Appendix C Chemical Laboratory Analysis

QTS Environmental Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

russell.jarvis@qtsenvironmental.com

QTS Environmental Report No: 14-27138

Site Reference: 77-79 Charlotte Street

Project / Job Ref: 14653

Order No: None Supplied

Sample Receipt Date: 08/12/2014

Sample Scheduled Date: 08/12/2014

Report Issue Number: 1

Reporting Date: 15/12/2014

Authorised by:

Russell Jarvis Director

On behalf of QTS Environmental Ltd

Authorised by:

Kevin Old Director

On behalf of QTS Environmental Ltd

Soil Analysis Certificate						
QTS Environmental Report No: 14-27138	Date Sampled	26/11/14	26/11/14	26/11/14	26/11/14	26/11/14
Soils Ltd	Time Sampled	None Supplied				
Site Reference: 77-79 Charlotte Street	TP / BH No	Sample A	Sample B	WS1	TP1	WS2
Project / Job Ref: 14653	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	0.30 - 2.00	2.00 - 6.10	5.20	0.30	2.50
Reporting Date: 15/12/2014	QTSE Sample No	128515	128516	128517	128518	128519

Determinand	Unit	RL	Accreditation	_	-			
Asbestos Screen	N/a	N/a	ISO17025	Not Detected				
рН	pH Units	N/a	MCERTS	7.9	7.7	7.8	8.4	7.9
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
W/S Sulphate as SO4 (2:1)	g/I	< 0.01	MCERTS	1.46	0.99	0.39	0.24	0.45
Sulphide	mg/kg	< 5	NONE	< 5	18	19	< 5	65
Organic Matter	%	< 0.1	MCERTS	3	1.9	2.1	2.6	2.8
Total Organic Carbon (TOC)	%	< 0.1	MCERTS	1.7	1.1	1.2	1.5	1.6
Arsenic (As)	mg/kg	< 2	MCERTS	35	12	15	27	12
Beryllium (Be)	mg/kg	< 0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	1.6
Cadmium (Cd)	mg/kg	< 0.5	MCERTS	0.6	< 0.5	< 0.5	0.6	< 0.5
Chromium (Cr)	mg/kg	< 2	MCERTS	24	20	22	20	22
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	1060	108	511	166	87
Lead (Pb)	mg/kg	< 3	MCERTS	2040	422	733	917	387
Mercury (Hg)	mg/kg	< 1	NONE	159	8.3	332	16.3	4.7
Nickel (Ni)	mg/kg	< 3	MCERTS	28	18	21	18	24
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	< 3	< 3
Vanadium (V)	mg/kg	< 2	NONE	59	36	43	44	50
Zinc (Zn)	mg/kg	< 3	MCERTS	404	88	123	232	82
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2

Analytical results are expressed on a dry weight basis where samples are dried at less than 30°C

Analysis carried out on the dried sample is corrected for the stone content

The samples have been examined to identify the presence of asbestiform minerals by polarising light microscopy and dispersion staining technique to In-House Procedures QTSE600 Determination of Asbestos in Bulk Materials; Asbestos in Solls/Sediments (fibre screening and identification)

This report refers to samples as received, and QTS Environmental Ltd, takes no responsibility for the accuracy or competence of sampling by others.

The material description shall be regarded as tentative and is not included in our scope of UKAS Accreditation.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Asbestos Analyst: Piotr Lipski RL: Reporting Limit

Pinch Test: Where pinch test is positive it is reported "Loose Fibres - PT" with type(s).

Subcontracted analysis (5)

Soil Analysis Certificate									
QTS Environmental Report No: 14-27138	Date Sampled	26/11/14							
Soils Ltd	Time Sampled	None Supplied		i i					
Site Reference: 77-79 Charlotte Street	TP / BH No	TP2							
Project / Job Ref: 14653	Additional Refs	None Supplied							
Order No: None Supplied	Depth (m)	0.80							
Reporting Date: 15/12/2014	OTSE Sample No	128520				1			

Determinand	Unit	RL	Accreditation			
Asbestos Screen	N/a	N/a	ISO17025	Not Detected		
рН	pH Units	N/a	MCERTS	8.0		
Total Cyanide	mg/kg	< 2	NONE	< 2		
W/S Sulphate as SO4 (2:1)	g/l	< 0.01	MCERTS	0.07		
Sulphide	mg/kg	< 5	NONE	< 5		
Organic Matter	%	< 0.1	MCERTS	2.8		
Total Organic Carbon (TOC)	%	< 0.1	MCERTS	1.6		
Arsenic (As)	mg/kg	< 2	MCERTS	11		
Beryllium (Be)	mg/kg	< 0.5	NONE	< 0.5		
W/S Boron	mg/kg	< 1	NONE	< 1		
Cadmium (Cd)	mg/kg	< 0.5	MCERTS	< 0.5		
Chromium (Cr)	mg/kg	< 2	MCERTS	13		
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2		
Copper (Cu)	mg/kg	< 4	MCERTS	61		
Lead (Pb)	mg/kg	< 3	MCERTS	248		
Mercury (Hg)	mg/kg	< 1	NONE	4.3		
Nickel (Ni)	mg/kg	< 3	MCERTS	14		
Selenium (Se)	mg/kg	< 3	NONE	< 3		
Vanadium (V)	mg/kg	< 2	NONE	33	[
Zinc (Zn)	mg/kg	< 3	MCERTS	76		
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2		

Analytical results are expressed on a dry weight basis where samples are dried at less than 30°C

Analysis carried out on the dried sample is corrected for the stone content

The samples have been examined to identify the presence of asbestiform minerals by polarising light microscopy and dispersion staining technique to In-House Procedures QTSE600 Determination of Asbestos in Bulk Materials; Asbestos in Solls/Sediments (fibre screening and identification)

This report refers to samples as received, and QTS Environmental Ltd, takes no responsibility for the accuracy or competence of sampling by others.

The material description shall be regarded as tentative and is not included in our scope of UKAS Accreditation.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Asbestos Analyst: Piotr Lipski

RL: Reporting Limit

Pinch Test: Where pinch test is positive it is reported "Loose Fibres - PT" with type(s).

Subcontracted analysis (5)

Tel: 01622 850410

Soil Analysis Certificate - Speciated PAHs	7117					j
QTS Environmental Report No: 14-27138	Date Sampled	26/11/14	26/11/14	26/11/14	26/11/14	26/11/14
Soils Ltd	Time Sampled	None Supplied				
Site Reference: 77-79 Charlotte Street	TP / BH No	Sample A	Sample B	WS1	TP1	WS2
Project / Job Ref: 14653	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	0.30 - 2.00	2.00 - 6.10	5.20	0.30	2.50
Reporting Date: 15/12/2014	QTSE Sample No	128515	128516	128517	128518	128519

Determinand	Unit	RL	Accreditation					4
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	0.20	< 0.1	< 0.1	0.11	< 0.1
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	mg/kg	< 0.1	MCERTS	0.28	< 0.1	< 0.1	0.17	< 0.1
Pyrene	mg/kg	< 0.1	MCERTS	0.23	< 0.1	< 0.1	0.14	< 0.1
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.13	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	mg/kg	< 0.1	MCERTS	0.13	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	0.13	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6

Analytical results are expressed on a dry weight basis where samples are dried at less than 30°C

Tel: 01622 850410

QTS Environmental Report No: 14-27138	Date Sampled	26/11/14	la n	,
Soils Ltd	Time Sampled	None Supplied		
Site Reference: 77-79 Charlotte Street	TP / BH No	TP2		
Project / Job Ref: 14653	Additional Refs	None Supplied	la n	
Order No: None Supplied	Depth (m)	0.80		
Reporting Date: 15/12/2014	QTSE Sample No	128520	T.	

Determinand	Unit	RL	Accreditation			
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1		
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1		
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1		j
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1		
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1		
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1		
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1		
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1		
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1		
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1		
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1		
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1		
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1		
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1		
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1		
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0,1		
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6		

Analytical results are expressed on a dry weight basis where samples are dried at less than 30°C

