Appendix F – Retaining Wall Calculations

						S	TRUC	r U F	RAL	EN	G	IN	E	EI	RS
Job:	WEDDERE	BURN	ROAD	Title:	No	4/6	PARTY	W	ALL						
Job No:	1220	Sheet:		Date:	Nove	MBER	14	Eng:	BMM	J			Rev:		

HEYNE TILLETT STEEL

CHIELIL VERTICAL LOAD ON UNDERPINS ALONG PARTY WALL.

EXISTING LOADINGS

MAIN WALL SW = AVERAGE 440 THK (ASSUME 8070 SOLID) W = 18 × 0.44 × 0.8 × 10.53 (HEIHAT TO EAVES) = 66.71 KN/M.

INITIALLY FLOOR SPANNING INTO THE WALLS ARE IGNORTO AS THIS IS CONSERVATIVE.

ADDITIONAL LOAD

UNDERPINS = 0.44 x 25 x 3.75m = 41.25 1cm/m.

(HEUL PRESSURES

EXISTING = 66.71 / 0.8m - Assume FOOTING WIDTH = 83.39 KN/m2

PROPOSED = 66.71+41.25 / 1.5-LENGTH OF UNDERFIN BASE. = 71.97 KN/m2

. FOLNOATION PRESSURES ARE LOWIR THAN EXISTING AND THEREFORE SETTLEMINT BENEATH WALL WILL BE LIMITIO TO DISTURBANCE TOOM CONSTRUCTION. ASSUME NOMINAL SAM VERTICAL SETTLEMENT.

CALLULATE HORIZONTAL PRESSURES

THIS BASED ON 3.7 HIGH PIN WHICH IS WORST CASE IN TIMP/PERMININT CONDITION.

WEDDERBURN	Ponto	Title: No 4-6	ANDTY WALL	
ob No: 1220 Sheet:	2	Date: Nov 14	Eng: BW	Rev:
GROUND LONDITIC	NS			
TAKEN FROM BY	11 - 620000 P2	OFILE TYPICAL TO	Scope.	
MADE GROUND	<u>B</u> G L 0-0.4			
STIFF SILTY SANDY CLAY	6.4 - 2.45			
FIRM SILTY SANDY LIAY	2.45 - 4			
ACTIVE PRESSURE	<u>S</u> .			
$K_q = 1 - sin$	d' / 1+ sin d	1		
MG Z	0 0.49	<u>}</u>		
LLAN 2 (STIFF /FIEM)	5 0.41	19		
0		9×17×0·4 = 3. 11×19×0·4 = 3.		
3.75	N= (1:41 A	9 x 3·75 = 29·2	2125 Kw/m2	
and the state of the				
$urcharge = G_{u}$	k = 10. = 2-5	(2m SPAN OF MI (DESIDENTIAL LO.	FUL DECK) - FINISH	15 4S
Ps	= 12.5 × 0	. 41 = 5 + 125 KN)	42	
		0-37.5 KN/m		

0

		HE	YNEITILLETTISTE	
Job: WHOOTRBURN	BOAP	Title: No 4-6	PARTY WALL.	
Job No: 1220 Sheet:	3	Date: Nov 14	PARTY WALL. Eng: BW Rev:	
ANDUST AS LA N.B. TOMPOTRAT	NTILLATE BA	M USING CEALKE	D Stellon . This is Worzst (Ase	£.
E = 34 KN	Jum 2 x 0.3	5 = 11.9 KN/n	1m Z	
FROM ATTALMO	lares Horn	ZonTHL Marmm	$\pi = 6.7 m$	
CALLMATTE UTETIC	AL FROM DOTA	TION		
5v	1 al	∝ = 25 = 3·lmm		
	- 8 44	= 3.1mm		
Sv =	3.1 mm. 7	NOTIONAL OF.	3mm	
2	3 6.1 n	· · · ·		
LHELK DAMAGE				
WIDTHI OF AD	JALONT BU	110 mor/pw =	13 m	
		= 0.000	0 46 9 Z	
	/ •			

Z

0.004692 70

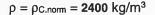
: LATEGORY 0 - NEGLIGIBLE

				S T R U C	TUF	R A	LEN	GI	NE	E	RS
Job:	Wedderb	ourn Road	Title	PW Damage Che	eck						
Job No:	1220	Sheet: 4	Date:	21/11/2014		Eng:	BW		ł	lev:	-

