

BREEAM Domestic Refurbishment Pre-assessment Report

55 Lancaster Grove London, NW3 4HD

3rd February 2015

Prepared for:

Mr A Etingen 55 Lancaster Grove London NW3 4HD

Contents

- 1 BREEAM Domestic Refurbishment
- 2 Site & Proposal
- 3 Overall Score and BREEAM Performance
- 4 Conclusions

Appendices

- A Project Performance Against Assessment Criteria
- B BREEAM Domestic Refurbishment Pre-assessment Estimator
- C BREEAM Domestic Refurbishment Energy Calculator Tool
- D SAP Input & DER Output Before Refurbishment
- E SAP Input & DER Output After Refurbishment

1.0 What is BREEAM Domestic Refurbishment?

Replacing Eco Homes in **July 2012**, the BREEAM Domestic Refurbishment scheme is used to assess the environmental life cycle impacts of refurbishment projects including existing dwelling undergoing refurbishment, extensions, domestic conversions and change of use projects in the UK only.

'Domestic Refurbishment' is classified under two categories:

- 1. Alterations to existing dwellings and extensions
- 2. Domestic conversions and change of use projects

BREEAM Domestic Refurbishment is a performance based assessment method and certification scheme for domestic buildings undergoing refurbishment. The primary aim of BREEAM Domestic Refurbishment is to improve the environmental performance of existing dwellings in a robust and cost effective manner.

This is achieved through integration and use of the scheme by clients and their project teams at key stages in the refurbishment process. This enables the client, through personnel qualified and licensed under the BREEAM Domestic Refurbishment Scheme and the BRE Global certification process, to measure, evaluate and reflect the performance of their refurbishment project against best practice in an independent and robust manner.

This performance is quantified by a number of individual measures and associated criteria stretching across a range of environmental issues as described in **Appendix A**

1.1 Advantages of Meeting the BREEAM standards

- 1. Reduced maintenance costs.
- 2. Reduced greenhouse gases.
- 3. Reduced impact on environment.
- 4. Provide affordable warmth.
- 5. Healthy and comfortable internal environment.
- 6. Improved sustainability credentials.
- 7. Increased level of occupant satisfaction.

8. Outperforms open market housing in terms of energy demand - increased sale-ability.

9. Demonstrates forward thinking and environmental awareness on the part of the Developers and Housing providers.

1.2 BREEAM Rating benchmarks

The BREEAM rating benchmarks for domestic refurbishment projects assessed using the 2014 version of BREEAM Domestic Refurbishment are as follows:

BREEAM Rating	% Score
Outstanding	>85
Excellent	>70
Very Good	>55
Good	>45
Pass	>30
Unclassified	<30

The BREEAM rating benchmark levels enable a client or other stakeholder to compare an individual building's performance with other BREEAM rated buildings and the typical sustainability performance of refurbished domestic buildings in the UK.

In this respect each BREEAM rating level broadly represents performance equivalent to:

- **Outstanding:** Less than top 1% of UK domestic refurbishments (innovator)
- **Excellent:** Top 10% of UK domestic refurbishments (best practice)
- **Very Good:** Top 25% of UK domestic refurbishments (advanced good practice)
- Good: Top 50% of UK domestic refurbishments (intermediate good practice)
- **Pass:** Top 75% of UK domestic refurbishments (standard good practice)

2.0 Site & Proposal

The development site consists of an existing 2 storey semi-detached dwelling with further accommodation within the roof space

The existing building is assumed to be of late Victorian era construction – and of solid brick construction with single glazed sash windows.

Planning permission is sought to create a basement level with a gym areas, study space and utility space, as well as a new ground floor extension to the rear providing a new kitchen and dining area.

The project sits within the Borough of Camden; Camden's adopted Local Development Framework expects that:-

"developments (except new build) of 500 sqm of residential floorspace or above or 5 or more dwellings to achieve "very good" in EcoHomes assessments prior to 2013 and encouraging "excellent" from 2013;

Camden Core Strategy Policy CS13, paragraph 13.9 expects "development or alterations to existing buildings to include proportionate measures to be taken to improve their environmental sustainability, where possible. "

"All buildings, whether being updated or refurbished, are expected to reduce their carbon emissions by making improvements to the existing building. Work involving a change of use or an extension to an existing property is included. As a guide, at least 10% of the project cost should be spent on the improvements."

This report takes into account these issues and although not specifically required as a non-major development, the developer has made the decision to demonstrate compliance with Camden Core Strategy Policy CS13 - "to include proportionate measures to improve their environmental sustainability, where possible. " - by undertaking a BREEAM Domestic Refurbishment assessment at formal design stage and post construction and achieve a "Very Good" standard.

It is expected that at least 10% of the project budget will be utilised in achieving improvements in overall energy efficiency for the dwelling and improved sustainability credentials:-

- New high efficiency boiler plant
- New super insulated DHW cylinder
- Upgraded boiler controls
- Upgraded insulation to existing roof structure
- Insulation levels to new build elements to go beyond the minimum requirements of the Building Regulations
- Cycle storage facilities
- Provision of new A rated white goods

3.0 Overall Score & BREEAM Performance

The proposed development should achieve **57.29%** which equates to a **'Very Good'** Rating

3.1 Detailed Breakdown

A detailed breakdown of the BREEAM categories, the recommendations to the developers and how the development will achieve the necessary credits for a Very Good rating is attached in **Appendix A.** This also includes the evidence that will be needed to be provided at the formal design stage assessment design/post construction stage.

3.2 Pre-assessment Estimator

The BREEAM Domestic Refurbishment pre-assessment estimator is attached at **Appendix B** which includes the indications of the percentage contribution of each section to the overall score

3.2 SAP Dwelling Emission Rate

In order to demonstrate the performance of the project under the critical Energy categories that relate to emissions standards and the improvements achieved through the refurbishment programme, SAP calculations have been undertaken based upon the following criteria which comply with the minimum standards of AD L1B:-

- Installation of new high efficiency condensing gas boiler to provide the heating.
- Domestic hot water provided via super insulated megaflow hot water cylinders
- All existing elements in original buildings to remain in situ and u values assumed from SAP2005 Appendix S
- New basement walls to achieve u value of 0.15, new external walls to achieve u=0.26
- New basement floor to achieve u=0.15
- New double glazing to be installed to new build elements assumed u values at 1.6
- New flat roof structures to achieve a u value of 0.14
- Existing roof structure to be upgraded to meet a u value at 0.18

The pre-refurbishment model has been based upon SAP2009 Appendix S data assuming the standard features of the original building, including:-

- Solid brick walls uninsulated
- Solid uninsulated floors
- Single glazing with hard wood frames
- Poorly insulated roof spaces
- Old gas boiler (65% efficient) with jacket insulated hot water tank

The data output from the SAP model has been input to the BREEAM Domestic Refurbishment Energy calculator tool which is attached at **Appendix C**

The SAP outputs for the dwellings before and after refurbishment are attached at **Appendix D & E**

4.0 CONCLUSION

The Developer and Principle Contractor will be committed to achieving the required score with the above recommendations incorporated into the specification. Occupiers of the dwelling will enjoy reduced operating and life cycle costs due to the enhancement over and above current Building Regulations and built in features designed to reduce environmental impact and greenhouse gases. Overall the carbon footprint of the scheme will be minimised and all stakeholders involved stand to benefit as a result of the assessment and recommendations.

Report Prepared by:-

eb7 - Environmental Consultants Studio 1B, 63 Webber Street, London SE1 OQW

BREEAM Ref - Neil Ingham - NIO3

Date: 3rd February 2015

Checked

Assessor

Date: 3rd February 2015

Appendix A

Project Performance Against Assessment Criteria

Appendix B

BREEAM Domestic Refurbishment - Pre-assessment Estimator

Appendix C

BREEAM Domestic Refurbishment – Energy Calculator Tool

Appendix D

SAP Worksheet & PEA Output - Before Refurbishment

Appendix E

SAP Worksheet & PEA Output - After Refurbishment

BREEAM Domestic Refurbishment

55 Lancaster Gate, London, NW3 4HD

Category	Issue	Notes and Design Stage Evidence Requirements	Credits
Home User Guide	Man 1	Developer is committed to producing a home user guide in line with BREEAM requirements Evidence Letter confirming commitment to provide home user guide to BREEAM standards	3.00
Responsible Construction Practices	Man 2	The main contractor will be required to comply with CCS to "best practice", scoring at least 25 points and at least 5 points in each of the 5 sections Evidence Written confirmation of commitment to scheme, and score to be targeted	1.00
Construction Site Impacts	Man 3	The credits will not be sought under this section Evidence Completed and signed copies of the relevant checklists	0.00
Security	Man 4	Due to the introduction of basement level glazing and the existing single glazing in accessible windows, it is unlikely that compliance will be sought on this project Evidence A written commitment to undertake the liaison and comply with the recommendations and outcomes.	0.00

Protection/	Man 5	The credits will not be sought under this section	0.00
Enhancement		Evidence	
of Ecological Features		Site ecology report by a project team member highlighting site ecology and written commitment to protect	
reatures		any such ecological features	
Project Management	Man 6	The project team will be assigned specific responsibilities by the project manager, to include planning, design, refurbishment, commissioning & handover and occupation.	1.00
rianagement			
		Evidence	
		Minutes from design team meetings involving the full project team	
Daylighting	Hea 1	Looking at layouts, the addition of the new glazing may affect existing daylighting levels. Prior to formal assessment, the credits are not awarded	0.00
		Evidence	
		N/A	
Sound	Hea 2	The credits will not be sought under this section – as existing party walls cannot be tested	0.00
Insulation		Evidence	
		Written report and confirmation of the above from a suitably qualified acoustician	
Volatile Organic	Hea 3	The developer has not committed to achieving credits under this section.	0.00
Compounds		Evidence	
		A written commitment to use suitable certified products, and copies of the manufacturers literature confirming compliance with the relevant standard	
Inclusive	Hea 4	Due to the historic nature of the buildings and the limitations placed upon the redevelopment accordingly – it	0.00
Design		unlikely that the unit would be compliant and no credits are awarded under this section	
		Evidence N/A	

Ventilation	Hea 5	The developer has confirmed that the ventilation strategy will be fully compliant with AD Part F Section 5 in terms of background, purge and mechanical ventilation Evidence	2.00
		A compliant specification/mechanical drawings showing ventilation provision	
Safety	Hea 6	The development will incorporate carbon monoxide detection due to the use of fossil fuels as the primary heating source, and mains powered fire detection/alarm systems	1.00
		Evidence Written commitment to install systems certified to the relevant standards, followed by manufacturers specification as soon as available	
Improvement in EER	Ene 1	SAP calculations have been undertaken in line with the requirements of AD L1B. The outcome of a post refurbishment EER of 76, as against an assumed EER of 28 based upon SAP2009 Appendix S criteria achieves 5.0 credits	5.00
		Evidence Copy of the draft EPC from SAP2009 and the Energy Efficiency calculator	
EER Post Refurbishment	Ene 2	The EER rating of 76 as noted above achieves 3.0 credits and meets the minimum standard of BREEAM Excellent	3.00
		Evidence Copy of the draft EPC from SAP2009 and the Energy Efficiency calculator	
Primary Energy Demand	Ene 3	The calculations have been undertaken for the refurbished property and a primary energy demand of <160Kwh/sqm/year has been achieved	6.00
		Evidence Copy of the SAP worksheet from SAP2009 and the Energy Efficiency calculator	

Renewable Technologies	Ene 4	It is acknowledged that the conservation area status of the development would inhibit the ability to pursue credits under this section. Credits are therefore not sought Evidence N/A	0.00
Energy Labelled White Goods	Ene 5	The developer has committed to providing a copy of the EU labelling scheme as part of the Home User Guide Evidence Copy of the Home User Guide	1.00
Drying Space	Ene 6	An external drying line will be installed within the rear garden area Evidence Include in specification and show on plans.	1.00
Lighting	Ene 7	The developer has confirmed that a low energy lighting strategy will be adopted for external lighting which will ensure an overall lighting density <9w/sqm Evidence Layouts showing lighting locations and details. Manufacturers literature confirming efficacy minimum, wattage and controls for external lighting	2.00
Display Energy Devices	Ene 8	The credits will not be sought under this section Evidence Written commitment to supply the display energy devices and model specification	0.00
Cycle Storage	Ene 9	A bespoke cycle storage facility will be put in place in the rear grounds – with direct access to/from the public highway Evidence Full details of the storage facility and security measures	2.00

Home Office	Ene 10	The dwelling will be equipped with a study area in a well lit room. Developer confirms that it is equipped with telephone sockets, 2 x double power sockets and has access to broadband. The rooms will also be provide with adequate ventilation (see Hea 05) Evidence Show on plans and confirm above through specification	1.00
Internal Water Consumption	Wat 1	All new sanitary ware to be installed will be low flow/low flush/low capacity, including new white goods. Developer also to advise flow rates for all existing water consuming devices within property (taps, baths, shower etc.). Developer to target <117 litres/person/day Evidence Full details and locations of all water consuming devices	2.0
External Water Consumption	Wat 2	An external water butt will be installed to collect roof water for the upkeep of soft landscaped areas Evidence Written commitment to supply and type/make model of water butt to be installed	1.00
Water Meter	Wat 3	The credit will not be sought under this section Evidence Written commitment to supply the display energy devices and model specification	0.00
Environmental Impact of Materials	Mat 1	As majority of material left in situ, the project will score highly in this section. Developer to confirm specification of all new build elements – roof, internal walls, windows and internal floors Evidence Specification of new build elements and plans indicating elements left in situ	13.00

Responsible Sourcing	Mat 2	Developer wishes to pursue further credits and will provide EMS/FCS certs for new materials to demonstrate responsible sourcing and in addition will confirm that all new timber used in the project is sourced in accordance with the UK Government's Timber Procurement Policy.	8.00
		Specification and volume of new build materials used and responsible sourcing certification	
Insulation	Mat 3	Developer will source insulation materials with a high Green Guide rating and thereby achieve a high overall insulation index demonstrating low embodied environmental impact	4.00
		Credits are also available if insulation is responsibly sourced, but the developer has not committed to this at the design stage	
		Evidence Specification and volume of insulations used and responsible sourcing certification	
Household Waste	Wst 1	The developer will provide 3 x internal bins at capacity 30litres for waste recycling in a fixed location, minimum bin size 7l within a fixed unit in the kitchen area.	2.00
		The developer is also to provide information on Local Authority kerbside recycling scheme.	
		Evidence Full details of bins supplied and mark provision on plans Details of Local authority collection scheme	
Refurbishment Site Waste Management	Wst 2	Main contractor will be required to produce SWMP and monitor, sort and recycle construction waste and meet good practice waste benchmarks in terms of waste generated per £100K value of construction contract	2.00
Hundgement		Evidence Copy of SWMP and waste removal records/recycling records	
NOx Emissions	Pol 1	The development will incorporate a replacement high efficiency gas fired boiler system to provide the heating and hot water to the dwelling.	3.00
		Evidence Manufacturers specification of relevant plant and NOx emission data	

Surface Water Run-off	Pol 2	The development site is required to ensure that surface water run-off is no greater then pre-development in order to meet planning requirements – Core Strategy Policy 13, and LDF Policy DP27	1.00
		Evidence Details/specification of attenuation measures accompanied by design team calculations.	
Flooding	Pol 3	EA maps indicate Zone 1 - the developer has not indicated that a formal flood risk assessment will be undertaken	0.00
		Evidence Flood risk assessment report confirming level of flood risk	
Innovation	Inn	At this early stage, Innovation credits have not been considered	0.00
		Total Weighted Credits (Target 55 – Very Good)	57.29

BREEAM Domestic Refurbishment 2012 Pre-Assessment Estimator

This assessment and indicative BREEAM rating is not a formal certified BREEAM assessment or rating and must not be communicated as such. The score presented is indicative of a dwelling's potential performance and is based on a simplified pre-formal BREEAM assessment and unverified commitments given at an early stage in the design process.

	Indicative Minir	Building name Indicative building score (%) Indicative BREEAM rating num standards level achieved	55 Lancaster G 57.29% BREEAM Very BREEAM Very	Good	
	Management				
	Water	Materials Wast	e Pollution	action Score	0.00%
	MANAGEMENT	Section Weighting: 12%	Indicative Se	ction Score	5.45%
/lan 01	Home Users Guide				
	No. of BREEAM credits available		Available contribution to ov		3.27%
	No. of BREEAM innovation credits	0	Minimum standards		No
here a H Intents I	nt Criteria Home Users Guide be provided to a list', three credits may be awarded		et out in the 'Users Guide	Indicative Achiev 3	
Man 02	Responsible Construction Practic	ces			
viaii 02	an dependence in the state	-			
sessme	No. of BREEAM credits available No. of BREEAM innovation credits int Criteria compliant considerate construction	1	Available contribution to or Minimum standards awarded depending the score		
l sessme here a c	No. of BREEAM innovation credits int Criteria compliant considerate construction as outlined below:	1 scheme will be used, credits are	Minimum standards	s applicable Indicative	No Credits
l sessme here a c	No. of BREEAM innovation credits int Criteria compliant considerate construction	1 scheme will be used, credits are han 5 units	Minimum standards e awarded depending the score	s applicable Indicative Achiev	No Credits
l sessme here a c	No. of BREEAM innovation credits int Criteria compliant considerate construction as outlined below:	1 scheme will be used, credits are	Minimum standards	s applicable Indicative Achiev	No Credits
l sessme here a c	No. of BREEAM innovation credits int Criteria compliant considerate construction as outlined below: Large Scale - project with more t Considerate Constructors	1 scheme will be used, credits are than 5 units One Credit	Minimum standards e awarded depending the score Two Credits	s applicable Indicative Achiev	No Credits
l sessme here a c	No. of BREEAM innovation credits int Criteria compliant considerate construction as outlined below: Large Scale - project with more t Considerate Constructors Scheme	1 scheme will be used, credits are than 5 units One Credit Score of 24 - 31.5 50% of the optional items in Checklist A-3	Minimum standards e awarded depending the score Two Credits Score of 32 - 35.5 80% of the optional items in Checklist A-3	s applicable Indicative Achiev	No Credits
l sessme here a c	No. of BREEAM innovation credits int Criteria compliant considerate construction as outlined below: Large Scale - project with more to Considerate Constructors Scheme Checklist A-3 Small Scale - project with 5 units	1 scheme will be used, credits are than 5 units One Credit Score of 24 - 31.5 50% of the optional items in Checklist A-3	Minimum standards e awarded depending the score Two Credits Score of 32 - 35.5 80% of the optional items in	s applicable Indicative Achiev	No Credits
l sessme here a c	No. of BREEAM innovation credits int Criteria compliant considerate construction as outlined below: Large Scale - project with more to Considerate Constructors Scheme Checklist A-3	1 scheme will be used, credits are than 5 units One Credit Score of 24 - 31.5 50% of the optional items in Checklist A-3 s or fewer	Minimum standards e awarded depending the score Two Credits Score of 32 - 35.5 80% of the optional items in Checklist A-3	s applicable Indicative Achiev	No Credits
l sessme here a c	No. of BREEAM innovation credits int Criteria compliant considerate construction as outlined below: Large Scale - project with more to Considerate Constructors Scheme Checklist A-3 Small Scale - project with 5 units Considerate Constructors	1 scheme will be used, credits are than 5 units One Credit Score of 24 - 31.5 50% of the optional items in Checklist A-3 or fewer One Credit	Minimum standards e awarded depending the score Two Credits Score of 32 - 35.5 80% of the optional items in Checklist A-3 Two Credits	s applicable Indicative Achiev	No Credits
l sessme here a c	No. of BREEAM innovation credits int Criteria compliant considerate construction as outlined below: Large Scale - project with more t Considerate Constructors Scheme Checklist A-3 Small Scale - project with 5 units Considerate Constructors Scheme	1 scheme will be used, credits are than 5 units One Credit Score of 24 - 31.5 50% of the optional items in Checklist A-3 cor fewer One Credit 24 - 31.5	Minimum standards e awarded depending the score Two Credits Score of 32 - 35.5 80% of the optional items in Checklist A-3 Two Credits 32 - 35.5	s applicable Indicative Achiev	No Credits
l sessme here a c	No. of BREEAM innovation credits int Criteria compliant considerate construction as outlined below: Large Scale - project with more t Considerate Constructors Scheme Checklist A-3 Small Scale - project with 5 units Considerate Constructors Scheme Checklist A-3	1 scheme will be used, credits are than 5 units One Credit Score of 24 - 31.5 50% of the optional items in Checklist A-3 Core fewer One Credit 24 - 31.5 50% of the optional items	Minimum standards e awarded depending the score Two Credits Score of 32 - 35.5 80% of the optional items in Checklist A-3 Two Credits 32 - 35.5 80% of the optional items	s applicable Indicative Achiev	No Credits
l sessme here a c	No. of BREEAM innovation credits int Criteria compliant considerate construction as outlined below: Large Scale - project with more to Considerate Constructors Scheme Checklist A-3 Small Scale - project with 5 units Considerate Constructors Scheme Checklist A-3 Checklist A-3 Checklist A-4	1 scheme will be used, credits are than 5 units One Credit Score of 24 - 31.5 50% of the optional items in Checklist A-3 cor fewer One Credit 24 - 31.5 50% of the optional items 50% of the optional items 50% of the optional items Score of >36	Minimum standards e awarded depending the score Two Credits Score of 32 - 35.5 80% of the optional items in Checklist A-3 Two Credits 32 - 35.5 80% of the optional items	s applicable Indicative Achiev 1	No Credits ved
l sessme here a c	No. of BREEAM innovation credits int Criteria compliant considerate construction as outlined below: Large Scale - project with more to Considerate Constructors Scheme Checklist A-3 Small Scale - project with 5 units Considerate Constructors Scheme Checklist A-3 Checklist A-3 Checklist A-4 Exemplary Credit Considerate Constructors	1 scheme will be used, credits are chan 5 units One Credit Score of 24 - 31.5 50% of the optional items in Checklist A-3 cor fewer One Credit 24 - 31.5 50% of the optional items 50% of the optional items 50% of the optional items	Minimum standards e awarded depending the score Two Credits Score of 32 - 35.5 80% of the optional items in Checklist A-3 Two Credits 32 - 35.5 80% of the optional items	s applicable Indicative Achiev 1	No Credits ved

	Construction Site Impacts No. of BREEAM credits available	1	Available contribution to ov	orall ccore	1.09%
_	No. of BREEAIN credits available No. of BREEAM innovation credits		Available contribution to ov Minimum standards		1.09% No
	nt Criteria	U	Willing Standards	Indicative	
	dence demonstrate that site impac	cts will be monitored. as detaile	ed below:	Achie	
	· · · · · · · · · · · · · · · · · · ·	Requirements		0	
		On	e Credit		
			emonstrate that 2 or more of the		
	Large Scale		list A-5 are completed		
			emonstrate that 2 or more of the		
	Small Scale		list A-6 are completed		
		Sections of Checkli	ist		
	Large Scale - C		Small Scale - Checklist A-	-6	
	Monitor, report and set targets for				
	use arising from site activities		Set objectives for reducing CO2 pr	oduction	
	Monitor, report and set targets for	or water consumption arising	from energy use arising from site a		
	from site activities	or water consumption ansing	Set objectives for reducing water u		
	If offisite activities			use ansing	
	A main contractor with an enviro	nmontal materials policy	from site activities	atorials	
	A main contractor with an enviro		Main contractor environmental ma	aterials	
	A main contractor that operates	an Environmental	statement		
	Management System		80% of site timber is reclaimed, re-	-used or	
			responsibly sourced		
	80% of site timber is reclaimed, r	1 1			
	Same definition of small and larg	ge scale as in Man 02			
Man 04	Security				
	No. of BREEAM credits available	2	Available contribution to ov	verall score	2.18%
N	No. of BREEAM innovation credits	0	Minimum standards	applicable	No
Vhere the	following requirements will be me		Requirements	Indicative Achie 0	
Vhere the	One Credit		Requirements windows meet minimum standards	Achie 0	
Vhere the		External doors and accessible	•	Achie 0	
/here the	One Credit	External doors and accessible appropriately certified	windows meet minimum standards	Achie 0 and	
/here the	One Credit Secure windows and doors	External doors and accessible appropriately certified Principles and guidance of Sec	windows meet minimum standards	Achie 0 and ied with	
/here the	One Credit Secure windows and doors Two Credits	External doors and accessible appropriately certified Principles and guidance of Sec A suitably qualified security co	windows meet minimum standards ured by Design Section 2 are compl nsultant is consulted at the design s	Achie 0 and ied with	
/here the	One Credit Secure windows and doors	External doors and accessible appropriately certified Principles and guidance of Sec A suitably qualified security co	windows meet minimum standards	Achie 0 and ied with	
	One Credit Secure windows and doors Two Credits Secured by design	External doors and accessible appropriately certified Principles and guidance of Sec A suitably qualified security co their recommendations are in	windows meet minimum standards ured by Design Section 2 are compl nsultant is consulted at the design s	Achie 0 and ied with	
	One Credit Secure windows and doors Two Credits Secured by design Protection and Enhancement of	External doors and accessible appropriately certified Principles and guidance of Sec A suitably qualified security co their recommendations are in Ecological Features	windows meet minimum standards sured by Design Section 2 are compl onsultant is consulted at the design s corporated into the refurbishment	Achie 0 and ied with stage and	ved
Man 05	One Credit Secure windows and doors Two Credits Secured by design Protection and Enhancement of No. of BREEAM credits available	External doors and accessible appropriately certified Principles and guidance of Sec A suitably qualified security co their recommendations are in Ecological Features 1	windows meet minimum standards sured by Design Section 2 are compl onsultant is consulted at the design s corporated into the refurbishment Available contribution to ov	Achie 0 and ied with stage and verall score	ved
Man 05	One Credit Secure windows and doors Two Credits Secured by design Protection and Enhancement of No. of BREEAM credits available No. of BREEAM innovation credits	External doors and accessible appropriately certified Principles and guidance of Sec A suitably qualified security co their recommendations are in Ecological Features 1	windows meet minimum standards sured by Design Section 2 are compl onsultant is consulted at the design s corporated into the refurbishment	Achie 0 and ied with stage and /erall score applicable	ved 1.09% No
Man 05 Ssessmei	One Credit Secure windows and doors Two Credits Secured by design Protection and Enhancement of No. of BREEAM credits available	External doors and accessible appropriately certified Principles and guidance of Sec A suitably qualified security co their recommendations are in Ecological Features 1	windows meet minimum standards sured by Design Section 2 are compl onsultant is consulted at the design s corporated into the refurbishment Available contribution to ov	Achie 0 and ied with stage and verall score	1.09% No Credits ved
Man 05 Ssessmei	One Credit Secure windows and doors Two Credits Secured by design Protection and Enhancement of No. of BREEAM credits available No. of BREEAM innovation credits nt Criteria	External doors and accessible appropriately certified Principles and guidance of Sec A suitably qualified security co their recommendations are in Ecological Features 1 1	windows meet minimum standards sured by Design Section 2 are compl onsultant is consulted at the design s corporated into the refurbishment Available contribution to ov	Achie 0 and ied with stage and /erall score applicable Indicative Achie	1.09% No Credits ved
Man 05 Ssessmei	One Credit Secure windows and doors Two Credits Secured by design Protection and Enhancement of No. of BREEAM credits available No. of BREEAM innovation credits nt Criteria	External doors and accessible appropriately certified Principles and guidance of Sec A suitably qualified security co their recommendations are in Ecological Features 1 1 2 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	windows meet minimum standards sured by Design Section 2 are compl onsultant is consulted at the design s corporated into the refurbishment Available contribution to ov Minimum standards	Achie 0 and ied with stage and /erall score applicable Indicative Achie 0	1.09% No Credits ved
Man 05 sssessmei	One Credit Secure windows and doors Two Credits Secured by design Protection and Enhancement of No. of BREEAM credits available No. of BREEAM innovation credits nt Criteria	External doors and accessible appropriately certified Principles and guidance of Sec A suitably qualified security co their recommendations are in Ecological Features 1 1 2 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	windows meet minimum standards sured by Design Section 2 are compl onsultant is consulted at the design s corporated into the refurbishment Available contribution to ov	Achie 0 and ied with stage and /erall score applicable Indicative Achie 0	1.09% No Credits ved
Man 05 Nassessmei	One Credit Secure windows and doors Two Credits Secured by design Protection and Enhancement of No. of BREEAM credits available No. of BREEAM innovation credits nt Criteria	External doors and accessible appropriately certified Principles and guidance of Sec A suitably qualified security co their recommendations are in Ecological Features 1 1 et: Requirements Site survey carried out to dete Statutory Nature Conservation	windows meet minimum standards sured by Design Section 2 are compl onsultant is consulted at the design s corporated into the refurbishment Available contribution to ov Minimum standards rmine presence of ecological featur	Achie 0 and ied with stage and /erall score applicable Indicative Achie 0 res species	1.09% No Credits ved
Man 05 Ssessmei	One Credit Secure windows and doors Two Credits Secured by design Protection and Enhancement of No. of BREEAM credits available No. of BREEAM innovation credits int Criteria following requirements will be me	External doors and accessible appropriately certified Principles and guidance of Sec A suitably qualified security co their recommendations are in Ecological Features 1 1 et: Requirements Site survey carried out to dete Statutory Nature Conservation	windows meet minimum standards sured by Design Section 2 are compl onsultant is consulted at the design s corporated into the refurbishment Available contribution to ov Minimum standards	Achie 0 and ied with stage and /erall score applicable Indicative Achie 0 res species	1.09% No Credits ved
Man 05 Nassessmei	One Credit Secure windows and doors Two Credits Secured by design Protection and Enhancement of No. of BREEAM credits available No. of BREEAM innovation credits int Criteria following requirements will be me	External doors and accessible appropriately certified Principles and guidance of Sec A suitably qualified security co their recommendations are in Ecological Features 1 1 et: Requirements Site survey carried out to dete Statutory Nature Conservation	windows meet minimum standards sured by Design Section 2 are compl onsultant is consulted at the design s corporated into the refurbishment Available contribution to ov Minimum standards rmine presence of ecological featur	Achie 0 and ied with stage and /erall score applicable Indicative Achie 0 res species	1.09% No Credits ved
Man 05 Nassessmei	One Credit Secure windows and doors Two Credits Secured by design Protection and Enhancement of No. of BREEAM credits available No. of BREEAM innovation credits int Criteria following requirements will be me	External doors and accessible appropriately certified Principles and guidance of Sec A suitably qualified security co their recommendations are in Ecological Features 1 1 2 2 3 3 3 3 3 3 3 4 5 3 3 4 5 3 5 4 5 4 5 4	windows meet minimum standards cured by Design Section 2 are compl onsultant is consulted at the design s corporated into the refurbishment Available contribution to ov Minimum standards ermine presence of ecological featur n Organisation notified of protected rotected during refurbishment work	Achie 0 and ied with stage and /erall score applicable Indicative Achie 0 es species s	1.09% No Credits ved
Man 05 Nassessmei	One Credit Secure windows and doors Two Credits Secured by design Protection and Enhancement of No. of BREEAM credits available No. of BREEAM credits available No. of BREEAM innovation credits of BREEAM innovation credits the Criteria of Criteria following requirements will be me	External doors and accessible appropriately certified Principles and guidance of Sec A suitably qualified security co their recommendations are in Ecological Features 1 1 2 Ecological Features Site survey carried out to dete Statutory Nature Conservation Features of ecological value po Requirements A suitably qualified ecologist r	windows meet minimum standards sured by Design Section 2 are compl onsultant is consulted at the design s corporated into the refurbishment Available contribution to ov Minimum standards rmine presence of ecological featur	Achie 0 and ied with stage and /erall score a applicable Indicative Achie 0 controls species species Indicative In	1.09% No Credits ved
Man 05 Nassessmei	One Credit Secure windows and doors Two Credits Secured by design Protection and Enhancement of No. of BREEAM credits available No. of BREEAM innovation credits int Criteria following requirements will be me	External doors and accessible appropriately certified Principles and guidance of Sec A suitably qualified security co their recommendations are in Ecological Features 1 1 2 2 3 3 3 3 3 3 3 4 5 3 3 4 5 3 5 4 5 4 5 4	windows meet minimum standards cured by Design Section 2 are compliants corporated into the refurbishment Available contribution to ov Minimum standards remine presence of ecological featur n Organisation notified of protected rotected during refurbishment work ecommends features to enhance	Achie 0 and ied with stage and /erall score applicable Indicative Achie 0 es species s	1.09% No Credits ved

