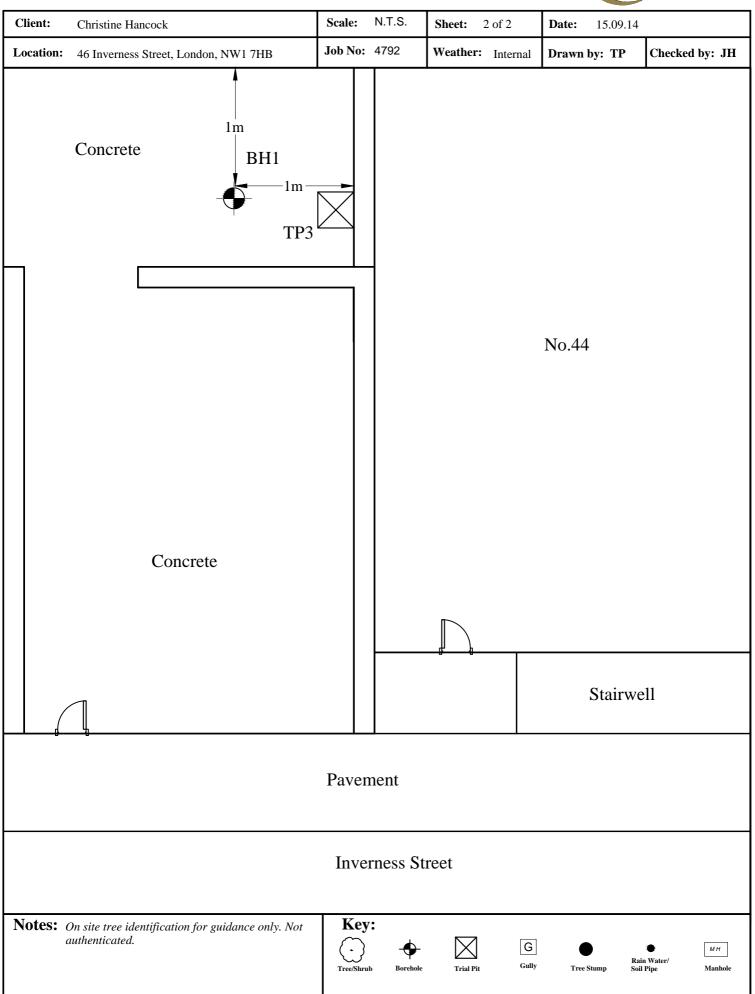
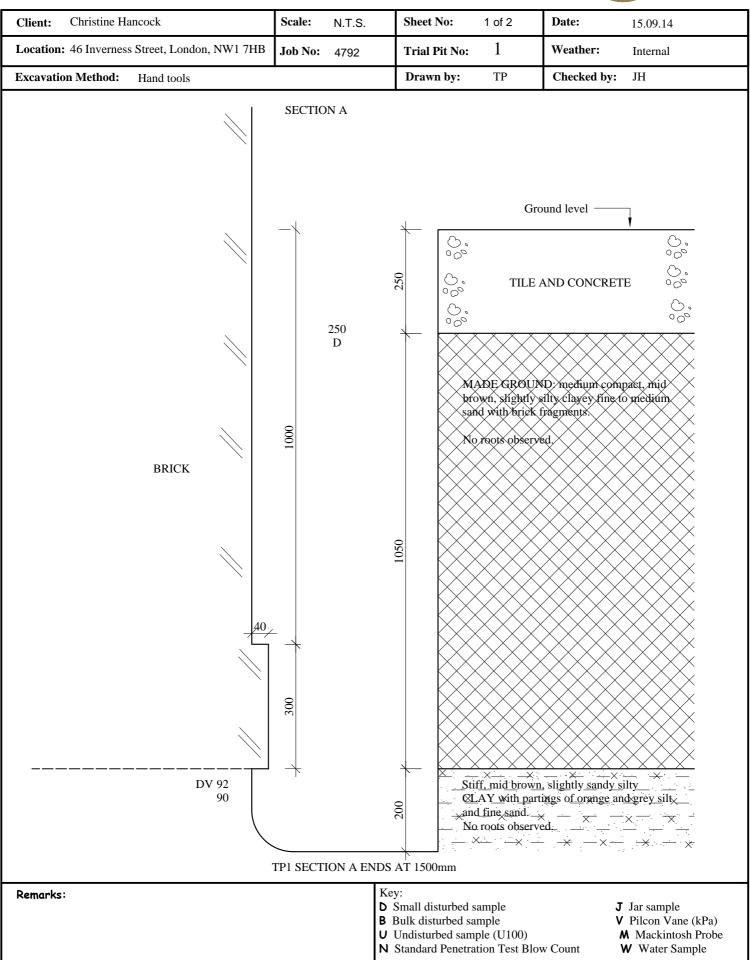
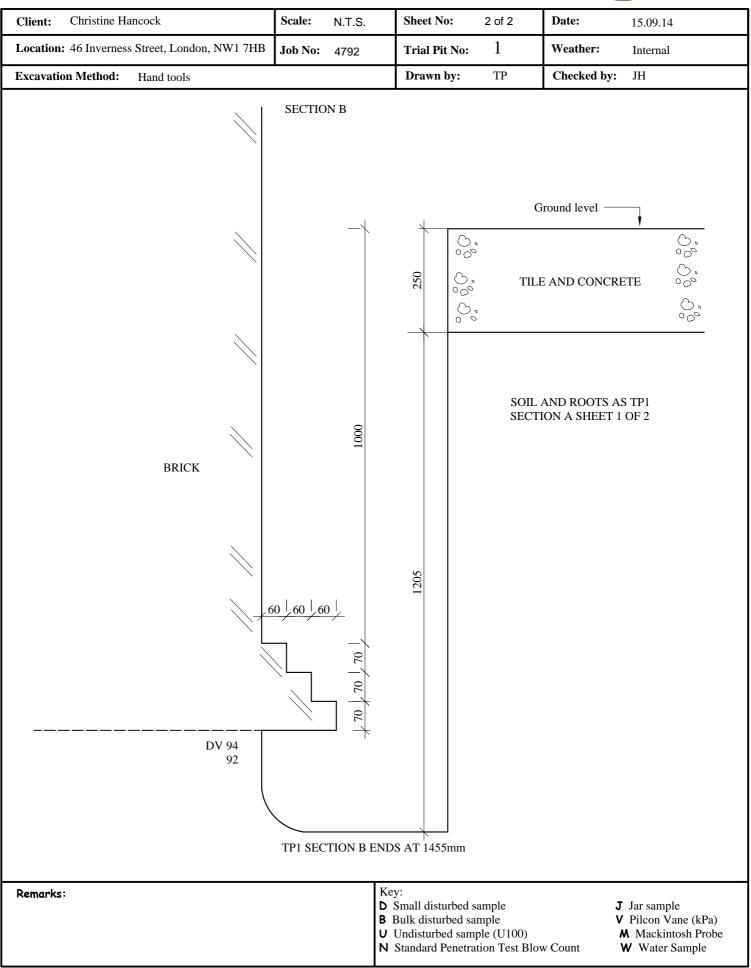