CONCRETE BEAM ANALYSIS

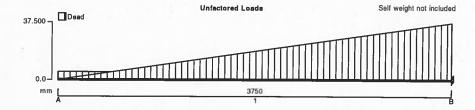
Concrete beam dimensions:-

Beam width b = 1000 mm


Beam depth h = 440 mm

Cross-section area $A = b \times h = 440000 \text{ mm}^2$

Major axis second moment of area $I_{xx} = b \times h^3 / 12 = 7.10 \times 10^9 \text{ mm}^4$


f_{cu} = 30 N/mm²

 $E = 20 \text{ kN/mm}^2 + 200 \times f_{cu} = 26.0 \text{ kN/mm}^2$

Ref BS8110:1985:Pt 2 - Eq 17

HEYNE | TILLETT | STEEL

CONTINUOUS BEAM ANALYSIS - INPUT

BEAM DETAILS

		Number of spans = 1					
	Material Pro	perties:					
		Modulus of elasticity :	= 12 kN/mm ²	Material density = 24	00 kg/m³		
	Support Co	nditions:					
	Support A	Vertically "Free"		Rotationally "Free"			
	Support B	Vertically "Restrained	1º	Rotationally "Restrai	ned"		
	Span Definitions:						
	Span 1	Length = 3750 mm	Cross-sectional area =	440000 mm ² Moment of	of inertia = 7.10×10 ⁹ mm ⁴		
	LOADING DETAILS						
	Beam Loads	<u>s:</u>					
	Load 1	Partial VDL Dead load	d 0.0 kN/m at 0.000 m to 3	.3 kN/m at 0.400 m			
	Load 2	Partial VDL Dead load	d 3.3 kN/m at 0.400 m to 2	9.2 kN/m at 3.750 m			
	Load 3	UDL Dead load 5.1 kM	V/m				
	Load 4	Partial VDL Dead load	d 0.0 kN/m at 0.000 m to 3	7.5 kN/m at 3.750 m			
	LOAD COME	BINATIONS					
	Load combined	nation 1					
	Span 1	1×Dead					
C	ONTINUOUS	BEAM ANALYSIS - RE	SULTS				
	Support Rea	actions - Combination	Summary				
		Max react = 0.0 kN		Max mom = 0.0 kNm	Min mom = 0.0 kNm		

HEYNE TILLETT STEEL

Job	Wedde	erburn Road	Title:	PW	Damage Che	eck	1.00	
Job No	1220	Sheet 5	Date	21/1	1/2014	Eng:	BW	Rev: _
Sup	port B	Max react = -144.7 kN	Min react = -144.7	' kN	Max mom : kNm	= 193.3	Min m	nom = 193.3 kNm
Bea	<u>m Max/N</u>	fin results - Combination Maximum shear = 0.0 k			Minimum s	hear F _{min} =	-144.7 k	N
Maximum moment = 0		0 kNm		Minimum m	noment = -	193.4 kNi	m	

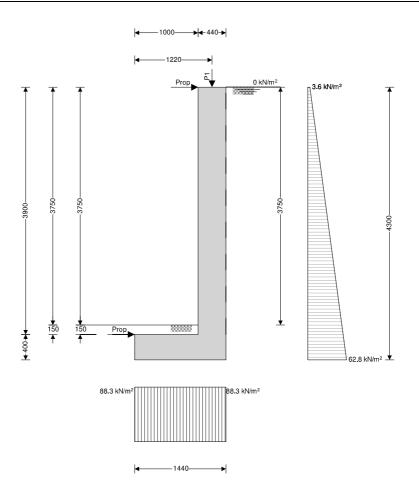
Maximum deflection = 6.7 mm

Minimum deflection = 0.0 mm

1

Job:	Wedderb	ourn Road	Title: RC Pin Calc			
Job No:	1220	Sheet: 1	Date:	Eng:	BW	Rev:

RETAINING WALL ANALYSIS


In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.4.09

Retaining wall details	
Stem type	Propped cantilever
Stem height	h _{stem} = 3900 mm
Prop height	h _{prop} = 3900 mm
Stem thickness	t _{stem} = 440 mm
Angle to rear face of stem	$\alpha =$ 90 deg
Stem density	$\gamma_{stem} = 25 \text{ kN/m}^3$
Toe length	l _{toe} = 1000 mm
Base thickness	t _{base} = 400 mm
Base density	$\gamma_{\text{base}} = 25 \text{ kN/m}^3$
Height of retained soil	h _{ret} = 3750 mm
Angle of soil surface	$\beta = 0 \text{ deg}$
Depth of cover	$d_{cover} = 150 \text{ mm}$
Depth of excavation	d _{exc} = 150 mm
Height of water	h _{water} = 3750 mm
Water density	$\gamma_w =$ 9.8 kN/m ³
Retained soil properties	
Soil type	Stiff clay
Moist density	$\gamma_{mr} = 19 \ kN/m^3$
Saturated density	$\gamma_{sr} =$ 19 kN/m ³
Characteristic effective shear resistance angle	¢'r.k = 25 deg
Characteristic wall friction angle	$\delta_{\text{r.k}} = \textbf{12.5} \text{ deg}$
Base soil properties	
Soil type	Stiff clay
Moist density	$\gamma_{mb} = 19 \text{ kN/m}^3$
Characteristic effective shear resistance angle	φ' _{b.k} = 25 deg
Characteristic wall friction angle	$\delta_{b.k} = \textbf{12.5} \text{ deg}$
Characteristic base friction angle	$\delta_{bb.k} = \textbf{12} \ deg$
Presumed bearing capacity	$P_{\text{bearing}} = 120 \text{ kN}/\text{m}^2$
Loading details	
Permanent surcharge load	Surcharge _G = 5 kN/m ²
Variable surcharge load	Surcharge _Q = 2.5 kN/m ²
Vertical line load at 1220 mm	P _{G1} = 67 kN/m

Job:	Wedderbur	Ł	Title:	RC Pin Calc					
Job No:	1220	Sheet:	2	Date:		Eng:	BW	Rev:	-

Calculate retaining wall geometry

Base length

Saturated soil height

Moist soil height

Length of surcharge load

- Distance to vertical component

Effective height of wall

- Distance to horizontal component

Area of wall stem

- Distance to vertical component

Area of wall base

- Distance to vertical component

Area of base soil

- Distance to vertical component
- Distance to horizontal component

Using Coulomb theory

Active pressure coefficient

$$\begin{split} & \textbf{l}_{base} = \textbf{l}_{toe} + \textbf{t}_{stem} = \textbf{1440} \text{ mm} \\ & \textbf{h}_{sat} = \textbf{h}_{water} + \textbf{d}_{cover} = \textbf{3900} \text{ mm} \\ & \textbf{h}_{moist} = \textbf{h}_{ret} - \textbf{h}_{water} = \textbf{0} \text{ mm} \\ & \textbf{l}_{sur} = \textbf{l}_{heel} = \textbf{0} \text{ mm} \\ & \textbf{x}_{sur_v} = \textbf{l}_{base} - \textbf{l}_{heel} / 2 = \textbf{1440} \text{ mm} \\ & \textbf{h}_{eff} = \textbf{h}_{base} + \textbf{d}_{cover} + \textbf{h}_{ret} = \textbf{4300} \text{ mm} \\ & \textbf{x}_{sur_h} = \textbf{h}_{eff} / 2 = \textbf{2150} \text{ mm} \\ & \textbf{A}_{stem} = \textbf{h}_{stem} \times \textbf{t}_{stem} = \textbf{1.716} \text{ m}^2 \\ & \textbf{x}_{stem} = \textbf{l}_{toe} + \textbf{t}_{stem} / 2 = \textbf{1220} \text{ mm} \\ & \textbf{A}_{base} = \textbf{l}_{base} \times \textbf{t}_{base} = \textbf{0.576} \text{ m}^2 \\ & \textbf{x}_{base} = \textbf{l}_{base} / 2 = \textbf{720} \text{ mm} \\ & \textbf{A}_{pass} = \textbf{d}_{cover} \times \textbf{l}_{toe} = \textbf{0.15} \text{ m}^2 \\ & \textbf{x}_{pass_v} = \textbf{l}_{base} - (\textbf{d}_{cover} \times \textbf{h}_{toe} \times (\textbf{l}_{base} - \textbf{l}_{toe} / 2)) / \textbf{A}_{pass} = \textbf{500} \text{ mm} \\ & \textbf{x}_{pass_h} = (\textbf{d}_{cover} + \textbf{h}_{base}) / 3 = \textbf{183} \text{ mm} \end{split}$$

$$\begin{split} \mathsf{K}_{\mathsf{A}} &= \sin(\alpha + \phi'_{r,k})^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta_{r,k}) \times [1 + \sqrt{[\sin(\phi'_{r,k} + \delta_{r,k}) \times \sin(\phi'_{r,k} - \beta)} / (\sin(\alpha - \delta_{r,k}) \times \sin(\alpha + \beta))]]^2) = \mathbf{0.367} \end{split}$$