Tel: 01622 850410

QTS Environmental Report No	o: 14-27138	Date Sampled	26/11/14			Landfill Was	te Acceptance (Criteria Limit
Soils Ltd		Time Sampled	None Supplied					
Site Reference: 77-79 Charlo	tte Street	TP / BH No	Sample A				Stable Non-	
Project / Job Ref: 14653 Order No: None Supplied Reporting Date: 15/12/2014		Additional Refs	None Supplied			Inert Waste Landfill	reactive HAZARDOUS	Hazardous Waste
		Depth (m)	0.30 - 2.00			Landilli	waste in non- hazardous Landfill	Landfill
		QTSE Sample No	128515				Landini	
Determinand	Unit	MDL						
OCMU	%	< 0.1	1.7			3%	5%	6%
oss on Ignition	%	< 0.01	6.40			- 100	00 3	10%
BTEX ^{MU}	mg/kg	< 0.05	< 0.05			6		==
Sum of PCBs	mg/kg	< 0.7	< 0.7			1	570	
Mineral Oil ^{MU}	mg/kg	< 10	< 10			500	75%	199
Total PAH ^{MU}	mg/kg	< 1.7	< 1.7			100	, agr	1983
OH ^{MU}	pH Units	N/a	7.9			- 4	>6	**
	mol/lin () ()		2000				To be	To be
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	1.2			5 777	evaluated	evaluated
N 14 -			2:1	8:1	Cumulative		for compliance	
luate Analysis	uate Analysis		2.1	0.1	10:1	using BS E	N 12457-3 at L	/S 10 l/kg
		10	mg/l	mg/l	mg/kg		(mg/kg)	
Arsenic		Ü	< 0.01	< 0.01	< 0.2	0.5	2	25
Barium			0.12	0.05	0.6	20	100	300
Cadmium			< 0.0005	< 0.0005	< 0.02	0.04	1	5
Chromium	7		0.008	< 0.005	< 0.20	0.5	10	70
Copper	7		< 0.01	< 0.01	< 0.5	2	50	100
Mercury	7		< 0.005	< 0.005	< 0.01	0.01	0.2	2
Molybdenum	1		0.025	0.010	0.1	0.5	10	30
Nickel	1		< 0.007	< 0.007	< 0.2	0.4	10	40
_ead	1		< 0.005	< 0.005	< 0.2	0.5	10	50
Antimony	1		0.011	0.006	0.07	0.06	0.7	5
Selenium	1		< 0.005	< 0.005	< 0.1	0.1	0.5	7
Zinc	1		< 0.005	< 0.005	< 0.2	4	50	200
Chloride ^u	1		13	2	31	800	15000	25000
Fluoride	-		< 0.5	< 0.5	< 1	10	150	500
Sulphate ^U	-1		1391	177	3331	1000	20000	50000
TDS	1		1090	240	3491	4000	60000	100000
Phenol Index	-		< 0.01	< 0.01	< 0.5	1	00000	100000
DOC Priends Index	-		15.4	14.2	143	500	800	1000
NO CONTRACTOR OF THE PARTY OF T		-	15.4	14.2	143	500	800	1000
Leach Test Information	-r			· r		ł		
		-				1		
		l						
Sample Mass (kg)		313 314	0.21					
Dry Matter (%)			84.3		ľ	1		
Moisture (%)		25	18.6			I		
Stage 1		(4	2310			ı		
Volume Eluate L2 (litres)			0.32			ı		
		-				ı		
Filtered Fluate VF1 (litros)								
Filtered Eluate VE1 (litres)		:	0.23	-		ł		

esults are expressed on a dry weight basis, after correction for moisture content where applicable

Stated limits are for guidance only and QTS Environmental cannot be held responsible for any discrepencies with current legislation M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

Tel: 01622 850410

TS Environmental Report No: 14-27138 Date Sample			26/11/14			Landfill Wast	and the first state of the second of the state of the			
Site Reference: 77-79 Charlotte Street Project / Job Ref: 14653 Order No: None Supplied Reporting Date: 15/12/2014		Time Sampled	None Supplied							
				4 1	Sample B				Stable Non-	
		Additional Refs None Supplied			Inert Waste Landfill	reactive HAZARDOUS waste in non-	Hazardous Waste			
		Depth (m)	2.00 - 6.10			Landilli	hazardous Landfill	Landfill		
		QTSE Sample No	128516							
eterminand	Unit	MDL								
OC _{MU}	%	< 0.1	1.1			3%	5%	6%		
oss on Ignition	%	< 0.01	3.90			i ee		10%		
TEX ^{MU}	mg/kg	< 0.05	< 0.05			6	. 22	**		
um of PCBs	mg/kg	< 0.7	< 0.7			1				
lineral Oil ^{MU}	mg/kg	< 10	< 10			500	720			
otal PAH ^{MU}	mg/kg	< 1.7	< 1.7			100	227	200		
H _{WD}	pH Units	N/a	7.7				>6	**		
cid Neutralisation Capacity	mol/kg (+/-)	< 1	1.3				To be	To be		
				T T	Cumulative	Limiterature	evaluated	evaluated		
luate Analysis			2:1	8:1	10:1		for compliance N 12457-3 at I			
iuate Analysis			mg/l	mg/l	mg/kg	using 65 E		./5 10 I/Kg		
recole						0.5	(mg/kg)	25		
rsenic	-		< 0.01	< 0.01	< 0.2	0.5	2			
arium	-		0.15	0.05	0.5	20	100	300		
admium			< 0.0005	< 0.0005	< 0.02	0.04	1	5		
hromium	-		< 0.005	< 0.005	< 0.20	0.5	10 50	70		
opper			< 0.01	< 0.01	< 0.5	2		100		
lercury			< 0.005	< 0.005 0.013	< 0.01	0.01	0.2 10	20		
lolybdenum	-		0.041		0.2		10	30 40		
ickel	_		< 0.007	< 0.007 < 0.005	< 0.2 < 0.2	0.4	10	50		
ead			< 0.005		0.07	0.06	0.7	5		
ntimony	-		0.011	0.007		0.06	0.7	7		
elenium	-		< 0.005	< 0.005	< 0.1					
inc Lineau	-1		< 0.005	< 0.005	< 0.2	900	50	200		
hloride ^U	-		6	2	21	800	15000	25000		
luoride ⁰	-		< 0.5	< 0.5	< 1	10	150	500		
ulphate ^u	4		578	106	1449	1000	20000	50000		
DS	4		589	188	2212	4000	60000	100000		
henol Index	-		< 0.01	< 0.01	< 0.5	1		(9)		
OC			28.4	24	243	500	800	1000		
each Test Information	1	-	1	r r	T T					
		1								
ample Mass (kg)		31 (4)	0.20							
ry Matter (%)			85.7			ı				
		20								
loisture (%)		(4)	16.6	-						
tage 1			0.22			ı				
olume Eluate L2 (litres)			0.32							
iltered Eluate VE1 (litres)			0.15			Į.				

esults are expressed on a dry weight basis, after correction for moisture content where applicable

Stated limits are for guidance only and QTS Environmental cannot be held responsible for any discrepencies with current legislation M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

Soil Analysis Certificate - Sample Descriptions	W.
QTS Environmental Report No: 14-27138	
Soils Ltd	
Site Reference: 77-79 Charlotte Street]
Project / Job Ref: 14653	
Order No: None Supplied	
Reporting Date: 15/12/2014	

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
\$ 128515	Sample A	None Supplied	0.30 - 2.00	15.7	Brown gravelly clay with rubble
\$ 128516	Sample B	None Supplied	2.00 - 6.10	14.3	Brown gravelly clay with rubble
\$ 128517	WS1	None Supplied	5.20	16.6	Brown clayey gravel with rubble
\$ 128518	TP1	None Supplied	0.30	14.5	Brown clayey gravel with brick and rubble
\$ 128519	WS2	None Supplied	2.50	18.1	Brown clayey gravel with rubble
\$ 128520	TP2	None Supplied	0.80	17.5	Brown clayey gravel with stones and rubble

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm I/S}$ Unsuitable Sample $^{\rm I/S}$

\$ samples exceeded recommended holding times

Soil Analysis Certificate - Methodology & Miscellaneous Information

QTS Environmental Report No: 14-27138

Soils Ltd

Site Reference: 77-79 Charlotte Street

Project / Job Ref: 14653 Order No: None Supplied Reporting Date: 15/12/2014

Matrix	Analysed On	Determinand	Brief Method Description	Method No				
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES					
Soil	AR	BTEX	Determination of BTEX by headspace GC-MS	E001				
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002				
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E009				
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016				
Soil	AR	Cyanide - Complex		E015				
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015				
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015				
Soil	D	Cyclohexane Extractable Matter (CEM)		E011				
Soil	AR	Diesel Range Organics (C10 - C24)		E004				
Soil	AR	Electrical Conductivity	Determination of recalled activities extractable hydrocarbons by GC-11D Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022				
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023				
Soil	D		Determination of elemental sulphur by solvent extraction followed by GC-MS	E020				
Soil	AR	EPH (C10 - C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004				
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004				
Soil	AR	EPH TEXAS	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004				
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009				
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010				
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019				
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025				
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002				
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004				
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003				
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009				
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010				
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005				
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008				
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011				
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007				
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021				
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009				
Soil	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013				
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009				
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)		E014				
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018				
Soil	D	Sulphur - Total		E024				
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006				
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017				
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011				
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010				
Soil	AR	TPH CWG	G Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge					
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge					
Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001				
Soil	AR	VPH (C6 - C10)	Determination of hydrocarbons C6-C10 by headspace GC-MS	E001				

D Dried AR As Received

Richard Biney Soils Ltd Newton House Cross Road Tadworth Surrey KT20 5SR

QTS Environmental Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

russell.jarvis@qtsenvironmental.com

QTS Environmental Report No: 14-27325

Site Reference: Charlotte Street, London

Project / Job Ref: 14653

Order No: None Supplied

Sample Receipt Date: 12/12/2014

Sample Scheduled Date: 12/12/2014

Report Issue Number: 1

Reporting Date: 18/12/2014

Authorised by:

Russell Jarvis Director

On behalf of QTS Environmental Ltd

Authorised by:

Kevin Old Director

On behalf of QTS Environmental Ltd

Water Analysis Certificate Date Sampled QTS Environmental Report No: 14-27325 09/12/14 Soils Ltd Time Sampled None Supplied Site Reference: Charlotte Street, London TP / BH No WS2 Project / Job Ref: 14653 **Additional Refs** None Supplied Order No: None Supplied Reporting Date: 18/12/2014 Depth (m) 1.90 QTSE Sample No 129232