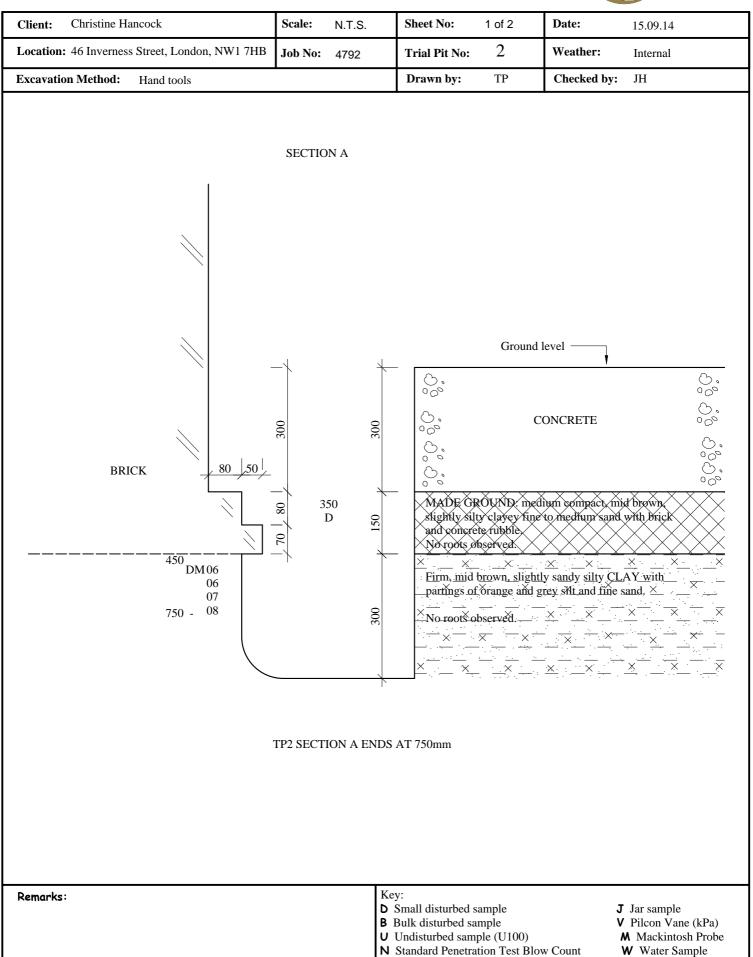
Unit 15, East Hanningfield Industrial Estate Old Church Road, East Hanningfield, Essex CM3 8AB **Telephone:** 01245 400 930 **Fax:** 01245 400 933 **Email:** info@siteinvestigations.co.uk **Website**: www.siteinvestigations.co.uk

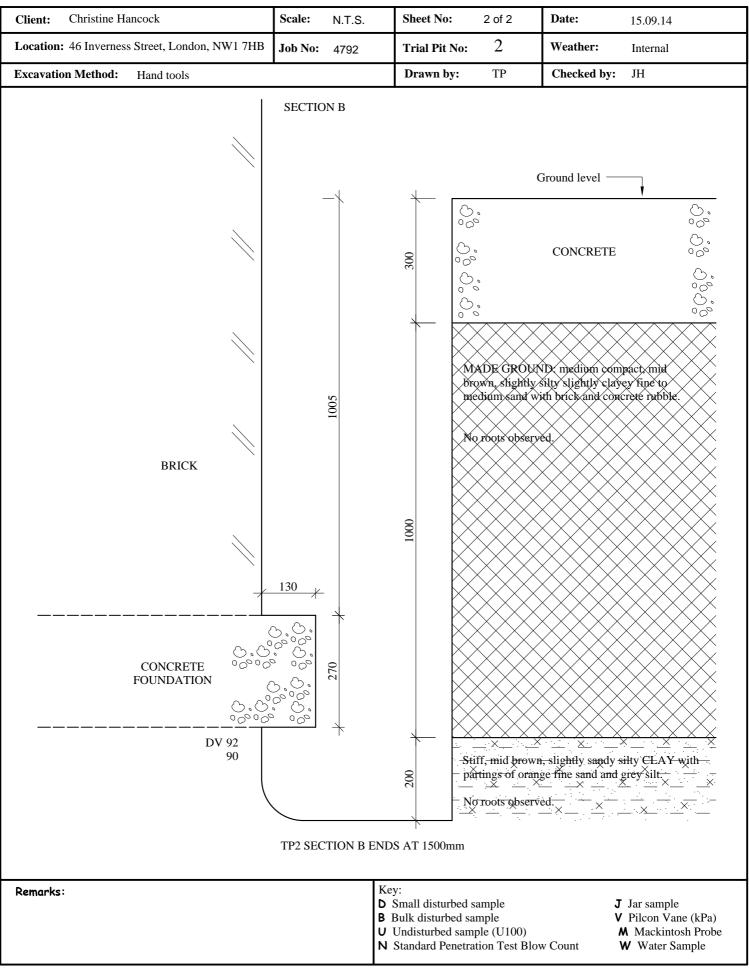

Factual Report

Client:Ms Christine HancockSite:46 Inverness Street
London
NW1 7HBCSI Ref:FACT/4792Dated:October 2014








Unit 15 East Hanningfield Industrial Estate Old Church Road, East Hanningfield, Essex CM3 8AB Telephone: 01245 400930 Fax: 01245 400933 Email: info@siteinvestigations.co.uk Website: www.siteinvestigations.co.uk

W Water Sample

Client: Christine Hancock	Scale: N.T.S.	Sheet No: 1 of 1 Date: 15.09.14
Location: 46 Inverness Street, London, NW1 7HB	Job No: 4792	Trial Pit No: 3 Weather: Internal
Excavation Method: Hand tools		Drawn by: TP Checked by: JH
HOUSE BRICK WALL	250 D	Op CONCRETE WADE GROEND: medium compact to Coppact, growind brown, slightly situy sandy; No roots observed. No roots observed. Stiff, mid brown, slightly sandy slightly sandy. No roots observed. No roots observed.
TP3	ENDS AT 2500mm	
Remarks: Unable to establish underside foundat	D B U	y: Small disturbed sample Bulk disturbed sample Undisturbed sample (U100) Standard Penetration Test Blow Count J Jar sample V Pilcon Vane (kPa) M Mackintosh Probe W Water Sample

Unit 15 East Hanningfield Industrial Estate Old Church Road, East Hanningfield, Essex CM3 8AB Telephone: 01245 400930 Fax: 01245 400933

Email: info@siteinvestigations.co.uk Website: www.siteinvestigations.co.uk

Client:	Christine Hancock	Scale:	N.T.S.	Sheet No	• 1 of 1	Wea	ther: Overcast	Date: 16	5.09.14
Site:	46 Inverness Street, London, NW1 7HB	Job No	6: 4792	Borehole	No: 1	Bori	ng method: CFA 100mm@	ð Secondn	nan
Depth Mtrs.	Description of Strata	Thick- ness	Legend	Sample	Tes Type		Root Information	Depth to Water	Depth Mtrs
G.L. 0.075	CONCRETE	0.075							
	MADE GROUND: medium compact, dark brown, gravelly silt with numerous concrete and brick	0.425	$\langle \rangle \rangle \langle \rangle$	D D			Roots of live and dead		0.3 0.5
0.5	fragments. MADE GROUND: medium compact, mid brown, gravelly very silty clay with numerous brick fragments.	0.3		D	v	62	appearance to 2mmØ to 1.6m.		1.0
0.8	Firm, mid brown, grey veined, silty CLAY		××× ×××			68			
	with partings of orange and brown silt and fine sand.		$\times \times \times_{\overline{X}}$	D			+		1.5
	Becoming stiff from 1.8m.	1.7	\times_{\times}^{\times}				No roots observed below 1.6m.		
	U U		× <u>×</u>	D		78 84	1.0111.		2.0
			$\times \times \times \times$			84			
2.5			$\rightarrow \times \times$	D					2.5
				D	v	140+			3.0
			$\times \times \times_{\overline{X}}$			140+ 140+			5.0
			$\times ^{\times} \times \times$	D					3.5
			× <u> </u>						
			$\times \times \times \times \times$	D		140+			4.0
			$\times \times \times \times$			140+			
		5.0	$\times \times \times$	D					4.5
	Very stiff, mid brown, silty CLAY with partings of orange and brown silt and fine		$\xrightarrow{\times} \xrightarrow{\times} \xrightarrow{\times}$						
	sand.		\times	D		140+ 140+			5.0
			×	D					5.5
			$\left \begin{array}{c} \times \times \times \\ - \times \end{array} \right \times $						5.5
			$\times \times \times \times$	D	v	140+			6.0
			$\times \times \rightarrow$			140+			
			$\xrightarrow{\times} \times \times \times \times \times \times$						
			× × ×	D		140+ 140+			7.0
						140+			
7.5			XXXX						
			××-×	D	v	140+			8.0
			$\times \times \times \times \times$			140+ 140+			0.0
	Very stiff, dark brown, grey veined, silty		$\xrightarrow{\times} \times \times \times$						
	CLAY with partings of brown silt and fine	2.5	X_X_X						
	sand.		$\times \overline{\times} \times \overline{\times}$	D		140+			9.0
			$\times \times \times$			140+			
			× Ŷ						
			$\overline{\times} \times \overline{\times} \times$						
10.0	Borehole ends at 10.0m			D		140+ 140+			10.0
Drawn b	by: MM Approved by: JH		Kev: T	D.T.D.	Too Dense 1	to Drive	I	I	<u> </u>
Remarks: Borehole dry and open on completion.				nall Distur 1lk Disturb disturbed S	bed Sample ed Sample Sample (U1)	J V 00) M	Jar Sample Pilcon Vane (kPa) Mackintosh Probe netration Test Blow Count		