Wedderburn Road	Title: RC Pin Calc
ob No: 1220 Sheet: 3	Date: Eng: BW Rev
Passive pressure coefficient	$K_{P} = \sin(90 - \phi'_{b,k})^{2} / (\sin(90 + \delta_{b,k}) \times [1 - \sqrt{[\sin(\phi'_{b,k} + \delta_{b,k})} \times (1 - \sqrt{(1 - \sqrt{[\sin(\phi'_{b,k} + \delta_{b,k})} \times (1 - \sqrt{(1 - \sqrt{[\sin(\phi'_{b,k} + \delta_{b,k})} \times (1 - (1 - \sqrt{(1 $
Bearing pressure check	$sin(\phi'_{b.k}) / (sin(90 + \delta_{b.k}))]]^2) = 3.552$
Vertical forces on wall	
Wall stem	$F_{stem} = A_{stem} \times \gamma_{stem} = 42.9 \text{ kN/m}$
Wall base	$F_{\text{base}} = A_{\text{base}} \times \gamma_{\text{base}} = 14.4 \text{ kN/m}$
Line loads	$F_{P_v} = P_{G1} = 67 \text{ kN/m}$
Base soil	$F_{\text{pass}_v} = A_{\text{pass}} \times \gamma_{\text{mb}} = 2.9 \text{ kN/m}$
Total	$F_{total_v} = F_{stem} + F_{base} + F_{pass_v} + F_{water_v} + F_{P_v} = 127.2 \text{ kN/m}$
Horizontal forces on wall	
Surcharge load	$\label{eq:Fsur_h} \begin{split} F_{sur_h} &= K_A \times cos(\delta_{r.d}) \times (Surcharge_G + Surcharge_Q) \times h_{eff} = \\ \textbf{11.6 } kN/m \end{split}$
Saturated retained soil	$\label{eq:Fsat_h} \begin{split} F_{sat_h} &= K_A \times cos(\delta_{r.d}) \times (\gamma_{sr} - \gamma_w) \times (h_{sat} + h_{base})^2 \ / \ 2 = \textbf{30.5} \\ kN/m \end{split}$
Water	$F_{water_h} = \gamma_w \times (h_{water} + d_{cover} + h_{base})^2 / 2 = 90.7 \text{ kN/m}$
Moist retained soil	$F_{moist_h} = K_A \times cos(\delta_{r.d}) \times \gamma_{mr} \times ((h_{eff} - h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat})^2 / 2 + $
	$h_{sat} - h_{base}) \times (h_{sat} + h_{base})) = 0 \text{ kN/m}$
Total	F _{total_h} = F _{sat_h} + F _{moist_h} + F _{water_h} + F _{sur_h} = 132.7 kN/m
Moments on wall	
Wall stem	M _{stem} = F _{stem} × x _{stem} = 52.3 kNm/m
Wall base	M _{base} = F _{base} × x _{base} = 10.4 kNm/m
Surcharge load	M _{sur} = -F _{sur_h} × x _{sur_h} = -24.9 kNm/m
Line loads	$M_{P} = P_{G1} \times p_{1} = 81.7 \text{ kNm/m}$
Saturated retained soil	M _{sat} = -F _{sat_h} × x _{sat_h} = -43.7 kNm/m
Water	$M_{water} = -F_{water_h} \times x_{water_h} = -130 \text{ kNm/m}$
Moist retained soil	$M_{moist} = -F_{moist_h} \times x_{moist_h} = 0 \text{ kNm/m}$
Base soil	$M_{pass} = F_{pass_v} \times x_{pass_v} = 1.4 \text{ kNm/m}$
Total	$M_{total} = M_{stem} + M_{base} + M_{sat} + M_{moist} + M_{pass} + M_{water} + M_{sur} +$
	M _P = -52.7 kNm/m
Check bearing pressure	
Propping force to stem	$F_{\text{prop}_stem} = \min((F_{\text{total}_v} \times I_{\text{base}} / 2 - M_{\text{total}}) / (h_{\text{prop}} + t_{\text{base}}),$ $F_{\text{total}_h}) = 33.5 \text{ kN/m}$ Temporary works to be designed.
Propping force to base	F _{prop_base} = F _{total_h} - F _{prop_stem} = 99.2 kN/m accordingley
Moment from propping force	$M_{prop} = F_{prop_stem} \times (h_{prop} + t_{base}) = 144.2 \text{ kNm/m}$
Distance to reaction	$\overline{\mathbf{x}} = (\mathbf{M}_{\text{total}} + \mathbf{M}_{\text{prop}}) / \mathbf{F}_{\text{total}_v} = 720 \text{ mm}$
Eccentricity of reaction	$e = \overline{x} - I_{base} / 2 = 0 mm$
Loaded length of base	$I_{\text{load}} = I_{\text{base}} = 1440 \text{ mm}$
Pooring procedure at tac	