Determinand	Unit	RL	Accreditation		40	
рН	pH Units	N/a	ISO17025	7.1	j.	
Total Cyanide	ug/l	< 5	NONE	< 5		J.
Sulphate as SO ₄	mg/l	< 1	ISO17025	971		
Sulphide	mg/l	< 0.1	NONE	< 0.1	1	
Total Organic Carbon (TOC)	mg/l	< 0.1	NONE	54.1		
Arsenic (dissolved)	ug/l	< 5	ISO17025	< 5		
Beryllium (dissolved)	ug/l	< 3	ISO17025	< 3		
Boron (dissolved)	ug/l	< 5	ISO17025	348		
Cadmium (dissolved)	ug/l	< 0.4	ISO17025	< 0.4	4	
Chromium (dissolved)	ug/l	< 5	ISO17025	< 5		i i
Chromium (hexavalent)	ug/l	< 5	NONE	< 5		
Copper (dissolved)	ug/l	< 5	ISO17025	12	j.	
Lead (dissolved)	ug/l	< 5	ISO17025	15		
Mercury (dissolved)	ug/l	< 0.05	ISO17025	< 0.05		
Nickel (dissolved)	ug/l	< 5	ISO17025	< 5		
Selenium (dissolved)	ug/l	< 5	ISO17025	< 5		1
Vanadium (dissolved)	ug/l	< 5	ISO17025	6		
Zinc (dissolved)	ug/l	< 2	ISO17025	14		
Total Phenols	ug/l	< 0.5	NONE	< 0.5		

Subcontracted analysis ⁽⁵⁾ Insufficient sample ^{1/5} Unsuitable Sample ^{1/5}

Soil Analysis Certificate - Methodology & Miscellaneous Information

QTS Environmental Report No: 14-27325

Soils Ltd

Site Reference: Charlotte Street, London

Project / Job Ref: 14653 Order No: None Supplied Reporting Date: 18/12/2014

Matrix	Analysed On	Determinand	Brief Method Description	Method No				
Water	UF	Alkalinity	Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end point	E103				
Water	UF	BTEX	Determination of BTEX by headspace GC-MS					
Water	F	Cations	Determination of cations by filtration followed by ICP-MS	E102				
Water	UF	Chemical Oxygen Demand (COD)	Determination using a COD reactor followed by colorimetry	E112				
Water	F	Chloride	Determination of chloride by filtration & analysed by ion chromatography	E109				
Water	F	Chromium - Hexavalent	Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by co	E116				
Water	UF	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E115				
Water	UF		Determination of free cyanide by distillation followed by colorimetry	E115				
Water	UF		Determination of total cyanide by distillation followed by colorimetry	E115				
Water	UF		Gravimetrically determined through liquid:liquid extraction with cyclohexane	E111				
Water	F		Determination of liquid: liquid extraction with hexane followed by GI-FID	E104				
Water	F		Determination of DOC by filtration followed by low heat with persulphate addition followed by IR detect	E110				
Water	UF		Determination of electrical conductivity by electrometric measurement	E123				
Water	F		Determination of liquid:liquid extraction with hexane followed by GI-FID	E104				
Water	F		Determination of liquid: liquid extraction with hexane followed by GI-FID	E104				
Water	F		Determination of Fluoride by filtration & analysed by ion chromatography	E109				
Water	F		Determination of Ca and Mg by ICP-MS followed by calculation	E102				
Leachate	F		Based on National Rivers Authority leaching test 1994	E301				
Leachate	F		Based on BS EN 12457 Pt1, 2, 3	E302				
Water	F		Determination of metals by filtration followed by ICP-MS	E102				
Water	F	Mineral Oil (C10 - C40)	Determination of liquid: liquid extraction with hexane followed by GI-FID	E104				
Water	F		Determination of nitrate by filtration & analysed by ion chromatography	E109				
Water	UF		Determination of phenols by distillation followed by colorimetry	E121				
Water	F	PAH - Speciated (EPA 16)	Determination of PAH compounds by concentration through SPE cartridge, collection in	E105				
Water	F	PCB - 7 Congeners	Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethane	E108				
Water	UF		Gravimetrically determined through liquid:liquid extraction with petroleum ether	E111				
Water	UF		Determination of pH by electrometric measurement	E107				
Water	F		Determination of phosphate by filtration & analysed by ion chromatography	E109				
Water	UF		Determination of redox potential by electrometric measurement	E113				
Water	F		Determination of sulphate by filtration & analysed by ion chromatography	E109				
Water	UF	Sulphide	Determination of sulphide by distillation followed by colorimetry	E118				
Water	F		Determination of semi-volatile organic compounds by concentration through SPE cartridge collection in	E106				
Water	UF	Toluene Extractable Matter (TEM)	Gravimetrically determined through liquid:liquid extraction with toluene	E111				
Water	UF		Low heat with persulphate addition followed by IR detection	E110				
Water	F		Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID	E104				
Water	F		Determination of liquid: liquid extraction with hexane, fractionating with SPE followed by GC-FID	E104				
Water	UF		Determination of volatile organic compounds by headspace GC-MS	E101				
Water	UF		Determination of hydrocarbons C6-C10 by headspace GC-MS	E101				

Key

F Filtered UF Unfiltered

Richard Biney Soils Ltd Newton House Cross Road Tadworth Surrey KT20 5SR

QTS Environmental Ltd

Unit 1

Rose Lane Industrial Estate

Rose Lane

Lenham Heath

Kent

ME17 2JN

t: 01622 850410

russell.jarvis@qtsenvironmental.com

QTS Environmental Report No: 14-27388

Site Reference: Charlotte Street, London

Project / Job Ref: 14653

Order No: None Supplied

Sample Receipt Date: 16/12/2014

Sample Scheduled Date: 16/12/2014

Report Issue Number: 1

Reporting Date: 22/12/2014

Authorised by:

Russell Jarvis Director

On behalf of QTS Environmental Ltd

Authorised by:

Kevin Old Director

On behalf of QTS Environmental Ltd

QTS Environmental Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath

Maidstone Kent ME17 2JN Tel: 01622 850410

Water Analysis Certificate - Speciated PAH								
QTS Environmental Report No: 14-2	Date Sampled	15/12/14			#			
Soils Ltd	Time Sampled	None Supplied	9					
Site Reference: Charlotte Street, London	TP / BH No	WS2	416					
Project / Job Ref: 14653	Additional Refs	None Supplied						
Order No: None Supplied	Depth (m)	1.80	a 10					
Reporting Date: 22/12/2014	QTSE Sample No	129629						

Determinand	Unit	RL	Accreditation			
Naphthalene	ug/l	< 0.01	NONE	< 0.01		
Acenaphthylene	ug/l	< 0.01	NONE	< 0.01		
Acenaphthene	ug/l	< 0.01	NONE	< 0.01	10 to	
Fluorene	ug/l	< 0.01	NONE	< 0.01		
Phenanthrene	ug/l	< 0.01	NONE	< 0.01	11 E	
Anthracene	ug/l	< 0.01	NONE	< 0.01		
Fluoranthene	ug/l	< 0.01	NONE	< 0.01	11 E	
Pyrene	ug/l	< 0.01	NONE	< 0.01		
Benzo(a)anthracene	ug/l	< 0.01	NONE	< 0.01	10 H	
Chrysene	ug/l	< 0.01	NONE	< 0.01		
Benzo(b)fluoranthene	ug/l	< 0.01	NONE	< 0.01	112	
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	< 0.01		
Benzo(a)pyrene	ug/l	< 0.01	NONE	< 0.01	10 to	
Indeno(1,2,3-cd)pyrene	ug/l	< 0.01	NONE	< 0.01		
Dibenz(a,h)anthracene	ug/l	< 0.01	NONE	< 0.01	112	
Benzo(ghi)perylene	ug/l	< 0.01	NONE	< 0.01		
Total EPA-16 PAHs	ug/l	< 0.01	NONE	< 0.01		

Tel: 01622 850410

Soil Analysis Certificate - Methodology & Miscellaneous Information QTS Environmental Report No: 14-27388

Soils Ltd

Site Reference: Charlotte Street, London

Project / Job Ref: 14653 Order No: None Supplied Reporting Date: 22/12/2014

Matrix	Analysed On	Determinand	Brief Method Description	Method No				
Water	UF	Alkalinity	Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end point					
Water	UF	BTEX	Determination of BTEX by headspace GC-MS	E101				
Water	F	Cations	Determination of cations by filtration followed by ICP-MS	E102				
Water	UF	Chemical Oxygen Demand (COD)	Determination using a COD reactor followed by colorimetry	E112				
Water	F	Chloride	Determination of chloride by filtration & analysed by ion chromatography	E109				
Water	F	Chromium - Hexavalent	Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by co	E116				
Water	UF	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E115				
Water	UF	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E115				
Water	UF	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E115				
Water	UF	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through liquid:liquid extraction with cyclohexane	E111				
Water	F	Diesel Range Organics (C10 - C24)	Determination of liquid:liquid extraction with hexane followed by GI-FID	E104				
Water	F	Dissolved Organic Content (DOC)	Determination of DOC by filtration followed by low heat with persulphate addition followed by IR detect	E110				
Water	ÜF	Electrical Conductivity	Determination of electrical conductivity by electrometric measurement	E123				
Water	F	EPH (C10 - C40)	Determination of liquid:liquid extraction with hexane followed by GI-FID	E104				
Water	F		Determination of liquid:liquid extraction with hexane followed by GI-FID	E104				
Water	F	Fluoride	Determination of Fluoride by filtration & analysed by ion chromatography	E109				
Water	F	Hardness	Determination of Ca and Mg by ICP-MS followed by calculation	E102				
Leachate	F	Leachate Preparation - NRA	Based on National Rivers Authority leaching test 1994	E301				
Leachate	F	Leachate Preparation - WAC	Based on BS EN 12457 Pt1, 2, 3	E302				
Water	F	Metals	Determination of metals by filtration followed by ICP-MS	E102				
Water	F	Mineral Oil (C10 - C40)	Determination of liquid:liquid extraction with hexane followed by GI-FID	E104				
Water	F	Nitrate	Determination of nitrate by filtration & analysed by ion chromatography	E109				
Water	UF	Monohydric Phenol	Determination of phenols by distillation followed by colorimetry	E121				
Water	F	PAH - Speciated (EPA 16)	Determination of PAH compounds by concentration through SPE cartridge, collection in	E105				
Water	F	PCB - 7 Congeners	Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethane	E108				
Water	UF	Petroleum Ether Extract (PEE)	Gravimetrically determined through liquid:liquid extraction with petroleum ether	E111				
Water	UF	pH	Determination of pH by electrometric measurement	E107				
Water	F	Phosphate	Determination of phosphate by filtration & analysed by ion chromatography	E109				
Water	UF	Redox Potential	Determination of redox potential by electrometric measurement	E113				
Water	F	Sulphate (as SO4)	Determination of sulphate by filtration & analysed by ion chromatography	E109				
Water	UF		Determination of sulphide by distillation followed by colorimetry	E118				
Water	F	svoc	Determination of semi-volatile organic compounds by concentration through SPF cartridge collection in	E106				
Water	UF	Toluene Extractable Matter (TEM)	Gravimetrically determined through liquid:liquid extraction with toluene	E111				
Water	UF	Total Organic Carbon (TOC)	Low heat with persulphate addition followed by IR detection	E110				
Water	F		Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID	E104				
Water	F	TPH LQM	Determination of liquid: liquid extraction with hexane, fractionating with SPE followed by GC-FID	E104				
Water	UF	VOCs	Determination of volatile organic compounds by headspace GC-MS	E101				
Water	UF		Determination of hydrocarbons C6-C10 by headspace GC-MS	E101				