Unit 15 East Hanningfield Industrial Estate Old Church Road, East Hanningfield, Essex CM3 8AB Telephone: 01245 400930 Fax: 01245 400933 Email: info@siteinvestigations.co.uk Website: www.siteinvestigations.co.uk

Date: 16.09.14

Depth

Mtrs

0.3

0.5

Christine Hancock	Scale:	N.T.S.	Sheet No	1 of 1	Weat	ther: Overcast	Date: 16	5.09.1
46 Inverness Street, London, NW1 7HB	Job No	: 4792	Borehole	No: 2	Borin	Ø Secondman		
Description of Strata	Thick- ness	Legend	Sample	Те Туре	st Result	Root Information	Depth to Water	Dep Mt
TIMBER FLOOR BOARDS	0.025							
CONCRETE	0.225	000000000000000000000000000000000000000	D					0
MADE GROUND: medium compact, mid brown, very silty CLAY with numerous gravel, concrete and brick fragments.	0.65		D			Roots of live and dead appearance to 1mmØ to 1.8m.		0
MADE GROUND: medium compact, mid brown, very silty clay with occasional gravel and brick fragments.	0.9		D	М	14 14 15 17			1
					17	No roots observed below 1.8m.		
Firm, mid brown, grey veined, silty CLAY with partings of brown silt and fine sand.		$\times \times \times$	D	V	68 70	1.0111.		2.
			D					2

Client:

Site:

Depth

Mtrs.

G.L 0.025

0.25

	brown, very silty C gravel, concrete and	LAY with numerous l brick fragments.	0.65					1.8m.	
0.9		medium compact, mid ay with occasional gravel	0.9		D D	М	14 14 15 17		1.0 1.5
1.8		rey veined, silty CLAY		×××	D	v	68	No roots observed below 1.8m.	2.0
		own silt and fine sand.		$\times \times $	D	v	70		2.5
	Becoming stiff from	n 2.7m.	1.9		D	v	78		3.0
					D	, v	84		5.0
3.7				××× ×××	D				3.5
				$\frac{\times \times \times}{\times \times} \times$	D	v	140+ 140+		4.0
				$\frac{\times \times \times}{\times \times}$	D				4.5
					D	v	140+ 140+		5.0
		wn, grey veined, silty s of brown silt and fine	4.0	$\overline{\times} \times \overline{\times} \times$	D				5.5
	sanu.			× × × × × ×	D	v	140+ 140+		6.0
				$\begin{array}{c} \times \times \times \times \\ - \times \times \times \\ - \times \times \times \end{array} \times \\ - \times \times \times \times \end{array} \times$					
				× × × × × ×	D	v	140+ 140+		7.0
7.7				×* ×*					
					D	V	140+ 140+		8.0
		own, grey veined, silty s of brown silt and fine	2.3	××××					
	sand.			$\begin{array}{c} \times \overline{\times} \times \overline{\times} \\ \overline{\times} \times \overline{\times} \\ \overline{\times} \times \overline{\times} \end{array} \\ \times \overline{\times} \times \overline{\times} \end{array}$	D	v	140+ 140+		9.0
				×× Ŷ ×××,					
10.0	0.0 Borehole ends at 10.0m			D	v	140+ 140+		10.0	
Drawn	prawn by: MM Approved by: JH			Kev T	חדם	Too Dense	to Drive		
	Remarks: Borehole dry and open on completion. Standpipe installed to 6.0m on completion.				all Distur k Disturb listurbed S	bed Sampl ed Sample Sample (U	e J V 100) M	Jar Sample Pilcon Vane (kPa) Mackintosh Probe enetration Test Blow Count	

Chelmer Geotechnical Laboratories

Unit 15, East Hanningfield Industrial Estate Old Church Road, East Hanningfield, Essex CM3 8AB **Telephone:** 01245 400 930 **Fax:** 01245 400 933 **Email:** info@siteinvestigations.co.uk **Website**: www.soillabs.co.uk

Geotechnical Testing

Client : Christine Hancock Site Name : 46 Inverness Street Client Reference : CSI4792 CGL Reference : CGL04412 Date of Completion : 13/10/2014

UKAS TESTING 8284	Chelmer Ceotechnical Laboratories
Con	tent Summary
This report contains all test results indica	ated on the attached test instruction/summary (Q17).
CGL Reference : CG Client Reference : CG For the attention of : CH This report comprises of the following : 2 1 1 5	SI4792 nristine Hancock
General Please refer to report summary notes for details pertaining to methods undertail	
Samples were supplied by Chelmer Site Investigations	
All tests performed in-house unless otherwise stated	
Deviant Samples	
Samples were received in suitable containers	Yes
A date and time of sampling was provided	Yes
Arrived damaged and/or denatured	No

Laboratory Testing Results

BS 1377 : 1990

Job Number : CGL04412 Client : Christine Hancock

Client Reference : CSI4792 Site Name : 46 Inverness Street

Sample Ref *Sulphate Content (g/l) *Soil Faction *Modified Plasticity Filter Paper Insitu Shear Vane Moisture Conter *Liquid Limit *Plastic Limit *Plasticity Index *Liquidity Index *Soil Class *Soil Sample Organic Content *pH Value Sample Type SO_4 > 0.425mm Index Contact Time Strength SO3 Class Depth (%)[1] (%)[3] (%)[4] (%)[5] (%)[5] [7] Suction (kPa) (%) [10] [11] (%) [2] (%)[6] (h) [8] (kPa) [9] [12] [13] [14] BH/TP/WS (m) UID BH1 1.5 57554 D 33 <5 82 18 64 0.24 64 CV BH1 3.0 D 32 81 18 63 0.22 63 CV >140 57556 <5 6.0 57558 D 79 15 64 CV BH1 31 <5 0.24 64 >140 10.0 D >140 BH1 57559 30 <5 75 19 56 0.20 56 CV Notes :- *UKAS Accredited Tests Kev (D - Disturbed sample [1] BS 1377 : Part 2 : 1990, Test No 3.2 [7] BS 5930 : 1981 : Figure 31 - Plasticity Chart for the classification of fine soils [12] BS 1377 : Part 3 : 1990, Test No 5.6 B - Bulk sample [2] Estimated if <5%, otherwise measured [8] In-house method S9a adapted from BRE IP 4/93 [13] SO₄ = 1.2 x SO₃ U - U100 (undisturbed sample) [3] BS 1377 : Part 2 : 1990, Test No 4.4 [9] Values of shear strength were determined in situ by Chelmer Site Investigations using a Pilcon hand vane or Geonor [14] BRE Special Digest One (Concrete in Aggressive Ground) 2005 vane (GV). W - Water sample [4] BS 1377 : Part 2 : 1990, Test No 5.3 UKAS Note that if the SO4 content falls into the DS-4 or DS-5 class, it would be prudent to consider the ENP - Essentially Non-Plastic sample as falling into the DS-4m or DS-5m class respectively unless water soluble magnesium TESTING [5] BS 1377 : Part 2 : 1990, Test No 5.4 [10] BS 1377 : Part 3 : 1990, Test No 4 testing is undertaken to prove otherwise 8284 [6] BRE Digest 240 : 1993 [11] BS 1377 : Part 2 : 1990, Test No 9 U/S - Underside Foundation Comments · Date Checked :- 13-Oct-14 Technician :- MT/HS Checked By :- MC

