

ACOUSTICS

ACOUSTIC REPORT

Report No. CS 7602-2

84 Hatton Garden London EC1N 8JR

26th March 2015

Prepared By:

David Whymark – Managing Director

Client: -

Works Architecture Limited 16 Upper Montagu Street London W1H 2AN **Checked By:**

.

Jason Paxford - Director

- ACOUSTICS

FORWARD

It is proposed to redevelop the property located at 84 Hatton Garden, London EC1N 8JR into 9 serviced apartments. A new externally mounted air conditioning unit is proposed to be positioned on the new roof of the 7th floor of the main roof extension to serve the duplex penthouse apartment located on the sixth & seventh floor.

From our observations of the surrounded area it is thought that the nearest sound sensitive properties to the proposed plant are commercial, therefore should our assumption be correct the nearest residential sound sensitive location would be the apartments within this redevelopment located to the rear on the fifth floor.

As the units proposed are designed for comfort conditioning it could operate 24 hours a day depending on the demand.

Conabeare Acoustics Limited has therefore been commissioned to undertake an environmental sound survey at this level of the building.

The results of the survey will establish the Background Sound Level to enable checks to be made on the mechanical services plant in order that they comply with planning requirements.

SUMMARY

It is understood that the proposed air conditioning unit are to provide comfort conditioning for the property; therefore they have the potential to operate at any time.

The lowest measured Background Sound Levels over the measuring period $L_{A90.15MIN}$ were as follows: -

Daytime 07:00 – 19:00 hours	L _{A90.15MIN}	50.6 dB(A)
Evening 19:00 – 23:00 hours	LA90.15MIN	51.4 dB(A)
Night time 23:00 – 07:00 hours	L _{A90.15MIN}	48.0 dB(A)

The lowest level being measured between 04:30 & 04:45 hours.

- ACOUSTICS

CONTENTS

- 1. Author
- 2. Client
- 3. Introduction
- 4. Noise Principles
- 5. The Site
- 6. Measurement Methodology
- 7. Glossary of Terms
- 8. Planning noise requirements
- 9. Assessment
- 10. Conclusion
- 11. Location photographs
- 12. Sound Level Measurements recorded in graphical and tabular form.
- 13. Additional information.

ACOUSTICS

1. Author

David Whymark

The author has been practising in noise control engineering since 1980. He has gained a wide range of experience over this period and is the Managing Director of **Conabeare Acoustics Limited.**

2. Client

The survey and report has been undertaken on behalf of: -

Works Architecture Limited 16 Upper Montagu Street London W1H 2AN

3. Introduction

It is proposed to redevelop the property located at 84 Hatton Garden, London EC1N 8JR into 9 serviced apartments. A new externally mounted air conditioning unit is proposed to be positioned on the new roof of the 7th floor main roof extension to serve the duplex penthouse apartment on the sixth & seventh floor.

From our observations of the surrounded area it is thought that the nearest sound sensitive properties to the proposed plant are commercial, therefore should our assumption be correct the nearest residential sound sensitive location would be the apartments within this redevelopment located to the rear on the fifth floor.

As the units proposed are designed for comfort conditioning these could operate 24 hours a day depending on demand.

Conabeare Acoustics Limited has therefore been commissioned to undertake an environmental sound survey at this level of the building.

An environmental sound survey has been carried out to establish the existing background sound levels within the area. The results of the environmental sound survey are also used as a datum so that acoustic calculations can be undertaken to determine the likely impact of the proposed plant on the nearest sound sensitive locations.

4. Noise Principles

The Environmental Sound Survey has been carried out in accordance with the principles of BS7445-1 (2003) to establish the existing background sound levels. The background sound level measured are in terms of A-weighted sound pressure level L_{A90} with a time interval of 15 minutes.

ACOUSTICS

5. The Site

The property is located @ 84 Hatton Garden, London EC1N 8JR in an area thought to be surrounded generally by commercial properties.

