retaining wall deflection	25
	6	5.4.1 Proposed construction sequence	25
	(5.4.2 Analysis results	26

	6.5	.1 Ground movement due capping beam deflection	28
7.	DA	MAGE ASSESSMENT	29
	7.1	Impact Assessment – Network Rail viaduct	30
	7.2	Impact Assessment – London Underground tube tunnels	31
	7.3 wall	Impact Assessment – National Grid cables and Grand Union Canal 31	
8.	SU	BTERRANEAN (GROUNDWATER) FLOW	33
	8.1	Introduction	33
	8.2	Impact on groundwater flow	33
	8.3	Recommendations for groundwater control	33
9.	SU	RFACE FLOW AND FLOODING	34
10.	со	NSTRUCTION MONITORING	36
	10.1	Construction monitoring – Installation	37
	10.2	Construction monitoring – Excavation	37
11.	NO	N-TECHNICAL SUMMARY	39
	11.1	General	39
	11.2	Cumulative impacts	40

FIGURES

Figure 1 - Site location plan
Figure 2 - Site layout and exploratory hole location plan
Figure 3 - Plot of SPT 'N' value against level (mOD)
Figure 4 - Plot of undrained shear strength, c _u , against level (mOD)
Figure 5 - Conceptual site model –basement plan and constraints
Figure 6 - Conceptual site model – constraint sections
Figure 7 - Short term ground movement contour plot
Figure 8 - Long term ground movement contour plot
Figure 9 - Combined lateral movement profile – piled wall adjacent to NR viaduct
Figure 10 - Combined vertical movement profile – below the NR viaduct
Figure 11 - Structure interaction plot
Figure 12 – Displacement and stress change along crown of LUL tunnel
Figure 13 – Vertical movement profile – NG infrastructure and canal wall
Figure 14 – lateral movement profile – NG infrastructure and canal wall

APPENDICES

Appendix A - Development drawings

- Appendix B BGS borehole logs
- Appendix C WALLAP output

1. INTRODUCTION

It is proposed to demolish the existing buildings and some of the road infrastructure at Camden Lock Village and replace them with a number of medium to high rise developments with basement levels ranging in depth between approximately 4 metres below ground level (mbgl) and 16mbgl.

Card Geotechnics Limited (CGL) has been instructed by Walsh Associates (the structural engineers for the project) to undertake a Basement Impact Assessment (BIA) for the proposed basement development blocks to assess the potential impact on surrounding buildings, infrastructure and hydrological features. Given the size of the site and proposed developments, the BIA will be undertaken in stages. This report assesses the impact of the combined single storey basement below Building D and Building E only. The impacts of basement development for Building A and Building C have been assessed separately. Camden Guidance CPG4¹ requires Basement Impact Assessments to be undertaken for new basements in the borough and sets out 5 stages:

- 1. Screening
- 2. Scoping
- 3. Site investigation
- 4. Impact assessment
- 5. Review and decision making

This report is intended to address the screening, scoping and impact assessment processes set out in CPG4 and the Camden geological, hydrogeological, and hydrological study (CGHHS)². It identifies key issues relating to land stability, hydrogeology and hydrology as part of the screening process (Stage 1). CGL has previously scoped and completed an extensive ground investigation^{3, 4} for the entire site (Stage 2 and Stage 3), and as such the scoping process comprises a summary of the findings of the current site investigation and derivation of an appropriate ground model and design parameters for the site to allow the ground movement and damage assessment calculations to be undertaken (Stage 4).

¹ Camden Planning Guidance, CPG4, Basements and Lightwells, September 2013.

² Ove Arup and Partners, Camden geological, hydrogeological, and hydrological study. Guidance for subterranean development, November 2010.

³ Card Geotechnics Limited. (2015) Camden Lock Village – *Geotechnical and Geoenvironmental Interpretative Report*. Ref: CG/18067A. January 2015.

⁴ Card Geotechnics Limited. (2015) Camden Lock Village: Site E – Geotechnical and Geoenvironmental Interpretative Report. Ref: CG/18067A. February 2015.

2. SITE CONTEXT

2.1 Site location

The site is situated off Kentish Town Road in Camden, northwest London. The Ordnance Survey grid reference for the approximate centre of the site is 528908N, 184195E.

A site location plan is presented as Figure 1.

2.2 Site layout

The site is approximately triangular in shape and is bordered by a National Rail viaduct to the north, Kentish Town Road to the east, an area of open land, the *Grand Union Towpath* and *Regent's Canal* to the south and Camden Lock Village Market to the west. The northern region of the site (Building D site) area currently comprises office buildings with associated car parking. The southern region of the site (Building E site) comprises open land covered with grass and light vegetation.

Drawings and information provided by Walsh Associates indicates that the canal wall is a gravity concrete structure founded at approximately 3.5mbgl.

A site layout plan is presented within Figure 2. This Figure also shows the outline of the site within which the combined basement of Building D and Building E is proposed. Exploratory hole locations completed during the current site investigation across the entire Camden Lock Village development site are also presented on Figure 2.

LUL tunnels (Northern line) run below Kentish Town Road and National Grid cable infrastructure runs along the southern site boundary and follows the profile of the canal wall. These constraints are discussed in greater detail within Section 6.2 and are shown in Figure 5 and Figure 6.

2.3 Proposed development

The proposed development comprises a series of multi-storey buildings with a combined single-storey basement below the entire development footprint. The basement layout within the footprint of Site D is in line with the 2013 approved master plan for the site.

The upper floors of the proposed developments will comprise residential properties, with office space and a restaurant on the ground floor with parking and plant rooms in the basement level.

The proposed basement is typically 4.5m deep with its formation level at approximately 21.5mOD. It is currently proposed to construct the basement using bottom up construction methods within a contiguous piled box. Pile wall capping beam level is assumed to be at 26mOD and ground level across the site ranges from 25.6m in the east of the site to a maximum of 26.4mOD along the western boundary of the site. Contiguous piled walls of 0.6m diameter at 0.75m spacing are currently proposed to support the basement excavation. Sheet piles may also be adopted as a value engineering option, however for the purpose of this assessment a contiguous pile wall will be assumed to assess the worst case with regard to ground movements associated with installation of the piles.

The above information is taken from current detailed drawings provided by Walsh Associates and presented within Appendix A.

2.4 Historical Development

The historical development of the site was established by RPS in their October 2009⁵ and November 2009⁶ reports and is summarised below.

The site consisted of open fields until the *Regent's Canal* was constructed in the early 1800s, with residential properties constructed across the site. A number of these buildings were subsequently demolished during construction of the North London Overground Railway viaducts in the mid-1800s. No further significant changes were noted at the site until the construction of the current office buildings.

2.5 Bomb damage and unexploded ordnance

The area experienced intensive bombing during the Second World War, with a number of properties being destroyed or damaged beyond repair.

A detailed unexploded ordnance (UXO) risk assessment⁷ was undertaken by 6 Alpha Associates Limited in September 2014. The report notes that the risk posed by UXO at the site is 'low to medium' for basements and excavations within Building D and Building E. Additionally, no substantial damage to the viaducts was noted.

⁵ RPS (2009) Camden Lock Village London Borough of Camden. *Phase 1 – Environmental Risk Assessment*. Ref: HLEI4880/001R. October 2009

⁶ RPS (2009) Camden Lock Village London Borough of Camden. An Archaeological Desk Based Assessment. Ref: JLK0617 RO1. November 2009

⁷ 6 Alpha Associates Limited (2014) *Detailed Unexploded Ordnance (UXO) Risk Assessment*. Ref: P4063. September 2014

2.6 Anticipated ground conditions

2.6.1 Published and unpublished geology

The British Geological Survey (BGS) map sheet 256 (North London)⁸ indicates that the site is directly underlain by the London Clay Formation, which consists of stiff blue grey silty clay, weathering to brown silty clay near the surface.

The BGS⁹ holds records of a number of historical ground investigations within 300m of the site. Selected logs are summarised in Table 1 and details are included in Appendix B.

(jgc		(lgı	Depth to top of stratum (mbgl)						
BH record reference	Distance (m)	Direction	Base of BH (mbgl)	Ground water level (mb	ЭW	London Clay Formation	Lambeth Group	Thanet Sand	Chalk
TQ28SE5	90	S	91.4	NR	-	0.0	42	NR	64
TQ28SE1203	300	SE	18.7	1.1	0.0	1.5	-	-	-
TQ28SE1204	300	SE	18.4	NR	0.0	0.9	-	-	-
TQ28SE1206	300	SE	9.6	1.1	0.0	2.1	-	-	-
TQ28SE1208	300	SE	9.4	NR	0.0	1.37	-	-	-
TQ28SE1239	180	NW	3.0	-	0.0	0.63	-	-	-
TQ28SE1240	180	NW	3.0	-	0.0	0.5	-	-	-
TQ28SE1241	180	NW	3.0	-	0.0	0.8	-	-	-
TQ28SE1242	180	NW	3.0	-	0.0	0.6	-	-	-
TQ28SE1491	190	SE	198.7	91.7	0.0	6.7	44.8	53.9	125.0
TQ28SE2272	257	SW	1.1	-	0.0	1.08	-	-	-

Table 1 - Summary of BGS historical borehole records

The historical borehole records generally recorded Made Ground ranging in thickness between 0.6m and 6.7m over the London Clay. The surface of the Lambeth Group was encountered at 42mbgl to 44.8mbgl and the Thanet Sand was encountered at 53.9mbgl underlain by the Chalk encountered between 64mbgl and 125mbgl.

Generally shallow groundwater was not encountered or noted within the boreholes.

 ⁸ British Geological Survey. (1994) North London. Sheet 256. Solid and Drift Geology 1:50,000.
 ⁹ <u>www.bgs.ac.uk</u> (accessed December 2014)

2.7 Hydrogeology

The Environment Agency¹⁰ has produced an aquifer designation system consistent with the requirements of the Water Framework Directive. The designations have been set for superficial and bedrock geology and are based on the importance of aquifers for potable water supply and their role in supporting surface water bodies and wetland ecosystems.

The underlying London Clay Formation is classified as 'Unproductive Strata' and the site is not within a Groundwater Source Protection Zone (SPZ).

2.8 Hydrology

Figure 11 of the Hampstead Heath Surface Water Catchments and Drainage of the Camden Geological, Hydrogeological and Hydrological report produced by Arup² presents a copy of the 'Lost Rivers of London' map produced by Barton. A number of springs outcrop at the base of the Bagshot Formation to the north, flowing through various drainage channels and in various directions into the watercourses of the district (most of which are now diverted underground) including the *River Westbourne, Tyburn* and *River Fleet*. The map indicates that two tributaries of the *River Fleet* join near the viaduct on the eastern site boundary, where the river then trends south east along Camden Street. Historical mapping for the site (Survey of the Borough of St Marylebone 1834) provided by the client, indicates that before the river was culverted it passed through the site.

With reference to the Arup report², the site is approximately 2.2km southeast of the catchment for the pond chains on Hampstead Heath. Additionally, with reference to the EA website the site is not within a Flood Risk Zone.

Current flood mapping (Figure 15 CPG4) indicates that Kentish Town Road was affected by flooding in 1975. However, the road was not affected by the 2002 flooding in the region or by the serious national floods in 2007 and 2012. It is noted in the London Borough of Camden flood risk management strategy¹¹ and report of the Floods Scrutiny Panel¹² that the 1975 flood event was caused by the heaviest and most concentrated rainfall event recorded in this part of Camden. This 1 in 100 year event was preceded by a very dry summer and is therefore not considered to be representative of typical conditions in the area.

¹⁰ www.environment-agency.gov.uk (September 2014)

¹¹ London Borough of Camden (2014) Managing Flood Risk in Camden: The London Borough of Camden flood risk management strategy

¹² London Borough of Camden (2003) Floods in Camden: Report of the Floods Scrutiny Panel

Following the 2002 flood event, new infrastructure, including larger diameter sewers and a holding tank, was installed in the Borough to help mitigate the potential for future flooding. Additionally, the proposed development is positioned approximately 4m from Kentish Town Road. The site is not within an area identified by the Environment Agency to be at risk of surface water flooding.

3. SCREENING (STAGE 1)

3.1 Introduction

A screening assessment has been undertaken in accordance with CPG4, based on the flowcharts presented in that document. Responses to the questions posed by the flowcharts are presented below, and where 'yes' or 'unknown' may be simply answered, with no analysis required, these answers have been provided.

3.2 Subterranean (Groundwater) flow

This section answers questions posed by Figure 1 of CPG4.

Question	Response	Action Required
1a. Is the site located directly above an aquifer?	No The site is underlain by the London Clay Formation	None
1b. Will the proposed basement extend beneath the water table surface?	No The site is underlain by the impermeable London Clay Formation.	None
2. Is the site within 100m of a watercourse, well, or potential spring line?	Yes The <i>Regent's Canal</i> forms the southern site boundary and is located minimum of approximately 3m from the proposed basement footprint. The <i>River Fleet</i> which is now culverted underground is located approximately 30m east of the site. Historical maps indicate that the River Fleet may have flowed through the site prior to being culverted.	Investigation and assessment
3. Is the site within the catchment of the pond chains on Hampstead Heath?	No	None
4. Will the proposed basement development result in a change in the proportion of hard surfacing?	No The site is generally covered by hardstanding and structures and underlain by impermeable London Clay.	None
5. As part of site drainage, will more surface water than at present be discharged to ground (e.g. via soakaways and/or SUDS)?	Yes The majority of surface water is likely to be discharged to the sewer network through existing connections. It is understood that two new connections will be made. SUDS options are being considered.	Investigation and assessment
6. Is the lowest point of the proposed excavation close to, or lower than, the mean water level in any local pond or spring lines?	No	None

Table 2. Responses to Figure 1 of CPG4

In summary, the site is underlain by the relatively impermeable London Clay Formation. Regional groundwater flow is likely to be to the south towards the *Regent's Canal* and *River Thames*, evidenced by the spring lines shown on Barton's 'Lost Rivers of London'. However, flow rates are considered to be extremely slow within the effectively impermeable London Clay, and there is no water table or general flow that is likely to be affected by basement construction.

There is the potential for localised and small quantities of perched water within the Made Ground or within sandy/silty horizons in the London Clay Formation and groundwater seepage is likely between the Made Ground and London Clay Formation interface.

The proposed development will not increase the proportion of impermeable surfaces and as such there is likely to be no additional recharge to the ground above that of the existing hydrogeological regime.

Lost rivers of London maps indicates that two tributaries of the *River Fleet* join approximately 50m north of the site boundary where the river then trends south east along Camden Street. Historical mapping for the site (Survey of the Borough of St Marylebone 1834) provided by the client, indicates that before the river was culverted it passed through the site. Evidence of this will be assessed during the ground investigation.

3.3 Slope/land stability

This section answers questions posed by Figure 2 of CPG4.

Question	Response	Action required
1. Does the site include slopes, natural or man- made, greater than about 1 in 8?	No The site is relatively flat	None
2. Will the proposed re-profiling of the landscaping at site change slopes at the property boundary to greater than about 1 in 8?	No	None
3. Does the development neighbour land including railway cuttings and the like with a slope greater than about 1 in 8?	No	None
4. Is the site within a wider hillside setting in which the general slope is greater than about 1 in 8?	No The topography of the surrounding region is relatively flat	None

 Table 3. Responses to Figure 2 of CPG4

Question	Response	Action required
5. Is the London Clay Formation the shallowest stratum on site?	Yes The London Clay Formation was encountered directly below a limited thickness of Made Ground during the current site investigation.	Investigation and assessment
6. Will any trees be felled as part of the proposed development and/or are any works proposed within any tree protection zones where trees are to be retained?	No Current drawings do not indicate the removal of any trees	None
7. Is there a history of shrink/swell subsidence in the local area and/or evidence of such at the site?	Unknown The London Clay Formation is susceptible to seasonal shrink/swell movements and it is likely that these will occur, particularly in close proximity to high water demand trees. The impact of this on the proposed development and adjacent properties should be assessed.	Investigation and assessment
8. Is the site within 100m of a watercourse or a potential spring line?	Yes The <i>Regent's Canal</i> forms the southern site boundary and is located minimum of approximately 3m from the proposed basement footprint. The <i>River Fleet</i> which is now culverted underground is located approximately 30m east of the site. Historical maps indicate that the River Fleet may have passed through the site prior to being culverted.	Investigation and assessment
9. Is the site within an area of previously worked ground?	No	None
10. Is the site within an aquifer?	No The London Clay Formation is classified as an 'Unproductive Strata'.	None
11. Is the site within 50m of the Hampstead Heath Ponds?	No The site is more than 2km downslope of the Hampstead Chain Catchment.	None
12. Is the site within 5m of a highway or pedestrian right of way?	Yes The site is adjacent to Kentish Town Road, Network Rail viaduct and pedestrian walkway along Grand Union Canal.	Investigation and assessment
13. Will the proposed basement significantly increase the differential depth of foundations relative to neighbouring properties?	Yes The neighbouring Network Rail infrastructure is likely to have shallow foundations.	Investigation and assessment

Question	Response	Action required
14. Is the site over (or within the exclusion zone of) any tunnels?	No The site is not within the exclusion zone of the northern line tunnels running below Kentish Town Road. However the impact stress relief and ground movement on the tunnels due to basement excavation will be assessed.	Investigation and assessment

In summary, an investigation and impact assessment is required to confirm ground conditions and assess the magnitude of ground movements that may result from basement excavation and construction as these may affect adjacent structures and infrastructure.

The site investigation will determine the presence and extent of the historical course of the River Fleet passing through the site. The founding level of the viaduct arch foundations will also be confirmed.

The impact assessment will determine potential damage caused by ground movements to adjacent structures and infrastructure, and will recommend measures to mitigate potentially damaging movements.

The impact assessment will focus primarily on the impact of ground movements on the Network Rail viaduct, LUL tunnels and National Grid cable runs following the profile of the canal wall along the southern boundary of the site.

3.4 Surface flow and flooding.

This section answers questions posed by Figure 3 of CPG4.