Date Testing Started : 08/10/2014

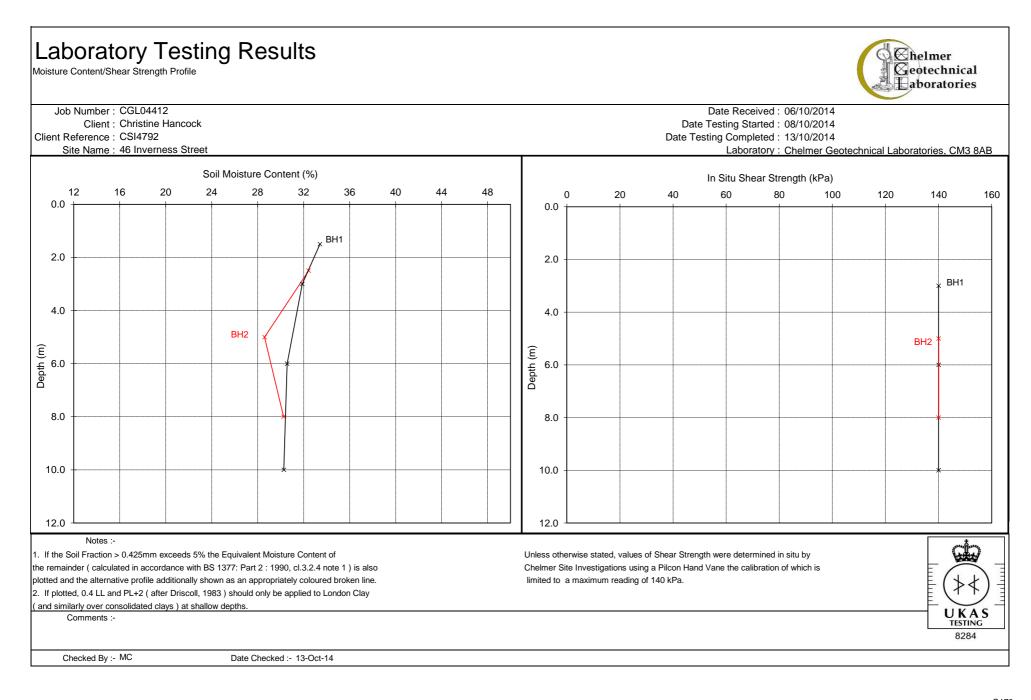
Laboratory Used : Chelmer Geotechnical, CM3 8AB

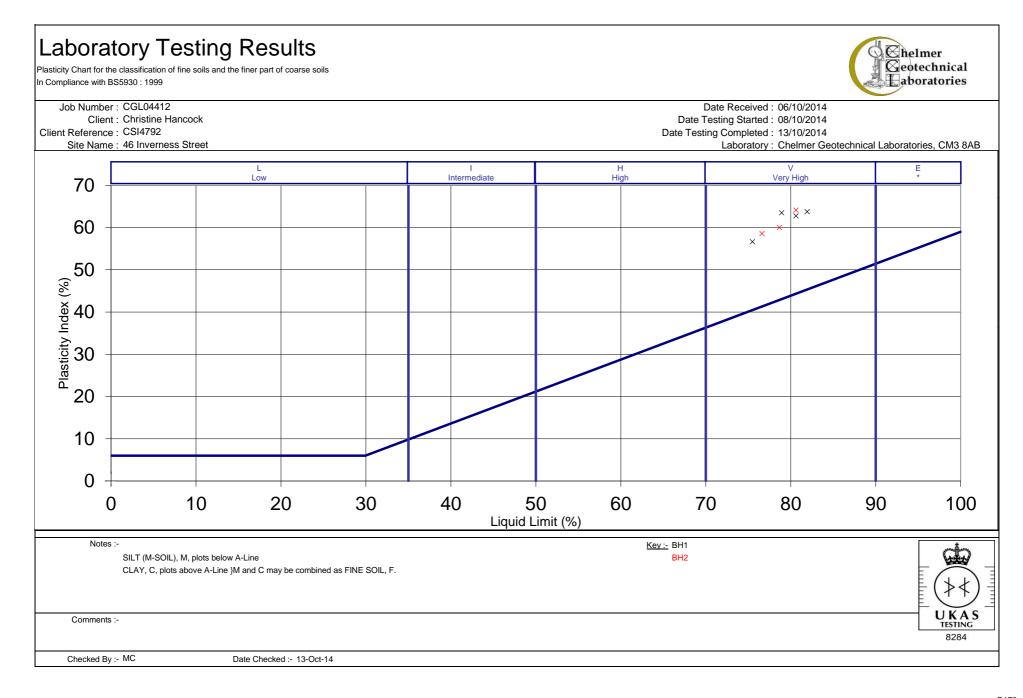
Date Testing Completed : 13/10/2014

Q170

Rev 4

Laboratory Testing Results


Job Number : CGL04412 Client : Christine Hancock Client Reference : CSI4792


Site Name : 46 Inverness Street

*Sulphate Content (g/l) Sample Ref *Soil Faction *Modified Plasticity Filter Paper Insitu Shear Vane Moisture Conter *Liquid Limit *Plastic Limit *Plasticity Index *Liquidity Index *Soil Class *Soil Sample Organic Content *pH Value Sample Type SO_4 > 0.425mm Index Contact Time Strength SO3 Class Depth (%)[1] (%)[3] (%)[4] (%)[5] (%)[5] [7] Suction (kPa) (%) [10] [11] (%) [2] (%)[6] (h) [8] (kPa) [9] [12] [13] [14] BH/TP/WS (m) UID BH2 2.5 57561 D 32 <5 81 16 65 0.25 65 CV BH2 5.0 56563 D 29 77 18 59 0.18 59 CV >140 <5 BH2 8.0 56565 D 30 79 19 60 60 CV <5 0.19 >140 Notes :- *UKAS Accredited Tests Kev D - Disturbed sample [1] BS 1377 : Part 2 : 1990, Test No 3.2 [7] BS 5930 : 1981 : Figure 31 - Plasticity Chart for the classification of fine soils [12] BS 1377 : Part 3 : 1990, Test No 5.6 B - Bulk sample [2] Estimated if <5%, otherwise measured [8] In-house method S9a adapted from BRE IP 4/93 [13] SO₄ = 1.2 x SO₃ U - U100 (undisturbed sample) [3] BS 1377 : Part 2 : 1990, Test No 4.4 [9] Values of shear strength were determined in situ by Chelmer Site Investigations using a Pilcon hand vane or Geonor [14] BRE Special Digest One (Concrete in Aggressive Ground) 2005 vane (GV). W - Water sample [4] BS 1377 : Part 2 : 1990, Test No 5.3 UKAS Note that if the SO4 content falls into the DS-4 or DS-5 class, it would be prudent to consider the ENP - Essentially Non-Plastic sample as falling into the DS-4m or DS-5m class respectively unless water soluble magnesium TESTING [5] BS 1377 : Part 2 : 1990, Test No 5.4 [10] BS 1377 : Part 3 : 1990, Test No 4 testing is undertaken to prove otherwise 8284 [6] BRE Digest 240 : 1993 [11] BS 1377 : Part 2 : 1990, Test No 9 U/S - Underside Foundation Comments · Date Checked :- 13-Oct-14 Technician :- MT/HS Checked By :- MC

Date Received : 06/10/2014 Date Testing Started : 08/10/2014 Date Testing Completed : 13/10/2014 Laboratory Used : Chelmer Geotechnical, CM3 8AB

This report is personal to the client, confidential and non assignable. It is issued with no admission of liability to any third party.