6. Measurement Methodology

The SVAN 949 (Precision) Environmental Sound Level Analyser, fitted with an Electret Microphone was set up on the flat roof of the 5th floor towards rear of the property with the microphone being attached to a tri-pod, please see location photographs.

The survey was carried out from 09:00 hours on Thursday 18th December 2014, until 09:00 hours on Friday 19th December 2014.

The Analyser was programmed to produce the following indices: $L_{AEQ-15min}$, $L_{A90-15min}$, $L_{A10-15min}$

Attached for your reference is a Glossary of these terms.

The analyser was checked for calibration before the survey commenced and at the end of survey with a CEL 284/2 Class 1 calibrator with no measurable deviation.

The weather during the survey period was generally dry with an occasional shower with light / strong gusting winds. Having reviewed the results of our survey, it is our opinion that the weather experienced over the survey period has not had any detrimental effect on the recorded readings and therefore on our recommendations.

CONABEARE -

- ACOUSTICS

7. Glossary of Terms

L _{A90}	The sound pressure level in dB(A) which is exceeded for 90% of the time and is taken to be the effective lowest background sound level for the period by such methods of sound rating as that recommended in British Standard 4142. It will also be used as a basis for selecting limiting sound levels from new plant by Local Planning Authorities when setting Planning Consent Conditions.
L _{eq}	The "equivalent continuous sound level" for the measuring period, defined as the level in $dB(A)$ which, if held constant over the measuring period, would produce the same amount of sound energy as does the actual varying ambient sound level. It is a measure of the amount of sound energy affecting the site from sources other than new plant or operations.
L _{A10}	The sound level exceeded for 10% of the time over the sample period. Originally used as a measure of subjective reaction to traffic noise in particular, it can also be taken as an indication of the practical maximum sound level that the building envelope will have to protect against.
dB(A)	Describes measured on a sound level meter incorporating a frequency weighting (A weighting) which differentiates between sounds of different frequency (pitch) in a similar way to the human ear. Measurements in dB(A) broadly agree with people's assessment of loudness. A change of 3dB(A) is the minimum perceptible under normal conditions, and a change of 10dB(A) corresponds roughly to halving or doubling the loudness of a sound.

8. Planning Noise Requirements

The planning noise requirement for this area (Camden) usually states, that any proposed plant should be at least 5 dB(A) below the Background Sound level (L_{A90}) measured at 1 metre from the nearest effected residential property.

Allowance should also be made for any tonal noise emanating from the proposed units, if this is the case a further 5 dB(A) correction below the Background Sound level should apply.

ACOUSTICS

9. Assessment

The objective of any specification limiting sound should be to ensure that sound emissions from the proposed plant should not materially add to the existing ambient noise climate when measured 1m from the nearest effected property window.

The SVAN 949 (Precision) Environmental Sound Level Analyser, fitted with an Electret Microphone was set up on the flat roof towards rear of the property with the microphone being attached to a tri-pod, please see location photographs.

As the unit proposed is designed for comfort conditioning it could operate 24 hours a day depending on the demand.

The lowest measured Background Sound Level $L_{A90.15\text{MIN}}$ over the measuring period was: -

L_{A90.15MIN} 48.0 dB(A)

The current design policy of council planners is that noise produced by mechanical plant should be at least 5dB(A) below the background $L_{A90.15MIN}$ sound level at 1m from the nearest sound sensitive window.

It should also be noted that any plant exhibiting characteristics which are tonal or intermittent in nature should be designed to criteria 5dB(A) more stringent than the above.

The sound level of all new plant when measured at 1m from the closest residential window should therefore not exceed:

 $L_{AEQ.15MIN}$ 38 dB(A)

Allowances should also be made for the additional effect of multiple noise sources if applicable.

In our opinion all of the above would generally be acceptable to the local authority for this area, but all design targets should be, as a matter of course be verified with the local Environmental Health or Planning Departments.

Plant considered

1 number Daikin RXYSQ4-P8V1 external unit : -

Possible operational hours – 24 hours per day, 7 days per week.