Question	Response	Action required
1. Is the site within the catchment of the pond chains on Hampstead Heath?	No	None
2. As part of the proposed site drainage, will surface water flows (e.g. volume of rainfall and peak run-off), be materially changed from the existing route?	Yes The majority of surface water is likely to be discharged to the sewer network through existing connections. It is understood that two new connections will be made. SUDS options are being considered.	Investigation and assessment

Table 4. Responses to Figure 3 of CPG4

3. Will the proposed development result in a change in the proportion of hard surfaced/paved external areas?	No The site is generally covered by hardstanding and structures and underlain by impermeable London Clay Formation.	None
4. Will the proposed basement result in a change to the profile of the inflows of surface water being received by adjacent properties or downstream watercourses?	Νο	None
5. Will the proposed basement result in changes to the quality of surface water being received by adjacent properties or downstream watercourses?	No	None
6. Is the site in an area known to be at risk from surface flooding or is it at risk from flooding because the proposed basement is below the static water level of a nearby surface water feature?	Yes Current flood mapping (Figure 15 CPG4) indicates that Kentish Town Road was impacted by flooding in 1975. However, the road was not impacted by the 2002 flooding in the region and the site is not within an area identified to be at risk of surface water flooding. It is considered that drainage networks in the region have been considerably upgraded since the 1975 flood event to mitigate the potential for future flooding along Kentish Town Road.	Investigation and assessment

In summary, the proposed basement is to be constructed in areas of existing hardstanding and is therefore not anticipated to impact surface water flow. The site is underlain by the relatively impermeable London Clay Formation. Additionally, the site was not impacted by recent 2002 flooding events in the region and is not within an area identified to be at risk of surface water flooding.

3.4.1 Conclusions

The items summarised below in Table 5 were identified as part of the Stage 1 screening process.

Table 5. Summary of Basement Impact Assessment requirements

Item	Description
1. 2.	Subterranean (Groundwater flow) Assess the potential impact on the Regent Canal forming the southern boundary Assess impact of the historical or current culverted course of the River Fleet on the proposed development
1. 2.	Slope and land stability Assessment of potential movements associated with construction in the London Clay Formation, including short and long term heave movements, settlement associated with retaining wall deflections, and ground movements around the basement perimeter. Shrink/swell behaviour is a possibility. An assessment of the impact the proposed excavation and basement installation could have on neighbouring structures and their foundations.
1	Surface flow and flooding Assess potential for flooding of basement due to historical flooding along Kentish Town Road (The above is addressed in Section 9)

4. SCOPING (STAGE 2)

This section of the report provides the scoping process (Stage 2) of CPG4, which is used to identify potential impacts of the new basement as set out in the screening process in Section 3 of this report, and to recommend an appropriate investigation strategy.

An intrusive investigation was undertaken within the footprint of Building D and Building E by CGL between November 2014 and January 2015. This investigation satisfies the requirements of the screening and scoping process and details of this investigation are summarised in Section 5. Reference should be made to the site investigation reports ^{3, 4} for detailed findings of the works. The conceptual site model is discussed within Section 5.5.

5. GROUND INVESTIGATION (STAGE 3)

5.1 Introduction

An intrusive investigation was undertaken within the footprint of Building D and Building E between November 2014 and January 2015. The investigation comprised 7 window sampler boreholes to a maximum depth of 5.0 metres below ground level (mbgl) and one cable percussion borehole (BH7) to 30.5mbgl.

The borehole arisings were recorded and representatively sampled by a suitably qualified geotechnical engineer from CGL in order to obtain samples for laboratory testing, and to characterise the near surface ground conditions across the site. Soil samples were obtained for chemical and geotechnical laboratory analysis. Standpipes were installed in all boreholes to enable subsequent gas and groundwater monitoring to be undertaken. Full details of the site investigation are provided in the Geotechnical and Geoenvironmental Interpretative Report prepared by CGL³.

The scope of the ground investigation is considered acceptable to satisfy the requirements of Stage 2 (Scoping and Investigation) of CPG4.

5.2 Summary

The ground conditions encountered during the intrusive investigation are summarised in Table 6.

Stratum	Top of stratum (mOD) [mbgl] ^ª	Typical thickness (m)
MADE GROUND Concrete overlying soft dark brown sandy gravelly silt. Sand is fine to coarse. Gravel is fine to coarse subrounded to subangular of brick, flint and occasional concrete.	25.79 [0.0]	1.5 to 3.0
Firm dark orange brown slightly silty CLAY with occasional fine selenite crystals [WEATHERED LONDON CLAY FORMATION].	22.79 to 24.29 [1.5 to 3.0]	7.4
Stiff closely fissured dark grey silty CLAY. Frequent fine selenite crystals noted. [LONDON CLAY FORMATION]	16.89 [7.4]	>21.6 (Base not encountered in boreholes)

Table 6. Summary of ground conditions encountered in on-site ground investigations

a. mOD = metres above Ordnance Datum

Further details of the soils encountered are provided in the following sections. A plot of SPT 'N' versus level (mOD) is presented in Figure 3 and a plot of Undrained Shear Strength, cu (kPa) versus level (mOD) is presented in Figure 4.

Little evidence of this historical river course was noted during the site investigation and it is expected that it may have been removed during the construction of the historical/current developments and infrastructure onsite. All historical mapping provided which shows the *River Fleet* passing through the site are dated before any infrastructure or developments have been constructed adjacent to our within the site footprint. However, should the historical river course be encountered onsite during pile installation or basement excavation, the depth and extend of alluvial deposits should be carefully recorded and the impact of this change in expected ground conditions on foundations and basement design should be carefully assessed.

5.2.1 Made Ground

The Made Ground was found to be relatively consistent across the majority of the site and comprised concrete or paving slabs overlying brown sandy gravelly silt or gravelly silty clay. No visual or olfactory evidence of contamination was noted in the boreholes.

5.2.2 London Clay Formation

The London Clay Formation was proved to a maximum depth of -4.71mOD. The upper 7.4m of the clay was found to consist of firm silty clay (Weathered London Clay Formation), becoming stiff (unweathered) from 16.89mOD. SPT 'N' values in this stratum ranged from 7 to 44 increasing with depth. Undrained shear strength values can be derived from these values using established Stroud correlations¹³. These values range from 31.5kPa to >198kPa.

Laboratory testing on samples of the London Clay Formation recorded undrained shear strength (c_u) values of 64kPa to 344kPa, increasing with depth.

Moisture content and Atterberg Limits recorded within the clay are summarised in Table 7.

Strata	Moisture content (%)	Liquid limit (%)	Plastic limit (%)	Modified plasticity index, I' (%)
London Clay Formation	24 to 34	65 to 79	25 to 29	38 to 50

Table 7. Summary of liquid limits and Atterberg limits

¹³ Tomlinson, M.J. (2001) Foundations Design and Construction (7th Ed.). Pearson Prentice Hall

These indicate that the material at this site is a high to very high plasticity clay of medium to high volume change potential.

5.3 Groundwater

No groundwater strikes were recorded in the cable percussion boreholes during drilling and boreholes remained dry when left open overnight. However, perched groundwater was encountered from 1.0mbgl in Window Sample borehole WS9, within the Made Ground.

Groundwater was noted in all boreholes during the subsequent monitoring visits as summarised in Table 8. Due to the nature of the site, some positions were not accessible during monitoring visits due to parked vehicles.

Borehole	Groundwater level (mOD)					
[surface	[Level of base of well (mOD)]					
level (mOD)]	19/11/14	01/12/14	18/12/14	08/01/15	13/01/15	
BH7	18.34	18.55	18.78	NR	18.69	
[25.79]	[18.29]	[18.27]	[18.24]		[18.26]	
WS9	24.59	24.54	NR	24.63	24.71	
[25.79]	[22.86]	[23.01]		[23.07]	[22.99]	
	20/01/15	26/01/15	06/01/15	10/02/15	16/02/15	
WS10	21.52	21.70	21.58	22.50	22.22	
[26.0]	[21.0]	[21.0]	[21.0]	[21.0]	[21.0]	
WS11B	21.01	21.34	21.05	21.62	21.26	
[25.8]	[20.8]	[20.8]	[20.8]	[20.8]	[20.8]	
WS12	21.38	21.64	21.40	22.66	21.82	
[25.9]	[21.0]	[21.0]	[21.0]	[20.9]	[21.0]	

Tahle S	Summary of	aroundwater	monitorina	undertaken	to dat	tρ
rubic o.	Summary Oj	groundwater	monitoring	unacitakcii	10 441	, L

The monitoring records indicate that standing groundwater across the site is at approximately 1.1mbgl to 7.45mbgl. The groundwater level monitored in WS9 corresponds to the perched water level recorded within the Made Ground during drilling. It is considered that the groundwater in the CP boreholes and remaining WS holes during monitoring is likely to be due to water seepage at the interface between the Made Ground and London Clay Formation and also potentially due to very slow seepage within the silty sandy layers/pockets within the upper weathered London Clay Formation.

Recharge tests undertaken during current monitoring visits indicate that the infiltration rate of perched water is negligible with water levels within the boreholes recovering by less than 50mm over a four hour monitoring period.

Based on the above and taking account of the close proximity of the canal, a long term design water level of 25mOD is recommended i.e. approximately 1mbgl.

5.4 Geotechnical Design Parameters

Geotechnical design parameters are recommended based on the information from the intrusive investigation and published data from the well-studied London geology. These are summarised in Table 9. The values are unfactored (Serviceability Limit State) parameters and are considered to be characteristic values for the local soils.

Table 9. Geotechnical design parameters

Stratum	Depth (mbgl) Level [Mod]	Bulk Unit Weight γ _b (kN/m ³)	Undrained Cohesion c _u (kPa) [c']	Friction Angle φ' (°)	Young's Modulus E _u (MPa) [E']
Made Ground	0 [26.0]	18	30 [0]	26 ^d	18 ^b [13.5] ^c
London Clay Formation	2 [24.0]	20	50 + 6z ^e [5]	24 ^d	30 + 3.6z ^b [22.5 + 2.7z] ^c

a. Burland et. al (Eds) (2001) Building response to tunnelling, CIRIA Special Publication 200, CIRIA

b. Based on 600c_u. Burland, Standing J.R., and Jardine F.M. (eds) (2001), Building response to tunnelling, case studies from construction of the Jubilee Line Extension London, CIRIA Special Publication 200. Increased to 1000 c_u for London Clay Formation within retaining wall deflection calculations.

c. Based on 0.75Eu - Burland, Standing J.R., and Jardine F.M. (eds) (2001), Building response to tunnelling, case studies from construction of the Jubilee Line Extension London, CIRIA Special Publication 200.

d. BS 8002:1994 Code of practice for Earth retaining structures, British Standards institution.

e. z = depth below surface of London Clay Formation.

5.5 Conceptual site model (Stage 3)

A conceptual site model (CSM) has been developed based on the available data and in accordance with the recommendations of the Camden geological, hydrogeological and hydrological study² (CGHHS) report.

A basement plan is shown in Figure 5 and Figure 6 which shows critical cross-sections through the identified critical constraints around the perimeter of the basement. The main construction activities causing movement of the neighbouring properties and infrastructure are summarised below;

1. Vertical and lateral ground movements due to contiguous piled wall installation.

- 2. Stress relief and heave movements due to excavation of the basement within the piled wall. This will be considered over the short and long term.
- 3. Ground settlement due to piled wall deflection during excavation in front of the wall.

6. BASEMENT IMPACT ASSESSMENT - LAND STABILITY (STAGE 4)

6.1 Introduction

This section provides calculations to assess ground movements that may result from the construction of the proposed basement and how these may affect the adjacent structures and infrastructure. It is understood that a 0.6m diameter, 0.75m spacing contiguous piled wall will form the temporary and permanent support system for the excavation.

6.2 Critical sections for analysis

Based on discussion with Walsh Associates and with reference to current development drawings, a number of constraints have been identified (see Figure 5 and Figure 6) that will be considered within the ground movement analysis and damage assessment predictions sections of this report. The identified constraints and critical sections that will be assessed are summarised in the following sections.

6.2.1 Section adjacent to Network Rail viaduct

The site is bordered to the north by a Network Rail viaduct. Current drawings indicate that the proposed basement will not be located closer than 3m from the viaduct.

With reference to findings of viaduct arch foundation inspection pits undertaken by CGL as part of the current site investigation, the viaduct arch footings are founded at approximately 2.5mbgl (23.5mOD) in the region.

A surcharge load of 200kPa for the viaducts has been provided by Walsh Associates for use within the ground movement calculations. The viaducts in the region are approximately 10m wide perpendicular to the basement.

6.2.2 Section adjacent to London Underground tube tunnels

Current drawings indicate that two Northern Line tunnels run below Kentish Town Road at the eastern boundary of the site. The crowns of the tunnels are at 12.3mOD (13.5mbgl) and 11.4mOD (14.4mbgl) and positioned approximately 4m from the plan location of the proposed basement. Based on this the LUL tunnels are considered to be within the zone of influence from ground movements due to the basement excavation and construction. The impact of this will be assessed within the ground movement analysis.

6.2.3 Section adjacent to National Grid cables and Grand Union Canal wall

A concrete encasement harbouring National Grid (NG) cable infrastructure is located along the southern site boundary and follows the profile of the canal wall. The impact of predicted ground movements on this infrastructure will be assessed. Current drawings indicate that the cable run and dock wall come within 1m to >3m of the proposed basement wall. It will be assumed within the assessment that the concrete encasement for the cable run is founded at 24.5mOD (1.5mbgl).

Through discussion with the client it is understood that the allowable deflection criteria for the cable run is 5mm of differential movement per 5m span i.e. angular distortion of 1:1000. This will be assessed for both lateral and vertical ground movement profiles.

The movement of the canal wall will also be assessed with a similar ground movement profile expected for that calculated for the National Grid infrastructure. Movements in the region of 10mm vertical and horizontal are considered tolerable for the canal wall.

6.3 Ground movements arising from basement excavation

The soils at basement formation level will be subject to stress relief during excavation, as some 4.5m of overburden is removed to form the new basement. This is likely to give rise to a degree of elastic heave over the short term and potential heave or settlement over the long term as pore pressures recover in the London Clay Formation. It is understood that piled foundation and suspended floor slabs will be adopted for the new development. Based on this, it will be assumed that there is little net reduction in stress relief below the basement slab in the long term. This is considered to model the worst case with regard to ground movement and corresponding impact on neighbouring structures and infrastructure.

The magnitude of these movements has been calculated using OASYS Limited VDISP (Vertical DISPlacement) analysis software. VDISP assumes that the ground behaves as an elastic material under loading, with movements calculated based on the applied loads and the soil stiffness (Eu and E') for each stratum input.

The proposed bulk basement excavation gives rise to a net unloading of the underlying strata both during construction and over the long term. The excavation will unload the soils at the basement formation level by some 90kPa. This value assumes a typical bulk unit weight of 20kN/m³ for the excavated soils.

The combined effects of both the immediate undrained unloading and the long-term drained recovery of pore pressures have been analysed and the results are presented as displacement contour plots within Figure 7 and Figure 8 for the short and long term respectively. The ground movements within the contour plots are taken from a single displacement grid applied at 21.5mOD i.e. basement formation level. Displacement lines have been added to the VDISP models corresponding to the line of the critical sections identified. These displacement profiles will be used to illustrate the ground movement profile at these locations and to undertake a damage assessment for the relevant structure. Due to the curvature of the National Grid (NG) infrastructure on plan, displacement points have been modelled at 2m centres (and at a level of 24.5mOD) along the centre line of the service run.

Heave movements will be counteracted by ground settlement behind the piled wall due to pile installation and deflection, the effects of which are considered in subsequent report sections.

The presence of stiff piles and pile caps in the soil below formation level have been ignored in the analysis. These elements will help to reduce heave movements further therefore heave movements, and values predicted in the analysis are likely to be greater than actual movements.

The presence of the contiguous piled wall around the perimeter of the excavation has also been ignored in the analysis. It is anticipated that the skin friction of the piled wall would further reduce heave movements around the perimeter of the basement.

The results of the analysis are summarised in Table 10 below for both short and long term. The VDISP output can be provided separately upon request.

Stage	Centre of excavation (mm)	Viaduct ^a (mm)	LUL tunnels ^a (mm)	NG cable & dock wall ^b (mm)
Short term heave movement	10	1.5	2.0	2.5
Long term heave movement	24	5.5	5.0	8.5

Table 10. Summary of maximum heave movements within excavation and at constraint locations

a. Based on results of displacement line at level and plan location of constraint

b. Based on results of displacement points at 2m centres along line of cable run

6.4 Ground movement due to retaining wall deflection

This section presents the results of retaining wall analysis to provide predictions of ground movement behind basement walls in the location of the critical sections. The proposed construction methodology and sequence has been derived based on discussions with Walsh Associates and with reference to current drawings (Appendix A).

6.4.1 Proposed construction sequence

It is proposed to adopt a bottom up construction sequence. Given the size of the wall, depth of excavation and position of the viaduct from the wall it is proposed to cantilever the wall along the western, northern and eastern site boundary in the temporary condition. Along the southern site boundary and where the canal and NG infrastructure comes within 5m of the wall it is proposed to construct a temporary berm and install high level propping to control ground movement. The typical construction sequence for this region of the site is summarised below.

- 1. Install contiguous piled wall, comprising 600mm diameter piles at 750mm spacing.
- 2. Excavate to 24.5mOD to allow sufficient space to construct capping beam and excavate a temporary berm. It is assumed that the berm will be 1m wide at the top and 4m wide at the base i.e. 45 degree batter. Top of capping beam is typically at 26.0mOD.
- 3. Install raking temporary propping at 25.5mOD prior to removing berm.
- 4. Excavate to formation level at 21.5mOD and construct basement slab.
- 5. Construct ground floor slab prior to removing temporary prop at 25.5mOD.

In total, three different wall analyses have been undertaken.

- 1. The first analysis models a viaduct surcharge of 200kPa at a distance of 3m from the wall and level of 23.5mOD. The wall is assumed to be cantilevered in the short term.
- The second calculation models the presence of the canal with a nominal surcharge of 10kPa behind the wall. The piled wall is assumed to be propped in the short term.
- 3. The third calculation models the presence of a nominal 10kPa surcharge behind the wall and 20kPa surcharge at 4m from the wall (Kentish Town Road) along the eastern boundary. The piled wall is assumed to be cantilevered in the short term.

6.4.2 Analysis results

Analysis of the retaining wall has been undertaken using WALLAP embedded retaining wall analysis software. Serviceability limit state (SLS) criteria have been used to determine wall deflections. Calculation sheets are provided within Appendix C and summarised within Table 11. The corresponding ground settlement at the critical sections is also provided.

