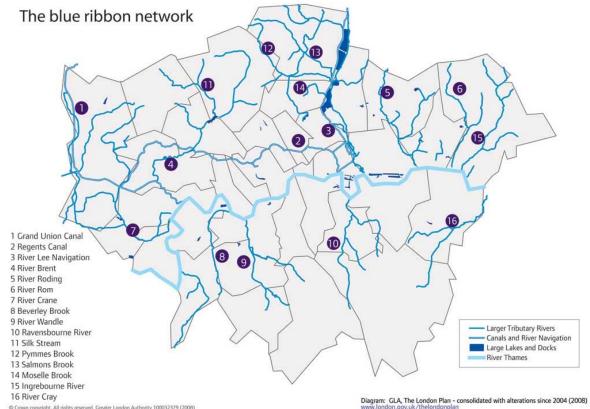
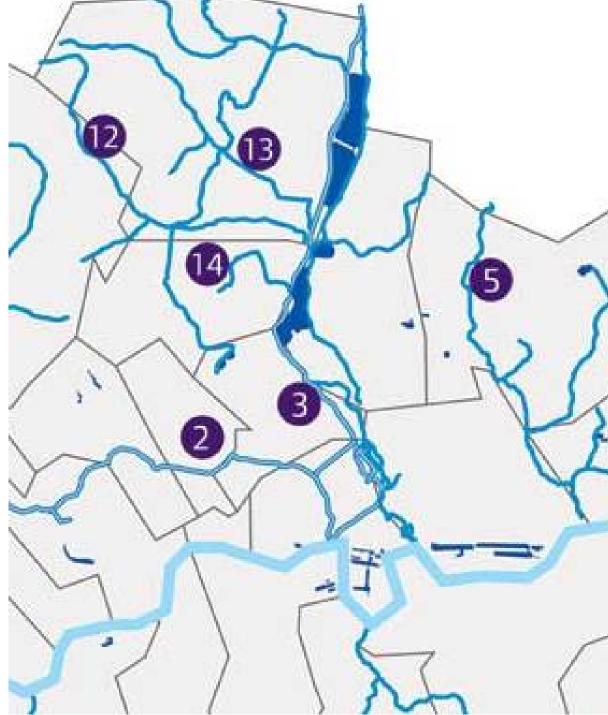

# Pringuer-James Consulting Engineers Preliminary Risk Assessment

# **APPENDIX D**

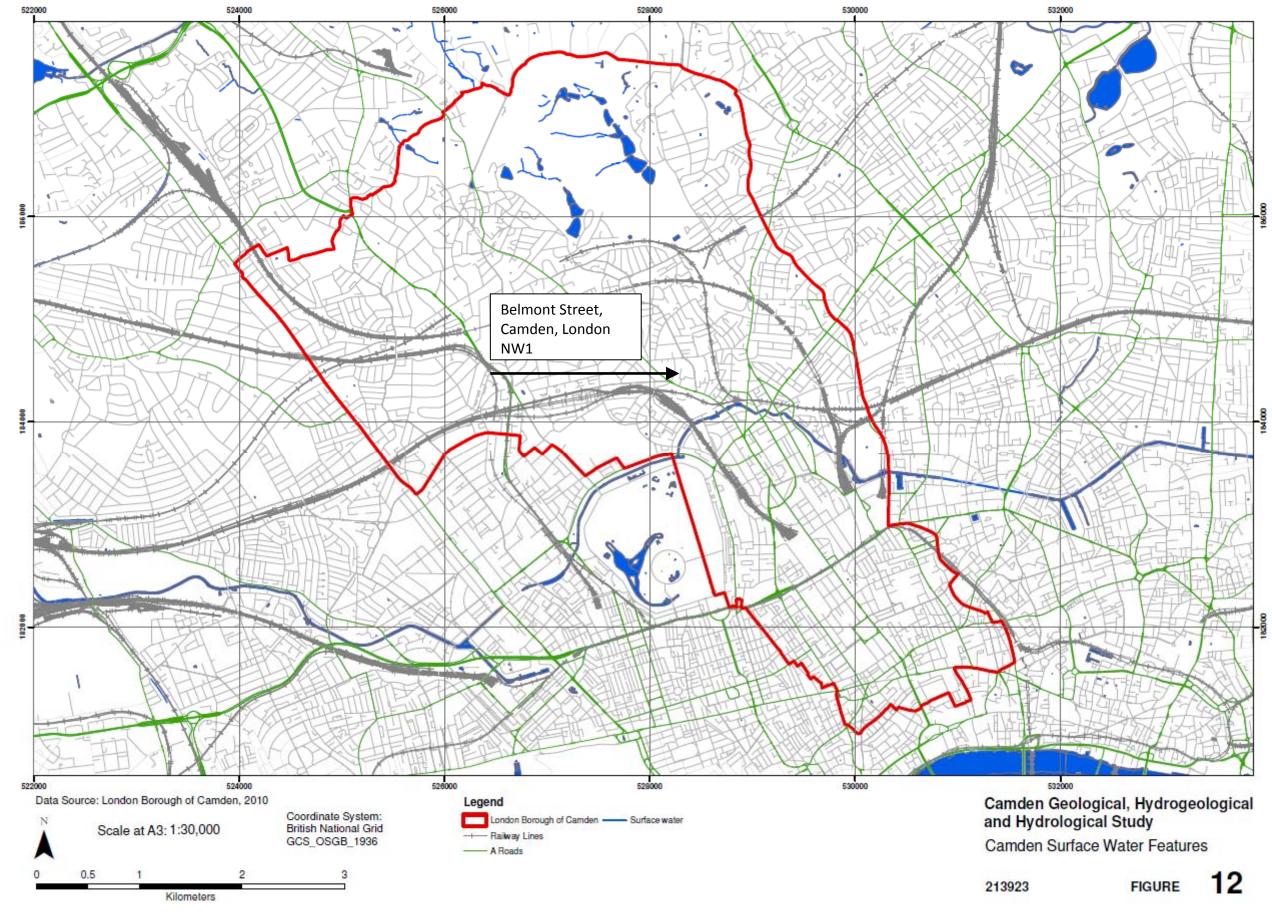

Environmental Data – Hydrology, Water Extraction/Discharge




# **Hydrology – Surface Water Features**

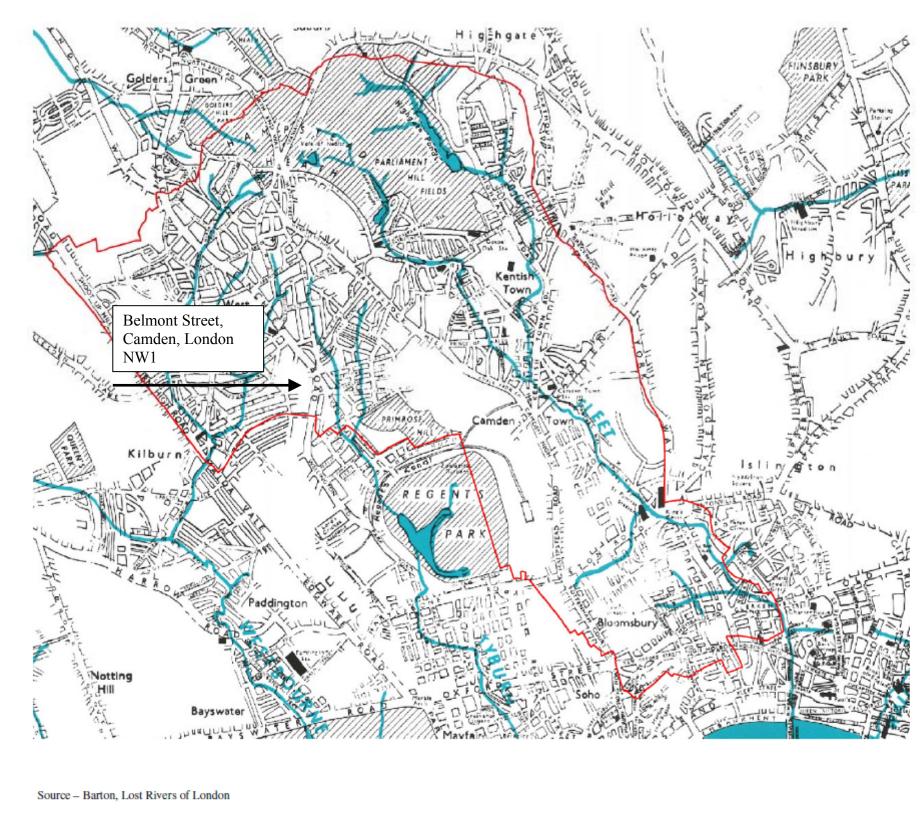


D.1 – HYDROLOGY - LOST RIVERS OF LONDON




D.2 – HYDROLOGY – GREATER LONDON SURFACE WATER FEATURES




D.3 - HYDROLOGY - GREATER LONDON SURFACE WATER FEATURES (PARTIAL)





**D.4 – HYDROLOGY - CAMDEN SURFACE WATER FEATURES** 





Camden Geological, Hydrogeological and Hydrological Study Watercourses

213923

FIGURE 11

<u>D.5 – HYDROLOGY - CAMDEN WATERCOURSES</u>

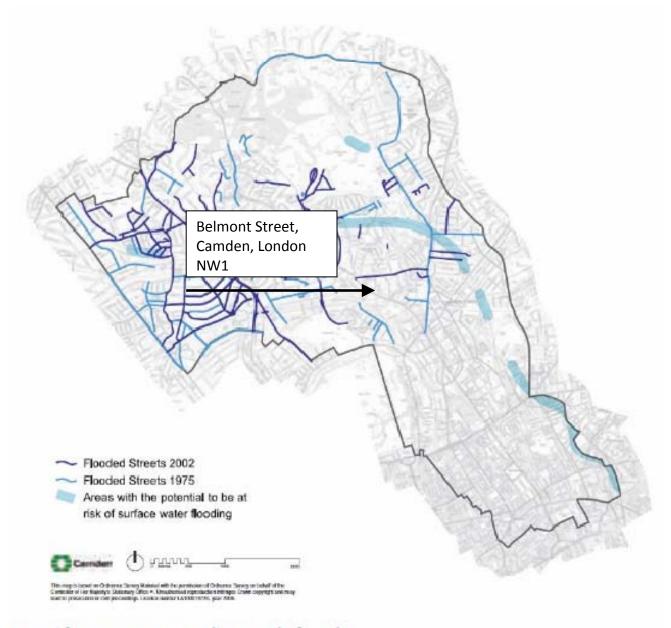
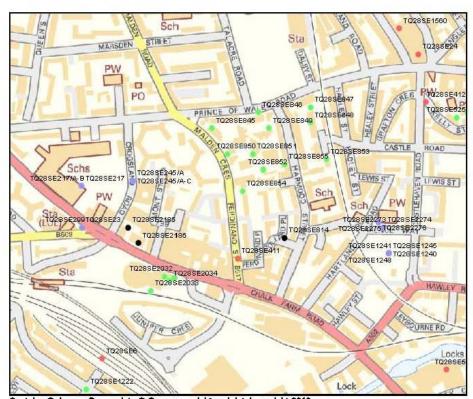



Figure 5 from Core Strategy, London Borough of Camden

Camden Geological, Hydrogeological and Hydrological Study Flood Map


213923 FIGURE 15

D.6 - HYDROLOGY - CAMDEN FLOOD MAP



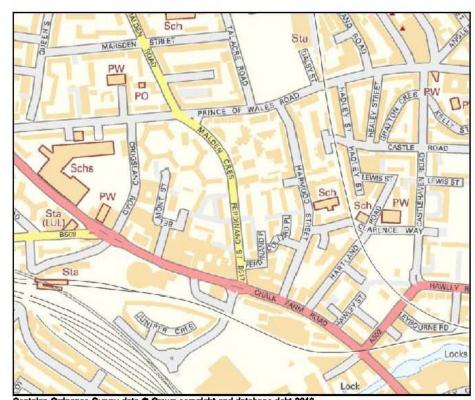
#### Water Extraction – Boreholes & Waterwells

## **Borehole Records**



Contains Ordinance Survey data © Crown copyright and database right 2013.