 $q_{toe} = F_{total_v} \ / \ I_{base} = \textbf{88.3} \ kN/m^2$

www.heynetillettsteel.com

Bearing pressure at toe

Job:	Wedderburn Road	Title: RC Pin Calc				
Job No:	1220 Sheet: 4	Date:	Eng:	BW	Rev:	-

Bearing pressure at heel Factor of safety $q_{heel} = F_{total_v} \ / \ I_{base} = \textbf{88.3} \ kN/m^2$

 $FoS_{bp} = P_{bearing} / max(q_{toe}, q_{heel}) = \textbf{1.359}$

PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 2.4.09

Concrete details - Table 3.1 - Strength and					
Concrete strength class	C32/40				
Characteristic compressive cylinder strength	$f_{ck} = 32 N/mm^2$				
Characteristic compressive cube strength	f _{ck,cube} = 40 N/mm ²				
Mean value of compressive cylinder strength	$f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 40 \text{ N/mm}^2$				
Mean value of axial tensile strength	$f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 3.0 \text{ N/mm}^2$				
5% fractile of axial tensile strength	$f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.1 \text{ N/mm}^2$				
Secant modulus of elasticity of concrete	$E_{cm} = 22 \text{ kN/mm}^2 \times (f_{cm} / 10 \text{ N/mm}^2)^{0.3} = 33346 \text{ N/mm}^2$				
Partial factor for concrete - Table 2.1N	$\gamma_{\rm C}=$ 1.50				
Compressive strength coefficient - cl.3.1.6(1)	$\alpha_{cc} = 0.85$				
Design compressive concrete strength - exp.3	$f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_{C} = 18.1$				
N/mm ²					
Maximum aggregate size	h _{agg} = 20 mm				
Reinforcement details					
Characteristic yield strength of reinforcement	f _{vk} = 500 N/mm ²				
Modulus of elasticity of reinforcement	E _s = 200000 N/mm ²				
Partial factor for reinforcing steel - Table 2.1N	γs = 1.15				
Design yield strength of reinforcement	$f_{yd} = f_{yk} / \gamma_{\rm S} = 435 \text{ N/mm}^2$				
Cover to reinforcement					
Front face of stem	c _{sf} = 40 mm				
Rear face of stem	c _{sr} = 50 mm				
Top face of base	c _{bt} = 50 mm				
Bottom face of base	C _{bb} = 75 mm				
Check stem design at 1987 mm					
Depth of section	h = 440 mm				
Rectangular section in flexure - Section 6.					
Design bending moment combination 1	M = 35.2 kNm/m				
Depth to tension reinforcement	$d = h - c_{sf} - \phi_{sx} - \phi_{sfM} / 2 = 384 \text{ mm}$				
	$K = M / (d^2 \times f_{ck}) = 0.007$				
	K' = 0.207				
	K' > K - No compression reinforcement is required				
Lever arm	$z = min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 365 mm$				

Job:	Wedderb	urn Road	Title: RC Pin Calc		
Job No:	1220	Sheet: 5	Date:	Eng: BW	Rev:

Depth of neutral axis	$x = 2.5 \times (d - z) = 48 \text{ mm}$
Area of tension reinforcement required	$A_{sfM.req} = M / (f_{yd} \times z) = 222 \text{ mm}^2/\text{m}$
Tension reinforcement provided	12 dia.bars @ 150 c/c
Area of tension reinforcement provided	$A_{sfM.prov} = \pi \times \varphi_{sfM}^2 \ / \ (4 \times s_{sfM}) = \textbf{754} \ mmm{m^2/m}$
Minimum area of reinforcement - exp.9.1N	$A_{sfM.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 604 \text{ mm}^2/\text{m}$
Maximum area of reinforcement - cl.9.2.1.1(3)	$A_{sfM.max} = 0.04 \times h = 17600 \text{ mm}^2/\text{m}$
	$max(A_{sfM.req}, A_{sfM.min}) / A_{sfM.prov} = 0.801$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control - Section 7.3	
Limiting crack width	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1	$\psi_2 = 0.6$
Serviceability bending moment	M _{sls} = 25.6 kNm/m
Tensile stress in reinforcement	$\sigma_{s} = M_{sls} \ / \ (A_{sfM,prov} \times z) = \textbf{93} \ N/mm^{2}$
Load duration	Long term
Load duration factor	$k_{t} = 0.4$
Effective area of concrete in tension	$A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 130667 \text{ mm}^2/\text{m}$
Mean value of concrete tensile strength	$f_{ct.eff} = f_{ctm} = 3.0 \text{ N/mm}^2$
Reinforcement ratio	$\rho_{p.eff} = A_{sfM.prov} \; / \; A_{c.eff} = \textbf{0.006}$
Modular ratio	$\alpha_e = E_s / E_{cm} = \textbf{5.998}$
Bond property coefficient	k ₁ = 0.8
Strain distribution coefficient	k ₂ = 0.5
	k ₃ = 3.4
	k ₄ = 0.425
Maximum crack spacing - exp.7.11	$s_{r.max} = k_3 \times c_{sf} + k_1 \times k_2 \times k_4 \times \phi_{sfM} \ / \ \rho_{p.eff} = \textbf{490} \ mm$
Maximum crack width - exp.7.8	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6$
	$\times \sigma_s)$ / E _s
	w _k = 0.137 mm
	$w_k / w_{max} = 0.455$
	C Maximum avail, width is loss than limiting avail, width

PASS - Maximum crack width is less than limiting crack width

Check stem design at base of stem	
Depth of section	h = 440 mm
Rectangular section in flexure - Section 6.	1
Design bending moment combination 1	M = 77.1 kNm/m
Depth to tension reinforcement	$d = h - c_{sr} - \phi_{sr} / 2 = 382 \text{ mm}$
	$K = M / (d^2 \times f_{ck}) = 0.017$
	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm	$z = min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 363 mm$
Depth of neutral axis	$x = 2.5 \times (d - z) = 48 \text{ mm}$

Job:	Wedderburr	n Road	Title: RC Pin Calc			
Job No:	1220	Sheet: 6	Date:	Eng:	BW	Rev:

Area of tension reinforcement required	$A_{sr,req} = M / (f_{yd} \times z) = 489 \text{ mm}^2/\text{m}$
Tension reinforcement provided	16 dia.bars @ 150 c/c
Area of tension reinforcement provided	$A_{sr.prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) =$ 1340 mm ² /m
Minimum area of reinforcement - exp.9.1N	$A_{sr.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 601 \text{ mm}^2/\text{m}$
Maximum area of reinforcement - cl.9.2.1.1(3)	$A_{sr.max} = 0.04 \times h = 17600 \text{ mm}^2/\text{m}$
	$max(A_{sr.req}, A_{sr.min}) / A_{sr.prov} = 0.448$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control - Section 7.3	
Limiting crack width	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1	$\psi_2 = 0.6$
Serviceability bending moment	M _{sls} = 56.3 kNm/m
Tensile stress in reinforcement	σ_s = M _{sls} / (A _{sr.prov} × z) = 115.7 N/mm ²
Load duration	Long term
Load duration factor	$k_{t} = 0.4$
Effective area of concrete in tension	$A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 130750 mm^2/m$
Mean value of concrete tensile strength	$f_{ct.eff} = f_{ctm} = 3.0 \text{ N/mm}^2$
Reinforcement ratio	$\rho_{p.eff} = A_{sr.prov} \ / \ A_{c.eff} = \textbf{0.010}$
Modular ratio	$\alpha_e = E_s / E_{cm} = \textbf{5.998}$
Bond property coefficient	k ₁ = 0.8
Strain distribution coefficient	k ₂ = 0.5
	$k_3 = 3.4$
	k ₄ = 0.425
Maximum crack spacing - exp.7.11	$s_{r.max} = k_3 \times c_{sr} + k_1 \times k_2 \times k_4 \times \phi_{sr} \ / \ \rho_{p.eff} = \textbf{435} \ mm$
Maximum crack width - exp.7.8	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6$
	$\times \sigma_{s}) \ / \ E_{s}$
	w _k = 0.151 mm
	w _k / w _{max} = 0.503
DAS	S - Maximum crack width is less than limiting crack width