The distance to negligible lateral movements behind the wall has been calculated assuming the ground movement occurs within a soil wedge based on a 45 degree load spread from the base of the excavation depth.

Vertical ground movement has been calculated by taking 50% of the displacement profile predicted from WALLAP. This is in line with the results of finite element analysis reported within *CIRIA C580 – Embedded retaining wall design 2003*.

Section	Maximum wall deflection (mm)	Level of maximum deflection [mOD]	Lateral deflection at location/level of constraint (mm)	Vertical settlement below location of constraints (mm)
Railway Viaduct	15	[26]	3.3	4.5
LUL tunnels	15	[26.0]	Negligible	Negligible
NG & canal wall	4	[23.5]	2.0	2.0

Table 11: Results of WALLAP analysis

The analysis indicates that an embedment of 2.5m below formation level is sufficient to satisfy global stability for both the temporary propped and cantilevered wall sections. With reference to the pile working load profiles presented within the current site investigation report by CGL³ and taking the worst case wall loading provided by Walsh (255kN/m or 190kN/pile), the pile wall embedment predicted within the WALLAP analysis is sufficient to support this load. Final detailed pile design will be undertaken by the piling contractor awarded the works.

Based on the above, it will be assumed for the purpose of this assessment that piles within the contiguous wall will be 7.0m long.

In regard to indicative wall displacements that may be expected during excavation, it should be noted that WALLAP uses a Winkler spring analysis to determine the wall displacements. In a Winkler medium, springs are used to represent a continuum and there is no transfer of shear stresses between the springs. In general, the application of this concept leads to an overestimation of structural deformations; hence the resulting wall

displacements and corresponding impact on the nearby structures and infrastructure may be over-predicted by the WALLAP program.

6.5 Ground movement due to retaining wall installation

With reference to CIRIA C580¹⁴, vertical and horizontal surface movements due to installation of a contiguous piled wall are generally in the region of 0.04% of the wall depth assuming a good standard of workmanship. The distance behind the wall to negligible movement is 1.5 times wall depth for horizontal movements and 2 times wall depth for vertical movements.

Based on the ground conditions, CGL's experience with similar projects¹⁵ and by adopting a 'hit and miss' pile installation sequence onsite, the maximum ground movement due to piled wall installation are likely to be in the region of 0.02% of the wall depth. The value of 0.02% will be adopted for this assessment.

The WALLAP analysis indicates that the pile length will be in the region of 7.0m. This pile length would give rise to a predicted horizontal and vertical movement of 1.4mm immediately adjacent to the piled wall.

Predicted installation movements are summarised in Table 12. The corresponding ground movement at the location of adjacent constraints is summarised below.

Section 1	Ground movement (mm) ^a	Distance behind wall to negligible movement (m)	Deflection at viaduct (mm) ^b	Deflection at LUL tunnels (mm) [°]	Deflection at NG cable & dock wall (mm) ^d
Vertical movement	1.4	14.5	1.1mm	Negligible	1.2mm to negligible movement
Lateral movement	1.4	10.5	1mm	Negligible	1.1mm to negligible movement

 Table 12. Vertical movement due to pile installation

^a Ground movement immediately behind piled wall

^b Viaduct located typically 3m from the basement wall

^c LUL tunnels located typically 4m from the basement wall and 13.5mbgl

^d NG cable & dock wall located between 2m and 35m from the basement wall

¹⁴ CIRIA C580 (2003) Embedded Retaining Walls – guidance for economic design

¹⁵ Ground Engineering (September 2014). Prediction of party wall movements using CIRIA Report C580

6.5.1 Ground movement due capping beam deflection

The potential ground movement due to the lateral deflection of the capping beam for the contiguous piled wall adjacent to the National Grid infrastructure has been assessed. This information will be used within the assessment of the horizontal displacement profile. An Indicative deflection value has been calculated using standard beam deflection formula for uniformly loaded sections.

Free span for the capping beam between temporary propping has been assumed to be 10m. Loading values (kN/m) have been obtained from the results of the WALLAP analysis. The size of the reinforced concrete capping beam has been taken from detailed drawings. The results of the deflection analysis are summarised in Table 13 below.

Table 13. Capping beam deflection

Critical section Reference	Capping beam size (mm)	Free span (m)	Load (kN/m)	Max. deflection (mm)
NG cable & dock wall	Reinforced concrete 900 x 1200	10	32.0	2

It will be assumed for the purpose of the damage assessment, as a worst case ground movement scenario, that the NG cable run will deflect laterally 1.5mm where it comes within 3m of the piled wall. The impact of capping beam deflection on the NG infrastructure is assumed to be negligible when the offset distance is greater than 5m (i.e. beyond 45 degree zone of influence).

7. DAMAGE ASSESSMENT

The calculated ground movements have been used to assess potential 'damage categories' that may apply to neighbouring structures and infrastructure due to the proposed basement construction method and assumed construction sequence. The methodology proposed by Burland and Wroth¹⁶ and later supplemented by the work of Boscardin and Cording¹⁷ has been used, as described in *CIRIA Special Publication 200*¹⁸ and *CIRIA C580*.

General damage categories are summarised in Table 14 below:

Category	Description
0 (Negligible)	Negligible – hairline cracks
1 (Very slight)	Fine cracks that can easily be treated during normal decoration (crack width <1mm)
2 (Slight)	Cracks easily filled, redecoration probably required. Some repointing may be required externally (crack width <5mm).
3 (Moderate)	The cracks require some opening up and can be patched by a mason. Recurrent cracks can be masked by suitable linings. Repointing of external brickwork and possibly a small amount of brickwork to be replaced (crack width 5 to 15mm or a number of cracks > 3mm).
4 (Severe)	Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows (crack width 15mm to 25mm but also depends on number of cracks).
5 (Very Severe)	This requires a major repair involving partial or complete re-building (crack width usually >25mm but depends on number of cracks).

Table 14. Classification of damage visible to walls (reproduction of Table 2.5, CIRIA C580)

The above assessment criteria are primarily relevant for assessing masonry structures founded on shallow footings. Therefore, this methodology will be adopted within the damage assessment for the NR viaduct. The movement of the NG cables and LUL tunnels will be assessed against assessment criteria provided and published limits. It is understood that movements in the region of 10mm are acceptable for the canal wall.

¹⁶ Burland, J.B., and Wroth, C.P. (1974). Settlement of buildings and associated damage, State of the art review. Conf on Settlement of Structures, Cambridge, Pentech Press, London, pp611-654

¹⁷ Boscardin, M.D., and Cording, E.G., (1989). *Building response to excavation induced settlement*. J Geotech Eng, ASCE, 115 (1); pp 1-21.

¹⁸ Burland, Standing J.R., and Jardine F.M. (eds) (2001), *Building response to tunnelling, case studies from construction of the Jubilee Line Extension London*, CIRIA Special Publication 200.

7.1 Impact Assessment – Network Rail viaduct

The results of the predicted ground movement below the viaduct due to the proposed basement development have been compiled to determine the overall lateral and vertical deflection of the viaduct.

Figure 9 shows the combined lateral movement of the piled wall due to pile installation and deflection. The maximum deflection of the wall at the level of the viaduct foundation is predicted to be 11mm. The corresponding horizontal movement of the viaduct (located a minimum of 3m from the wall and at a level of approximately 23.5mOD) has been calculated to not exceed 3.7mm. This has been calculated assuming that the movement reduces linearly over a distance of 5.5m behind the wall i.e. within a 45 degree soil wedge spread from formation level.

Combined vertical movement profiles below the viaduct, including short and long term heave due to excavation, retaining wall installation and wall deflection due to excavation are summarised in Figure 10. The profile indicates that the movement below the viaduct ranges between 2mm of heave 3m from the piled wall reducing to negligible movement at the opposite end of the viaduct (13m from the basement wall). The corresponding maximum deflection beneath the viaduct is 1mm.

Table 15 incorporates a summary of the maximum lateral and vertical deflection (mm) for the viaduct and prediction of the corresponding horizontal strain and vertical deflection ratio. The width of the viaduct has been assumed from development drawings to be approximately 10m.

Constraint	Horizontal movements (mm)	Maximum deflection (mm)	Horizontal Strain ε _h ^b (%)	Deflection ratio Δ/L ^ª (%)	Damage category
Viaduct	3.7	1	0.037	0.01	0 – Negligible

Table 15. Summary of groun	l movements and a	corresponding d	amage category
----------------------------	-------------------	-----------------	----------------

a. See Figure 2.18 (a) CIRIA C580 (2003) Embedded retaining walls guidance for economic design. (L = length of adjacent structure in metres, perpendicular to basement; Δ = relative deflection)

b. See Box 2.5 (v) CIRIA C580 (2003) Embedded retaining walls guidance for economic design. (δ_h = horizontal movement in metres).

Based on the above and assuming a good standard of workmanship and adopting a 'hit and miss' contiguous pile wall installation method, the estimated maximum damage category imposed on the Network Rail viaduct will be 'Category 0' corresponding to negligible damage.

The structure interaction chart for the viaduct is presented in Figure 11.

7.2 Impact Assessment – London Underground tube tunnels

The results of the VDISP analysis indicate that the proposed basement construction will cause a maximum stress reduction of 39kPa on the nearest LUL tunnel running below Kentish Town Road. This corresponds to a stress reduction of approximately 14% assuming the shallowest tunnel is at 13.5mbgl and the weight of the overburden material is 20kN/m³. The maximum vertical deflection of the tunnel is predicted to be 7mm.

The predicted combined short and long term displacement (mm) and stress change profiles along the crown of the tunnel are presented within Figure 12.

With reference to LUL Track Dimensions and Tolerances Standard (2007)¹⁹, the allowable longitudinal deflection of the tunnel/tracks is 5mm per 5m span. Additionally, the radius of curvature of the tunnel should not be less than 15km.

An assessment of the differential movement of the tunnel at 5m intervals (Figure 12) predicts a maximum deflection of 3mm which is below the assessment criteria. Additionally, the maximum radius of curvature of the tunnel at the maximum point of deflection is predicted to be 113km which is also within the assessment criteria.

7.3 Impact Assessment – National Grid cables and Grand Union Canal wall

To assess the impact of the proposed basement development on the NG infrastructure and canal wall the predicted lateral and horizontal movement profiles have been combined to determine the overall worst case movement.

The vertical movement profile along the line of the NG infrastructure and canal wall due to short and long term heave, settlement due to pile installation and deflection is presented within Figure 13. It should be noted that the variation in settlement due to pile installation and deflection takes account of the varying offset distance between the proposed piled wall and existing line of the NG infrastructure and canal wall. The corresponding differential movement at typically 5m centres (i.e. assessment criteria) has also been plotted.

The results indicate that the maximum combined vertical movement of the infrastructure is 8mm and the maximum differential movement over a 5m span is 3mm. The overall average differential movement is typically less than 1.0mm. The results indicate that the

¹⁹ London Underground Limited. Track Dimensions and Tolerances. (2007)

vertical movement of the NG infrastructure and canal wall fall below the assessment criteria.

The lateral movement profile along the line of the NG infrastructure and canal due to pile installation, pile deflection due to excavation and capping beam deflection is presented within Figure 14. It should be noted that the variation in lateral deflection takes account of the varying offset distance between the proposed piled wall and existing line of the NG infrastructure and canal wall. The corresponding differential movement at typically 5m centres (i.e. assessment criteria) has also been plotted.

The results indicate that the maximum combined lateral movement of the infrastructure is 5mm and the maximum differential movement over a 5m span is 3.8mm. The overall average differential movement is typically less than 1.5mm.

The results of the assessment indicate that the vertical and lateral movement of the NG infrastructure and canal wall due to the proposed basement development fall below the assessment criteria.

8. SUBTERRANEAN (GROUNDWATER) FLOW

8.1 Introduction

This section addresses outstanding issues raised by the screening process regarding groundwater flow.

8.2 Impact on groundwater flow

Based on the groundwater observations from the boreholes on and off site, site monitoring data and CGL's experience of groundwater conditions in the area, it is anticipated that little or no groundwater will be encountered during the basement excavation and any seepage that may be encountered will be limited and likely to be encountered at the interface of the London Clay Formation and Made Ground and potentially within sandy layers and pockets within the near surface Weathered London Clay Formation. This should be controllable by adopting localised pump and sump systems.

The hydrogeological regime is typical of London conditions, with the London Clay Formation providing an effectively impermeable barrier to vertical flow in the ground, leaving any lateral flows to occur within the Made Ground. Given the topography of the area, it is likely that hydraulic gradients will be relatively flat and consequent groundwater flow rates will be minimal.

Based on the above, it is considered that the new development will have little impact on localised groundwater flows and generally have a negligible impact on the local groundwater regime.

8.3 Recommendations for groundwater control

It is anticipated that due to the low permeability of the London Clay Formation and presence of a contiguous piled wall around the perimeter, it is likely that inflows during the construction will be relatively minor and generally dewatering will not be required. However isolated and limited perched water may be encountered in the shallow Made Ground or within more sandy partings of the upper layers of the Weathered London Clay Formation. Observations on groundwater should be recorded during excavation and appropriate mitigation strategies put in place if water is encountered.

9. SURFACE FLOW AND FLOODING

It is understood that surface waters will join the existing drainage infrastructure (albeit via basement pumping if a gravity fed solution is not feasible), with no significant changes in peak drainage outflows anticipated from the site. As already identified the site lies outside any EA designated Flood Zone.

The 'Lost Rivers of London' map produced by Barton indicates that two tributaries of the River Fleet join approximately 50m north of the site boundary where the river then trends south east along Camden Street. Historical mapping for the site (Survey of the Borough of St Marylebone 1834) provided by the client, indicates that before the river was culverted it passed through the site. Little evidence of this historical river course was noted during the site investigation. However, it is expected that the river bed may have been removed during the construction of the historical and existing developments and infrastructure onsite.

With reference to the Arup report², the site is approximately 2.2km southeast of the catchment for the pond chains on Hampstead Heath. Additionally, with reference to the EA website the site is not within a Flood Risk Zone.

Current flood mapping (Figure 15 CPG4) indicates that Kentish Town Road (KTR) was impacted by flooding in 1975. However, the road was not impacted by the 2002 flooding in the region or by the serious national floods in 2007 and 2012. It is noted in the London Borough of Camden flood risk management strategy²⁰ and Report of the Floods Scrutiny Panel²¹ that the 1975 flood event was caused by the heaviest and most concentrated rainfall event recorded in this part of Camden. This 1 in 100 year event was preceded by a very dry summer and is therefore not considered to be representative of typical conditions in the area. In addition, the site is not within an area identified by the Environment Agency to be at risk of surface water flooding. Following the 2002 flood event in the region (not impacting KTR), new infrastructure, including larger diameter sewers and a holding tank, was installed in the Borough to mitigate the potential for future flooding. Additionally, the proposed development is positioned approximately 4m from Kentish Town Road.

²⁰ London Borough of Camden (2014) Managing Flood Risk in Camden: The London Borough of Camden flood risk management strategy

²¹ London Borough of Camden (2003) Floods in Camden: Report of the Floods Scrutiny Panel

Based on the above, it is considered that the development will have a negligible impact on surface water flow and flooding. In addition, the basement is likely to provide enhanced attenuation given its requirement to be drained in accordance with Building Regulations.

10. CONSTRUCTION MONITORING

The results of the ground movement analysis suggest that with good construction control, damage to adjacent structures (NR viaduct) generated by the assumed construction methods and sequence is likely to be (within Category 0) 'negligible'. Additionally, movements predicted in the vicinity of the canal wall, NG and LUL infrastructure are within allowable limits, subject to confirmation from relevant stakeholders.

A formal monitoring strategy should be implemented across the site and especially in the regions identified as being critical and analysed within this assessment in order to observe and control ground movements during construction.

The system should operate broadly in accordance with the 'Observational Method' as defined in CIRIA Report 185²². Monitoring can be undertaken by using vertical inclinometers installed within selected contiguous piles to determine wall displacement as excavation and construction progresses, while further use of survey targets affixed to the top of the piled wall and face of the adjacent infrastructure can determine if any horizontal translation of the piled wall or tilt/settlement of the neighbouring structure is occurring. Alternatively, remote tilt beams can be connected to the façade of the viaducts and top of the NG cable run structure to provide 'real time' monitoring of this structure as excavation progresses.

Precise levelling can be undertaken at regular intervals around the perimeter of the excavation and in the region between the basement and identified critical constraints to give an early and accurate indication of deviating ground movements. It is recommended that a specialised monitoring contractor is employed to install and monitor the instrumentation on site.

It is recommended that vibration monitoring also be considered during the piling works. It is also recommended that a condition survey be undertaken of the Northern line LUL tunnels.

Monitoring data should be checked against predefined trigger limits and can also be further analysed to assess and manage the damage category of the adjacent buildings as construction progresses. The data could also potentially be used to undertake back analysis calculations and value engineer certain elements of the construction.

²² Nicholson, D., Tse, Che-Ming., Penny, C., The Observational Method in ground engineering: principles and applications, CIRIA report R185, 1999.

10.1 Construction monitoring – Installation

Monitoring of adjacent structures/infrastructure should commence a minimum of two weeks prior to piling beginning on site, and incorporate a 'baseline' data set taken prior to any excavation works. Monitoring should be continued regularly throughout pile installation with the data reviewed continuously to update the empirical assumptions made to date. Monitoring points should be established on capping beams, neighbouring properties/infrastructure and the ground between the excavation and identified critical constraints.

10.2 Construction monitoring – Excavation

The monitoring data obtained during pile installation should be reviewed prior to excavation and used to calibrate 'trigger limits'. Table 16 shows typical trigger level divisions and appropriate actions to take within each division. Trigger values can be provided based upon a review of the ground movements once the design and construction method/sequence is finalised.

Inclinometers should be installed in critical piles at an appropriate spacing for the length of the retained wall.

Reference targets should be installed on capping beams and on neighbouring property/infrastructure where appropriate, with precise levelling points installed along the ground behind the wall to correlate with values from the inclinometers (in the basement walls) and survey targets (on the face of critical neighbouring structures). By adopting this approach the movement of the wall, ground behind and neighbouring property can be compared to that of the VDISP/WALLAP analysis and damage category assessment plots. The presence of remotely read tilt beams will provide early warning signs of movement trends. Depending on the limits for the LUL tunnels electronic distance meter (EDM) surveys could be undertaken using robotic Total Station. Alternatively, Shape Accel Array (SAAs) could be installed along the crown and around the intrados of the tunnel to measure longitudinal and transvers deflections remotely and in 'real time'.