Key

F Filtered UF Unfiltered

Luke Wilkinson Soils Ltd Newton House Cross Road Tadworth Surrey KT20 5SR

QTS Environmental Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

russell.jarvis@qtsenvironmental.com

QTS Environmental Report No: 15-27973

Site Reference: Charlotte Street

Project / Job Ref: 14653

Order No: None Supplied

Sample Receipt Date: 19/01/2015

Sample Scheduled Date: 19/01/2015

Report Issue Number: 1

Reporting Date: 21/01/2015

Authorised by:

Russell Jarvis Director

On behalf of QTS Environmental Ltd

Authorised by:

Kevin Old Director

On behalf of QTS Environmental Ltd

Water Analysis Certificate Date Sampled QTS Environmental Report No: 15-27973 16/01/15 Soils Ltd Time Sampled 1030 Site Reference: Charlotte Street TP / BH No BH1 Project / Job Ref: 14653 **Additional Refs** None Supplied Order No: None Supplied Reporting Date: 21/01/2015 Depth (m) 3.94 132215 QTSE Sample No

Determinand	Unit	RL	Accreditation		411	
рН	pH Units	N/a	ISO17025	6.8		
Total Cyanide	ug/l	< 5	NONE	< 5		
Sulphate as SO ₄	mg/l	< 1	ISO17025	60		
Sulphide	mg/l	< 0.1	NONE	< 0.1		
Total Organic Carbon (TOC)	mg/l	< 0.1	NONE	126		
Arsenic (dissolved)	ug/l	< 5	ISO17025	9		
Beryllium (dissolved)	ug/l	< 3	ISO17025	< 3		
Boron (dissolved)	ug/l	< 5	ISO17025	326		
Cadmium (dissolved)	ug/l	< 0.4	ISO17025	< 0.4		
Chromium (dissolved)	ug/l	< 5	ISO17025	< 5		1
Chromium (hexavalent)	ug/l	< 5	NONE	< 5		
Copper (dissolved)	ug/l	< 5	ISO17025	< 5		-
Lead (dissolved)	ug/l	< 5	ISO17025	< 5		
Mercury (dissolved)	ug/l	< 0.05	ISO17025	< 0.05		
Nickel (dissolved)	ug/l	< 5	ISO17025	< 5		
Selenium (dissolved)	ug/l	< 5	ISO17025	< 5		
Vanadium (dissolved)	ug/l	< 5	ISO17025	< 5		
Zinc (dissolved)	ug/l	< 2	ISO17025	3		
Total Phenols (monohydric)	ug/l	< 0.5	NONE	< 0.5	Ī	1

Subcontracted analysis ⁽⁵⁾ Insufficient sample ^{1/5} Unsuitable Sample ^{1/5}

QTS Environmental Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath

Maidstone Kent ME17 2JN Tel: 01622 850410

Water Analysis Certificate - Speciated PAH								
QTS Environmental Report No: 15-2	Date Sampled	16/01/15			1			
Soils Ltd	Time Sampled	1030			3			
Site Reference: Charlotte Street	TP / BH No	BH1						
Project / Job Ref: 14653	Additional Refs	None Supplied	.1					
Order No: None Supplied	Depth (m)	3.94						
Reporting Date: 21/01/2015	QTSE Sample No	132215						

Determinand	Unit	RL	Accreditation	20	2000	Afte.	ni.
Naphthalene	ug/l	< 0.01	NONE	< 0.01			
Acenaphthylene	ug/l	< 0.01	NONE	< 0.01			
Acenaphthene	ug/l	< 0.01	NONE	< 0.01			
Fluorene	ug/l	< 0.01	NONE	< 0.01			j.
Phenanthrene	ug/l	< 0.01	NONE	< 0.01			
Anthracene	ug/l	< 0.01	NONE	< 0.01			
Fluoranthene	ug/l	< 0.01	NONE	< 0.01			
Pyrene	ug/l	< 0.01	NONE	< 0.01			
Benzo(a)anthracene	ug/l	< 0.01	NONE	< 0.01			
Chrysene	ug/l	< 0.01	NONE	< 0.01			
Benzo(b)fluoranthene	ug/l	< 0.01	NONE	< 0.01			
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	< 0.01	348		
Benzo(a)pyrene	ug/l	< 0.01	NONE	< 0.01			
Indeno(1,2,3-cd)pyrene	ug/l	< 0.01	NONE	< 0.01	346		
Dibenz(a,h)anthracene	ug/l	< 0.01	NONE	< 0.01			
Benzo(ghi)perylene	ug/l	< 0.01	NONE	< 0.01			
Total EPA-16 PAHs	ug/l	< 0.01	NONE	< 0.01			

Kent ME17 2JN Tel: 01622 850410

Water Analysis Certificate - TPH CWG Banded									
QTS Environmental Report No: 15-27973	Date Sampled	16/01/15							
Soils Ltd	Time Sampled	1030							
Site Reference: Charlotte Street	TP / BH No	BH1							
Project / Job Ref: 14653	Additional Refs	None Supplied							
Order No: None Supplied	Depth (m)	3.94							
Reporting Date: 21/01/2015	QTSE Sample No	132215							

Determinand	Unit	RL	Accreditation			-	
Aliphatic >C5 - C6	ug/l	< 10	NONE	< 10			
Aliphatic > C6 - C8	ug/l	< 10	NONE	< 10	ĵ	_	
Aliphatic >C8 - C10	ug/l	< 10	NONE	< 10		i i	
Aliphatic >C10 - C12	ug/l	< 10	NONE	< 10			
Aliphatic >C12 - C16	ug/l	< 10	NONE	< 10			
Aliphatic >C16 - C21	ug/l	< 10	NONE	< 10			
Aliphatic >C21 - C34	ug/l	< 10	NONE	< 10		-	
Aliphatic (C5 - C34)	ug/l	< 70	NONE	< 70			
Aromatic >C5 - C7	ug/l	< 10	NONE	< 10			
Aromatic >C7 - C8	ug/l	< 10	NONE	< 10			1
Aromatic > C8 - C10	ug/l	< 10	NONE	< 10		į.	
Aromatic >C10 - C12	ug/l	< 10	NONE	< 10			
Aromatic >C12 - C16	ug/l	< 10	NONE	< 10		· ·	
Aromatic >C16 - C21	ug/l	< 10	NONE	< 10			
Aromatic >C21 - C35	ug/l	< 10	NONE	< 10			
Aromatic (C5 - C35)	ug/l	< 70	NONE	< 70			
Total >C5 - C35	ug/l	< 140	NONE	< 140			

Tel: 01622 850410

Water Analysis Certificate - BTEX / MTBE									
QTS Environmental Report No: 15-27973	Date Sampled	16/01/15							
Soils Ltd	Time Sampled	1030							
Site Reference: Charlotte Street	TP / BH No	BH1		-	j				
Project / Job Ref: 14653	Additional Refs	None Supplied							
Order No: None Supplied	Depth (m)	3.94							
Reporting Date: 21/01/2015	QTSE Sample No	132215		-					

Determinand	Unit	RL	Accreditation			
Benzene	ug/l	< 1	ISO17025	< 1		
Toluene	ug/l	< 5	ISO17025	< 5		
Ethylbenzene	ug/l	< 5	ISO17025	< 5		
p & m-xylene	ug/l	< 10	ISO17025	< 10	į.	
o-xylene	ug/l	< 5	ISO17025	< 5		
MTBE	ug/l	< 10	ISO17025	< 10		

Soil Analysis Certificate - Methodology & Miscellaneous Information

QTS Environmental Report No: 15-27973

Soils Ltd

Site Reference: Charlotte Street Project / Job Ref: 14653 Order No: None Supplied Reporting Date: 21/01/2015