	Project Management No. of BREEAM credits available	3			2.189
			Available contribution to overall		2.18 No
	No. of BREEAM innovation credits	2	Minimum standards appl		
	nt Criteria		In	dicative	
ie trie	following requirements will be m	ει.		Achiev	ed
		Do su viso se osto		1	
		Requirements			
		Where all of the project team ar	e involved in the project decision maki	ng	
		where an or the project tedli di	e involved in the project decision make		
		Small Scale - the project manage	er assigns individual and shared		
			ject team including all trades on site		
	One Credit				
	Duritant Dalar and	Large Scale - the project manage	er assigns individual and shared		
	Project Roles and Responsibilities		ring key design and refurbishment stag	es:	
	Responsibilities	i. Planning and Building control r			
		ii. Design			
		iii. Refurbishment			
		iv. Commissioning and handover			
		v. Occupation			
	Small Scale projects: five units o	r fewer or less than £100k			
	Large Scale projects: more than	five units or more than £100k			
		Requirements			
		Handover meeting arranged			
		2 or more of the following comm	nitted to:		
		- A site inspection within 3 mon			
	One Credit		-		
		 Conduct post occupancy interv 	iews with building occupants or a sur	rvey	
	Handover and Aftercare	 Conduct post occupancy interv via phone or posted information 		rvey	
	Handover and Aftercare	via phone or posted information - Longer term after care e.g. a h	within 3 months of occupation elpline, nominated individual		
	Handover and Aftercare	 via phone or posted information Longer term after care e.g. a h or other appropriate system to 	within 3 months of occupation elpline, nominated individual	rvey t the	
	Handover and Aftercare	via phone or posted information - Longer term after care e.g. a h	within 3 months of occupation elpline, nominated individual		
	Handover and Aftercare	 via phone or posted information Longer term after care e.g. a h or other appropriate system to 	within 3 months of occupation elpline, nominated individual		
	Handover and Aftercare	 via phone or posted information Longer term after care e.g. a h or other appropriate system to 	within 3 months of occupation elpline, nominated individual support building users for at leas		Credil
		 via phone or posted information Longer term after care e.g. a h or other appropriate system to 	within 3 months of occupation elpline, nominated individual support building users for at leas	t the	
		via phone or posted information - Longer term after care e.g. a h or other appropriate system to first 12 months of occupation Requirements	within 3 months of occupation elpline, nominated individual support building users for at leas	t the	
	Exemplary Credits	via phone or posted information - Longer term after care e.g. a h or other appropriate system to first 12 months of occupation Requirements Where A BREEAM Accredited P	within 3 months of occupation elpline, nominated individual support building users for at leas In rofessional has been appointed	t the ndicative (Achiev	
		via phone or posted information - Longer term after care e.g. a h or other appropriate system to first 12 months of occupation Requirements Where A BREEAM Accredited P to oversee key stage	within 3 months of occupation elpline, nominated individual support building users for at leas	t the ndicative (Achiev	
	Exemplary Credits One Exemplary Credit	via phone or posted information - Longer term after care e.g. a h or other appropriate system to first 12 months of occupation Requirements Where A BREEAM Accredited P to oversee key stage C	within 3 months of occupation elpline, nominated individual support building users for at leas rofessional has been appointed swithin the project.	t the ndicative (Achiev	
	Exemplary Credits	via phone or posted information - Longer term after care e.g. a h or other appropriate system to first 12 months of occupation Requirements Where A BREEAM Accredited P to oversee key stage C Where a BREEAM Domestic Re	within 3 months of occupation elpline, nominated individual support building users for at leas rofessional has been appointed swithin the project.	t the ndicative (Achiev	
	Exemplary Credits One Exemplary Credit	via phone or posted information - Longer term after care e.g. a h or other appropriate system to first 12 months of occupation Requirements Where A BREEAM Accredited P to oversee key stage C Where a BREEAM Domestic Re appointed at an early stage	within 3 months of occupation elpline, nominated individual o support building users for at leas rofessional has been appointed swithin the project. IR furbishment Assessor has been	t the ndicative (Achiev	
	Exemplary Credits One Exemplary Credit	via phone or posted information - Longer term after care e.g. a h or other appropriate system to first 12 months of occupation Requirements Where A BREEAM Accredited P to oversee key stage C Where a BREEAM Domestic Re appointed at an early stage production of a refure	within 3 months of occupation elpline, nominated individual o support building users for at leas rofessional has been appointed swithin the project. R furbishment Assessor has been of the project, prior to the	t the ndicative (Achiev	
	Exemplary Credits One Exemplary Credit	via phone or posted information - Longer term after care e.g. a h or other appropriate system to first 12 months of occupation Requirements Where A BREEAM Accredited P to oversee key stage C Where a BREEAM Domestic Re appointed at an early stage	within 3 months of occupation elpline, nominated individual o support building users for at leas rofessional has been appointed swithin the project. R furbishment Assessor has been of the project, prior to the	t the ndicative (Achiev	
	Exemplary Credits One Exemplary Credit Early Design Input	via phone or posted information - Longer term after care e.g. a h or other appropriate system to first 12 months of occupation Requirements Where A BREEAM Accredited P to oversee key stage C Where a BREEAM Domestic Re appointed at an early stage production of a refurf Requirements	within 3 months of occupation elpline, nominated individual o support building users for at leas rofessional has been appointed es within the project. R furbishment Assessor has been e of the project, prior to the bishment specification	t the ndicative (Achiev	
	Exemplary Credits One Exemplary Credit	via phone or posted information - Longer term after care e.g. a h or other appropriate system to first 12 months of occupation Requirements Where A BREEAM Accredited P to oversee key stage O Where a BREEAM Domestic Re appointed at an early stage production of a refurf Requirements Where Thermographic surveyir	within 3 months of occupation elpline, nominated individual support building users for at leas rofessional has been appointed as within the project. R furbishment Assessor has been e of the project, prior to the pishment specification	t the ndicative (Achiev	
	Exemplary Credits One Exemplary Credit Early Design Input One Exemplary Credit	via phone or posted information - Longer term after care e.g. a h or other appropriate system to first 12 months of occupation Requirements Where A BREEAM Accredited P to oversee key stage O Where a BREEAM Domestic Re appointed at an early stage production of a refurf Requirements Where Thermographic surveyir	within 3 months of occupation elpline, nominated individual o support building users for at leas rofessional has been appointed es within the project. R furbishment Assessor has been e of the project, prior to the bishment specification	t the ndicative (Achiev	
	Exemplary Credits One Exemplary Credit Early Design Input One Exemplary Credit Thermographic Surveying and	via phone or posted information - Longer term after care e.g. a h or other appropriate system to first 12 months of occupation Requirements Where A BREEAM Accredited P to oversee key stage C Where a BREEAM Domestic Re appointed at an early stage production of a refurt Requirements Where Thermographic surveyir been carried out at both pre a	within 3 months of occupation elpline, nominated individual is support building users for at leas rofessional has been appointed as within the project. R furbishment Assessor has been e of the project, prior to the bishment specification mg and Airtightness testing have and post refurbishment stages	t the ndicative (Achiev	
	Exemplary Credits One Exemplary Credit Early Design Input One Exemplary Credit	via phone or posted information - Longer term after care e.g. a h or other appropriate system to first 12 months of occupation Requirements Where A BREEAM Accredited P to oversee key stage O Where a BREEAM Domestic Re appointed at an early stage production of a refurt Requirements Where Thermographic surveyir been carried out at both pre a Where an improved air tightne	within 3 months of occupation elpline, nominated individual support building users for at leas rofessional has been appointed as within the project. R furbishment Assessor has been e of the project, prior to the pishment specification	t the ndicative (Achiev	

No. of BREEAM credits available	2	Available contribution to overall s	core
o. of BREEAM innovation credits		Minimum standards applic	
• Criteria Where the refurbishment result: standards are met, up to two cre		hting or where minimum daylighting	licativ Ach
For Existing Dwellings and Chan			
First Credit Maintaining Good Daylighting		n a neutral impact on the dwellings chen, living room, dining room and study	
Where the property is being ext	tended		
First Credit	New spaces achieve minimu	m daylighting levels	
Maintaining Good Daylighting		ce daylighting levels in the kitchen, tudy of neighbouring properties	
For All Properties			
Second Credit Minimum Daylighting	The dwelling achieves minim living room, dining room and	um daylighting levels in the kitchen, I study	
Sound Insulation			
No. of BREEAM credits available		Available contribution to overall s	
 of BREEAM innovation credits Criteria 	s 0	Minimum standards applie	able: licati
To ensure the provision of accep of noise complaints.		rds and so minimise the likelihood	Acł
Properties where sound testing			
Up to Four Credits Properties where sound testing	building regulations. See tab Technical Manual	ing to the improvement over le in additional information in red by the appointed Building	
Properties where sound testing	building regulations. See tab Technical Manual is not feasible and not requir	le in additional information in red by the appointed Building alls and floors are designed to meet	
Properties where sound testing Control body	building regulations. See tab Technical Manual is not feasible and not requir Where existing separating w the requirements of Building construction details	le in additional information in red by the appointed Building alls and floors are designed to meet Regulations with compliant	
Properties where sound testing Control body	building regulations. See tab Technical Manual is not feasible and not requir Where existing separating w the requirements of Building construction details Where a Suitably Qualified A	le in additional information in red by the appointed Building alls and floors are designed to meet Regulations with compliant	
Properties where sound testing Control body	building regulations. See tab Technical Manual is not feasible and not requir Where existing separating w the requirements of Building construction details Where a Suitably Qualified A recommendations for the sp walls and floors SQA confirms in their profess potential to meet or exceed	le in additional information in red by the appointed Building alls and floors are designed to meet Regulations with compliant coustician (SQA) provides ecification of all existing separating sional opinion that they have the	
Properties where sound testing Control body Two Credits	building regulations. See tab Technical Manual is not feasible and not requir Where existing separating w the requirements of Building construction details Where a Suitably Qualified A recommendations for the sp walls and floors SQA confirms in their profess	le in additional information in red by the appointed Building alls and floors are designed to meet Regulations with compliant coustician (SQA) provides ecification of all existing separating sional opinion that they have the the sound insulation credit	
Properties where sound testing Control body Two Credits	building regulations. See tab Technical Manual is not feasible and not require Where existing separating w the requirements of Building construction details Where a Suitably Qualified A recommendations for the sp walls and floors SQA confirms in their profess potential to meet or exceed requirements Where these recommendation	le in additional information in red by the appointed Building alls and floors are designed to meet Regulations with compliant coustician (SQA) provides ecification of all existing separating sional opinion that they have the the sound insulation credit ons are implemented	
Properties where sound testing Control body Two Credits	building regulations. See tab Technical Manual is not feasible and not requir Where existing separating w the requirements of Building construction details Where a Suitably Qualified A recommendations for the sp walls and floors SQA confirms in their profess potential to meet or exceed requirements	le in additional information in red by the appointed Building alls and floors are designed to meet Regulations with compliant coustician (SQA) provides ecification of all existing separating sional opinion that they have the the sound insulation credit ons are implemented	
Properties where sound testing Control body Two Credits Up to Four Credits	building regulations. See tab Technical Manual is not feasible and not require Where existing separating w the requirements of Building construction details Where a Suitably Qualified A recommendations for the sp walls and floors SQA confirms in their profess potential to meet or exceed requirements Where these recommendation See table in additional inform	le in additional information in red by the appointed Building alls and floors are designed to meet Regulations with compliant coustician (SQA) provides ecification of all existing separating sional opinion that they have the the sound insulation credit ons are implemented nation in Technical Manual	
Properties where sound testing Control body Two Credits Up to Four Credits Historic Buildings	building regulations. See tab Technical Manual is not feasible and not require Where existing separating w the requirements of Building construction details Where a Suitably Qualified A recommendations for the sp walls and floors SQA confirms in their profess potential to meet or exceed requirements Where these recommendation See table in additional inform	le in additional information in red by the appointed Building alls and floors are designed to meet Regulations with compliant coustician (SQA) provides ecification of all existing separating sional opinion that they have the the sound insulation credit ons are implemented	
Properties where sound testing Control body Two Credits Up to Four Credits	building regulations. See tab Technical Manual is not feasible and not require Where existing separating w the requirements of Building construction details Where a Suitably Qualified A recommendations for the sp walls and floors SQA confirms in their profess potential to meet or exceed requirements Where these recommendation See table in additional inform	le in additional information in red by the appointed Building alls and floors are designed to meet Regulations with compliant coustician (SQA) provides ecification of all existing separating sional opinion that they have the the sound insulation credit ons are implemented nation in Technical Manual pric Building and sound testing separating walls and floor meet the	
Properties where sound testing Control body Two Credits Up to Four Credits Historic Buildings	building regulations. See tab Technical Manual is not feasible and not require Where existing separating w the requirements of Building construction details Where a Suitably Qualified A recommendations for the sp walls and floors SQA confirms in their profest potential to meet or exceed requirements Where these recommendation See table in additional inform Where the dwelling is a Histor results demonstrate existing	le in additional information in red by the appointed Building alls and floors are designed to meet Regulations with compliant coustician (SQA) provides ecification of all existing separating sional opinion that they have the the sound insulation credit ons are implemented nation in Technical Manual pric Building and sound testing separating walls and floor meet the rements	
Properties where sound testing Control body Two Credits Up to Four Credits Historic Buildings	building regulations. See tab Technical Manual is not feasible and not requir Where existing separating w the requirements of Building construction details Where a Suitably Qualified A recommendations for the sp walls and floors SQA confirms in their profest potential to meet or exceed requirements Where these recommendations See table in additional inform Where the dwelling is a Histor results demonstrate existing Historic Building credit required	le in additional information in red by the appointed Building alls and floors are designed to meet Regulations with compliant coustician (SQA) provides ecification of all existing separating sional opinion that they have the the sound insulation credit ons are implemented nation in Technical Manual pric Building and sound testing separating walls and floor meet the rements	
Properties where sound testing Control body Two Credits Up to Four Credits Historic Buildings Up to Four Credits	building regulations. See tab Technical Manual is not feasible and not requir Where existing separating w the requirements of Building construction details Where a Suitably Qualified A recommendations for the sp walls and floors SQA confirms in their profest potential to meet or exceed requirements Where these recommendations See table in additional inform Where the dwelling is a Histor results demonstrate existing Historic Building credit required	le in additional information in red by the appointed Building alls and floors are designed to meet Regulations with compliant coustician (SQA) provides ecification of all existing separating sional opinion that they have the the sound insulation credit ons are implemented nation in Technical Manual pric Building and sound testing separating walls and floor meet the rements	
Properties where sound testing Control body Two Credits Up to Four Credits Historic Buildings Up to Four Credits Detached Properties Four Credits	building regulations. See tab Technical Manual is not feasible and not requir Where existing separating w the requirements of Building construction details Where a Suitably Qualified A recommendations for the sp walls and floors SQA confirms in their profess potential to meet or exceed requirements Where these recommendation See table in additional inform Vhere the dwelling is a Histor results demonstrate existing Historic Building credit requi See table in additional inform	le in additional information in red by the appointed Building alls and floors are designed to meet Regulations with compliant coustician (SQA) provides ecification of all existing separating sional opinion that they have the the sound insulation credit ons are implemented nation in Technical Manual pric Building and sound testing separating walls and floor meet the rements	

	No. of BREEAM credits available	1	Available contribution to ov	erall score	1.41%
	No. of BREEAM innovation credits		Minimum standards		No
	nt Criteria	-		Indicative	-
	Where the refurbishment avoids	the use of VOCs with new produ	ucts meeting the following	Achie	
	requirements:			0	
			L	-	
		Where all decorative paints and	varnishes used in the		
		refurbishment have met the re			
		the Technical Manual			
		Where at least five of the eight	remaining product categories		
		listed in table 5.4 have met the			
	One Credit		anic Compound (VOC) emissions		
	Avoiding the use of VOCs	-	identified within table 5.4 in the		
		Technical Manual	dentined within table 5.4 in the		
		Where five or less products are	constitute within the		
		refurbishment, all must meet the achieve this credit.	le requirements in order to		
ea 04					
ea 04	Inclusive Design No. of BREEAM credits available	2	Available contribution to ov	erall score	2.83%
	No. of BREEAM innovation credits		Minimum standards		2.85%
	nt Criteria	L		Indicative	
essmer					
	Where an access statement has	•	A-8 of the Technical Manual to	Achie	
	optimise the accessibility of the	iome as ionows:	L	0	
			ne Technical Manual		
		Section 1	Section 2		
	One Credit	Completed with Evidence			
	Minimum Accessibility				
	Two Credits	Completed with Evidence	Completed with Evidence		
	Advanced Accessibility				
	One Credit	statement template with evide implemented in the refurbishm			
lea 05	Ventilation				
	No. of BREEAM credits available	2	Available contribution to ov	erall score	2.83%
	No. of BREEAM credits available No. of BREEAM innovation credits		Available contribution to ov Minimum standards		2.83% Yes
1		0	Minimum standards		Yes Credits
1	No. of BREEAM innovation credits nt Criteria	0	Minimum standards s: d ventilation is provided for all	applicable Indicative Achie	Yes Credits
1	No. of BREEAM innovation credits nt Criteria Where the dwelling meets the fo One Credit Minimum Ventilation	O Ollowing ventilation requirements A minimum level of background habitable rooms, kitchens, utili A minimum level of extract ven (e.g. kitchen, utility and bathroo Regulations Approved Docume	Minimum standards s: d ventilation is provided for all	applicable Indicative Achie	Yes Credits
1	No. of BREEAM innovation credits nt Criteria Where the dwelling meets the fo One Credit	O Ollowing ventilation requirements A minimum level of background habitable rooms, kitchens, utili A minimum level of extract ven (e.g. kitchen, utility and bathroo Regulations Approved Docume recovery A minimum level of purge venti rooms and wet rooms.	Minimum standards s: d ventilation is provided for all ty rooms and bathrooms tilation is provided in wet rooms oms) which comply with Building nt Part F with the addition of heat lation is provided in habitable	applicable Indicative Achie	Yes Credits
1	No. of BREEAM innovation credits nt Criteria Where the dwelling meets the fo One Credit Minimum Ventilation	O Ollowing ventilation requirements A minimum level of background habitable rooms, kitchens, utili A minimum level of extract ven (e.g. kitchen, utility and bathroo Regulations Approved Docume recovery A minimum level of purge venti rooms and wet rooms.	Minimum standards s: d ventilation is provided for all ty rooms and bathrooms tilation is provided in wet rooms oms) which comply with Building nt Part F with the addition of heat lation is provided in habitable ets historic building requirements	applicable Indicative Achie	Credits

	Safety No. of BREEAM credits available	1	Available contribution to ov	verall score 1.41%
	o. of BREEAM innovation credits			
essment		U	Minimum standards	
	Where a fire and carbon monoxic	te (CO) detection and alarm	system is specified as follows:	Indicative Credits Achieved
			system is specified as follows.	Achieved 1
		Carbon Monovido dotoctor	installed if dwelling is supplied with	1
		mains gas or other fossil fu	installed if dwelling is supplied with	
		, , , , , , , , , , , , , , , , , , ,		
	One Credit		ection and fire alarm system is	
	Fire and Carbon Monoxide (CO)	provided		
	Detection and Alarm Systems		on and alarm system if project	
		involves re-wiring		
			tion and alarm system if no re-wiring	
		is to take place		l
	ENERGY	Section Weighting: 43%	Indicative Se	ction Score 31.14%
ne 01	mprovement in Energy Efficiend	ry Rating		
	No. of BREEAM credits available		Available contribution to ov	verall score 8.89%
	o. of BREEAM innovation credits	0	Minimum standards	
	Criteria			Indicative Credits
		improvement in Energy Effic	iency Rating achieved as a result of	Achieved
irbishme	nt:			5
	mprovement in EER	Credits		
	≥ 5	0.5		
Ī	≥ 9	1	1	
i	≥ 13	1.5	-1	
	≥ 17	2	-1	
	≥ 21	2.5	-1	
	≥ 26	3	-1	
	≥ 31	3.5	—	
		3.5		
	≥ 36			
	≥ 42	4.5		
	≥ 48	5		
	≥ 54	5.5		
	≥ 60	6		
ne 02	Energy Efficiency Rating Post Re	furbishment		
	Energy Efficiency Rating Post Re No. of BREEAM credits available		Available contribution to o	verall score 5.93%
	No. of BREEAM credits available	4	Available contribution to or	
l No	No. of BREEAM credits available . of BREEAM innovation credits	4	Available contribution to or Minimum standards	applicable Yes
l No	No. of BREEAM credits available	4		applicable Yes Indicative Credits
ا No essment	No. of BREEAM credits available b. of BREEAM innovation credits Criteria	4 2	Minimum standards	applicable Yes Indicative Credits Achieved
ا No essment	No. of BREEAM credits available . of BREEAM innovation credits	4 2	Minimum standards	applicable Yes Indicative Credits
No essment ere the f	No. of BREEAM credits available b. of BREEAM innovation credits Criteria	4 2	Minimum standards	applicable Yes Indicative Credits Achieved
No essment ere the f	No. of BREEAM credits available o. of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating	4 2 s benchmarks will be met as	Minimum standards	applicable Yes Indicative Credits Achieved
No essment ere the f	No. of BREEAM credits available b. of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment	4 2 s benchmarks will be met as Credits	Minimum standards a result of refurbishment: Minimum requirements	applicable Yes Indicative Credits Achieved
No essment ere the f	No. of BREEAM credits available b. of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥50	4 2 s benchmarks will be met as <u>Credits</u> 0.5	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50	applicable Yes Indicative Credits Achieved
No essment ere the f	No. of BREEAM credits available b. of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55	4 2 benchmarks will be met as <u>Credits</u> 0.5 1	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58	applicable Yes Indicative Credits Achieved
No essment ere the f	No. of BREEAM credits available b. of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥50 ≥55 ≥60 ≥65	4 2 sbenchmarks will be met as <u>Credits</u> 0.5 1 1.5	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50	applicable Yes Indicative Credits Achieved
No essment ere the f	No. of BREEAM credits available b. of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥50 ≥55 ≥60 ≥65 ≥70	4 2 benchmarks will be met as <u>Credits</u> 0.5 1 1.5 2 2.5	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65	applicable Yes Indicative Credits Achieved
No essment ere the f	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 ≥ 75	4 2 benchmarks will be met as 0.5 1 1.5 2 2.5 3	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70	applicable Yes Indicative Credits Achieved
No essment ere the f	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 ≥ 75 ≥ 80	4 2 benchmarks will be met as 0.5 1 1.5 2 2.5 3 3.5	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65	applicable Yes Indicative Credits Achieved
No essment ere the f	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 ≥ 75	4 2 benchmarks will be met as 0.5 1 1.5 2 2.5 3	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70	applicable Yes Indicative Credits Achieved
No essment ere the f	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 ≥ 75 ≥ 80 ≥ 85	4 2 benchmarks will be met as 0.5 1 1.5 2 2.5 3 3.5 4	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70	applicable Yes Indicative Credits Achieved 3
No essment ere the f	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥50 ≥55 ≥60 ≥65 ≥70 ≥75 ≥80 ≥85 Exemplary	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70	Indicative Innovatio
No essment ere the f	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 ≥ 75 ≥ 80 ≥ 85	4 2 benchmarks will be met as 0.5 1 1.5 2 2.5 3 3.5 4	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70	applicable Yes Indicative Credits Achieved 3
No essment ere the f	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥50 ≥55 ≥60 ≥65 ≥70 ≥75 ≥80 ≥85 Exemplary	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70	Indicative Innovatio
No essment ere the f	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥50 ≥55 ≥60 ≥65 ≥70 ≥75 ≥80 ≥85 Exemplary ≥90	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70	Indicative Innovatio Credits Achieved
No essment ere the f	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 ≥ 75 ≥ 80 ≥ 85 Exemplary ≥ 90 ≥ 100	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70	Indicative Innovatio Credits Achieved
No essment ere the f	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥50 ≥55 ≥60 ≥65 ≥70 ≥75 ≥80 ≥85 Exemplary ≥90 ≥100 Primary energy demand	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0
No essment ere the f	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating ≥50 ≥50 ≥50 ≥60 ≥65 ≥70 ≥75 ≥80 ≥85 ≥90 ≥100 Primary energy demand No. of BREEAM credits available	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 7	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379
ne 03	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating ≥50 ≥50 ≥50 ≥50 ≥50 ≥55 ≥60 ≥75 ≥80 ≥85 ≥90 ≥100 Primary energy demand No. of BREEAM credits available of BREEAM innovation credits	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 7	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379 applicable No
ne 03	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating ≥50 ≥50 ≥50 ≥60 ≥65 ≥70 ≥75 ≥80 ≥85 ≥90 ≥100 Primary energy demand No. of BREEAM credits available	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 7	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379 applicable No Indicative Credits
ne 03	No. of BREEAM credits available 0. of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating ≥50 ≥50 ≥50 ≥60 ≥65 ≥70 ≥75 ≥80 ≥85 ≥90 ≥100 Primary energy demand No. of BREEAM credits available of BREEAM innovation credits Criteria	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 7 0	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379 applicable No Indicative Credits Achieved
ne 03	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating ≥50 ≥50 ≥50 ≥50 ≥50 ≥55 ≥60 ≥75 ≥80 ≥85 ≥90 ≥100 Primary energy demand No. of BREEAM credits available of BREEAM innovation credits	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 7 0	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379 applicable No Indicative Credits
ne 03	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 ≥ 75 ≥ 80 ≥ 85 Exemplary ≥ 90 ≥ 100 Primary energy demand No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Primary Energy Demand	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 7 0	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379 applicable No Indicative Credits Achieved
ne 03	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating ≥50 ≥50 ≥50 ≥60 ≥65 ≥70 ≥75 ≥80 ≥85 ≥90 ≥100 Primary energy demand No. of BREEAM credits available of BREEAM credits available of BREEAM innovation credits Criteria ollowing Primary Energy Demand Primary Energy Demand	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 7 0 0 d benchmarks will be met as	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379 applicable No Indicative Credits Achieved
ne 03	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 ≥ 75 ≥ 80 ≥ 85 Exemplary ≥ 90 ≥ 100 Primary energy demand No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Primary Energy Demand	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 7 0	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379 applicable No Indicative Credits Achieved
ne 03	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating ≥50 ≥50 ≥50 ≥60 ≥65 ≥70 ≥75 ≥80 ≥85 ≥90 ≥100 Primary energy demand No. of BREEAM credits available of BREEAM credits available of BREEAM innovation credits Criteria ollowing Primary Energy Demand Primary Energy Demand	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 7 0 0 d benchmarks will be met as	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379 applicable No Indicative Credits Achieved
ne 03	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating ≥50 ≥50 ≥50 ≥60 ≥65 ≥70 ≥75 ≥80 ≥85 ≥90 ≥100 Primary energy demand No. of BREEAM credits available of BREEAM credits available of BREEAM innovation credits Criteria ollowing Primary Energy Demand Primary Energy Demand Post Refurbishment (kWh/m²/year) ≤ 400	4 2 benchmarks will be met as 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 7 0 d benchmarks will be met as Credits	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379 applicable No Indicative Credits Achieved
ne 03	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 ≥ 75 ≥ 80 ≥ 85 Exemplary ≥ 90 ≥ 100 Primary energy demand No. of BREEAM credits available of BREEAM credits available $\Delta f = 100$	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 7 0 d benchmarks will be met as Credits 0.5 1	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379 applicable No Indicative Credits Achieved
ne 03	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 ≥ 75 ≥ 80 ≥ 85 Exemplary ≥ 90 ≥ 100 Primary energy demand No. of BREEAM credits available of BREEAM credits available ≤ 370 ≤ 340	4 2 2 2 3 3 3 3 3 3 3 5 4 2 2 2 5 3 3 3 5 4 2 2 5 3 3 3 5 4 2 2 5 3 3 3 5 4 4 2 5 3 3 5 4 4 2 5 3 3 5 4 4 5 6 6 7 0 6 6 6 7 0 6 6 6 7 0 6 6 6 6 6 7 0 6 6 6 6 6 6 6 6 6 6 6 6 6	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379 applicable No Indicative Credits Achieved
ne 03	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 ≥ 75 ≥ 80 ≥ 85 Exemplary ≥ 90 ≥ 100 Primary energy demand No. of BREEAM credits available of BREEAM credits available ~ 3100 ≤ 3400 ≤ 320	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 4 Credits 1 2 0 5 4 Credits 1 2 5 3 3 3.5 4 Credits 1 1 2 5 3 3 5 4 5 5 4 5 5 6 6 7 0 5 6 6 7 0 5 6 6 7 0 5 6 6 7 0 5 6 6 6 7 0 5 6 7 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 7 7 7 7 7 7 7 7 7 7 7	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379 applicable No Indicative Credits Achieved
ne 03	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 ≥ 75 ≥ 80 ≥ 85 Exemplary ≥ 90 ≥ 100 Primary energy demand No. of BREEAM credits available of BREEAM credits available ~ 3100 ≤ 3100 ≤ 320 ≤ 300	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 4 Credits 1 2 5 3 3 3.5 4 Credits 1 2 5 3 3 3 5 4 Credits 1 1 2 5 3 3 5 4 5 6 7 0 5 1 1 5 2 5 3 3 5 4 5 6 6 7 0 5 6 7 0 5 6 7 0 5 6 7 0 5 6 7 0 5 6 7 0 5 6 7 1 7 0 5 6 7 7 0 5 7 0 5 7 7 0 5 7 0 5 7 0 5 7 0 5 7 0 5 7 7 0 5 7 0 5 7 7 0 7 0 5 7 1 1 5 2 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379 applicable No Indicative Credits Achieved
ne 03	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 ≥ 75 ≥ 80 ≥ 85 Exemplary ≥ 90 ≥ 100 Primary energy demand No. of BREEAM credits available of BREEAM credits available ~ 3100 ≤ 400 ≤ 370 ≤ 340 ≤ 320 ≤ 300 ≤ 280	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 4 Credits 1 2 0 5 4 Credits 1 2 2 2 3 3 3 5 4 Credits 1 1 2 2 2 3 3 3 5 4 Credits 1 1 2 2 3 3 3 5 4 Credits 1 1 2 2 2 5 3 3 3 5 4 Credits 1 2 2 5 3 3 5 4 Credits 1 2 5 3 3 5 4 Credits 1 2 5 3 5 4 Credits 1 2 5 5 4 Credits 1 2 5 5 6 6 7 0 5 6 7 0 7 0 5 6 7 0 5 6 7 0 5 6 7 0 5 6 7 0 7 0 5 6 7 0 7 0 5 1 1 5 7 0 5 1 1 5 2 5 7 0 5 2 5 5 7 0 5 7 0 5 2 2 5 3 3 5 5 7 0 5 5 7 0 5 1 1 5 2 2 5 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379 applicable No Indicative Credits Achieved
ne 03	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 ≥ 75 ≥ 80 ≥ 85 Exemplary ≥ 90 ≥ 100 Primary energy demand No. of BREEAM credits available of BREEAM credits available criteria ollowing Primary Energy Demand Primary Energy Demand Post Refurbishment (kWh/m ² /year) ≤ 400 ≤ 370 ≤ 340 ≤ 320 ≤ 300 ≤ 280 ≤ 260	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 4 Credits 1 2 4 Credits 1 2 2 2 3 3 3 5 4 Credits 1 2 2 2 5 3 3 3 5 4 Credits 1 1 2 2 2 5 3 3 3 5 4 Credits 1 2 2 5 3 3 5 4 Credits 1 2 5 3 3 5 4 Credits 1 2 5 3 3 5 4 Credits 1 2 5 3 3 5 4 Credits 1 2 5 5 4 Credits 1 2 5 5 6 6 7 0 5 5 6 7 0 5 7 0 5 5 6 7 0 5 6 7 0 5 6 7 0 5 6 7 0 5 7 0 5 7 0 5 7 0 5 5 7 0 5 5 7 0 5 5 7 0 5 5 7 0 5 5 7 0 5 5 7 0 5 5 5 7 0 5 5 5 7 0 5 5 5 5 5 5 5 5 5 5 5 5 5	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379 applicable No Indicative Credits Achieved
ne 03	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 ≥ 75 ≥ 80 ≥ 85 Exemplary ≥ 90 ≥ 100 Primary energy demand No. of BREEAM credits available of BREEAM credits available 2×100 Primary Energy Demand Post Refurbishment (kWh/m ² /year) ≤ 400 ≤ 370 ≤ 340 ≤ 320 ≤ 340 ≤ 280 ≤ 280 ≤ 260 ≤ 240	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 4 Credits 0 5 4 Credits 0 5 1 1 2 2 2 5 3 3 3 5 4 4 Credits 1 2 2 5 3 3 5 4 4 Credits 1 2 5 3 3 5 4 5 5 6 6 7 0 5 6 6 7 0 6 6 7 0 6 6 7 0 6 6 7 0 6 6 7 0 6 6 7 0 6 6 7 0 6 7 0 6 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 7 0 7 0 6 7 0 6 7 1 1 5 7 0 6 7 0 7 0 7 0 7 0 7 0 7 0 7 1 1 5 2 5 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 1 1 5 2 2 5 3 3 5 1 1 5 2 2 5 3 3 5 2 2 5 3 3 5 2 2 5 3 3 5 4 4 2 5 7 7 0 7 7 0 7 1 5 2 5 3 3 5 4 4 4 6 7 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 7 0 7 7 7 7 7 0 7 7 7 7 7 7 7 7 7 7 7 7 7	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379 applicable No Indicative Credits Achieved
ne 03	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 ≥ 75 ≥ 80 ≥ 80 ≥ 85 Exemplary ≥ 90 ≥ 100 Primary energy demand No. of BREEAM credits available of BREEAM credits available criteria ollowing Primary Energy Demand Primary Energy Demand Post Refurbishment (kWh/m ² /year) ≤ 400 ≤ 370 ≤ 340 ≤ 320 ≤ 300 ≤ 280 ≤ 260	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 4 Credits 1 2 4 Credits 1 2 2 2 3 3 3 5 4 Credits 1 2 2 2 5 3 3 3 5 4 Credits 1 1 2 2 2 5 3 3 3 5 4 Credits 1 2 2 5 3 3 5 4 Credits 1 2 5 3 3 5 4 Credits 1 2 5 3 3 5 4 Credits 1 2 5 3 3 5 4 Credits 1 2 5 5 4 Credits 1 2 5 5 6 6 7 0 5 5 6 7 0 5 7 0 5 5 6 7 0 5 6 7 0 5 6 7 0 5 6 7 0 5 7 0 5 7 0 5 7 0 5 5 7 0 5 5 7 0 5 5 7 0 5 5 7 0 5 5 7 0 5 5 7 0 5 5 5 7 0 5 5 5 7 0 5 5 5 5 5 5 5 5 5 5 5 5 5	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379 applicable No Indicative Credits Achieved
ne 03	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 ≥ 75 ≥ 80 ≥ 85 Exemplary ≥ 90 ≥ 100 Primary energy demand No. of BREEAM credits available of BREEAM credits available 2×100 Primary Energy Demand Post Refurbishment (kWh/m ² /year) ≤ 400 ≤ 370 ≤ 340 ≤ 320 ≤ 340 ≤ 280 ≤ 280 ≤ 260 ≤ 240	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 4 Credits 0 5 4 Credits 0 5 1 1 2 2 2 5 3 3 3 5 4 4 Credits 1 2 2 5 3 3 5 4 4 Credits 1 2 5 3 3 5 4 5 5 6 6 7 0 5 6 6 7 0 6 6 7 0 6 6 7 0 6 6 7 0 6 6 7 0 6 6 7 0 6 6 7 0 6 7 0 6 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 6 7 0 7 0 7 0 6 7 0 6 7 1 1 5 7 0 6 7 1 1 5 7 0 7 0 7 0 7 0 7 1 5 7 0 7 1 1 5 2 5 1 1 5 7 0 5 1 1 5 2 2 5 1 1 5 2 2 5 3 3 5 1 1 5 2 2 5 3 3 5 2 2 5 3 3 5 2 2 5 3 3 5 4 4 6 7 7 0 6 7 7 0 7 7 0 7 1 1 5 2 5 3 3 5 4 4 7 7 7 0 7 7 0 7 7 0 7 7 0 7 7 7 0 7 7 7 7 7 7 7 7 7 7 7 7 7	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.379 applicable No Indicative Credits Achieved
ne 03	No. of BREEAM credits available of BREEAM innovation credits Criteria ollowing Energy Efficiency Rating EER post refurbishment ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 ≥ 75 ≥ 80 ≥ 85 Exemplary ≥ 90 ≥ 100 Primary energy demand No. of BREEAM credits available of BREEAM credits available criteria ollowing Primary Energy Demand Primary Energy Demand Post Refurbishment (kWh/m ² /year) ≤ 400 ≤ 370 ≤ 400 ≤ 320 ≤ 340 ≤ 280 ≤ 280 ≤ 240 ≤ 220	4 2 benchmarks will be met as Credits 0.5 1 1.5 2 2.5 3 3.5 4 Credits 1 2 0 5 4 Credits 0 5 1 1 2 2 2 5 3 3 3 5 4 4 Credits 1 2 5 3 3 5 4 4 Credits 1 2 5 3 3 5 4 4 Credits 1 2 5 3 3 5 4 5 5 4 5 5 6 6 7 0 5 5 6 6 7 0 5 6 6 7 0 5 6 6 7 0 5 6 6 7 0 5 6 6 6 7 0 5 6 6 7 0 5 6 6 7 0 6 7 0 7 0 6 7 0 6 7 0 6 7 0 7 0 7 0 7 0 6 6 7 1 1 5 7 0 6 6 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 1 1 5 2 2 5 3 3 5 4 4 4 5 7 0 5 1 1 5 2 2 5 3 3 5 4 4 4 5 7 7 0 5 1 1 5 2 5 3 3 5 4 4 4 5 7 7 1 5 7 7 7 7 0 5 1 4 4 5 7 7 7 0 5 1 4 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7	Minimum standards a result of refurbishment: Minimum requirements 'Pass' level EER of 50 'Good' level EER of 58 'Very Good level' EER of 65 'Excellent' level EER of 70 'Outstanding' level EER of 81	applicable Yes Indicative Credits Achieved 3 Indicative Innovatio Credits Achieved 0 verall score 10.37% applicable No Indicative Credits Achieved