In addition, a pre-commencement condition survey of the constraints is recommended with strain/crack gauges applied to any existing defects to monitor changes brought about by construction activities.

Data from building targets and precise levels should be referred back to an appropriate datum (bench marks) positioned outside the zone of influence of ground movement.

Table 16: Proposed trigger limits – basement construction

Trigger Limit based on absolute movement	Outcome	Action
Trigger limits can be determined based on finalised design, construction method and sequence	GREEN	Works can proceed as normal and monitoring to continue at regular intervals as specified
Trigger limits can be determined based on finalised design, construction method and sequence	AMBER 1	Increase monitoring frequency, review data and check instrumentation calibration and accuracy
Trigger limits can be determined based on finalised design, construction method and sequence	AMBER 2	Reduce excavation works in the area, increase monitoring frequency, review data/trends and carry out visual inspections
Trigger limits can be confirmed based on finalised design, construction method and sequence	RED	Stop all works in the area, implement contingency plan and a detailed review of the available monitoring data should be undertaken by an engineering review panel

11. NON-TECHNICAL SUMMARY

11.1 General

The findings of this Basement Impact Assessment are informed by site investigation data, information regarding construction methods provided by the client and assumed construction sequence and detail.

- From the available information, it is considered that the proposed basement construction will have a negligible effect on groundwater, surface water and flooding at this site.
- Little evidence of this historical river course of the Fleet was noted during the site investigation and it is expected that it may have been removed during the construction of the historical/current developments and infrastructure onsite. All historical mapping provided which shows the *River Fleet* passing through the site are dated before any infrastructure or developments were constructed in the region. However, should the historical river course be encountered onsite during pile installation or basement excavation, the depth and extent of alluvial deposits should be carefully recorded and the impact of this change in expected ground condition on foundations and basement design should be carefully assessed.
- The construction of the basement will generate ground movements due to a variety of causes including; heave due to excavation and ground settlement due to pile installation and deflection during excavation.
- An assessment of the results of the ground movement analysis and displacement profiles indicate that these movements will give rise to a damage category within 'Category 0' (negligible damage) for the Network Rail viaduct.
- Combined vertical and horizontal ground movements predicted along the line of the LUL tunnel and NG infrastructure fall below current limits recommended. Additionally, the predicted movement of the canal wall is below the assessment criteria.
- There is the potential for localised perched water within the shallow Made
 Ground, but this is likely to be very limited and underlain by impermeable clay.
 Additionally, if the historical course of the river fleet is encountered there may also

be water present within this material. Observations on groundwater should be carefully recorded during excavation. Should perched groundwater be encountered, a temporary pumping strategy will need to be implemented to ensure the excavation and formation levels are kept dry prior to blinding. This could be achieved by the use of, for example, a localised sump and pump system.

• It is recommended that an appropriate monitoring regime is adopted to manage risk and potential damage to the identified neighbouring constraints.

11.2 Cumulative impacts

The ground movement and impact assessments have indicated that damage to neighbouring properties will be within allowable limits. Therefore, it is considered that there are no cumulative impacts in respect of ground or slope stability.

Groundwater was not encountered during the investigation and boreholes generally remained dry when left open overnight. Although groundwater was noted in the boreholes during subsequent monitoring, it is considered that the groundwater in the boreholes is due to water seepage at the interface between the Made Ground and London Clay Formation and also potentially due to very slow seepage within the silty sandy layers/pockets within the upper weathered London Clay Formation. Additionally, bailing of the boreholes during current monitoring visits confirm that that the infiltration rate of perched water is negligible. It is assumed based on the above that the development will have no significant impact on the flow of ground water in the region and would not contribute further to any cumulative effects.

It is understood that surface waters will join the existing drainage infrastructure (albeit via basement pumping if a gravity fed solution is not feasible), with no significant changes in peak drainage outflows anticipated from the site. The site is currently covered by hardstanding and is underlain by the relatively impermeable London Clay Formation. On this basis, the development is not considered to contribute to any significant cumulative impact with regard to surface flow or flooding.

Based on the results of the ground movement assessment and taking account of the distance to the other proposed basement blocks, the cumulative impact of these basements and associated ground movements on the NR infrastructure will not change considerably compared to current predictions.

FIGURES

Ņ									
en ns									
rder	NO Rej by	TE: produc the cli	ed fro ent	om draw	ings and	d infor	mation pr	ovided	
	*	*		*					
	Rev	Date		Commen	ts				
ARDE				С	G	L	Card Geoted 4 Godalming Centre Woolsack W Godalming Surrey GU7 1XW T: 01483 31	hnics Ltd g Business /ay 0600	
	Proje	ect	Carr	nden Loo	k Villag	e Phas	se 2, Lond	on	
7	Clier	nt	Wal	sh Asso	ciates				
	Drav	ving title	Figu plar	ire 5 Cor n & cons	nceptual traints	l site n	nodel - ba	sement	
	Scale	e(s) NTS		Job No.	CG/180)67a			
	Drawn Checked	JLA JMS ed RIP	21/01/15 21/01/15	Dwg No.	CG/180)67a-1	01	Rev. *	
	©	This drawi or amende	ng is the o	copyright of (t the written	Card Geotech approval of (inics Limit Card Geot	ed. It may not b echnics	e reproduced	

NC Re)TE: produced	from drawings and in	formation provided	
NC Re by	DTE: produced the client	from drawings and in	formation provided	
NC Re by *	DTE: produced the client Pate	from drawings and in	formation provided	
NC Re by *	DTE: produced the client * Date	from drawings and in * Comments CGCC	formation provided Card Geotechnics Ltd 4 Godalming Business Centre Woolsack Way Godalming Surrey	
NC Re by *	DTE: produced the client * Date	from drawings and in * Comments	formation provided Card Geotechnics Ltd 4 Godalming Business Centre Woolsack Way Godalming Surrey GU7 1XW T: 01483 310600	
NC Re by * Proj	DTE: produced the client * Date	from drawings and in * Comments CGGL	formation provided Card Geotechnics Ltd 4 Godalming Business Centre Woolsack Way Godalming Surrey GU7 1XW T: 01483 310600 hase 2, London	
NC Re by * Rev Proj	DTE: produced the client Date	from drawings and in	formation provided Card Geotechnics Ltd 4 Godalming Business Centre Woolsack Way Godalming Surrey GU7 1xW T: 01483 310600 hase 2, London	
NC Re by * Rev Proj Clie	DTE: produced the client * Date ject (wing title S	from drawings and in	formation provided Card Geotechnics Ltd 4 Godalming Business Centre Woolsack Way Godalming Surrey GU7 1XW T: 01483 310600 hase 2, London	
NC Re by * Rev Proj Clie Dra	DTE: produced the client * Date ject (mt ving title s le(s) NTS	from drawings and in * Comments Comments Conceptual sit ections Job No. CG/18067	formation provided Card Geotechnics Ltd 4 Godalming Business Centre Woolsack Way Godalming Surrey GU7 1XW T: 01483 310600 hase 2, London ce model - constraint	
NC Re by * Rev Proj Clie Dra Scal	DTE: produced the client * Date ject int wing title F S le(s) NTS illA 21/0 dl JMA 21/0	from drawings and in	formation provided Card Geotechnics Ltd 4 Godalming Business Centre Woolsack Way Godalming Surrey GU7 1XW T: 01483 310600 hase 2, London a me model - constraint a Rev. Text	

APPENDIX A

Development drawings

Plans

Ground + Basement Levels ONGOING DESIGN DEVELOPMENT

INCLUSION OF PUBLIC/PRIVATE GYM

Basement Not To Scale

Brief development and considerations;

- Only in building E demise as D has a protected use from planning.
- Locate around canal side elevations.
- Possibly locate on 2 levels

Ground Floor Not To Scale

Information required for development:

- Do SSL have an operator in mind?
- What will be the likely catchment area no. of occupants?

APPENDIX B

BGS borehole logs

1.5	
14	

2

.

...

Project Briti	ARLINGTON HO CAMDEN, LOND sh Geologic	USE, 220 ARLINGTON ROAD, ON al Survey	Client	В	ritish Geo	y 🦏	Survey		Trial Pit Excavation Methods	BRA	DFORD	WATTS	HAND	PIT Hole No. TH8A
Ground Le	vel	25.33 m.A.O.D.	Coordinates		" " m.E			m.N.	Orientatio	on:	Ler	igth -	1.00	Job No 10482
WAT	ER		STRATA				SAMPL	ING/IN S	ITU TEST	r	LAB	TEST	ING	· · ·
Date/Time at Depth	Depth to Water m	Description		Legend	Level m.A.O.D.	Depth	Depth	Typ & N	e Test o. Resu	t <4	% W 425 %	/ W	WL	OTHER TESTS AND NOTES
		Made Ground (Brickwork wall)			-	_	0.20	D1		10	0 34	27	75	TH8A logged from north west face of Trial hole - CLEA screen with speciated polyaromatic hydrocarbons (D1) _No groundwater recorded during fieldwork
30/10/06	_ DRY C	Made Ground (Concrete)			24.60	0.73		-						_Water in hole from Diamond Drilling corehole in wall above pit
		British Geological Survey			_	_	Britis	h Geolo	igical Su	rvey			3	British Geological Surve Trial pit complete at 1.09m
Briti	sh Geologic	al Survey		В	ritish Ger	logical I	Survey							- British Geological Survey
	-	British Geological Survey			-	-	Britis	sh Geolo	igical Su	rvey				Pit Stability, Shoring, etc. No collapse of sides of trial pit British Geological Surve
Water Level o Strike	Depth Obs. 5r	g digging, depths below GL. Depth after nim 10 min 15 min 20 min	WATER ▼ 1 First Strik ∇ 2 Subseque N - Overnight i C - Completion S Seepage no	e nt Strike Depth Depth t rising	SAMPLE ANI D Small distu B Bulk disturi W Water san U Undisturbe K Percolation	D TEST KEY arbed sample bed sample nple od sample n Test	Y HV SRD S CBR I PB	Perth Penet Hand shear Sand replac In situ CBR Plate Bearin	rometer Tes vane test cement densi test ng Test	t ty test	TES Np = V = t BD = CBR	Np V Avera In-Sit	ULT alue age Har tu Bulk ornia Be	Ind Shear Vane Strength - kN/m ² Density - Mg/m ³ Log GJB

N-WHITAKERS BREWERY HAMPSTEAD

•

BOREHOLE NO	TQ28SE
Contract Name Canden Town	Report No. 8. 808/15 1203
Client	Site Address Corner of Canden Street
Engineers: teopard; & Partpars, British Geological Survey 344 - 360 South Lambeth Rd.	and Canden Road
London S.W.8.	.2 Yub 5'4(C)
Standing Water Level 55'0" 17.6.65.	Diameter 8"
ologi Wates Struck	Method of Boring Shall/Amger
Ground Level 78.49	Start. 14.6.65. Finish 16.6.65.
Remarks:	

	Description of Strata	Thickness	Depth	Disturbed Samples	'U' Cores and 'N' P. Test
	Made ground (sand, bricks stones etc.)	1'0"	1'0"	J2101 0'6"	
	Seft brown mottled clay	216"	3'6"	J2102 2'6"	
British	Geological Survey Brewn sandy clay with gravel	urvey 5'0"	816"	B2103 5'0" J2104 7'6"	ogical Survey 5°0™ N=14
	Stiff brown mottled clay with layers of silt and sylphate crystals	8'0"	16'6"	J2106 12'6"	U2105 10'0" U2107 14'0"
	Stiff fissured brown clay with sulphate crystals	British Geolog 516	cal Survey 22°0*	J2108 17'6"	British Geological Surv
	Hard fissured grey silty clay with traces of organic material	6'0"	28'0"	J2110 22'6" J2112 27'6"	U2111 34 '0"
Britis	Hard fissured silty grey clay	10' 0 "	38'0"	J2114 32'6" J2116 37'6"	U2113 29'0" U2115 34'0"
	Hard fissured grey clay with layers of silt and occasional sulphate crystals	23'6"	6116=	J2118 42'6" J2120 47'6" J2122 52'6" J2124 57'6"	U2117 39'0" J2119 45'0" U2121 49'0" U2123 54'0" U2125 60'0"
	British Geological Survey	British Geolog	ical Survey	W2126	British Geological Surv :
					5
	TOTALS	6116**	61*6*		. ·

NOTES: 1. Descriptions are given in accordance with the B.S. Civil Engineering Code of Practice C.P.2001 "Site Investigations"

2. J indicates Jar Samples.

Britis

Britis

- B **Bulk Samples** .
- W Water Samples . **39**
- υ

assiurbed Core i Depths shows are top Undista 4 in. diam. and 18 in. long. . Т

er of blo N stration with Standard Penetration Tests. Ni s per ft. p ...

BOREHOLE	NO. 2
----------	-------

Contract Name Canden Terra

Client Jan Dals in ident.

Report No. 8. 808/15 1204

TQ285E

British Ge

Site Address Corner of Conden Street.

Engineers : Laesard & Bariness.

British Geological Survey 360 South Lembeth Rd.,

Nene

None

78.23

Londen N.W.l.

2410, 5400

Lenden S.W.8.

Diameter 8" Method of Boring Shell/Auger British Geological Survey Start 19.6.65. Finish 21.6.65.

Remarks:

Water Struck.

Ground Level

Standing Water Level

binan Geological Guile y	. Dhush Geolog	carouivey		
Made ground (concrete, grey silty clay with bricks)	3'0"	3'0"	J3724 2'6"	
Brown sandy clay with gravel	2'6"	5'6"	B3725 5'0"	
Stiff fissured mottled brown clay more with essasional sulphate crystals and layers of silt	17'6" Sirvey	23104	J3727 8'6" J3729 12'6" J3731 17'6" J3733 22'6"	U3726 6'0" U3728 10'0" U3730 14'0" U2732 19'0"
Hard silty mottled grey clay with sulphate crystals	5'0"	28'0"	J3735 27'6"	U3734 24'0"
Stiff to hard fismured gray silty clay with layers of lightgray silt. Small crystalline aggregates of pyrites towards the base	32 ¹⁶ British Geolog	cal Survey	J3737 32'6" J3739 37'6" J3741 42'6" J3743 47'6" J3745 52'6" J3745 52'6" J3747 57'6"	U3736 29'0" U3738 34'0" U3740 59'0" dical Surve U3742 44'0" U3744 49'0" U3746 54'0" U3746 59'0"
eplogical Survey British Geological	Storvey	-	British G	logical Survey
British Geological Survey	British Geolog	al Survey		British Geological Surve -
				1

Norat: 1. Descriptions are given in accordance with the B.S. Civil Engineering Code of Practice C.P.2001 "Site Investigations"

2. J indicates Jer Samples.

U

. Sylk Sumpon.

Water Semalat. British Geologi

. Undisturbed Case Rangies. These are nominal 4 in. diam. and 18 in. long. Depths shows are lap

" Humber of blows per A. prestration with Standard Penetration Tests.

Contract Name C	amden Tewn	Re	port No	8. 808/15	1206
Client Gol . I Dalt	La . Abd . S	Sit	Address.	Corner of Cand	en Street,
Engineers	smard A .Pertners .		and	Canden Road	
Ba 35477360 s Ba	with Lambeth Rd.	British Geo	ological Survey		British Geologica
Londen . S.	X_8 .			2910, 8410)
Standing Water Lev Water Struck 3*6	/el 25'0" 17.6.65 25'9" 21.6.65	Dia	meter	8" Shell/Au	zer
gical Survey Ground Level	British Geologic	al Survey	6.6.65	British	Geological Survey
Remarks:				Finish	
	141 (F				
		T			· · · ·
British Geological Salv	on of Strata	Thickness	ogi Depth ey	Disturbed Samples	'U' Cores and seologic 'N' P. Test
NADS	Sand brickssand Stones etc.	0'9"	0'9"		
CROWN Stolle	Brown sandy, clay with bricks and stones	2°9" al Survey	3'6"	J2127 2*6	Geological Survey
Grey silty cla	nji3 ic]∼A	7'0"	10'6"	B2128 5'0" J2129 7'6"	U2130 9'0"
Brown mattled	clay	12 '6"		12151 12 16	10130 1/108
British Geological Surve	ey	British Ge	010 2330 %	J2133 17'6" J2135 22'6"	U2134 19 'O" British Geologic
Grey/ clay.se . u.	بر به ا	8'6"	31 '6"	J3127 27 '6"	U2136 24 '0" U2138 30 '0"
				W2139	
gical Survey	British Geologi	al Survey		. British	Geological Survey
2 * 2 *					8
ай с. А. 201		1 - C			242
British Geological Surve	ey.	British Geo	ological Survey		British Geologic
•					•
	TOTALS	31 '6"	51 %		

Briti

0.55	of anmpie.		•
	Number of blows per ft. penet	ration with Standard Ponetration Tests.	

d 19 in L

Deg

т

N

Contract N	Canden Town	Der	No.	S. 808/15	1208
Contract Na		керс	οπ Νο	Corneref Cande	n Street.
Client 4	hatis lagantre	Site	Address	den Bood	
EDg1Dee Fg British Geologic	al Survèy	British Geologic	al Survey	NCH RUGU	British Geologi
	60 Jouth Lanketh Hd.			2912 8411	
Londa	n			- 11 <u>5</u> , 0 TIL	
Standing Wa	ater Level	Dian	neter	8*	
cal Water Struck	NoneOritisk Geologics + 6	mvey Meth	nod of Bor	ing Shell/A	logical survey
Ground Lev	76.27	Start	17.6.6	5 Finish	17.6.65
Kemarks :	2 MPCA: breaking out and pitting to 1*6".	Concrete	from gro	und level to	6"
Dinion ocologi	Description of Strats	Thickness	Depth	Disturbed Samples	'N' P. Test
MADE	Concrete	0"6"	0'6"		. *
GROUND	Cobble: stones	1'0"	1'6"		
cal Survey	British Geological S a. mettled (militys icley ·] · y	uvey 4 16"	6'0"	British Geo J3712 246* J3713 5*0*	igical Survey
Hett	led brow clay stuy	1410"			
British Geologia	al Survey	British Geologic	I Survey 20'0"	J3714 7'6" J3716 12'6" J3718 17'6"	U3715 9'0" U3717 15'0' U3719 19'6'
Gney	a ciay ottay	4'0"	24 '0"	J2720 22'6"	
Cal Survey	British Geological S	7'0"	31 '0"	J3722 27 '6" British Geo	U3721 25'0' U3723 29*6'
ĸ		2			
	al Survey	British Geologic	a Survey		British Geologi
British Geologia			-		1

"Undisturbed Core Samples. These are nominal 4 in. diam. and 18 in. long. Depths shown are top of sample.