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Water	UF	Alkalinity	Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end point	E103
Water	UF	BTEX	Determination of BTEX by headspace GC-MS	E101
Water	F	Cations	Determination of cations by filtration followed by ICP-MS	E102
Water	UF	Chemical Oxygen Demand (COD)	Determination using a COD reactor followed by colorimetry	E112
Water	F	Chloride	Determination of chloride by filtration & analysed by ion chromatography	E109
Water	F	Chromium - Hexavalent	Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by	E116
Water	UF	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E115
Water	UF	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through liquid:liquid extraction with cyclohexane	E111
Water	F	Diesel Range Organics (C10 - C24)	Determination of liquid:liquid extraction with hexane followed by GI-FID	E104
Water	F	Dissolved Organic Content (DOC)	Determination of DOC by filtration followed by low heat with persulphate addition followed by IR detect	E110
Water	ÜF	Electrical Conductivity	Determination of electrical conductivity by electrometric measurement	E123
Water	F	EPH (C10 - C40)	Determination of liquid:liquid extraction with hexane followed by GI-FID	E104
Water	F	EPH TEXAS	Determination of liquid:liquid extraction with hexane followed by GI-FID	E104
Water	F	Fluoride	Determination of Fluoride by filtration & analysed by ion chromatography	E109
Water	F	Hardness	Determination of Ca and Mg by ICP-MS followed by calculation	E102
Leachate	F	Leachate Preparation - NRA	Based on National Rivers Authority leaching test 1994	E301
Leachate	F	Leachate Preparation - WAC	Based on BS EN 12457 Pt1, 2, 3	E302
Water	F	Metals	Determination of metals by filtration followed by ICP-MS	E102
Water	F	Mineral Oil (C10 - C40)	Determination of liquid:liquid extraction with hexane followed by GI-FID	E104
Water	F	Nitrate	Determination of nitrate by filtration & analysed by ion chromatography	E109
Water	UF	Monohydric Phenol	Determination of phenols by distillation followed by colorimetry	E121
Water	F	PAH - Speciated (EPA 16)	Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E105
Water	F	PCB - 7 Congeners	Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethane	E108
Water	UF	Petroleum Ether Extract (PEE)	Gravimetrically determined through liquid:liquid extraction with petroleum ether	E111
Water	UF	pH	Determination of pH by electrometric measurement	E107
Water	F	Phosphate	Determination of phosphate by filtration & analysed by ion chromatography	E109
Water	UF	Redox Potential	Determination of redox potential by electrometric measurement	E113
Water	F	Sulphate (as SO4)	Determination of sulphate by filtration & analysed by ion chromatography	E109
Water	UF		Determination of sulphide by distillation followed by colorimetry	E118
Water	F	svoc	Determination of semi-volatile organic compounds by concentration through SPF cartridge collection in	E106
Water	UF	Toluene Extractable Matter (TEM)	Gravimetrically determined through liquid:liquid extraction with toluene	E111
Water	UF	Total Organic Carbon (TOC)	Low heat with persulphate addition followed by IR detection	E110
Water	F		Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID	E104
Water	F		Determination of liquid: liquid extraction with hexane, fractionating with SPE followed by GC-FID	E104
Water	UF		Determination of volatile organic compounds by headspace GC-MS	E101
Water	UF		Determination of hydrocarbons C6-C10 by headspace GC-MS	E101

Key

F Filtered UF Unfiltered

Waste Classification Report

Job name

14653 77-79 Charlotte Street, London W1T 4PW

Waste Stream

Default Contaminated Land

Comments

Project

14653

Site

77-79 Charlotte Street, London W1T 4PW

Classified by

 Name:
 Company:

 Wilkinson, Luke
 Soils Ltd

 Date:
 Newton House

 17/12/2014 14:38
 Cross Road

 Telephone:
 KT20 5SR

 01737 814221
 KT20 5SR

Report

Created by: Wilkinson, Luke Created date: 17/12/2014 14:38

Job summary

#	Sample Name	Depth [m]	Classification Result	Hazardous properties	Page
1	Sample A/0.30 - 2.00		Hazardous	H7, H14	2
2	Sample B/2.00 - 6.10		Non Hazardous		
3	WS1/5.2		Non Hazardous		7
4	TP1/0.3		Non Hazardous		9
5	WS2/2.5		Non Hazardous		11
6	TP2/0.8		Non Hazardous		13

Appendices	Page	
Appendix A: User Defined and non CLP Substances	15	
Appendix B: Notes	16	
Appendix C: Version	17	

Classification of sample: Sample A/0.30 - 2.00

A Hazardous Waste

Classified as 17 05 03 *

in the European Waste Catalogue 2002

Sample details

Sample Name:

Sample A/0.30 - 2.00

Sample Depth:

0 m Dry Weight Moisture Content:

0%

EWC 2002 code:

17: Construction and Demolition Wastes (including Chapter:

excavated soil from contaminated sites)

Entry: 17 05 03 * (Soil and stones containing dangerous

substances)

Hazard properties

H7: Carcinogenic "substances and preparations which, if they are inhaled or ingested or if they penetrate the skin, may induce cancer or increase its incidence."

Risk phrases hit:

R45 "May cause cancer"

Because of determinands:

Lead chromate: (Note 1 conc.: 0.204%) Zinc chromate: (compound conc.: 0.112%)

H14: Ecotoxic "waste which presents or may present immediate or delayed risks for one or more sectors of the environment."

Risk phrases hit:

R50/53 "Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment"

Because of determinands:

Copper (I) oxide: (compound conc.: 0.119%) Lead chromate: (Note 1 conc.: 0.204%) Zinc chromate: (compound conc.: 0.112%)

Additional: Additional Risk Phrases "This is an additional risk phrase and such a risk phrases alone will not cause a waste to be hazardous."

Risk phrases hit:

R33 "Danger of cumulative effects"

Because of determinand:

Lead chromate: (compound conc.: 0.318%)

Determinands (Dry Weight Moisture Content: 0%)

Acenaphthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Acenaphthylene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Arsenic trioxide: (Cation conc. entered: 35 mg/kg, converted to compound conc.:46.211 mg/kg or 0.00462%)

Benzo[a]anthracene: (Whole conc. entered as: 0.13 mg/kg or 0.000013%)

Benzo[a]pyrene; benzo[def]chrysene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[b]fluoranthene: (Whole conc. entered as: 0.13 mg/kg or 0.000013%)

Benzo[ghi]perylene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[k]fluoranthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Page 2 of 17 7XLSF-5486T-7UL46 www.hazwasteonline.com

beryllium oxide: (Cation conc. entered: <0.5 mg/kg, converted to compound conc.:<1.388 mg/kg or <0.000139%) IGNORED Because: "<LOD"

Boron tribromide/trichloride/trifluoride (combined risk phrases): (Cation conc. entered: <1 mg/kg, converted to compound conc.:<13.43 mg/kg or <0.00134%) IGNORED Because: "<LOD"

Cadmium sulphide: (Cation conc. entered: 0.6 mg/kg, converted to compound conc.: 0.771 mg/kg or 0.0000771%, Note 1 conc.: 0.00006%)

Chromium(VI) oxide: (Cation conc. entered: <2 mg/kg, converted to compound conc.:<3.846 mg/kg or <0.000385%) IGNORED Because: "<LOD"

Chrysene: (Whole conc. entered as: 0.13 mg/kg or 0.000013%)

Copper (I) oxide: (Cation conc. entered: 1060 mg/kg, converted to compound conc.:1193.442 mg/kg or 0.119%) Cyanides (with the exception of complex cyanides): (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED Because: "<LOD"

Dibenz[a,h]anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Fluoranthene: (Whole conc. entered as: 0.28 mg/kg or 0.000028%)

Fluorene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Indeno[123-cd]pyrene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Lead chromate: (Cation conc. entered: 2040 mg/kg, converted to compound conc.:3182.023 mg/kg or 0.318%, Note 1 conc.: 0.204%)

Mercury dichloride: (Cation conc. entered: 159 mg/kg, converted to compound conc.:215.204 mg/kg or 0.0215%)

Naphthalene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Nickel dihydroxide: (Cation conc. entered: 28 mg/kg, converted to compound conc.:44.226 mg/kg or 0.00442%)

pH: (Whole conc. entered as: 7.9 pH, converted to conc.:7.9 pH or 7.9 pH)

Phenanthrene: (Whole conc. entered as: 0.2 mg/kg or 0.00002%)

Phenol: (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED Because: "<LOD"

Pyrene: (Whole conc. entered as: 0.23 mg/kg or 0.000023%)

Selenium compounds (with the exception of cadmium sulphoselenide and sodium selenite): (Cation conc. entered: <3 mg/kg, converted to compound conc.:<4.5 mg/kg or <0.00045%) IGNORED Because: "<LOD"

Zinc chromate: (Cation conc. entered: 404 mg/kg, converted to compound conc.:1120.755 mg/kg or 0.112%)

Notes utilised in assessment

Additional Risk Phrase Comments, used on:

Test: "Additional on R33" for determinand: "Lead chromate"

C14.3: Step 4, used on:

```
Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Arsenic trioxide" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Benzo[a]anthracene" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Benzo[b]fluoranthene" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Chrysene" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Fluoranthene" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Mercury dichloride" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Nickel dihydroxide" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Phenanthrene" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Pyrene" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Cadmium sulphide"
```

C14.3: Step 5, Equation 1, used on:

```
Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Copper (I) oxide" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Lead chromate" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Zinc chromate"
```

Note 1, used on:

```
Test: "H5 on R20, R21, R22, R65" for determinand: "Cadmium sulphide" Test: "H6 on R23, R24, R25" for determinand: "Cadmium sulphide" Test: "H7 on R45" for determinand: "Cadmium sulphide"
```

Test: "H10 on R60, R61" for determinand: "Lead chromate"

Test: "H10 on R62, R63" for determinand: "Cadmium sulphide"

Test: "H11 on R68" for determinand: "Cadmium sulphide"

Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Lead chromate"

Determinand notes

Note 1, used on:

determinand: "Cadmium sulphide" determinand: "Lead chromate"

Note A, used on:

determinand: "Zinc chromate"

Note E, used on:

determinand: "Arsenic trioxide" determinand: "Cadmium sulphide" determinand: "Nickel dihydroxide" determinand: "Zinc chromate"

Page 4 of 17 7XLSF-5486T-7UL46 www.hazwasteonline.com

Classification of sample: Sample B/2.00 - 6.10

.............................