	≤ 120	7	l		
04	Demonstelle Teal-				
04	Renewable Technologies	2			2.96%
	No. of BREEAM credits available	2	Available contribution to ov		
	Io. of BREEAM innovation credits	0	Minimum standards	<u> </u>	No
	nt Criteria		and a star and a second star and	Indicative Cr	
	dwelling will meet the following % a result of refurbishment	contribution from renewables	and primary energy demand	Achieve 0	d
5 d5 d				0	
			Percentage from Re	newables	
	Dwelling Type	Primary Energy Demand	1 Credit	2 Credit	s
	Detached	≤ 250 kWh/m ² /year	≥10%	≥ crearce ≥20%	
	Semi-Detached		≥10%	≥20%	
	Bungalow		≥10%	≥20%	
	End of Terrace		≥10%	≥20%	
	Mid Terrace	≤ 220 kWh/m ² /year	≥10%	≥20%	
	Low Rise Flat		≥10%	≥20%	
	Mid Rise Flat		≥10%	≥15%	
	High Rise Flat		≥10%	≥15%	
				10,0	
05	Energy Labelled White Goods				
	No. of BREEAM credits available	2	Available contribution to ov	verall score	2.96%
N	Io. of BREEAM innovation credits	0	Available contribution to ov Minimum standards		2.967 No
	nt Criteria	0			
	ergy Efficiency White goods are to b	o provided as follows:		Indicative Cr Achieve	
e Liie	ergy Efficiency white goods are to c	e provided as follows.		Achieve 1	a
	Plant Car dit			1	
	First Credit	A united as a second and	And in the second s	I	
	Appliance	Appliance provided	Appliance not to be provided		
	Fridges, Freezers and Fridge-	Energy Saving Trust	EU Energy Efficiency Labelling		
	Freezers	Recommended appliances	Scheme Information Leaflet		
		specified	provided to all dwellings		
	Second Credit				
			And in the second s	1	
	Appliance	Appliance provided	Appliance not to be provided		
	Washing Machines and	Energy Saving Trust	Second credit not achieved		
	Dishwashers	Recommended appliances specified	Second credit not achieved		
		Appliances specified with B	EU Energy Efficiency Labelling		
	Washer-Dryers and Tumble	Rating under EU Energy	Scheme Information Leaflet		
	Dryers	Efficiency Labelling Scheme	provided to all dwellings		
		Effective Labelling Scheme	provided to an awenings		
06	Drying Space				
00	No. of BREEAM credits available	1	Available contribution to ov		1.48%
	-	0			No
	Io. of BREEAM innovation credits at Criteria	0	Minimum standards		
		pace with pacts and factings s	r fivings is provided with the	Indicative Cr	
ing:	equate, secure internal or external s	space with posts and rootings c	in fixings is provided with the	Achieve 1	a
ing.	1 Credit			1	
	Number of bedrooms	Drying line required			
	1-2	4m+			
	3+	6m+	l		
07	ttabata a				
07	Lighting				
	No. of BREEAM credits available	2	Available contribution to ov		2.96%
	Io. of BREEAM innovation credits	0	Minimum standards		No
	nt Criteria			Indicative Cr	
e ene	ergy efficient internal and external l	ighting is provided as follows:		Achieve	d
				2	
	External Lighting - 1 Credit				
	Energy Efficient Space Lighting and		ting OR		
	Where Energy Efficient Space Ligh	ting is provided ONLY			
	where there's thereit space tight	0 1 2 2 2 2		•	
	Internal Lighting - 1 Credit	0 1 1 1 1 1		ı	

	No. of BREEAM credits available	2	Available contribution to o	verall score	2.96%
I	No. of BREEAM innovation credits	1	Minimum standard	s applicable	No
ssessme	ent Criteria			Indicative	Credits
Vhere co	nsumption data is displayed to occu	pants by a compliant energy di	splay device	Achie	ved
				0	
	Electricity usage data displayed	Primary I	leating Fuel		
	Licenterry usage data displayed	Electricity	Other	ļ	
	Electricity usage data displayed	2 credits awarded	1 credit awarded	1	
	Primary Heating Fuel usage data displayed	N/A	1 credit awarded		
	Electricity & Primary Heating Fuel usage displayed	N/A	2 credits awarded		
	Exemplary Credits			Indicative In	novatior
	One credit	Where any compliant Energy	gy Display Device is capable of	Credits A	chieved
	Recording consumption data	recording co	nsumption data	0	
Ene 09	Cycle Storage No. of BREEAM credits available	2	Available contribution to o		2.96%
	No. of BREEAM innovation credits	0	Minimum standard		No
	ent Criteria			Indicative	
/here ind	dividual or communal compliant cycl	e storage is provided as follows	s:	Achie	
				2	
	Dwelling Size	One Credit	Two Credits		
	Studios/ 1 bedroom	1 per two dwellings	1 per dwelling	ļ	
		1 per dwelling	2 per dwelling		
	2-3 bedrooms			1	
	2-3 bedrooms 4 bedrooms	2 per dwelling	4 per dwelling	1	
Ene 10			4 per dwelling	1	
Ene 10	4 bedrooms		4 per dwelling Available contribution to o	verall score	1.48%
	4 bedrooms Home Office	2 per dwelling	· · ·		1.48% No

No. of BREEAM credits available b. of BREEAM innovation credits		Available contribution to o Minimum standards	s applicable	6.60% Yes
• Criteria Iwellings water consumption me t the following water consumpti	ets the following consumption be on standards:	enchmarks, or where terminal	Indicative Achie	ved
Calculated Water Consumption (litres/person/day)	Equivalent terminal fitting standards	Minimum Standard	Credits	
>150	Typical baseline performance	N/A	0	
140-150	All showers specified to 'Good' OR All taps and WC's to 'Good' OR Kitchen fittings specified to 'Excellent'	N/A	0.5	
129-139	All showers specified to 'Excellent' OR All showers and bathroom taps to 'Good'	N/A	1	
118-128	All bathroom and WC room fittings specified to 'Good' OR All bathroom fittings specified to 'Excellent'	N/A	1.5	
107-117	All Bathroom and WC room fittings specified to 'Excellent' OR All Bathroom fittings Specified to 'Excellent' and WC room fitting specified to 'Good' OR All Bathroom fittings, kitchen and utility sittings specified to 'Good'	BREEAM Very Good	2	
96-106	All kitchen, bathroom, utility room and WC room fittings specified to 'Good' OR All bathrooms, kitchens and utility rooms specified to 'Excellent'	BREEAM Excellent	2.5	
<95	All bathroom fittings specified to 'Excellent' and WC room, kitchen and utility room fittings specified to 'Good'	BREEAM Outstanding	3	
NOTE: 'Good' fittings are equival practice fittings (see the technica		"excellent" fittings equivalent to	best	
Exemplary Credit	If the water consumption is less than 80l/person/day		Indicative In Credits A	chieved
External Water Use				
No. of BREEAM credits available o. of BREEAM innovation credits		Available contribution to o Minimum standards		2.20% No
t Criteria following requirements will be m		nininun standara.	Indicative Achie	Credits ved
	Requirements:		·	
One Credit	irrigation use ha	er collection system for external/i s been provided to dwellings. OR		
	Where dwellings have no	individual or communal garden s	pace.	
Water Meter	1	Available contribution to	vorallesere	2 20%
No. of BREEAM credits available o. of BREEAM innovation credits		Available contribution to o Minimum standards		2.20% No
t Criteria			Indicative	

	MATERIALS	Section Weighting: 8%	Indicative Sect	tion Score	4.44%
Mat 01	Environmental Impact of Materi	als			
	No. of BREEAM credits available	25	Available contribution to ove	erall score	4.44%
	No. of BREEAM innovation credits	0	Minimum standards a	applicable	No
Assessment Criteria Up to 25 credits can be awarded, with credits calculated using the Mat 01 calculator tool. The table below			Indicative Achie		
shows the	e maximum number of credits avail	able for each element:		13	3
		Green Guide Rating credits	Thermal performance credits		

Elements	Green Guide Rating credits available	Thermal performance credits available*
Roof	5	3
External walls	5	3.8
Internal walls (including separating walls)	5	-
Upper and Ground Floor	5	1.2
Windows	5	2

The full 25 credits represents all of the elements containing refurbished or existing materials that meet the Green Guide Rating of A+(6)

GG Rating	Points for existing / refurbished elements	Points for new elements
A+ (6)	5	
A+ (5)	4.6	
A+ (4)	4.2	
A+ (3)	3.8	
A+ (2)	3.4	
A+	3	3
A	2	2
В	1	1
С	0.5	0.5
D	0.25	0.25
E	0	0

Where the full 25 credits cannot be achieved the score can be 'topped up' with thermal performance credits. The full number of thermal performance credits for each element can be achieved when achieving the minimum U-values shown below.

Elements	Minimum U-Value (W/m2K)
Roof	0.11
External walls	0.15
Internal walls (including separating walls)	-
Upper and Ground Floor	0.15
Windows	1.4

Mat 0	02 Responsible Sourcing of Materia	ls		
	No. of BREEAM credits available	12	Available contribution to overall score	2.13%
	No. of BREEAM innovation credits	0	Minimum standards applicable	Yes
Assessr	ment Criteria		Indicative	e Credits

Achieved

8

Assessment Criteria

Where new materials are responsibly sourced, up to 12 credits may be awarded where 80% of new materials for an element are responsibly sourced. The credits achieved are dependent on % of point achieved which is based upon the responsible sourcing tier level of each material sourced as detailed below:

Та	bl	le	1
	~	· C	•

Tier level	Points
1	4
2	3.5
3	3
4	2.5
5	2
6	1.5
7	1
8	0

Table 2

BREEAM credits	% of available points achieved
12	≥54%
10	≥45%
8	≥36%
6	≥ 27%
4	≥ 18%
2	≥ 9%

		- A		
	No. of BREEAM credits available		Available contribution to ov	
	No. of BREEAM innovation credits	0	Minimum standards	
	nt Criteria			Indicative Credits
	new insulation specified for use v	vithin external walls, ground floo	r, roof and buildings services	Achieved
eet the f	ollowing requirements:			4
		Requirements		
		Where the Insulation Index for r	new insulation used in the	
	4 Credits	buildings is ≥2		
		Where Green Guide ratings are	determined using the Green	
		Guide to specification tool		
		Requirements		
	4 Credits	Where ≥ 80% of the new therma	al insulation used in the building	
		elements is responsibly sourced		
	WASTE	Section Weighting: 3%	Indicative See	ction Score 2.40%
Nac 01	Household Waste			
		2		verall score 1.20%
	No. of BREEAM credits available		Available contribution to ov	
	No. of BREEAM innovation credits	0	Minimum standards	
	nt Criteria			Indicative Credits
	npliant recycling and composting f	acilities are provided, up to two	credits may be awarded as	Achieved
lows				2
	First Credit - Recycling Facilities			
	Scenario	Internal recycling st	torage requirements	
		3 internal recycling containers p	rovided where recycling is not	
		sorted post collection		
			ovided where recycling is sorted	
	Compliant collection scheme in	1 internal recycling container pr	ovided where recycling is sorted	
	Compliant collection scheme in place	1 internal recycling container pr		
		1 internal recycling container pr post collection		
		1 internal recycling container pr post collection Minimum 30 litre total capacity,	no single container less than 7	
		1 internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity	no single container less than 7	
	place	1 internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity	no single container less than 7 e with compliance note 1	
	place No compliant collection scheme	1 internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc	no single container less than 7 e with compliance note 1	
	place No compliant collection scheme in place	1 internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc 3 internal recycling containers p	no single container less than 7 with compliance note 1 rovided	
	place No compliant collection scheme	1 internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 60 litre total capacity	no single container less than 7 with compliance note 1 rovided	
	place No compliant collection scheme in place No adequate external storage	1 internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 60 litre total capacity	no single container less than 7 e with compliance note 1 rovided e with compliance note 1	
	place No compliant collection scheme in place No adequate external storage No compliant collection scheme	Internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc internal recycling containers p Minimum 60 litre total capacity Dedicated position in accordanc internal recycling containers p internal recycling containers p	no single container less than 7 e with compliance note 1 rovided e with compliance note 1	
	place No compliant collection scheme in place No adequate external storage No compliant collection scheme in place	Internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc internal recycling containers p Minimum 60 litre total capacity Dedicated position in accordanc internal recycling containers p internal recycling containers p	no single container less than 7 e with compliance note 1 rovided e with compliance note 1 rovided	
	place No compliant collection scheme in place No adequate external storage No compliant collection scheme in place Adequate external storage	Internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 60 litre total capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 30 litre total capacity,	no single container less than 7 e with compliance note 1 rovided e with compliance note 1 rovided no single container smaller than	
	place No compliant collection scheme in place No adequate external storage No compliant collection scheme in place	1 internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 60 litre total capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 30 litre total capacity, 7 litre capacity	no single container less than 7 e with compliance note 1 rovided e with compliance note 1 rovided no single container smaller than	
	place No compliant collection scheme in place No adequate external storage No compliant collection scheme in place Adequate external storage	1 internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 60 litre total capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 30 litre total capacity, 7 litre capacity	no single container less than 7 e with compliance note 1 rovided e with compliance note 1 rovided no single container smaller than	
	place No compliant collection scheme in place No adequate external storage No compliant collection scheme in place Adequate external storage	1 internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 60 litre total capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 30 litre total capacity, 7 litre capacity Dedicated position in accordanc	no single container less than 7 e with compliance note 1 rovided e with compliance note 1 rovided no single container smaller than	
	place No compliant collection scheme in place No adequate external storage No compliant collection scheme in place Adequate external storage provided	1 internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 60 litre total capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 30 litre total capacity, 7 litre capacity Dedicated position in accordanc	no single container less than 7 e with compliance note 1 rovided e with compliance note 1 rovided no single container smaller than	
	place No compliant collection scheme in place No adequate external storage No compliant collection scheme in place Adequate external storage provided Second credit - Composting facil	1 internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 60 litre total capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 30 litre total capacity, 7 litre capacity Dedicated position in accordanc	no single container less than 7 e with compliance note 1 rovided e with compliance note 1 rovided no single container smaller than	
	place No compliant collection scheme in place No adequate external storage No compliant collection scheme in place Adequate external storage provided Second credit - Composting facil With external space	Internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 60 litre total capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 30 litre total capacity, 7 litre capacity Dedicated position in accordanc ities Without external space	no single container less than 7 e with compliance note 1 rovided e with compliance note 1 rovided no single container smaller than	
	place No compliant collection scheme in place No adequate external storage No compliant collection scheme in place Adequate external storage provided Second credit - Composting facil With external space Where a composting service or	Internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordance 3 internal recycling containers p Minimum 60 litre total capacity Dedicated position in accordance 3 internal recycling containers p Minimum 30 litre total capacity, 7 litre capacity Dedicated position in accordance Winhout external space Where a composting service	no single container less than 7 e with compliance note 1 rovided e with compliance note 1 rovided no single container smaller than	
	place No compliant collection scheme in place No adequate external storage No compliant collection scheme in place Adequate external storage provided Second credit - Composting facil With external space Where a composting service or facility is provided for	Internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 60 litre total capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 30 litre total capacity, 7 litre capacity Dedicated position in accordanc tites Without external space Where a composting service or facility is provided for	no single container less than 7 e with compliance note 1 rovided e with compliance note 1 rovided no single container smaller than	
	place No compliant collection scheme in place No adequate external storage No compliant collection scheme in place Adequate external storage provided Second credit - Composting facil With external space Where a composting service or facility is provided for green/garden waste	Internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 60 litre total capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 30 litre total capacity, 7 litre capacity Dedicated position in accordanc tites Without external space Where a composting service or facility is provided for kitchen waste	no single container less than 7 e with compliance note 1 rovided e with compliance note 1 rovided no single container smaller than	
	place No compliant collection scheme in place No adequate external storage No compliant collection scheme in place Adequate external storage provided Second credit - Composting facil With external space Where a composting service or facility is provided for green/garden waste Where a composting service or	Internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 60 litre total capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 30 litre total capacity, 7 litre capacity Dedicated position in accordanc winimum 30 litre total capacity, 7 litre capacity Dedicated position in accordanc without external space Where a composting service or facility is provided for kitchen waste Where an interior container is	no single container less than 7 e with compliance note 1 rovided e with compliance note 1 rovided no single container smaller than	
	place No compliant collection scheme in place No adequate external storage No compliant collection scheme in place Adequate external storage provided Second credit - Composting facil With external space Where a composting service or facility is provided for green/garden waste Where a composting service or facility is provided for kitchen	Internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 60 litre total capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 30 litre total capacity, 7 litre capacity Dedicated position in accordanc without external space Where a composting service or facility is provided for kitchen waste Where an interior container is provided for kitchen	no single container less than 7 e with compliance note 1 rovided e with compliance note 1 rovided no single container smaller than	
	place place No compliant collection scheme in place No adequate external storage No compliant collection scheme in place Adequate external storage provided Second credit - Composting facil With external space Where a composting service or facility is provided for green/garden waste Where a composting service or facility is provided for kitchen waste	Internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 60 litre total capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 30 litre total capacity, 7 litre capacity Dedicated position in accordanc without external space Where a composting service or facility is provided for kitchen waste Where an interior container is provided for kitchen	no single container less than 7 e with compliance note 1 rovided e with compliance note 1 rovided no single container smaller than	
	place place No compliant collection scheme in place No adequate external storage No compliant collection scheme in place Adequate external storage provided Second credit - Composting facil With external space Where a composting service or facility is provided for green/garden waste Where a composting service or facility is provided for kitchen waste Where an interior container is	Internal recycling container pr post collection Minimum 30 litre total capacity, litre capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 60 litre total capacity Dedicated position in accordanc 3 internal recycling containers p Minimum 30 litre total capacity, 7 litre capacity Dedicated position in accordanc without external space Where a composting service or facility is provided for kitchen waste Where an interior container is provided for kitchen	no single container less than 7 e with compliance note 1 rovided e with compliance note 1 rovided no single container smaller than	

No. of BREEAM credits available	3	Available contribution to ov	verall score 1.80%
Io. of BREEAM innovation credits	1	Minimum standards	applicable No
t Criteria			Indicative Credits Achieved
e credits are available depending o Projects up to £100k	on the site waste managemen	nt plan to be implemented as follows	2
Three Credits	Where waste generated thr managed in accordance witl	ough the refurbishment process is h Checklist A-9	Indicative Innovation Credits Achieved
Exemplary Credit	Where a compliant Level 1; (SWMP) is in place	Site Waste Management Plan	0
Projects up to £300k			_
Three Credits	Where a compliant Level 1; (SWMP) is in place	Site Waste Management Plan	
	(SWMP) is in place	Site Waste Management Plan	
		n waste generated by the dwellings eeds the resource efficiency	
Exemplary Credit	The percentage of non-haza	rdous construction waste and	
	from landfill and meets or e		
Dreigste over 6200k	demolition waste diversion	benchmarks	
Projects over £300k First Credit	Where a compliant Level 2:	Site Waste Management Plan	ſ
Management Plan	(SWMP) is in place		
	First credit achieved		
	Non-hazardous construction	n waste generated by the dwellings	
	refurbishment meets or exc benchmark	eeds the resource efficiency	
Second Credit Good Practice Waste	recorded in the SWMP	against £100,000 of project value is	
Benchmarks	Pre-refurbishment audit of t	the existing building is completed	
	If demolition is included as p programme, then the audit materials	part of the refurbishment should also cover demolition	
	Where the first two credits	have been achieved achieved	
Third Credit	Where Non-hazardous dem	olition waste generated by the	
Best Practice Waste Benchmarks	dwellings refurbishment me demolition waste diversion	ets or exceeds the refurbishment & benchmarks	
Examplany Cradit	dwellings refurbishment m	nstruction waste generated by the eets or exceeds the <i>exemplary level</i> fficiency benchmark	
Exemplary Credit		emolition waste generated by the eets or exceeds the exemplary level	

	POLLUTION	Section Weighting: 6%	Indicative Sect	ion Score 3.00%
Pol 01	NOx Emissions			
	No. of BREEAM credits available	3	Available contribution to ove	erall score 2.25%
	No. of BREEAM innovation credits	0	Minimum standards a	pplicable No
sessme	ent Criteria			Indicative Credits
edits ar	e awarded on the basis of NOx em	issions arising from the operatio	n of space heating and hot water	Achieved
stems f	or each refurbished dwelling as fol	lows:		3
		Dry NO	k Emissions	
One Credit ≤100 mg/kWh (N			NOx class 4 boiler)	
	Two Credits		NOx class 5 boiler)	
	Three Credits	≤40 r	ng/kWh	
Pol 02				
	No. of BREEAM credits available		Available contribution to ove	
	No. of BREEAM innovation credits	1	Minimum standards a	
	ent Criteria			Indicative Credits
	pacts of the refurbishment on sur		or where runoff is reduced as a	Achieved
suit of r	efurbishment, up to three credits of		L	1
		Requirements	he normaable	
	First Credit	New hard standing areas must		h -
		*	meable area additional run-off must	be
	Neutral Impact on Surface	managed on site		
	Water	Coloulations should be corried.		faccional
			out by an appropriately qualified pro	ressional
		Requirements		haan
	Second Credit		for rainfall depths up to 5 mm, have	been
		managed on site using source of Include runoff from all existing		
	Reducing Run-Off From Site:		essional should be used to design an	
	Basic			
		appropriate drainage strategy f Requirements	of the site	
			e refurbishment is managed on site u	rcing
		source control	e refut bistiment is managed on site t	ISIIIg
			essional should be used to design an	
		appropriate drainage strategy f	•	
		appropriate dramage strategy	of the site.	
	Third Credit	The neak rate of run-off as a re	sult of the refurbishment for the 1 ir	100
		year event has been reduced b		1100
	Reducing Run-Off From Site:		charged into the watercourses and s	owers as
	Advanced		or a 1 in 100 year event of 6 hour du	
		has been reduced by 75%.		lation
		nue been reduced by 7 570.		———————————————————————————————————————
		An allowance for climate change	e must be included for all of the abo	ve
			h current best practice (PPS25, 2010	
		Requirements		<u></u> I
		Where all run-off from the dev	eloped site is managed on site	Indicative Credits
		using source control		Achieved
				0
		The peak rate of run-off as a re	sult of the refurbishment for the	
		1 in 1 year event is reduced to		
		· · · ·		
		The peak rate of run-off as a re	sult of the refurbishment for the	
	Exemplary Credit	1 in 100 year event is reduced		
		There is no volume of run-off d	ischarged into the watercourses	
			furbishment, for a 1 in 100 year	
		event of 6 hour duration.		
			e must be included for all of the	
		above calculations, in accordan	ce with current pest practice	
		above calculations, in accordar (PPS25, 2010).	ice with current best practice	

	No. of BREEAM credits available	2	Available contribution to overall score	1.50%
	No. of BREEAM innovation credits	0	Minimum standards applicable	Yes
ssessme	ent Criteria		Indicative Achie	
here th	e dwelling is located in a low flood	risk zone, or where in a medium	to high flood risk zone and a 0	
od resil	lience/resistance strategy has been	implemented, up to two credit	s can be awarded as follows:	
	Minimum Standards	A minimum of two credits mus and Outstanding levels	t be achieved for this issue at the Excellent	
	Option 1 - Low Flood Risk			
	Two Credits		t (FRA) has been carried out and the assessed	
	Option 2 - Medium / High Flood		a low annual probability of flooding.	
	Option 2 - Medium / High Flood	Risk Where a Flood Risk Assessmen	t (FRA) has been carried out and the assessed	
	Option 2 - Medium / High Flood	Risk Where a Flood Risk Assessmen		
	Option 2 - Medium / High Flood	Risk Where a Flood Risk Assessmen dwellings are defined as having flooding. Two credits are awarded wher	t (FRA) has been carried out and the assessed ; a medium or high annual probability of e as a result of the dwellings floor level or	
	Option 2 - Medium / High Flood Two Credits	Risk Where a Flood Risk Assessmen dwellings are defined as having flooding. Two credits are awarded wher measures to keep water away	t (FRA) has been carried out and the assessed ; a medium or high annual probability of	
		Risk Where a Flood Risk Assessmen dwellings are defined as having flooding. Two credits are awarded wher measures to keep water away from flooding by following Che Where avoidance is not possib	t (FRA) has been carried out and the assessed g a medium or high annual probability of e as a result of the dwellings floor level or the dwelling is defined as achieving avoidance	

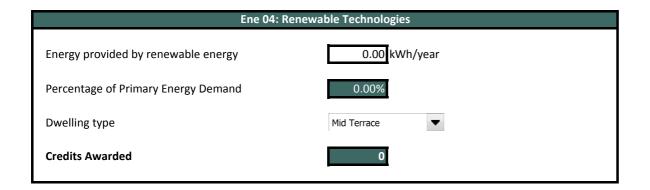
BREEAM Domestic Refurbishment: Energy Calculator

Tool Version	V00.2
BREEAM Domestic Refurbishment Version	V00.2
Assessor Name	N Ingham
Assessment Reference Number	15211
Site Name	55 Lancaster Grove

	Summary	
	Credits Exemplary	
Ene 01	5	
Ene 02	3	0
Ene 03	6	
Ene 04	0	

Ene 01: Improvement in Energy Efficiency Rating		
Dwelling Type	Single	
SAP Type used	Full SAP	
EER Pre-Refurbishment	28	
EER Post-refurbishment	76	
EER Improvement	48	

 Ene 02: Energy Efficiency Post Refurbishment


 Ene 02 Credits Awarded
 3

 Ene 02 Exemplary Credits Awarded
 0

 Ene 02 Standard
 Excellent

Ene 03: Primary Energy Demand			
Primary Energy Demand	81597.8 kWh/yr	Box 265*+266*+267*+268*	
Total Floor Area	571.07 m2	Box 4	

SAP Input

Property Details: 55 Lancaster	grove - pre-refurbishment	
Address [.]	55 Lancaster Grove	

Address:	55 Lancaster Grove, LONDON, NW3 4HD
Located in:	England
Region:	Thames valley
UPRN:	7608799078
Date of assessment:	27 January 2015
Date of certificate:	26 January 2015
Assessment type:	New dwelling design stage
Transaction type:	None of the above
Tenure type:	Owner-occupied
Related party disclosure:	No related party
Thermal Mass Parameter:	Indicative Value Medium
Water use <= 125 litres/person/d	ay: True
PCDF Version:	372

Property description:

Dwelling type: Detachment: Year Completed:	House Semi-detached 2015	
Floor Location:	Floor area:	Storey height:
Basement floor Floor 1 Floor 2 Floor 3	196.23 m² 153.44 m² 116.9 m² 104.5 m²	3 m 3.9 m 3.3 m 3.35 m
Living area: Front of dwelling faces:	67.84 m ² (fraction 0.119) South West	
Opening types:		

opening types.					
Name:	Source:	Туре:	Glazing:	Argon:	Frame:
D1	SAP 2012	Half glazed	Single-glazed	No	Wood
D2	SAP 2012	Half glazed	Single-glazed	No	Wood
W1	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Wood
W2	SAP 2012	Windows	low-E, En = 0.05, soft coat	Yes	Wood
W3	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Wood
W4	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Wood
W5	SAP 2012	Windows	Single-glazed	No	Wood
W6	SAP 2012	Windows	Single-glazed	No	Wood
W7	SAP 2012	Windows	Single-glazed	No	Wood
W8	SAP 2012	Windows	Single-glazed	No	Wood
W9	SAP 2012	Windows	Single-glazed	No	Wood
W10	SAP 2012	Windows	Single-glazed	No	Wood
W11	SAP 2012	Windows	Single-glazed	No	Wood
W12	SAP 2012	Windows	Single-glazed	No	Wood
W13	SAP 2012	Windows	Single-glazed	No	Wood
W14	SAP 2012	Windows	Single-glazed	No	Wood
W15	SAP 2012	Windows	Single-glazed	No	Wood
W16	SAP 2012	Windows	Single-glazed	No	Wood
W17	SAP 2012	Windows	Single-glazed	No	Wood
W18	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Wood
W19	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Wood
W20	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Wood
W21	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Wood
W22	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Wood
W23	SAP 2012	Windows	Single-glazed	No	Wood
W24	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Wood
W25	SAP 2012	Windows	Single-glazed	No	Wood

SAP Input

W26	SAP 2012	Windows	Single-glazed		No	Wood
W27	SAP 2012	Windows	Single-glazed		No	Wood
W28	SAP 2012	Windows	Single-glazed		No	Wood
RL1	Manufacturer	Roof Windows	low-E, En = 0.05	5, soft coat	Yes	Wood
RL2	SAP 2012	Roof Windows	low-E, En = 0.05		Yes	Wood
				,		
Name:	Gap:	Frame Factor:	g-value:	U-value:	Area:	No. of Openings:
D1	mm	0.7	0.85	3.9	2.42	1
D2	mm	0.7	0.85	3.9	2.42	1
W1	16mm or more	0.7	0.63	4.8	2.39	2
W2	16mm or more	0.7	0.63	4.8	3.58	1
W3	16mm or more	0.7	0.63	4.8	1.72	1
W4	16mm or more	0.7	0.63	4.8	1.72	1
W5		0.7	0.85	4.8	2.03	2
W6		0.7	0.85	4.8	3.04	1
W7		0.7	0.85	4.8	1.46	1
W8		0.7	0.85	4.8	1.46	1
W9		0.7	0.85	4.8	2.7	1
W10		0.7	0.85	4.8	1.3	1
W11		0.7	0.85	4.8	1.3	1
W12		0.7	0.85	4.8	2.2	2
W13		0.7	0.85	4.8	2.19	1
W14		0.7	0.85	4.8	2.73	1
W15		0.7	0.85	4.8	1.5	4
W16		0.7	0.85	4.8	0.42	1
W17		0.7	0.85	4.8	0.79	1
W18	16mm or more	0.7	0.63	4.8	3.45	1
W19	16mm or more	0.7	0.63	4.8	0.58	1
W20	16mm or more	0.7	0.63	4.8	5.28	1
W20 W21	16mm or more	0.7	0.63	4.8	5.76	1
W22	16mm or more	0.7	0.63	4.8	1.31	1
W23		0.7	0.85	4.8	1.7	5
W24	16mm or more	0.7	0.63	4.8	11.88	1
W25		0.7	0.85	4.8	1.56	1
W26		0.7	0.85	4.8 4.8	1.56	1
W27		0.7	0.85	4.8	0.4	1
W28		0.7	0.85	4.8 4.8	5.55	1
RL1	16mm or more	0.7	0.63	4.8	23.6	
RL1 RL2	16mm or more	0.7	0.63	4.8 4.8	4.52	1 3
KLZ		0.7	0.03	4.0	4.32	3
Name: D1	Type-Name:	Location: External	Orient: South West		Width: 1.1	Height: 2.2
D2		External	North East		1.1	2.2
W1		New external	South West		0.9	2.65
W2		New external	South West		1.35	2.65
W3		New external	South		0.65	2.65
W4		New external	West		0.65	2.65
W5		External	South West		0.9	2.25
W6		External	South West		1.35	2.25
W7		External	South		0.65	2.25
W8		External	West		0.65	2.25
W9		External	South West		1.35	2
W10		External	South		0.65	2
W10		External	West		0.65	2
W12		External	South West		1.1	2
W12 W13		External	South West		1.1	2 1.185
W13 W14		Dormer	South West		1.85	2.1
W14 W15		External	South East		1.3	1.5
W15		External	South East		0.65	0.65
W17		External	South East		0.85	2.25
vv i /			JUUIT EASI		0.33	2.20

W18	External	South East	1.5	2.3
W19	External	South East	0.55	1.05
W20	New external	South East	2.2	2.4
W21	New external	North West	2.4	2.4
W22	New external	North West	0.875	1.5
W23	External	North East	0.85	2
W24	New external	North East	4.75	2.5
W25	External	North	0.65	2.4
W26	External	East	0.65	2.4
W27	External	North East	0.895	0.45
W28	Dormer	North East	3.7	1.5
RL1	New flat	Horizontal	14.3	1.65
RL2	Basement	Horizontal	1.35	3.35

Overshading:

Opaque Elements:

Average or unknown

Туре:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Kappa:
External Elements							
New external	91.67	36.03	55.64	2.1	0	False	N/A
External	232.64	50.01	182.63	2.1	0	False	N/A
Dormer	13	8.28	4.72	2.3	0	False	N/A
Basement	164.1	0	164.1	2.1	0	False	N/A
Ceiling	66.5	0	66.5	2.1	0		N/A
New flat	33.99	23.6	10.39	2.3	0		N/A
Basement	42.79	13.56	29.23	2.3	0		N/A
Old dormer and bay	s 15.11	0	15.11	2.3	0		N/A
Rafter roof	39.56	0	39.56	2.3	0		N/A
New Basement	196.23			0.56			N/A
Internal Elements							
Party Elements							

Thermal bridges:

Thermal bridges:	No information on thermal bridging ($y=0.15$) ($y=0.15$)
Ventilation:	
Pressure test: Ventilation: Number of chimneys: Number of open flues: Number of fans: Number of passive stacks: Number of sides sheltered: Pressure test:	No (Assumed) Natural ventilation (extract fans) 0 0 8 0 4 15
Main heating system:	
Main heating system:	Boiler systems with radiators or underfloor heating Gas boilers and oil boilers Fuel: mains gas Info Source: SAP Tables SAP Table: 116 Floor mounted, pre 1979 Systems with radiators Central heating pump : Unknown Design flow temperature: Unknown Open

Boiler interlock: No

Main heating Control:	
Main heating Control:	Room thermostat only Control code: 2103
Secondary heating system:	
Secondary heating system:	None
Water heating:	
Water heating:	From main heating system Water code: 901 Fuel :mains gas Hot water cylinder Cylinder volume: 250 litres Cylinder insulation: Jacket 35 mm Primary pipework insulation: False Cylinderstat: False Cylinder in heated space: True Solar panel: False
Others:	
Electricity tariff: In Smoke Control Area: Conservatory: Low energy lights: Terrain type: EPC language: Wind turbine: Photovoltaics: Assess Zero Carbon Home:	Standard Tariff Unknown No conservatory 0% Low rise urban / suburban English No None No

				User D	etails:						
Assessor Name: Software Name:	Neil Inghar Stroma FS				Stroma Softwa	are Ver	rsion:		Versio	0002943 on: 1.0.1.14	
	EE Longooto	r Crovo IV				55 Lano	caster gro	ve - pr	e-returb	Isnment	
Address : 1. Overall dwelling dime	55 Lancaste	er Grove, L	UNDC	JIN, INVV	3 4ND						
	1310113.			Area	a(m²)		Av. Heig	ht(m)		Volume(m ³	3)
Basement				-		(1a) x	3	,	(2a) =	588.69	(3a)
Ground floor				1	53.44	(1b) x	3.9)	(2b) =	598.42	(3b)
First floor				1	16.9	(1c) x	3.3	3	(2c) =	385.77	(3c)
Second floor				1	04.5	(1d) x	3.3	5	(2d) =	350.07	(3d)
Total floor area TFA = (1a	a)+(1b)+(1c)+((1d)+(1e)+.	(1n) 5	71.07	(4)			-		_
Dwelling volume						(3a)+(3b))+(3c)+(3d)+	-(3e)+	.(3n) =	1922.95	(5)
2. Ventilation rate:											
	main heating		ondary ting	У	other		total			m ³ per hou	Ir
Number of chimneys	0	+	0] + [0] = [0	x 4	40 =	0	(6a)
Number of open flues	0	+	0] + [0] = [0	x 2	20 =	0	(6b)
Number of intermittent fai	าร						8	× ´	10 =	80	(7a)
Number of passive vents							0	× ^	10 =	0	(7b)
Number of flueless gas fin	es						0	x 4	40 =	0	(7c)
									Air ch	nanges per ho	our
Infiltration due to chimney	rs, flues and fa	ans = (6a)+((6b)+(7	a)+(7b)+(7c) =	Г	80	Γ.	÷ (5) =	0.04	(8)
If a pressurisation test has be			proceed	l to (17), e	otherwise c	ontinue fro	om (9) to (16	5)			_
Number of storeys in th	e dwelling (ne	5)								0	(9)
Additional infiltration	05 (Carl and Car		0.05 ([(9)-	-1]x0.1 =	0	(10)
Structural infiltration: 0. if both types of wall are pr						•	uction			0	(11)
deducting areas of openin			0	Ū		ι.					
If suspended wooden f		, ,) or 0.	1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, ent										0	(13)
Percentage of windows	and doors dr	aught strip	ped							0	(14)
Window infiltration					0.25 - [0.2		-			0	(15)
Infiltration rate							2) + (13) + (0	(16)
Air permeability value,				•			etre of en	velope	area	15	(17)
If based on air permeabili Air permeability value applies	•						is being use	d		0.79	(18)
Number of sides sheltere						-				4	(19)
Shelter factor					(20) = 1 - [0.075 x (1	9)] =			0.7	(20)
Infiltration rate incorporation	ng shelter fac	tor			(21) = (18)	x (20) =				0.55	(21)
Infiltration rate modified for		d speed	r		1 1		,			1	
Jan Feb	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		