This report shall not be reproduced, except in full, without the written approval of Chelmer Site Investigations Laboratories Ltd.

Where our involvement consists exclusively of testing samples, the results and comments (if provided) relate only to the samples tested.

Any samples that are deemed to be subject to deviation will be recorded as such within the test summary.

Chelmer Site Investigations Unit 15 East Hanningfield Industrial Estate CM3 8AB

Analytical Test Report:	L14/2029/CSI/001

Your Project Reference:	46 Inverness Street	Samples Received on:	06.10.2014
Your Order Number:	PO/2978/CSI4792	Testing Instruction Received:	06.10.2014
Report Issue Number:	1	Sample Tested:	06 to 14.10.2014
Samples Analysed:	7 Soils	Report issued:	14.10.2014

Signed

James Gane Manager - Data Logistics Nicholls Colton Analytical

Notes:					
General					
Please refer to Methodologies tab for details pertaining to the analytical methods undertaken.					
Samples will be retained for 14 days after issue of this report.					
With the exception of Sulphate and Sulpur, which are crushed over the 2mm test sieve, concentrations are reported as a percentage mass of the dry soil passing the 10mm BS test sieve. As received samples have been corrected for moisture content but not stone content.					
Samples were supplied by customer.					
Deviant Samples					
Samples were received in suitable containers	Yes				
A date and time of sampling was provided	Yes				
Sample handling times were exceeded prior to analysis of determinants	Yes				
	a state of the sta				

Where samples do not meet one or more of the above criteria they will be classed as deviant, this means data may not be representative of the sample at the time of sampling and it is possible that results provided may be compromised.

L14/2029/CSI/001

Project Reference - 46 Inverness Street

Analytical Test Results - BRE Suite

NCA Reference			14-32624	14-32625	14-32626	14-32627	14-32629	14-32630
Client Sample Reference			BH1	BH1	BH1	BH2	BH2	BH2
Client Sample Location			BH1	BH1	BH1	BH2	BH2	BH2
Depth (m)			0.50	2.00	4.00	1.50	3.00	6.00
Date of Sampling			15.09.2014	15.09.2014	15.09.2014	15.09.2014	15.09.2014	15.09.2014
Time of Sampling			Not provided					
Sample Matrix			Clay	Clay	Clay	Clay	Clay	Clay
Determinant	Units	Accreditation						
Water soluble sulphate	(mg/l)	None	170	600	2600	490	930	2900
Acid Soluble Sulphate	(%)	None	0.13	0.15	0.70	0.15	0.19	0.72
Total Sulphur	(%)	None	0.12	0.06	0.25	0.06	0.06	0.25
pH Value	pH Units	MCERTS	8.3	8.0	7.7	7.5	7.6	7.8

L14/2029/CSI/001

pH Value

Project Reference - 46 Inverness Street

pH Units

MCERTS

8.0

Analytical Test Results - BRE Suite

NCA Reference			14-32631
Client Sample Reference			BH2
Client Sample Location			BH2
Depth (m)			10.00
Date of Sampling			15.09.2014
Time of Sampling			Not provided
Sample Matrix			Clay
Determinant	Units	Accreditation	
Water soluble sulphate	(mg/l)	None	2100
Acid Soluble Sulphate	(%)	None	0.45
Total Sulphur	(%)	None	0.17

L14/2029/CSI/001

Project Reference - 46 Inverness Street

Sample Descriptions

NCA Reference	Client Sample Reference	Sample Depth (m)	Description	% Passing 2mm BS test sieve
14-32624	BH1	0.50	Dark brown slightly sandy clay.	98
14-32625	BH1	2.00	Brown slightly sandy clay.	100
14-32626	BH1	4.00	Brown slightly sandy clay.	100
14-32627	BH2	1.50	Brown slightly sandy clay.	98
14-32629	BH2	3.00	Brown slightly sandy clay.	100
14-32630	BH2	6.00	Brown slightly sandy clay.	100
14-32631	BH2	10.00	Brown slightly sandy clay.	100

L14/2029/CSI/001

Project Reference - 46 Inverness Street

Analysis Methodologies

Matrix	Determinant	Sample condition for analysis	Test Method used
Soil	рН	As Received	In house method statement - MS - CL - pH (Soil)
Soil	Sulphate	Air Dried	In house method statement - MS - CL - Anions (Aquakem)
Soil	Acid Sulphate	Air Dried	In house method statement - MS - CL - BRE
Soil	Total Sulphur	Air Dried	In house method statement - MS - CL - BRE

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone: (01424) 718618 Facsimile: (01424) 729911 info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number:	14-00770
Issue:	1
Date of Issue:	14/10/2014
Contact:	Martin Edwards
Customer Details:	Chelmer Site Investigations Ltd Unit 15 East Hanningfield Ind Est Chelmsford Essex
Quotation No:	Q14-00004
Order No:	PO / 2978 / CSI4792
Customer Reference:	4792
Date Received:	03/10/2014
Date Approved:	14/10/2014
Details:	46 Inverness Street, London, NW1
Approved by:	J. UHADA
John Wilcon, Operations Mar	bador

John Wilson, Operations Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

Sample Summary

Report No.: 14-00770

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
5233	BH1 0.30	17/09/2014	06/10/2014	Silty loam	cfg
5234	BH1 0.50	17/09/2014	06/10/2014	Silty loam	fg
5235	BH2 0.50	17/09/2014	06/10/2014	Silty clayey loam	fg
5236	BH2 1.00	17/09/2014	06/10/2014	Silty loam	fg
5237	TP1 0.25	17/09/2014	06/10/2014	Silty loam	fg
5238	TP2 0.35	17/09/2014	06/10/2014	Silty loam	fg

Results Summary Report No.: 14-00770

	5233	5234	5235	5236	5237	5238			
	Cu	stomer	Reference						
			Sample ID						
			mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			e Location	BH1	BH1	BH2	BH2	TP1	TP2
		Sample	Depth (m)	0.30	0.50	0.50	1.00	0.25	0.35
		Sam	pling Date	17/09/2014	17/09/2014	17/09/2014	17/09/2014	17/09/2014	17/09/2014
Determinand	Codes	Units	LOD						
Metals									
Arsenic	M	mg/kg	1	37.7	n/t	14.0	n/t	13.3	11.6
Cadmium	M	mg/kg	0.5	1.6	n/t	< 0.5	n/t	< 0.5	< 0.5
Chromium	M	mg/kg	5	24.6	n/t	29.2	n/t	22.6	19.4
Copper	M	1 mg/kg 5		126	n/t	45.2	n/t	37.7	44.1
Lead	M	mg/kg 5		1980	n/t	483	n/t	630	811
Mercury	M	mg/kg	0.5	9.8	n/t	1.3	n/t	1.3	2.8
Nickel	M	mg/kg	5	22.3	n/t	28.2	n/t	20.8	16.6
Selenium	M	mg/kg	1	6.3	n/t	< 1.0	n/t	< 1.0	< 1.0
Zinc	M	mg/kg	45	818	n/t	216	n/t	206	117
Inorganics									
Elemental Sulphur	N	mg/kg	20	< 20	n/t	< 20	n/t	< 20	< 20
Free Cyanide	N	mg/kg	1	f < 1.0	n/t	f < 1.0	n/t	f < 1.0	f < 1.0
Hexavalent Chromium	N	mg/kg	0.8	< 0.8	n/t	< 0.8	n/t	< 0.8	< 0.8
Total Cyanide	M	mg/kg	1	f < 1.0	n/t	f < 1.0	n/t	f < 1.0	f < 1.0
Water Soluble Boron	N	mg/kg	0.5	1.5	n/t	1.6	n/t	1.8	2.6
Miscellaneous									
Acid Neutralisation Capacity	N	mol/kg	0.1	n/t	< 0.1	n/t	< 0.1	n/t	n/t
Loss Of Ignition (450°C)	N	%	0.01	n/t	4.3	n/t	2.5	n/t	n/t
Moisture Content	N	%	0.1	14.3	n/t	19.6	n/t	10.6	14.5
рН	M	units	0.1	8.1	8.0	8.9	8.8	8.8	8.3
Stones Content	N	%	0.1	32.7	n/t	9.8	n/t	22.6	10.8
Total Organic Carbon	N	%	0.01	n/t	2.6	n/t	0.8	n/t	n/t