Non Hazardous Waste

Classified as 17 05 04

in the European Waste Catalogue 2002

Sample details

Sample Name:

Sample B/2.00 - 6.10

Sample Depth:

0 m

Dry Weight Moisture Content:

0%

EWC 2002 code:

Chapter: 17: Construction and Demolition Wastes (including

excavated soil from contaminated sites)

Entry: 17 05 04 (Soil and stones other than those mentioned in

17 05 03)

Hazard properties

None identified

Additional: Additional Risk Phrases "This is an additional risk phrase and such a risk phrases alone will not cause a waste to be hazardous."

Risk phrases hit:

R33 "Danger of cumulative effects"

Because of determinand:

Lead chromate: (compound conc.: 0.0658%)

Determinands (Dry Weight Moisture Content: 0%)

Acenaphthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Acenaphthylene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Arsenic trioxide: (Cation conc. entered: 12 mg/kg, converted to compound conc.:15.844 mg/kg or 0.00158%)

Benzo[a]anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[a]pyrene; benzo[def]chrysene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[b]fluoranthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[ghi]perylene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[k]fluoranthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

beryllium oxide: (Cation conc. entered: <0.5 mg/kg, converted to compound conc.:<1.388 mg/kg or <0.000139%)

IGNORED Because: "<LOD"

Boron tribromide/trichloride/trifluoride (combined risk phrases): (Cation conc. entered: <1 mg/kg, converted to compound conc.:<13.43 mg/kg or <0.00134%) IGNORED Because: "<LOD"

Cadmium sulphide: (Cation conc. entered: <0.5 mg/kg, converted to compound conc.:<0.643 mg/kg or <0.0000643%, Note 1 conc.: <0.00005%) IGNORED Because: "<LOD"

Chromium(VI) oxide: (Cation conc. entered: <2 mg/kg, converted to compound conc.:<3.846 mg/kg or <0.000385%) IGNORED Because: "<LOD"

Chrysene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Copper (I) oxide: (Cation conc. entered: 108 mg/kg, converted to compound conc.:121.596 mg/kg or 0.0122%)

Cyanides (with the exception of complex cyanides): (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED

Because: "<LOD"

Dibenz[a,h]anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Fluoranthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Fluorene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Indeno[123-cd]pyrene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Lead chromate: (Cation conc. entered: 422 mg/kg, converted to compound conc.:658.242 mg/kg or 0.0658%, Note 1 conc.: 0.0422%)

Mercury dichloride: (Cation conc. entered: 8.3 mg/kg, converted to compound conc.:11.234 mg/kg or 0.00112%)

Naphthalene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Nickel dihydroxide: (Cation conc. entered: 18 mg/kg, converted to compound conc.:28.431 mg/kg or 0.00284%)

pH: (Whole conc. entered as: 7.7 pH, converted to conc.:7.7 pH or 7.7 pH)

Phenanthrene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Phenol: (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED Because: "<LOD"

Pyrene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Selenium compounds (with the exception of cadmium sulphoselenide and sodium selenite): (Cation conc. entered: <3

mg/kg, converted to compound conc.:<4.5 mg/kg or <0.00045%) IGNORED Because: "<LOD"

Zinc chromate: (Cation conc. entered: 88 mg/kg, converted to compound conc.:244.125 mg/kg or 0.0244%)

Notes utilised in assessment

Additional Risk Phrase Comments, used on:

Test: "Additional on R33" for determinand: "Lead chromate"

C14.3: Step 4, used on:

Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Arsenic trioxide" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Copper (I) oxide" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Lead chromate" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Mercury dichloride" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Nickel dihydroxide" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Zinc chromate"

Determinand notes

Note 1, used on:

determinand: "Lead chromate"

Note A, used on:

determinand: "Zinc chromate"

Note E, used on:

determinand: "Arsenic trioxide" determinand: "Nickel dihydroxide" determinand: "Zinc chromate"

Page 6 of 17 7XLSF-5486T-7UL46 www.hazwasteonline.com

Classification of sample: WS1/5.2

Non Hazardous Waste

Classified as 17 05 04

in the European Waste Catalogue 2002

Sample details

Sample Name:

WS1/5.2

Sample Depth:

U m

Dry Weight Moisture Content:

0%

EWC 2002 code:

Entry:

Chapter: 17: Construction and Demolition Wastes (including

excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in

17 05 03)

Hazard properties

None identified

Additional: Additional Risk Phrases "This is an additional risk phrase and such a risk phrases alone will not cause a waste to be hazardous."

Risk phrases hit:

R33 "Danger of cumulative effects"

Because of determinand:

Lead chromate: (compound conc.: 0.114%)

Determinands (Dry Weight Moisture Content: 0%)

Acenaphthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Acenaphthylene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Arsenic trioxide: (Cation conc. entered: 15 mg/kg, converted to compound conc.:19.805 mg/kg or 0.00198%)

Benzo[a]anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[a]pyrene; benzo[def]chrysene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[b]fluoranthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[ghi]perylene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[k]fluoranthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

beryllium oxide: (Cation conc. entered: <0.5 mg/kg, converted to compound conc.:<1.388 mg/kg or <0.000139%)

IGNORED Because: "<LOD"

Boron tribromide/trichloride/trifluoride (combined risk phrases): (Cation conc. entered: <1 mg/kg, converted to compound conc.:<13.43 mg/kg or <0.00134%) IGNORED Because: "<LOD"

Cadmium sulphide: (Cation conc. entered: <0.5 mg/kg, converted to compound conc.:<0.643 mg/kg or <0.0000643%, Note 1 conc.: <0.00005%) IGNORED Because: "<LOD"

Chromium(VI) oxide: (Cation conc. entered: <2 mg/kg, converted to compound conc.:<3.846 mg/kg or <0.000385%) IGNORED Because: "<LOD"

Chrysene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Copper (I) oxide: (Cation conc. entered: 511 mg/kg, converted to compound conc.:575.329 mg/kg or 0.0575%)

Cyanides (with the exception of complex cyanides): (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED

Because: "<LOD"

Dibenz[a,h]anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Fluoranthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Fluorene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Indeno[123-cd]pyrene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Lead chromate: (Cation conc. entered: 733 mg/kg, converted to compound conc.:1143.345 mg/kg or 0.114%, Note 1 conc.: 0.0733%)

Mercury dichloride: (Cation conc. entered: 332 mg/kg, converted to compound conc.:449.358 mg/kg or 0.0449%)

Naphthalene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Nickel dihydroxide: (Cation conc. entered: 21 mg/kg, converted to compound conc.:33.169 mg/kg or 0.00332%)

pH: (Whole conc. entered as: 7.8 pH, converted to conc.:7.8 pH or 7.8 pH)

Phenanthrene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Phenol: (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED Because: "<LOD"

Pyrene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Selenium compounds (with the exception of cadmium sulphoselenide and sodium selenite): (Cation conc. entered: <3

mg/kg, converted to compound conc.:<4.5 mg/kg or <0.00045%) IGNORED Because: "<LOD"

Zinc chromate: (Cation conc. entered: 123 mg/kg, converted to compound conc.:341.22 mg/kg or 0.0341%)

Notes utilised in assessment

Additional Risk Phrase Comments, used on:

Test: "Additional on R33" for determinand: "Lead chromate"

C14.3: Step 4, used on:

Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Arsenic trioxide" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Copper (I) oxide" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Lead chromate" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Mercury dichloride" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Nickel dihydroxide" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Zinc chromate"

Note 1, used on:

Test: "H7 on R45" for determinand: "Lead chromate"

Test: "H10 on R60, R61" for determinand: "Lead chromate"

Test: "H10 on R62, R63" for determinand: "Lead chromate"

Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Lead chromate"

Determinand notes

Note 1, used on:

determinand: "Lead chromate"

Note A, used on:

determinand: "Zinc chromate"

Note E, used on:

determinand: "Arsenic trioxide" determinand: "Nickel dihydroxide" determinand: "Zinc chromate"

Page 8 of 17 7XLSF-5486T-7UL46 www.hazwasteonline.com

Classification of sample: TP1/0.3

Non Hazardous Waste

Classified as 17 05 04

in the European Waste Catalogue 2002

Sample details

Sample Name:

Chapter:

TP1/0.3

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

Sample Depth:

EWC 2002 code:

Entry: 17 05 04 (Soil and stones other than those mentioned in

17 05 03)

Dry Weight Moisture Content:

0%

Hazard properties

None identified

Additional: Additional Risk Phrases "This is an additional risk phrase and such a risk phrases alone will not cause a waste to be hazardous."