ACOUSTICS

Calculation Sheet Assessment Location

		Octav	e Band	Centre	Frequei	ncy Hz		
	125	250	500	1k	2k	4k	8k	dB(A)
Daikin RXYSQ4-P8V1 sound power level	70	67	65	61	55	49	45	66
Distance to Location 12.3m	-33	-33	-33	-33	-33	-33	-33	
Unit surface reflection corrections	6	6	6	6	6	6	6	
Acoustic screening (edge of building) $\delta = 2.328$ m	-12	-14	-18	-20	-23	-25	-25	
Correction for reflections within lightwell	5	5	5	5	5	5	5	
Façade correction	+3	+3	+3	+3	+3	+3	+3	
Resultant Lp at Location "A"	39	34	28	22	13	5	-3	31
Design requirement Lp at receiver								38
Therefore the design with a solid screen around the roof of the seventh floor meets the suggested project								
design requirement.								

The above Calculation Sheet is for the assessment location (Fifth floor rear location) as per the attached drawing without any form of additional attenuation. This illustrates that at this position the combined Specific Sound Level from the proposed plant would be 31dB(A). This is some 7dB(A) below the proposed design target of 38dB(A).

In our opinion the above would be acceptable to the local authority for this area, but all design targets should be, as a matter of course be verified with the local Environmental Health or Planning Departments.

Mechanical Plant: It is recommended that the client provisions for appropriate vibration isolation mountings for the proposed mechanical plant items. It is recommended that the plant be installed on vibration isolation mounts providing a minimum of 98% isolation efficiency at the lowest forcing frequency using an isolation mount system approved by the plant supplier. In addition, all pipework should be suitably isolated from the building structure.

Plant Breakthrough: Careful consideration should be given to the possibility of plant noise breaking into the area below the proposed plant.

10. Conclusions

A background noise survey has been undertaken to determine the noise climate likely to exist at the proposed residential properties located at 84 Hatton Garden, London EC1N 8JR where the positioning of mechanical plant is proposed. Appropriate external criteria have been identified on the basis of Local Authority noise policy and predictions of the proposed mechanical plant noise emissions have been undertaken. Predictions of noise emission from the proposed plant indicate that no further noise mitigation measures are required in order to meet with the proposed noise limits. On this basis, reservations are not expected from the planning authority on the grounds of noise.

ACOUSTICS

11. Location Photographs

Equipment set up on the roof to the rear of the property

84 Hatton Garden London EC1N 8JR.

84 Hatton Garden London EC1N 8JR.

84 Hatton Garden London EC1N 8JR.

Header information for the file[1] @CAL197
Device type SVAN 949
Serial No 85/2
Internal software version 5.13
File system version 5.12
Original file name @CAL197
Measurement hour 09:00'50
Measurement day 14/12/18
Device function OCTAVE 1/1
Title text:
Input Microphone
Mic. polarization 0 V
Mic. field correction FREE
Mic. outdoor filter ON
Compensation filter OFF
Measurement range 105 dB
Leq integration Linear
Trig. mode OFF
Start delay 1 s
Integration time def 15 m
Repetition cycle Infinity
Number of spectra 1
Octave 1/1 lines 15+3
Octave 1/1 filter Lin
Octave 1/1 in buffer OFF
Number of histograms 3+18
Calibration type Sensitivity
Calibration time 14:07'10
Calibration date 14/12/17
Rotation measurement OFF
Profile: #1
Weighting filter A
Detector type Fast
Buffer contents definition None
Calibration factor 2.5 dB