υ

British CeContyPact: Hawle Client: Materials S	y Road,shoGamden cience Consultants Ltd	BORCHONDE ON NOIVEY 1 Sheet No. 1 Of 1. Depth 0 to 5 metres.	8
Equipment and Methods Hand Auger 100mm diameter	Ground Level : m.O.D.	Job Number : S91/191	6
	Coordinates :	Location : 123°	7
	212	Dates : 20/11/91	
Daily Water Ge Remarks vey	In Situ Samples Denth Reduced Descript	ion British (Leg
		DUND (tarmac)	×
	0.15 MADE GRO)UND (concrete)	<u>κ</u>
	(0,48) scattere	d gravel traces	
	J 13 0.63		-
British Geological Strivey	British Geological Survey	stiff brown slightly silty (h occasiona) blue-grey _{survey}	×
		; crystals	Ξ
			1-1×
			1=
	J 15		×
Dritich Contaginal Purpose		Dritals	
British Geological Survey	e (5:33) diodical animaly	Briash (×_
	UT 19 E		=
			×
			×
British Geological Survey	British Genlogical Survey	British Geological Survey	-
.20/11		End of Personale	-
		End of burenule	
British Geological Survey	-British Geelogical Surv≋y	British	Geolog
			Ì
British Geological Survey	British Geological Surrey	British Geological Survey	
General Remarks:			
Operator NF		Apper	1 1
	British Geological Survey	British (Geològ

2	Terresea	rch
British GeeloCOPytract: Hawley Roa Client: Materials Science	aden - Gamden Borehole and Novey e Consultants Ltd Sheet No. 1 Of 1. Denth 0 to 5 metres	2
Equipment and Methods Hand Auger 100mm diameter	Ground Level : m.O.D. Job Number : S91/191 Coordinates : Location : 7028	se
Orientation : Vertical Daily Water Remarks	Dates : 20/11/9	Legend
Prog. Levels	Tests Taken (Thick) Levelune 8:85 0.15 MADE GROUND (tarmac)	h Geological Sun
	(0.35) J 20 0.50	_/ xx
British Geological Survey	British Geological Sungy	al
	U* U_22 J_23	
British Geological Survey	UT 24	h Geological Su
	J 26	
British Geological Survey	British Geological Survey	
Eritish Geological Survey	British Geol ^a gical Survey Britisi	h Geological Sur
British Geological Survey	British Geological Survey British Geological Survey	
Operator NF	App	endix 1
Scale ^{British Geological Survey} 5m/sheet	British Geological Survey She	eleo Nocal Sur 2

· · · ·

,									Terre	seal	rch	
British Gei	Clie	trac nt: I	t: Hawley F Materials Scier	load _{shoe} nce Cons	Camd sultan	en ts Lt	d		Borehole Sheet No. 1 Of Depth 0 to	1. 5 metres.		
	Equipme Hand Au	nt and M	ethods m diameter	Groun	d Leve	1 :	m.C).D.	Job Number :	S91/191	56	
		ger 100m		Coord	inates	:			Location :	7921	56	
									Dates :	19/11/91		
	Orienta	tion : Water	Vertical Remarks	In Situ	Samples	287, 1	843 Reduced	Descript	ion		Legend	
	Prog.	Levels	ogical Survey	Tests	Taken	(Thick)	Leve Turve	y coci ipe		British G	eological Su	rvey
					J 1	0:05		MADE GRO	UND (tarmac)		XXX	
						0 451		MADE GRO	UND (dark grey cla	ayey sand	\otimes	
					J 2			MICH UNI			\otimes	
					JЗ	0.60		MADE GRO	UND (ash with brid	cks and	XXX	
British Geo	logical Sur	F 19/11		British Ge	N 11 ological Sum	ey 0.80 :		Firm bro	wn silty CLAY with	occasional	xx	
					J_4 ∪¥			blue-gre	y reduction zones			
					U_5						xx	
					JЬ						 	
		British Geol	ndical Survey			British Ger	brical Surve			British G		nev
					U_7	(2.20)	- groun curre			Dimonio		,
					J 8							
					-		-					
					J 9						× ×	
British Geo	logical Sur	/ay		British Ge	dugic 10 surv	ey			British Geolo	gical Survey	××	
	19/11					3.00	-		End of Borehole			
								ļ				i
				i								
		British Geol	dgical Survey			British Geo	ogical Surve	÷.		British G	eological Su	vey
	}											
							-					
British Geo	logical Sun	/ey		British Ge	clogical Surv	ev E			British Geolo	gical Survey		
	Opera	tor	General Remarks:							Appen	dix	
	NF										1	
	Scale	British Geol	ogical Survey			British Geo	logical Surve	ву		Sheet	ed NG ical Su	vey
	5m/sh	eet									3	J

•

. .

•		Terresearch
British Generation Contract: Hawley Ro Client: Materials Science	ad, ^{n ce} Camden e Consultants Ltd	Boreholes Novey 4 Sheet No. 1 Of 1. Depth 0 to 5 metres.
Equipment and Methods Hand Auger 100mm diameter	Ground Level : m.O.D. Coordinates :	Job Number : \$91/191 Location : TQ285 1242 Dates : 20/11/91
Orientation : Vertical	287,843	
Daily Mateceol Bemanks _{ey} Prog. Levels	In Situ Samples Depth Reduced Descript Tests Taken (Thick) Level	100 British Geological Survey
British Geological Survey	British Geological Survey U = 33 J = 32 J = 33 J = 35 J = 35	UND (tarmac) UND (concrete) UND (soft silty sandy brown h occasional gravel and brick firm dark brownish grey silty h organic traces British Geological Survey stiff brown silty CLAY with le-grey reduction zones and al organic traces British Geological Survey Stiff brown silty CLAY with
- 20/11		End of Borehole
Eritish Geological Survey	British Geolegical Surves	British Geological Sulvey
British Geological Survey Operator NF	British Geological Survey	British Geological Survey
British Geological Survey Scale 5m/sheet	British Geological Survey	Sheet No.

•

RECORD of WELL or B Survey. No 1" N S Canden Road prink den on County inch map # 5 NW ta sheet 16 Vol a tracing from a map is and dire ection from parish wn on maps). a little 5 the SW from Com In low one-inch map. Surface level of ground 62 ft. above Ordnance Datum. Well or Bore commenced at ft. below surface level of ground. Sunk 4 ft., diameter 4 2. of 16 m. lop. 34 6/0 Bored. Details of lining tubes (internal diameters preferred) 333 Water struck at depths of (feet) 301, 313 NGR TO 2902 8412 Rest-level of water below top of well or bore 278 ft. Pumping level 278 ft. Time of recovery. ...hours. alls. perhoer, (ii) normal O: Temp 4? 7 Suction at 75 ft. depth. Yield: (i) on test 1000/8000 talls. Quality (attach copy of analysis if available) galls. per. lotat 4 Made by E GRAND, SUTCLIFF & GELL, LD. for Gented Great Co. 100 Date of boring any lot Information from LE GRAND, SUTCLIFF & GELL, LD. \$1346.673. (For Survey use only). THICKNESS. DEPTH. GEOLOGICAL CLASSIFICATION NATURE OF STRATA. (and any additional remarks) Inches. Fect. Inches. Feet. made, hed a nou rown class 20 28 L.C 196 to done W.R.S. net T.S. lint CK. 474 SYS. 26:10:35. 300 uly British Gellogics British Ged unovited controll dena Top i Jasen 10' he and leve Vater very poft. havy も P.W.L. 300 Yield 10, 328 Nag-1937 British Geological Surve British Geological Survey British Geological Survey For Survey use only. GEOLOGICAL SURVEY AND MUSEUM, Date SOUTH KENSINGTON, M. of H. Site marked G.S.M. received notified. on 1" map. LONDON, S.W.7. (11969B) Wt 10256/0175 2,500 9/32 H, J, R & L, Ld 600,143

APPENDIX C

WALLAP output
CARD GEOTECHNICS LIMITED
 Sheet No.

 Program: WALLAP Version 6.05 Revision A41.B56.R46
 Job No. 18067a

 Licensed from GEOSOLVE
 Made by : JMS

 Data filename/Run ID: Block D - KTR_SLS
 Date:20-01-2015

 Block D - KTR
 Checked :

Units: kN,m

INPUT DATA

SOIL PROFILE

Stratum	Elevation of	Soil	types
no.	top of stratum	Active side	Passive side
1	26.00	1 Made Ground	1 Made Ground
2	24.00	2 London Clay	2 London Clay

SOIL PROPERTIES

		Bulk	Yc	oung ' s	At r	rest	Co	nsol	Ac	tive	Ρ	assive		
	Soil type	density	Mo	odulus	coe	ff.	st	ate.	li	mit		limit	С	ohesion
No.	Description	kN/m3	Eh	,kN/m2	Kc)	NC	/OC	K	a		Кр		kN/m2
(]	Datum elev.)		(dI	Eh/dy)	(dKo/	dy)	(Nu)	(K	ac)	(Kpc)	(dc/dy)
1	Made Ground	18.00		18000	0.5	61		NC	1.	000		1.000		30.00u
							(0.	490)	(2.	389)	(2.390)		
2	London Clay	20.00		50000	1.0	00		OC	1.	000		1.000		50.00u
	(24.00)		(6000)			(0.	490)	(2.	475)	(2.476)	(6.000)
3	London Cl	20.00		37500	0.5	93		OC	Ο.	367		3.241		5.000d
	(24.00)		(4500)			(0.	200)	(1.	423)	(5.034)		
4	Made Ground	18.00		13500	0.	561		NC	0	.346		3.442		30.00d
	DR						(0.	200)	(1.	340)	(5.007)		

Additional soil parameters associated with Ka and Kp

		param	eters for	Ka	param	Кр	
		Soil	Wall	Back-	Soil	Wall	Back-
	Soil type	friction	adhesion	fill	friction	adhesion	fill
No.	Description	angle	coeff.	angle	angle	coeff.	angle
1	Made Ground	0.00	0.500	0.00	0.00	0.500	0.00
2	London Clay	0.00	0.667	0.00	0.00	0.667	0.00
3	London Clay DR	24.00	0.667	0.00	24.00	0.667	0.00
4	Made Ground DR	26.00	0.500	0.00	26.00	0.500	0.00

GROUND WATER CONDITIONS

Density of water = 10.00 kN/m3

				Active sid	e Passive	side
Initial	water	table	elevation	25.00	25.	00

Automatic water pressure balancing at toe of wall : No

Water		Activ	e side			Passiv	e side	
press.								
profile	Point	Elev.	Piezo	Water	Point	Elev.	Piezo	Water
no.	no.		elev.	press.	no.		elev.	press.
		m	m	kN/m2		m	m	kN/m2
1	1	25.00	25.00	0.0	1	21.50	21.50	0.0 MC+WC

WALL PROPERTIES

Type of structure = Fully Embedded Wall Elevation of toe of wall = 19.00 Maximum finite element length = 0.40 m Youngs modulus of wall E = 3.0000E+07 kN/m2 Moment of inertia of wall I = 8.4823E-03 m4/m run E.I = 254469 kN.m2/m run Yield Moment of wall = Not defined

STRUTS and ANCHORS

Strut/			X-section			Inclin	Pre-	
anchor		Strut	area	Youngs	Free	-ation	stress	Tension
no.	Elev.	spacing	of strut	modulus	length	(degs)	/strut	allowed
		m	sq.m	kN/m2	m		kN	
1	25.80	1.00	0.300000	3.000E+07	30.00	0.00	0	Yes
2	22.00	1.00	0.300000	3.000E+07	30.00	0.00	0	Yes
3	25.50	5.00	0.010000	2.000E+08	20.00	0.00	0	No

SURCHARGE LOADS

Surch		Distance	Length	Width	Surch	arge	Equiv.	Partial
-arge		from	parallel	perpend.	kN/	m2	soil	factor/
no.	Elev.	wall	to wall	to wall	Near edge	Far edge	type	Category
1	26.00	0.00(A)	30.00	3.00	10.00	=	N/A	1.00 -
2	26.00	3.00(A)	30.00	10.00	20.00	=	N/A	1.00 -

Note: A = Active side, P = Passive side Limit State Categories P/U = Permanent Unfavourable P/F = Permanent Favourable Var = Variable (unfavourable)

CONSTRUCTION STAGES

Construction Stage description stage no. _____ 1 Apply surcharge no.1 at elevation 26.00 2 Apply surcharge no.2 at elevation 26.00 No analysis at this stage 3 Change EI of wall to 254469 kN.m2/m run Yield moment not defined Reset wall displacements to zero at this stage 4 Apply water pressure profile no.1 (Mod. Conserv.) 5 Excavate to elevation 21.50 on PASSIVE side 6 Install strut or anchor no.2 at elevation 22.00 7 Install strut or anchor no.1 at elevation 25.80 8 Change properties of soil type 2 to soil type 3 Ko pressures will not be reset 9 Change properties of soil type 1 to soil type 4 Ko pressures will not be reset

FACTORS OF SAFETY and ANALYSIS OPTIONS

Limit State options: Serviceability Limit State All loads and soil strengths are unfactored

Stability analysis: Method of analysis - Strength Factor method Factor on soil strength for calculating wall depth = 1.25

Parameters for undrained strata: Minimum equivalent fluid density = 5.00 kN/m3 Maximum depth of water filled tension crack = 0.00 m

Bending moment and displacement calculation: Method - Subgrade reaction model using Influence Coefficients Open Tension Crack analysis? - No Non-linear Modulus Parameter (L) = 0 m

Boundary conditions: Length of wall (normal to plane of analysis) = 1000.00 m Width of excavation on active side of wall = 20.00 m Width of excavation on passive side of wall = 20.00 m Distance to rigid boundary on active side = 20.00 m

Distance to rigid boundary on passive side = 20.00 m

OUTPUT OPTIONS

Stage	e Stage description	Output	options :	
no.		Displacement	Active,	Graph.
		Bending mom.	Passive	output
		Shear force	pressures	
1 1	Apply surcharge no.1 at elev. 26.00	Yes	Yes	Yes
2 7	Apply surcharge no.2 at elev. 26.00	No	No	No
3 (Change EI of wall to 254469kN.m2/m run	No	No	No
4 4	Apply water pressure profile no.1	No	No	No
5 I	Excav. to elev. 21.50 on PASSIVE side	No	No	No
6 2	Install strut no.2 at elev. 22.00	No	No	No
7 3	Install strut no.1 at elev. 25.80	No	No	No
8 (Change soil type 2 to soil type 3	No	No	No
9 (Change soil type 1 to soil type 4	No	No	No
* 0	Summary output	Yes	-	Yes

Program WALLAP - Copyright (C) 2012 by DL Borin, distributed by GEOSOLVE 69 Rodenhurst Road, London SW4, UK. Tel: +44 20 8674 7251

CARD GEOTECHNICS LIMITEDSheet No.Program: WALLAP Version 6.05 Revision A41.B56.R46Job No. 18067aLicensed from GEOSOLVEMade by : JMSData filename/Run ID: Block D - KTR_SLSDate:20-01-2015Block D - KTRChecked :

Units: kN,m

Stage No. 9 Change properties of soil type 1 to soil type 4 Ko pressures will not be reset

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

Fos for toeToe elev. for
elev. = 19.00Stage --- G.L. ---StrutFactor MomentToeNo. Act. Pass.Elev.of
equilib.elev. Penetr
safety at elev.------926.0021.50More than one strut

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 1000.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries: Active side 20.00 from wall Passive side 20.00 from wall

*** Wall displacements reset to zero at stage 3

Node	Y	Nett	Wall	Wall	Shear	Bending	Strut
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	26.00	0.91	0.015	2.28E-03	0.0	-0.0	
2	25.80	1.57	0.015	2.28E-03	0.2	0.0	-6.1
		1.57	0.015	2.28E-03	6.3	0.0	
3	25.40	3.00	0.014	2.28E-03	7.3	2.7	
4	25.00	5.00	0.013	2.27E-03	8.9	5.9	
5	24.70	6.50	0.012	2.27E-03	10.6	8.8	
6	24.40	8.00	0.011	2.26E-03	12.8	12.3	
7	24.00	10.00	0.010	2.24E-03	16.4	18.1	
		16.36	0.010	2.24E-03	16.4	18.1	
8	23.60	21.96	0.010	2.21E-03	24.0	26.1	
9	23.20	27.56	0.009	2.17E-03	33.9	37.6	
10	22.80	33.17	0.008	2.11E-03	46.1	53.5	
11	22.40	38.76	0.007	2.03E-03	60.5	74.7	
12	22.00	44.35	0.006	1.90E-03	77.1	102.1	140.8
		44.35	0.006	1.90E-03	-63.7	102.1	
13	21.75	47.83	0.006	1.81E-03	-52.1	87.6	
14	21.50	51.31	0.005	1.74E-03	-39.8	76.1	
		26.14	0.005	1.74E-03	-39.8	76.1	
15	21.15	16.15	0.005	1.65E-03	-32.4	64.5	
16	20.80	6.15	0.004	1.57E-03	-28.5	53.3	
17	20.40	-5.30	0.004	1.50E-03	-28.3	41.2	
18	20.00	-8.41	0.003	1.45E-03	-31.0	28.7	
19	19.60	4.41	0.002	1.42E-03	-31.8	15.4	
20	19.30	31.08	0.002	1.41E-03	-26.5	6.1	
21	19.00	145.56	0.002	1.40E-03	-0.0	-0.0	
Stru	t force	at elev.	25.80 =	-6.10 kN/m	m run =	-6.10 kM	J/strut
Stru	t force	at elev.	22.00 =	140.75 kN/m	m run =	140.75 kM	J/strut

Run ID. Block D - KTR_SLS Camden Lock Block D - KTR | Sheet No. | Date:20-01-2015 | Checked :

(continued)

Stage No.9 Change properties of soil type 1 to soil type 4 Ko pressures will not be reset