Risk phrases hit:

R33 "Danger of cumulative effects"

Because of determinand:

Lead chromate: (compound conc.: 0.143%)

Determinands (Dry Weight Moisture Content: 0%)

Acenaphthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Acenaphthylene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Arsenic trioxide: (Cation conc. entered: 27 mg/kg, converted to compound conc.:35.649 mg/kg or 0.00356%)

Benzo[a]anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[a]pyrene; benzo[def]chrysene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[b]fluoranthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[ghi]perylene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[k]fluoranthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

beryllium oxide: (Cation conc. entered: <0.5 mg/kg, converted to compound conc.:<1.388 mg/kg or <0.000139%)

IGNORED Because: "<LOD"

Boron tribromide/trichloride/trifluoride (combined risk phrases): (Cation conc. entered: <1 mg/kg, converted to compound conc.:<13.43 mg/kg or <0.00134%) IGNORED Because: "<LOD"

Cadmium sulphide: (Cation conc. entered: 0.6 mg/kg, converted to compound conc.: 0.771 mg/kg or 0.0000771%, Note 1 conc.: 0.00006%)

Chromium(VI) oxide: (Cation conc. entered: <2 mg/kg, converted to compound conc.:<3.846 mg/kg or <0.000385%) IGNORED Because: "<LOD"

Chrysene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Copper (I) oxide: (Cation conc. entered: 166 mg/kg, converted to compound conc.:186.897 mg/kg or 0.0187%)

Cyanides (with the exception of complex cyanides): (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED

Because: "<LOD"

Dibenz[a,h]anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Fluoranthene: (Whole conc. entered as: 0.17 mg/kg or 0.000017%)

Fluorene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Indeno[123-cd]pyrene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Lead chromate: (Cation conc. entered: 917 mg/kg, converted to compound conc.:1430.35 mg/kg or 0.143%, Note 1 conc.: 0.0917%)

Mercury dichloride: (Cation conc. entered: 16.3 mg/kg, converted to compound conc.:22.062 mg/kg or 0.00221%)

Naphthalene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Nickel dihydroxide: (Cation conc. entered: 18 mg/kg, converted to compound conc.:28.431 mg/kg or 0.00284%)

pH: (Whole conc. entered as: 8.4 pH, converted to conc.:8.4 pH or 8.4 pH)

Phenanthrene: (Whole conc. entered as: 0.11 mg/kg or 0.000011%)

Phenol: (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED Because: "<LOD"

Pyrene: (Whole conc. entered as: 0.14 mg/kg or 0.000014%)

Selenium compounds (with the exception of cadmium sulphoselenide and sodium selenite): (Cation conc. entered: <3

mg/kg, converted to compound conc.:<4.5 mg/kg or <0.00045%) IGNORED Because: "<LOD"

Zinc chromate: (Cation conc. entered: 232 mg/kg, converted to compound conc.:643.602 mg/kg or 0.0644%)

Notes utilised in assessment

Additional Risk Phrase Comments, used on:

Test: "Additional on R33" for determinand: "Lead chromate"

C14.3: Step 4, used on:

```
Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Arsenic trioxide" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Copper (I) oxide" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Fluoranthene" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Lead chromate" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Mercury dichloride" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Nickel dihydroxide" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Phenanthrene" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Pyrene" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Zinc chromate" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Zinc chromate" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Cadmium sulphide"
```

Note 1, used on:

Test: "H5 on R20, R21, R22, R65" for determinand: "Cadmium sulphide" Test: "H6 on R23, R24, R25" for determinand: "Cadmium sulphide"

Test: "H11 on R68" for determinand: "Cadmium sulphide"

Determinand notes

Note 1, used on:

determinand: "Cadmium sulphide" determinand: "Lead chromate"

Note A, used on:

determinand: "Zinc chromate"

Note E, used on:

determinand: "Arsenic trioxide" determinand: "Cadmium sulphide" determinand: "Nickel dihydroxide" determinand: "Zinc chromate"

Page 10 of 17 7XLSF-5486T-7UL46 www.hazwasteonline.com

Classification of sample: WS2/2.5

Non Hazardous Waste

Classified as 17 05 04

in the European Waste Catalogue 2002

Sample details

Sample Name:

WS2/2.5

Sample Depth:

0 m

Dry Weight Moisture Content:

0%

EWC 2002 code:

Entry:

Chapter: 17: Construction and Demolition Wastes (including

excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in

17 05 03)

Hazard properties

None identified

Additional: Additional Risk Phrases "This is an additional risk phrase and such a risk phrases alone will not cause a waste to be hazardous."

Risk phrases hit:

R14 "Reacts violently with water"

Because of determinand:

Boron tribromide/trichloride/trifluoride (combined risk phrases): (compound conc.: 0.00215%)

R33 "Danger of cumulative effects"

Because of determinand:

Lead chromate: (compound conc.: 0.0604%)

Determinands (Dry Weight Moisture Content: 0%)

Acenaphthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Acenaphthylene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Arsenic trioxide: (Cation conc. entered: 12 mg/kg, converted to compound conc.:15.844 mg/kg or 0.00158%)

Benzo[a]anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[a]pyrene; benzo[def]chrysene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[b]fluoranthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[ghi]perylene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[k]fluoranthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

beryllium oxide: (Cation conc. entered: <0.5 mg/kg, converted to compound conc.:<1.388 mg/kg or <0.000139%)

IGNORED Because: "<LOD"

Boron tribromide/trichloride/trifluoride (combined risk phrases): (Cation conc. entered: 1.6 mg/kg, converted to compound conc.:21.488 mg/kg or 0.00215%)

Cadmium sulphide: (Cation conc. entered: <0.5 mg/kg, converted to compound conc.:<0.643 mg/kg or <0.0000643%,

Note 1 conc.: <0.00005%) IGNORED Because: "<LOD"

Chromium(VI) oxide: (Cation conc. entered: <2 mg/kg, converted to compound conc.:<3.846 mg/kg or <0.000385%) IGNORED Because: "<LOD"

Chrysene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Copper (I) oxide: (Cation conc. entered: 87 mg/kg, converted to compound conc.:97.952 mg/kg or 0.0098%)

Cyanides (with the exception of complex cyanides): (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED

Because: "<LOD"

Dibenz[a,h]anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Fluoranthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Fluorene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Indeno[123-cd]pyrene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Lead chromate: (Cation conc. entered: 387 mg/kg, converted to compound conc.:603.648 mg/kg or 0.0604%, Note 1

conc.: 0.0387%)

Mercury dichloride: (Cation conc. entered: 4.7 mg/kg, converted to compound conc.:6.361 mg/kg or 0.000636%)

Naphthalene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Nickel dihydroxide: (Cation conc. entered: 24 mg/kg, converted to compound conc.:37.908 mg/kg or 0.00379%)

pH: (Whole conc. entered as: 7.9 pH, converted to conc.: 7.9 pH or 7.9 pH)

Phenanthrene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Phenol: (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED Because: "<LOD"

Pyrene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Selenium compounds (with the exception of cadmium sulphoselenide and sodium selenite): (Cation conc. entered: <3

mg/kg, converted to compound conc.:<4.5 mg/kg or <0.00045%) IGNORED Because: "<LOD"

Zinc chromate: (Cation conc. entered: 82 mg/kg, converted to compound conc.:227.48 mg/kg or 0.0227%)

Notes utilised in assessment

Additional Risk Phrase Comments, used on:

Test: "Additional on R14" for determinand: "Boron tribromide/trichloride/trifluoride (combined risk phrases)"

Test: "Additional on R33" for determinand: "Lead chromate"

C14.3: Step 4, used on:

Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Arsenic trioxide"

Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Copper (I) oxide"

Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Lead chromate"

Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Mercury dichloride"

Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Nickel dihydroxide"

Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Zinc chromate"

Note 1, used on:

Test: "H7 on R45" for determinand: "Lead chromate"

Test: "H10 on R60, R61" for determinand: "Lead chromate"

Test: "H10 on R62, R63" for determinand: "Lead chromate"

Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Lead chromate"

Determinand notes

Note 1, used on:

determinand: "Lead chromate"

Note A, used on:

determinand: "Zinc chromate"

Note E, used on:

determinand: "Arsenic trioxide" determinand: "Nickel dihydroxide" determinand: "Zinc chromate"

Page 12 of 17 7XLSF-5486T-7UL46 www.hazwasteonline.com

Classification of sample: TP2/0.8

Non Hazardous Waste

Classified as 17 05 04

in the European Waste Catalogue 2002

Sample details

Sample Name:

EWC 2002 code:

TP2/0.8

Chapter: 17: Construction and Demolition Wastes (including

Sample Depth:

excavated soil from contaminated sites)

0 m

Entry:

Dry Weight Moisture Content:

17 05 04 (Soil and stones other than those mentioned in

17 05 03)

0%

Hazard properties

None identified

Additional: Additional Risk Phrases "This is an additional risk phrase and such a risk phrases alone will not cause a waste to be hazardous."