Geological Materials Copyright NERC. All rights reserved. Please consult our copyright information.


#### Legend

#### Borehole records

- Confidential
- 0 10m
- 10 30m
- 30m+

#### **D.7 – WATER EXTRACTION**

#### **Waterwell Records**



Contains Ordnance Survey data © Crown copyright and database right 2013.

Geological Materials Copyright NERC. All rights reserved. Please consult our copyright information

#### Legend

#### Water wells

- ▲ Not Available
- ▲ 0-10m
- 🔺 10 30m
- ▲ 30m+

#### **D.8 – WATER EXTRACTION**

The boreholes and waterwells located in the area and available as part from the British Geological Survey have been indicated on the mapping data above and tabulated in the following pages.

| Reference Name Length Year Known Site Held At Easting |                                                                     |        |                                         |        |         |         |          |  |  |  |  |
|-------------------------------------------------------|---------------------------------------------------------------------|--------|-----------------------------------------|--------|---------|---------|----------|--|--|--|--|
| Reference                                             |                                                                     | Length | Year Known                              | Report | Held At | Easting | Northing |  |  |  |  |
| TQ28SE24                                              | BATHS PRINCE OF WALES ROAD ST PANCRAS<br>BORING NO.1                | 146.46 | 1904                                    |        | WLKW    | 528796  | 184742   |  |  |  |  |
| TQ28SE412                                             | METROPOLITAN WATER BOARD 30                                         | 40.08  |                                         |        | KW      | 528810  | 184650   |  |  |  |  |
| TQ28SE26                                              | ST PANCRAS                                                          | 13.71  |                                         |        | KW      | 528762  | 184063   |  |  |  |  |
| TQ28SE2269                                            | ARLINGTON HOUSE 220 ARLINGTON ROAD CAMDEN LONDON NW1 TP4            | 1.8    | 2006                                    | 53518  | KW      | 528770  | 183970   |  |  |  |  |
| TQ28SE2270                                            | ARLINGTON HOUSE 220 ARLINGTON ROAD CAMDEN LONDON NW1 TP6            | 1.08   | 2006                                    | 53518  | KW      | 528770  | 183980   |  |  |  |  |
| TQ28SE2272                                            | ARLINGTON HOUSE 220 ARLINGTON ROAD CAMDEN LONDON NW1 TP8            | 1.08   | 2006                                    | 53518  | KW      | 528770  | 183990   |  |  |  |  |
| TQ28SE2264                                            | ARLINGTON HOUSE 220 ARLINGTON ROAD CAMDEN LONDON NW1 1              | 10     | 2006                                    | 53518  | KW      | 528780  | 184000   |  |  |  |  |
| TQ28SE2265                                            | ARLINGTON HOUSE 220 ARLINGTON ROAD CAMDEN LONDON NW1 WS1            | 4      | 2006                                    | 53518  | KW      | 528770  | 183960   |  |  |  |  |
| TQ28SE2268                                            | ARLINGTON HOUSE 220 ARLINGTON ROAD CAMDEN LONDON NW1 TP3            | 0.58   | 2006                                    | 53518  | KW      | 528770  | 183960   |  |  |  |  |
| TQ28SE2035                                            | THE ROUNDHOUSE DEVELOPMENT, CHALK FARM ROAD, LONDON 4               | 18.28  | 1972                                    | 34842  | KW      | 528329  | 184313   |  |  |  |  |
| TQ28SE845                                             | HARMOOD ST. CAMDEN 1                                                | 15.25  |                                         |        | KW      | 528400  | 184600   |  |  |  |  |
| TQ28SE850                                             | HARMOOD ST. CAMDEN 6                                                | 20     |                                         |        | KW      | 528430  | 184550   |  |  |  |  |
| TQ28SE411                                             | METROPOLITAN WATER BOARD 29                                         | 31.44  |                                         |        | KW      | 528450  | 184350   |  |  |  |  |
| TQ28SE854                                             | CAMDEN,HARMOOD ST. 10                                               | 15     |                                         |        | KW      | 528460  | 184480   |  |  |  |  |
| TQ28SE851                                             | HARMOOD ST. CAMDEN 7                                                | 15     |                                         |        | KW      | 528480  | 184550   |  |  |  |  |
| TQ28SE846                                             | HARMOOD ST. CAMDEN 2                                                | 20     |                                         |        | KW      | 528490  | 184630   |  |  |  |  |
| TQ28SE852                                             | HARMOOD ST. CAMDEN 8                                                | 20     |                                         |        | KW      | 528500  | 184520   |  |  |  |  |
| TQ28SE849                                             | HARMOOD ST. CAMDEN 5                                                | 15     |                                         |        | KW      | 528510  | 184600   |  |  |  |  |
| TQ28SE814                                             | OFF HAMMOND ST NEAR CHALK FARM RD                                   | -1     |                                         |        | KW      | 528540  | 184390   |  |  |  |  |
| TQ28SE855                                             | CAMDEN,HARMOOD ST. 11                                               | 15     |                                         |        | KW      | 528540  | 184530   |  |  |  |  |
| TQ28SE847                                             | HARMOOD ST. CAMDEN 3                                                | 15     |                                         |        | KW      | 528590  | 184640   |  |  |  |  |
| TQ28SE848                                             | HARMOOD ST. CAMDEN 4                                                | 15     |                                         |        | KW      | 528590  | 184610   |  |  |  |  |
| TQ28SE853                                             | HARMOOD ST. CAMDEN 9                                                | 15     |                                         |        | KW      | 528620  | 184540   |  |  |  |  |
| TQ28SE2275                                            | MOST HOLY TRINTY WITH ST BARNABAS<br>CHURCH KENTISH TOWN LONDON WS3 | 4      | 2006                                    | 53528  | KW      | 528720  | 184420   |  |  |  |  |
| TQ28SE2276                                            | MOST HOLY TRINTY WITH ST BARNABAS CHURCH KENTISH TOWN LONDON WS4    | 3      | 2006                                    | 53528  | KW      | 528720  | 184420   |  |  |  |  |
| TQ28SE2273                                            | MOST HOLY TRINTY WITH ST BARNABAS CHURCH KENTISH TOWN LONDON WS1    | 4      | 2006                                    | 53528  | KW      | 528730  | 184410   |  |  |  |  |
| TQ28SE2274                                            | MOST HOLY TRINTY WITH ST BARNABAS CHURCH KENTISH TOWN LONDON WS2    | 4      | 2006                                    | 53528  | KW      | 528730  | 184410   |  |  |  |  |
| TQ28SE1250                                            | HAWLEY RD CAMDEN P8                                                 | 5      |                                         | 11090  | KW      | 528740  | 184360   |  |  |  |  |
| TQ28SE1243                                            | HAWLEY RD CAMDEN P1                                                 | 5      |                                         | 11090  | KW      | 528740  | 184360   |  |  |  |  |
| TQ28SE1247                                            | HAWLEY RD CAMDEN P5                                                 | 5      |                                         | 11090  | KW      | 528740  | 184360   |  |  |  |  |
| TQ28SE1239                                            | HAWLEY RD CAMDEN 1                                                  | 3      |                                         | 11090  | KW      | 528740  | 184360   |  |  |  |  |
| TQ28SE1244                                            | HAWLEY RD CAMDEN P2                                                 | 5      |                                         | 11090  | KW      | 528740  | 184360   |  |  |  |  |
| TQ28SE1249                                            | HAWLEY RD CAMDEN P7                                                 | 5      |                                         | 11090  | KW      | 528740  | 184360   |  |  |  |  |
| TQ28SE1242                                            | HAWLEY RD CAMDEN 4                                                  | 3      |                                         | 11090  | KW      | 528740  | 184360   |  |  |  |  |
| TQ28SE1246                                            | HAWLEY RD CAMDEN P4                                                 | 5      |                                         | 11090  | KW      | 528740  | 184360   |  |  |  |  |
| TQ28SE1248                                            | HAWLEY RD CAMDEN P6                                                 | 5      |                                         | 11090  | KW      | 528740  | 184360   |  |  |  |  |
| TQ28SE1241                                            | HAWLEY RD CAMDEN 3                                                  | 3      |                                         | 11090  | KW      | 528740  | 184360   |  |  |  |  |
| TQ28SE1245                                            | HAWLEY RD CAMDEN P3                                                 | 5      |                                         | 11090  | KW      | 528740  | 184360   |  |  |  |  |
| TQ28SE1560                                            | ST PANCRAS BATHS, PRINCE OF WALES ROAD                              | 146.45 | 1907                                    |        | WL      | 528760  | 184790   |  |  |  |  |
| TQ28SE1216                                            | GLOUCESTER AVE SEWER 2                                              | 15     | O D D D D D D D D D D D D D D D D D D D | 11095  | KW      | 528250  | 183880   |  |  |  |  |