Node	Y				- ACTIVE s	ide		
no.	coord			Effectiv	<i>v</i> e stresse	s	Total	Soil
		Water	Vertic	Active	Passive	Earth	earth	stiffness
		press.	-al	limit	limit	pressure	pressure	coeff.
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3
1	26.00	0.00	10.00	0.00	184.64	0.91	0.91	2746
2	25.80	0.00	13.60	0.00	197.04	1.57	1.57	2746
3	25.40	0.00	20.83	0.00	221.92	3.00	3.00	2746
4	25.00	0.00	28.13	0.00	247.06	5.00	5.00	2746
5	24.70	3.00	30.67	0.00	255.79	3.50	6.50	2746
б	24.40	6.00	33.25	0.00	264.69	2.00	8.00	2746
7	24.00	10.00	36.76	0.00	276.77	0.00	10.00a	2746
		10.00	36.76	6.36	144.33	6.36	16.36a	7628
8	23.60	14.00	41.12	7.96	158.45	7.96	21.96a	7994
9	23.20	18.00	45.49	9.56	172.63	9.56	27.56a	8361
10	22.80	22.00	49.86	11.17	186.80	11.17	33.17a	8727
11	22.40	26.00	54.22	12.76	200.91	12.76	38.76a	14104
12	22.00	30.00	58.54	14.35	214.91	14.35	44.35a	14672
13	21.75	32.50	61.22	15.33	223.61	15.33	47.83a	15027
14	21.50	35.00	63.89	16.31	232.26	16.31	51.31a	15382
15	21.15	38.50	67.60	17.67	244.28	17.67	56.17a	15879
16	20.80	42.00	71.28	19.02	256.21	19.02	61.02a	16376
17	20.40	46.00	75.44	20.55	269.72	20.55	66.55a	16944
18	20.00	50.00	79.57	22.06	283.10	30.43	80.43	17512
19	19.60	54.00	83.67	23.56	296.37	45.49	99.49	18080
20	19.30	57.00	86.72	24.68	306.26	57.12	114.12	18506
21	19.00	60.00	89.75	25.79	316.08	126.44	186.44	18932

Node	Y				PASSIVE s	ide		
no.	coord			Effectiv	ve stresse	s	Total	Soil
		Water	Vertic	Active	Passive	Earth	earth	stiffness
		press.	-al	limit	limit	pressure	pressure	coeff.
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3
1	26.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	25.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	25.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	25.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	24.70	0.00	0.00	0.00	0.00	0.00	0.00	0.0
6	24.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0
7	24.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
8	23.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0
9	23.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0
10	22.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0
11	22.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0
12	22.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
13	21.75	0.00	0.00	0.00	0.00	0.00	0.00	0.0
14	21.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0.00	0.00	0.00	25.17	25.17	25.17p	15382
15	21.15	3.50	3.50	0.00	36.52	36.52	40.02p	15879
16	20.80	7.00	7.00	0.00	47.87	47.87	54.87p	16376
17	20.40	11.00	11.01	0.00	60.85	60.85	71.85p	16944
18	20.00	15.00	15.02	0.00	73.84	73.84	88.84p	17512
19	19.60	19.00	19.03	0.00	86.86	76.08	95.08	18080
20	19.30	22.00	22.05	0.97	96.64	61.04	83.04	18506
21	19.00	25.00	25.07	2.08	106.43	15.87	40.87	18932

Note: 66.55a Soil pressure at active limit 88.84p Soil pressure at passive limit

Stage No.9 Change soil type 1 to soil type 4

CARD GEOTECHNICS LIMITED | Sheet No. Program: WALLAP Version 6.05 Revision A41.B56.R46 | Job No. 18067a Licensed from GEOSOLVE | Made by : JMS Data filename/Run ID: Block D - KTR_SLS | Camden Lock | Date:20-01-2015 Block D - KTR | Checked :

Units: kN,m

Summary of results

LIMIT STATE PARAMETERS

Limit State: Serviceability Limit State All loads and soil strengths are unfactored

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS fo elev. =	r toe 19.00	Toe el FoS =	ev. for 1.250
Stage	G.I	L :	Strut	Factor	Moment	Тое	Wall
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr
				Safety	at elev.		-ation
1	26.00	26.00	Cant.	Conditi	ons not su:	itable f	or FoS calc.
2	26.00	26.00		No anal	ysis at th:	is stage	
3	26.00	26.00		No anal	ysis at th:	is stage	
4	26.00	26.00	Cant.	Conditi	ons not su:	itable f	or FoS calc.
5	26.00	21.50	Cant.	1.611	19.57	19.34	2.16
6	26.00	21.50		No anal	ysis at th:	is stage	
All	remainin	ng stages	have mo	ore than	one strut	- FoS c	alculation n/a

CARD GEOTECHNICS LIMITEDSheet No.Program: WALLAP Version 6.05 Revision A41.B56.R46Job No. 18067aLicensed from GEOSOLVEMade by : JMSData filename/Run ID: Block D - KTR_SLSDate:20-01-2015Camden LockDate:20-01-2015Block D - KTRChecked :

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 1000.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Units: kN,m

Rigid boundaries: Active side 20.00 from wall Passive side 20.00 from wall

Bending moment, shear force and displacement envelopes

Node	Y	Displac	ement	Bending	moment	Shear :	force
no.	coord	maximum	minimum	maximum	minimum	maximum	minimum
		m	m	kN.m/m	kN.m/m	kN/m	kN/m
1	26.00	0.015	0.000	0.0	-0.0	0.0	0.0
2	25.80	0.015	0.000	0.0	0.0	6.3	0.0
3	25.40	0.014	0.000	2.7	0.0	7.3	0.0
4	25.00	0.013	0.000	5.9	0.0	8.9	0.0
5	24.70	0.012	0.000	8.8	0.0	10.6	0.0
6	24.40	0.011	0.000	12.3	0.0	12.8	0.0
7	24.00	0.010	0.000	18.1	0.0	16.4	0.0
8	23.60	0.010	0.000	26.1	0.0	24.0	0.0
9	23.20	0.009	0.000	37.6	0.0	33.9	0.0
10	22.80	0.008	0.000	53.5	0.0	46.1	-0.3
11	22.40	0.007	0.000	74.7	0.0	60.5	-1.4
12	22.00	0.006	0.000	102.1	0.0	77.1	-63.7
13	21.75	0.006	0.000	87.6	0.0	45.2	-52.1
14	21.50	0.005	0.000	76.1	0.0	50.6	-39.8
15	21.15	0.005	0.000	86.7	0.0	8.3	-32.4
16	20.80	0.004	0.000	83.0	0.0	0.0	-28.5
17	20.40	0.004	0.000	67.3	0.0	0.0	-47.6
18	20.00	0.003	0.000	45.0	0.0	0.0	-56.8
19	19.60	0.002	0.000	21.9	0.0	0.0	-51.5
20	19.30	0.002	0.000	7.9	0.0	0.0	-37.6
21	19.00	0.002	0.000	0.0	-0.0	0.0	-0.0

Maximum and minimum bending moment and shear force at each stage

Stage		- Bending	moment			Shear	force	
no.	maximum	elev.	minimum	elev.	maximum	elev.	minimum	elev.
	kN.m/m		kN.m/m		kN/m		kN/m	
1	7.9	22.80	0.0	26.00	5.7	24.00	-3.1	20.80
2	No calcul	lation at	this stag	ge				
3	No calcul	lation at	this stag	je				
4	6.9	22.80	0.0	26.00	5.5	24.00	-2.6	21.15
5	86.7	21.15	-0.0	26.00	50.6	21.50	-56.8	20.00
6	No calcu	lation at	this stag	je				
7	No calcu	lation at	this stag	je				
8	102.1	22.00	-0.0	26.00	77.1	22.00	-63.7	22.00
9	102.1	22.00	-0.0	26.00	77.1	22.00	-63.7	22.00

Run ID. Block D - KTR_SLS Camden Lock Block D - KTR

| Sheet No. | Date:20-01-2015 | Checked :

Summary of results (continued)

Maximum and minimum displacement at each stage

Stage		Displac	cement		Stage description
no.	maximum	elev.	minimum	n elev.	
	m		m		
1	0.001	26.00	0.000	26.00	Apply surcharge no.1 at elev. 26.00
2	No calcu	ulation	at this	stage	Apply surcharge no.2 at elev. 26.00
3	Wall dis	splaceme	ents rese	et to zero	Change EI of wall to 254469kN.m2/m run
4	0.000	19.00	0.000	26.00	Apply water pressure profile no.1
5	0.015	26.00	0.000	26.00	Excav. to elev. 21.50 on PASSIVE side
6	No calcu	ulation	at this	stage	Install strut no.2 at elev. 22.00
7	No calcu	ulation	at this	stage	Install strut no.1 at elev. 25.80
8	0.015	26.00	0.000	26.00	Change soil type 2 to soil type 3
9	0.015	26.00	0.000	26.00	Change soil type 1 to soil type 4

Strut forces at each stage (horizontal components)

Stage	Strut 1	no. 1	Strut	no. 2
no.	at elev	. 25.80	at elev	. 22.00
	kN/m run	kN/strut	kN/m run	kN/strut
8	-6.10	-6.10	140.75	140.75
9	-6.10	-6.10	140.75	140.75

CARD GEOTECHNICS LIMITED Program: WALLAP Version 6.05 Revision A41.B56.R46	Sheet No. Job No. 18067a Mada by : IMS
Data filename/Run ID: Block D - KTR_SLS Camden Lock Block D - KTR	 Date:20-01-2015 Checked :
Units	: kN,m

Bending moment, shear force, displacement envelopes

 CARD GEOTECHNICS LIMITED
 Sheet No.

 Program: WALLAP Version 6.05 Revision A41.B56.R46
 Job No. 18067a

 Licensed from GEOSOLVE
 Made by : JMS

 Data filename/Run ID: Block D - NG cables and canal_SLS
 Date:20-01-2015

 Block D - NG cable and canal
 Checked :

INPUT DATA

Units: kN,m

SOIL PROFILE

Stratum	Elevation of	S	oil types
no.	top of stratum	Active side	Passive side
1	26.00	1 Made Ground	1 Made Ground
2	24.00	2 London Clay	2 London Clay

SOIL PROPERTIES

	Bulk	Young's	At rest	Consol	Active	Passive	
Soil type	density	Modulus	coeff.	state.	limit	limit	Cohesion
No. Description	kN/m3	Eh,kN/m2	Ко	NC/OC	Ka	Kp	kN/m2
(Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
1 Made Ground	18.00	18000	0.561	NC	1.000	1.000	30.00u
				(0.490)	(2.389)	(2.390)	
2 London Clay	20.00	50000	1.000	OC	1.000	1.000	50.00u
(24.00)		(6000)		(0.490)	(2.475)	(2.476)	(6.000)
3 London Cl	20.00	37500	0.593	OC	0.367	3.241	5.000d
(24.00)		(4500)		(0.200)	(1.423)	(5.034)	
4 Made Ground	18.00	13500	0.561	NC	0.346	3.442	30.00d
DR				(0.200)	(1.340)	(5.007)	

Additional soil parameters associated with Ka and Kp

		parameters for Ka			parameters for Kp		
		Soil	Wall	Back-	Soil	Wall	Back-
	Soil type	friction	adhesion	fill	friction	adhesion	fill
No.	Description	angle	coeff.	angle	angle	coeff.	angle
1	Made Ground	0.00	0.500	0.00	0.00	0.500	0.00
2	London Clay	0.00	0.667	0.00	0.00	0.667	0.00
3	London Clay DR	24.00	0.667	0.00	24.00	0.667	0.00
4	Made Ground DR	26.00	0.500	0.00	26.00	0.500	0.00

GROUND WATER CONDITIONS

Density of water = 10.00 kN/m3

				Active	side	Passive	side
Initial	water	table	elevation	25.0	00	25.	00

Automatic water pressure balancing at toe of wall : No

Water		Activ	e side		Passive side				
press.									
profile	Point	Elev.	Piezo	Water	Point	Elev.	Piezo	Water	
no.	no.		elev.	press.	no.		elev.	press.	
		m	m	kN/m2		m	m	kN/m2	
1	1	25.00	25.00	0.0	1	21.50	21.50	0.0 MC+WC	

WALL PROPERTIES

Type of structure = Fully Embedded Wall Elevation of toe of wall = 19.00 Maximum finite element length = 0.40 m Youngs modulus of wall E = 3.0000E+07 kN/m2 Moment of inertia of wall I = 8.4823E-03 m4/m run E.I = 254469 kN.m2/m run Yield Moment of wall = Not defined

STRUTS	and	ANC A	CHORS						
Strut/				X-section			Inclin	Pre-	
anchor	_ 7		Strut	area	Youngs	Free	-ation	stress	Tension
no.	£⊥€	ev.	spacing	of strut	modulus	length	(degs)	/strut	allowed
1	25	80	1 00	59.00 0 300000	$\frac{KN}{m2}$	30 00	0 00		Yes
2	22.	.00	1.00	0.300000	3.000E+07	30.00	0.00	0	Yes
3	25.	.50	5.00	0.010000	2.000E+08	20.00	0.00	0	No
SURCHAI	RGE	LOAI	DS	Tanath	width	0		T en ci	Doutial
-arge			from	narallel	nerpend		kN/m2 -	Equi equi	1 factor/
no.	Ele	₽V.	wall	to wall	to wall	Near ed	ge Far	edge tvp	e Category
1	26.	.00	0.00(A) 30.00	3.00	10.0	0 =	N/A	1.00 -
Not	te:	A = Lim:	Active s: it State (ide, P = 1 Categories	Passive sid P/U = Pe: P/F = Pe: Var = Va:	de rmanent 1 rmanent 1 riable (1	Unfavour Favourak unfavour	able ble able)	
CONSTRU	JCTI	ION S	STAGES						
Constru	ucti	lon	Stage de	escription					
stage	e no	ο.							
-	1 2		Apply su	archarge no	o.1 at ele ton 26 00	on ACTI	b.UU VF gide		
2	2		Toe of 1	perm at ele	evation 24	.00	VI DIGC		
			Width of	E top of be	erm = 3.00				
			Width of	f toe of be	erm = 3.01				
	3		Change I	EI of wall	to 254469	kN.m2/m	run		
			Reset wa	oment not display	cements to	zero at	thia at	202	
4	4		Apply wa	ater pressu	ire profile	e no.1	(Mod. C	Conserv.)	
5	5		Excavate	e to elevat	ion 24.50	on PASS	IVE side	2	
			Toe of }	perm at ele	evation 21	.50			
			Width of	f top of be	erm = 1.00				
f	5		Install	strut or a	anchor no.	3 at ele	vation 2	25.50	
-	7		Excavate	e to elevat	ion 21.50	on PASS	IVE side	2	
8	В		Install	strut or a	anchor no.2	2 at ele	vation 2	22.00	
(9		Install	strut or a	anchor no.	1 at ele	vation 2	25.80	
1 - 1 -) 1		Remove :	strut or an	of goil t	at eleva	ation 25	50	
± -	L		Ko press	sures will	not be rea	ype ∠ lo set	SOII UY	pe s	
12	2		Change p	properties	of soil ty	ype 1 to	soil ty	rpe 4	
			Ko press	sures will	not be rea	set			
FACTORS Limi 2	S OH it S All	5 SAI State load	FETY and A e options ds and so:	ANALYSIS O Serviceal il strengtl	PTIONS Dility Lim Is are unfa	it State actored			
Star N I	oil: Meth Fact	nod o tor o	analysis: of analys: on soil st	is - Stre trength for	ength Facto calculat:	or metho ing wall	d depth =	: 1.25	
Para N N	amet Mini Maxi	ers Lmum Lmum	for undra equivaler depth of	ained strat nt fluid de water fill	ca: ensity led tension	n crack	= 5.0 = 0.0	00 kN/m3 00 m	
Bend M C	ding Meth Oper Non-	g mor 10d 1 Ter -line	ment and o - Subgra nsion Crao ear Modulu	displacemen ade reactio ck analysis us Paramete	nt calculat on model us s? - No er (L) = 0	tion: sing Inf: m	luence (Coefficien	ts
Bour I	ndaı Leng	ry co gth o	onditions of wall (1	: normal to p	plane of a	nalysis)	= 1000.	00 m	
D D	Widt Widt	ch of ch of	f excavat: f excavat:	ion on act: ion on pass	ive side o sive side o	of wall of wall	= 20.00 = 20.00) m) m	
I	Dist Dist	ance	e to rigio e to rigio	d boundary d boundary	on active on passive	side = e side =	20.00 m 20.00 m	1	

OUTPUT OPTIONS

Stag	ge Stage description	Output	c options	
no		Displacement	Active,	Graph.
		Bending mom.	Passive	output
		Shear force	pressures	1
1	Apply surcharge no.1 at elev. 26.00	Yes	Yes	Yes
2	Excav. to elev. 26.00 on ACTIVE side	No	No	No
3	Change EI of wall to $254469 k \text{N.m2/m}$ run	No	No	No
4	Apply water pressure profile no.1	No	No	No
5	Excav. to elev. 24.50 on PASSIVE side	No	No	No
б	Install strut no.3 at elev. 25.50	No	No	No
7	Excav. to elev. 21.50 on PASSIVE side	No	No	No
8	Install strut no.2 at elev. 22.00	No	No	No
9	Install strut no.1 at elev. 25.80	No	No	No
10	Remove strut no.3 at elev. 25.50	No	No	No
11	Change soil type 2 to soil type 3	No	No	No
12	Change soil type 1 to soil type 4	No	No	No
*	Summary output	Yes	-	Yes

Program WALLAP - Copyright (C) 2012 by DL Borin, distributed by GEOSOLVE 69 Rodenhurst Road, London SW4, UK. Tel: +44 20 8674 7251

CARD GEOTECHNICS LIMITEDSheet No.Program: WALLAP Version 6.05 Revision A41.B56.R46Job No. 18067aLicensed from GEOSOLVEMade by : JMSData filename/Run ID: Block D - NG cables and canal_SLSDate:20-01-2015Camden LockDate:20-01-2015Block D - NG cable and canalChecked :

Units: kN,m

Stage No. 12 Change properties of soil type 1 to soil type 4 Ko pressures will not be reset

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

Fos for toeToe elev. for
elev. = 19.00Toe elev. for
elev. = 19.00Stage --- G.L. ---StrutFactor MomentToeNo. Act. Pass.Elev.of
equilib.elev. Penetr
safety at elev.------1226.0021.50More than one strut