Monthl	y avera	age wind	speed f	rom Tab	le 7									
(22)m=	5.1	5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind F	actor (22a)m =	(22)m ÷	- 4										
(22a)m=	,	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adiuste	ed infilt	ration rat	e (allow	ring for sl	nelter an	d wind s	peed) =	(21a) x	(22a)m					
,	0.71	0.69	0.68	0.61	0.6	0.53	0.53	0.51	0.55	0.6	0.62	0.65		
			-	rate for t	the appli	cable ca	se	<u> </u>		1		نــــــا ۲		
		al ventila		endix N, (2	23h) - (23a	a) x Emv (e	equation (N5)) othe	rwise (23h	(23a)		L	0	(23a)
			0 11	ciency in %	, ,	, ,	•	<i>,,</i> .	,)) = (200)		L	0	(23b) (23c)
					Ū		``		,	2b)m + (23b) x [[,]	L 1 – (23c)		(200)
(24a)m=		0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If	balanc	ed mech	anical v	entilation	without	heat red	covery (I	u MV) (24b)m = (22	1 2b)m + (i	23b)			
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
,				ntilation of then (24)	•	•				.5 × (23b)	<u>. </u>		
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
,				nole hous)m = (22	•	•				0.5]				
(24d)m=	, ,	0.74	0.73	0.69	0.68	0.64	0.64	0.63	0.65	0.68	0.69	0.71		(24d)
Effe	ctive ai	r change	rate - e	nter (24a	n) or (24t	o) or (24	c) or (24	d) in bo	x (25)	1	•			
(25)m=	0.75	0.74	0.73	0.69	0.68	0.64	0.64	0.63	0.65	0.68	0.69	0.71		(25)
3. He	at losse	es and he	eat loss	paramet	er:									
ELEN		Gros area	SS	Openir		Net Ar A ,r		U-val W/m2		A X U (W/		k-value kJ/m²·K		A X k kJ/K
Doors	Type 1					2.42	x	3.9	=	9.43800	1			(26)
Doors	Type 2					2.42	x	3.9	=	9.43800	1			(26)
Window	ws Typ	e 1				2.39	x1	/[1/(4.8)+	0.04] =	9.62				(27)
Window	ws Typ	e 2				3.58	x1	/[1/(4.8)+	0.04] =	14.42				(27)
Window	ws Typ	e 3				1.72	x1	/[1/(4.8)+	0.04] =	6.93				(27)
Window	ws Typ	e 4				1.72	x1	/[1/(4.8)+	0.04] =	6.93				(27)
Window	ws Typ	e 5				2.03	x1	/[1/(4.8)+	0.04] =	8.17				(27)
Window	ws Typ	e 6				3.04	x1	/[1/(4.8)+	0.04] =	12.24				(27)
Window	ws Typ	e 7				1.46	x1	/[1/(4.8)+	0.04] =	5.88				(27)
Window	ws Typ	e 8				1.46		/[1/(4.8)+	0.04] =	5.88				(27)
Window	ws Typ	e 9				2.7	x1	/[1/(4.8)+	0.04] =	10.87				(27)
Window	ws Typ	e 10				1.3	x1	/[1/(4.8)+	0.04] =	5.23				(27)
Window	ws Typ	e 11				1.3	x1	/[1/(4.8)+	0.04] =	5.23				(27)
Window	ws Typ	e 12				2.2	x1	/[1/(4.8)+	0.04] =	8.86				(27)

Windows Type 13	2.19 ×	x1/[1/(4.8)+	0.04] =	8.82]			(27)
Windows Type 14	2.73	x1/[1/(4.8)+	0.04] =	10.99]			(27)
Windows Type 15	1.5 ×	x1/[1/(4.8)+	0.04] =	6.04]			(27)
Windows Type 16	0.42	x1/[1/(4.8)+	0.04] =	1.69]			(27)
Windows Type 17	0.79 ×	x1/[1/(4.8)+	0.04] =	3.18	Ī			(27)
Windows Type 18	3.45 ×	x1/[1/(4.8)+	0.04] =	13.89	Ī			(27)
Windows Type 19	0.58 ×	x1/[1/(4.8)+	0.04] =	2.34	Ī			(27)
Windows Type 20	5.28 ×	x1/[1/(4.8)+	0.04] =	21.26]			(27)
Windows Type 21	5.76 ×	x1/[1/(4.8)+	0.04] =	23.19]			(27)
Windows Type 22	1.31 ×	x1/[1/(4.8)+	0.04] =	5.28]			(27)
Windows Type 23	1.7 ×	x1/[1/(4.8)+	0.04] =	6.85]			(27)
Windows Type 24	11.88	x1/[1/(4.8)+	0.04] =	47.84]			(27)
Windows Type 25	1.56 ×	x1/[1/(4.8)+	0.04] =	6.28				(27)
Windows Type 26	1.56 ×	x1/[1/(4.8)+	0.04] =	6.28				(27)
Windows Type 27	0.4	x1/[1/(4.8)+	0.04] =	1.61				(27)
Windows Type 28	5.55 ×	x1/[1/(4.8)+	0.04] =	22.35				(27)
Rooflights Type 1	23.6 ×	_K 1/[1/(4.8) +	0.04] =	113.28				(27b)
Rooflights Type 2	4.52 ×	_x 1/[1/(4.8) +	0.04] =	21.696				(27b)
Floor	196.23 ×	0.56	=	109.8888] [(28)
Walls Type1 91.67 36.03	55.64 ×	× 2.1	= [116.84] [(29)
Walls Type2 232.64 50.01	182.63 ×	× 2.1	= [383.52] [(29)
Walls Type3 13 8.28	4.72 ×	2.3	=	10.86] [(29)
Walls Type4 164.1 0	164.1 ×	× 2.1	=	344.61] [(29)
Roof Type1 66.5 0	66.5 ×	× 2.1	=	139.65] [(30)
Roof Type2 33.99 23.6	10.39 ×	2.3	=	23.9				(30)
Roof Type3 42.79 13.56	29.23 ×	2.3	=	67.23				(30)
Roof Type4 15.11 0	15.11 ×	2.3	=	34.75				(30)
Roof Type5 39.56 0	39.56 ×	2.3	=	90.99				(30)
Total area of elements, m ²	895.59							(31)
* for windows and roof windows, use effective window U-va ** include the areas on both sides of internal walls and parti		ng formula 1	/[(1/U-valu	e)+0.04] as	given in	paragraph	1 3.2	
Fabric heat loss, $W/K = S (A \times U)$		(26)(30)	+ (32) =				1851.07	(33)
Heat capacity $Cm = S(A \times k)$			((28)	.(30) + (32)	+ (32a).	(32e) =	29533.86	(34)
Thermal mass parameter (TMP = Cm ÷ TFA) in	kJ/m²K		Indica	tive Value: N	ledium		250	(35)
For design assessments where the details of the construction can be used instead of a detailed calculation.	on are not known j	precisely the	e indicative	values of T	MP in Ta	able 1f		
Thermal bridges : S (L x Y) calculated using Ap	pendix K						134.34	(36)
if details of thermal bridging are not known $(36) = 0.15 \times (37)$	1)		(22)	(2.2)				-
Total fabric heat loss				(36) =	·) · · · · · (E)		1985.41	(37)
Ventilation heat loss calculated monthly Jan Feb Mar Apr May	Jun Jul	Aug	(38)m Sep	= 0.33 × (25	Nov	Dec		
(38)m= 475.66 469.51 463.48 435.17 429.87	405.21 405.21		414.71		440.59	451.79		(38)
Heat transfer coefficient, W/K	!			= (37) + (38			I	
(39)m= 2461.07 2454.92 2448.9 2420.58 2415.28	2390.62 2390.6	2 2386.06	. ,		2426	2437.2		
Stroma FSAP 2012 Version! 1.0.1.14 (SAP 9.92) - http://ww	rw.stromal.com		·	Average = S	um(39)1.	12 /12=	Page 3 2420.56	f 16 (39)

Heat lo	oss para	meter (H	HLP), W	/m²K					(40)m	= (39)m ÷	- (4)			
(40)m=	4.31	4.3	4.29	4.24	4.23	4.19	4.19	4.18	4.2	4.23	4.25	4.27		
Numbe	or of day		nth (Tab	le 12)						Average =	Sum(40)1.	12 /12=	4.24	(40)
Numbe	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
	_									_		_		
4. Wa	iter heat	ting enei	rgy requ	irement:								kWh/ye	ear:	
if TF				: [1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.(0013 x (⁻	TFA -13		48		(42)
Reduce	the annua	al average	hot water		5% if the c	welling is	designed	(25 x N) to achieve		se target o		6.95		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage il	n litres per	r day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)						
(44)m=	128.65	123.97	119.29	114.61	109.94	105.26	105.26	109.94	114.61	119.29	123.97	128.65		_
Enerav	content of	hot water	used - ca	culated m	onthly – 4	100 v Vd i	m v nm v Γ)Tm / 360(m(44) ₁₁₂ = ables 1b, 1		1403.43	(44)
	190.78	166.86	172.18	150.11	144.04	124.29	115.18	132.17	133.74	155.87	170.14	184.76		
(45)m=	190.76	100.00	172.10	150.11	144.04	124.29	115.16	132.17			m(45) ₁₁₂ =		1840.12	(45)
lf instant	taneous w	ater heatii	ng at point	t of use (no	o hot water	r storage),	enter 0 in	boxes (46		10tal – 0u	III(+J)112 -		1040.12	(10)
(46)m=	28.62	25.03	25.83	22.52	21.61	18.64	17.28	19.82	20.06	23.38	25.52	27.71		(46)
	storage										·			
-		. ,		• •			•	within sa	ame ves	sel		250		(47)
	•	-		ank in dw er (this ir	-			(47) ombi boil	ers) ente	er '0' in <i>(</i>	47)			
	storage		not wat			notantai	10000 00				,			
a) If m	anufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):				(0		(48)
Tempe	erature f	actor fro	m Table	2b							(0		(49)
•••			-	e, kWh/ye		_		(48) x (49)) =		25	50		(50)
,				cylinder l rom Tabl								04		(51)
		-	ee secti			1/1110/00	xy)				0.	04		(31)
	-	from Ta									0.	78		(52)
Tempe	erature f	actor fro	m Table	2b							0.	78		(53)
			•	e, kWh/ye	ear			(47) x (51)) x (52) x (53) =	6.	39		(54)
		(54) in (5	,								6.	39		(55)
	-		,	for each	r	1	i	((56)m = (i	1		1	
(56)m=	197.94	178.78	197.94	191.55	197.94	191.55	197.94	197.94	191.55	197.94	191.55	197.94		(56)
				- · ·	r		r	r ·	· · ·		H11) is fro			
(57)m=	197.94	178.78	197.94	191.55	197.94	191.55	197.94	197.94	191.55	197.94	191.55	197.94		(57)
		•	,	om Table							(0		(58)
							. ,	65 × (41)		r tharma	vetot)			
(moc (59)m=	128.38	115.95	128.38	124.24	128.38	41.92	43.31	ng and a 43.31	41.92	128.38	124.24	128.38		(59)
(00)11-	120.00	110.00	20.00	'27.24	120.00					120.00	127.24	120.00		(00)

Combi	loss ca	alculated	for eac	h month	(61)m =	(60)	÷ 365 × (4	1)m							
(61)m=	0	0	0	0	0	(0 0	0)	0	0	0	0		(61)
Total h	eat rec	uired for	water h	neating ca	alculated	l for	each mont	า (62)	m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	517.1	461.59	498.5	465.9	470.35	357	7.76 356.43	373	.42	367.21	482.18	485.93	511.08		(62)
Solar DH	- IW input	calculated	using Ap	pendix G o	r Appendix	H (n	egative quant	ty) (ent	er '0	' if no sola	r contribu	tion to wate	er heating)		
(add a	dditiona	al lines if	FGHRS	S and/or V	NWHRS	app	lies, see A	ppenc	lix C	G)					
(63)m=	0	0	0	0	0	(0 0	0)	0	0	0	0		(63)
Output	from w	vater hea	ter									-	-	-	
(64)m=	517.1	461.59	498.5	465.9	470.35	357	7.76 356.43	373	.42	367.21	482.18	485.93	511.08		
		•	•	•			•		Outp	out from wa	ater heate	er (annual)₁	12	5347.45	(64)
Heat g	ains fro	om water	heating	, kWh/m	onth 0.2	5 ´ [().85 × (45)r	n + (6	1)m	n] + 0.8 x	د [(46)m	ı + (57)m	+ (59)m]	
(65)m=	324.49	1	318.3	302.54	308.94	22		236		231.24	312.88		322.48		(65)
inclu	de (57)m in calo	ulation	of (65)m	only if c	vlinc	der is in the	dwell	ina	or hot w	ater is f	rom com	n munity h	i leating	
		ains (see		. ,	-	,							·····,	g	
	Ŭ	,).										
ivietado	Jiic gail	ns (Table Feb	<u>, 5), vva</u> Mar		May		un Jul		ug	Sep	Oct	Nov	Dec]	
(66)m=	174.22		174.22	Apr 174.22	174.22	174			-	174.22	174.22	174.22	174.22		(66)
		1									174.22	174.22	174.22		(00)
-		<u>,</u>		<u> </u>	· ·	-	.9 or L9a),	-		i				1	(07)
(67)m=	98.93	87.86	71.46	54.1	40.44		.14 36.89	47.		64.36	81.72	95.38	101.67		(67)
Applia		<u>,</u>	r	T			on L13 or L	<u> </u>		· · · · · ·	· · · · ·		1	1	
(68)m=	652.73	659.5	642.43	606.1	560.23	517	7.12 488.32	481	.55	498.61	534.95	580.82	623.93		(68)
Cookin	ig gains	s (calcula	ated in A	Appendix	L, equat	ion I	L15 or L15	a), als	o se	e Table	5		-		
(69)m=	40.42	40.42	40.42	40.42	40.42	40.	.42 40.42	40.	42	40.42	40.42	40.42	40.42		(69)
Pumps	and fa	ins gains	(Table	5a)											
(70)m=	10	10	10	10	10	1	0 10	1	0	10	10	10	10		(70)
Losses	s e.g. e	vaporatic	n (nega	ative valu	es) (Tab	le 5))								
(71)m=	-139.37	-139.37	-139.37	-139.37	-139.37	-139	9.37 -139.37	-139	.37	-139.37	-139.37	-139.37	-139.37		(71)
Water	heating	gains (T	rable 5)				I	1				- !		1	
(72)m=	436.14	, , ,	427.83	1	415.25	316	5.81 310.88	318	.48	321.17	420.53	429.45	433.45		(72)
Total i	nterna	l gains =		1			(66)m + (67)	 m + (68	3)m +	L + (69)m + (l (70)m + ([*]	 71)m + (72))m	1	
		1266.07	1	1165.66	1101.18	953	· · · · ·			969.41	1122.47]	(73)
	lar gain		1	1	1		1	1				1	1		. ,
	Ŭ		using sol	ar flux from	Table 6a a	and a	ssociated equ	ations	to co	onvert to th	e applica	ble orientat	tion.		
•		Access F	•	Area			Flux			g_		FF		Gains	
		Table 6d		m²			Table 6a		Т	able 6b	٦	able 6c		(W)	
North	0.9x	0.77	>	(1.	56	×Г	10.63	٦ x		0.85	ר ∧ ר	0.7		6.84	(74)
North	0.9x	0.77				×Г	20.32			0.85		0.7		13.07	(74)
North	0.9x	0.77				^ L x [34.53	」^ ┐х		0.85		0.7		22.21	(74)
North	0.9x					2		4			믁 눈				
		0.77	>			× L	55.46	_ ×		0.85		0.7	=	35.68	(74)
North	0.9x	0.77)	۲. t	o6	×	74.72	X		0.85	×	0.7	=	48.06	(74)

North 0.9x 0.77 X 1.56 X 79.99 X 0.85 X 0.7 = 51.4	5 (74)
North $0.9x$ 0.77 x 1.56 x 74.68 x 0.85 x 0.7 = 48.0	(74)
North 0.9x 0.77 X 1.56 X 24.19 X 0.85 X 0.7 = 15.5	
North 0.9x 0.77 X 1.56 X 13.12 X 0.85 X 0.7 = 8.4	
North 0.9x 0.77 X 1.56 X 8.86 X 0.85 X 0.7 = 5.7	
Northeast 0.9x 0.77 x 1.7 x 11.28 x 0.85 x 0.7 = 39.5	
Northeast 0.9x 0.77 × 11.88 × 11.28 × 0.63 × 0.7 = 40.5	
Northeast 0.9x 0.77 X 0.4 X 11.28 X 0.85 X 0.7 = 1.8	
Northeast 0.9x 0.77 × 5.55 × 11.28 × 0.85 × 0.7 = 25.8	
Northeast 0.9x 0.77 X 1.7 X 22.97 X 0.85 X 0.7 = 80.4	
Northeast 0.9x 0.77 X 11.88 X 22.97 X 0.63 X 0.7 = 83.3	8 (75)
Northeast 0.9x 0.77 X 0.4 X 22.97 X 0.85 X 0.7 = 3.7	(75)
Northeast 0.9x 0.77 X 5.55 X 22.97 X 0.85 X 0.7 = 52.5	6 (75)
Northeast 0.9x 0.77 x 1.7 x 41.38 x 0.85 x 0.7 = 145.	03 (75)
Northeast 0.9x 0.77 X 11.88 X 41.38 X 0.63 X 0.7 = 150.	23 (75)
Northeast 0.9x 0.77 X 0.4 X 41.38 X 0.85 X 0.7 = 6.8	2 (75)
Northeast 0.9x 0.77 x 5.55 x 41.38 x 0.85 x 0.7 = 94.6	9 (75)
Northeast 0.9x 0.77 x 1.7 x 67.96 x 0.85 x 0.7 = 238.	17 (75)
Northeast 0.9x 0.77 X 11.88 X 67.96 X 0.63 X 0.7 = 246.	73 (75)
Northeast 0.9x 0.77 x 0.4 x 67.96 x 0.85 x 0.7 = 11.2	:1 (75)
Northeast 0.9x 0.77 x 5.55 x 67.96 x 0.85 x 0.7 = 155.	51 (75)
Northeast 0.9x 0.77 x 1.7 x 91.35 x 0.85 x 0.7 = 320.	15 (75)
Northeast 0.9x 0.77 x 11.88 x 91.35 x 0.63 x 0.7 = 331.	65 (75)
Northeast 0.9x 0.77 x 0.4 x 91.35 x 0.85 x 0.7 = 15.0	7 (75)
Northeast 0.9x 0.77 x 5.55 x 91.35 x 0.85 x 0.7 = 209.	04 (75)
Northeast 0.9x 0.77 x 1.7 x 97.38 x 0.85 x 0.7 = 341.	32 (75)
Northeast 0.9x 0.77 X 11.88 X 97.38 X 0.63 X 0.7 = 353.	57 (75)
Northeast 0.9x 0.77 x 0.4 x 97.38 x 0.85 x 0.7 = 16.0	6 (75)
Northeast 0.9x 0.77 x 5.55 x 97.38 x 0.85 x 0.7 = 222.	86 (75)
Northeast 0.9x 0.77 x 1.7 x 91.1 x 0.85 x 0.7 = 319	3 (75)
Northeast 0.9x 0.77 X 11.88 X 91.1 X 0.63 X 0.7 = 330.	76 <mark>(75)</mark>
Northeast 0.9x 0.77 x 0.4 x 91.1 x 0.85 x 0.7 = 15.0	3 (75)
Northeast 0.9x 0.77 x 5.55 x 91.1 x 0.85 x 0.7 = 208.	48 (75)
Northeast 0.9x 0.77 x 1.7 x 72.63 x 0.85 x 0.7 = 254.	55 (75)
Northeast 0.9x 0.77 X 11.88 X 72.63 X 0.63 X 0.7 = 263.	69 (75)
Northeast 0.9x 0.77 x 0.4 x 72.63 x 0.85 x 0.7 = 11.5	8 (75)
Northeast 0.9x 0.77 x 5.55 x 72.63 x 0.85 x 0.7 = 166	2 (75)
Northeast 0.9x 0.77 x 1.7 x 50.42 x 0.85 x 0.7 = 176.	72 (75)
Northeast 0.9x 0.77 x 11.88 x 50.42 x 0.63 x 0.7 = 183.	06 (75)

Northeast 0.9x	0.77	×	0.4	×	50.42	×	0.85	x	0.7	=	8.32	(75)
Northeast 0.9x	0.77	x	5.55	x	50.42	x	0.85	x	0.7	=	115.39	(75)
Northeast 0.9x	0.77	x	1.7	x	28.07	x	0.85	x	0.7	=	98.37	(75)
Northeast 0.9x	0.77	×	11.88	x	28.07	×	0.63	x	0.7	=	101.9	(75)
Northeast 0.9x	0.77	×	0.4	x	28.07	×	0.85	x	0.7	=	4.63	(75)
Northeast 0.9x	0.77	×	5.55	x	28.07	×	0.85	x	0.7	=	64.23	(75)
Northeast 0.9x	0.77	×	1.7	×	14.2	×	0.85	x	0.7	=	49.76	(75)
Northeast 0.9x	0.77	×	11.88	x	14.2	×	0.63	x	0.7	=	51.54	(75)
Northeast 0.9x	0.77	x	0.4	x	14.2	x	0.85	x	0.7	=	2.34	(75)
Northeast 0.9x	0.77	×	5.55	x	14.2	×	0.85	x	0.7	=	32.49	(75)
Northeast 0.9x	0.77	x	1.7	x	9.21	×	0.85	x	0.7	=	32.29	(75)
Northeast 0.9x	0.77	x	11.88	x	9.21	x	0.63	x	0.7	=	33.45	(75)
Northeast 0.9x	0.77	x	0.4	x	9.21	x	0.85	x	0.7	=	1.52	(75)
Northeast 0.9x	0.77	x	5.55	x	9.21	x	0.85	x	0.7	=	21.09	(75)
East 0.9x	1	×	1.56	x	19.64	×	0.85	x	0.7	=	12.63	(76)
East 0.9x	1	×	1.56	x	38.42	×	0.85	x	0.7	=	24.71	(76)
East 0.9x	1	x	1.56	×	63.27	×	0.85	x	0.7	=	40.7	(76)
East 0.9x	1	×	1.56	x	92.28	×	0.85	x	0.7	=	59.36	(76)
East 0.9x	1	x	1.56	×	113.09	×	0.85	x	0.7	=	72.75	(76)
East 0.9x	1	x	1.56	x	115.77	×	0.85	x	0.7	=	74.47	(76)
East 0.9x	1	×	1.56	x	110.22	×	0.85	x	0.7	=	70.9	(76)
East 0.9x	1	×	1.56	x	94.68	×	0.85	x	0.7	=	60.9	(76)
East 0.9x	1	x	1.56	x	73.59	x	0.85	x	0.7	=	47.34	(76)
East 0.9x	1	x	1.56	x	45.59	×	0.85	x	0.7	=	29.32	(76)
East 0.9x	1	x	1.56	x	24.49	×	0.85	x	0.7	=	15.75	(76)
East 0.9x	1	x	1.56	x	16.15	×	0.85	x	0.7	=	10.39	(76)
Southeast 0.9x	0.77	x	1.5	x	36.79	x	0.85	x	0.7	=	91.03	(77)
Southeast 0.9x	0.77	×	0.42	x	36.79	×	0.85	x	0.7	=	6.37	(77)
Southeast 0.9x	0.77	×	0.79	x	36.79	×	0.85	x	0.7	=	11.99	(77)
Southeast 0.9x	0.77	×	3.45	×	36.79	×	0.63	x	0.7	=	38.79	(77)
Southeast 0.9x	0.77	×	0.58	x	36.79	×	0.63	x	0.7	=	6.52	(77)
Southeast 0.9x	0.77	×	5.28	x	36.79	×	0.63	x	0.7	=	59.37	(77)
Southeast 0.9x	0.77	×	1.5	x	62.67	×	0.85	x	0.7	=	155.05	(77)
Southeast 0.9x	0.77	×	0.42	x	62.67	×	0.85	x	0.7	=	10.85	(77)
Southeast 0.9x	0.77	×	0.79	x	62.67	×	0.85	x	0.7	=	20.42	(77)
Southeast 0.9x	0.77	×	3.45	x	62.67	×	0.63	x	0.7	=	66.08	(77)
Southeast 0.9x	0.77	×	0.58	×	62.67	×	0.63	x	0.7	=	11.11	(77)
Southeast 0.9x	0.77	×	5.28	x	62.67	×	0.63	x	0.7	=	101.13	(77)
Southeast 0.9x	0.77	×	1.5	×	85.75	×	0.85	x	0.7	=	212.15	(77)
Southeast 0.9x	0.77	×	0.42	×	85.75	×	0.85	x	0.7	=	14.85	(77)
Southeast 0.9x	0.77	×	0.79	×	85.75	×	0.85	x	0.7	=	27.93	(77)

Southeast 0.9x	0.77] x	3.45	×	85.75	×	0.63	x	0.7	=	90.41	(77)
Southeast 0.9x	0.77) ^] x	0.58	x	85.75	x x	0.63	x	0.7	=	15.2](**)](77)
Southeast 0.9x	0.77) ^] x	5.28	x	85.75	x x	0.63	x	0.7	=	138.37	(<i>)</i> (77)
Southeast 0.9x	0.77] ^] x	1.5	x	106.25	x	0.85	x	0.7	=	262.87	(⁽¹¹⁾
Southeast 0.9x	0.77] ^] x	0.42	x	106.25	x	0.85	x	0.7	=	18.4](77)
Southeast 0.9x	0.77] ×	0.79	x	106.25	×	0.85	x	0.7	=	34.61](77)
Southeast 0.9x	0.77	」 】 ×	3.45	x	106.25	 x	0.63	x	0.7	=	112.03	
Southeast 0.9x	0.77] x	0.58	x	106.25	x	0.63	x	0.7	=	18.83	(77)
Southeast 0.9x	0.77	x	5.28	x	106.25	x	0.63	x	0.7	=	171.45	(77)
Southeast 0.9x	0.77	x	1.5	×	119.01	×	0.85	x	0.7	=	294.43	(77)
Southeast 0.9x	0.77	x	0.42	x	119.01	×	0.85	x	0.7	=	20.61	(77)
Southeast 0.9x	0.77	x	0.79	x	119.01	×	0.85	x	0.7] =	38.77	(77)
Southeast 0.9x	0.77	x	3.45	x	119.01	×	0.63	x	0.7	=	125.48	(77)
Southeast 0.9x	0.77	x	0.58	x	119.01	×	0.63	x	0.7	=	21.1	(77)
Southeast 0.9x	0.77	x	5.28	x	119.01	×	0.63	x	0.7	=	192.04	(77)
Southeast 0.9x	0.77	x	1.5	x	118.15	×	0.85	x	0.7	=	292.3	(77)
Southeast 0.9x	0.77	x	0.42	x	118.15	x	0.85	x	0.7	=	20.46	(77)
Southeast 0.9x	0.77	x	0.79	×	118.15	×	0.85	x	0.7	=	38.49	(77)
Southeast 0.9x	0.77	x	3.45	x	118.15	×	0.63	x	0.7	=	124.57	(77)
Southeast 0.9x	0.77	x	0.58	x	118.15	x	0.63	x	0.7	=	20.94	(77)
Southeast 0.9x	0.77	x	5.28	x	118.15	x	0.63	x	0.7	=	190.65	(77)
Southeast 0.9x	0.77	x	1.5	x	113.91	×	0.85	x	0.7	=	281.81	(77)
Southeast 0.9x	0.77	x	0.42	x	113.91	x	0.85	x	0.7	=	19.73	(77)
Southeast 0.9x	0.77	x	0.79	x	113.91	x	0.85	x	0.7	=	37.11	(77)
Southeast 0.9x	0.77	x	3.45	x	113.91	x	0.63	x	0.7	=	120.1	(77)
Southeast 0.9x	0.77	x	0.58	x	113.91	x	0.63	x	0.7	=	20.19	(77)
Southeast 0.9x	0.77	x	5.28	x	113.91	x	0.63	x	0.7	=	183.81	(77)
Southeast 0.9x	0.77	x	1.5	x	104.39	x	0.85	x	0.7	=	258.26	(77)
Southeast 0.9x	0.77	x	0.42	x	104.39	×	0.85	x	0.7	=	18.08	(77)
Southeast 0.9x	0.77	x	0.79	x	104.39	×	0.85	x	0.7	=	34	(77)
Southeast 0.9x	0.77	x	3.45	x	104.39	x	0.63	x	0.7	=	110.07	(77)
Southeast 0.9x	0.77	x	0.58	×	104.39	×	0.63	x	0.7	=	18.5	(77)
Southeast 0.9x	0.77	x	5.28	x	104.39	×	0.63	x	0.7	=	168.45	(77)
Southeast 0.9x	0.77	x	1.5	x	92.85	×	0.85	x	0.7	=	229.72	(77)
Southeast 0.9x	0.77	x	0.42	x	92.85	×	0.85	x	0.7	=	16.08	(77)
Southeast 0.9x	0.77	x	0.79	×	92.85	×	0.85	x	0.7	=	30.25	(77)
Southeast 0.9x	0.77	×	3.45	×	92.85	×	0.63	x	0.7	=	97.9	(77)
Southeast 0.9x	0.77	x	0.58	×	92.85	×	0.63	x	0.7	=	16.46	(77)
Southeast 0.9x	0.77	x	5.28	×	92.85	×	0.63	x	0.7	=	149.83	(77)
Southeast 0.9x	0.77	×	1.5	×	69.27	×	0.85	x	0.7	=	171.37	(77)
Southeast 0.9x	0.77	×	0.42	X	69.27	x	0.85	x	0.7	=	12	(77)

		-										_
Southeast 0.9x	0.77	x	0.79	x	69.27	X	0.85	x	0.7	=	22.56	(77)
Southeast 0.9x	0.77	x	3.45	x	69.27	x	0.63	x	0.7	=	73.03	(77)
Southeast 0.9x	0.77	x	0.58	x	69.27	x	0.63	x	0.7	=	12.28	(77)
Southeast 0.9x	0.77	x	5.28	x	69.27	x	0.63	x	0.7	=	111.77	(77)
Southeast 0.9x	0.77	x	1.5	x	44.07	x	0.85	x	0.7	=	109.03	(77)
Southeast 0.9x	0.77	x	0.42	x	44.07	×	0.85	x	0.7	=	7.63	(77)
Southeast 0.9x	0.77	x	0.79	x	44.07	×	0.85	x	0.7	=	14.36	(77)
Southeast 0.9x	0.77	x	3.45	x	44.07	×	0.63	x	0.7	=	46.47	(77)
Southeast 0.9x	0.77	x	0.58	x	44.07	×	0.63	x	0.7	=	7.81	(77)
Southeast 0.9x	0.77	x	5.28	x	44.07	×	0.63	x	0.7	=	71.11	(77)
Southeast 0.9x	0.77	x	1.5	x	31.49	×	0.85	x	0.7	=	77.9	(77)
Southeast 0.9x	0.77	x	0.42	x	31.49	x	0.85	x	0.7	=	5.45	(77)
Southeast 0.9x	0.77	x	0.79	x	31.49	x	0.85	x	0.7	=	10.26	(77)
Southeast 0.9x	0.77	x	3.45	x	31.49	x	0.63	x	0.7	=	33.2	(77)
Southeast 0.9x	0.77	x	0.58	x	31.49	x	0.63	x	0.7	=	5.58	(77)
Southeast 0.9x	0.77	x	5.28	x	31.49	×	0.63	x	0.7	=	50.81	(77)
South 0.9x	0.77	x	1.72	x	46.75	x	0.63	x	0.7	=	24.58	(78)
South 0.9x	0.77	x	1.46	x	46.75	x	0.85	x	0.7	=	28.15	(78)
South 0.9x	0.77	x	1.3	x	46.75	×	0.85	x	0.7	=	25.06	(78)
South 0.9x	0.77	x	1.72	x	76.57	×	0.63	x	0.7	=	40.25	(78)
South 0.9x	0.77	x	1.46	x	76.57	x	0.85	x	0.7	=	46.09	(78)
South 0.9x	0.77	x	1.3	x	76.57	x	0.85	x	0.7	=	41.04	(78)
South 0.9x	0.77	x	1.72	x	97.53	x	0.63	x	0.7	=	51.27	(78)
South 0.9x	0.77	x	1.46	×	97.53	×	0.85	x	0.7	=	58.72	(78)
South 0.9x	0.77	x	1.3	x	97.53	x	0.85	x	0.7	=	52.28	(78)
South 0.9x	0.77	x	1.72	x	110.23	×	0.63	x	0.7	=	57.95	(78)
South 0.9x	0.77	x	1.46	x	110.23	x	0.85	x	0.7	=	66.36	(78)
South 0.9x	0.77	x	1.3	x	110.23	×	0.85	x	0.7	=	59.09	(78)
South 0.9x	0.77	x	1.72	x	114.87	x	0.63	x	0.7	=	60.38	(78)
South 0.9x	0.77	x	1.46	x	114.87	x	0.85	x	0.7	=	69.15	(78)
South 0.9x	0.77	x	1.3	x	114.87	x	0.85	x	0.7	=	61.57	(78)
South 0.9x	0.77	x	1.72	x	110.55	×	0.63	x	0.7	=	58.11	(78)
South 0.9x	0.77	x	1.46	x	110.55	x	0.85	x	0.7	=	66.55	(78)
South 0.9x	0.77	x	1.3	x	110.55	x	0.85	x	0.7	=	59.26	(78)
South 0.9x	0.77	x	1.72	x	108.01	x	0.63	x	0.7	=	56.78	(78)
South 0.9x	0.77	x	1.46	x	108.01	x	0.85	x	0.7	=	65.02	(78)
South 0.9x	0.77	x	1.3	x	108.01	x	0.85	x	0.7	=	57.9	(78)
South 0.9x	0.77	x	1.72	×	104.89	×	0.63	x	0.7	=	55.14	(78)
South 0.9x	0.77	x	1.46	×	104.89	×	0.85	x	0.7	=	63.15	(78)
South 0.9x	0.77	x	1.3	×	104.89	×	0.85	x	0.7	=	56.23	(78)
South 0.9x	0.77	×	1.72	×	101.89	×	0.63	x	0.7	=	53.56	(78)
		-		•		•		•				-