| Reference     | Name                                                     | Length | Year Known | Site<br>Report | Held At | Easting | Northin |
|---------------|----------------------------------------------------------|--------|------------|----------------|---------|---------|---------|
| TQ28SE1829    | CHANNEL TUNNEL RAIL LINK TP3739                          | 2.81   | 1995       | 33075          | KW      | 528440  | 183933  |
| ΓQ28SE686/A   | GILBEY'S WAREH'SE CAMDEN.BH.1-                           | 3      |            |                | KW      | 528550  | 184000  |
| ΓQ28SE1240    | HAWLEY RD CAMDEN 2                                       | 3      |            | 11090          | KW      | 528740  | 184360  |
| TQ28SE686/A-D | GILBEYS WAREHOUSE CAMDEN TOWN BH1-3                      | 3.96   |            |                | KW      | 528550  | 184000  |
| TQ28SE2271    | ARLINGTON HOUSE 220 ARLINGTON ROAD CAMDEN LONDON NW1 TP7 | 1.75   | 2006       | 53518          | KW      | 528740  | 183970  |
| TQ28SE2266    | ARLINGTON HOUSE 220 ARLINGTON ROAD CAMDEN LONDON NW1 TP1 | 1.78   | 2006       | 53518          | KW      | 528760  | 183950  |
| TQ28SE2267    | ARLINGTON HOUSE 220 ARLINGTON ROAD CAMDEN LONDON NW1 TP2 | 1.78   | 2006       | 53518          | KW      | 528760  | 183950  |
| TQ28SE2177    | OLD PEOPLES DWELLINGS REGENTS PARK 3                     | -1     | 1963       | 44005          | KW      | 527982  | 183857  |
| TQ28SE2175    | OLD PEOPLES DWELLINGS REGENTS PARK 1                     | -1     | 1963       | 44005          | KW      | 527983  | 183889  |
| TQ28SE1221    | GLOUCESTER AVE SEWER 7                                   | 15     |            | 11095          | KW      | 528100  | 183990  |
| TQ28SE2065    | MAITLAND PARK ST PANCRAS B                               | 9.14   | 1956       | 37047          | KW      | 527960  | 184880  |
| TQ28SE1490    | ALEXANDRA HOUSE, HAVERSTOCK HILL                         | 118.87 | 1844       |                | WL      | 527890  | 184940  |
| TQ28SE2064    | MAITLAND PARK ST PANCRAS A                               | 9.14   | 1956       | 37047          | KW      | 527950  | 184950  |
| TQ28SE724     | MAITLAND PARK ST PANCRAS F                               | 3.05   |            |                | KW      | 527990  | 184960  |
| TQ28SE2066    | MAITLAND PARK ST PANCRAS D                               | 9.14   | 1956       | 37047          | KW      | 527950  | 184790  |
| TQ28SE726     | MAITLAND PARK ST PANCRAS H                               | 3.05   |            |                | KW      | 527970  | 184720  |
| TQ28SE725     | MAITLAND PARK ST PANCRAS G                               | 3.05   |            |                | KW      | 528000  | 184780  |
| TQ28SE217/A-B | HAVERSTOCK SECONDARY SCHOOL CHALK FARM 1                 | 5.03   |            |                | KW      | 528150  | 184490  |
| TQ28SE217     | HAVERSTOCK SECONDARY SCHOOL CHALK<br>FARM 2              | 5.03   |            |                | KW      | 528150  | 184490  |
| TQ28SE299     | CHALK FARM STATION HAMPSTEAD                             | 10.36  |            |                | KW      | 528150  | 184410  |
| TQ28SE23      | UNDERGROUND ELECTRIC NO.15 ST PANCRAS                    | 9.14   |            |                | KW      | 528151  | 184410  |
| TQ28SE1222    | GLOUCESTER AVE SEWER 8                                   | 15     |            | 11095          | KW      | 528160  | 184100  |
| TQ28SE6       | L.X.W.R. CAMDEN STREET ST PANCRAS                        | 121.92 | 1849       |                | WLKW    | 528190  | 184159  |
| TQ28SE2185    | CHALK FARM LONDON 1                                      | -1     | 2007       | 51895          | KW      | 528240  | 184410  |
| TQ28SE245/A   | HAVERSTOCK SECONDARY SCH.EXT.                            | 4      |            |                | KW      | 528250  | 184500  |
| TQ28SE245/A-C | HAVERSTOCK SEC SCHOOL CHALK FARM                         | 4.57   |            |                | KW      | 528250  | 184500  |
| TQ28SE2186    | CHALK FARM LONDON 2                                      | -1     | 2007       | 51895          | KW      | 528260  | 184380  |
| TQ28SE2033    | THE ROUNDHOUSE DEVELOPMENT, CHALK FARM ROAD, LONDON 2    | 12.49  | 1972       | 34842          | KW      | 528284  | 184288  |
| TQ28SE2032    | THE ROUNDHOUSE DEVELOPMENT, CHALK FARM ROAD, LONDON 1    | 18.28  | 1972       | 34842          | KW      | 528310  | 184316  |
| TQ28SE2034    | THE ROUNDHOUSE DEVELOPMENT, CHALK FARM ROAD, LONDON 3    | 21.33  | 1972       | 34842          | KW      | 528320  | 184307  |
| TQ28SE2178    | OLD PEOPLES DWELLINGS REGENTS PARK 4                     | -1     | 1963       | 44005          | KW      | 527918  | 183887  |
| TQ28SE410     | METROPOLITAN WATER BOARD 28                              | 43.59  |            |                | KW      | 527950  | 184000  |
| TQ28SE2176    | OLD PEOPLES DWELLINGS REGENTS PARK 2                     | -1     | 1963       | 44005          | KW      | 527953  | 183903  |
| TQ28SE668/A   | REGENTS PARK RD. 1                                       | 12     |            |                | KW      | 527960  | 183880  |
| TQ28SE668/A-D | REGENTS PARK ROAD BHS1-4                                 | 12.19  |            |                | KW      | 527960  | 183880  |

|           | WATERWELL RECORDS                       |               |       |      |       |         |          |                |         |              |          |  |
|-----------|-----------------------------------------|---------------|-------|------|-------|---------|----------|----------------|---------|--------------|----------|--|
| Reference | Location                                | Regno         | Depth | Year | Datum | Easting | Northing | Aquifer        | Geology | Hydrogeology | Chemical |  |
| TQ28/47   | Alexandra House,<br>Haverstock Hill     | TQ28SE1490/BJ | 118.9 | 1844 | 51.82 | 527890  | 184940   | Chalk<br>Group | Yes     | Yes          | No       |  |
| TQ28/48A  | St Pancras Baths,<br>Prince Of Wales Rd | TQ28SE1559/BJ | 137.2 | 1904 |       | 528740  | 184820   | Chalk<br>Group | Yes     | Yes          | Yes      |  |
| TQ28/48B  | St Pancras Baths,<br>Prince Of Wales Rd | TQ28SE1560/BJ | 146.5 | 1907 |       | 528760  | 184790   | Chalk<br>Group | Yes     | Yes          | Yes      |  |



# Pringuer-James Consulting Engineers Preliminary Risk Assessment

# **APPENDIX E**

Geotechnical Data – Site Investigation Report Soil Consultants Ltd. Report Ref: C9117/JRCB/OT



# Soil Consultants Ltd

Ground Investigation - Geotechnical Analysis - Contamination Assessment

#### **GROUND INVESTIGATION REPORT**

#### PROPOSED REDEVELOPMENT:

10A BELMONT STREET LONDON NW1 8HH







Client: RISETALL LTD

46 Great Marlborough Street

London W1F 7JW

Consulting Engineers: PRINGUER-JAMES CONSULTING ENGINEERS LTD

16 Kew Foot Road, Richmond

London TW9 2SS

Report ref: 9117/JRCB/OT

Date: 1<sup>st</sup> February 2012 [Rev 1]

| Head Office: -                                                                                                                          | Regional Offices:-                                                                                  |                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| High Wycomba: Chiltern House, Earl Howe Road, Holmer Green, High Wycombe, Bucks HP15 6QT t: 01494 712-494 e: mail@acitocnsultants.co.uk | Cardiff:<br>23 Romilly Road, Cardiff CF5 1FH<br>1: 02920 403575<br>e: cardiff@soliconsultants.co.uk | Harwich: Haven House, Albemarie Street, Harwich, Essex CO12 3HL t: 01255 241639 e: harwich@soilconsultants.co.uk |
| W: Www. criticopy stants on usk Participated in England No. 1914767 - B                                                                 | lay Lodge 36 Marefield Boad Hybridge A                                                              | #ddecay ( IRR 10M VOT No 401 9245 1                                                                              |

9117/JRCB/OT Client: Risertall Ltd Site Investigation Report - 10A Belmont Street, London NW1 8HH

Consulting Engineers: Pringuer-James

#### **GROUND INVESTIGATION REPORT**

#### PROPOSED REDEVELOPMENT:

10A BELMONT STREET LONDON NW1 8HH

#### **DOCUMENT ISSUE STATUS:**

| Issue | Date            | Description        | Author       | Checked/approved |
|-------|-----------------|--------------------|--------------|------------------|
| Rev 0 | 30 January 2012 | First issue        | John Bartley | Opher Tolkovsky  |
| Rev 1 | 1 February 2012 | Client name change | John Bartley | Opher Tolkovsky  |
|       |                 |                    |              |                  |
| ,     |                 |                    |              |                  |

1st February 2012 [Rev 1]

Soil Consultants Ltd



9117/JRCB/OT Client: Risertall Ltd Site Investigation Report - 10A Belmont Street, London NW1 8HH

Consulting Engineers: Pringuer-lames

#### TABLE OF CONTENTS

| 1.0 | Introduction            |  |
|-----|-------------------------|--|
| 2.0 | Site Description        |  |
| 3.0 | Exploratory Work        |  |
| 4.0 | Ground Conditions       |  |
| 4.1 | Made ground             |  |
| 4.2 | London Clay             |  |
| 4.3 | Ground-water            |  |
| 5.0 | Geotechnical Assessment |  |
| 5.1 | Piled foundations       |  |
| 5.2 | Ground floor slab       |  |
| 5.3 | Foundation concrete     |  |

#### APPENDIX

#### Fieldwork, in-situ testing and monitoring

- Borehole records
- ♣ Standard Penetration Test results

#### Laboratory testing

- Index property testing
- Plasticity chart
- Unconsolidated undrained triaxial test results [QUT]
- Soluble sulphate/pH testing

#### **Ground profiles**

♣ Plot of SPT 'N' value and undrained cohesion versus elevation

#### Plans & drawings

- Development plans
- 4 Piling GA drawings and loading sheet
- Site Plan
- Location Plan

1st February 2012 [Rev 1] Soil Consultants Ltd

9117/JRCB/OT Client: Risetall Ltd Site Investigation Report - 10A Belmont Street, London NW1 8HH

Page 1 Consulting Engineers: Pringuer-James

#### 1.0 INTRODUCTION

Consideration is being given to the construction of a new 5-storey extension to 10A Belmont Street, together with two additional storeys on the existing building. In connection with the proposed works, Soil Consultants were commissioned to carry out a ground investigation to identify the ground sequence and determine the geotechnical parameters of the soils.

This report describes the investigation undertaken, gives a summary of the ground conditions encountered and then provides foundation design recommendations. The required scope of work did not include a Desk Study of Contamination/Environmental Appraisal.

This report has been prepared for the benefit of the Client and associated parties directly involved with the design and construction of the project under direction of the Client. No reliance can be assumed by others without the written agreement of Soil Consultants Ltd.

#### 2.0 SITE DESCRIPTION

The site is located in a mixed commercial/residential area in Chalk Farm, north London, with its centre at approximate NGR 528360N 184390E. The existing building, which measures about 12m x 37m in plan, is a 5-storey brick-built office block which lies to the east of Belmont Street. Access to the front of the building [west facing] is via a paved walkway off Belmont Street that passes behind a commercial property immediately to the west. A number of 3-storey residential properties adjoin the north facing elevation of the building.

A car park is present to the rear [east side] of the building with approximate dimensions  $35m \times 20m$  - this is accessible via a short lane off Ferdinand Street, the entrance to which is approximately 35m from the junction with the A502 Chalk Farm Road. The access road is spanned by a commercial property on the east side of the car par. On the northern side of the car park are a number of small businesses, including what appears to be a builders merchants or similar, and on the south side is a wholesale beverages depot that adjoins the south-east corner of the building.