Results Summary Report No.: 14-00770

Phenols Total Monohydric Phenols Polyaromatic hydrocarbons Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Piluoranthene		Istomer Sample Sample Sample Munits Mg/kg Mg/kg Mg/kg Mg/kg Mg/kg Mg/kg	Reference Reference Sample ID mple Type e Location Depth (m) pling Date LOD 5 0.5 0.5 0.5 0.5 0.5	5233 SOIL BH1 0.30 17/09/2014 Cf < 5 Cf < 0.5 Cf < 0.5 Cf < 0.5	5234 SOIL BH1 0.50 17/09/2014 n/t	5235 SOIL BH2 0.50 17/09/2014 f < 5 f < 0.5	5236 SOIL BH2 1.00 17/09/2014 n/t	5237 SOIL TP1 0.25 17/09/2014 f < 5	5238 SOIL TP2 0.35 17/09/2014 f < 5
Phenols Total Monohydric Phenols Polyaromatic hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	N M M M M M M M M M	Sample Sample Sample Sam Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Sample ID mple Type e Location Depth (m) pling Date LOD 5 0.5 0.5 0.5	BH1 0.30 17/09/2014 cf < 5 cf < 0.5 cf < 0.5	BH1 0.50 17/09/2014 	BH2 0.50 17/09/2014 f < 5	BH2 1.00 17/09/2014	TP1 0.25 17/09/2014	TP2 0.35 17/09/2014
Phenols Total Monohydric Phenols Polyaromatic hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	M M M M M M M M M	Sample Sample Sam Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	mple Type e Location Depth (m) pling Date LOD 5 0.5 0.5 0.5	BH1 0.30 17/09/2014 cf < 5 cf < 0.5 cf < 0.5	BH1 0.50 17/09/2014 	BH2 0.50 17/09/2014 f < 5	BH2 1.00 17/09/2014	TP1 0.25 17/09/2014	TP2 0.35 17/09/2014
Phenols Total Monohydric Phenols Polyaromatic hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	M M M M M M M M M	Sample Sample Sam Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	e Location Depth (m) pling Date LOD 5 0.5 0.5 0.5	BH1 0.30 17/09/2014 cf < 5 cf < 0.5 cf < 0.5	BH1 0.50 17/09/2014 	BH2 0.50 17/09/2014 f < 5	BH2 1.00 17/09/2014	TP1 0.25 17/09/2014	TP2 0.35 17/09/2014
Phenols Total Monohydric Phenols Polyaromatic hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	M M M M M M M M M	Sample Sam Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Depth (m) pling Date LOD 5 0.5 0.5 0.5	0.30 17/09/2014 cf < 5 cf < 0.5 cf < 0.5	0.50 17/09/2014 	0.50 17/09/2014 f < 5	1.00 17/09/2014	0.25 17/09/2014	0.35 17/09/2014
Phenols Total Monohydric Phenols Polyaromatic hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	M M M M M M M M M	Sam Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	pling Date LOD 5 0.5 0.5 0.5	17/09/2014 cf < 5 cf < 0.5 cf < 0.5	17/09/2014 n/t n/t	17/09/2014 f < 5	17/09/2014	17/09/2014	17/09/2014
Phenols Total Monohydric Phenols Polyaromatic hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	M M M M M M M M M	Sam Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	pling Date LOD 5 0.5 0.5 0.5	cf < 5 cf < 0.5 cf < 0.5	n/t n/t	f < 5			
Phenols Total Monohydric Phenols Polyaromatic hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	N M M M M M M	Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOD 5 0.5 0.5 0.5	cf < 5 cf < 0.5 cf < 0.5	n/t n/t	f < 5			
Phenols Total Monohydric Phenols Polyaromatic hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	N M M M M M M	mg/kg mg/kg mg/kg mg/kg mg/kg	5 0.5 0.5 0.5	cf < 0.5 cf < 0.5	n/t		n/t	f < 5	f < 5
Total Monohydric Phenols Polyaromatic hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	M M M M M M	mg/kg mg/kg mg/kg mg/kg	0.5 0.5 0.5	cf < 0.5 cf < 0.5	n/t		n/t	f < 5	f < 5
Polyaromatic hydrocarbons Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Fluoranthene	M M M M M M	mg/kg mg/kg mg/kg mg/kg	0.5 0.5 0.5	cf < 0.5 cf < 0.5	n/t		101	1 < 0	1 4 5
NaphthaleneAcenaphthyleneAcenaphtheneFluorenePhenanthreneAnthraceneFluoranthenePyrene	M M M M M	mg/kg mg/kg mg/kg mg/kg	0.5 0.5	cf < 0.5		f < 0.5			
Acenaphthylene Acenaphthene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	M M M M M	mg/kg mg/kg mg/kg mg/kg	0.5 0.5	cf < 0.5			n/t	f < 0.5	f < 0.5
Acenaphthene Fluorene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Prese	M M M M	mg/kg mg/kg mg/kg	0.5		n/t	f < 0.5	n/t	f < 0.5	f < 0.5
Fluorene Phenanthrene Anthracene Fluoranthene Pyrene P	M M M M	mg/kg mg/kg		0 50.0	n/t	f < 0.5	n/t	f < 0.5	f < 0.5
Anthracene Fluoranthene Pyrene	M M	mg/kg		cf < 0.5	n/t	f < 0.5	n/t	f < 0.5	f < 0.5
Fluoranthene Pyrene	М	malle	0.5	cf 0.6	n/t	f < 0.5	n/t	f < 0.5	f < 0.5
Pyrene		mg/kg	0.5	cf < 0.5	n/t	f < 0.5	n/t	f < 0.5	f < 0.5
	N/I	mg/kg	0.5	cf 1.2	n/t	f < 0.5	n/t	f < 0.5	f < 0.5
		mg/kg	0.5	cf 1.1	n/t	f < 0.5	n/t	f < 0.5	f < 0.5
	M	mg/kg	0.5 0.5	cf 0.8	n/t	f < 0.5	n/t	f < 0.5 f < 0.5	f < 0.5
	M M	mg/kg mg/kg	0.5	cf 1.0 cf 0.9	n/t n/t	f < 0.5 f < 0.5	n/t n/t	f < 0.5	f < 0.5 f < 0.5
	M	mg/kg	0.5	cf 0.9	n/t	f < 0.5	n/t	f < 0.5	f < 0.5
	M	mg/kg	0.5	cf 0.8	n/t	f < 0.5	n/t	f < 0.5	f < 0.5
	M	mg/kg	0.5	cf 0.9	n/t	f < 0.5	n/t	f < 0.5	f < 0.5
	М	mg/kg	0.5	cf < 0.5	n/t	f < 0.5	n/t	f < 0.5	f < 0.5
	М	mg/kg	0.5	cf 0.8	n/t	f < 0.5	n/t	f < 0.5	f < 0.5
	М	mg/kg	2	cf 10	n/t	f < 2	n/t	f < 2	f < 2
<u> </u>	N	mg/kg	2.1	n/t	f 5	n/t	f < 2	n/t	n/t
BTEX									
	М	ug/kg	10	cfg < 10.0	n/t	fg < 10.0	n/t	fg < 10.0	fg < 10.0
· · · · · · · · · · · · · · · · · · ·	M	ug/kg	10	cfg < 10.0	n/t	fg < 10.0	n/t	fg < 10.0	fg < 10.0
	M	ug/kg	10	cfg < 10.0	n/t	fg < 10.0	n/t	fg < 10.0	fg < 10.0
	M M	ug/kg mg/kg	10 0.01	cfg < 10.0 n/t	n/t fg < 0.01	fg < 10.0 n/t	n/t fg < 0.01	fg < 10.0 n/t	fg < 10.0 n/t
	IVI	[mg/kg]	0.01	171	ig < 0.01	171	ig < 0.01	171	171
TPH CWG			0.04	- (- 0.04	- //	(m. 0.04	- //	(m. 0.04	(m. 0.04
· · · ·	N N	mg/kg	0.01	cfg < 0.01 cfg < 0.01	n/t n/t	fg < 0.01 fg < 0.01	n/t n/t	fg < 0.01	fg < 0.01
· · · ·	N	mg/kg mg/kg	1	cfg < 0.01	n/t	fg < 1.0	n/t	fg < 0.01 fg < 1.0	fg < 0.01 fg < 1.0
	N	mg/kg	1	cfg < 1.0	n/t	fg < 1.0	n/t	fg < 1.0	fg < 1.0
	N	mg/kg	1	cfg < 1.0	n/t	fg < 1.0	n/t	fg < 1.0	fg < 1.0
	N	mg/kg	1	cfg < 1.0	n/t	fg < 1.0	n/t	fg < 1.0	fg < 1.0
	N	mg/kg	1	cfg < 1.0	n/t	fg < 1.0	n/t	fg < 1.0	fg < 1.0
· · · · · · · · · · · · · · · · · · ·	N	mg/kg	1	cfg < 1.0	n/t	fg < 1.0	n/t	fg < 1.0	fg < 1.0
	N	mg/kg	0.01	cfg < 0.01	n/t	fg < 0.01	n/t	fg < 0.01	fg < 0.01
	N	mg/kg	0.01	cfg < 0.01	n/t	fg < 0.01	n/t	fg < 0.01	fg < 0.01
	N N	mg/kg	1	c < 1.0	n/t	< 1.0	n/t	< 1.0	< 1.0
	N N	mg/kg mg/kg	1	cfg < 1.0 cfg < 1.0	n/t n/t	fg < 1.0 fg < 1.0	n/t n/t	fg < 1.0 fg < 1.0	fg < 1.0 fg < 1.0
	N	mg/kg	1	cfg < 1.0	n/t	fg < 1.0	n/t	fg < 1.0	fg < 1.0
	N	mg/kg	1	cfg < 1.0	n/t	fg < 1.0	n/t	fg < 1.0	fg < 1.0
	N	mg/kg	1	cfg < 1.0	n/t	fg < 1.0	n/t	fg < 1.0	fg < 1.0
	N	mg/kg	1	cfg < 1.0	n/t	fg < 1.0	n/t	fg < 1.0	fg < 1.0
Total Petroleum Hydrocarbor	าร								
	U	mg/kg	5	n/t	fg 426	n/t	fg < 5	n/t	n/t
PCB (ICES 7 congeners)		. 5 51			Ŭ		Ŭ		
· · · · · · · · · · · · · · · · · · ·	M	mg/kg	0.03	n/t	< 0.03	n/t	< 0.03	n/t	n/t