		-										_
South 0.9x	0.77	x	1.46	x	101.89	x	0.85	x	0.7	=	61.34	(78)
South 0.9x	0.77	x	1.3	x	101.89	x	0.85	x	0.7	=	54.61	(78)
South 0.9x	0.77	x	1.72	x	82.59	x	0.63	x	0.7	=	43.41	(78)
South 0.9x	0.77	x	1.46	x	82.59	x	0.85	x	0.7	=	49.72	(78)
South 0.9x	0.77	x	1.3	x	82.59	x	0.85	x	0.7	=	44.27	(78)
South 0.9x	0.77	x	1.72	x	55.42	x	0.63	x	0.7	=	29.13	(78)
South 0.9x	0.77	x	1.46	x	55.42	x	0.85	x	0.7	=	33.36	(78)
South 0.9x	0.77	x	1.3	x	55.42	x	0.85	x	0.7	=	29.71	(78)
South 0.9x	0.77	x	1.72	x	40.4	x	0.63	x	0.7	=	21.24	(78)
South 0.9x	0.77	x	1.46	×	40.4	x	0.85	x	0.7	=	24.32	(78)
South 0.9x	0.77	x	1.3	x	40.4	x	0.85	x	0.7] =	21.65	(78)
Southwest0.9x	0.77	x	2.39	x	36.79]	0.63	x	0.7] =	53.75	(79)
Southwest0.9x	0.77	x	3.58	x	36.79]	0.63	x	0.7] =	40.26	(79)
Southwest _{0.9x}	0.77	x	2.03	×	36.79]	0.85	x	0.7] =	61.6	(79)
Southwest0.9x	0.77	x	3.04	x	36.79]	0.85	x	0.7] =	46.12	(79)
Southwest _{0.9x}	0.77	x	2.7	x	36.79]	0.85	x	0.7	=	40.96	(79)
Southwest _{0.9x}	0.77	x	2.2	x	36.79]	0.85	x	0.7	=	66.75	(79)
Southwest _{0.9x}	0.77	x	2.19	x	36.79]	0.85	x	0.7	=	33.23	(79)
Southwest _{0.9x}	0.77	x	2.73	x	36.79]	0.85	x	0.7	=	41.42	(79)
Southwest _{0.9x}	0.77	x	2.39	x	62.67]	0.63	x	0.7	=	91.56	(79)
Southwest _{0.9x}	0.77	x	3.58	x	62.67]	0.63	x	0.7	=	68.57	(79)
Southwest _{0.9x}	0.77	x	2.03	x	62.67]	0.85	x	0.7	=	104.92	(79)
Southwest _{0.9x}	0.77	x	3.04	x	62.67]	0.85	x	0.7	=	78.56	(79)
Southwest _{0.9x}	0.77	x	2.7	x	62.67]	0.85	x	0.7	=	69.77	(79)
Southwest _{0.9x}	0.77	x	2.2	×	62.67]	0.85	x	0.7	=	113.71	(79)
Southwest _{0.9x}	0.77	x	2.19	x	62.67]	0.85	x	0.7	=	56.6	(79)
Southwest _{0.9x}	0.77	x	2.73	x	62.67]	0.85	x	0.7	=	70.55	(79)
Southwest _{0.9x}	0.77	x	2.39	x	85.75]	0.63	x	0.7	=	125.27	(79)
Southwest _{0.9x}	0.77	x	3.58	x	85.75]	0.63	x	0.7	=	93.82	(79)
Southwest0.9x	0.77	x	2.03	×	85.75]	0.85	x	0.7] =	143.56	(79)
Southwest _{0.9x}	0.77	x	3.04	x	85.75]	0.85	x	0.7	=	107.49	(79)
Southwest0.9x	0.77	x	2.7	×	85.75]	0.85	×	0.7] =	95.47	(79)
Southwest0.9x	0.77	x	2.2	×	85.75]	0.85	x	0.7	=	155.58	(79)
Southwest _{0.9x}	0.77	x	2.19	x	85.75]	0.85	x	0.7	=	77.44	(79)
Southwest _{0.9x}	0.77	x	2.73	x	85.75]	0.85	x	0.7] =	96.53	(79)
Southwest _{0.9x}	0.77	x	2.39	×	106.25]	0.63	x	0.7] =	155.22	(79)
Southwest _{0.9x}	0.77	x	3.58	×	106.25]	0.63	x	0.7	=	116.25	(79)
Southwest _{0.9x}	0.77	x	2.03	×	106.25]	0.85	x	0.7	=	177.87	(79)
Southwest _{0.9x}	0.77	x	3.04	×	106.25]	0.85	x	0.7] =	133.19	(79)
Southwest _{0.9x}	0.77	x	2.7	×	106.25]	0.85	x	0.7	=	118.29	(79)
Southwest _{0.9x}	0.77	x	2.2	×	106.25]	0.85	x	0.7	=	192.77	(79)

Southwest _{0.9x}	0.77) ×	2.19	x	106.25	0.85	x	0.7	=	95.95	(79)
Southwest _{0.9x}	0.77	x	2.73	x	106.25	0.85	x	0.7	=	119.6	(79)
Southwest _{0.9x}	0.77	x	2.39	x	119.01	0.63	x	0.7	=	173.85	(79)
Southwest _{0.9x}	0.77	x	3.58	×	119.01	0.63	x	0.7	=	130.21	(79)
Southwest _{0.9x}	0.77	x	2.03	x	119.01	0.85	x	0.7	=	199.23	(79)
Southwest _{0.9x}	0.77	x	3.04	x	119.01	0.85	x	0.7	=	149.18	(79)
Southwest0.9x	0.77	x	2.7	x	119.01	0.85	x	0.7	=	132.5	(79)
Southwest _{0.9x}	0.77	x	2.2	x	119.01	0.85	x	0.7	=	215.92	(79)
Southwest _{0.9x}	0.77	x	2.19	x	119.01	0.85	x	0.7	=	107.47	(79)
Southwest0.9x	0.77	x	2.73	x	119.01	0.85	x	0.7	=	133.97	(79)
Southwest _{0.9x}	0.77	×	2.39	x	118.15	0.63	x	0.7	=	172.6	(79)
Southwest0.9x	0.77	x	3.58	x	118.15	0.63	x	0.7	=	129.27	(79)
Southwest0.9x	0.77	x	2.03	x	118.15	0.85	x	0.7	=	197.79	(79)
Southwest _{0.9x}	0.77	x	3.04	×	118.15	0.85	x	0.7	=	148.1	(79)
Southwest0.9x	0.77	x	2.7	x	118.15	0.85	x	0.7	=	131.54	(79)
Southwest0.9x	0.77	x	2.2	×	118.15	0.85	x	0.7	=	214.36	(79)
Southwest _{0.9x}	0.77	x	2.19	x	118.15	0.85	x	0.7	=	106.69	(79)
Southwest0.9x	0.77	x	2.73	x	118.15	0.85	x	0.7	=	133	(79)
Southwest _{0.9x}	0.77	x	2.39	x	113.91	0.63	x	0.7	=	166.4	(79)
Southwest _{0.9x}	0.77	×	3.58	x	113.91	0.63	x	0.7	=	124.63	(79)
Southwest _{0.9x}	0.77	×	2.03	x	113.91	0.85	x	0.7	=	190.69	(79)
Southwest _{0.9x}	0.77	x	3.04	x	113.91	0.85	x	0.7	=	142.79	(79)
Southwest _{0.9x}	0.77	×	2.7	x	113.91	0.85	x	0.7	=	126.82	(79)
Southwest _{0.9x}	0.77	x	2.2	x	113.91	0.85	x	0.7	=	206.66	(79)
Southwest _{0.9x}	0.77	x	2.19	x	113.91	0.85	x	0.7	=	102.86	(79)
Southwest _{0.9x}	0.77	x	2.73	x	113.91	0.85	x	0.7	=	128.22	(79)
Southwest _{0.9x}	0.77	×	2.39	x	104.39	0.63	x	0.7	=	152.5	(79)
Southwest _{0.9x}	0.77	x	3.58	x	104.39	0.63	x	0.7	=	114.21	(79)
Southwest _{0.9x}	0.77	x	2.03	x	104.39	0.85	x	0.7	=	174.76	(79)
Southwest0.9x	0.77	×	3.04	x	104.39	0.85	x	0.7	=	130.85	(79)
Southwest _{0.9x}	0.77	×	2.7	x	104.39	0.85	x	0.7	=	116.22	(79)
Southwest _{0.9x}	0.77	X	2.2	×	104.39	0.85	x	0.7	=	189.39	(79)
Southwest _{0.9x}	0.77	×	2.19	X	104.39	0.85	x	0.7	=	94.27	(79)
Southwest _{0.9x}	0.77	X	2.73	X	104.39	0.85	x	0.7	=	117.51	(79)
Southwest _{0.9x}	0.77	X	2.39	X	92.85	0.63	x	0.7	=	135.64	(79)
Southwest _{0.9x}	0.77	X	3.58	X	92.85	0.63	X	0.7	=	101.59	(79)
Southwest _{0.9x}	0.77	×	2.03	×	92.85	0.85	x	0.7	=	155.44	(79)
Southwest _{0.9x}	0.77	×	3.04	×	92.85	0.85	x	0.7	=	116.39	(79)
Southwest _{0.9x}	0.77	×	2.7	×	92.85	0.85	x	0.7	=	103.37	(79)
Southwest _{0.9x}	0.77	×	2.2	×	92.85	0.85	x	0.7	=	168.46	(79)
Southwest _{0.9x}	0.77	x	2.19	x	92.85	0.85	x	0.7	=	83.85	(79)

Southwest0.9x	0.77	×	2.73	x	92.85	l	0.85	x	0.7	=	104.52	(79)
Southwest _{0.9x}	0.77	x	2.39	x	69.27		0.63	x	0.7	=	101.19	(79)
Southwest _{0.9x}	0.77	x	3.58	x	69.27		0.63	x	0.7	=	75.79	(79)
Southwest0.9x	0.77	x	2.03	x	69.27		0.85	x	0.7	=	115.96](79)
Southwest _{0.9x}	0.77	×	3.04	x	69.27		0.85	x	0.7	=	86.83	(79)
Southwest _{0.9x}	0.77	×	2.7	x	69.27		0.85	x	0.7	=	77.12	(79)
Southwest0.9x	0.77	×	2.2	x	69.27		0.85	x	0.7	=	125.67	(79)
Southwest _{0.9x}	0.77	×	2.19	x	69.27	İ	0.85	x	0.7	=	62.55	(79)
Southwest _{0.9x}	0.77	×	2.73	x	69.27		0.85	x	0.7	=	77.97	(79)
Southwest0.9x	0.77	×	2.39	x	44.07		0.63	x	0.7	=	64.38	(79)
Southwest _{0.9x}	0.77	×	3.58	x	44.07		0.63	x	0.7	=	48.22	(79)
Southwest _{0.9x}	0.77	×	2.03	x	44.07		0.85	x	0.7	=	73.78	(79)
Southwest _{0.9x}	0.77	×	3.04	x	44.07		0.85	x	0.7	=	55.24	(79)
Southwest _{0.9x}	0.77	×	2.7	x	44.07		0.85	x	0.7	=	49.06	(79)
Southwest _{0.9x}	0.77	×	2.2	x	44.07		0.85	x	0.7	=	79.96	(79)
Southwest _{0.9x}	0.77	×	2.19	x	44.07		0.85	x	0.7	=	39.8	(79)
Southwest _{0.9x}	0.77	×	2.73	x	44.07		0.85	x	0.7	=	49.61	(79)
Southwest _{0.9x}	0.77	×	2.39	x	31.49		0.63	x	0.7	=	46	(79)
Southwest _{0.9x}	0.77	×	3.58	x	31.49		0.63	x	0.7	=	34.45	(79)
Southwest _{0.9x}	0.77	x	2.03	x	31.49		0.85	x	0.7	=	52.71	(79)
Southwest _{0.9x}	0.77	x	3.04	x	31.49		0.85	x	0.7	=	39.47	(79)
Southwest _{0.9x}	0.77	×	2.7	x	31.49		0.85	x	0.7	=	35.06	(79)
Southwest _{0.9x}	0.77	×	2.2	x	31.49		0.85	x	0.7	=	57.13	(79)
Southwest _{0.9x}	0.77	x	2.19	x	31.49		0.85	x	0.7	=	28.43	(79)
Southwest _{0.9x}	0.77	x	2.73	x	31.49		0.85	x	0.7	=	35.45	(79)
West 0.9x	0.77	x	1.72	x	19.64	x	0.63	x	0.7	=	10.32	(80)
West 0.9x	0.77	x	1.46	x	19.64	x	0.85	x	0.7	=	11.82	(80)
West 0.9x	0.77	x	1.3	x	19.64	x	0.85	x	0.7	=	10.53	(80)
West 0.9x	0.77	×	1.72	x	38.42	x	0.63	x	0.7	=	20.2	(80)
West 0.9x	0.77	×	1.46	x	38.42	x	0.85	x	0.7	=	23.13	(80)
West 0.9x	0.77	x	1.3	x	38.42	x	0.85	x	0.7	=	20.59	(80)
West 0.9x	0.77	×	1.72	x	63.27	x	0.63	x	0.7	=	33.26	(80)
West 0.9x	0.77	×	1.46	x	63.27	x	0.85	x	0.7	=	38.09	(80)
West 0.9x	0.77	×	1.3	x	63.27	x	0.85	x	0.7	=	33.92	(80)
West 0.9x	0.77	×	1.72	x	92.28	x	0.63	x	0.7	=	48.51	(80)
West 0.9x	0.77	x	1.46	x	92.28	x	0.85	x	0.7	=	55.55	(80)
West 0.9x	0.77	×	1.3	x	92.28	x	0.85	x	0.7	=	49.47	(80)
West 0.9x	0.77	×	1.72	x	113.09	x	0.63	x	0.7	=	59.45	(80)
West 0.9x	0.77	×	1.46	x	113.09	x	0.85	x	0.7	=	68.08	(80)
West 0.9x	0.77	×	1.3	x	113.09	x	0.85	x	0.7	=	60.62	(80)
West 0.9x	0.77	X	1.72	x	115.77	x	0.63	x	0.7	=	60.86	(80)

\\/aat		1		1				1				
West 0.9x	0.77	X	1.46	X	115.77	X	0.85	X	0.7	=	69.69	(80)
West 0.9x	0.77	X	1.3	X	115.77	X	0.85	X	0.7	=	62.06	(80)
West 0.9x	0.77	x	1.72	x	110.22	x	0.63	x	0.7	=	57.94	(80)
West 0.9x	0.77	x	1.46	x	110.22	x	0.85	x	0.7	=	66.35	(80)
West 0.9x	0.77	x	1.3	x	110.22	x	0.85	x	0.7	=	59.08	(80)
West 0.9x	0.77	x	1.72	x	94.68	x	0.63	x	0.7	=	49.77	(80)
West 0.9x	0.77	x	1.46	x	94.68	x	0.85	x	0.7	=	57	(80)
West 0.9x	0.77	x	1.3	x	94.68	x	0.85	x	0.7	=	50.75	(80)
West 0.9x	0.77	x	1.72	x	73.59	x	0.63	x	0.7	=	38.68	(80)
West 0.9x	0.77	x	1.46	x	73.59	x	0.85	x	0.7	=	44.3	(80)
West 0.9x	0.77	x	1.3	x	73.59	x	0.85	x	0.7	=	39.45	(80)
West 0.9x	0.77	x	1.72	x	45.59	x	0.63	x	0.7	=	23.96	(80)
West 0.9x	0.77	x	1.46	x	45.59	x	0.85	x	0.7	=	27.45	(80)
West 0.9x	0.77	x	1.3	x	45.59	x	0.85	x	0.7	=	24.44	(80)
West 0.9x	0.77	x	1.72	x	24.49	x	0.63	x	0.7	=	12.87	(80)
West 0.9x	0.77	x	1.46	x	24.49	x	0.85	x	0.7	=	14.74	(80)
West 0.9x	0.77	x	1.3	x	24.49	x	0.85	x	0.7	=	13.13	(80)
West 0.9x	0.77	x	1.72	x	16.15	x	0.63	x	0.7	=	8.49	(80)
West 0.9x	0.77	x	1.46	x	16.15	x	0.85	x	0.7	=	9.72	(80)
West 0.9x	0.77	x	1.3	x	16.15	x	0.85	x	0.7	=	8.66	(80)
Northwest 0.9x	0.77	x	5.76	x	11.28	x	0.63	x	0.7	=	19.86	(81)
Northwest 0.9x	0.77	x	1.31	x	11.28	x	0.63	x	0.7	=	4.52	(81)
Northwest 0.9x	0.77	x	5.76	x	22.97	x	0.63	x	0.7	=	40.43	(81)
Northwest 0.9x	0.77	x	1.31	x	22.97	x	0.63	x	0.7	=	9.19	(81)
Northwest 0.9x	0.77	x	5.76	x	41.38	x	0.63	x	0.7	=	72.84	(81)
Northwest 0.9x	0.77	x	1.31	x	41.38	x	0.63	x	0.7	=	16.57	(81)
Northwest 0.9x	0.77	x	5.76	x	67.96	x	0.63	x	0.7	=	119.62	(81)
Northwest 0.9x	0.77	x	1.31	x	67.96	x	0.63	x	0.7	=	27.21	(81)
Northwest 0.9x	0.77	x	5.76	x	91.35	x	0.63	x	0.7	=	160.8	(81)
Northwest 0.9x	0.77	x	1.31	x	91.35	x	0.63	x	0.7	=	36.57	(81)
Northwest 0.9x	0.77	x	5.76	x	97.38	x	0.63	x	0.7	=	171.43	(81)
Northwest 0.9x	0.77	x	1.31	x	97.38	x	0.63	x	0.7	=	38.99	(81)
Northwest 0.9x	0.77	x	5.76	x	91.1	x	0.63	x	0.7	=	160.37	(81)
Northwest 0.9x	0.77	x	1.31	x	91.1	x	0.63	x	0.7	=	36.47	(81)
Northwest 0.9x	0.77	x	5.76	x	72.63	x	0.63	x	0.7	=	127.85	(81)
Northwest 0.9x	0.77	x	1.31	×	72.63	x	0.63	x	0.7	=	29.08	(81)
Northwest 0.9x	0.77	x	5.76	x	50.42	x	0.63	x	0.7	=	88.76	(81)
Northwest 0.9x	0.77	x	1.31	x	50.42	x	0.63	x	0.7	=	20.19	(81)
Northwest 0.9x	0.77	x	5.76	x	28.07	x	0.63	x	0.7	=	49.41	(81)
Northwest 0.9x	0.77	x	1.31	x	28.07	x	0.63	x	0.7	=	11.24	(81)
Northwest 0.9x	0.77	x	5.76	x	14.2	x	0.63	x	0.7	=	24.99	(81)

Northwest 0.9x	0.77	x	1.31	×	14.2	×	0.63	x	0.7	=	5.68	(81)
Northwest 0.9x	0.77	x	5.76	×	9.21	×	0.63	x	0.7	=	16.22	(81)
Northwest 0.9x	0.77	x	1.31	×	9.21	×	0.63	x	0.7	=	3.69	(81)
Rooflights 0.9x	1	x	23.6	×	26	×	0.63	x	0.7	=	243.54	(82)
Rooflights 0.9x	1	x	4.52	×	26	×	0.63	x	0.7	=	139.93	(82)
Rooflights 0.9x	1	x	23.6	×	54	×	0.63	x	0.7	=	505.81	(82)
Rooflights 0.9x	1	x	4.52	×	54	x	0.63	x	0.7	=	290.63	(82)
Rooflights 0.9x	1	x	23.6	×	96	×	0.63	x	0.7	=	899.22	(82)
Rooflights 0.9x	1	x	4.52	x	96	x	0.63	x	0.7	=	516.67	(82)
Rooflights 0.9x	1	x	23.6	×	150	×	0.63	x	0.7	=	1405.03	(82)
Rooflights 0.9x	1	x	4.52	×	150	×	0.63	x	0.7	=	807.29	(82)
Rooflights 0.9x	1	x	23.6	×	192	x	0.63	x	0.7	=	1798.43	(82)
Rooflights 0.9x	1	x	4.52	×	192	x	0.63	x	0.7	=	1033.34	(82)
Rooflights 0.9x	1	x	23.6	×	200	×	0.63	x	0.7	=	1873.37	(82)
Rooflights 0.9x	1	x	4.52	×	200	x	0.63	x	0.7	=	1076.39	(82)
Rooflights 0.9x	1	x	23.6	×	189	x	0.63	x	0.7	=	1770.33	(82)
Rooflights 0.9x	1	x	4.52	×	189	×	0.63	x	0.7	=	1017.19	(82)
Rooflights 0.9x	1	x	23.6	×	157	x	0.63	x	0.7	=	1470.59	(82)
Rooflights 0.9x	1	x	4.52	×	157	×	0.63	x	0.7	=	844.97	(82)
Rooflights 0.9x	1	x	23.6	×	115	×	0.63	x	0.7	=	1077.19	(82)
Rooflights 0.9x	1	x	4.52	×	115	×	0.63	x	0.7	=	618.93	(82)
Rooflights 0.9x	1	x	23.6	x	66	x	0.63	x	0.7	=	618.21	(82)
Rooflights 0.9x	1	x	4.52	x	66	x	0.63	x	0.7	=	355.21	(82)
Rooflights 0.9x	1	x	23.6	×	33	×	0.63	x	0.7	=	309.11	(82)
Rooflights 0.9x	1	x	4.52	×	33	×	0.63	x	0.7	=	177.6	(82)
Rooflights 0.9x	1	x	23.6	x	21	x	0.63	x	0.7	=	196.7	(82)
Rooflights 0.9x	1	x	4.52	×	21	×	0.63	x	0.7	=	113.02	(82)
_												

Solar g	ains in v	watts, ca	alculated	for eac	n month			(83)m = S	um(74)m .	(82)m				
(83)m=	1244.12	2314.26	3626.59	5170.06	6339.87	6517.19	6191.75	5297.01	4164	2687.41	1527.1	1040.06		(83)
Total g	ains – ir	nternal a	nd solar	(84)m =	= (73)m -	⊦ (83)m	, watts							
(84)m=	2517.18	3580.33	4853.57	6335.72	7441.05	7470.53	7113.1	6230.24	5133.41	3809.88	2718.01	2284.37		(84)
7. Me	an inter	nal temp	erature	(heating	season)								
Temp	erature	during h	eating p	eriods ir	n the livir	ng area f	rom Tab	ole 9, Th	1 (°C)				21	(85)
Utilisa	ation fac	tor for g	ains for l	iving are	ea, h1,m	(see Ta	ble 9a)					•		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(86)m=	1	0.99	0.99	0.97	0.93	0.87	0.8	0.84	0.94	0.98	1	1		(86)
(00)	-	0.33	0.99	0.97	0.93	0.87	0.0	0.84	0.94	0.90	1	I		(00)
	' internal							in Table		0.90	I	I		(00)
	internal									18.75	17.74	16.94		(87)
Mean (87)m=	16.97	l temper 17.24	ature in 17.79	living are 18.56	ea T1 (fc 19.36	20.07	ps 3 to 7 20.49	in Table	e 9c) 19.76					. ,
Mean (87)m=	16.97	l temper 17.24	ature in 17.79	living are 18.56	ea T1 (fc 19.36	20.07	ps 3 to 7 20.49	' in Table 20.39	e 9c) 19.76					. ,
Mean (87)m= Temp (88)m=	16.97 erature 18.85	l temper 17.24 during h 18.85	ature in 17.79 eating p 18.86	living are 18.56 eriods ir 18.88	ea T1 (fo 19.36 n rest of	ollow ste 20.07 dwelling 18.91	ps 3 to 7 20.49 from Ta 18.91	' in Table 20.39 Ible 9, Tl 18.91	e 9c) 19.76 n2 (°C)	18.75	17.74	16.94		(87)
Mean (87)m= Temp (88)m=	16.97 erature 18.85	l temper 17.24 during h 18.85	ature in 17.79 eating p 18.86	living are 18.56 eriods ir 18.88	ea T1 (fc 19.36 n rest of 18.89	ollow ste 20.07 dwelling 18.91	ps 3 to 7 20.49 from Ta 18.91	' in Table 20.39 Ible 9, Tl 18.91	e 9c) 19.76 n2 (°C)	18.75	17.74	16.94		(87)

Mean	interna	l temper	ature in	the rest	of dwelli	ing T2 (fe	ollow ste	ps 3 to 7	7 in Tabl	e 9c)				
(90)m=	15.37	15.64	16.19	16.97	17.76	18.43	18.77	18.71	18.16	17.17	16.16	15.36		(90)
I				1					f	LA = Livin	g area ÷ (4	4) =	0.12	(91)
							л т <i>а</i>	. (4 1)						J
		· · ·	r È	or the wh	î			· ·	, <u> </u>	47.00	40.04	45.54		(02)
(92)m=	15.56	15.83	16.38	17.16	17.95	18.63	18.97	18.91	18.35	17.36	16.34	15.54		(92)
	-		1	n interna	· · ·	1				-	40.04	45.54		(02)
(93)m=	15.56	15.83	16.38	17.16	17.95	18.63	18.97	18.91	18.35	17.36	16.34	15.54		(93)
			uirement							· - · · · ·	70)			
				mperatu using Ta		ied at ste	ep 11 of	Table 9	o, so tha	t 11,m=(76)m an	d re-calc	ulate	
ine ui	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
l Itilies			ains, hm	· ·	Iviay	Jun	Jui	Aug	Seb	001		Dec		
(94)m=	0.99	0.99	0.97	0.94	0.87	0.76	0.6	0.67	0.87	0.96	0.99	0.99		(94)
				1 0.04 4)m x (8		0.70	0.0	0.07	0.07	0.00	0.00	0.00		(0.)
(95)m=			· · · ·	5933.58	· · · · · · · · · · · · · · · · · · ·	5670.99	4257.41	4145.26	4450.68	3669.59	2688.94	2272.79		(95)
							4237.41	4143.20	4430.00	5009.59	2000.94	2212.19		(00)
(96)m=	4.3	4.9	6.5	perature 8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
		_									7.1	4.2		(50)
				hal tempe			- ,		<u> </u>	-	00400.00	07040 70		(07)
				20001.55								27648.72		(97)
-				or each n	1	1					· · · · · · · · · · · · · · · · · · ·			
(98)m=	18757.55	15660.89	14488.87	10128.94	6412.54	0	0	0	0	9409.94	14211.33	18879.7		-
								Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	107949.75	(98)
Space	e heatin	g require	ement in	kWh/m²	²/year								189.03	(99)
9a En	erav rea	uiremer	nts – Ind	ividual h	eating s	vstems i	ncluding	micro-C	HP)					-
	e heatir			i viada i i	outing o	yotorno n	loraanig							
		-	at from s	econdar	y/supple	mentary	system						0	(201)
Fracti	on of sp	ace hea	at from n	nain syst	em(s)	-	-	(202) = 1 -	- (201) =				1	(202)
				main sys	. ,			(204) - (200)	02) × [1 –	(203)] -				(204)
			•					(201) - (2	02) ~ [1	(200)] -		·	1	ļ
	-			ing syste									51	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heating	g system	n, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ır
Space	e heatin	g require	ement (c	alculate	d above))								
	18757.55	15660.89	14488.87	10128.94	6412.54	0	0	0	0	9409.94	14211.33	18879.7		
(211)m	$= \{[(98)]$)m x (20	$(4)1 + (2^{2})$	10)m } x	100 ÷ (2	206)								(211)
` '		· · ·	· · ·	19860.66	· ` `	0	0	0	0	18450.87	27865.34	37019.01		()
	00110.01	00101.00	20100.01	10000.00	12010.0	Ů	Ŭ		l (kWh/yea				211666.17	(211)
•					/ .1			1014	. (- • • / 15,1012		211000.17	(211)
•		• •		y), kWh/										
				(100 ÷ (0				
(215)m=	0	0	0	0	0	0	0	0	0	0	0	0		. .
								lota	l (kWh/yea	ar) = Sum(2)	215) _{15,1012}	=	0	(215)
Water														
	-													
	from w	ater hea	1	ulated a		057-5	050 50	070 10	007.01	400.10	405.55			
Output	from wa 517.1		498.5	ulated a 465.9	bove) 470.35	357.76	356.43	373.42	367.21	482.18	485.93	511.08	41	(216)

						L		L					(047)
(217)m= 50.67	50.65	50.59	50.46	50.16	41	41	41	41	50.4	50.59	50.67		(217)
Fuel for water $(219)m = (64)$													
(219)m = (04) (219)m = 1020.55		985.38	923.33	937.63	872.59	869.33	910.77	895.64	956.69	960.48	1008.55		
			II				Tota	al = Sum(2	19a) ₁₁₂ =			11252.36	(219)
Annual totals									k	Wh/year	r	kWh/yea	 ,
Space heating	fuel use	ed, main	system	1								211666.17	
Water heating	fuel use	d										11252.36	
Electricity for p	oumps, fa	ans and	electric l	keep-ho	t								
central heatir	ng pump:										120		(230c)
Total electricit	y for the	above, ł	(Wh/yea	r			sum	of (230a).	(230g) =			120	(231)
Electricity for I	ighting											1747.05	(232)
12a. CO2 em	issions -	- Individ	ual heati	ng syste	ems inclu	uding mi	cro-CHF)					
						ergy /h/year			Emiss kg CO	ion fac 2/kWh	tor	Emissions kg CO2/ye	
Space heating	(main s	ystem 1))		kΜ	•••				2/kWh	tor =		
Space heating Space heating)		kW (21	/h/year			kg CO	2/kWh		kg CO2/ye	ar
	(second)		kW (21 ⁻ (21)	/h/year 1) x			kg CO	2/kWh 16 19	=	kg CO2/ye 45719.89	ar](261)
Space heating	(second	lary))		kW (21 (21 (21	/h/year 1) x 5) x	+ (263) + ((264) =	kg CO 0.2 0.5	2/kWh 16 19	=	kg CO2/ye 45719.89 0	ar (261) (263)
Space heating Water heating	(second ter heati	lary) ng		keep-ho	kW (21 (21) (21) (26)	/h/year 1) x 5) x 9) x	+ (263) + ((264) =	kg CO 0.2 0.5	2/kWh 16 19 16	=	kg CO2/ye 45719.89 0 2430.51	ar (261) (263) (264)
Space heating Water heating Space and wa	(second ter heati pumps, fa	lary) ng		keep-ho	kW (21) (21) (21) (26) t (23)	/h/year 1) x 5) x 9) x 1) + (262)	+ (263) + ((264) =	kg CO.	2/kWh 16 19 16 19	= =	kg CO2/ye 45719.89 0 2430.51 48150.4	ar (261) (263) (264) (265)
Space heating Water heating Space and wa Electricity for p	ter heati bumps, fa	lary) ng		keep-ho	kW (21) (21) (21) (26) t (23)	/h/year 1) x 5) x 9) x 1) + (262) 1) x	+ (263) + (kg CO. 0.2 0.5 0.2	2/kWh 16 19 16 19 19	= = =	kg CO2/ye 45719.89 0 2430.51 48150.4 62.28	ar (261) (263) (264) (265) (267)
Space heating Water heating Space and wa Electricity for p Electricity for I	ter heati bumps, fa ighting /year	dary) ng ans and	electric I	keep-ho	kW (21) (21) (21) (26) t (23)	/h/year 1) x 5) x 9) x 1) + (262) 1) x	+ (263) + (sum o	kg CO. 0.2 0.5 0.2	2/kWh 16 19 16 19 19	= = =	kg CO2/ye 45719.89 0 2430.51 48150.4 62.28 906.72	ar (261) (263) (264) (265) (265) (267) (268)
Space heating Water heating Space and wa Electricity for p Electricity for I Total CO2, kg	ter heati bumps, fa ighting /year 2 Emissi	dary) ng ans and	electric I	<eep-ho< td=""><td>kW (21) (21) (21) (26) t (23)</td><td>/h/year 1) x 5) x 9) x 1) + (262) 1) x</td><td>+ (263) + (</td><td>sum o</td><td>kg CO. 0.2 0.5 0.2 0.5 0.5 f (265)(2)</td><td>2/kWh 16 19 16 19 19</td><td>= = =</td><td>kg CO2/ye 45719.89 0 2430.51 48150.4 62.28 906.72 49119.4</td><td>ar (261) (263) (264) (265) (265) (267) (268) (272)</td></eep-ho<>	kW (21) (21) (21) (26) t (23)	/h/year 1) x 5) x 9) x 1) + (262) 1) x	+ (263) + (sum o	kg CO. 0.2 0.5 0.2 0.5 0.5 f (265)(2)	2/kWh 16 19 16 19 19	= = =	kg CO2/ye 45719.89 0 2430.51 48150.4 62.28 906.72 49119.4	ar (261) (263) (264) (265) (265) (267) (268) (272)

Property Details: 55 Lancaster Grove - as designed

Address:	55 Lancaster Grove, LONDON, NW3 4HD
Located in:	England
Region:	Thames valley
UPRN:	7608799078
Date of assessment:	27 January 2015
Date of certificate:	26 January 2015
Assessment type:	New dwelling design stage
Transaction type:	None of the above
Tenure type:	Owner-occupied
Related party disclosure:	No related party
Thermal Mass Parameter:	Indicative Value Medium
Water use <= 125 litres/person/da	ay: True
PCDF Version:	372

Property description:

Dwelling type: Detachment: Year Completed:	House Semi-detached 2014	
Floor Location:	Floor area:	Storey height:
Basement floor Floor 1 Floor 2 Floor 3	196.23 m² 153.44 m² 116.9 m² 104.5 m²	3 m 3.9 m 3.3 m 3.35 m
Living area: Front of dwelling faces:	67.84 m ² (fraction 0.119) South West	
Opening types:		

- 1 - 3 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -					
Name:	Source:	Туре:	Glazing:	Argon:	Frame:
D1	SAP 2012	Half glazed	Single-glazed	No	Wood
D2	SAP 2012	Half glazed	Single-glazed	No	Wood
W1	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Wood
W2	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Wood
W3	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Wood
W4	SAP 2012	Windows	low-E, En = 0.05, soft coat	Yes	Wood
W5	SAP 2012	Windows	Single-glazed	No	Wood
W6	SAP 2012	Windows	Single-glazed	No	Wood
W7	SAP 2012	Windows	Single-glazed	No	Wood
W8	SAP 2012	Windows	Single-glazed	No	Wood
W9	SAP 2012	Windows	Single-glazed	No	Wood
W10	SAP 2012	Windows	Single-glazed	No	Wood
W11	SAP 2012	Windows	Single-glazed	No	Wood
W12	SAP 2012	Windows	Single-glazed	No	Wood
W13	SAP 2012	Windows	Single-glazed	No	Wood
W14	SAP 2012	Windows	Single-glazed	No	Wood
W15	SAP 2012	Windows	Single-glazed	No	Wood
W16	SAP 2012	Windows	Single-glazed	No	Wood
W17	SAP 2012	Windows	Single-glazed	No	Wood
W18	SAP 2012	Windows	low-E, $En = 0.05$, soft coat	Yes	Wood
W19	SAP 2012	Windows	low-E, En = 0.05, soft coat	Yes	Wood
W20	SAP 2012	Windows	low-E, En = 0.05, soft coat	Yes	Wood
W21	SAP 2012	Windows	low-E, En = 0.05, soft coat	Yes	Wood
W22	SAP 2012	Windows	low-E, En = 0.05, soft coat	Yes	Wood
W23	SAP 2012	Windows	Single-glazed	No	Wood
W24	SAP 2012	Windows	low-E, En = 0.05 , soft coat	Yes	Wood
W25	SAP 2012	Windows	Single-glazed	No	Wood
			-		