An electricity substation is present approximately 10m north-east of the building, behind a builders merchants on the north side of the car park. Some semi mature to mature trees are present in between the surrounding buildings and lining Belmont Street, with the closest tree being located approximately 5m north-east, adjacent to the substation.

The site and its surroundings are generally flat and level, with an approximate elevation of +29mOD [interpolated form OS data].

The current site features are shown on the Site Plan, which is included in the Appendix, and in a number of photographs on the front cover of this report.

#### 3.0 EXPLORATORY WORK

The investigation comprised the following elements.

#### Cable percussive borehole

One borehole [BH No 1] was carried out at a position agreed with the Consulting Engineers in December 2011. The borehole was taken to a depth of 20m and in-situ Standard Penetration Tests [SPT] and sampling were carried out at appropriate intervals - a monitoring pipe was installed to 4m depth.

#### Geotechnical laboratory testing

The following geotechnical laboratory testing was completed:

- natural moisture content
- index properties [Atterberg Limits]
- unconsolidated undrained triaxial compression tests [102mm diameter sample]

The engineering logs of the exploratory holes and the laboratory testing results are included in the Appendix.

1st February 2012 [Rev 1]

Soil Consultants Ltd



9117/JRCB/OT Client: Risetall Ltd Site Investigation Report - 10A Belmont Street, London NW1 8HH

Page 2 Consulting Engineers: Pringuer-James

#### 4.0 GROUND CONDITIONS

The geological survey map indicates that London Clay is present in this area with no superficial deposits identified. Our investigation confirmed the presence of the London Clay beneath a moderate thickness of made ground.

#### 4.1 Made ground

Beneath 250mm of asphalt surfacing, the made ground extended to a depth of 3.10m. The made ground initially comprised dark grey/black ashy sand with gravel and clinker, extending to 0.95m depth. The underlying fill comprised soft, locally very soft, brown/grey and brown/orange sandy clay with brick fragment, flint gravel and occasional clinker. SPT 'N' values of 7 were recorded confirming the generally soft consistency of the made ground.

#### 4.2 London Clay

The London Clay was encountered beneath the made ground at 3.10m depth. The formation generally comprised an upper weathered layer of firm to stiff brown fissured clay with scattered selenite crystals which extended to about 11.30m depth. Stiff grey fissured clay was then present and this extended to maximum depth investigated [20m]. The clay was locally silty and slightly sandy, with scattered silt partings and generally classifies as a very high plasticity material [CV], as shown on the appended plasticity chart. A plot of the laboratory undrained cohesion/SPT 'N' values against depth is included in the Appendix.

#### 4.3 Ground-water

A slow inflow of ground-water was observed at 1.80m depth within the made ground deposit. A short term standing water level was recorded at 1.58m depth following a 20 minute rest period [Dec 2011]. It should be noted that water levels can undergo significant seasonal variation.

#### 5.0 GEOTECHNICAL ASSESSMENT

The proposed development comprises the construction of a new 5-storey extension which will adjoin the eastern side of the existing building. Current proposals do not envisage a basement but we understand that one may be constructed at some time in the future. The proposed works will also include the construction of two additional storeys to the existing 5-storey building – the scope of our investigation did not include analysis of the performance of the existing foundations. The current development plans and sections are included in the Appendix.

We understand that piled foundations are proposed for the new extension. Our investigation encountered a 3.1m thickness of made ground overlying firm London Clay, with a perched ground-water table within the fill material - we agree that piles will probably present the optimum foundation solution. The provisional piling GA drawings are included in the Appendix.

#### 5.1 Piled foundations

For the ground conditions encountered either CFA piles or conventional rotary augered piles could be considered for this site, with the latter type requiring temporary casing through any made ground. As discussed above, a basement may be constructed at some time in the future therefore the contribution of the upper zone of soil will need to be ignored when assessing pile capacity.

The following table of coefficients may be used for the design of CFA and conventionally augered piles, based upon the measured strength/depth profile included in the Appendix.

#### **Shaft adhesion**

| Stratum         | Depth/elevation | Undrained cohesion                                       | Ultimate unit shaft                                                                            |  |  |
|-----------------|-----------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|
|                 |                 | [from design line]                                       | adhesion 'q <sub>s</sub> '                                                                     |  |  |
| All soils above | 1 <del>.</del>  | N/A                                                      | Ignore [possible future basement]                                                              |  |  |
| 4m              |                 |                                                          |                                                                                                |  |  |
| London Clay     | Below 4m        | Increases linearly from 60kN/m² at a rate of 6.88kN/m²/m | Increases linearly from $30kN/m^2$ at a rate of $3.44kN/m^2/m$ [incorporates $\alpha = 0.50$ ] |  |  |

#### Notes:

- a] Unit shaft adhesion ' $q_s$ ' =  $\alpha$  x  $c_u$  [where  $\alpha$  = 0.50 and  $c_u$  is the undrained cohesion from the design line]
- b] The  $\alpha$  value of 0.5 is based upon 102mm diameter triaxial tests and this should not be varied c] The average shaft adhesion over the pile length should be limited to 110kN/m<sup>2</sup>
- d] The maximum value for unit shaft adhesion should be limited to 140kN/m<sup>2</sup>

1st February 2012 [Rev 1]

Soil Consultants Ltd

9117/JRCB/OT Client: Risetall Ltd Site Investigation Report - 10A Belmont Street, London NW1 8HH

Consulting Engineers: Pringuer-James

#### End bearing

| Stratum     | Depth/elevation | Undrained cohesion                                        | Ultimate unit base resistance                                                                                        |
|-------------|-----------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|             |                 | [from design line]                                        | `qь'                                                                                                                 |
| London Clay | Below 15m depth | Increases linearly from 135kN/m² at a rate of 6.88kN/m²/m | Increases linearly from 1012.5kN/m <sup>2</sup> at a<br>rate of 61.92kN/m <sup>2</sup> /m<br>[incorporates Nc = 9.0] |

#### Notes:

a] Unit base resistance ' $q_b$ ' = Nc x  $c_u$  [where Nc = 9.0 and  $c_u$  is the equivalent undrained cohesion from the design line]

As a guide to the use of the above coefficients, we have calculated the following capacities for various diameter single piles terminating at various depths:

| Pile diameter | Toe depth | Pile length [Note c] | Ultimate load | Working load |  |
|---------------|-----------|----------------------|---------------|--------------|--|
| [mm]          | [mbgl]    | [m]                  | [kN]          | [kN]         |  |
| 450           | 15        | 11                   | 955           | 365          |  |
|               | 20        | 16                   | 1545          | 595          |  |
| 600           | 15        | 11                   | 1360          | 525          |  |
|               | 20        | 16                   | 2170          | 835          |  |
| 750           | 15        | 11                   | 1805          | 695          |  |
|               | 20        | 16                   | 2845          | 1095         |  |
| 900           | 15        | 11                   | 2300          | 885          |  |
|               | 20        | 16                   | 3575          | 1375         |  |

#### Notes:

- al Working load is calculated using Fehatt and Fhace = 2.6
- b) Concrete stress should be considered in the final design
- c] Pile length based upon underside of pile cap at 4m depth

An overall Factor of Safety of 2.6 has been used in the above examples, in line with the current guidelines by the London District Surveyors Association [LDSA]. If comprehensive pile testing is undertaken for this redevelopment a lower factor of safety is likely to be appropriate. Our examples are indicative only and do not constitute a recommendations as to the pile length and diameter to be adopted.

We recommend that a specialist piling contactor is consulted at an early stage to advise on the most appropriate pile type and to ultimately provide the final pile design.

#### 5.2 Ground floor slab

The investigation has indicated that >3m of non-engineered made ground is present and we therefore recommend that a suspended floor slab, supported by the main foundations, is adopted. A suitably reinforced suspended slab could also be utilised during the possible future basement construction.

#### 5.3 Foundation concrete

Low to moderate levels of soluble sulphates were measured in selected soil samples with near neutral pH values. The results fall into Site Design Classes DS-1 to DS-3 of Table C2 given in BRE Special Digest 1 [2005]. We assess the site as having 'static' ground water conditions and recommend that a minimum of ACEC Site Class AC-2S should be adopted for the design of buried concrete.

Soil Consultants Ltd

1st February 2012 [Rev 1]



9117/JRCB/OT Client: Risetall Ltd

Site Investigation Report - 10A Belmont Street, London NW1 8HH

Consulting Engineers: Pringuer-James

#### APPENDIX

#### Fieldwork, in-situ testing and monitoring

- Borehole records
- Standard Penetration Test results

#### Laboratory testing

- Index property testing
- Plasticity chart
- Unconsolidated undrained triaxial test results [QUT]

#### **Ground profiles**

4 Plot of SPT 'N' value and undrained cohesion versus depth

#### Plans & drawings

- Development plans
- Piling GA Drawings and loading sheet
- 4 Site Plan
- Location Plan

1<sup>st</sup> February 2012 [Rev 1] Soil Consultants Ltd

9117/JRCB/OT Client: Risetall Ltd Site Investigation Report - 10A Belmont Street, London NW1 8HH

Consulting Engineers: Pringuer-James

#### **APPENDIX**

Fieldwork, in-situ testing and monitoring

- Borehole records
- Standard Penetration Test results

2012 [Rev 1] Soil Consultants Ltd





Ground Investigation - Geotechnical Analysis - Contamination Assessment

#### FOREWORD FOR CABLE PERCUSSIVE DRILLING - GUIDANCE NOTES

#### **GENERAL**

The Borehole Records are compiled from the driller's description of the strata encountered, an examination of the samples by our Geotechnical Engineer and the results of in-situ and laboratory tests. Based on this data, the report presents an opinion on the configuration of strata within the site. However, such reasonable assumptions are given for guidance only and no liability can be accepted for changes in conditions not revealed by the boreholes.

#### **BORING METHODS**

The Cable Percussion technique of boring is normally employed and allows the ground conditions to be reasonably well established. However, some disturbance of the ground is inevitable, particularly some "softening" of the upper zone of clay immediately beneath a granular soil. The presence of thin layers of different soils within a stratum may not always be detected.

#### **GROUND WATER**

The depth at which ground water was struck is entered on the Borehole Records. However, this observation may not indicate the true water level at that period. Due to the speed of boring and the relatively small diameter of the borehole, natural ground water may be present at a depth slightly higher than the water strike. Moreover, ground water levels are subject to variations caused by changes in the local drainage conditions and by seasonal effects. When a moderate inflow of water does take place, boring is suspended for at least 10 minutes to enable a more accurate short-term water level to be achieved. An estimate of the rate of inflow is also given. This is a relative term and serves only as a guide to the probable flow of water into an excavation.

Further observations of the water level made during the progress of the borehole are shown including end of shift and overnight readings and the depth at which water was sealed off by the borehole casing, if applicable.

Whilst drilling through granular soils, it is usually necessary to introduce water into the borehole to permit their extraction. When additional water has been used a remark is made on the Borehole Record and the implications are discussed in the text.

#### SAMPLES

Undisturbed samples of the predominantly cohesive soils are obtained using a 100mm diameter open-drive sampler. In granular soils, disturbed bulk samples are taken and placed in polythene bags. Small jar samples are taken at frequent intervals in all soils for subsequent visual examination. Where ground water is encountered in sufficient quantity, a sample of the ground water is also taken.