Main_results:										
File	Date	Start	Filter	Detect	Time	units	Leq (A)	L1 dB(A)	L10 dB(A)	L90 dB(A)
@CAL197	18/12/14	09:00'50	A	Fast	00:15'00	dB	60.3	67.2	62.0	57.2
@CAL198	18/12/14	09:15'50	A	Fast	00:15'00	dB	60.2	67.5	62.5	56.4
@CAL199	18/12/14	09:30'50	A	Fast	00:15'00	dB	59.1	65.4	60.9	56.3
@CAL200	18/12/14	09:45'50	A	Fast	00:15'00	dB	57.8	64.0	59.5	55.0
@CAL201	18/12/14	10:00'50	A	Fast	00:15'00	dB	56.1	61.3	57.7	54.0
@CAL202	18/12/14	10:15'50	A	Fast	00:15'00	dB	55.2	59.5	56.8	53.2
@CAL203	18/12/14	10:30'50	A	Fast	00:15'00	dB	56.1	63.5	57.9	53.5
@CAL204	18/12/14	10:45'50	A	Fast	00:15'00	dB	57.4	65.0	58.9	54.8
@CAL205	18/12/14	11:00'50	A	Fast	00:15'00	dB	58.2	66.3	59.4	55.3
@CAL206	18/12/14	11:15'50	А	Fast	00:15'00	dB	56.8	61.9	58.2	55.0
@CAL207	18/12/14	11:30'50	А	Fast	00:15'00	dB	60.0	72.0	59.9	54.7
@CAL208	18/12/14	11:45'50	А	Fast	00:15'00	dB	57.2	64.4	58.3	55.0
@CAL209	18/12/14	12:00'50	А	Fast	00:15'00	dB	58.2	63.2	59.9	56.0
@CAL210	18/12/14	12:15'50	А	Fast	00:15'00	dB	57.6	62.6	59.4	55.4
@CAL211	18/12/14	12:30'50	A	Fast	00:15'00	dB	58.3	63.2	60.1	55.8
@CAL212	18/12/14	12:45'50	А	Fast	00:15'00	dB	59.0	64.1	60.7	56.7
@CAL213	18/12/14	13:00'50	А	Fast	00:15'00	dB	57.9	64.3	59.4	55.7
@CAL214	18/12/14	13:15'50	A	Fast	00:15'00	dB	57.0	60.8	58.8	54.9
@CAL215	18/12/14	13:30'50	А	Fast	00:15'00	dB	58.1	64.1	60.5	54.6
@CAL216	18/12/14	13:45'50	A	Fast	00:15'00	dB	56.4	61.9	58.1	54.1
@CAL217	18/12/14	14:00'50	А	Fast	00:15'00	dB	57.6	64.3	59.2	55.0
@CAL218	18/12/14	14:15'50	A	Fast	00:15'00	dB	65.8	77.6	68.4	55.2
@CAL219	18/12/14	14:30'50	A	Fast	00:15'00	dB	56.2	59.6	57.4	54.6
@CAL220	18/12/14	14:45'50	A	Fast	00:15'00	dB	56.3	60.5	57.7	54.4
@CAL221	18/12/14	15:00'48	A	Fast	00:15'00	dB	56.5	62.5	57.9	54.4
@CAL222	18/12/14	15:15'48	A	Fast	00:15'00	dB	57.0	63.9	58.7	54.6
@CAL223	18/12/14	15:30'50	A	Fast	00:15'00	dB	57.0	63.9	58.5	54.8
@CAL224	18/12/14	15:45'48	A	Fast	00:15'00	dB	56.2	61.5	57.7	54.1
@CAL225	18/12/14	16:00'50	A	Fast	00:15'00	dB	57.7	62.8	59.1	55.7
@CAL226	18/12/14	16:15'48	A	Fast	00:15'00	dB	57.2	62.7	58.5	55.2
@CAL227	18/12/14	16:30'48	A	Fast	00:15'00	dB	56.0	60.3	57.5	54.2
@CAL228	18/12/14	16:45'48	A	Fast	00:15'00	dB	54.9	59.6	56.0	53.2
@CAL229	18/12/14	17:00'48	A	Fast	00:15'00	dB	54.9	59.5	56.0	53.3
@CAL230	18/12/14	17:15'48	A	Fast	00:15'00	dB	55.4	61.7	56.9	53.1
@CAL231	18/12/14	17:30'48	A	Fast	00:15'00	dB	56.2	63.7	57.8	53.4
@CAL232	18/12/14	17:45'48	A	Fast	00:15'00	dB	55.0	61.2	56.4	53.0
@CAL233	18/12/14	18:00'48	A	Fast	00:15'00	dB	54.6	62.3	55.5	52.3
@CAL234	18/12/14	18:15'48	A	Fast	00:15'00	dB	55.3	63.8	56.4	52.6
@CAL235	18/12/14	18:30'48	A	Fast	00:15'00	dB	55.5	61.3	57.3	53.2
@CAL236	18/12/14	18:45'48	A	Fast	00:15'00	dB	54.8	59.2	56.3	53.0