W26	SAP 2012	Windows	Single-glazed		No	Wood
W27	SAP 2012	Windows	Single-glazed		No	Wood
W28	SAP 2012	Windows	Single-glazed		No	Wood
RL1	SAP 2012	Roof Windows	low-E, $En = 0.0$	5, soft coat	Yes	Wood
RL2	SAP 2012	Roof Windows	low-E, $En = 0.0$		Yes	Wood
Name:	Gap:	Frame Factor	. a-value.	U-value:	Area:	No. of Openings:
D1	mm	0.7	0.85	3.9	2.42	1
D1 D2		0.7	0.85	3.9	2.42	1
W1	mm 14mm or more	0.7	0.63	3.9 1.6	2.42	2
	16mm or more					
W2	16mm or more	0.7	0.63	1.6	3.58	1
W3	16mm or more	0.7	0.63	1.6	1.72	1
W4	16mm or more	0.7	0.63	1.6	1.72	1
W5		0.7	0.85	4.8	2.03	2
W6		0.7	0.85	4.8	3.04	1
W7		0.7	0.85	4.8	1.46	1
W8		0.7	0.85	4.8	1.46	1
W9		0.7	0.85	4.8	2.7	1
W10		0.7	0.85	4.8	1.3	1
W11		0.7	0.85	4.8	1.3	1
W12		0.7	0.85	4.8	2.2	2
W13		0.7	0.85	4.8	2.19	1
W14		0.7	0.85	4.8	2.73	1
W15		0.7	0.85	4.8	1.5	4
W16		0.7	0.85	4.8	0.42	1
W17		0.7	0.85	4.8	0.79	1
W18	16mm or more	0.7	0.63	4.8	3.45	1
W19	16mm or more	0.7	0.63	1.6	0.58	1
W20	16mm or more	0.7	0.63	1.6	5.28	1
W21	16mm or more	0.7	0.63	1.6	5.76	1
W22	16mm or more	0.7	0.63	1.6	1.31	1
W23		0.7	0.85	4.8	1.7	5
W24	16mm or more	0.7	0.63	1.6	11.88	1
W25		0.7	0.85	4.8	1.56	1
W26		0.7	0.85	4.8	1.56	1
W27		0.7	0.85	4.8	0.4	1
W28		0.7	0.85	4.8	5.55	1
RL1	16mm or more	0.7	0.63	2	23.6	1
RL2	16mm or more	0.7	0.63	2	4.52	3
NEZ	TOTILIT OF THOSE	0.7	0.03	Z	4.52	5
Name:	Type-Name:	Location:	Orient:		Width:	Height:
D1		External	South West		1.1	2.2
D2		External	North East		1.1	2.2
W1		New external	South West		0.9	2.65
W2		New external	South West		1.35	2.65
W3		New external	South		0.65	2.65
W4		New external	West		0.65	2.65
W5		External	South West		0.9	2.25
W6		External	South West		1.35	2.25
W7		External	South		0.65	2.25
W8		External	West		0.65	2.25
W9		External	South West		1.35	2
W10		External	South		0.65	2
W11		External	West		0.65	2
W12		External	South West		1.1	2
W13		External	South West		1.85	1.185
W14		Dormer	South West		1.3	2.1
W15		External	South East		1	1.5
W16		External	South East		0.65	0.65
W17		External	South East		0.35	2.25

W18	External	South East	1.5	2.3
W19	External	South East	0.55	1.05
W20	New external	South East	2.2	2.4
W21	New external	North West	2.4	2.4
W22	New external	North West	0.875	1.5
W23	External	North East	0.85	2
W24	New external	North East	4.75	2.5
W25	External	North	0.65	2.4
W26	External	East	0.65	2.4
W27	External	North East	0.895	0.45
W28	Dormer	North East	3.7	1.5
RL1	New flat	Horizontal	14.3	1.65
RL2	Basement	Horizontal	1.35	3.35

Overshading:

Opaque Elements:

Average or unknown

Туре:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Kappa:
External Elements							
New external	91.67	36.03	55.64	0.26	0	False	N/A
External	232.64	50.01	182.63	2.1	0	False	N/A
Dormer	13	8.28	4.72	2.1	0	False	N/A
Basement	164.1	0	164.1	0.2	0	False	N/A
Ceiling	66.5	0	66.5	0.11	0		N/A
New flat	33.99	23.6	10.39	0.14	0		N/A
Basement	42.79	13.56	29.23	0.18	0		N/A
Old dormer and bay	s 15.11	0	15.11	2.3	0		N/A
Rafter roof	39.56	0	39.56	0.18	0		N/A
New Basement	196.23			0.15			N/A
Internal Elements							
Party Elements							

Thermal bridges:

J	
Thermal bridges:	No information on thermal bridging $(y=0.15)$ $(y=0.15)$
Ventilation:	
Pressure test: Ventilation: Number of chimneys: Number of open flues: Number of fans: Number of passive stacks: Number of sides sheltered: Pressure test:	No (Assumed) Natural ventilation (extract fans) 0 0 8 0 4 15
Main heating system:	
Main heating system:	Boiler systems with radiators or underfloor heating Gas boilers and oil boilers Fuel: mains gas Info Source: Manufacturer Declaration Manufacturer's data Efficiency: 89.3% (SEDBUK2009) Regular condensing with automatic ignition Fuel Burning Type: Modulation Systems with radiators Central heating pump : 2013 or later

Design flow temperature: Design flow temperature >45°C

	Room-sealed Boiler interlock: Yes Delayed start
Main heating Control:	
Main heating Control:	Time and temperature zone control by suitable arrangement of plumbing and electrical services Control code: 2110
Secondary heating system:	
Secondary heating system:	None
Water heating:	
Water heating:	From main heating system Water code: 901 Fuel :mains gas Hot water cylinder Cylinder volume: 250 litres Cylinder insulation: Measured loss, 1.75kWh/day Primary pipework insulation: True Cylinderstat: True Cylinder in heated space: True Solar panel: False
Others:	
Electricity tariff: In Smoke Control Area: Conservatory: Low energy lights: Terrain type: EPC language: Wind turbine: Photovoltaics: Assess Zero Carbon Home:	Standard Tariff Unknown No conservatory 75% Low rise urban / suburban English No None No

				User D	etails:						
Assessor Name: Software Name:	Neil Inghar Stroma FS				Stroma Softwa	are Ver	sion:		Versio	0002943 on: 1.0.1.14	
Adduses	EE Longoota					55 Lan	caster Gro	ove - as	s design	ed	
Address : 1. Overall dwelling dime	55 Lancaste	er Grove, LC	JNDC	DIN, INVV	3 4HD						
	1510115.			۸re	a(m²)		Av. Heig	ht(m)		Volume(m ³	3
Basement					. ,	(1a) x	3		(2a) =	588.69	/ (3a)
Ground floor				1:	53.44	(1b) x	3.9		(2b) =	598.42	(3b)
First floor				1	16.9	(1c) x	3.3		(2c) =	385.77	(3c)
Second floor				1	04.5	(1d) x	3.3	5	(2d) =	350.07	(3d)
Total floor area TFA = (1a	a)+(1b)+(1c)+((1d)+(1e)+	(1n)) 5	71.07	(4)			-		
Dwelling volume						(3a)+(3b))+(3c)+(3d)+	(3e)+	.(3n) =	1922.95	(5)
2. Ventilation rate:											
	main heating	seco heat	ndary	/	other		total			m ³ per hou	r
Number of chimneys	0	_	0] + [0] = [0	x 4	40 =	0	(6a)
Number of open flues	0	+	0	+	0] = [0	x 2	20 =	0	(6b)
Number of intermittent far	าร						8	x 1	0 =	80	(7a)
Number of passive vents							0	x 1	0 =	0	(7b)
Number of flueless gas fin	es						0	x 4	40 =	0	(7c)
									Air ch	nanges per ho	our
Infiltration due to chimney	rs, flues and fa	ans = (6a)+(6b)+(7a	a)+(7b)+(7c) =		80	-	÷ (5) =	0.04	(8)
If a pressurisation test has be			roceed	to (17), d	otherwise c	ontinue fr	om (9) to (16	3)			_
Number of storeys in th	e dwelling (ne	5)								0	(9)
Additional infiltration	05 (()						[(9)-	1]x0.1 =	0	(10)
Structural infiltration: 0. if both types of wall are pr						•	uction			0	(11)
deducting areas of openin			U	0		,					
If suspended wooden f	oor, enter 0.2	(unsealed)	or 0.1	1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, ent										0	(13)
Percentage of windows	and doors dr	aught stripp	bed							0	(14)
Window infiltration					0.25 - [0.2		- C			0	(15)
Infiltration rate							2) + (13) + (0	(16)
Air permeability value,				•			etre of en	velope	area	15	(17)
If based on air permeabili Air permeability value applies	•						is being use	d		0.79	(18)
Number of sides sheltere	d									4	(19)
Shelter factor					(20) = 1 - [0.075 x (1	9)] =			0.7	(20)
Infiltration rate incorporation	ng shelter fac	tor			(21) = (18)	x (20) =				0.55	(21)
Infiltration rate modified for		· ·			,					1	
Jan Feb	Mar Apr	May 、	Jun	Jul	Aug	Sep	Oct	Nov	Dec		

Monthl	y avera	age wind	speed f	rom Tab	le 7									
(22)m=	5.1	5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind F	actor (22a)m =	(22)m ÷	- 4										
(22a)m=	· · · · ·	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adiuste	ed infilt	ration rat	e (allow	ina for sl	nelter an	d wind s	peed) =	: (21a) x	(22a)m	-				
,,	0.71	0.69	0.68	0.61	0.6	0.53	0.53	0.51	0.55	0.6	0.62	0.65		
		ective air	•	rate for t	the appli	cable ca	se	1	<u> </u>	1		نــــــــــــــــــــــــــــــــــــ		
		al ventila neat pump		endix N (2	23b) = (23a	a) x Fmv (e	equation (I	N5)) othe	rwise (23h	(23a) = (23a)		L	0	(23a)
		th heat reco								<i>)</i> = (200)		L	0	(23b) (23c)
			-	-	-					2b)m + (23b) x [[,]	L 1 – (23c)		(200)
(24a)m=		0	0	0	0	0	0	0	0	0	0]	(24a)
b) If	balanc	ed mech	anical v	entilation	without	heat rec	covery (N	u MV) (24t)m = (22	1 2b)m + (i	23b)	 _		
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
,		- nouse ex m < 0.5 >			•	•				5 x (23t				
(24c)m=	, <i>,</i>	0	0		0	0	0		0	0	0	0		(24c)
,		ventilation m = 1, th			•					0.51		I		
(24d)m=	<u>, </u>	0.74	0.73	0.69	0.68	0.64	0.64	0.63	0.65	0.68	0.69	0.71		(24d)
Effe	ctive ai	r change	rate - e	nter (24a	u) or (24b	o) or (24	c) or (24	ld) in bo	x (25)	1				
(25)m=	0.75	0.74	0.73	0.69	0.68	0.64	0.64	0.63	0.65	0.68	0.69	0.71		(25)
3 He	at losse	es and he	eat loss	naramet	or.	•		•	•	•	•			
ELEN		Gros	SS	Openir		Net Ar A ,r		U-val W/m2		A X U (W/	K)	k-value kJ/m²·K		A X k kJ/K
Doors	Type 1		. ,			2.42	x	3.9	=	9.43800	1			(26)
Doors	Type 2					2.42	x	3.9	=	9.43800	1			(26)
Window	ws Typ	e 1				2.39		/[1/(1.6)+	0.04] =	3.59	=			(27)
Window	ws Typ	e 2				3.58		/[1/(1.6)+	0.04] =	5.38	=			(27)
Window	ws Typ	e 3				1.72		/[1/(1.6)+	0.04] =	2.59	_			(27)
Window	ws Typ	e 4				1.72		/[1/(1.6)+	0.04] =	2.59	=			(27)
Windov	ws Typ	e 5				2.03		/[1/(4.8)+	0.04] =	8.17	=			(27)
Window	ws Typ	e 6				3.04		/[1/(4.8)+	0.04] =	12.24	_			(27)
Window	ws Typ	e 7				1.46		/[1/(4.8)+	0.04] =	5.88	_			(27)
Window	ws Typ	e 8				1.46	x1	/[1/(4.8)+	0.04] =	5.88				(27)
Windov	ws Typ	e 9				2.7	x1	/[1/(4.8)+	0.04] =	10.87	\exists			(27)
Windov	ws Typ	e 10				1.3		/[1/(4.8)+	0.04] =	5.23	=			(27)
Windov	ws Typ	e 11				1.3	x1	/[1/(4.8)+	0.04] =	5.23	\exists			(27)
Window	ws Typ	e 12				2.2	x1	/[1/(4.8)+	0.04] =	8.86	Ē			(27)

Windows Type 13	2.19 ×	<1/[1/(4.8)+	0.04] =	8.82				(27)
Windows Type 14	2.73 ×	<1/[1/(4.8)+	0.04] =	10.99				(27)
Windows Type 15	1.5 ×	<1/[1/(4.8)+	0.04] =	6.04				(27)
Windows Type 16	0.42	<1/[1/(4.8)+	0.04] =	1.69				(27)
Windows Type 17	0.79	<1/[1/(4.8)+	0.04] =	3.18				(27)
Windows Type 18	3.45 ×	<1/[1/(4.8)+	0.04] =	13.89				(27)
Windows Type 19	0.58 ×	<1/[1/(1.6)+	0.04] =	0.87				(27)
Windows Type 20	5.28 ×	<1/[1/(1.6)+	0.04] =	7.94				(27)
Windows Type 21	5.76 ×	<1/[1/(1.6)+	0.04] =	8.66				(27)
Windows Type 22	1.31 ×	<1/[1/(1.6)+	0.04] =	1.97				(27)
Windows Type 23	1.7 ×	<1/[1/(4.8)+	0.04] =	6.85				(27)
Windows Type 24	11.88	<1/[1/(1.6)+	0.04] =	17.86				(27)
Windows Type 25	1.56 ×	<1/[1/(4.8)+	0.04] =	6.28				(27)
Windows Type 26	1.56 ×	<1/[1/(4.8)+	0.04] =	6.28				(27)
Windows Type 27	0.4	<mark><1/[1/(4.8)+</mark>	0.04] =	1.61				(27)
Windows Type 28	5.55 ×	<mark><1/[1/(4.8)+</mark>	0.04] =	22.35				(27)
Rooflights Type 1	23.6	<mark>< 1/[1/(2) + 0</mark>	.04] =	47.2				(27b)
Rooflights Type 2	4.52 ×	<mark>< 1/[1/(2) + 0</mark>	.04] =	9.04				(27b)
Floor	196.23 ×	0.15	=	29.4345				(28)
Walls Type1 91.67 36.03	55.64 ×	0.26	=	14.47				(29)
Walls Type2 232.64 50.01	182.63 ×	2.1	=	383.52				(29)
Walls Type3 13 8.28	4.72 ×	2.1	=	9.91				(29)
Walls Type4 164.1 0	164.1 ×	0.2	=	32.82				(29)
Roof Type1 66.5 0	66.5 ×	0.11	=	7.31				(30)
Roof Type2 33.99 23.6	10.39 ×	0.14	=	1.45				(30)
Roof Type3 42.79 13.56	29.23 ×	0.18	=	5.26				(30)
Roof Type4 15.11 0	15.11 ×	2.3	=	34.75				(30)
Roof Type5 39.56 0	39.56 ×	0.18	=	7.12				(30)
Total area of elements, m ²	895.59							(31)
* for windows and roof windows, use effective window U-va ** include the areas on both sides of internal walls and part		ng formula 1/	/[(1/U-valu	ie)+0.04] as gi	iven in j	baragraph	3.2	
Fabric heat loss, $W/K = S (A \times U)$	hiono	(26)(30)	+ (32) =			[881.7	(33)
Heat capacity $Cm = S(A \times k)$			((28)	.(30) + (32) +	(32a)	.(32e) =	29533.86	(34)
Thermal mass parameter (TMP = Cm ÷ TFA) in	ı kJ/m²K		Indica	tive Value: Me	dium		250	(35)
For design assessments where the details of the construction	on are not known	precisely the	indicative	values of TM	P in Ta	ble 1f		
can be used instead of a detailed calculation. Thermal bridges : S (L x Y) calculated using Ap	nendiv K					ſ	404.04	
if details of thermal bridging are not known (36) = $0.15 \times (3)$	-					l	134.34	(36)
Total fabric heat loss	/		(33) +	(36) =		[1016.04	(37)
Ventilation heat loss calculated monthly			(38)m	$= 0.33 \times (25)r$	m x (5)			_
Jan Feb Mar Apr May	Jun Jul	Aug	Sep	Oct	Nov	Dec		
(38)m= 475.66 469.51 463.48 435.17 429.87	405.21 405.21	1 400.64	414.71	429.87 44	40.59	451.79		(38)
Heat transfer coefficient, W/K	r			= (37) + (38)n				
(39)m= 1491.7 1485.55 1479.52 1451.21 1445.91 Stroma FSAP 2012 Version: 1.0.1.14 (SAP 9.92) - http://www.sec.edu//wwwwwwwwwwwwwwwwwwwwwwwwwwwww.sec.edu//wwww.sec.edu//www.sec.edu//www.sec.edu//www.sec.edu//wwwwwwwwwwww	1421.25 1421.2 ww.stroma.com	5 1416.69	1430.75		56.63	1467.83	Page	3 φ[16
				Average = Sur	11(39)1	12 / 1 🖊 =	1451.19	(38)

Average = Sum(39)_{1...12} /12=

Heat lo	oss para	meter (I	HLP), W	/m²K					(40)m	= (39)m ÷	(4)			
(40)m=	2.61	2.6	2.59	2.54	2.53	2.49	2.49	2.48	2.51	2.53	2.55	2.57		
Numb			L						,	Average =	Sum(40) _{1.}	.12 /12=	2.54	(40)
NUMD	Jan	Feb	nth (Tab Mar	, 1	May		Jul	Δυσ	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	Apr 30	31	Jun 30	31	Aug 31	30	31	30	31		(41)
(+1)11=	- 01	20		00		00				- 01	50	51		()
4. Wa	ater heat	ting ene	rgy requ	irement:								kWh/ye	ear:	
if TF				: [1 - exp	o(-0.0003	349 x (TF	FA -13.9)2)] + 0.(0013 x (⁻	TFA -13.		48		(42)
Reduce	the annua	al average	hot water		5% if the c	welling is	designed	(25 x N) to achieve		se target o		6.95		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wat	er usage il	n litres pei	r day for ea	ach month	r	ctor from		(43)					l	
(44)m=	128.65	123.97	119.29	114.61	109.94	105.26	105.26	109.94	114.61	119.29	123.97	128.65		
Energy	content of	hot water	used - cal	culated m	onthly = 4.	190 x Vd,r	m x nm x E	0Tm / 3600			m(44) ₁₁₂ = ables 1b, 1		1403.43	(44)
(45)m=	190.78	166.86	172.18	150.11	144.04	124.29	115.18	132.17	133.74	155.87	170.14	184.76		
If instan	tonoquo u	ator hooti	ng of poin	t of upp /m	hot water	r otorogo)	ontor 0 in	havaa (46		Total = Su	m(45) ₁₁₂ =		1840.12	(45)
			· ·		1	1	1	boxes (46	i	00.00	05.50	07.74		(46)
(46)m= Water	28.62 storage	25.03	25.83	22.52	21.61	18.64	17.28	19.82	20.06	23.38	25.52	27.71		(46)
	-		includir	ng any se	olar or W	WHRS	storage	within sa	ame ves	sel	:	250		(47)
	-	-		ank in dw	-						-			
			hot wate	er (this ir	ncludes i	nstantar	neous co	ombi boil	ers) ente	er '0' in (47)			
	storage		eclared I	oss facto	or is kno	wn (kWł	n/dav).				1	75		(48)
			m Table				"day).					54		(49)
•				e, kWh/ye	ear			(48) x (49)) =			94		(50)
0.			•	cylinder		or is not			, 			01		()
		-		rom Tabl	le 2 (kW	h/litre/da	ay)					C		(51)
		from Ta	ee secti ble 2a	on 4.3)		(52)
			m Table	2b)		(52)
				e, kWh/ye	ear			(47) x (51)) x (52) x (53) =)		(54)
0.		(54) in (5	•	,, ,						,		94		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m	L			
(56)m=	29.3	26.46	29.3	28.35	29.3	28.35	29.3	29.3	28.35	29.3	28.35	29.3		(56)
If cylinde	er contains	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	29.3	26.46	29.3	28.35	29.3	28.35	29.3	29.3	28.35	29.3	28.35	29.3		(57)
Primar	y circuit	loss (ar	nual) fro	om Table	e 3)		(58)
	-					59)m = ((58) ÷ 36	65 × (41)	m					
(mo				r	r	r	r	ng and a	· ·	1	stat)		l	
(59)m=	43.31	39.12	43.31	41.92	43.31	41.92	43.31	43.31	41.92	43.31	41.92	43.31		(59)

Combi	loss ca	alculated	for each	n month	(61)m =	(60)	÷ 365 ×	: (41)	m						
(61)m=	0	0	0	0	0		0	0	0	0	0	0	0		(61)
Total h	eat req	uired for	water h	eating ca	alculated	for	each mo	onth	(62)m =	• 0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	263.39	232.44	244.79	220.38	216.65	194	4.56 187	7.78	204.77	204.01	228.47	240.41	257.37		(62)
Solar DH	-IW input	calculated	using App	pendix G o	r Appendix	H (n	negative qu	uantity	r) (enter '0	' if no sola	r contribu	tion to wate	er heating)		
(add a	dditiona	al lines if	FGHRS	and/or	NWHRS	app	plies, see	e App	pendix (G)					
(63)m=	0	0	0	0	0		0	0	0	0	0	0	0		(63)
Output	from w	ater hea	ter												
(64)m=	263.39	232.44	244.79	220.38	216.65	194	4.56 187	7.78	204.77	204.01	228.47	240.41	257.37		
			•						Out	out from wa	ater heate	er (annual)₁	12	2695.02	(64)
Heat g	ains fro	m water	heating	, kWh/m	onth 0.2	5 ´ [0.85 × (4	45)m	+ (61)n	n] + 0.8 x	(46)m	+ (57)m	+ (59)m]	
(65)m=	121.52	107.95	115.34	106.13	105.98	97	.54 96	6.38	102.03	100.68	109.91	112.78	119.52		(65)
inclu	ude (57)	m in calo	culation	of (65)m	onlv if c	vlin	der is in	the c	wellina	or hot w	ater is f	rom com	r munitv h	neating	
	. ,	ains (see			-	,			- 5				- J	J	
					/•										
Metabo	Jiic gaii Jan	ns (Table Feb	Mar	Apr	May		lun J	lul	Aug	Sep	Oct	Nov	Dec]	
(66)m=	174.22	174.22	174.22	174.22	174.22			4.22	174.22	174.22	174.22	174.22	174.22		(66)
				1							174.22	174.22	174.22	l	(00)
-		calcula	· · · · · ·	1	· · ·			<u> </u>			00.00	70.40	74.70	1	(67)
(67)m=	72.74	64.61	52.54	39.78	29.73			7.12	35.26	47.32	60.09	70.13	74.76		(67)
		ains (calc	r	<u> </u>	· · ·				,	1		-		1	
(68)m=	652.73	659.5	642.43	606.1	560.23	51	7.12 488	8.32	481.55	498.61	534.95	580.82	623.93		(68)
Cookin	ng gains	s (calcula	ated in A	ppendix	L, equat	ion	L15 or L	.15a)	, also s	ee Table	5	-			
(69)m=	40.42	40.42	40.42	40.42	40.42	40	0.42 40).42	40.42	40.42	40.42	40.42	40.42		(69)
Pumps	and fa	ns gains	(Table	5a)										_	
(70)m=	3	3	3	3	3		3	3	3	3	3	3	3		(70)
Losses	s e.g. e	vaporatio	on (nega	tive valu	es) (Tab	le 5	5)							-	
(71)m=	-139.37	-139.37	-139.37	-139.37	-139.37	-13	9.37 -13	9.37	-139.37	-139.37	-139.37	-139.37	-139.37		(71)
Water	heating	J gains (T	Table 5)	•			-	•		•		•			
(72)m=	163.34	160.63	155.02	147.4	142.44	13	5.47 129	9.55	137.14	139.84	147.73	156.65	160.64		(72)
Total i	nterna	l gains =		•			(66)m +	(67)m	+ (68)m ·	+ (69)m + ((70)m + (7	1 71)m + (72)	m	1	
(73)m=	967.07	963.01	928.26	871.54	810.67	75	5.96 723	3.25	732.21	764.04	821.03	885.86	937.6		(73)
	lar gain	s:	<u> </u>								<u> </u>]	
	Ŭ		using sola	ar flux from	Table 6a a	and a	associated	equat	tions to co	onvert to th	e applica	ble orientat	ion.		
Orienta	ation:	Access F	actor	Area			Flux			g_		FF		Gains	
		Table 6d		m²			Table 6	6a	Т	able 6b	Т	able 6c		(VV)	
North	0.9x	0.77	x	1.5	56	×Г	10.63		x	0.85) x [0.7	=	6.84	(74)
North	0.9x	0.77	×			хГ	20.32		x	0.85	╡ _ └	0.7		13.07](74)
North	0.9x	0.77	×			хГ	34.53		x	0.85		0.7		22.21](74)
North	0.9x	0.77				Ω ×Γ	55.46		x	0.85		0.7		35.68	(74)
North	0.9x					F					듹				(74)
	0.9X	0.77	X	1.	טט	×	74.72		x	0.85	×	0.7	=	48.06	(**)

North 0.9x 0.77 X 1.56 X 79.99 X 0.85 X 0.7 = 51.4	5 (74)
North $0.9x$ 0.77 x 1.56 x 74.68 x 0.85 x 0.7 = 48.0	(74)
North 0.9x 0.77 X 1.56 X 24.19 X 0.85 X 0.7 = 15.5	
North 0.9x 0.77 X 1.56 X 13.12 X 0.85 X 0.7 = 8.4	
North 0.9x 0.77 X 1.56 X 8.86 X 0.85 X 0.7 = 5.7	
Northeast 0.9x 0.77 x 1.7 x 11.28 x 0.85 x 0.7 = 39.5	
Northeast 0.9x 0.77 × 11.88 × 11.28 × 0.63 × 0.7 = 40.5	
Northeast 0.9x 0.77 X 0.4 X 11.28 X 0.85 X 0.7 = 1.8	
Northeast 0.9x 0.77 × 5.55 × 11.28 × 0.85 × 0.7 = 25.8	
Northeast 0.9x 0.77 X 1.7 X 22.97 X 0.85 X 0.7 = 80.4	
Northeast 0.9x 0.77 X 11.88 X 22.97 X 0.63 X 0.7 = 83.3	8 (75)
Northeast 0.9x 0.77 X 0.4 X 22.97 X 0.85 X 0.7 = 3.7	(75)
Northeast 0.9x 0.77 X 5.55 X 22.97 X 0.85 X 0.7 = 52.5	6 (75)
Northeast 0.9x 0.77 x 1.7 x 41.38 x 0.85 x 0.7 = 145.	03 (75)
Northeast 0.9x 0.77 X 11.88 X 41.38 X 0.63 X 0.7 = 150.	23 (75)
Northeast 0.9x 0.77 X 0.4 X 41.38 X 0.85 X 0.7 = 6.8	2 (75)
Northeast 0.9x 0.77 x 5.55 x 41.38 x 0.85 x 0.7 = 94.6	9 (75)
Northeast 0.9x 0.77 x 1.7 x 67.96 x 0.85 x 0.7 = 238.	17 (75)
Northeast 0.9x 0.77 X 11.88 X 67.96 X 0.63 X 0.7 = 246.	73 (75)
Northeast 0.9x 0.77 x 0.4 x 67.96 x 0.85 x 0.7 = 11.2	:1 (75)
Northeast 0.9x 0.77 x 5.55 x 67.96 x 0.85 x 0.7 = 155.	51 (75)
Northeast 0.9x 0.77 x 1.7 x 91.35 x 0.85 x 0.7 = 320.	15 (75)
Northeast 0.9x 0.77 x 11.88 x 91.35 x 0.63 x 0.7 = 331.	65 (75)
Northeast 0.9x 0.77 x 0.4 x 91.35 x 0.85 x 0.7 = 15.0	7 (75)
Northeast 0.9x 0.77 x 5.55 x 91.35 x 0.85 x 0.7 = 209.	04 (75)
Northeast 0.9x 0.77 x 1.7 x 97.38 x 0.85 x 0.7 = 341.	32 (75)
Northeast 0.9x 0.77 X 11.88 X 97.38 X 0.63 X 0.7 = 353.	57 (75)
Northeast 0.9x 0.77 x 0.4 x 97.38 x 0.85 x 0.7 = 16.0	6 (75)
Northeast 0.9x 0.77 x 5.55 x 97.38 x 0.85 x 0.7 = 222.	86 (75)
Northeast 0.9x 0.77 x 1.7 x 91.1 x 0.85 x 0.7 = 319	3 (75)
Northeast 0.9x 0.77 X 11.88 X 91.1 X 0.63 X 0.7 = 330.	76 (75)
Northeast 0.9x 0.77 x 0.4 x 91.1 x 0.85 x 0.7 = 15.0	3 (75)
Northeast 0.9x 0.77 x 5.55 x 91.1 x 0.85 x 0.7 = 208.	48 (75)
Northeast 0.9x 0.77 x 1.7 x 72.63 x 0.85 x 0.7 = 254.	55 (75)
Northeast 0.9x 0.77 X 11.88 X 72.63 X 0.63 X 0.7 = 263.	69 (75)
Northeast 0.9x 0.77 x 0.4 x 72.63 x 0.85 x 0.7 = 11.5	8 (75)
Northeast 0.9x 0.77 x 5.55 x 72.63 x 0.85 x 0.7 = 166	2 (75)
Northeast 0.9x 0.77 x 1.7 x 50.42 x 0.85 x 0.7 = 176.	72 (75)
Northeast 0.9x 0.77 × 11.88 × 50.42 × 0.63 × 0.7 = 183.	06 (75)

Northeast 0.9x	0.77	×	0.4	×	50.42	×	0.85	x	0.7	=	8.32	(75)
Northeast 0.9x	0.77	x	5.55	x	50.42	x	0.85	x	0.7	=	115.39	(75)
Northeast 0.9x	0.77	x	1.7	x	28.07	x	0.85	x	0.7	=	98.37	(75)
Northeast 0.9x	0.77	×	11.88	x	28.07	×	0.63	x	0.7	=	101.9	(75)
Northeast 0.9x	0.77	×	0.4	x	28.07	×	0.85	x	0.7	=	4.63	(75)
Northeast 0.9x	0.77	×	5.55	x	28.07	×	0.85	x	0.7	=	64.23	(75)
Northeast 0.9x	0.77	×	1.7	×	14.2	×	0.85	x	0.7	=	49.76	(75)
Northeast 0.9x	0.77	×	11.88	x	14.2	×	0.63	x	0.7	=	51.54	(75)
Northeast 0.9x	0.77	x	0.4	x	14.2	x	0.85	x	0.7	=	2.34	(75)
Northeast 0.9x	0.77	×	5.55	x	14.2	×	0.85	x	0.7	=	32.49	(75)
Northeast 0.9x	0.77	x	1.7	x	9.21	×	0.85	x	0.7	=	32.29	(75)
Northeast 0.9x	0.77	x	11.88	x	9.21	x	0.63	x	0.7	=	33.45	(75)
Northeast 0.9x	0.77	x	0.4	x	9.21	x	0.85	x	0.7	=	1.52	(75)
Northeast 0.9x	0.77	x	5.55	x	9.21	x	0.85	x	0.7	=	21.09	(75)
East 0.9x	1	×	1.56	x	19.64	×	0.85	x	0.7	=	12.63	(76)
East 0.9x	1	×	1.56	x	38.42	×	0.85	x	0.7	=	24.71	(76)
East 0.9x	1	x	1.56	×	63.27	×	0.85	x	0.7	=	40.7	(76)
East 0.9x	1	×	1.56	x	92.28	×	0.85	x	0.7	=	59.36	(76)
East 0.9x	1	x	1.56	×	113.09	×	0.85	x	0.7	=	72.75	(76)
East 0.9x	1	x	1.56	x	115.77	×	0.85	x	0.7	=	74.47	(76)
East 0.9x	1	×	1.56	x	110.22	×	0.85	x	0.7	=	70.9	(76)
East 0.9x	1	×	1.56	x	94.68	×	0.85	x	0.7	=	60.9	(76)
East 0.9x	1	x	1.56	x	73.59	x	0.85	x	0.7	=	47.34	(76)
East 0.9x	1	x	1.56	x	45.59	×	0.85	x	0.7	=	29.32	(76)
East 0.9x	1	x	1.56	x	24.49	×	0.85	x	0.7	=	15.75	(76)
East 0.9x	1	x	1.56	x	16.15	×	0.85	x	0.7	=	10.39	(76)
Southeast 0.9x	0.77	x	1.5	x	36.79	x	0.85	x	0.7	=	91.03	(77)
Southeast 0.9x	0.77	×	0.42	x	36.79	×	0.85	x	0.7	=	6.37	(77)
Southeast 0.9x	0.77	×	0.79	x	36.79	×	0.85	x	0.7	=	11.99	(77)
Southeast 0.9x	0.77	×	3.45	×	36.79	×	0.63	x	0.7	=	38.79	(77)
Southeast 0.9x	0.77	×	0.58	x	36.79	×	0.63	x	0.7	=	6.52	(77)
Southeast 0.9x	0.77	×	5.28	x	36.79	×	0.63	x	0.7	=	59.37	(77)
Southeast 0.9x	0.77	×	1.5	x	62.67	×	0.85	x	0.7	=	155.05	(77)
Southeast 0.9x	0.77	×	0.42	x	62.67	×	0.85	x	0.7	=	10.85	(77)
Southeast 0.9x	0.77	×	0.79	x	62.67	×	0.85	x	0.7	=	20.42	(77)
Southeast 0.9x	0.77	×	3.45	x	62.67	×	0.63	x	0.7	=	66.08	(77)
Southeast 0.9x	0.77	×	0.58	x	62.67	×	0.63	x	0.7	=	11.11	(77)
Southeast 0.9x	0.77	×	5.28	x	62.67	×	0.63	x	0.7	=	101.13	(77)
Southeast 0.9x	0.77	×	1.5	×	85.75	×	0.85	x	0.7	=	212.15	(77)
Southeast 0.9x	0.77	×	0.42	×	85.75	×	0.85	x	0.7	=	14.85	(77)
Southeast 0.9x	0.77	×	0.79	×	85.75	×	0.85	x	0.7	=	27.93	(77)