MCERTS

Results Summary Report No.: 14-00770

WAC Analysis Elab Ref:	5236						I Waste Ac Criteria Lim	•
Sample Date:	17/09/201	4					Stable Non-	
Sample ID:	BH2						reactive	
Depth:	1					Inert	Hazardous	Hazardous
Site:	-		ness Street, I	ondon NV	V1	Waste	waste in	Waste
one.						Landfill	non- hazardous	Landfill
Determinand		Code	Units				Landfill	
Total Organic Carbon		N	%		0.8	3	5	6
Loss on Ignition		M	%		2.5		5	10
Total BTEX		M	 mg/kg		< 0.01	6		
Total PCBs (7 congeners)		M	mg/kg		< 0.01	1		
,						· · · · · · · · · · · · · · · · · · ·		
TPH Total WAC		M	mg/kg		< 5	500		
Total (of 17) PAHs	<u> </u>	N	mg/kg		< 2	100		
рН		М			8.8		>6	
Acid Neutralisation Capacity		N	mol/kg		< 0.1		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	10:1		values for cor	•
			mg/l	mg/l	mg/kg	leaching to	est using BS I L/S 10 l/kg	
Arsenic		Ν	< 0.005	< 0.005	< 0.05	0.5	2	25
Barium		Ν	0.019	0.006	0.07	20	100	300
Cadmium		Ν	< 0.001	< 0.001	< 0.01	0.04	1	5
Chromium		Ν	0.029	< 0.005	0.06	0.5	10	70
Copper		Ν	0.007	< 0.005	< 0.05	2	50	100
Mercury		Ν	< 0.005	< 0.005	< 0.01	0.01	0.2	2
Molybdenum		Ν	0.074	0.009	0.14	0.5	10	30
Nickel		N	0.001	< 0.001	< 0.05	0.4	10	40
Lead		N	< 0.001	< 0.001	< 0.05	0.5	10	50
Antimony		N	< 0.005	< 0.005	< 0.05	0.06	0.7	5
Selenium		N	0.008	< 0.005	< 0.05	0.1	0.5	7
Zinc		N	0.014	< 0.005	< 0.05	4	50	200
Chloride		N	34.000	< 5	68.00	800	15000	25000
Fluoride		N	< 1	< 1	< 10	10	150	500
Sulphate		N	336.000	50.000	729.00	1000	20000	50000
Total Dissolved Solids		N	960.000	130.000	1950.00	4000	60000	100000
Phenol Index		N	< 0.01	< 0.01	< 0.10	1	-	-
Dissolved Organic Carbon		N	28.600	12.200	134.00	500	800	1000
Leach Test Informatio	n		20.000	12.200	10-1.00			
Eluent Volume (ml)		Ν	140	1410				
рН		N	7.1	6.9				
Conductivity (uS/cm)		N	1310	219				
Temperature (°C)		N	19	18				
Solid Information								
Dry mass of test portion (g)			178					
Moisture (%)			25.2					
Results are expressed on a dry	L voight booi	ie ofter		r moisturo (content wh	aro applicab		I

Results are expressed on a dry weight basis, after correction for moisture content where applicable

Stated limits are for guidance only and ELAB cannot be held responsible for any discrepencies with current legislation

MCERTS

Results Summary Report No.: 14-00770

Elab Ref:	5234						II Waste Acceptance Criteria Limits			
Sample Date:	17/09/201	4					Stable Non-			
Sample ID:	BH1						reactive			
Depth:	0.5					Inert	Hazardous	Hazardous		
Site:	4	6 Inverr	ness Street, I	ondon, NV	V1	Waste Landfill	waste in non-	Waste Landfill		
							hazardous			
Determinand		Code	Units				Landfill			
Total Organic Carbon		Ν	%		2.6	3	5	6		
Loss on Ignition		М	%		4.3			10		
Total BTEX		М	mg/kg		< 0.01	6				
Total PCBs (7 congeners)		М	mg/kg		< 0.03	1				
TPH Total WAC		М	mg/kg		426	500				
Total (of 17) PAHs		N	mg/kg		5.0	100				
рН		М			8.0		>6			
Acid Neutralisation Capacity		N	mol/kg		< 0.1		To evaluate	To evaluate		
Eluate Analysis			2:1	8:1	10:1	Limit	values for cor	npliance		
			mg/l	mg/l	mg/kg		L/S 10 I/kg			
Arsenic		N	0.013	0.011	0.11	0.5	2	25		
Barium		N	0.051	0.011	0.15	20	100	300		
Cadmium		N	< 0.001	< 0.001	< 0.01	0.04	1	5		
Chromium		N	< 0.005	< 0.005	< 0.05	0.5	10	70		
Copper		N	0.013	< 0.005	< 0.05	2	50	100		
Mercury		N	< 0.005	< 0.005	< 0.01	0.01	0.2	2		
Molybdenum		N	0.024	< 0.005	0.06	0.5	10	30		
Nickel		N	0.003	< 0.001	< 0.05	0.4	10	40		
Lead		N	0.002	0.002	< 0.05	0.5	10	50		
Antimony		N	0.009	< 0.005	< 0.05	0.06	0.7	5		
Selenium		N	< 0.005	< 0.005	< 0.05	0.1	0.5	7		
Zinc		N	0.026	0.007	0.09	4	50	200		
Chloride		N	103.000	10.000	203.00	800	15000	25000		
Fluoride		N	< 1	< 1	< 10	10	150	500		
Sulphate		N	1220.000	40.000	1680.00	1000	20000	50000		
Total Dissolved Solids		N	2130.000	150.000	3660.00	4000	60000	100000		
Phenol Index		N	< 0.01	< 0.01	< 0.10	1	-	-		
Dissolved Organic Carbon		Ν	28.900	12.700	145.00	500	800	1000		
Leach Test Informatio	n			-	•					
Eluent Volume (ml)		N	192	1400						
рН		N	7.5	7						
Conductivity (uS/cm)		N	259	393						
Temperature (°C)		N	19	18						
Solid Information			-							
Dry mass of test portion (g)			176							
Moisture (%)			16.8							