Main results:										
File	Date	Start	Filter	Detect	Time	units	Leg (A)	L1 dB(A)	L10 dB(A)	L90 dB(A)
@CAL237	18/12/14	19:00'48	А	Fast	00:15'00	dB	55.0	60.7	56.1	52.5
@CAL238	18/12/14	19:15'48	A	Fast	00:15'00	dB	54.9	61.3	56.4	52.5
@CAL239	18/12/14	19:30'48	А	Fast	00:15'00	dB	56.0	64.1	57.9	53.0
@CAI 240	18/12/14	19:45'48	A	Fast	00.12,00	dB	55.4	63.0	56.9	52.3
@CAI 241	18/12/14	20.00,48	A	Fast	00.12,00	dB	54.5	60.3	56.0	52.1
@CAL 242	18/12/14	20:15'48	A	Fast	00.15'00	dB	54.3	60.1	56.0	52.1
@CAL 243	18/12/14	20:30'48	Δ	Fast	00:15'00	dB	53.7	59.9	55.4	51.4
@CAL 244	18/12/14	20:45'48	Δ	Fast	00:15'00	dB	55.0	63.6	56.7	51.4
@CAL244	18/12/14	21.00/48	Δ	Fast	00:15:00	dB	53.0	59.0	55.7	51.7
@CAL245	18/12/14	21.00 40	Δ	Fast	00:15:00	dB	53.5	58.4	5/ 9	51.7
@CAL240	18/12/14	21:10 40	^	Fact	00:15'00	dB	53.0	60.9	55.3	51.7
@CAL247 @CAL248	18/12/14	21:30 40	7	Fact	00:15:00	dB	54.4	60.7	56.0	52.0
@CAL240	10/12/14	21.4340	^	Fact	00:15'00	dD	52.0	58.0	55.2	51.7
@CAL249	10/12/14	22.0040	A	Fasi	00.1500	dD	53.0	50.9	51.0	52.1
@CAL250	10/12/14	22.1040	A	Fasi	00.1500	dD	53.7	50.0	54.9	52.1
@CAL251	10/12/14	22.3040	A	Fasi	00.1500	dD	54.7	61.0	50.4	52.0
@CAL252	18/12/14	22:45 48	A	Fast	00:15:00	dB dB	54.6	61.9	55.9	52.1
@CAL253	18/12/14	23:00 48	A	Fast	00:15:00	dB	53.7	60.5	55.4	51.3
@CAL254	18/12/14	23:15:48	A	Fast	00:15:00	aB	53.3	60.9	54.7	51.0
@CAL255	18/12/14	23:30:48	A	Fast	00:15:00	aB	53.4	60.8	55.0	50.8
@CAL256	18/12/14	23:45:48	A	Fast	00:15'00	dB	53.4	60.8	55.0	50.4
@CAL257	19/12/14	00:00'48	A	Fast	00:15'00	dB	56.3	65.9	59.5	50.3
@CAL258	19/12/14	00:15'48	A	⊦ast	00:15'00	dB	53.5	62.3	55.4	49.6
@CAL259	19/12/14	00:30'48	A	Fast	00:15'00	dB	52.1	58.6	53.8	49.7
@CAL260	19/12/14	00:45'48	A	Fast	00:15'00	dB	52.0	59.1	53.4	49.6
@CAL261	19/12/14	01:00'48	A	Fast	00:15'00	dB	52.5	60.6	54.2	49.4
@CAL262	19/12/14	01:15'48	A	Fast	00:15'00	dB	51.9	59.9	53.5	49.1
@CAL263	19/12/14	01:30'48	A	Fast	00:15'00	dB	51.3	57.0	52.9	49.2