Southeast 0.9x	0.77] x	3.45	×	85.75	x	0.63	x	0.7	=	90.41	(77)
Southeast 0.9x	0.77) ^] x	0.58	x	85.75	x	0.63	x	0.7	=	15.2](**)](77)
Southeast 0.9x	0.77) ^] x	5.28	x	85.75	x	0.63	x	0.7	=	138.37	(<i>)</i> (77)
Southeast 0.9x	0.77] ^] x	1.5	x	106.25	x	0.85	x	0.7	=	262.87	(⁽¹¹⁾
Southeast 0.9x	0.77] ^] x	0.42	x	106.25	x	0.85	x	0.7	=	18.4](77)
Southeast 0.9x	0.77] ×	0.79	x	106.25	x	0.85	x	0.7	=	34.61](77)
L Southeast 0.9x	0.77	」 】 ×	3.45	x	106.25	x	0.63	x	0.7	=	112.03	
Southeast 0.9x	0.77] x	0.58	x	106.25	x	0.63	x	0.7	=	18.83	(77)
Southeast 0.9x	0.77	x	5.28	x	106.25	x	0.63	x	0.7	=	171.45	(77)
Southeast 0.9x	0.77	x	1.5	×	119.01	x	0.85	x	0.7	=	294.43	(77)
Southeast 0.9x	0.77	x	0.42	x	119.01	x	0.85	x	0.7	=	20.61	(77)
Southeast 0.9x	0.77	x	0.79	x	119.01	x	0.85	x	0.7] =	38.77	(77)
Southeast 0.9x	0.77	x	3.45	x	119.01	x	0.63	x	0.7	=	125.48	(77)
Southeast 0.9x	0.77	x	0.58	x	119.01	x	0.63	x	0.7	=	21.1	(77)
Southeast 0.9x	0.77	x	5.28	x	119.01	x	0.63	x	0.7	=	192.04	(77)
Southeast 0.9x	0.77	x	1.5	x	118.15	x	0.85	x	0.7	=	292.3	(77)
Southeast 0.9x	0.77	x	0.42	x	118.15	x	0.85	x	0.7	=	20.46	(77)
Southeast 0.9x	0.77	x	0.79	×	118.15	x	0.85	x	0.7	=	38.49	(77)
Southeast 0.9x	0.77	x	3.45	x	118.15	x	0.63	x	0.7	=	124.57	(77)
Southeast 0.9x	0.77	x	0.58	x	118.15	x	0.63	x	0.7	=	20.94	(77)
Southeast 0.9x	0.77	x	5.28	x	118.15	x	0.63	x	0.7	=	190.65	(77)
Southeast 0.9x	0.77	x	1.5	x	113.91	x	0.85	x	0.7	=	281.81	(77)
Southeast 0.9x	0.77	x	0.42	x	113.91	x	0.85	x	0.7	=	19.73	(77)
Southeast 0.9x	0.77	x	0.79	x	113.91	x	0.85	x	0.7	=	37.11	(77)
Southeast 0.9x	0.77	x	3.45	x	113.91	x	0.63	x	0.7	=	120.1	(77)
Southeast 0.9x	0.77	x	0.58	x	113.91	x	0.63	x	0.7	=	20.19	(77)
Southeast 0.9x	0.77	x	5.28	×	113.91	x	0.63	x	0.7	=	183.81	(77)
Southeast 0.9x	0.77	x	1.5	x	104.39	x	0.85	x	0.7	=	258.26	(77)
Southeast 0.9x	0.77	x	0.42	x	104.39	x	0.85	x	0.7	=	18.08	(77)
Southeast 0.9x	0.77	x	0.79	x	104.39	x	0.85	x	0.7	=	34	(77)
Southeast 0.9x	0.77	x	3.45	×	104.39	x	0.63	x	0.7	=	110.07	(77)
Southeast 0.9x	0.77	x	0.58	x	104.39	x	0.63	x	0.7	=	18.5	(77)
Southeast 0.9x	0.77	x	5.28	x	104.39	x	0.63	x	0.7	=	168.45	(77)
Southeast 0.9x	0.77	x	1.5	x	92.85	x	0.85	x	0.7	=	229.72	(77)
Southeast 0.9x	0.77	×	0.42	x	92.85	x	0.85	x	0.7	=	16.08	(77)
Southeast 0.9x	0.77	×	0.79	×	92.85	x	0.85	x	0.7	=	30.25	(77)
Southeast 0.9x	0.77	×	3.45	x	92.85	x	0.63	x	0.7	=	97.9	(77)
Southeast 0.9x	0.77	×	0.58	×	92.85	x	0.63	x	0.7	=	16.46	(77)
Southeast 0.9x	0.77	×	5.28	×	92.85	x	0.63	x	0.7	=	149.83	(77)
Southeast 0.9x	0.77	×	1.5	x	69.27	x	0.85	x	0.7	=	171.37	(77)
Southeast 0.9x	0.77	×	0.42	X	69.27	x	0.85	x	0.7	=	12	(77)

		-										_
Southeast 0.9x	0.77	x	0.79	x	69.27	X	0.85	x	0.7	=	22.56	(77)
Southeast 0.9x	0.77	x	3.45	x	69.27	x	0.63	x	0.7	=	73.03	(77)
Southeast 0.9x	0.77	x	0.58	x	69.27	x	0.63	x	0.7	=	12.28	(77)
Southeast 0.9x	0.77	x	5.28	x	69.27	x	0.63	x	0.7	=	111.77	(77)
Southeast 0.9x	0.77	x	1.5	x	44.07	x	0.85	x	0.7	=	109.03	(77)
Southeast 0.9x	0.77	x	0.42	x	44.07	x	0.85	x	0.7	=	7.63	(77)
Southeast 0.9x	0.77	x	0.79	x	44.07	x	0.85	x	0.7	=	14.36	(77)
Southeast 0.9x	0.77	x	3.45	x	44.07	x	0.63	x	0.7	=	46.47	(77)
Southeast 0.9x	0.77	x	0.58	x	44.07	x	0.63	x	0.7	=	7.81	(77)
Southeast 0.9x	0.77	x	5.28	x	44.07	x	0.63	x	0.7	=	71.11	(77)
Southeast 0.9x	0.77	x	1.5	x	31.49	x	0.85	x	0.7	=	77.9	(77)
Southeast 0.9x	0.77	x	0.42	x	31.49	x	0.85	x	0.7	=	5.45	(77)
Southeast 0.9x	0.77	x	0.79	x	31.49	x	0.85	x	0.7	=	10.26	(77)
Southeast 0.9x	0.77	x	3.45	x	31.49	x	0.63	x	0.7	=	33.2	(77)
Southeast 0.9x	0.77	x	0.58	x	31.49	x	0.63	x	0.7	=	5.58	(77)
Southeast 0.9x	0.77	x	5.28	x	31.49	x	0.63	x	0.7	=	50.81	(77)
South 0.9x	0.77	x	1.72	x	46.75	x	0.63	x	0.7	=	24.58	(78)
South 0.9x	0.77	x	1.46	x	46.75	x	0.85	x	0.7	=	28.15	(78)
South 0.9x	0.77	x	1.3	x	46.75	x	0.85	x	0.7	=	25.06	(78)
South 0.9x	0.77	x	1.72	x	76.57	x	0.63	x	0.7	=	40.25	(78)
South 0.9x	0.77	x	1.46	x	76.57	x	0.85	x	0.7	=	46.09	(78)
South 0.9x	0.77	x	1.3	x	76.57	x	0.85	x	0.7	=	41.04	(78)
South 0.9x	0.77	x	1.72	x	97.53	x	0.63	x	0.7	=	51.27	(78)
South 0.9x	0.77	x	1.46	×	97.53	x	0.85	x	0.7	=	58.72	(78)
South 0.9x	0.77	x	1.3	x	97.53	x	0.85	x	0.7	=	52.28	(78)
South 0.9x	0.77	x	1.72	x	110.23	x	0.63	x	0.7	=	57.95	(78)
South 0.9x	0.77	x	1.46	x	110.23	x	0.85	x	0.7	=	66.36	(78)
South 0.9x	0.77	x	1.3	x	110.23	x	0.85	x	0.7	=	59.09	(78)
South 0.9x	0.77	x	1.72	x	114.87	x	0.63	x	0.7	=	60.38	(78)
South 0.9x	0.77	x	1.46	x	114.87	x	0.85	x	0.7	=	69.15	(78)
South 0.9x	0.77	x	1.3	x	114.87	x	0.85	x	0.7	=	61.57	(78)
South 0.9x	0.77	x	1.72	x	110.55	x	0.63	x	0.7	=	58.11	(78)
South 0.9x	0.77	x	1.46	x	110.55	x	0.85	x	0.7	=	66.55	(78)
South 0.9x	0.77	x	1.3	x	110.55	x	0.85	x	0.7	=	59.26	(78)
South 0.9x	0.77	x	1.72	x	108.01	x	0.63	x	0.7	=	56.78	(78)
South 0.9x	0.77	x	1.46	×	108.01	×	0.85	x	0.7	=	65.02	(78)
South 0.9x	0.77	x	1.3	x	108.01	x	0.85	x	0.7	=	57.9	(78)
South 0.9x	0.77	x	1.72	×	104.89	×	0.63	x	0.7	=	55.14	(78)
South 0.9x	0.77	x	1.46	x	104.89	x	0.85	x	0.7	=	63.15	(78)
South 0.9x	0.77	x	1.3	×	104.89	x	0.85	x	0.7	=	56.23	(78)
South 0.9x	0.77	×	1.72	×	101.89	×	0.63	x	0.7	=	53.56	(78)
	-	-		•		•		•		•	-	-

		-										_
South 0.9x	0.77	x	1.46	x	101.89	x	0.85	x	0.7	=	61.34	(78)
South 0.9x	0.77	x	1.3	x	101.89	x	0.85	x	0.7	=	54.61	(78)
South 0.9x	0.77	x	1.72	x	82.59	x	0.63	x	0.7	=	43.41	(78)
South 0.9x	0.77	x	1.46	x	82.59	x	0.85	x	0.7	=	49.72	(78)
South 0.9x	0.77	x	1.3	x	82.59	x	0.85	x	0.7	=	44.27	(78)
South 0.9x	0.77	x	1.72	x	55.42	x	0.63	x	0.7	=	29.13	(78)
South 0.9x	0.77	x	1.46	x	55.42	x	0.85	x	0.7	=	33.36	(78)
South 0.9x	0.77	x	1.3	x	55.42	x	0.85	x	0.7	=	29.71	(78)
South 0.9x	0.77	x	1.72	x	40.4	x	0.63	x	0.7	=	21.24	(78)
South 0.9x	0.77	x	1.46	×	40.4	x	0.85	x	0.7	=	24.32	(78)
South 0.9x	0.77	x	1.3	x	40.4	x	0.85	x	0.7] =	21.65	(78)
Southwest0.9x	0.77	x	2.39	x	36.79]	0.63	x	0.7] =	53.75	(79)
Southwest0.9x	0.77	x	3.58	x	36.79]	0.63	x	0.7] =	40.26	(79)
Southwest _{0.9x}	0.77	x	2.03	×	36.79]	0.85	x	0.7] =	61.6	(79)
Southwest0.9x	0.77	x	3.04	x	36.79]	0.85	x	0.7] =	46.12	(79)
Southwest _{0.9x}	0.77	x	2.7	x	36.79]	0.85	x	0.7	=	40.96	(79)
Southwest _{0.9x}	0.77	x	2.2	x	36.79]	0.85	x	0.7	=	66.75	(79)
Southwest _{0.9x}	0.77	x	2.19	x	36.79]	0.85	x	0.7	=	33.23	(79)
Southwest _{0.9x}	0.77	x	2.73	x	36.79]	0.85	x	0.7	=	41.42	(79)
Southwest _{0.9x}	0.77	x	2.39	x	62.67]	0.63	x	0.7	=	91.56	(79)
Southwest _{0.9x}	0.77	x	3.58	x	62.67]	0.63	x	0.7	=	68.57	(79)
Southwest _{0.9x}	0.77	x	2.03	x	62.67]	0.85	x	0.7	=	104.92	(79)
Southwest _{0.9x}	0.77	x	3.04	x	62.67]	0.85	x	0.7	=	78.56	(79)
Southwest _{0.9x}	0.77	x	2.7	x	62.67]	0.85	x	0.7	=	69.77	(79)
Southwest _{0.9x}	0.77	x	2.2	×	62.67]	0.85	x	0.7	=	113.71	(79)
Southwest _{0.9x}	0.77	x	2.19	x	62.67]	0.85	x	0.7	=	56.6	(79)
Southwest _{0.9x}	0.77	x	2.73	x	62.67]	0.85	x	0.7	=	70.55	(79)
Southwest _{0.9x}	0.77	x	2.39	x	85.75]	0.63	x	0.7	=	125.27	(79)
Southwest _{0.9x}	0.77	x	3.58	x	85.75]	0.63	x	0.7	=	93.82	(79)
Southwest0.9x	0.77	x	2.03	×	85.75]	0.85	x	0.7] =	143.56	(79)
Southwest _{0.9x}	0.77	x	3.04	x	85.75]	0.85	x	0.7	=	107.49	(79)
Southwest _{0.9x}	0.77	x	2.7	×	85.75]	0.85	×	0.7] =	95.47	(79)
Southwest0.9x	0.77	x	2.2	×	85.75]	0.85	x	0.7	=	155.58	(79)
Southwest _{0.9x}	0.77	x	2.19	x	85.75]	0.85	x	0.7	=	77.44	(79)
Southwest _{0.9x}	0.77	x	2.73	x	85.75]	0.85	x	0.7] =	96.53	(79)
Southwest _{0.9x}	0.77	x	2.39	×	106.25]	0.63	x	0.7] =	155.22	(79)
Southwest _{0.9x}	0.77	x	3.58	×	106.25]	0.63	x	0.7	=	116.25	(79)
Southwest _{0.9x}	0.77	x	2.03	×	106.25]	0.85	x	0.7	=	177.87	(79)
Southwest _{0.9x}	0.77	x	3.04	×	106.25]	0.85	x	0.7] =	133.19	(79)
Southwest _{0.9x}	0.77	x	2.7	×	106.25]	0.85	x	0.7	=	118.29	(79)
Southwest _{0.9x}	0.77	x	2.2	×	106.25]	0.85	x	0.7	=	192.77	(79)

Southwest0.9x	0.77) x	2.19	x	106.25	0.85	x	0.7	=	95.95	(79)
Southwest _{0.9x}	0.77	x	2.73	x	106.25	0.85	x	0.7	=	119.6	(79)
Southwest _{0.9x}	0.77	x	2.39	x	119.01	0.63	x	0.7	=	173.85	(79)
Southwest _{0.9x}	0.77	x	3.58	x	119.01	0.63	x	0.7	=	130.21	(79)
Southwest _{0.9x}	0.77	x	2.03	x	119.01	0.85	x	0.7	=	199.23	(79)
Southwest _{0.9x}	0.77	x	3.04	x	119.01	0.85	x	0.7	=	149.18	(79)
Southwest0.9x	0.77	x	2.7	x	119.01	0.85	x	0.7	=	132.5	(79)
Southwest _{0.9x}	0.77	x	2.2	×	119.01	0.85	x	0.7	=	215.92	(79)
Southwest0.9x	0.77	x	2.19	x	119.01	0.85	x	0.7	=	107.47	(79)
Southwest0.9x	0.77	x	2.73	x	119.01	0.85	x	0.7	=	133.97	(79)
Southwest0.9x	0.77	x	2.39	x	118.15	0.63	x	0.7	=	172.6	(79)
Southwest0.9x	0.77	x	3.58	x	118.15	0.63	x	0.7	=	129.27	(79)
Southwest0.9x	0.77	x	2.03	x	118.15	0.85	x	0.7	=	197.79	(79)
Southwest0.9x	0.77	x	3.04	x	118.15	0.85	x	0.7	=	148.1	(79)
Southwest0.9x	0.77	x	2.7	x	118.15	0.85	x	0.7	=	131.54	(79)
Southwest0.9x	0.77	x	2.2	x	118.15	0.85	x	0.7	=	214.36	(79)
Southwest0.9x	0.77	x	2.19	x	118.15	0.85	x	0.7	=	106.69	(79)
Southwest0.9x	0.77	x	2.73	x	118.15	0.85	x	0.7	=	133	(79)
Southwest0.9x	0.77	x	2.39	x	113.91	0.63	x	0.7	=	166.4	(79)
Southwest0.9x	0.77	x	3.58	x	113.91	0.63	x	0.7	=	124.63	(79)
Southwest0.9x	0.77	x	2.03	x	113.91	0.85	x	0.7	=	190.69	(79)
Southwest0.9x	0.77	x	3.04	x	113.91	0.85	x	0.7	=	142.79	(79)
Southwest0.9x	0.77	x	2.7	x	113.91	0.85	x	0.7	=	126.82	(79)
Southwest _{0.9x}	0.77	x	2.2	×	113.91	0.85	x	0.7	=	206.66	(79)
Southwest _{0.9x}	0.77	x	2.19	x	113.91	0.85	x	0.7	=	102.86	(79)
Southwest _{0.9x}	0.77	x	2.73	x	113.91	0.85	x	0.7	=	128.22	(79)
Southwest0.9x	0.77	x	2.39	x	104.39	0.63	x	0.7	=	152.5	(79)
Southwest _{0.9x}	0.77	x	3.58	x	104.39	0.63	x	0.7	=	114.21	(79)
Southwest _{0.9x}	0.77	x	2.03	x	104.39	0.85	x	0.7	=	174.76	(79)
Southwest0.9x	0.77	x	3.04	×	104.39	0.85	x	0.7	=	130.85	(79)
Southwest _{0.9x}	0.77	x	2.7	x	104.39	0.85	x	0.7	=	116.22	(79)
Southwest0.9x	0.77	x	2.2	×	104.39	0.85	x	0.7	=	189.39	(79)
Southwest0.9x	0.77	x	2.19	×	104.39	0.85	x	0.7	=	94.27	(79)
Southwest _{0.9x}	0.77	x	2.73	×	104.39	0.85	x	0.7	=	117.51	(79)
Southwest _{0.9x}	0.77	x	2.39	×	92.85	0.63	x	0.7	=	135.64	(79)
Southwest _{0.9x}	0.77	x	3.58	×	92.85	0.63	x	0.7	=	101.59	(79)
Southwest _{0.9x}	0.77	x	2.03	×	92.85	0.85	x	0.7	=	155.44	(79)
Southwest _{0.9x}	0.77	×	3.04	×	92.85	0.85	x	0.7	=	116.39	(79)
Southwest _{0.9x}	0.77	×	2.7	×	92.85	0.85	x	0.7	=	103.37	(79)
Southwest _{0.9x}	0.77	×	2.2	×	92.85	0.85	x	0.7	=	168.46	(79)
Southwest _{0.9x}	0.77	x	2.19	X	92.85	0.85	x	0.7	=	83.85	(79)

Southwest0.9x	0.77	×	2.73	×	92.85		0.85	x	0.7	=	104.52	(79)
Southwest _{0.9x}	0.77	x	2.39	x	69.27		0.63	x	0.7	=	101.19	(79)
Southwest _{0.9x}	0.77	x	3.58	x	69.27		0.63	x	0.7	=	75.79](79)
Southwest _{0.9x}	0.77	×	2.03	x	69.27		0.85	x	0.7	=	115.96	(79)
Southwest _{0.9x}	0.77	×	3.04	x	69.27		0.85	x	0.7	=	86.83] (79)
Southwest _{0.9x}	0.77	x	2.7	x	69.27		0.85	x	0.7	=	77.12	(79)
Southwest0.9x	0.77	×	2.2	x	69.27		0.85	x	0.7	=	125.67	(79)
Southwest _{0.9x}	0.77	x	2.19	x	69.27		0.85	x	0.7	=	62.55	(79)
Southwest _{0.9x}	0.77	×	2.73	x	69.27		0.85	x	0.7	=	77.97	(79)
Southwest0.9x	0.77	×	2.39	x	44.07		0.63	x	0.7	=	64.38	(79)
Southwest _{0.9x}	0.77	×	3.58	x	44.07		0.63	x	0.7	=	48.22	(79)
Southwest _{0.9x}	0.77	×	2.03	×	44.07		0.85	x	0.7	=	73.78	(79)
Southwest _{0.9x}	0.77	×	3.04	×	44.07		0.85	x	0.7	=	55.24	(79)
Southwest _{0.9x}	0.77	×	2.7	x	44.07		0.85	x	0.7	=	49.06	(79)
Southwest _{0.9x}	0.77	×	2.2	x	44.07		0.85	x	0.7	=	79.96	(79)
Southwest _{0.9x}	0.77	×	2.19	x	44.07		0.85	x	0.7	=	39.8	(79)
Southwest _{0.9x}	0.77	×	2.73	×	44.07		0.85	x	0.7	=	49.61	(79)
Southwest _{0.9x}	0.77	×	2.39	x	31.49		0.63	x	0.7	=	46	(79)
Southwest _{0.9x}	0.77	×	3.58	x	31.49		0.63	x	0.7	=	34.45	(79)
Southwest _{0.9x}	0.77	x	2.03	x	31.49		0.85	x	0.7	=	52.71	(79)
Southwest _{0.9x}	0.77	x	3.04	x	31.49		0.85	x	0.7	=	39.47	(79)
Southwest _{0.9x}	0.77	×	2.7	x	31.49		0.85	x	0.7	=	35.06	(79)
Southwest _{0.9x}	0.77	×	2.2	x	31.49		0.85	x	0.7	=	57.13	(79)
Southwest _{0.9x}	0.77	x	2.19	x	31.49		0.85	x	0.7	=	28.43	(79)
Southwest _{0.9x}	0.77	×	2.73	x	31.49		0.85	x	0.7	=	35.45	(79)
West 0.9x	0.77	×	1.72	x	19.64	x	0.63	x	0.7	=	10.32	(80)
West 0.9x	0.77	x	1.46	x	19.64	x	0.85	x	0.7	=	11.82	(80)
West 0.9x	0.77	×	1.3	x	19.64	x	0.85	x	0.7	=	10.53	(80)
West 0.9x	0.77	×	1.72	x	38.42	x	0.63	x	0.7	=	20.2	(80)
West 0.9x	0.77	×	1.46	x	38.42	x	0.85	x	0.7	=	23.13	(80)
West 0.9x	0.77	x	1.3	x	38.42	x	0.85	x	0.7	=	20.59	(80)
West 0.9x	0.77	x	1.72	x	63.27	x	0.63	x	0.7	=	33.26	(80)
West 0.9x	0.77	x	1.46	x	63.27	x	0.85	x	0.7	=	38.09	(80)
West 0.9x	0.77	×	1.3	x	63.27	x	0.85	x	0.7	=	33.92	(80)
West 0.9x	0.77	x	1.72	x	92.28	x	0.63	x	0.7	=	48.51	(80)
West 0.9x	0.77	×	1.46	x	92.28	x	0.85	x	0.7	=	55.55	(80)
West 0.9x	0.77	×	1.3	×	92.28	x	0.85	x	0.7	=	49.47	(80)
West 0.9x	0.77	×	1.72	×	113.09	x	0.63	x	0.7	=	59.45	(80)
West 0.9x	0.77	×	1.46	×	113.09	x	0.85	x	0.7	=	68.08	(80)
West 0.9x	0.77	×	1.3	×	113.09	x	0.85	x	0.7	=	60.62	(80)
West 0.9x	0.77	X	1.72	x	115.77	x	0.63	x	0.7	=	60.86	(80)