Risk phrases hit:

R33 "Danger of cumulative effects"

Because of determinand:

Lead chromate: (compound conc.: 0.0387%)

Determinands (Dry Weight Moisture Content: 0%)

Acenaphthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Acenaphthylene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Arsenic trioxide: (Cation conc. entered: 11 mg/kg, converted to compound conc.:14.524 mg/kg or 0.00145%)

Benzo[a]anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[a]pyrene; benzo[def]chrysene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[b]fluoranthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[ghi]perylene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Benzo[k]fluoranthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

beryllium oxide: (Cation conc. entered: <0.5 mg/kg, converted to compound conc.:<1.388 mg/kg or <0.000139%)

IGNORED Because: "<LOD"

Boron tribromide/trichloride/trifluoride (combined risk phrases): (Cation conc. entered: <1 mg/kg, converted to compound conc.:<13.43 mg/kg or <0.00134%) IGNORED Because: "<LOD"

Cadmium sulphide: (Cation conc. entered: <0.5 mg/kg, converted to compound conc.:<0.643 mg/kg or <0.0000643%, Note 1 conc.: <0.00005%) IGNORED Because: "<LOD"

Chromium(VI) oxide: (Cation conc. entered: <2 mg/kg, converted to compound conc.:<3.846 mg/kg or <0.000385%) IGNORED Because: "<LOD"

Chrysene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Copper (I) oxide: (Cation conc. entered: 61 mg/kg, converted to compound conc.:68.679 mg/kg or 0.00687%)

Cyanides (with the exception of complex cyanides): (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED Because: "<LOD"

Dibenz[a,h]anthracene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Fluoranthene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Fluorene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Indeno[123-cd]pyrene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Lead chromate: (Cation conc. entered: 248 mg/kg, converted to compound conc.:386.834 mg/kg or 0.0387%, Note 1 conc.: 0.0248%)

Mercury dichloride: (Cation conc. entered: 4.3 mg/kg, converted to compound conc.:5.82 mg/kg or 0.000582%)

Naphthalene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Nickel dihydroxide: (Cation conc. entered: 14 mg/kg, converted to compound conc.:22.113 mg/kg or 0.00221%)

pH: (Whole conc. entered as: 8 pH, converted to conc.:8 pH or 8 pH)

Phenanthrene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Phenol: (Whole conc. entered as: <2 mg/kg or <0.0002%) IGNORED Because: "<LOD"

Pyrene: (Whole conc. entered as: <0.1 mg/kg or <0.00001%) IGNORED Because: "<LOD"

Selenium compounds (with the exception of cadmium sulphoselenide and sodium selenite): (Cation conc. entered: <3

mg/kg, converted to compound conc.:<4.5 mg/kg or <0.00045%) IGNORED Because: "<LOD"

Zinc chromate: (Cation conc. entered: 76 mg/kg, converted to compound conc.:210.835 mg/kg or 0.0211%)

Notes utilised in assessment

Additional Risk Phrase Comments, used on:

Test: "Additional on R33" for determinand: "Lead chromate"

C14.3: Step 4, used on:

Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Arsenic trioxide" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Copper (I) oxide" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Lead chromate" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Mercury dichloride" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Nickel dihydroxide" Test: "H14 on R50, R52, R50/53, R51/53, R53, R52/53" for determinand: "Zinc chromate"

Determinand notes

Note 1, used on:

determinand: "Lead chromate"

Note A, used on:

determinand: "Zinc chromate"

Note E, used on:

determinand: "Arsenic trioxide" determinand: "Nickel dihydroxide" determinand: "Zinc chromate"

Page 14 of 17 7XLSF-5486T-7UL46 www.hazwasteonline.com

Appendix A: User Defined and non CLP Substances

Acenaphthene (CAS Number: 83-32-9)

Comments: Risk phrase data taken from European Chemicals Agency's Classification & Labelling Inventory

Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=133563&HarmOnly=no

Data source date: 16/07/2012

Classification: N; R50/53, N; R51/53, R36, R37, R38

Acenaphthylene (CAS Number: 208-96-8)

Comments: Risk phrase data taken from European Chemicals Agency's Classification & Labelling Inventory

Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=59285&HarmOnly=no

Data source date: 16/07/2012

Classification: R22, R26, R27, R36, R37, R38

Anthracene (CAS Number: 120-12-7)

Comments: Risk phrase data taken from European Chemicals Agency's Classification & Labelling Inventory

Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=101102&HarmOnly=no

Data source date: 08/03/2013

Classification: N; R50/53, R36, R37, R38, R43

Benzo[ghi]perylene (CAS Number: 191-24-2)

Comments: Risk phrase data taken from European Chemicals Agency's Classification & Labelling Inventory

Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=15793&HarmOnly=no

Data source date: 16/07/2012 Classification: N; R50/53

Boron tribromide/trichloride/trifluoride (combined risk phrases)

Comments: Combines the risk phrases and the average of the conversion factors for Boron tribromide, Boron trichloride

and Boron trifluoride Data source: N/A

Data source date: 10/01/2011

Classification: T+; R26/28, C; R34, C; R35, R14

Fluoranthene (CAS Number: 206-44-0)

Comments: Risk phrase data taken from European Chemicals Agency's Classification & Labelling Inventory

Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=56375&HarmOnly=no

Data source date: 16/07/2012

Classification: N; R50/53, R20, R22, R36

Fluorene (CAS Number: 86-73-7)

Comments: Risk phrase data taken from European Chemicals Agency's Classification & Labelling Inventory

Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=81845&HarmOnly=no

Data source date: 16/07/2012 Classification: N; R50/53, R53

Indeno[123-cd]pyrene (CAS Number: 193-39-5)

Comments: Risk phrase data taken from European Chemicals Agency's Classification & Labelling Inventory

Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=128806&HarmOnly=no

Data source date: 08/03/2013

Classification: R40

pH

Comments: Appendix C, C4.5

Data source: WM2 - Interpretation of the definition and classification of hazardous waste (Second Edition, version2.2),

Environment Agency

Data source date: 30/05/2008 Classification: pH; pH

Phenanthrene (CAS Number: 85-01-8)

Comments: Risk phrase data taken from European Chemicals Agency's Classification & Labelling Inventory

Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=109754&HarmOnly=no

Data source date: 16/07/2012

Classification: N; R50/53, R22, R36, R37, R38, R40, R43

Pyrene (CAS Number: 129-00-0)

Comments: Risk phrase data taken from European Chemicals Agency's Classification & Labelling Inventory

Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=87484&HarmOnly=no

Data source date: 16/07/2012 Classification: N; R50/53, R23

Appendix B: Notes

Additional Risk Phrase Comments

from section: Table 2.2 in the document: "WM2 - Hazardous Waste Technical Guidance"

"This is an additional risk phrase and such a risk phrase alone will not cause a waste to be hazardous."

C14.3: Step 4

from section: C14.3 in the document: "WM2 - Hazardous Waste Technical Guidance"

"identify whether any individual ecotoxic substance is present below a cut-off value shown in Table C14.1"

C14.3: Step 5, Equation 1

from section: C14.3 in the document: "WM2 - Hazardous Waste Technical Guidance"

"...only for the substances in the waste above the relevant generic cut-off value, use the four equations given in Table C14.2 to decide if the waste is hazardous by H14"

Note 1

from section: 1.1.3.2, Annex VI in the document: "CLP Regulations"

"The concentration stated or, in the absence of such concentrations, the generic concentrations of this Regulation (Table 3.1) or the generic concentrations of Directive 1999/45/EC (Table 3.2), are the percentages by weight of the metallic element calculated with reference to the total weight of the mixture."

Note A

from section: 1.1.3.1, Annex VI in the document: "CLP Regulations"

"Without prejudice to Article 17(2), the name of the substance must appear on the label in the form of one of the designations given in Part 3. In Part 3, use is sometimes made of a general description such as '... compounds' or '... salts'. In this case, the supplier is required to state on the label the correct name, due account being taken of section 1.1.1.4."

Note E

from section: 1.1.3.1, Annex VI in the document: "CLP Regulations"

"Substances with specific effects on human health (see Chapter 4 of Annex VI to Directive 67/548/EEC) that are classified as carcinogenic, mutagenic and/or toxic for reproduction in categories 1 or 2 are ascribed Note E if they are also classified as very toxic (T+), toxic (T) or harmful (Xn). For these substances, the risk phrases R20, R21, R22, R23, R24, R25, R26, R27, R28, R39, R68 (harmful), R48 and R65 and all combinations of these risk phrases shall be preceded by the word 'Also'."

Page 16 of 17 7XLSF-5486T-7UL46 www.hazwasteonline.com

Appendix C: Version

Classification utilises the following:

- WM2 Hazardous Waste Technical Guidance 3rd Edition (Aug 2013)
 Hazardous Waste: Interpretation of the definition and classification of hazardous waste (3rd Edition 2013)
- CLP Regulations Regulation (EC) No 1272/2008 of 16 December 2008
 REGULATION (EC) No 1272/2008 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006
- 1st ATP Regulation (EC) No 790/2009 of 10 August 2009
 COMMISSION REGULATION (EC) No 790/2009 of 10 August 2009 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures
- 2nd ATP Regulation (EC) No 286/2011 of 10 March 2011
 COMMISSION REGULATION (EU) No 286/2011 of 10 March 2011 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures
- 3rd ATP Regulation (EU) No 618/2012 of 10 July 2012
 COMMISSION REGULATION (EU) No 618/2012 of 10 July 2012 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures
- 4th ATP Regulation (EU) No 487/2013 of 8 May 2013
 COMMISSION REGULATION (EU) No 487/2013 of 8 May 2013 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures
- Correction to 1st ATP Regulation (EU) No 758/2013 of 7 August 2013
 COMMISSION REGULATION (EU) No 758/2013 of 7 August 2013 correcting Annex VI to Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures
- 5th ATP Regulation (EU) No 944/2013 of 2 October 2013
 COMMISSION REGULATION (EU) No 944/2013 of 2 October 2013 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures
- 6th ATP Regulation (EU) No 605/2014 of 5 June 2014
 COMMISSION REGULATION (EU) No 605/2014 of 5 June 2014 amending, for the purposes of introducing hazard and precautionary statements in the Croatian language and its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures

HazWasteOnline Engine: WM2 version 3 (Aug 2013)

HazWasteOnline Engine Version: 1.0.2682.5621 (01 Dec 2014) HazWasteOnline Database: 1.0.2682.5621 (01 Dec 2014)