@CAL264	19/12/14	01:45'48	A	Fast	00:15'00	dB	52.8	59.7	54.5	49.9
@CAL265	19/12/14	02:00'48	A	Fast	00:15'00	dB	51.8	59.3	53.1	49.2
@CAL266	19/12/14	02:15'48	A	Fast	00:15'00	dB	52.0	58.4	53.5	49.8
@CAL267	19/12/14	02:30'48	А	Fast	00:15'00	dB	51.9	58.7	53.1	49.4
@CAL268	19/12/14	02:45'48	А	Fast	00:15'00	dB	51.1	57.6	52.3	48.6
@CAL269	19/12/14	03:00'48	A	Fast	00:15'00	dB	51.1	56.8	52.7	48.8
@CAL270	19/12/14	03:15'48	А	Fast	00:15'00	dB	51.5	58.1	52.3	48.4
@CAL271	19/12/14	03:30'48	А	Fast	00:15'00	dB	52.1	60.0	53.9	48.7
@CAL272	19/12/14	03:45'48	А	Fast	00:15'00	dB	51.3	59.2	52.7	48.4
@CAL273	19/12/14	04:00'48	А	Fast	00:15'00	dB	50.3	55.2	51.8	48.3
@CAL274	19/12/14	04:15'48	А	Fast	00:15'00	dB	50.6	56.6	51.8	48.3
@CAL275	19/12/14	04:30'48	А	Fast	00:15'00	dB	50.1	55.6	51.4	48.0
@CAL276	19/12/14	04:45'48	А	Fast	00:15'00	dB	50.7	54.9	52.0	49.0
@CAL277	19/12/14	05:00'48	А	Fast	00:15'00	dB	51.0	56.7	52.6	49.0
@CAL278	19/12/14	05:15'48	A	Fast	00:15'00	dB	50.5	55.4	51.8	48.8
@CAL279	19/12/14	05:30'48	A	Fast	00:15'00	dB	51.7	58.4	53.3	49.2
@CAL280	19/12/14	05:45'48	А	Fast	00:15'00	dB	51.1	56.1	52.4	49.3
@CAL281	19/12/14	06:00'48	А	Fast	00:15'00	dB	54.5	66.9	54.2	49.7
@CAL282	19/12/14	06:15'48	A	Fast	00:15'00	dB	53.3	61.4	55.4	50.3
@CAL283	19/12/14	06:30'48	A	Fast	00.12,00	dB	53.3	57.2	55.5	50.5
@CAL 284	19/12/14	06:45'48	A	Fast	00.15'00	dB	56.3	61.0	57.9	53.9
@CAL 285	19/12/14	07:00'48	A	Fast	00.15.00	dB	53.5	59.2	55.2	51.0
@CAL286	19/12/14	07:15'48	A	Fast	00.15'00	dB	53.8	61.7	54.7	51.2
@CAL 287	19/12/14	07:30//2	Δ	Fast	00.15'00	dB	53.0	57 /	54.8	51 /
@CAL 288	10/12/14	07:45:49	Δ	Fact	00.1500	dB	55.0	62.8	57.2	52.1
	19/12/14	07.4040	A	i dol Foct	00.1500	dB	50.4	70.6	60.7	52.1
@CAL209	10/10/14	00.0040	A	i dol Foct	00.1500		56.0	62.0	57.7	52.7
@CAL290	10/10/14	00.1040	^	Foot	00.1500	dD	50.2	60.7	56.9	52.4
CAL291	19/12/14	08:30 48	A	Fast	00:15:00		55.4	00.7	5.0C	53.4
@CAL292	19/12/14	08:45 48	А	⊢ast	00:15:00	aв	53.7	61.0	55.4	50.6