Results are expressed on a dry weight basis, after correction for moisture content where applicable

Stated limits are for guidance only and ELAB cannot be held responsible for any discrepencies with current legislation

Method Summary Report No.: 14-00770

Parameter	Analysis Undertaken On	Date Tested	Method Number	Technique		
Soil						
Free cyanide	As submitted sample	08/10/2014	107	Colorimetry		
Hexavalent chromium	As submitted sample	07/10/2014	110	Colorimetry		
Aqua regia extractable metals	Air dried sample	13/10/2014	118	ICPMS		
Phenols in solids	As submitted sample	07/10/2014	121	HPLC		
Elemental Sulphur	Air dried sample	13/10/2014	122	HPLC		
Polyaromatic hydrocarbons (GC-FID)	As submitted sample	07/10/2014	133	GC-FID		
Water soluble boron	Air dried sample	13/10/2014	202	Colorimetry		
Total cyanide	As submitted sample	08/10/2014	204	Colorimetry		
Aliphatic hydrocarbons in soil	As submitted sample	07/10/2014	214	GC-FID		
Aliphatic/Aromatic hydrocarbons in soil	As submitted sample	08/10/2014	214	GC-FID		
Aromatic hydrocarbons in soil	As submitted sample	07/10/2014	214	GC-FID		
Low range Aliphatic hydrocarbons soil	As submitted sample	08/10/2014	214	GC-MS		
Low range Aromatic hydrocarbons soil	As submitted sample	08/10/2014	214	GC-MS		
Leachate				-		
Arsenic*		08/10/2014	101	ICPMS		
Cadmium*		08/10/2014	101	ICPMS		
Chromium*		08/10/2014	101	ICPMS		
Lead*		08/10/2014	101	ICPMS		
Nickel*		08/10/2014	101	ICPMS		
Copper*		08/10/2014	101	ICPMS		
Zinc*		08/10/2014	101	ICPMS		
Mercury*		08/10/2014	101	ICPMS		
Selenium*		08/10/2014	101	ICPMS		
Antimony		08/10/2014	101	ICPMS		
Barium*		08/10/2014	101	ICPMS		
Molybdenum*		08/10/2014	101	ICPMS		
pH Value*		08/10/2014	113	Electrometric		
Electrical Conductivity*		08/10/2014	136	Probe		
Dissolved Organic Carbon		08/10/2014	102	TOC analyser		
Chloride*		08/10/2014	131	Ion Chromatography		
Fluoride*		08/10/2014	131	Ion Chromatography		
Sulphate*		08/10/2014	131	Ion Chromatography		
Total Dissolved Solids		08/10/2014	144	Gravimetric		
Phenol index		08/10/2014	121	HPLC		
WAC Solids analysis						
pH Value**	Air dried sample	08/10/2014	113	Electrometric		
Total Organic Carbon	Air dried sample	08/10/2014	210	IR		
Loss on Ignition**	Air dried sample	08/10/2014	129	Gravimetric		
Acid Neutralization Capacity to pH 7	Air dried sample	08/10/2014	NEN 737	Electrometric		
Total BTEX**	As submitted sample	08/10/2014	181	GCMS		
Mineral Oil**	As submitted sample	08/10/2014	117	GCFID		
Total PCBs (7 congeners)	Air dried sample	08/10/2014	120	GCMS		
Total PAH (17)**	As submitted sample	08/10/2014	133	GCFID		

Report Information

Report No.: 14-00770

Key

hold UKAS accreditation
hold MCERTS and UKAS accreditation
do not currently hold UKAS accreditation
MCERTS accreditation not applicable for sample matrix
Subcontracted to approved laboratory UKAS Accredited for the test
Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
Insufficient Sample
Unsuitable sample
Not tested
means "less than"
means "greater than"
Comments or interpretations are beyond the scope of UKAS accreditation
The results relate only to the items tested
Uncertainty of measurement for the determinands tested are available upon request

Deviation Codes

- a No date of sampling supplied
- b No time of sampling supplied (Waters Only)
- c Sample not received in appropriate containers
- d Sample not received in cooled condition
- e The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- g Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage Landborne Gas Assessment

Chelmer Consultancy Services Unit 15, East Hanningfield Industrial Estate, Old Church Road East Hanningfield, Essex CM3 8AB Telephone: 01245 400 930 Fax: 01245 400 933 Email: info@siteinvestigations.co.uk Website: www.siteinvestigations.co.uk

Site Ref: 4792

Site Name: 46 Inverness Street, London NW1 7HB

Well	Date	Methane Peak	Methane Steady	Methane GSV	Carbon Dioxide Peak	Carbon Dioxide Steady	Carbon Dioxide GSV	Oxygen	Atmos.	Flow	Response Zone	Depth to Water	со	H2S
		%v/v	%v/v	l/hr	%v/v	%v/v	l/hr	%v/v	mbar	l/hr	m bgl	m bgl	ppm	ppm
BH1	25/09/2014	0.1	<0.1	0.0001	1.3	1.0	0.0013	19.8	1017	0.1	1.00-6.00	Dry	0	0
ВПІ	01/10/2014	0.1	<0.1	-0.0001	1.8	1.8	-0.0018	19.4	1022	-0.1		Dry	13	0
BH2	25/09/2014	0.1	<0.1	0.0001	0.1	<0.1	0.0001	20.1	1017	0.1	1.00-6.00	Dry	0	0
BHZ	01/10/2014	0.1	<0.1	-0.0001	0.4	0.2	-0.0004	20.5	1021	-0.1		Dry	0	0

Notes

Chelmer Site Investigations Unit 15, East Hanningfield Industrial Estate, Old Church Road East Hanningfield, Essex CM3 8AB Telephone: 01245 400 930 Fax: 01245 400 933 Email: info@siteinvestigations.co.uk Website: www.siteinvestigations.co.uk

REPORT NOTES

Equipment Used

Hand tools, Mechanical Concrete Breaker and Spade, Hand Augers, 100mm/150mm diameter Mechanical Flight Auger Rig, GEO205 Flight Auger Rig, Window Sampling Rig, and Large or Limited Access Shell & Auger Rig upon request and/or access permitting.

On Site Tests

By Pilcon Shear-Vane Tester (Kn/m²) in clay soils, and/or Mackintosh Probe in granular soils or made ground and/or upon request Continuous Dynamic Probe Testing and Standard Penetration Testing.

Note:

Details reported in trial-pits and boreholes relate to positions investigated only as instructed by the client or engineer on the date shown.

We are therefore unable to accept any responsibility for changes in soil conditions not investigated i.e. variations due to climate, season, vegetation and varying ground water levels.

Full terms and conditions are available upon request.