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 1000.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries: Active side 20.00 from wall Passive side 20.00 from wall

*** Wall displacements reset to zero at stage 3

Node	Y	Nett	Wall	Wall	Shear	Bending	Strut
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	26.00	0.40	0.004	-3.35E-04	0.0	-0.0	
2	25.80	1.00	0.004	-3.35E-04	0.1	0.0	28.7
		1.00	0.004	-3.35E-04	-28.5	0.0	
3	25.50	2.50	0.004	-3.30E-04	-28.0	-8.4	
4	25.25	3.75	0.004	-3.18E-04	-27.2	-15.3	
5	25.00	5.00	0.004	-2.99E-04	-26.1	-22.0	
б	24.75	6.42	0.004	-2.72E-04	-24.7	-28.3	
		6.25	0.004	-2.72E-04	-24.7	-28.3	
7	24.50	7.50	0.004	-2.39E-04	-23.0	-34.2	
		8.64	0.004	-2.39E-04	-23.0	-34.2	
8	24.25	11.36	0.004	-2.00E-04	-20.5	-39.6	
		13.49	0.004	-2.00E-04	-20.5	-39.6	
9	24.00	17.02	0.004	-1.55E-04	-16.7	-44.3	
		15.79	0.004	-1.55E-04	-16.7	-44.3	
10	23.60	21.11	0.004	-7.28E-05	-9.3	-49.6	
11	23.20	26.43	0.004	1.67E-05	0.2	-51.6	
12	22.80	31.74	0.004	1.06E-04	11.8	-48.6	
13	22.40	37.05	0.004	1.87E-04	25.6	-41.2	
14	22.00	42.37	0.004	2.51E-04	41.5	-27.9	56.3
		42.37	0.004	2.51E-04	-14.8	-27.9	
15	21.75	45.69	0.004	2.86E-04	-3.8	-30.3	
16	21.50	49.03	0.004	3.21E-04	8.0	-29.8	
		23.85	0.004	3.21E-04	8.0	-29.8	
17	21.15	13.68	0.004	3.65E-04	14.6	-25.8	
18	20.80	3.59	0.004	4.02E-04	17.6	-20.0	
19	20.40	-4.39	0.003	4.32E-04	17.4	-13.0	
20	20.00	-12.14	0.003	4.50E-04	14.1	-6.7	
21	19.60	-17.24	0.003	4.58E-04	8.3	-2.2	
22	19.30	-13.85	0.003	4.60E-04	3.6	-0.5	
23	19.00	-10.16	0.003	4.60E-04	0.0	0.0	
Stru	t force	at elev.	25.80 =	28.69 kN/m	n run =	28.69 kN	I∕strut
Stru	t force	at elev.	22.00 =	56.30 kN/m	n run =	56.30 kN	/strut

Run ID. Block D - NG cables and canal_SLS Camden Lock Block D - NG cable and canal _____

Sheet No. Date:20-01-2015 Checked :

(continued)

Stage No.12 Change properties of soil type 1 to soil type 4 Ko pressures will not be reset

Node	Y				- ACTIVE s:	ide		
no.	coord			Effectiv	<i>v</i> e stresses	3	Total	Soil
		Water	Vertic	Active	Passive	Earth	earth	stiffness
		press.	-al	limit	limit	pressure	pressure	coeff.
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3
1	26.00	0.00	10.00	0.00	2.27b	0.40	0.40	2748
2	25.80	0.00	13.60	0.00	2.42b	1.00	1.00	2748
		0.00	13.60	0.00	7.85b	1.00	1.00	2748
3	25.50	0.00	18.98	0.00	8.59b	2.50	2.50	2748
		0.00	18.98	0.00	14.17b	2.50	2.50	2748
4	25.25	0.00	23.44	0.00	15.18b	3.75	3.75	2748
		0.00	23.44	0.00	19.89b	3.75	3.75	2748
5	25.00	0.00	27.86	0.00	21.20b	5.00	5.00	2748
		0.00	27.86	0.00	26.07b	5.00	5.00	2748
6	24.75	2.50	29.75	0.00	26.76b	3.92	6.42	2748
		2.50	29.75	0.00	31.88b	3.75	6.25	2748
7	24.50	5.00	31.59	0.00	32.68b	2.50	7.50	2748
		5.00	31.59	0.00	37.70b	3.64	8.64	2748
8	24.25	7.50	33.41	0.00	38.61b	3.86	11.36	2748
		7.50	33.41	0.00	43.52b	5.99	13.49	2748
9	24.00	10.00	35.19	0.00	44.53b	7.02	17.02	2748
		10.00	35.19	5.79	49.57b	5.79	15.79a	7634
10	23.60	14.00	38.81	7.11	53.74b	7.11	21.11a	8001
		14.00	38.81	7.11	54.04b	7.11	21.11a	8001
11	23.20	18.00	42.39	8.43	58.19b	8.43	26.43a	8367
		18.00	42.39	8.43	65.38b	8.43	26.43a	8367
12	22.80	22.00	45.96	9.74	70.04b	9.74	31.74a	8734
1.0		22.00	45.96	9.74	76.75b	9.74	31.74a	8734
13	22.40	26.00	49.54	11.05	81.866	11.05	37.05a	14019
14		26.00	49.54	11.05	88.17b	11.05	37.05a	14019
14	22.00	30.00	53.14	12.37	93.70b	12.37	42.37a	14584
1 5	01 85	30.00	53.14	12.37	98.590	12.37	42.3/a	14584
15	21.75	32.50	55.39	13.19	102.246	13.19	45.69a	14936
10	01 50	32.50	55.39	13.19	105.850	13.19	45.69a	14936
10	21.50	35.00	57.66	14.03	109.65D	14.03	49.03a	15289
1 7	01 15	35.00	57.00	14.03	113.81D	14.03	49.03a	15289
1/	21.15	38.50	60.85	15.19	119.36D	15.19	53.69a	15783
10	20 00	38.50	60.85	16.19	124.05D	15.19	53.69a	15783
18	20.80	42.00	64.05	16.37	129.85D	16.40	58.40	16277
10	20 40	42.00	64.05	17 72	134.07D	10.40 01 4E	50.40 67 46	16942
19	20.40	46.00	67.74	17.72	141.50D	21.45 01 4E	67.45	16042
20	20 00	40.00	07.74 71 /F	10 09	140.31D	21.45	76 70	17406
20	20.00	50.00	71.45	19.00	153./ID	26.70	76.70	17406
21	10 60	50.00	71.43	20 45	165 00b	20.70	70.70 96 10	17071
<u>د ۲</u>	19.00	54 00	75.10 75.10	20.45	160 QOL	32.19	86 10	17071
22	19 20	57 00	77 99	20.43 21 48	175 65h	36 47	92 47	18304
~~	17.50	57 00	77 99	21.49 21.49	178 96h	36 47	92 47	18394
23	19.00	60.00	80.81	22.51	184.84b	40.87	100.87	18817

Run ID. Block D - NG cables and canal_SLS Camden Lock Block D - NG cable and canal ----- Sheet No. Date:20-01-2015 Checked : _____

(continued)

Stage No.12 Change properties of soil type 1 to soil type 4 Ko pressures will not be reset

Node	Y				PASSIVE s	ide		
no.	coord			Effectiv	<i>v</i> e stresse	s	Total	Soil
		Water	Vertic	Active	Passive	Earth	earth	stiffness
		press.	-al	limit	limit	pressure	pressure	coeff.
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3
1	26.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	25.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	25.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	25.25	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	25.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
б	24.75	0.00	0.00	0.00	0.00	0.00	0.00	0.0
7	24.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
8	24.25	0.00	0.00	0.00	0.00	0.00	0.00	0.0
9	24.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
10	23.60	0.00	0.00	0.00	0.00	0.00	0.00	0.0
11	23.20	0.00	0.00	0.00	0.00	0.00	0.00	0.0
12	22.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0
13	22.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0
14	22.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
15	21.75	0.00	0.00	0.00	0.00	0.00	0.00	0.0
16	21.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0.00	0.00	0.00	25.17	25.17	25.17p	15289
17	21.15	3.50	3.50	0.00	36.52	36.52	40.02p	15783
18	20.80	7.00	7.00	0.00	47.87	47.87	54.87p	16277
19	20.40	11.00	11.01	0.00	60.85	60.85	71.85p	16842
20	20.00	15.00	15.02	0.00	73.84	73.84	88.84p	17406
21	19.60	19.00	19.03	0.00	86.86	84.43	103.43	17971
22	19.30	22.00	22.05	0.97	96.64	85.31	107.31	18394
23	19.00	25.00	25.07	2.08	106.43	86.03	111.03	18817

Note:

53.69a Soil pressure at active limit 88.84p Soil pressure at passive limit 184.84b Passive limit reduced because of berm

Stage No.12 Change soil type 1 to soil type 4

Stage No.12 Change soil type 1 to soil type 4

CARD GEOTECHNICS LIMITED | Sheet No. Program: WALLAP Version 6.05 Revision A41.B56.R46 | Job No. 18067a Licensed from GEOSOLVE | Made by : JMS Data filename/Run ID: Block D - NG cables and canal_SLS Camden Lock | Date:20-01-2015 Block D - NG cable and canal | Checked :

Units: kN,m

Summary of results

LIMIT STATE PARAMETERS

Limit State: Serviceability Limit State All loads and soil strengths are unfactored

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS fo:	r toe	Toe e	elev. fo	or
				elev. =	19.00	FoS	= 1.250)
Stage	G.I	S	Strut	Factor	Moment	Toe	Wall	_
No.	Act.	Pass.	Elev.	of	equilib	. elev.	Penet	r
				Safety	at elev	•	-atio	on
1	26.00	26.00	Cant.	Conditio	ons not	suitable	for Fos	5 calc.
2	26.00	26.00	Cant.	Conditio	ons not	suitable	for Fos	5 calc.
3	26.00	26.00		No analy	ysis at	this stag	le	
4	26.00	26.00	Cant.	Conditio	ons not	suitable	for Fos	5 calc.
5	26.00	24.50	Cant.	3.451	19.25	23.89	0.6	51
6	26.00	24.50		No analy	ysis at	this stag	le	
7	26.00	21.50	25.50	3.345	n/a	21.23	0.2	27
8	26.00	21.50		No analy	ysis at	this stag	le	
All	remainir	ng stages	have m	ore than	one str	ut - FoS	calcula	ation n/a

CARD GEOTECHNICS LIMITED | Sheet No. Program: WALLAP Version 6.05 Revision A41.B56.R46 | Job No. 18067a Licensed from GEOSOLVE | Made by : JMS Data filename/Run ID: Block D - NG cables and canal_SLS Camden Lock | Date:20-01-2015 Block D - NG cable and canal | Checked :

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 1000.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Units: kN,m

.

Rigid boundaries: Active side 20.00 from wall Passive side 20.00 from wall

Bending moment, shear force and displacement envelopes

Node	Y	Displac	cement	Bending	moment	Shear	force
no.	coord	maximum	minimum	maximum	minimum	maximum	minimum
		m	m	kN.m/m	kN.m/m	kN/m	kN/m
1	26.00	0.004	0.000	0.0	-0.0	0.0	0.0
2	25.80	0.004	0.000	0.0	0.0	0.4	-28.5
3	25.50	0.004	0.000	0.3	-8.4	1.2	-31.5
4	25.25	0.004	0.000	0.7	-15.3	2.0	-30.7
5	25.00	0.004	0.000	1.3	-22.0	3.9	-29.6
б	24.75	0.004	0.000	2.5	-28.3	6.7	-28.1
7	24.50	0.004	0.000	4.5	-34.2	8.6	-26.4
8	24.25	0.004	0.000	6.9	-39.6	11.2	-23.7
9	24.00	0.004	0.000	10.2	-44.3	15.2	-19.7
10	23.60	0.004	0.000	15.1	-49.6	9.7	-15.3
11	23.20	0.004	0.000	18.0	-53.2	5.0	-10.1
12	22.80	0.004	0.000	19.1	-55.1	11.8	-3.2
13	22.40	0.004	0.000	18.8	-54.6	25.6	-2.2
14	22.00	0.004	0.000	17.3	-49.7	41.5	-14.8
15	21.75	0.004	0.000	16.0	-43.8	28.4	-5.8
16	21.50	0.004	0.000	14.4	-35.4	39.2	-6.6
17	21.15	0.004	0.000	11.9	-25.8	30.4	-7.3
18	20.80	0.004	0.000	9.3	-20.0	22.4	-7.5
19	20.40	0.003	0.000	6.2	-13.0	17.4	-7.1
20	20.00	0.003	0.000	3.5	-6.7	14.1	-6.0
21	19.60	0.003	0.000	1.4	-2.2	8.3	-4.2
22	19.30	0.003	0.000	0.4	-0.5	3.6	-2.3
23	19.00	0.003	0.000	0.0	-0.0	0.0	0.0

Maximum and minimum bending moment and shear force at each stage

Stage		Bending	moment			Shear	force	
no.	maximum	elev.	minimum	elev.	maximum	elev.	minimum	elev.
	kN.m/m		kN.m/m		kN/m		kN/m	
1	7.9	22.80	0.0	26.00	5.7	24.00	-3.1	20.80
2	7.0	22.80	0.0	26.00	4.4	24.00	-2.6	20.80
3	No calcul	ation at	this stag	ge				
4	6.6	22.80	0.0	26.00	4.2	24.00	-2.4	21.15
5	19.1	22.80	-0.0	26.00	15.2	24.00	-7.5	20.80
6	No calcul	ation at	this stag	ge				
7	0.2	25.50	-55.1	22.80	39.2	21.50	-31.5	25.50
8	No calcul	ation at	this stag	ge				
9	No calcul	ation at	this stag	ge				
10	0.0	19.30	-53.9	22.80	37.6	21.50	-28.3	25.80
11	0.0	25.80	-51.6	23.20	41.5	22.00	-28.5	25.80
12	0.0	25.80	-51.6	23.20	41.5	22.00	-28.5	25.80

Run ID. Block D - NG cables and canal_SLS Camden Lock Block D - NG cable and canal _____ -----

Sheet No. Date:20-01-2015 Checked :

Summary of results (continued)

Maximum and minimum displacement at each stage

Stage		Displac	cement		Stage description
no.	maximum	elev.	minimun	n elev.	
	m		m		
1	0.001	26.00	0.000	26.00	Apply surcharge no.1 at elev. 26.00
2	0.001	26.00	0.000	26.00	Excav. to elev. 26.00 on ACTIVE side
3	Wall di	splaceme	ents rese	et to zero	Change EI of wall to 254469kN.m2/m run
4	0.000	19.00	0.000	26.00	Apply water pressure profile no.1
5	0.002	26.00	0.000	26.00	Excav. to elev. 24.50 on PASSIVE side
6	No calc	ulation	at this	stage	Install strut no.3 at elev. 25.50
7	0.004	23.20	0.000	26.00	Excav. to elev. 21.50 on PASSIVE side
8	No calci	ulation	at this	stage	Install strut no.2 at elev. 22.00
9	No calci	ulation	at this	stage	Install strut no.1 at elev. 25.80
10	0.004	23.60	0.000	26.00	Remove strut no.3 at elev. 25.50
11	0.004	23.20	0.000	26.00	Change soil type 2 to soil type 3
12	0.004	23.20	0.000	26.00	Change soil type 1 to soil type 4

Strut forces at each stage (horizontal components)

Stage	Strut	no. 1	Strut	no. 2	Strut no. 3				
no.	at elev	. 25.80	at elev	. 22.00	at elev. 25.50				
	kN/m run	kN/strut	kN/m run	kN/strut	kN/m run	kN/strut			
7					32.10	160.52			
10	28.36	28.36	4.51	4.51					
11	28.69	28.69	56.30	56.30					
12	28.69	28.69	56.30	56.30					

CARD GEOTECHNICS LIMITED Program: WALLAP Version 6.05 Revision A41.B56.R46 Licensed from GEOSOLVE	Sheet No. Job No. 18067a Made by : JMS
Data filename/Run ID: Block D - NG cables and canal_SLS Camden Lock Block D - NG cable and canal	Date:20-01-2015 Checked :
Units	kN,m

Bending moment, shear force, displacement envelopes

CARD GEOTECHNICS LIMITEDSheet No.Program: WALLAP Version 6.05 Revision A41.B56.R46Job No. 18067aLicensed from GEOSOLVEMade by : JMSData filename/Run ID: Block D - viaduct_SLSDate:20-01-2015Camden LockDate:20-01-2015Block D - NR viaductChecked :

Units: kN,m

INPUT DATA

SOIL PROFILE

Stratum	Elevation of	S	oil types
no.	top of stratum	Active side	Passive side
1	26.00	1 Made Ground	1 Made Ground
2	24.00	2 London Clay	2 London Clay

SOIL PROPERTIES

		Bulk	Yc	oung ' s	At r	rest	Co	nsol	Ac	tive	Ρ	assive		
	Soil type	density	Mo	odulus	coe	ff.	st	ate.	li	mit		limit	С	ohesion
No.	Description	kN/m3	Eh	,kN/m2	Kc)	NC	/OC	K	a		Кр		kN/m2
(]	Datum elev.)		(dI	Eh/dy)	(dKo/	dy)	(Nu)	(K	ac)	(Kpc)	(dc/dy)
1	Made Ground	18.00		18000	0.5	61		NC	1.	000		1.000		30.00u
							(0.	490)	(2.	389)	(2.390)		
2	London Clay	20.00		50000	1.0	00		OC	1.	000		1.000		50.00u
	(24.00)		(6000)			(0.	490)	(2.	475)	(2.476)	(6.000)
3	London Cl	20.00		37500	0.5	93		OC	Ο.	367		3.241		5.000d
	(24.00)		(4500)			(0.	200)	(1.	423)	(5.034)		
4	Made Ground	18.00		13500	0.	561		NC	0	.346		3.442		30.00d
	DR						(0.	200)	(1.	340)	(5.007)		

Additional soil parameters associated with Ka and Kp

		param	eters for	Ka	param	Кр	
		Soil	Wall	Back-	Soil	Wall	Back-
	Soil type	friction	adhesion	fill	friction	adhesion	fill
No.	Description	angle	coeff.	angle	angle	coeff.	angle
1	Made Ground	0.00	0.500	0.00	0.00	0.500	0.00
2	London Clay	0.00	0.667	0.00	0.00	0.667	0.00
3	London Clay DR	24.00	0.667	0.00	24.00	0.667	0.00
4	Made Ground DR	26.00	0.500	0.00	26.00	0.500	0.00