#### IN-SITU STANDARD PENETRATION TESTS

This test is performed in accordance with the procedure given in B.S.1377:1990. The individual blow count record for each test is given on a separate table. The 'N' value is normally the number of blows to achieve a penetration of 0.3m following a seating distance of 0.15m and is quoted at the mid-depth of the test zone. However if a change of stratum occurs within the test zone then a revised 'N' value is calculated to assess one layer in particular. In hard strata full penetration may not be obtained. In such cases the suffix + indicates that the result has been extrapolated from the limited penetration achieved. Where ground water has affected the measured values, the resultant 'N' values have been placed in brackets since it is unlikely to represent the true in-situ density of the soil.

ad Office:
gh Wycombe:

Cardiff:

Cardiff:

Cardiff:

23 Romilly Road, Cardiff CF5 1PH

10.1494 712.494

mall@soliconsultants.co.uk

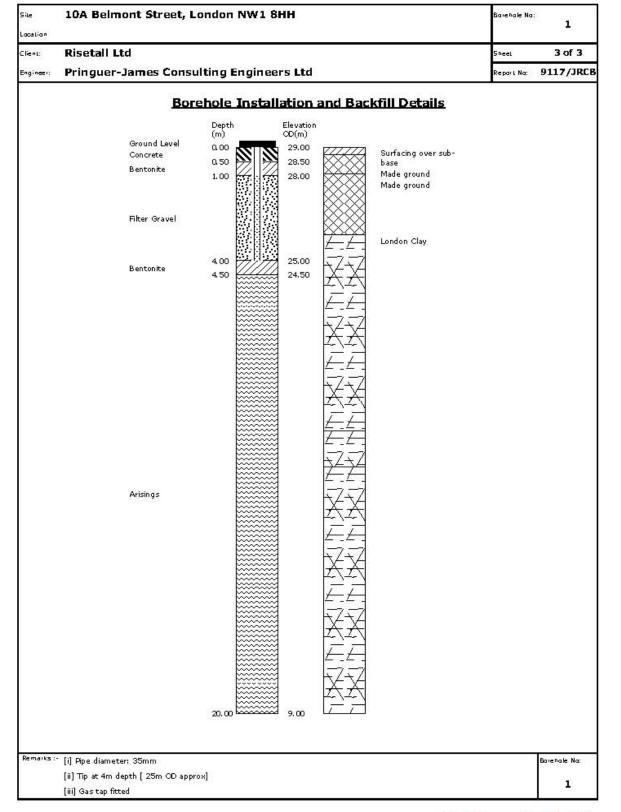
www.soliconsultants.co.uk

Registered in England No 1814762 - Bay Lodge, 36 Harefield Road, Usbridge, Middlesv UBB 1PH

VAT No 491.8249 15

| Location   |                                                             |               |              |        |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 1               |
|------------|-------------------------------------------------------------|---------------|--------------|--------|--------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|
| Client:    | Risetall Ltd                                                |               |              |        |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sneel         | 1 of 3          |
| Engineer:  | Pringuer-Jam                                                | es C          | onsult       | ting   | Engi         | neers Lt   | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Report Na: 9: | L17/JRCE        |
|            | Comments                                                    |               | mples        | Feld   |              | itiala     | Strata Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ÿ             | Legena          |
|            |                                                             | Type          | Depoi mi     | Test   | Death[m      |            | ASPHALT surfacing [100mm] over road-base a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd brick      | 0 1//4          |
| BH ccarrie | ed out on 13 Dec 2011                                       | D<br>D        | 0.25<br>0.50 |        | 0.00<br>0.25 | +28.75     | MADE GROUND: dark grey and black ashy sand<br>brick fragments and clinker - locally clayey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
|            | itto 1.20m<br>g dia: 150mm                                  | D             | 1.00         |        | 0.95         | + 28, 05   | MADE GROUND: soft [locally very soft] brown/o<br>borwn/orange sandy clay with brick fragments,<br>occasional clinker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 1               |
|            | vater inflow at 1.80m<br>.58m [20 minutes]                  | S/D<br>D      | 1,80<br>2,00 | 7      |              | 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 2               |
|            |                                                             | S/D<br>D      | 2.80<br>3.00 | 7      | 3,10         | 1 + 25, 90 | Firm becoming stiff brown fissured CLAY with b<br>and scattered selenite crystals. Locally silty an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                 |
| BH cased   | to 3.50m                                                    | S/D<br>D      | 3,80<br>4,00 | 12     |              | 4          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 4               |
|            |                                                             | U             | 4.50         |        |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | X               |
|            |                                                             | D             | 5,00         |        |              | 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 5 /             |
|            |                                                             | s/D           | 6.30         | 19     |              | 6          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 6 #             |
|            |                                                             | D             | 6.75         |        |              | 7          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 7/4             |
|            |                                                             | ະບາ           | 7.50         |        |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                 |
|            |                                                             | D             | 8.00         |        |              | 8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | * <u> </u>      |
|            |                                                             | s/D           | 9.30         | 22     |              | 9          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | , <u>T</u>      |
|            |                                                             | D             | 9.75         |        | V2 = 1       | 10         | ş-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 10              |
|            | using capie percussive perninti ue                          |               |              | 16.63  | V90.500AV    |            | PSESSON CONTRACTOR SECURITION OF THE SECURITION |               |                 |
|            | discurated B = Bulk D = Small dis<br>BH level inferred from | SQ 1000 30000 |              | 2000   |              |            | SPT 'N'  solid cone  HV → Hand Vane   KPa  PP → Pocket Penetron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | enale Na:       |
|            | on level interred from                                      | . US CO       | inwurs -     | approx | imate o      | my:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bo            | ena le Na:<br>1 |

Soil Consultants Ltd


SCI Chart Generatoriller 1 &



| Sile<br>Lacation | 10A Belmont                    |              |               | 11 COS.       |               |                     |                                                                                                          | Baienale Na:  | 1                 |
|------------------|--------------------------------|--------------|---------------|---------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------|---------------|-------------------|
| lient:           | Risetall Ltd                   |              |               |               |               |                     |                                                                                                          | Sheel         | 2 of 3            |
| Engineer:        | Pringuer-Jan                   | nes C        | onsult        | ting          | Engin         | eers Lt             | d                                                                                                        | Report Na:    | 911 <b>7</b> /JRC |
|                  | Comments                       |              | imples        | Feld          | 50-           |                     | Strata Description                                                                                       |               | Legend            |
|                  |                                | Тупе         | Depoi m       | Test          | Depth[m]      | LEVEI MODI          | Stiff brown fissured CLAY with blue/grey gleying                                                         | and scatter   |                   |
|                  |                                |              |               |               | 10.00 1       | b + 19.00           | selenite crystals. Locally silty and slightly sand                                                       |               |                   |
|                  |                                | U            | 10,50         |               |               | 1                   |                                                                                                          |               |                   |
|                  |                                |              |               |               | l ⊦           | 4                   |                                                                                                          |               |                   |
|                  |                                | D            | 11.00         |               | 1             | \$50,000 per 160,50 |                                                                                                          |               | 11/_              |
|                  |                                |              |               |               | 11.30         | + 17, 70            | Stiff becoming very stiff grey fissured CLAY, loc<br>slightly sandy with occasional partings of silty fi |               | <u> </u>          |
|                  |                                |              |               |               | ΙĖ            |                     |                                                                                                          |               | $+$ $\sqrt{2}$    |
|                  |                                |              |               |               |               |                     |                                                                                                          |               |                   |
|                  |                                | S/D          | 12,30         | 27            | 1             | 2                   |                                                                                                          |               |                   |
|                  |                                | 56353        | 2,000,000     |               |               | ]                   |                                                                                                          |               |                   |
|                  |                                | D            | 12.75         |               | l ⊦           | -                   |                                                                                                          |               |                   |
|                  |                                |              |               |               | 1             | 1                   |                                                                                                          |               | 13                |
|                  |                                | υ            | 13.50         |               | ΙF            |                     |                                                                                                          |               |                   |
|                  |                                | 10           | 13,30         |               | ΙĖ            |                     |                                                                                                          |               | 1 157             |
|                  |                                |              |               |               |               |                     |                                                                                                          |               |                   |
|                  |                                | D            | 14.00         |               | 1             | 4                   |                                                                                                          |               | 14                |
|                  |                                |              |               |               |               |                     |                                                                                                          |               |                   |
|                  |                                |              |               |               | Ιŀ            | -                   |                                                                                                          |               |                   |
|                  |                                |              |               |               | 1             | 5                   |                                                                                                          |               | 15                |
|                  |                                | S/D          | 15.30         | 30            | l             |                     |                                                                                                          |               |                   |
|                  |                                | D            | 15.75         |               | Ιŀ            | 1                   |                                                                                                          |               | 1 52              |
|                  |                                |              |               |               |               | ]                   |                                                                                                          |               |                   |
|                  |                                |              |               |               | 1             | 6                   |                                                                                                          |               | 16                |
|                  |                                | U            | 16.50         |               |               |                     |                                                                                                          |               |                   |
|                  |                                |              |               |               | l F           |                     |                                                                                                          |               |                   |
|                  |                                | D            | 17.00         |               | 1             | 7                   |                                                                                                          |               | 17                |
|                  |                                | 1000         | X 0.0 00.0 00 |               | ΙF            |                     |                                                                                                          |               |                   |
|                  |                                |              |               |               | l ⊦           | -                   |                                                                                                          |               | $+$ $\sqrt{A}$    |
|                  |                                |              |               |               |               | 1                   |                                                                                                          |               |                   |
|                  |                                | S/D          | 18.30         | 40            | 1             | 8                   |                                                                                                          |               | 18                |
|                  |                                | DOM:SE       | SETION        | 33.56         |               |                     |                                                                                                          |               |                   |
|                  |                                | D            | 18.75         |               | I ⊦           | 4                   |                                                                                                          |               |                   |
|                  |                                |              |               |               | 1             | 9                   |                                                                                                          |               | 19 -              |
|                  |                                | 330          | 10.50         |               | l F           |                     |                                                                                                          |               | <u> </u>          |
|                  |                                | U            | 19.50         |               | l F           | -                   |                                                                                                          |               | \\\\\\\\          |
| 3H dry on        | completion                     | 0.00         | 202000000V    |               |               | e granssau          |                                                                                                          |               | X                 |
| ionatructed «    | s ingcapie percussive cernniqu | D            | 19.80         |               | 20.00 2       | b +9.00             | End of Borehole at 20m depth                                                                             |               | 20                |
|                  |                                | <del>S</del> | W = Water S   | <u>-</u> 5円 ' | N'  solt soco | n samoled C         | SPT 'N'  solid cone  HV = Hand Vane   KPa  PP = Pocket Penetron                                          | eter (kg/cm²) |                   |
| Remarks :-       | .s                             |              |               |               |               |                     |                                                                                                          |               | Bare∩ale Na:      |
|                  |                                |              |               |               |               |                     |                                                                                                          |               | 1                 |
|                  |                                |              |               |               |               |                     |                                                                                                          |               |                   |