PROPOSED ROOF PLAN

Air Conditioning Technical Data

VRVIII-S heat pump

EEDEN12-200

RXYSQ-P8V1

10 Sound data

10 - 1 Sound Power Spectrum

10 Sound data

10 - 2 Sound Pressure Spectrum

30

10 Sound data

10 - 2 Sound Pressure Spectrum

10

Acoustic Calibration Services Limited, Unit 6F, Diamond Industrial Centre, Works Road, Letchworth Garden City, Hertfordshire SG6 1LW

Tel: 01462-610085/87 Fax: 01462-610087 e-mail: cal@acousticcalibration.co.uk web: www.acousticcalibration.co.uk

CERTIFICATE OF CALIBRATION

Model: CEL-284/2

Serial Number: 0527682

Organisation: Conabeare Acoustics Limited, 10 Chilton Enterprise Centre Station Road, Theale, Berkshire RG7 4AA

Job Number: 2322

Customer Order Reference: Stuart Metcalfe

The acoustic calibrator was run for a period of time until a stable level was measured. The output level was compared to the certified level of the laboratory measurement references. The measurements were repeated 5 times and the average value calculated.

The ambient temperature during calibration was $24.0 \pm 1^{\circ}$ C. The barometric pressure was 101.1 to 101.2 kPa. The relative humidity was 49 to 59 %

The output of the acoustic calibrator when applied to the CEL 250 is 114.0dB when corrected to the standard atmospheric pressure of 101.3kPa.

The signal output frequency of the acoustic calibrator operates at 1000Hz.

All ACSL's calibration instrumentation is fully traceable to National Standards. The acoustic references are calibrated by laboratories which are UKAS accredited for the purpose.

Signature: (**Print** Name: Trevor Lewis

 Date of Issue:
 11th October 2014
 Print Name:
 Trevor Lewis

 Registered Office:
 HW Associates, Portmill Lane, Hitchin, Hertfordshire
 SG5 1DJ Registered No: 4143457 VAT No: GB 770505441

 Directors:
 Trevor J Lewis, Owen R Clingan MIOA

Certificate No: 14601

Acoustic Calibration Services Limited, Unit 6F, Diamond Industrial Centre, Works Road, Letchworth Garden City, Hertfordshire SG6 1LW

Tel: 01462-610085/87 Fax: 01462-610087 e-mail: cal@acousticcalibration.co.uk web: www.acousticcalibration.co.uk

CERTIFICATE OF CALIBRATION

Model: Svan 949

Serial No: 8572

Organisation: Conabeare Acoustics Limited, 10 Chiltern Enterprise Centre Station Road, Theale, Berkshire RG7 4AA

Job Number: 2162

Customer Order Reference: Stuart Metcalfe

The Sound Level Meter was assessed for conformance with International Standards *IEC60651* and *IEC60804* using test procedures described in *BS 7580* Part 1. The meter claims Type 1 accuracy conformance and it was against these requirements that all the results were evaluated.

The sound level meter was connected via a microphone extension cable to a G.R.A.S. 40AE measurement microphone Serial No. 97835 and a SV 12L preamplifier Serial No. 10142. The microphone has a nominal capacitance of 18 pF and the device used to apply electrical signals to the preamplifier was of the same nominal capacitance.

A CEL-110/1 Acoustic Calibrator Serial No: 219488 was utilised in establishing the initial acoustic calibration setting.

The sound level meter passed all applied tests with no deviations from Type 1 specification, in accordance with *IEC 60651* and *IEC 60804*. Accordingly, the meter meets the requirements of *BS 7580* Part 1.

The sound level meter should be set to read 114.0dB when used with the associated acoustic calibrator, microphone and preamplifier as detailed above at reference atmospheric pressure.

All ACSL's calibration instrumentation is fully traceable to National Standards. The acoustic references are calibrated by laboratories which are UKAS accredited for the purpose.

Certificate No: 14209 Date of Issue: 13th March 2013

Signature: **Print** Name: Trevor Lewis

Registered Office: HW Associates, Portmill Lane, Hitchin, Hertfordshire SG5 1DJ Registered No: 4143457 VAT No: GB 770505441 Directors: Trevor J Lewis, Owen R Clingan MIOA