GROUND WATER CONDITIONS

Density of water = 10.00 kN/m3

				Active s	side	Passive	side
Initial	water	table	elevation	25.00	0	25.	00

Automatic water pressure balancing at toe of wall : No

Water		Activ	e side			Passiv	e side	
press.								
profile	Point	Elev.	Piezo	Water	Point	Elev.	Piezo	Water
no.	no.		elev.	press.	no.		elev.	press.
		m	m	kN/m2		m	m	kN/m2
1	1	25.00	25.00	0.0	1	21.50	21.50	0.0 MC+WC

WALL PROPERTIES

Type of structure = Fully Embedded Wall Elevation of toe of wall = 19.00 Maximum finite element length = 0.40 m Youngs modulus of wall E = 3.0000E+07 kN/m2 Moment of inertia of wall I = 8.4823E-03 m4/m run E.I = 254469 kN.m2/m run Yield Moment of wall = Not defined

STRUTS and ANCHORS

Strut/			X-section			Inclin	Pre-	
anchor		Strut	area	Youngs	Free	-ation	stress	Tension
no.	Elev.	spacing	of strut	modulus	length	(degs)	/strut	allowed
		m	sq.m	kN/m2	m		kN	
1	25.80	1.00	0.300000	3.000E+07	30.00	0.00	0	Yes
2	22.00	1.00	0.300000	3.000E+07	30.00	0.00	0	Yes
3	25.50	5.00	0.010000	2.000E+08	20.00	0.00	0	No

SURCHARGE LOADS

Surch		Distance	Length	Width	Surch	large	Equiv.	Partial
-arge		from	parallel	perpend.	kN/	m2	soil	factor/
no.	Elev.	wall	to wall	to wall	Near edge	Far edge	type	Category
1	26.00	0.00(A)	30.00	3.00	10.00	=	N/A	1.00 -
2	23.50	3.00(A)	30.00	10.00	200.00	=	N/A	1.00 -

Note: A = Active side, P = Passive side Limit State Categories P/U = Permanent Unfavourable P/F = Permanent Favourable Var = Variable (unfavourable)

CONSTRUCTION STAGES

Construction	Stage description
stage no.	
1	Apply surcharge no.1 at elevation 26.00
2	Apply surcharge no.2 at elevation 23.50
	No analysis at this stage
3	Change EI of wall to 254469 kN.m2/m run
	Yield moment not defined
	Reset wall displacements to zero at this stage
4	Apply water pressure profile no.1 (Mod. Conserv.)
5	Excavate to elevation 21.50 on PASSIVE side
6	Install strut or anchor no.2 at elevation 22.00
7	Install strut or anchor no.1 at elevation 25.80
8	Change properties of soil type 2 to soil type 3
	Ko pressures will not be reset
9	Change properties of soil type 1 to soil type 4
	Ko pressures will not be reset

FACTORS OF SAFETY and ANALYSIS OPTIONS

Limit State options: Serviceability Limit State All loads and soil strengths are unfactored

Stability analysis: Method of analysis - Strength Factor method Factor on soil strength for calculating wall depth = 1.25

Parameters for undrained strata: Minimum equivalent fluid density = 5.00 kN/m3 Maximum depth of water filled tension crack = 0.00 m

Bending moment and displacement calculation: Method - Subgrade reaction model using Influence Coefficients Open Tension Crack analysis? - No Non-linear Modulus Parameter (L) = 0 m

Boundary conditions: Length of wall (normal to plane of analysis) = 1000.00 m Width of excavation on active side of wall = 20.00 m Width of excavation on passive side of wall = 20.00 m Distance to rigid boundary on active side = 20.00 m

Distance to rigid boundary on passive side = 20.00 m

OUTPUT OPTIONS

Stag	e Stage description	Output	options :	
no.		Displacement	Active,	Graph.
		Bending mom.	Passive	output
		Shear force	pressures	
1	Apply surcharge no.1 at elev. 26.00	Yes	Yes	Yes
2	Apply surcharge no.2 at elev. 23.50	No	No	No
3	Change EI of wall to 254469kN.m2/m run	No	No	No
4	Apply water pressure profile no.1	No	No	No
5	Excav. to elev. 21.50 on PASSIVE side	No	No	No
6	Install strut no.2 at elev. 22.00	No	No	No
7	Install strut no.1 at elev. 25.80	No	No	No
8	Change soil type 2 to soil type 3	No	No	No
9	Change soil type 1 to soil type 4	No	No	No
*	Summary output	Yes	-	Yes

Program WALLAP - Copyright (C) 2012 by DL Borin, distributed by GEOSOLVE 69 Rodenhurst Road, London SW4, UK. Tel: +44 20 8674 7251

CARD GEOTECHNICS LIMITED| Sheet No.Program: WALLAP Version 6.05 Revision A41.B56.R46| Job No. 18067aLicensed from GEOSOLVE| Made by : JMSData filename/Run ID: Block D - viaduct_SLS|Camden Lock| Date:20-01-2015Block D - NR viaduct| Checked :

Units: kN,m

Stage No. 9 Change properties of soil type 1 to soil type 4 Ko pressures will not be reset

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

Fos for toeToe elev. for
elev. = 19.00Stage --- G.L. ---StrutFactor MomentToeNo. Act. Pass.Elev.of
equilib.elev. Penetr
safety at elev.------926.0021.50More than one strut

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 1000.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries: Active side 20.00 from wall Passive side 20.00 from wall

*** Wall displacements reset to zero at stage 3

Node	Y	Nett	Wall	Wall	Shear	Bending	Strut
no.	coord	pressure	disp.	rotation	force	moment	forces
		kN/m2	m	rad.	kN/m	kN.m/m	kN/m
1	26.00	0.70	0.014	2.12E-03	0.0	-0.0	
2	25.80	1.57	0.014	2.12E-03	0.2	0.0	-10.5
		1.57	0.014	2.12E-03	10.7	0.0	
3	25.40	3.30	0.013	2.12E-03	11.7	4.5	
4	25.00	5.00	0.012	2.11E-03	13.3	9.5	
5	24.70	6.50	0.012	2.10E-03	15.0	13.7	
б	24.40	8.00	0.011	2.08E-03	17.2	18.5	
7	24.00	10.00	0.010	2.05E-03	20.8	26.1	
		15.79	0.010	2.05E-03	20.8	26.1	
8	23.75	19.12	0.010	2.03E-03	25.2	31.9	
9	23.50	22.44	0.009	2.00E-03	30.4	38.8	
10	23.15	27.14	0.009	1.95E-03	39.0	50.9	
11	22.80	32.10	0.008	1.88E-03	49.4	66.4	
12	22.40	38.34	0.007	1.77E-03	63.5	88.9	
13	22.00	45.28	0.006	1.62E-03	80.2	117.7	159.1
		45.28	0.006	1.62E-03	-78.8	117.7	
14	21.75	49.93	0.006	1.52E-03	-66.9	99.4	
15	21.50	54.78	0.006	1.43E-03	-53.9	84.3	
		29.61	0.006	1.43E-03	-53.9	84.3	
16	21.15	21.80	0.005	1.34E-03	-44.9	71.1	
17	20.80	14.15	0.005	1.25E-03	-38.6	56.1	
18	20.40	5.45	0.004	1.18E-03	-34.6	40.7	
19	20.00	6.39	0.004	1.13E-03	-32.3	26.9	
20	19.60	11.49	0.003	1.10E-03	-28.7	13.9	
21	19.30	23.56	0.003	1.09E-03	-23.4	6.0	
22	19.00	132.75	0.003	1.09E-03	-0.0	0.0	
Stru	t force	at elev.	25.80 =	-10.45 kN/m	run =	-10.45 kN	/strut
Stru	t force	at elev.	22.00 =	159.07 kN/m	run =	159.07 kN	/strut

Run ID. Block D - viaduct_SLS Camden Lock Block D - NR viaduct

| Sheet No. | Date:20-01-2015 | Checked :

(continued)

Stage No.9 Change properties of soil type 1 to soil type 4 Ko pressures will not be reset

Node	Y				ACTIVE s	ide		
no.	coord			Effectiv	ve stresse	s	Total	Soil
		Water	Vertic	Active	Passive	Earth	earth	stiffness
		press.	-al	limit	limit	pressure	pressure	coeff.
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3
1	26.00	0.00	10.00	0.00	184.64	0.70	0.70	9014
2	25.80	0.00	13.60	0.00	197.03	1.57	1.57	9014
3	25.40	0.00	20.77	0.00	221.71	3.30	3.30	9014
4	25.00	0.00	27.86	0.00	246.12	5.00	5.00	3322
5	24.70	3.00	30.12	0.00	253.89	3.50	6.50	3322
б	24.40	6.00	32.32	0.00	261.48	2.00	8.00	3322
7	24.00	10.00	35.19	0.00	271.36	0.00	10.00a	3322
		10.00	35.19	5.79	139.24	5.79	15.79a	9228
8	23.75	12.50	37.46	6.62	146.58	6.62	19.12a	9505
9	23.50	15.00	39.70	7.44	153.87	7.44	22.44a	9782
10	23.15	18.50	42.97	8.64	164.44	8.64	27.14a	10170
11	22.80	22.00	46.96	10.10	177.38	10.10	32.10a	10557
12	22.40	26.00	53.07	12.34	197.19	12.34	38.34a	11000
13	22.00	30.00	61.07	15.28	223.12	15.28	45.28a	11443
14	21.75	32.50	66.95	17.43	242.17	17.43	49.93a	11720
15	21.50	35.00	73.36	19.78	262.97	19.78	54.78a	11997
16	21.15	38.50	83.01	23.32	294.22	23.32	61.82a	12384
17	20.80	42.00	93.09	27.01	326.92	27.01	69.01a	12772
18	20.40	46.00	104.77	31.30	364.78	31.30	77.30a	13215
19	20.00	50.00	116.29	35.52	402.12	45.23	95.23	13658
20	19.60	54.00	127.42	39.60	438.19	63.34	117.34	14101
21	19.30	57.00	135.43	42.53	464.14	76.84	133.84	14433
22	19.00	60.00	143.10	45.35	489.01	120.43	180.43	14765

Node	Y				PASSIVE s	ide		
no.	coord			Effectiv	<i>v</i> e stresse	s	Total	Soil
		Water	Vertic	Active	Passive	Earth	earth	stiffness
		press.	-al	limit	limit	pressure	pressure	coeff.
		kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m3
1	26.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2	25.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3	25.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0
4	25.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
5	24.70	0.00	0.00	0.00	0.00	0.00	0.00	0.0
6	24.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0
7	24.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
8	23.75	0.00	0.00	0.00	0.00	0.00	0.00	0.0
9	23.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
10	23.15	0.00	0.00	0.00	0.00	0.00	0.00	0.0
11	22.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0
12	22.40	0.00	0.00	0.00	0.00	0.00	0.00	0.0
13	22.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
14	21.75	0.00	0.00	0.00	0.00	0.00	0.00	0.0
15	21.50	0.00	0.00	0.00	0.00	0.00	0.00	0.0
		0.00	0.00	0.00	25.17	25.17	25.17p	11997
16	21.15	3.50	3.50	0.00	36.52	36.52	40.02p	12384
17	20.80	7.00	7.00	0.00	47.87	47.87	54.87p	12772
18	20.40	11.00	11.01	0.00	60.85	60.85	71.85p	13215
19	20.00	15.00	15.02	0.00	73.84	73.84	88.84p	13658
20	19.60	19.00	19.03	0.00	86.86	86.86	105.86p	14101
21	19.30	22.00	22.05	0.97	96.64	88.28	110.28	14433
22	19.00	25.00	25.07	2.08	106.43	22.68	47.68	14765

Run ID. Block D - viaduct_SLS | Sheet No. Camden Lock | Date:20-01-2015 Block D - NR viaduct | Checked : (continued) Stage No.9 Change properties of soil type 1 to soil type 4 Ko pressures will not be reset Note: 77.30a Soil pressure at active limit 105.86p Soil pressure at passive limit

Stage No.9 Change soil type 1 to soil type 4

CARD GEOTECHNICS LIMITED | Sheet No. Program: WALLAP Version 6.05 Revision A41.B56.R46 | Job No. 18067a Licensed from GEOSOLVE | Made by : JMS Data filename/Run ID: Block D - viaduct_SLS | Camden Lock | Date:20-01-2015 Block D - NR viaduct | Checked :

Units: kN,m

Summary of results

LIMIT STATE PARAMETERS

Limit State: Serviceability Limit State All loads and soil strengths are unfactored

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				FoS fo elev. =	r toe 19.00	Toe el FoS =	ev. for 1.250
Stage	G.I	L :	Strut	Factor	Moment	Тое	Wall
No.	Act.	Pass.	Elev.	of	equilib.	elev.	Penetr
				Safety	at elev.		-ation
1	26.00	26.00	Cant.	Conditi	ons not sui	itable f	or FoS calc.
2	26.00	26.00		No anal	ysis at thi	is stage	
3	26.00	26.00		No anal	ysis at thi	is stage	
4	26.00	26.00	Cant.	Conditi	ons not sui	itable f	or FoS calc.
5	26.00	21.50	Cant.	1.655	19.42	19.42	2.08
6	26.00	21.50		No anal	ysis at thi	is stage	
All	remainin	ng stages	have mo	ore than	one strut	- FoS c	alculation n/a

CARD GEOTECHNICS LIMITED | Sheet No. Program: WALLAP Version 6.05 Revision A41.B56.R46 | Job No. 18067a Licensed from GEOSOLVE | Made by : JMS Data filename/Run ID: Block D - viaduct_SLS | Camden Lock | Date:20-01-2015 Block D - NR viaduct | Checked :

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 1000.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Units: kN,m

Rigid boundaries: Active side 20.00 from wall Passive side 20.00 from wall

Bending moment, shear force and displacement envelopes

Node	Y	Displac	cement	Bending	moment	Shear	force
no.	coord	maximum	minimum	maximum	minimum	maximum	minimum
		m	m	kN.m/m	kN.m/m	kN/m	kN/m
1	26.00	0.015	-0.000	0.0	-0.0	0.0	0.0
2	25.80	0.014	-0.000	0.1	0.0	10.7	0.0
3	25.40	0.013	-0.000	4.5	0.0	11.7	0.0
4	25.00	0.012	-0.000	9.5	0.0	13.3	0.0
5	24.70	0.012	-0.000	13.7	0.0	15.0	0.0
6	24.40	0.011	-0.000	18.5	0.0	17.2	0.0
7	24.00	0.010	0.000	26.1	0.0	20.8	0.0
8	23.75	0.010	0.000	31.9	0.0	25.2	0.0
9	23.50	0.009	0.000	38.8	0.0	30.4	0.0
10	23.15	0.009	0.000	50.9	0.0	39.0	0.0
11	22.80	0.008	0.000	66.4	0.0	49.4	0.0
12	22.40	0.007	0.000	88.9	0.0	63.5	-1.5
13	22.00	0.006	0.000	117.7	0.0	80.2	-78.8
14	21.75	0.006	0.000	99.4	0.0	45.2	-66.9
15	21.50	0.006	0.000	84.3	0.0	50.6	-53.9
16	21.15	0.005	0.000	90.0	0.0	6.8	-44.9
17	20.80	0.005	0.000	85.6	0.0	0.0	-38.6
18	20.40	0.004	0.000	68.9	0.0	0.0	-50.4
19	20.00	0.004	0.000	45.7	0.0	0.0	-59.0
20	19.60	0.003	0.000	22.1	0.0	0.0	-52.3
21	19.30	0.003	0.000	8.1	0.0	0.0	-37.1
22	19.00	0.003	0.000	0.0	-0.0	0.0	-0.0

Maximum and minimum bending moment and shear force at each stage

Stage		- Bending	moment			- Shear	force	
no.	maximum	elev.	minimum	elev.	maximum	elev.	minimum	elev.
	kN.m/m		kN.m/m		kN/m		kN/m	
1	7.9	22.80	-0.0	19.00	5.7	24.00	-3.1	20.80
2	No calcul	ation at	this stag	je				
3	No calcul	ation at	this stag	je				
4	19.2	22.40	-0.0	19.00	10.4	24.00	-8.8	20.80
5	90.0	21.15	-0.0	26.00	50.6	21.50	-59.0	20.00
6	No calcul	ation at	this stag	je				
7	No calcul	ation at	this stag	je				
8	117.7	22.00	-0.0	26.00	80.2	22.00	-78.8	22.00
9	117.7	22.00	-0.0	26.00	80.2	22.00	-78.8	22.00

Run ID. Block D - viaduct_SLS Camden Lock Block D - NR viaduct | Sheet No. | Date:20-01-2015 | Checked :

Summary of results (continued)

Maximum and minimum displacement at each stage

					- Zeage
Stage		Displac	cement		Stage description
no.	maximum	elev.	minimum	elev.	
	m		m		
1	0.001	26.00	0.000	26.00	Apply surcharge no.1 at elev. 26.00
2	No calculation at this stage				Apply surcharge no.2 at elev. 23.50
3	Wall dis	splaceme	ents rese	t to zero	Change EI of wall to 254469kN.m2/m run
4	0.001	19.00	-0.000	26.00	Apply water pressure profile no.1
5	0.015	26.00	0.000	26.00	Excav. to elev. 21.50 on PASSIVE side
6	No calcu	ulation	at this	stage	Install strut no.2 at elev. 22.00
7	No calcu	ulation	at this	stage	Install strut no.1 at elev. 25.80
8	0.014	26.00	0.000	26.00	Change soil type 2 to soil type 3
9	0.014	26.00	0.000	26.00	Change soil type 1 to soil type 4

Strut forces at each stage (horizontal components)

Stage	Strut no. 1	Strut no. 2
no.	at elev. 25.80	at elev. 22.00
	kN/m run kN/strut	kN/m run kN/strut
8	-10.45 -10.45	159.07 159.07
9	-10.45 -10.45	159.07 159.07

CARD GEOTECHNICS LIMITED	Sheet No.
Program: WALLAP Version 6.05 Revision A41.B56.R46	Job No. 18067a
Data filename/Run ID: Block D - viaduct_SLS	Made by · JMS
Camden Lock	Date:20-01-2015
Block D - NR viaduct	Checked :
	Units: kN,m

Bending moment, shear force, displacement envelopes