Soil Consultants Ltd

SOLChart Generator Ver\_1,4



Soil Consultants Ltd

SCLChart Generator Ver\_t



| 10A Belmont Street, London NW1 8HH        |                    |              |   |   |   |    |    |         | Report No: | 9117/JRCB |  |
|-------------------------------------------|--------------------|--------------|---|---|---|----|----|---------|------------|-----------|--|
| IN-SITU STANDARD PENETRATION TEST RESULTS |                    |              |   |   |   |    |    |         |            |           |  |
| orehole<br>No:                            | Start depth<br>[m] | Test<br>Type |   |   |   |    |    | SPT (N) | Remarks    |           |  |
| í                                         | 1.50               | s            | 1 | 1 | 2 | 2  | 1  | 2       |            | 7         |  |
| 1                                         | 2.50               | s            | 2 | 2 | 1 | 1  | 2  | 3       |            | 7         |  |
| 1                                         | 3.50               | S            | 2 | 2 | 3 | 3  | 3  | 3       |            | 12        |  |
| 1                                         | 6.00               | S            | 3 | 3 | 4 | 4  | 5  | 6       |            | 19        |  |
| 1                                         | 9.00               | S            | 3 | 4 | 5 | 5  | 6  | 6       |            | 22        |  |
| 1                                         | 12.00              | S            | 4 | 6 | 6 | 6  | 7  | 8       |            | 27        |  |
| 1                                         | 15.00              | S            | 5 | 6 | 6 | 7  | 8  | 9       |            | 30        |  |
| 1                                         | 18.00              | S            | 6 | 7 | 8 | 10 | 10 | 12      |            | 40        |  |
|                                           |                    |              |   |   |   |    |    |         |            |           |  |
|                                           |                    |              |   |   |   |    |    |         |            |           |  |

Soil Consultants Ltd

[SPT Sheet 1 of 1]

9117/JRCB/OT Client: Risetall Ltd Site Investigation Report - 10A Belmont Street, London NW1 8HH

Consulting Engineers: Pringuer-James

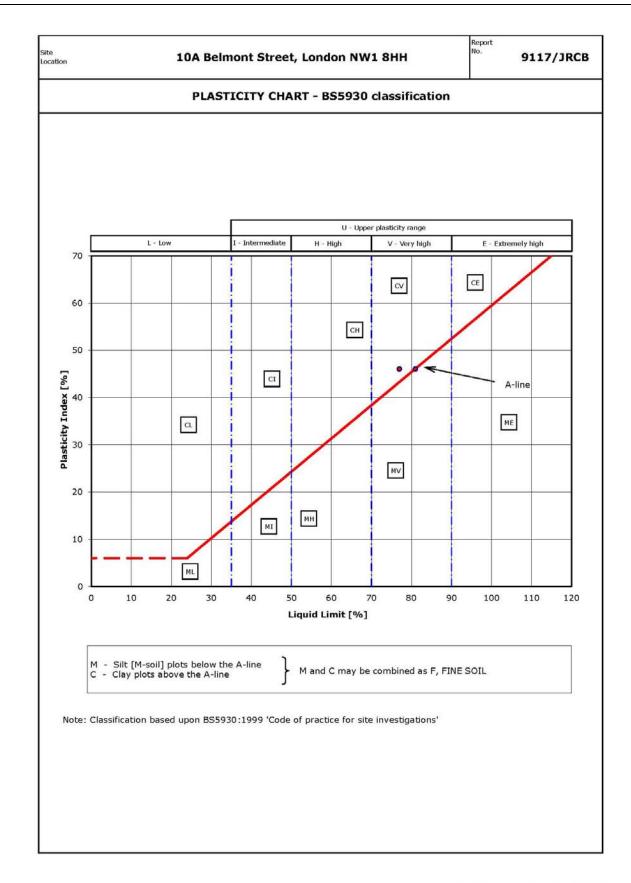
#### **APPENDIX**

#### Laboratory testing

- Index property testing
- Plasticity chart
- Unconsolidated undrained triaxial test results [QUT]
- Soluble sulphate/pH testing

1st February 2012 [Rev 1] Soil Consultants Ltd




sults checked by

JRCB (Engineer)

| e<br>cation                                                                                                             | 10A            | Belmont Street, London NW1 8                                                                                                                                                          | łH                         |                        |                         |                            | Report<br>No: | 9117/JRC |  |  |
|-------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|-------------------------|----------------------------|---------------|----------|--|--|
| Sample Depth [m] Sample Description Moisture Liquid Plastic Plasticty Percent Content Limit Limit Index Passing Remarks |                |                                                                                                                                                                                       |                            |                        |                         |                            |               |          |  |  |
| Sample<br>ocation                                                                                                       | Depth [m]      | Sample Description                                                                                                                                                                    | Moisture<br>Content<br>[%] | Liquid<br>Limit<br>[%] | Plastic<br>Limit<br>[%] | Plasticity<br>Index<br>[%] |               | Remarks  |  |  |
| BH1                                                                                                                     | 10.50          | Brown CLAY with blue/grey gleying                                                                                                                                                     | 31                         | 81                     | 35                      | 46                         | >95           |          |  |  |
| BH2                                                                                                                     | 19.50          | Grey CLAY                                                                                                                                                                             | 28                         | 77                     | 31                      | 46                         | >95           |          |  |  |
|                                                                                                                         |                |                                                                                                                                                                                       |                            |                        |                         |                            |               |          |  |  |
|                                                                                                                         |                |                                                                                                                                                                                       |                            |                        |                         |                            |               |          |  |  |
|                                                                                                                         |                |                                                                                                                                                                                       |                            |                        |                         |                            |               |          |  |  |
|                                                                                                                         |                |                                                                                                                                                                                       |                            |                        |                         |                            |               |          |  |  |
|                                                                                                                         |                |                                                                                                                                                                                       |                            |                        |                         |                            |               |          |  |  |
|                                                                                                                         |                |                                                                                                                                                                                       |                            |                        |                         |                            |               |          |  |  |
|                                                                                                                         |                |                                                                                                                                                                                       |                            |                        |                         |                            |               |          |  |  |
|                                                                                                                         |                |                                                                                                                                                                                       |                            |                        |                         |                            |               |          |  |  |
| Liquid an                                                                                                               | d Plastic Limi | BS 1377:Part 2 [1990] Clause 3.2 [value in brackets = call: BS 1377:Part 2 [1990] Clauses 4.4, 5.2, 5.3, 5.4 is call: bloom sleve is by estimation, by $hand^*$ or by wet sleving *** | rried out on fin           |                        |                         |                            | n with LL ≀   | and PL]  |  |  |

Soil Consultants Ltd

Certificate date: 30-Jan-12



Soil Consultants Ltd



[Triaxial Sheet 1 of 1]

| ite<br>ocation                                                                                                                          |              | 10A B           | elmon                       | t Stree     | t, Lond                    | don NW                     | /1 8HH              |                               | Report<br>No: 9117/JRCB |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|-----------------------------|-------------|----------------------------|----------------------------|---------------------|-------------------------------|-------------------------|--|
| TRIAXIAL COMPRESSION TEST RESULTS  Key: 38, 102 = dia in mm, U=Undrained, M= Multistage, MC = Moisture Content, QD = Quick Drained Test |              |                 |                             |             |                            |                            |                     |                               |                         |  |
|                                                                                                                                         | Key          | : 38, 102 = dia | in mm, U                    | -Undrained, | M= Multis                  | tage, MC =                 | Moisture Content    | , QD = Quick E                | Orained Test            |  |
| orehole No:                                                                                                                             | Depth<br>[m] | Test Type       | Cell<br>Pressure<br>[kN/m2] |             | Bulk<br>Density<br>[Mg/m3] | Moisture<br>Content<br>[%] | Cohesion<br>[kN/m2] | Angle of<br>Friction<br>[deg] | Remarks                 |  |
| 1                                                                                                                                       | 4.50         | 102U            | 100                         | 122         | 1.80                       | 35                         | 61                  | 0                             |                         |  |
| 1                                                                                                                                       | 7.50         | 102U            | 180                         | 152         | 1.92                       | 34                         | 76                  | 0                             |                         |  |
| 1                                                                                                                                       | 10.50        | 102U            | 210                         | 169         | 1.95                       | 31                         | 85                  | 0                             |                         |  |
| 1                                                                                                                                       | 13.50        | 102U            | 270                         | 318         | 1.97                       | 28                         | 159                 | 0                             |                         |  |
| 1                                                                                                                                       | 16.50        | 102U            | 330                         | 252         | 1.98                       | 28                         | 126                 | 0                             |                         |  |
| 1                                                                                                                                       | 19.50        | 102U            | 390                         | 323         | 1.99                       | 28                         | 161                 | 0                             |                         |  |
|                                                                                                                                         |              |                 |                             |             |                            |                            |                     |                               |                         |  |
|                                                                                                                                         |              |                 |                             |             |                            |                            |                     |                               |                         |  |
|                                                                                                                                         |              |                 |                             |             |                            |                            |                     |                               |                         |  |
|                                                                                                                                         |              |                 |                             |             |                            |                            |                     |                               |                         |  |
|                                                                                                                                         |              |                 |                             |             |                            |                            |                     |                               |                         |  |
|                                                                                                                                         |              |                 |                             |             |                            |                            |                     |                               |                         |  |
|                                                                                                                                         |              |                 |                             |             |                            |                            |                     |                               |                         |  |
|                                                                                                                                         |              |                 |                             |             |                            |                            |                     |                               |                         |  |
|                                                                                                                                         |              |                 |                             |             |                            |                            |                     |                               |                         |  |
|                                                                                                                                         |              |                 |                             |             |                            |                            |                     |                               |                         |  |
|                                                                                                                                         |              |                 |                             |             |                            |                            |                     |                               |                         |  |
|                                                                                                                                         |              |                 |                             |             |                            |                            |                     |                               |                         |  |
|                                                                                                                                         |              |                 |                             |             |                            |                            |                     |                               |                         |  |
|                                                                                                                                         |              |                 |                             |             |                            |                            |                     |                               |                         |  |

| C       | 0     |         |      |
|---------|-------|---------|------|
| ~ O ! ! | Oncu  | Itante  | 1 +0 |
| 2011    | Consu | ILaiiLS | LLU  |
|         |       |         |      |