PASS - Maximum crack width is less than limiting crack width

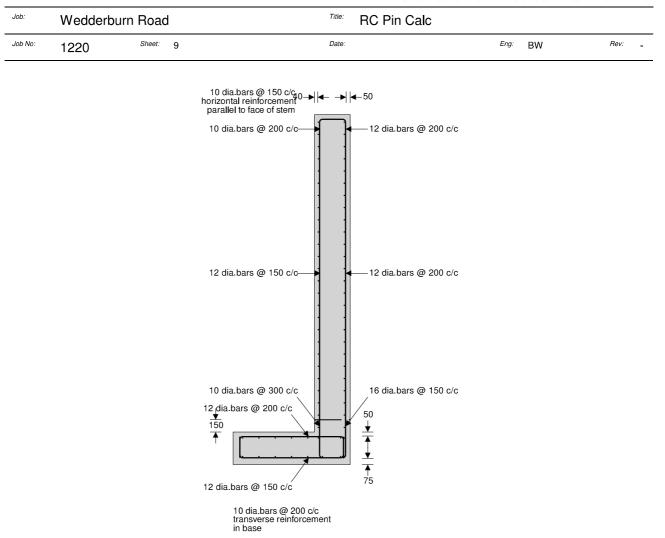
Rectangular section in shear - Section 6.2	
Design shear force	V = 116.8 kN/m
	$C_{\text{Rd,c}} = 0.18 \ / \ \gamma_{C} = 0.120$
	k = min(1 + √(200 mm / d), 2) = 1.724
Longitudinal reinforcement ratio	$\rho_I = min(A_{sf.prov} / d, 0.02) = 0.001$
	$v_{min} = 0.035 \; N^{1/2} / mm \times k^{3/2} \times f_{ck}{}^{0.5} = \textbf{0.448} \; N / mm^2$
Design shear resistance - exp.6.2a & 6.2b	$V_{\text{Rd.c}} = max(C_{\text{Rd.c}} \times k \times (100 \text{ N}^2/mm^4 \times \rho_I \times f_{\text{ck}})^{1/3}, v_{\text{min}}) \times d$
	V _{Rd.c} = 171.1 kN/m
	V / V _{Rd.c} = 0.683
PA	SS - Design shear resistance exceeds design shear force

ob:	Wedderb	urn Road	Title: RC Pin Calc			
ob No:	1220	Sheet: 7	Date:	Eng: BW	Rev:	
Che	eck stem d	esign at prop				
Dep	oth of sectio	n	h = 440 mm			
Rec	tangular s	ection in shear - Section 6.2				
Des	sign shear f	orce	V = 32.4 kN/m			
			$C_{\text{Rd,c}} = 0.18 \ / \ \gamma_{C} = 0.120$)		
			k = min(1 + √(200 mm)	/ d), 2) = 1.724		
Lon	gitudinal re	inforcement ratio	$\rho_{I} = min(A_{sf1.prov} / d, 0.0)$	2) = 0.001		
			$v_{min} = 0.035 \; N^{1/2} / mm \times$	$k^{3/2} \times f_{ck}^{0.5} = 0.448 \text{ N/mm}$	1 ²	
Des	ign shear r	esistance - exp.6.2a & 6.2b	$V_{\text{Rd.c}} = max(C_{\text{Rd.c}} \times k \times $	$(100 \text{ N}^2/\text{mm}^4 imes ho_{\text{I}} imes f_{\text{ck}})^{1/3}$, v_{min}) × d	
			$V_{\text{Rd.c}} = \textbf{171.1} \text{ kN/m}$			
			$V / V_{Rd.c} = 0.189$			
		PAS	ASS - Design shear resistance exceeds design shear for			
		nforcement parallel to face of	stem - Section 9.6			
		of reinforcement – cl.9.6.3(1)	. ,	$t_{prov}, 0.001 \times t_{stem}) = 440$	mm²/m	
	-	cing of reinforcement – cl.9.6.3		S _{sx_max} = 400 m	m	
		nforcement provided	10 dia.bars @ 150 c/c			
Are		erse reinforcement provided	$A_{sx.prov} = \pi \times \phi_{sx}^2 / (4 \times s)^2$			
		PASS - Area of reinforcement	t provided is greater th	nan area of reinforceme	ent requi	
		esign at toe				
Dep	oth of sectio	n	h = 400 mm			
	-	ection in flexure - Section 6.1				
	•	g moment combination 1	M = 50.9 kNm/m			
Dep	oth to tensic	on reinforcement	$d = h - c_{bb} - \phi_{bb} / 2 = 319$			
			$K = M / (d^2 \times f_{ck}) = 0.016$	6		
			K' = 0.207			
Lov	ororm		•	pression reinforcement	-	
	er arm oth of neutra	al avis	$z = min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 303 mm$ $x = 2.5 \times (d - z) = 40 mm$			
-		a reinforcement required	$A = 2.3 \times (d - 2) = 40$ M Abb.reg = M / (f _{yd} × z) = 3			
		rcement provided	12 dia bars @ 150 c/c			
		reinforcement provided	$A_{bb,prov} = \pi \times \phi_{bb}^2 / (4 \times s)^2$	s _{bb}) = 754 mm²/m		
		of reinforcement - exp.9.1N		n / f _{yk} , 0.0013) × d = 502	mm²/m	
		of reinforcement - cl.9.2.1.1(3)				
		max(Abb.req, Abb.min) / Abl				
				b.prov = 0.000		