Nort Over Nort Nort <th< th=""><th></th><th></th><th>1</th><th></th><th>I</th><th></th><th>I</th><th></th><th>1</th><th></th><th></th><th></th><th></th></th<>			1		I		I		1				
West 0.0 0.000 x 0.000<	West 0.9x	0.77	X	1.46	X	115.77	X	0.85	X	0.7	=	69.69	(80)
West 0.0 0.07 × 1.4.6 × 1002 × 0.08 × 0.07 = 66.5.5 (60) West 0.3 0.77 × 1.3 × 10.22 × 0.85 × 0.07 = 66.5.5 (60) West 0.3 0.77 × 1.4.6 × 94.68 × 0.63 × 0.77 = 66.5.5 (60) West 0.3 0.77 × 1.4.6 × 94.68 × 0.63 × 0.77 = 50.75 (60) West 0.3 0.77 × 1.4.6 × 73.59 × 0.63 × 0.77 = 23.86.6 (90) West 0.3 0.77 × 1.4.6 × 44.559 × 0.63 × 0.77 = 23.86.6 (90) West 0.3 0.77 × 1.4.6 × 24.49 <td></td> <td>0.77</td> <td>X</td> <td>1.3</td> <td>X</td> <td></td> <td>X</td> <td>0.85</td> <td>X</td> <td>0.7</td> <td>=</td> <td>62.06</td> <td>4</td>		0.77	X	1.3	X		X	0.85	X	0.7	=	62.06	4
West 0.37 x 1.10 x 1002 x 0.065 x 0.07 a 550.06 (60) West 0.37 0.377 x 1.72 x 94.68 x 0.653 x 0.77 a 49.77 (60) West 0.37 0.377 x 1.46 x 94.68 x 0.655 x 0.77 a 577 (60) West 0.37 x 1.46 x 73.59 x 0.655 x 0.77 a 44.3 (60) West 0.37 x 1.72 x 4659 x 0.653 x 0.77 a 1.46 x 4459 x 0.653 x 0.77 a 1.46 x 4459 x 0.653 x 0.77 a 1.46 x 4449 x 0.653 x 0.77 a 1.474 (60) West0.37 <td></td> <td>0.77</td> <td>X</td> <td>1.72</td> <td>X</td> <td>110.22</td> <td>X</td> <td>0.63</td> <td>X</td> <td>0.7</td> <td>=</td> <td>57.94</td> <td></td>		0.77	X	1.72	X	110.22	X	0.63	X	0.7	=	57.94	
West 0.0 0.077 × 1.12 × 1.16 × 0.063 × 0.077 = 1.49.77 (8) West 0.3 0.77 × 1.146 × 94.68 × 0.685 × 0.077 = 577 (80) West 0.3 0.77 × 1.13 × 94.68 × 0.653 × 0.077 = 38.68 (90) West 0.3 0.77 × 1.13 × 73.59 × 0.633 × 0.77 = 38.45 (80) West 0.3 0.77 × 1.12 × 44.59 × 0.633 × 0.77 = 22.745 (80) West 0.3 0.77 × 1.13 × 24.49 × 0.635 × 0.77 = 12.87 (80) West 0.3 0.77 × 1.33 × 1615		0.77	x	1.46	x	110.22	x	0.85	x	0.7	=	66.35	(80)
West O.X. I.1.K Vest O.X. O.X. <tho.x.< th=""> O.X. O.X. <th< td=""><td></td><td>0.77</td><td>×</td><td>1.3</td><td>x</td><td>110.22</td><td>x</td><td>0.85</td><td>x</td><td>0.7</td><td>=</td><td>59.08</td><td>(80)</td></th<></tho.x.<>		0.77	×	1.3	x	110.22	x	0.85	x	0.7	=	59.08	(80)
West 0.87 x 1.12 x 0.44 x 0.65 x 0.77 s 1.72 x 73.59 x 0.63 x 0.77 a 38.68 (80) West 0.9x 0.77 x 1.46 x 73.59 x 0.63 x 0.77 a 38.68 (80) West 0.9x 0.77 x 1.3 x 73.59 x 0.63 x 0.77 a 38.68 (80) West 0.9x 0.77 x 1.46 x 45.59 x 0.85 x 0.77 a 1.3 x 45.59 x 0.85 x 0.77 a 1.46 x 4.45.59 x 0.85 x 0.77 a 1.46 x 1.61.5 x 0.85 x 0.77 a 1.3 x 1.61.5 x 0.63 x 0.77 a 1.3 x		0.77	x	1.72	x	94.68	x	0.63	x	0.7	=	49.77	(80)
West 0.57 × 1.72 × 7.7359 × 0.63 × 0.77 = 38.68 (80) West 0.9x 0.77 × 1.146 × 73.59 × 0.653 × 0.77 = 39.45 (80) West 0.9x 0.77 × 1.12 × 45.59 × 0.653 × 0.77 = 23.945 (80) West 0.9x 0.77 × 1.13 × 45.59 × 0.653 × 0.77 = 22.444 (80) West 0.9x 0.77 × 1.13 × 24.49 × 0.653 × 0.77 = 14.74 (80) West 0.9x 0.77 × 1.13 × 24.49 × 0.653 × 0.77 = 14.74 (80) West 0.9x 0.77 × 1.13 × 16.15 × </td <td>West 0.9x</td> <td>0.77</td> <td>x</td> <td>1.46</td> <td>x</td> <td>94.68</td> <td>x</td> <td>0.85</td> <td>x</td> <td>0.7</td> <td>=</td> <td>57</td> <td>(80)</td>	West 0.9x	0.77	x	1.46	x	94.68	x	0.85	x	0.7	=	57	(80)
West 0.94 0.97 x 1.14 x 7.369 x 0.03 x 0.77 = 44.3 (60) West 0.94 0.77 x 1.13 x 73.59 x 0.85 x 0.77 = 39.45 (60) West 0.94 0.77 x 1.46 x 45.59 x 0.85 x 0.77 = 23.96 (60) West 0.94 0.77 x 1.3 x 45.59 x 0.85 x 0.77 = 22.44 (60) West 0.94 0.77 x 1.46 x 24.49 x 0.85 x 0.77 = 1.474 (80) West 0.94 0.77 x 1.46 x 24.49 x 0.85 x 0.77 = 1.43 (80) West 0.94 0.77 x 1.46 x 16.15	West 0.9x	0.77	x	1.3	x	94.68	x	0.85	x	0.7	=	50.75	(80)
West 0.8 0.77 x 1.13 x 73.59 x 0.85 x 0.77 s 1.72 x 45.59 x 0.85 x 0.77 s 1.72 x 45.59 x 0.85 x 0.77 s 1.46 x 45.59 x 0.85 x 0.77 s 2.2.44 (60) West 0.9 0.77 x 1.72 x 2.4.49 x 0.85 x 0.77 s 1.2.67 (60) West 0.9 0.77 x 1.72 x 2.4.49 x 0.85 x 0.77 s 1.4.7 (60) West 0.9 0.77 x 1.72 x 16.15 x 0.63 x 0.77 s 1.4.8 16.15 x 0.85 x 0.77 s 4.4.2 (61) Northwest 0.9 0.77 x 1.3.1 x 11.2.8 0.63 </td <td>West 0.9x</td> <td>0.77</td> <td>x</td> <td>1.72</td> <td>x</td> <td>73.59</td> <td>x</td> <td>0.63</td> <td>x</td> <td>0.7</td> <td>=</td> <td>38.68</td> <td>(80)</td>	West 0.9x	0.77	x	1.72	x	73.59	x	0.63	x	0.7	=	38.68	(80)
News 0.1 0 1.3 0 1.000 0 0.1 0.01	West 0.9x	0.77	x	1.46	x	73.59	x	0.85	x	0.7	=	44.3	(80)
Mest 0.0.7 x 1.4.6 x 46.59 x 0.00 x 0.77 x 1.4.6 x 46.59 x 0.05 x 0.77 s 1.3 x 46.59 x 0.05 x 0.77 s 1.72 x 2.4.49 x 0.63 x 0.77 s 1.72 x 2.4.49 x 0.63 x 0.77 s 1.46 x 2.4.49 x 0.63 x 0.77 s 1.474 (80) West 0.9x 0.77 x 1.33 x 2.4.49 x 0.85 x 0.77 s 1.31 (80) West 0.9x 0.77 x 1.33 x 16.15 x 0.85 x 0.77 s 8.66 (80) Northwest 0.9x 0.77 x 5.76 x 11.28 x 0.63 x 0.77 s 6.76 <	West 0.9x	0.77	x	1.3	x	73.59	x	0.85	x	0.7	=	39.45	(80)
Nest 0.87 0.77 x 1.3 x 46.59 x 0.83 x 0.77 = 24.44 (60) West 0.9x 0.77 x 1.72 x 24.49 x 0.63 x 0.77 = 12.87 (60) West 0.9x 0.77 x 1.146 x 24.49 x 0.85 x 0.77 = 14.74 (60) West 0.9x 0.77 x 1.3 x 24.49 x 0.85 x 0.77 = 13.13 (60) West 0.9x 0.77 x 1.46 x 16.15 x 0.85 x 0.77 = 8.49 (60) Northwest 0.9x 0.77 x 1.31 x 11.28 0.63 x 0.77 = 4.92 (61) Northwest 0.9x 0.77 x 5.76 x 22.97 x<	West 0.9x	0.77	x	1.72	x	45.59	x	0.63	x	0.7	=	23.96	(80)
West 0.8x 0.77 x 1.72 x 24.49 x 0.85 x 0.77 = 14.74 (80) West 0.9x 0.77 x 1.46 x 24.49 x 0.85 x 0.77 = 14.74 (80) West 0.9x 0.77 x 1.3 x 24.49 x 0.85 x 0.77 = 14.74 (80) West 0.9x 0.77 x 1.72 x 16.15 x 0.85 x 0.77 = 8.49 (80) West 0.9x 0.77 x 1.3 x 16.15 x 0.85 x 0.77 = 8.66 (80) Northwest 0.9x 0.77 x 5.76 x 11.28 0.63 x 0.77 = 44.23 (81) Northwest 0.9x 0.77 x 5.76 x 22.97 x </td <td>West 0.9x</td> <td>0.77</td> <td>x</td> <td>1.46</td> <td>x</td> <td>45.59</td> <td>x</td> <td>0.85</td> <td>x</td> <td>0.7</td> <td>=</td> <td>27.45</td> <td>(80)</td>	West 0.9x	0.77	x	1.46	x	45.59	x	0.85	x	0.7	=	27.45	(80)
West 0.9 0.77 × 1.12 × 2.4.3 × 0.03 × 0.77 × 1.13 × 2.4.49 × 0.85 × 0.77 = 1.13 (80) West 0.9 0.77 × 1.72 × 16.15 × 0.63 × 0.77 = 14.74 (80) West 0.9 0.77 × 1.72 × 16.15 × 0.63 × 0.77 = 13.13 (80) West 0.9 0.77 × 1.3 × 16.15 × 0.85 × 0.77 = 19.86 (81) Northwest 0.9 0.77 × 5.76 × 11.28 × 0.63 × 0.77 = 4.52 (81) Northwest 0.9 0.77 × 5.76 × 22.97 × 0.63 × 0.77 = 4.52 (81) Northwe	West 0.9x	0.77	x	1.3	x	45.59	x	0.85	x	0.7	=	24.44	(80)
West 0.3x 0.77 × 1.3 × 24.49 × 0.65 × 0.77 = 1.3.1 3 (80) West 0.3x 0.77 × 1.72 × 16.15 × 0.63 × 0.77 = 8.49 (80) West 0.9x 0.77 × 1.46 × 16.15 × 0.63 × 0.77 = 8.66 (60) Northwest 0.9x 0.77 × 5.76 × 11.28 × 0.63 × 0.77 = 4.52 (61) Northwest 0.9x 0.77 × 5.76 × 22.97 × 0.63 × 0.77 = 40.43 (61) Northwest 0.9x 0.77 × 5.76 × 41.38 × 0.63 × 0.77 = 16.57 (61) Northwest 0.9x 0.77 × 5.76 × 67.96 × 0.63 <td< td=""><td>West 0.9x</td><td>0.77</td><td>x</td><td>1.72</td><td>x</td><td>24.49</td><td>x</td><td>0.63</td><td>x</td><td>0.7</td><td>=</td><td>12.87</td><td>(80)</td></td<>	West 0.9x	0.77	x	1.72	x	24.49	x	0.63	x	0.7	=	12.87	(80)
West 0.9x 0.77 x 1.72 x 16.15 x 0.63 x 0.77 = 8.49 (60) West 0.9x 0.77 x 1.46 x 16.15 x 0.63 x 0.77 = 8.49 (60) West 0.9x 0.77 x 1.3 x 16.15 x 0.63 x 0.77 = 8.49 (60) Northwest_0.9x 0.77 x 5.76 x 11.28 x 0.63 x 0.77 = 4.52 (61) Northwest_0.9x 0.77 x 5.76 x 22.97 x 0.63 x 0.77 = 40.43 (61) Northwest_0.9x 0.77 x 5.76 x 22.97 x 0.63 x 0.77 = 72.84 (61) Northwest_0.9x 0.77 x 5.76 x 67.96 x 0.63 x<	West 0.9x	0.77	x	1.46	x	24.49	x	0.85	x	0.7	=	14.74	(80)
West 0.9x 0.77 x 1.46 x 16.15 x 0.85 x 0.77 = 9.72 (60) West 0.9x 0.77 x 1.3 x 16.15 x 0.85 x 0.77 = 9.72 (60) Northwest 0.9x 0.77 x 1.3 x 16.15 x 0.85 x 0.77 = 9.72 (60) Northwest 0.9x 0.77 x 5.76 x 1128 x 0.63 x 0.77 = 4.643 (61) Northwest 0.9x 0.77 x 5.76 x 22.97 x 0.63 x 0.77 = 9.19 (81) Northwest 0.9x 0.77 x 5.76 x 41.38 x 0.63 x 0.77 = 119.62 (81) Northwest 0.9x 0.77 x 5.76 91.35	West 0.9x	0.77	x	1.3	x	24.49	x	0.85	x	0.7	=	13.13	(80)
West 0.9x 0.77 x 1.3 x 16.15 x 0.85 x 0.77 = 8.66 (80) Northwest0.9x 0.77 x 5.76 x 11.28 x 0.63 x 0.77 = 19.86 (81) Northwest0.9x 0.77 x 1.31 x 11.28 x 0.63 x 0.77 = 4.52 (81) Northwest0.9x 0.77 x 5.76 x 22.97 x 0.63 x 0.77 = 40.43 (81) Northwest0.9x 0.77 x 5.76 x 41.38 x 0.63 x 0.77 = 19.19 (81) Northwest0.9x 0.77 x 5.76 x 41.38 x 0.63 x 0.77 = 119.62 (81) Northwest0.9x 0.77 x 5.76 x 91.35 x 0.63 x 0.77	West 0.9x	0.77	x	1.72	x	16.15	x	0.63	x	0.7	=	8.49	(80)
Northwest $0.9x$ 0.77 x 1.3 x 11.28 x 0.63 x 0.7 $=$ 19.86 (61) Northwest $0.9x$ 0.77 x 1.31 x 11.28 x 0.63 x 0.7 $=$ 4.52 (61) Northwest $0.9x$ 0.77 x 5.76 x 22.97 x 0.63 x 0.7 $=$ 40.43 (61) Northwest $0.9x$ 0.77 x 5.76 x 22.97 x 0.63 x 0.7 $=$ 40.43 (61) Northwest $0.9x$ 0.77 x 5.76 x 22.97 x 0.63 x 0.7 $=$ 9.19 (61) Northwest $0.9x$ 0.77 x 5.76 x 41.38 x 0.63 x 0.7 $=$ 72.84 (61) Northwest $0.9x$ 0.77 x 5.76 x 41.38 x 0.63 x 0.7 $=$ 119.62 (61) Northwest $0.9x$ 0.77 x 5.76 x 67.96 x 0.63 x 0.7 $=$ 27.21 (61) Northwest $0.9x$ 0.77 x 5.76 x 91.35 x 0.63 x 0.7 $=$ 27.21 (61) Northwest $0.9x$ 0.77 x 5.76 x 97.38 x 0.63 x 0.7 $=$ 36.57 (61) Northwest $0.9x$ 0.77	West 0.9x	0.77	x	1.46	x	16.15	x	0.85	x	0.7	=	9.72	(80)
Northwest $0.9x$ 0.77x1.31x11.28x0.63x0.77=4.52(81)Northwest $0.9x$ 0.77x5.76x22.97x0.63x0.77=40.43(81)Northwest $0.9x$ 0.77x1.31x22.97x0.63x0.77=9.19(81)Northwest $0.9x$ 0.77x5.76x41.38x0.63x0.77=72.84(81)Northwest $0.9x$ 0.77x5.76x41.38x0.63x0.77=16.57(81)Northwest $0.9x$ 0.77x5.76x67.96x0.63x0.77=119.62(81)Northwest $0.9x$ 0.77x5.76x67.96x0.63x0.77=119.62(81)Northwest $0.9x$ 0.77x5.76x67.96x0.63x0.77=12.62(81)Northwest $0.9x$ 0.77x5.76x91.35x0.63x0.77=16.67(81)Northwest $0.9x$ 0.77x5.76x97.38x0.63x0.77=14.03(81)Northwest $0.9x$ 0.77x5.76x91.11x0.63x0.77=16.37(81)Northwest $0.9x$ 0.77x5.76x91.11<	West 0.9x	0.77	x	1.3	x	16.15	x	0.85	x	0.7	=	8.66	(80)
Northwest 0.9x 0.77 x 5.76 x 22.97 x 0.63 x 0.7 = 40.43 (81) Northwest 0.9x 0.77 x 1.31 x 22.97 x 0.63 x 0.7 = 9.19 (81) Northwest 0.9x 0.77 x 5.76 x 41.38 x 0.63 x 0.7 = 72.84 (81) Northwest 0.9x 0.77 x 1.31 x 41.38 x 0.63 x 0.7 = 16.57 (81) Northwest 0.9x 0.77 x 5.76 x 67.96 x 0.63 x 0.7 = 119.62 (81) Northwest 0.9x 0.77 x 5.76 x 67.96 x 0.63 x 0.7 = 27.21 (81) Northwest 0.9x 0.77 x 5.76 x 91.35 0.63 x 0.7 = <td< td=""><td>Northwest 0.9x</td><td>0.77</td><td>x</td><td>5.76</td><td>x</td><td>11.28</td><td>x</td><td>0.63</td><td>x</td><td>0.7</td><td>=</td><td>19.86</td><td>(81)</td></td<>	Northwest 0.9x	0.77	x	5.76	x	11.28	x	0.63	x	0.7	=	19.86	(81)
Northwest 0.9x 0.77 x 1.31 x 22.97 x 0.63 x 0.7 = 9.19 (81) Northwest 0.9x 0.77 x 5.76 x 41.38 x 0.63 x 0.7 = 9.19 (81) Northwest 0.9x 0.77 x 5.76 x 41.38 x 0.63 x 0.7 = 72.84 (81) Northwest 0.9x 0.77 x 5.76 x 67.96 x 0.63 x 0.7 = 119.62 (81) Northwest 0.9x 0.77 x 5.76 x 91.35 x 0.63 x 0.7 = 27.21 (81) Northwest 0.9x 0.77 x 5.76 x 91.35 x 0.63 x 0.7 = 36.657 (81) Northwest 0.9x 0.77 x 5.76 x 97.38 x 0.63 x 0.7 <td< td=""><td>Northwest 0.9x</td><td>0.77</td><td>x</td><td>1.31</td><td>x</td><td>11.28</td><td>x</td><td>0.63</td><td>x</td><td>0.7</td><td>=</td><td>4.52</td><td>(81)</td></td<>	Northwest 0.9x	0.77	x	1.31	x	11.28	x	0.63	x	0.7	=	4.52	(81)
Northwest 0.9x 0.77 x 5.76 x 41.38 x 0.63 x 0.77 = 72.84 (81) Northwest 0.9x 0.77 x 1.31 x 41.38 x 0.63 x 0.7 = 72.84 (81) Northwest 0.9x 0.77 x 1.31 x 41.38 x 0.63 x 0.7 = 119.62 (81) Northwest 0.9x 0.77 x 5.76 x 67.96 x 0.63 x 0.7 = 119.62 (81) Northwest 0.9x 0.77 x 5.76 x 91.35 x 0.63 x 0.7 = 160.8 (81) Northwest 0.9x 0.77 x 5.76 x 97.38 0.63 x 0.7 = 160.37 (81) Northwest 0.9x 0.77 x 5.76 x 97.38 0.63 x 0.7 = 36.57	Northwest 0.9x	0.77	x	5.76	x	22.97	x	0.63	x	0.7	=	40.43	(81)
Northwest $0.9x$ 0.77 x 1.31 x 41.38 x 0.63 x 0.7 = 16.57 (81) Northwest $0.9x$ 0.77 x 5.76 x 67.96 x 0.63 x 0.7 = 119.62 (81) Northwest $0.9x$ 0.77 x 1.31 x 67.96 x 0.63 x 0.7 = 27.21 (81) Northwest $0.9x$ 0.77 x 5.76 x 91.35 x 0.63 x 0.7 = 16.57 (81) Northwest $0.9x$ 0.77 x 5.76 x 91.35 x 0.63 x 0.7 = 16.657 (81) Northwest $0.9x$ 0.77 x 1.31 x 91.35 x 0.63 x 0.7 = 171.43 (81) Northwest $0.9x$ 0.77 x 5.76 x 97.38 x 0.63 x 0.7 = 160.37 (81) Northwest $0.9x$ 0.77 x 5.76 x 91.1 x 0.63 x 0.7 = 160.37 (81) Northwest $0.9x$ 0.77 x 5.76 x 91.1 x 0.63 x 0.7 = 160.37 (81) Northwest $0.9x$ 0.77 x 5.76 x 72.63 x 0.63 x 0.7 = 127.85 (81) Northwest $0.9x$ 0.77 x 5.76 x 50.42 x 0.63 x <t< td=""><td>Northwest 0.9x</td><td>0.77</td><td>x</td><td>1.31</td><td>x</td><td>22.97</td><td>x</td><td>0.63</td><td>x</td><td>0.7</td><td>=</td><td>9.19</td><td>(81)</td></t<>	Northwest 0.9x	0.77	x	1.31	x	22.97	x	0.63	x	0.7	=	9.19	(81)
Northwest $0.9x$ 0.77 x 5.76 x 67.96 x 0.63 x 0.77 = 119.62 (81) Northwest $0.9x$ 0.77 x 1.31 x 67.96 x 0.63 x 0.7 = 27.21 (81) Northwest $0.9x$ 0.77 x 5.76 x 91.35 x 0.63 x 0.7 = 27.21 (81) Northwest $0.9x$ 0.77 x 5.76 x 91.35 x 0.63 x 0.7 = 36.57 (81) Northwest $0.9x$ 0.77 x 5.76 x 97.38 x 0.63 x 0.7 = 171.43 (81) Northwest $0.9x$ 0.77 x 5.76 x 97.38 x 0.63 x 0.7 = 160.37 (81) Northwest $0.9x$ 0.77 x 5.76 x 91.1 x 0.63 x 0.7 = 160.37 (81) Northwest $0.9x$ 0.77 x 5.76 x 72.63 x 0.63 x 0.7 = 127.85 (81) Northwest $0.9x$ 0.77 x 5.76 x 72.63 x 0.63 x 0.7 = 127.85 (81) Northwest $0.9x$ 0.77 x 5.76 x 50.42 x 0.63 x 0.7 = 29.08 (81) Northwest $0.9x$ 0.77 x 5.76 x 50.42 x 0.63 x<	Northwest 0.9x	0.77	x	5.76	x	41.38	x	0.63	x	0.7	=	72.84	(81)
Northwest $0.9x$ 0.77 x 1.31 x 67.96 x 0.63 x 0.7 $=$ 27.21 (81) Northwest $0.9x$ 0.77 x 5.76 x 91.35 x 0.63 x 0.7 $=$ 160.8 (81) Northwest $0.9x$ 0.77 x 1.31 x 91.35 x 0.63 x 0.7 $=$ 160.8 (81) Northwest $0.9x$ 0.77 x 1.31 x 91.35 x 0.63 x 0.7 $=$ 171.43 (81) Northwest $0.9x$ 0.77 x 1.31 x 97.38 x 0.63 x 0.7 $=$ 38.99 (81) Northwest $0.9x$ 0.77 x 1.31 x 97.38 x 0.63 x 0.7 $=$ 38.99 (81) Northwest $0.9x$ 0.77 x 5.76 x 91.1 x 0.63 x 0.7 $=$ 160.37 (81) Northwest $0.9x$ 0.77 x 5.76 x 72.63 x 0.63 x 0.7 $=$ 29.08 (81) Northwest $0.9x$ 0.77 x 5.76 x 50.42 x 0.63 x 0.7 $=$ 29.08 (81) Northwest $0.9x$ 0.77 x 5.76 x 28.07 x 0.63 x 0.7 $=$ 29.08 (81) Northwest $0.9x$ $0.$	Northwest 0.9x	0.77	x	1.31	x	41.38	x	0.63	x	0.7	=	16.57	(81)
Northwest $0.9x$ 0.77 x 5.76 x 91.35 x 0.63 x 0.7 = 160.8 (81)Northwest $0.9x$ 0.77 x 1.31 x 91.35 x 0.63 x 0.7 = 36.57 (81)Northwest $0.9x$ 0.77 x 5.76 x 97.38 x 0.63 x 0.7 = 171.43 (81)Northwest $0.9x$ 0.77 x 5.76 x 97.38 x 0.63 x 0.7 = 180.99 (81)Northwest $0.9x$ 0.77 x 5.76 x 91.1 x 0.63 x 0.7 = 160.37 (81)Northwest $0.9x$ 0.77 x 1.31 x 91.1 x 0.63 x 0.7 = 127.85 (81)Northwest $0.9x$ 0.77 x 5.76 x 72.63 x 0.63 x 0.7 = 127.85 (81)Northwest $0.9x$ 0.77 x 5.76 x 72.63 x 0.63 x 0.7 = 29.08 (81)Northwest $0.9x$ 0.77 x 5.76 x 50.42 x 0.63 x 0.7 = 29.08 (81)Northwest $0.9x$ 0.77 x 5.76 x 50.42 x 0.63 x 0.7 = 49.41 (81)Northwest $0.9x$ 0.77 x 5.76 x 28.07 x 0.63 x 0.7 =	Northwest 0.9x	0.77	x	5.76	x	67.96	x	0.63	x	0.7	=	119.62	(81)
Northwest $0.9x$ 0.77 x 1.31 x 91.35 x 0.63 x 0.7 $=$ 36.57 (81) Northwest $0.9x$ 0.77 x 5.76 x 97.38 x 0.63 x 0.7 $=$ 171.43 (81) Northwest $0.9x$ 0.77 x 1.31 x 97.38 x 0.63 x 0.7 $=$ 171.43 (81) Northwest $0.9x$ 0.77 x 5.76 x 91.1 x 0.63 x 0.7 $=$ 160.37 (81) Northwest $0.9x$ 0.77 x 5.76 x 91.1 x 0.63 x 0.7 $=$ 160.37 (81) Northwest $0.9x$ 0.77 x 5.76 x 72.63 x 0.63 x 0.7 $=$ 127.85 (81) Northwest $0.9x$ 0.77 x 5.76 x 72.63 x 0.63 x 0.7 $=$ 29.08 (81) Northwest $0.9x$ 0.77 x 5.76 x 50.42 x 0.63 x 0.7 $=$ 29.08 (81) Northwest $0.9x$ 0.77 x 1.31 x 50.42 x 0.63 x 0.7 $=$ 29.08 (81) Northwest $0.9x$ 0.77 x 1.31 x 28.07 x 0.63 x 0.7 $=$ 29.41 (81) Northwest $0.9x$	Northwest 0.9x	0.77	x	1.31	x	67.96	x	0.63	x	0.7	=	27.21	(81)
Northwest $0.9x$ 0.77 x 5.76 x 97.38 x 0.63 x 0.7 = 171.43 (81)Northwest $0.9x$ 0.77 x 1.31 x 97.38 x 0.63 x 0.7 = 38.99 (81)Northwest $0.9x$ 0.77 x 5.76 x 91.1 x 0.63 x 0.7 = 160.37 (81)Northwest $0.9x$ 0.77 x 5.76 x 91.1 x 0.63 x 0.7 = 160.37 (81)Northwest $0.9x$ 0.77 x 1.31 x 91.1 x 0.63 x 0.7 = 127.85 (81)Northwest $0.9x$ 0.77 x 5.76 x 72.63 x 0.63 x 0.7 = 127.85 (81)Northwest $0.9x$ 0.77 x 5.76 x 50.42 x 0.63 x 0.7 = 29.08 (81)Northwest $0.9x$ 0.77 x 5.76 x 50.42 x 0.63 x 0.7 = 29.08 (81)Northwest $0.9x$ 0.77 x 1.31 x 50.42 x 0.63 x 0.7 = 20.19 (81)Northwest $0.9x$ 0.77 x 1.31 x 28.07 x 0.63 x 0.7 = 49.41 (81)Northwest $0.9x$ 0.77 x 1.31 x 28.07 x 0.63 x 0.7 =<	Northwest 0.9x	0.77	x	5.76	x	91.35	x	0.63	x	0.7	=	160.8	(81)
Northwest $0.9x$ 0.77 x 1.31 x 97.38 x 0.63 x 0.7 = 38.99 (81)Northwest $0.9x$ 0.77 x 5.76 x 91.1 x 0.63 x 0.7 = 160.37 (81)Northwest $0.9x$ 0.77 x 1.31 x 91.1 x 0.63 x 0.7 = 160.37 (81)Northwest $0.9x$ 0.77 x 1.31 x 91.1 x 0.63 x 0.7 = 36.47 (81)Northwest $0.9x$ 0.77 x 5.76 x 72.63 x 0.63 x 0.7 = 127.85 (81)Northwest $0.9x$ 0.77 x 1.31 x 72.63 x 0.63 x 0.7 = 29.08 (81)Northwest $0.9x$ 0.77 x 5.76 x 50.42 x 0.63 x 0.7 = 29.08 (81)Northwest $0.9x$ 0.77 x 5.76 x 50.42 x 0.63 x 0.7 = 20.19 (81)Northwest $0.9x$ 0.77 x 5.76 x 28.07 x 0.63 x 0.7 = 49.41 (81)Northwest $0.9x$ 0.77 x 1.31 x 28.07 x 0.63 x 0.7 = 49.41 (81)	Northwest 0.9x	0.77	x	1.31	x	91.35	x	0.63	x	0.7	=	36.57	(81)
Northwest $0.9x$ 0.77 x 5.76 x 91.1 x 0.63 x 0.7 = 160.37 (81) Northwest $0.9x$ 0.77 x 1.31 x 91.1 x 0.63 x 0.7 = 36.47 (81) Northwest $0.9x$ 0.77 x 5.76 x 72.63 x 0.63 x 0.7 = 127.85 (81) Northwest $0.9x$ 0.77 x 5.76 x 72.63 x 0.63 x 0.7 = 127.85 (81) Northwest $0.9x$ 0.77 x 1.31 x 72.63 x 0.63 x 0.7 = 29.08 (81) Northwest $0.9x$ 0.77 x 5.76 x 50.42 x 0.63 x 0.7 = 20.19 (81) Northwest $0.9x$ 0.77 x 5.76 x 28.07 x 0.63 x 0.7 = 49.41 (81) Northwest $0.9x$ 0.77 x 1.31 x 28.07 x 0.63 x 0.7 = 49.41 (81) Northwest $0.9x$ 0.77 x 1.31 x 28.07 x 0.63 x 0.7 = 11.24 (81)	Northwest 0.9x	0.77	x	5.76	x	97.38	x	0.63	x	0.7	=	171.43	(81)
Northwest $0.9x$ 0.77 x 1.31 x 91.1 x 0.63 x 0.7 $=$ 36.47 (81) Northwest $0.9x$ 0.77 x 5.76 x 72.63 x 0.63 x 0.7 $=$ 127.85 (81) Northwest $0.9x$ 0.77 x 1.31 x 72.63 x 0.63 x 0.7 $=$ 29.08 (81) Northwest $0.9x$ 0.77 x 5.76 x 50.42 x 0.63 x 0.7 $=$ 29.08 (81) Northwest $0.9x$ 0.77 x 5.76 x 50.42 x 0.63 x 0.7 $=$ 20.19 (81) Northwest $0.9x$ 0.77 x 5.76 x 28.07 x 0.63 x 0.7 $=$ 49.41 (81) Northwest $0.9x$ 0.77 x 1.31 x 28.07 x 0.63 x 0.7 $=$ 49.41 (81) Northwest $0.9x$ 0.77 x 1.31 x 28.07 x 0.63 x 0.7 $=$ 11.24 (81)	Northwest 0.9x	0.77	x	1.31	x	97.38	x	0.63	x	0.7	=	38.99	(81)
Northwest $0.9x$ 0.77 x 5.76 x 72.63 x 0.63 x 0.7 = 127.85 (81)Northwest $0.9x$ 0.77 x 1.31 x 72.63 x 0.63 x 0.7 = 29.08 (81)Northwest $0.9x$ 0.77 x 5.76 x 50.42 x 0.63 x 0.7 = 88.76 (81)Northwest $0.9x$ 0.77 x 5.76 x 50.42 x 0.63 x 0.7 = 20.19 (81)Northwest $0.9x$ 0.77 x 5.76 x 28.07 x 0.63 x 0.7 = 49.41 (81)Northwest $0.9x$ 0.77 x 1.31 x 28.07 x 0.63 x 0.7 = 49.41 (81)Northwest $0.9x$ 0.77 x 1.31 x 28.07 x 0.63 x 0.7 = 11.24 (81)	Northwest 0.9x	0.77	x	5.76	x	91.1	x	0.63	x	0.7	=	160.37	(81)
Northwest $0.9x$ 0.77 x 1.31 x 72.63 x 0.63 x 0.7 = 29.08 (81)Northwest $0.9x$ 0.77 x 5.76 x 50.42 x 0.63 x 0.7 = 88.76 (81)Northwest $0.9x$ 0.77 x 1.31 x 50.42 x 0.63 x 0.7 = 20.19 (81)Northwest $0.9x$ 0.77 x 5.76 x 28.07 x 0.63 x 0.7 = 49.41 (81)Northwest $0.9x$ 0.77 x 1.31 x 28.07 x 0.63 x 0.7 = 49.41 (81)Northwest $0.9x$ 0.77 x 1.31 x 28.07 x 0.63 x 0.7 = 11.24 (81)	Northwest 0.9x	0.77	x	1.31	x	91.1	x	0.63	x	0.7	=	36.47	(81)
Northwest $0.9x$ 0.77 x 5.76 x 50.42 x 0.63 x 0.77 =88.76(81)Northwest $0.9x$ 0.77 x 1.31 x 50.42 x 0.63 x 0.77 = 20.19 (81)Northwest $0.9x$ 0.77 x 5.76 x 28.07 x 0.63 x 0.77 = 49.41 (81)Northwest $0.9x$ 0.77 x 1.31 x 28.07 x 0.63 x 0.77 = 49.41 (81)Northwest $0.9x$ 0.77 x 1.31 x 28.07 x 0.63 x 0.77 = 11.24 (81)	Northwest 0.9x	0.77	x	5.76	x	72.63	x	0.63	x	0.7	=	127.85	(81)
Northwest $0.9x$ 0.77 x 1.31 x 50.42 x 0.63 x 0.7 = 20.19 (81) Northwest $0.9x$ 0.77 x 5.76 x 28.07 x 0.63 x 0.7 = 49.41 (81) Northwest $0.9x$ 0.77 x 1.31 x 28.07 x 0.63 x 0.7 = 49.41 (81)	Northwest 0.9x	0.77	×	1.31	x	72.63	x	0.63	x	0.7	=	29.08	(81)
Northwest $_{0.9x}$ 0.77 x 5.76 x 28.07 x 0.63 x 0.77 = 49.41 (81) Northwest $_{0.9x}$ 0.77 x 1.31 x 28.07 x 0.63 x 0.77 = 11.24 (81)	Northwest 0.9x	0.77	×	5.76	x	50.42	x	0.63	x	0.7	=	88.76	(81)
Northwest $_{0.9x}$ 0.77 x 1.31 x 28.07 x 0.63 x 0.7 = 11.24 (81)	Northwest 0.9x	0.77	×	1.31	x	50.42	x	0.63	x	0.7	=	20.19	(81)
	Northwest 0.9x	0.77	×	5.76	x	28.07	x	0.63	x	0.7	=	49.41	(81)
	L	0.77	×	1.31	x	28.07	x	0.63	x	0.7	=	11.24	(81)
Northwest $0.9x$ 0.77 x 5.76 x 14.2 x 0.63 x 0.7 = 24.99 (81)	Northwest 0.9x	0.77	x	5.76	x	14.2	x	0.63	x	0.7	=	24.99	(81)

Northwest 0.9x	0.77	×	1.31	×	14.2	×	0.63	x	0.7	=	5.68	(81)
Northwest 0.9x	0.77	x	5.76	x	9.21	×	0.63	x	0.7	=	16.22	(81)
Northwest 0.9x	0.77	x	1.31	x	9.21	x	0.63	x	0.7	=	3.69	(81)
Rooflights 0.9x	1	x	23.6	x	26	x	0.63	x	0.7	=	243.54	(82)
Rooflights 0.9x	1	x	4.52	x	26	×	0.63	x	0.7	=	139.93	(82)
Rooflights 0.9x	1	x	23.6	x	54	x	0.63	x	0.7	=	505.81	(82)
Rooflights 0.9x	1	x	4.52	x	54	×	0.63	x	0.7	=	290.63	(82)
Rooflights 0.9x	1	x	23.6	x	96	x	0.63	x	0.7	=	899.22	(82)
Rooflights 0.9x	1	x	4.52	x	96	×	0.63	x	0.7	=	516.67	(82)
Rooflights 0.9x	1	×	23.6	×	150	×	0.63	x	0.7	=	1405.03	(82)
Rooflights 0.9x	1	x	4.52	x	150	x	0.63	x	0.7	=	807.29	(82)
Rooflights 0.9x	1	x	23.6	x	192	x	0.63	x	0.7	=	1798.43	(82)
Rooflights 0.9x	1	x	4.52	x	192	x	0.63	x	0.7	=	1033.34	(82)
Rooflights 0.9x	1	x	23.6	x	200	x	0.63	x	0.7	=	1873.37	(82)
Rooflights 0.9x	1	x	4.52	x	200	×	0.63	x	0.7	=	1076.39	(82)
Rooflights 0.9x	1	x	23.6	x	189	×	0.63	x	0.7	=	1770.33	(82)
Rooflights 0.9x	1	x	4.52	x	189	x	0.63	x	0.7	=	1017.19	(82)
Rooflights 0.9x	1	x	23.6	×	157	×	0.63	x	0.7	=	1470.59	(82)
Rooflights 0.9x	1	x	4.52	x	157	×	0.63	x	0.7	=	844.97	(82)
Rooflights 0.9x	1	x	23.6	x	115	x	0.63	x	0.7	=	1077.19	(82)
Rooflights 0.9x	1	x	4.52	x	115	×	0.63	x	0.7	=	618.93	(82)
Rooflights 0.9x	1	x	23.6	x	66	×	0.63	x	0.7	=	618.21	(82)
Rooflights 0.9x	1	x	4.52	x	66	x	0.63	x	0.7	=	355.21	(82)
Rooflights 0.9x	1	x	23.6	x	33	×	0.63	x	0.7	=	309.11	(82)
Rooflights 0.9x	1	x	4.52	x	33	×	0.63	x	0.7	=	177.6	(82)
Rooflights 0.9x	1	x	23.6	×	21	×	0.63	x	0.7	=	196.7	(82)
Rooflights 0.9x	1	×	4.52	x	21	x	0.63	x	0.7	=	113.02	(82)

Solar ç	jains in	watts, ca	alculated	for eac	h month			(83)m = S	um(74)m .	(82)m				
(83)m=	1244.12	2314.26	3626.59	5170.06	6339.87	6517.19	6191.75	5297.01	4164	2687.41	1527.1	1040.06		(83)
Total g	ains – ir	nternal a	ind solar	(84)m =	= (73)m -	+ (83)m	, watts							
(84)m=	2211.19	3277.26	4554.86	6041.6	7150.54	7273.15	6915	6029.21	4928.04	3508.44	2412.96	1977.66		(84)
7. Me	an inter	nal temp	erature	(heating	season)								
Temp	erature	during h	eating p	eriods ir	n the livir	ng area f	rom Tab	ole 9, Th	1 (°C)				21	(85)
Utilisa	ation fac	tor for g	ains for I	iving are	ea, h1,m	(see Ta	ble 9a)							
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(86)m=	1	1	0.99	0.97	0.91	0.82	0.7	0.77	0.93	0.99	1	1		(86)
Mean	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	in Table	e 9c)					
(87)m=	18.05	18.31	18.79	19.46	20.09	20.58	20.82	20.75	20.3	19.48	18.66	18.04		(87)
Temp	erature	during h	eating p	eriods ir	n rest of	dwelling	from Ta	ble 9, Tl	า2 (°C)		_			
(88)m=	18.96	18.96	18.97	19	19	19.03	19.03	19.03	19.02	19	18.99	18.98		(88)
Utilisa	ation fac	tor for g	ains for I	est of d	welling, l	h2,m (se	e Table	9a)			_			
(89)m=	1	1	0.98	0.95	0.86	0.69	0.46	0.55	0.85	0.98	1	1		(89)

Mean	internal	temper	ature in	the rest	of dwelli	ina T2 (fe	ollow ste	eps 3 to 7	7 in Tabl	e 9c)				
(90)m=	15.22	15.6	16.3	17.28	18.16	18.77	18.98	18.95	18.47	17.33	16.13	15.21		(90)
(-		g area ÷ (4		0.12	(91)
											J (0.12	
Mean	interna	temper	ature (fo	or the wh	ole dwe	lling) = fl	_A × T1	+ (1 – fL	A) × T2		-			
(92)m=	15.55	15.93	16.6	17.54	18.39	18.99	19.2	19.16	18.69	17.58	16.43	15.54		(92)
Apply	adjustn	nent to t	he mear	n interna	l temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	15.4	15.78	16.45	17.39	18.24	18.84	19.05	19.01	18.54	17.43	16.28	15.39		(93)
8. Spa	ace hea	ting requ	uirement	t										
Set Ti	i to the r	nean int	ernal te	mperatu	re obtair	ned at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the ut	ilisation	factor for	or gains	using Ta	able 9a									
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	n:							-			
(94)m=	1	0.99	0.97	0.93	0.83	0.67	0.47	0.55	0.83	0.96	0.99	1		(94)
Usefu	Il gains,	hmGm	, W = (9	4)m x (8	4)m									
(95)m=	2203.98	3246.2	4433.81	5600.77	5945.57	4856.48	3216.82	3286.28	4067.76	3385.01	2396.99	1973.03		(95)
Month	nly avera	age exte	rnal terr	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat I	loss rate	for me	an interr	hal tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]				
(97)m=	16564.45	16156.73	14721.35	12325.02	9450.7	6024.44	3477.09	3702.78	6350.99	9877.11	13371.61	16429.12		(97)
Space	e heatin	a reauire	ement fo	r each n	nonth. k	Wh/mont	h = 0.02	24 x [(97)m – (95)ml x (4 ⁻	1)m	1		
	10684.19		7653.93		2607.82	0	0	0	0		-	10755.33		
. ,				1				Tota	l per year			L	57950.45	(98)
•										() cam(c	· / 1]
Space	e neating	g require	ement in	ı kWh/m²	/year								101.48	(99)
9a. En	ergy req	luiremer	nts – Ind	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
•	e heatir	0												-
Fracti	on of sp	ace hea	at from s	econdar	y/supple	mentary	system						0	(201)
Fracti	on of sp	ace hea	at from n	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Fracti	on of to	tal heati	na from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
			•	ing syste								l	93.3	(206)
	-													- <u> </u>
Efficie	ency of s	seconda	ry/suppl	ementar	y heatin	g system	1, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
Space	e heating	g require	ement (c	calculate	d above)								
	10684.19	8675.87	7653.93	4841.46	2607.82	0	0	0	0	4830.12	7901.73	10755.33		
(211)m	$n = \{[(98)]\}$)m x (20	94)] + (2 ⁻	10)m } x	100 ÷ (2	206)								(211)
· · ·	11451.44		<u>, -</u> , -	5189.13	r È	0	0	0	0	5176.98	8469.16	11527.68		. ,
								Tota	l (kWh/yea				62111.95	(211)
Creat	bootio	a final (a									/10,1012		02111.00	
•		•		y), kWh/										
		0	0	< 100 ÷ (□ 0	i	0	0	0	0	0	0	0		
(215)m=	0	0	0	0	0	0	0		-	-	-			
								TOLA	ii (ittiin yee	ar) =0um(2	215) _{15,1012}	7	0	(215)
	heating							TOLA		ar) –Oum(2	213) _{15,1012}	<u>-</u>	0	(215)
	from wa	ater hea	1	ulated a	1	404.50	407 70						0](215)
Output	from wa 263.39		244.79	ulated a 220.38	bove) 216.65	194.56	187.78	204.77	204.01	228.47	240.41	257.37	79.6	(215)

(217)m=	90.01	89.98	89.93	89.77	89.38	79.6	79.6	79.6	79.6	89.76	89.94	90.02		(217)
		heating,												
· / -	= (64) 292.63	m x 100 258.31) ÷ (217) 272.22	m 245.48	242.39	244.42	235.91	257.25	256.29	254.55	267.29	285.91	1	
									al = Sum(2	19a) ₁₁₂ =			3112.66	(219)
Annua	l totals									k	Wh/year	r	kWh/year	
Space I	heating	fuel use	ed, main	system	1						-		62111.95	
Water h	neating	fuel use	d										3112.66	7
Electric	ity for p	oumps, fa	ans and	electric	keep-ho	t								
centra	l heatin	g pump:										30]	(230c)
boiler	with a fa	an-assis	ted flue									45]	(230e)
				⟨Wh/yea	r			sum	of (230a).	(230g) =			75	(231)
Electric	•			(IIIII) you	•				. ,	(0,				(232)
		0 0											1284.6	(232)
122 0	:02 emi	issions -	- Individ	ual heati	na syste	ems inclu	Jdina mi	cro-CHF	2					
12a. C					goyote									
12a. C						En	ergy /h/year			Emiss kg CO	ion fac 2/kWh	tor	Emissions kg CO2/yea	
		(main s				En kW	ergy				2/kWh	tor =		
Space I	heating		ystem 1)			En kW (211	ergy /h/year			kg CO	2/kWh		kg CO2/ye	ar T
Space I	heating	(main s	ystem 1)			En kW (211 (215	ergy /h/year I) x			kg CO	2/kWh 16 19	=	kg CO2/yes 13416.18	ar](261)
Space I Space I Water h	heating heating neating	(main s	ystem 1) lary)			En kW (211 (215	ergy /h/year I) x 5) x			kg CO 0.2 0.5	2/kWh 16 19	=	kg CO2/yea	ar (261) (263)
Space I Space I Water h Space a	heating heating neating and wat	(main s (seconc ter heati	ystem 1) lary) ng			En kW (211 (215 (215 (264	ergy /h/year) x 5) x 9) x			kg CO 0.2 0.5	2/kWh 16 19 16	=	kg CO2/yea 13416.18 0 672.33	ar (261) (263) (264)
Space I Space I Water h Space a	heating heating neating and wat ity for p	(main s (second ter heati bumps, fa	ystem 1) lary) ng)		En kW (211 (215 (215 (267 t (237	ergy /h/year 1) x 5) x 9) x 1) + (262)			kg CO.	2/kWh 16 19 16 19	-	kg CO2/yea 13416.18 0 672.33 14088.52	ar (261) (263) (264) (265)
Space I Space I Water F Space a Electric	heating heating neating and wat ity for p ity for li	(main s (second ter heati bumps, fa ghting	ystem 1) lary) ng)		En kW (211 (215 (215 (267 t (237	ergy /h/year 1) x 5) x 2) x 1) + (262) 1) x		(264) =	kg CO. 0.2 0.5 0.2	2/kWh 16 19 16 19 19	=	kg CO2/yea 13416.18 0 672.33 14088.52 38.93	ar (261) (263) (264) (265) (267)
Space I Space I Water H Space a Electric Electric Total C	heating heating and wat ity for p ity for li O2, kg/	(main s (second ter heati bumps, fa ghting	ystem 1) lary) ng ans and) electric		En kW (211 (215 (215 (267 t (237	ergy /h/year 1) x 5) x 2) x 1) + (262) 1) x		(264) = sum o	kg CO. 0.2 0.5 0.2	2/kWh 16 19 16 19 19	=	kg CO2/yea 13416.18 0 672.33 14088.52 38.93 666.71	ar (261) (263) (264) (265) (265) (267) (268)
Space I Space I Water H Space a Electric Electric Total C	heating heating and wat ity for p ity for li O2, kg/ ng CO2	(main s (second ter heati oumps, fa ghting year Emissi	ystem 1) lary) ng ans and) electric		En kW (211 (215 (215 (267 t (237	ergy /h/year 1) x 5) x 2) x 1) + (262) 1) x		(264) = sum o	kg CO. 0.2 0.5 0.2 0.5 0.5 0.5 of (265)(2)	2/kWh 16 19 16 19 19	=	kg CO2/yea 13416.18 0 672.33 14088.52 38.93 666.71 14794.15	ar (261) (263) (264) (265) (267) (267) (268) (272)