| Site<br>.ocation |              | 10A B           | elmon                       | t Stree                     | t, Lond                    | ion NW                     | /1 8HH              |                               | Report<br>No: 9117/JRCE |
|------------------|--------------|-----------------|-----------------------------|-----------------------------|----------------------------|----------------------------|---------------------|-------------------------------|-------------------------|
|                  |              | т               | RIAXI                       | AL CO                       | MPRES                      | SION                       | TEST RES            | ULTS                          |                         |
|                  | Key          | : 38, 102 = dia | in mm, U                    | -Undrained,                 | M= Multist                 | tage, MC =                 | Moisture Content,   | QD = Quick I                  | orained Test            |
| Borehole No:     | Depth<br>[m] | Test Type       | Cell<br>Pressure<br>[kN/m2] | Comp<br>Strength<br>[kN/m2] | Bulk<br>Density<br>[Mg/m3] | Moisture<br>Content<br>[%] | Cohesion<br>[kN/m2] | Angle of<br>Friction<br>[deg] | Remarks                 |
| 1                | 4.50         | 102U            | 100                         | 122                         | 1.80                       | 35                         | 61                  | 0                             |                         |
| 1                | 7.50         | 102U            | 180                         | 152                         | 1.92                       | 34                         | 76                  | 0                             |                         |
| í                | 10.50        | 102U            | 210                         | 169                         | 1.95                       | 31                         | 85                  | 0                             |                         |
| 1                | 13.50        | 102U            | 270                         | 318                         | 1.97                       | 28                         | 159                 | 0                             |                         |
| i                | 16.50        | 102U            | 330                         | 252                         | 1.98                       | 28                         | 126                 | 0                             |                         |
| 1                | 19.50        | 102U            | 390                         | 323                         | 1.99                       | 28                         | 161                 | 0                             |                         |
|                  |              |                 |                             |                             |                            |                            |                     |                               |                         |
|                  |              |                 |                             |                             |                            |                            |                     |                               |                         |
|                  |              |                 |                             |                             |                            |                            |                     |                               |                         |
|                  |              |                 |                             |                             |                            |                            |                     |                               |                         |
|                  |              |                 |                             |                             |                            |                            |                     |                               |                         |
|                  |              |                 |                             |                             |                            |                            |                     |                               |                         |
|                  |              |                 |                             |                             |                            |                            |                     |                               |                         |
|                  |              |                 |                             |                             |                            |                            |                     |                               |                         |
|                  |              |                 |                             |                             |                            |                            |                     |                               |                         |
|                  |              |                 |                             |                             |                            |                            |                     |                               |                         |
|                  |              |                 |                             |                             |                            |                            |                     |                               |                         |
|                  |              |                 |                             |                             |                            |                            |                     |                               |                         |

Soil Consultants Ltd

[Triaxial Sheet 1 of 1]



[Triaxial Sheet 1 of 1]

| 1 4. 1 7. 1 10. 1 13. 1 16. | Key : 38, 102 =       Spth m]     Test Typ       .50     102U       .50     102U       .50     102U       .50     102U       .50     102U       .50     102U | Cell Pressure [kN/m2]  100  180  210 | Comp<br>Strength | Bulk<br>Density    | Moisture<br>Content<br>[%] | Moisture Content, Cohesion [kN/m2] | QD = Quick Drained  Angle of Friction [deg] | Test<br>Remarks |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------|--------------------|----------------------------|------------------------------------|---------------------------------------------|-----------------|
| 1 4. 1 7. 1 10. 1 13. 1 16. | .50 102U<br>.50 102U<br>.50 102U                                                                                                                             | 100<br>180<br>210                    | Strength [kN/m2] | Density<br>[Mg/m3] | Content<br>[%]             | [kN/m2]                            | Friction<br>[deg]                           | Remarks         |
| 1 7. 1 10. 1 13. 1 16.      | .50 102U                                                                                                                                                     | 180                                  | 152              | 1000000000         | MINTED                     | 61                                 | o                                           |                 |
| 1 10.<br>1 13.<br>1 16.     | .50 102U                                                                                                                                                     | 210                                  | 12/882           | 1.92               | 34                         |                                    |                                             |                 |
| 1 13                        | :.50 102U                                                                                                                                                    | e entrese                            | 169              | l .                |                            | 76                                 | 0                                           |                 |
| 1 16.                       | 260995 + 8-40                                                                                                                                                | 270                                  |                  | 1.95               | 31                         | 85                                 | o                                           |                 |
|                             | .50 1020                                                                                                                                                     |                                      | 318              | 1.97               | 28                         | 159                                | 0                                           |                 |
| 1 19                        |                                                                                                                                                              | 330                                  | 252              | 1.98               | 28                         | 126                                | o                                           |                 |
|                             | .50 1020                                                                                                                                                     | 390                                  | 323              | 1.99               | 28                         | 161                                | 0                                           |                 |
| I .                         |                                                                                                                                                              |                                      |                  |                    |                            |                                    |                                             |                 |
|                             |                                                                                                                                                              |                                      |                  |                    |                            |                                    |                                             |                 |
|                             |                                                                                                                                                              |                                      |                  |                    |                            |                                    |                                             |                 |
|                             |                                                                                                                                                              |                                      |                  |                    |                            |                                    |                                             |                 |
|                             |                                                                                                                                                              |                                      |                  |                    |                            |                                    |                                             |                 |
|                             |                                                                                                                                                              |                                      |                  |                    |                            |                                    |                                             |                 |
|                             |                                                                                                                                                              |                                      |                  |                    |                            |                                    |                                             |                 |
|                             |                                                                                                                                                              |                                      |                  |                    |                            |                                    |                                             |                 |
|                             |                                                                                                                                                              |                                      |                  |                    |                            |                                    |                                             |                 |
|                             |                                                                                                                                                              |                                      |                  |                    |                            |                                    |                                             |                 |
|                             |                                                                                                                                                              |                                      |                  |                    |                            |                                    |                                             |                 |

Soil Consultants Ltd



John Bartley Soil Consultants Ltd 8 Haven House Albemarle Street Harwich Essex CO12 3HL





#### QTS Environmental Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 851105

### **OTS Environmental Report No: 8289**

Site Reference: Belmont St

Project / Job Ref: 9117/JRCB

Order No: None Supplied

Sample Receipt Date: 05/01/2012

Sample Scheduled Date: 05/01/2012

Report Issue Number: 1

Reporting Date: 11/01/2012

Authorised by:

Russell Jarvis

On behalf of QTS Environmental Ltd

Authorised by:

Kevin Old Director

On behalf of QTS Environmental Ltd

QTS Environmental Ltd - Registered in England No 06620874

Page 1 of 4





# QTS Environmental Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 851105





| Soil Analysis Certificate         |                 |               |               |               |  |  |  |  |  |
|-----------------------------------|-----------------|---------------|---------------|---------------|--|--|--|--|--|
| QTS Environmental Report No: 8289 | Date Sampled    | 13/12/11      | 13/12/11      | 13/12/11      |  |  |  |  |  |
| Soil Consultants Ltd              | Time Sampled    | None Supplied | None Supplied | None Supplied |  |  |  |  |  |
| Site Reference: Belmont St        | TP / BH No      | BH1           | BH1           | BH1           |  |  |  |  |  |
| Project / Job Ref: 9117/JRCB      | Additional Refs | None Supplied | None Supplied | None Supplied |  |  |  |  |  |
| Order No: None Supplied           | Depth (m)       | 3.00          | 8.00          | 14.00         |  |  |  |  |  |
| Reporting Date: 11/01/2012        | QTSE Sample No  | 37990         | 37991         | 37992         |  |  |  |  |  |

| Determinand              | Unit             | MDL           | Accreditation           |       | 2.70.502.5 |      |  |  |
|--------------------------|------------------|---------------|-------------------------|-------|------------|------|--|--|
| Stone Content            | %                | < 0.1         | NONE                    | < 0.1 | < 0.1      | <0.1 |  |  |
|                          |                  |               |                         |       |            | 7.7  |  |  |
|                          |                  |               |                         |       |            |      |  |  |
| General Inorganics       | Unit             | MDL           | Accreditation           |       |            |      |  |  |
| General Inorganics<br>pH | Unit<br>pH Units | MDL<br>+/-0.1 | Accreditation<br>MCERTS | 7.8   | 7.6        | 8.0  |  |  |

Analysis results are expressed on a dry weight basis where samples are dried at less than 30°C. Analysis carried out on the dried sample is corrected for the stone content.

Stone content is classified as material greater than 10mm in diameter.



#### QTS Environmental Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 851105





| Soil Analysis Certificate - Sample Descriptions |   |
|-------------------------------------------------|---|
| QTS Environmental Report No: 8289               |   |
| Soil Consultants Ltd                            |   |
| Site Reference: Belmont St                      |   |
| Project / Job Ref: 9117/JRCB                    |   |
| Order No: None Supplied                         | 1 |
| Reporting Date: 11/01/2012                      |   |

| QTSE Sample No |     |                                                 |       |      | Sample Matrix Description |
|----------------|-----|-------------------------------------------------|-------|------|---------------------------|
| 37990          |     | None Supplied<br>None Supplied<br>None Supplied | 3.00  | 21.3 | Brown clay                |
| 37991          | BH1 | None Supplied                                   | 8.00  | 20.2 | Brown clay                |
| 37992          | BH1 | None Supplied                                   | 14.00 | 20.5 | Brown clay<br>Brown clay  |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      | <u> </u>                  |
|                |     |                                                 |       |      | <u> </u>                  |
|                |     |                                                 |       |      |                           |
|                |     |                                                 |       |      | ·                         |

QTS Environmental Ltd - Registered in England No 06620874 Page 2 of 4 QTS Environmental Ltd - Registered in England No 06620874 Page 3 of 4





# QTS Environmental Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 851105



| Soil Analysis Certificate - Methodology & Miscellaneous Information |
|---------------------------------------------------------------------|
| QTS Environmental Report No: 8289                                   |
| Soil Consultants Ltd                                                |
| Site Reference: Belmont St                                          |
| Project / Job Ref: 9117/JRCB                                        |
| Order No: None Supplied                                             |
| Reporting Date: 11/01/2012                                          |