Crack control - Section 7.3	
Limiting crack width	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1	ψ ₂ = 0.6
Serviceability bending moment	M _{sls} = 37.7 kNm/m

Job:	Wedderb	urn Road	Title: RC Pin Calc			
Job No:	1220	Sheet: 8	Date:	Eng:	BW	Rev:

Tensile stress in reinforcement	σ_{s} = M_{sls} / $(A_{bb,prov} \times z)$ = 165.1 N/mm^{2}
Load duration	Long term
Load duration factor	$k_t = 0.4$
Effective area of concrete in tension	$A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 120042 mm^2/m$
Mean value of concrete tensile strength	$f_{ct.eff} = f_{ctm} = \textbf{3.0 N}/mm^2$
Reinforcement ratio	$\rho_{p.eff} = A_{bb,prov} \; / \; A_{c.eff} = \textbf{0.006}$
Modular ratio	$\alpha_e = E_s \ / \ E_{cm} = \textbf{5.998}$
Bond property coefficient	k ₁ = 0.8
Strain distribution coefficient	k ₂ = 0.5
	k ₃ = 3.4
	k ₄ = 0.425
Maximum crack spacing - exp.7.11	$s_{r.max} = k_3 \times c_{bb} + k_1 \times k_2 \times k_4 \times \phi_{bb} \ / \ \rho_{p.eff} = \textbf{580} \ mm$
Maximum crack width - exp.7.8	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6$
	$ imes \sigma_{s})$ / Es
	w _k = 0.287 mm
	$w_k / w_{max} = 0.957$


PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2	
Design shear force	V = 101.9 kN/m
	$C_{\text{Rd,c}} = 0.18 \; / \; \gamma_{C} = \textbf{0.120}$
	k = min(1 + √(200 mm / d), 2) = 1.792
Longitudinal reinforcement ratio	$\rho_I = min(A_{bb,prov} / d, 0.02) = 0.002$
	$\nu_{min} = 0.035 \; N^{1/2} / mm \times k^{3/2} \times f_{ck}{}^{0.5} = \textbf{0.475} \; N / mm^2$
Design shear resistance - exp.6.2a & 6.2b	$V_{\text{Rd.c}} = max(C_{\text{Rd.c}} \times k \times (100 \text{N}^2/\text{mm}^4 \times \rho_l \times f_{\text{ck}})^{1/3}, v_{\text{min}}) \times d$
	V _{Rd.c} = 151.5 kN/m
	V / V _{Rd.c} = 0.672
PA	ASS - Design shear resistance exceeds design shear force
Secondary transverse reinforcement to ba	ase - Section 9.3
Minimum area of reinforcement – cl.9.3.1.1(2	2) $A_{bx.req} = 0.2 \times A_{bb.prov} = 151 \text{ mm}^2/\text{m}$

Maximum spacing of reinforcement – cl.9.3.1.	1(3) S _{bx_max} = 450 mm
Transverse reinforcement provided	10 dia.bars @ 200 c/c
Area of transverse reinforcement provided	$A_{\text{bx.prov}} = \pi \times \varphi_{\text{bx}}^2 / (4 \times s_{\text{bx}}) = \textbf{393} \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided is greater than area of reinforcement required