| Matrix       |          | Determinand                            | Brief Method Description                                                                                                                                                         | Method       |
|--------------|----------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|              | On       |                                        |                                                                                                                                                                                  | No           |
| Soil         | D        |                                        | Determination of metals by aqua-regia digestion followed by ICP-OES                                                                                                              | E002         |
| Soil<br>Soil | D<br>D   |                                        | Determination of cations in soil by aqua-regia digestion followed by ICP-OES  Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES          | E002<br>E012 |
|              |          |                                        | Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of                                                                           |              |
| Soil         | AR       | Chromium - Hexavalent                  | 1,5 diphenylcarbazide followed by colorimetry                                                                                                                                    | E016         |
| Soil         | D        | Magnesium - Water Soluble              | Determination of water soluble magnesium by extraction with water followed by ICP-OES                                                                                            | E025         |
| Soil         | AR       |                                        | Visual screening of samples for fibrous material                                                                                                                                 | E024         |
| Soil         | D        |                                        | Determination of chloride by extraction with water followed by titration using silver nitrate                                                                                    | E021         |
| Soil<br>Soil | AR<br>AR |                                        | Determination of total cyanide by distillation followed by colorimetry  Determination of complex cyanide by distillation followed by colorimetry                                 | E015         |
| Soil         | AR       |                                        | Determination of complex cyanide by distillation followed by colorimetry                                                                                                         | E015         |
|              |          | ·                                      | Determination of electrical conductivity by addition of saturated calcium sulphate followed by                                                                                   | -            |
| Soil         | AR       | Electrical Conductivity                | electrometric measurement                                                                                                                                                        | E022         |
| Soil         | D        | Elemental Sulphur                      | Determination of elemental sulphur by solvent extraction followed by turbidimeter                                                                                                | E020         |
| Soil         | D        | Fluoride - Water Soluble               |                                                                                                                                                                                  | E023         |
| Soil         | D        | FOC (Fraction Organic Carbon)          | Determination of fraction of organic carbon by oxidising with potassium dichromate followed by<br>titration with iron (II) sulphate                                              | E011         |
| Soil         | D        | Loss on Ignition @ 450°C               | Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle                                                                           | E019         |
| Soil         | AR       | -                                      | furnace Moisture content; determined gravimetrically                                                                                                                             | E003         |
|              |          |                                        | Determination of organic matter by oxidising with potassium dichromate followed by titration with                                                                                |              |
| Soil         | D        | Organic Matter                         | iron (II) sulphate                                                                                                                                                               | E011         |
| Soil         | AR       |                                        | Determination of pH by addition of water followed by electrometric measurement                                                                                                   | E007         |
| Soil         | D        | Phosphorus                             |                                                                                                                                                                                  | E002         |
| Soil         | D        |                                        | Determination of water soluble sulphate by extraction with water followed by ICP-OES                                                                                             | E014         |
| Soil         | D        | Sulphate (as SO <sub>4</sub> ) - Total | Determination of total sulphate by extraction with 10% HCl followed by ICP-OES                                                                                                   | E013         |
| Soil         | AR       | Sulphide                               | Determination of sulphide by acidification and heating to liberate hydrogen sulphide, trapped in an<br>alkaline solution then assayed by ion selective electrode                 | E018         |
| Soil         | D        | Sulphur - Total                        | Determination of total sulphur by extraction with aqua-regia, potassium iodide/iodate followed by<br>ICP-OES                                                                     | E002         |
| Soil         | AR       | Thiocyanate (as SCN)                   | Determination of thiocyanate by extraction in caustic soda followed by acidification followed by<br>addition of ferric nitrate followed by colorimetry                           | E017         |
| Soil         | D        | Total Organic Carbon (TOC)             | Determination of organic matter by oxidising with potassium dichromate followed by titration with<br>iron (II) sulphate                                                          | E011         |
| Soil         | AR       | BTEX                                   | Determination of BTEX by headspace GC-MS                                                                                                                                         | E001         |
| Soil         | D        | Cyclohexane Extractable Matter (CEM)   | Gravimetrically determined through extraction with cyclohexane                                                                                                                   | E009         |
| Soil         | AR       | Diesel Range Organics (C10 - C24)      | Determination of hexane/acetone extractable hydrocarbons by GC-FID  Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE                    | E004         |
| Soil         | AR       | Mineral Oil (C10 - C40)                | cartridge                                                                                                                                                                        | E004         |
| Soil         | AR       | PAH - Speciated (EPA 16)               | Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the<br>use of surrogate and internal standards                                         | E005         |
| Soil         | AR       | PCB - 7 Congeners                      | Determination of PCB by extraction with acetone and hexane followed by GC-MS                                                                                                     | E008         |
| Soil<br>Soil | D<br>AR  |                                        | Gravimetrically determined through extraction with petroleum ether Determination of phenols by distillation followed by colorimetry                                              | E009<br>E010 |
| Soil         | AR       | SVOC                                   | Determination of prieriois by distillation followed by coordinery  Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS  GC-MS | E006         |
| Soil         | D        | Toluene Extractable Matter (TFM)       | Gravimetrically determined through extraction with toluene                                                                                                                       | E009         |
| Soil         | AR       |                                        | Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                                                                               | E004         |
| Soil         | AR       |                                        | Determination of hydrocarbons C6-C10 by headspace GC-MS                                                                                                                          | E001         |
| Soil         | AR       | EPH TEXAS                              | Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                                                                               | E004         |
| Soil         | AR       | TPH CWG                                | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE<br>cartridge                                                                           | E004         |
| Soil         | AR       | TPH LQM                                | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge                                                                              | E004         |
| Soil         | AR       | EPH (with florisil cleanup)            | Determination of acetone/hexane extractable hydrocarbons with florisil cleanup step by GC-FID                                                                                    | E004         |
| Soil         | AR       |                                        | Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                                                                               | E004         |
| Soil         | AR       | VOCs                                   | Determination of volatile organic compounds by headspace GC-MS                                                                                                                   | E001         |

Key

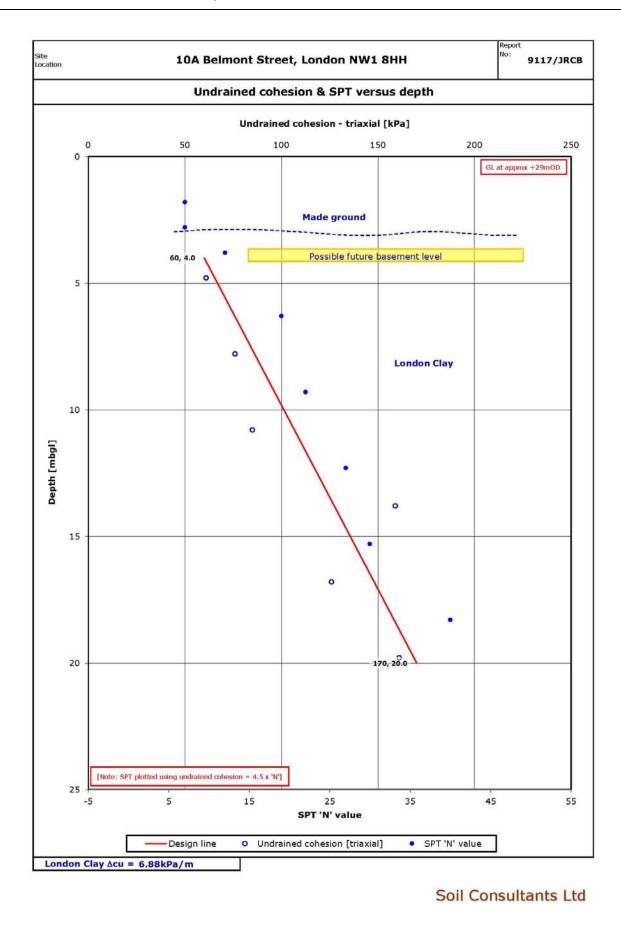
D Dried AR As Received

QTS Environmental Ltd - Registered in England No 06620874

Page 4 of 4

9117/JRCB/OT Client: Risetall Ltd Site Investigation Report - 10A Belmont Street, London NW1 8HH

Consulting Engineers: Pringuer-James


#### **APPENDIX**

#### **Ground profiles**

♣ Plot of SPT 'N' value and undrained cohesion versus depth

1st February 2012 [Rev 1] Soil Consultants Ltd

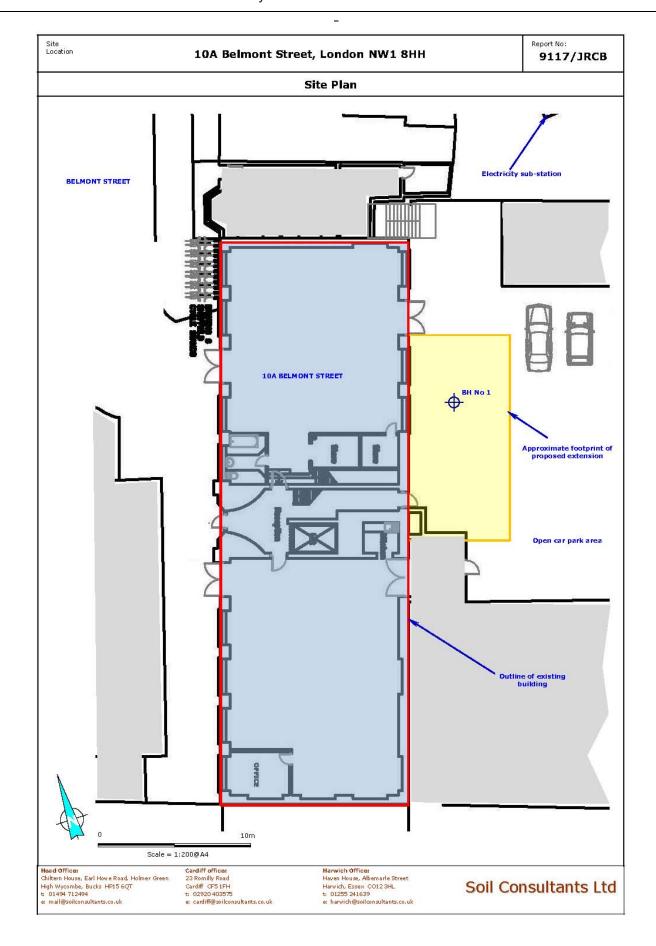


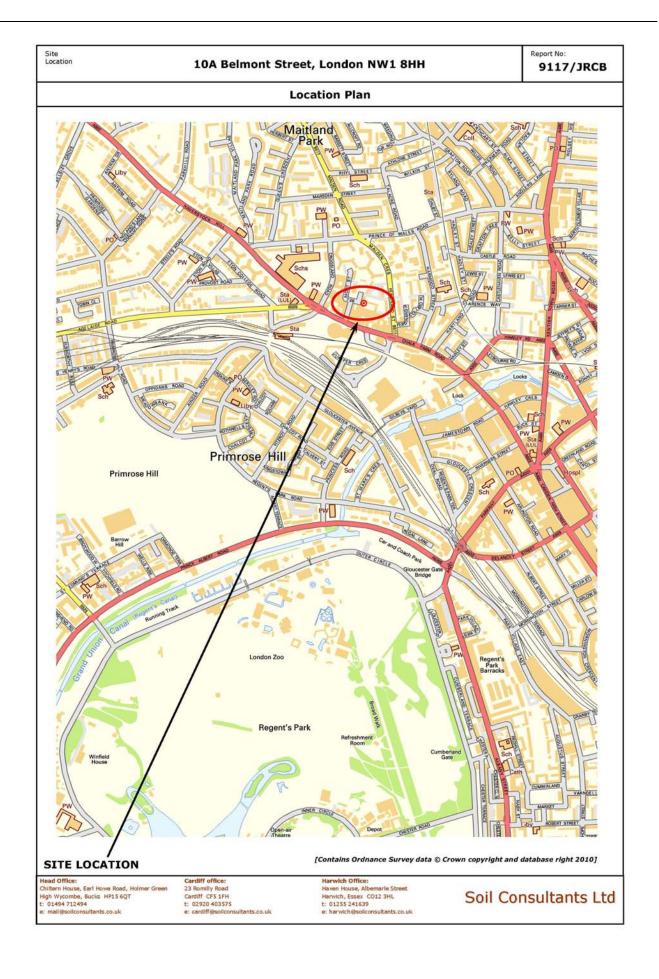


9117/JRCB/OT Client: Risetall Ltd Site Investigation Report - 10A Belmont Street, London NW1 8HH

Consulting Engineers: Pringuer-James

#### **APPENDIX**


#### Plans & drawings


- Development plans
- ♣ Piling GA drawings and loading sheet
- ♣ Site Plan
- 4 Location Plan

1st February 2012 [Rev 1]

Soil Consultants Ltd

PJCE







# Pringuer-James Consulting Engineers Preliminary Risk Assessment

# **APPENDIX F**

Historical Data – Archive Information, Historical OS Maps, Aerial Photographs





E.1 Camden Goods Yard and Chapells Piano Factory, Camden, 1920



E.2 Camden Goods Yard and Chapells Piano Factory, Camden, 1920

