Pell Frischmann

U O

excellence through innovati

Centre of Research for Rare Diseases in Children (CRRDC)

PREDICTED GROUND MOVEMENT REPORT

 Doc. Ref. No:
 PF-12692-RP-0012

 Revision:
 0

 Issue Date:
 06.02.15

Submitted by Pell Frischmann

REVISION RECORD							
Rev	Description	Date	Originator	Checked	Approved		
0	FIRST ISSUE	06.02.15	AMD	YOG	MN		

This report is to be regarded as confidential to our Client and it is intended for their use only and may not be assigned. Consequently and in accordance with current practice, any liability to any third party in respect of the whole or any part of its contents is hereby expressly excluded. Before the report or any part of it is reproduced or referred to in any document, circular or statement and before its contents or the contents of any part of it are disclosed orally to any third party, our written approval as to the form and context of such a publication or disclosure must be obtained

Prepared for:

Gardiner & Theobald 10 South Crescent London WC1E 7BD

Prepared by:

Pell Frischmann 5 Manchester Square London W1U 3PD

CONTENTS

1.0	INTRODUCTION:	1
2.0	PROPOSED CONSTRUCTION WORKS:	1
3.0	PREDICTED GROUND MOVEMENTS:	2
3.1.	ASSUMPTIONS	3
4.0	RESULTS	4
4.1.	PREDICTED GROUND MOVEMENTS	4
4.2.	RESULTS OF DAMAGE ASSESSMENT	5
5.0	DAMAGE CATEGORY:	6
6.0	SUMMARY:	6

APPENDIX

Appendix 1 – SLS WALLAP Run.

Appendix 2 – Ground Surface Horizontal Movement Predictions calcs (CIRIA C580).

Appendix 3 – Ground Surface Settlement Predictions (Burland et Al (1974)).

Appendix 4 – Classification of visible damage to walls (after Burland et al, 1977, Boscardin and Cording, 1989; and Burland, 2001).

1.0 INTRODUCTION:

This document was prepared by Pell Frischmann in order to:

- Present the predicted ground movement due to proposed ground works at CRRDC (the site) and
- Assess the potential impact of the predicted ground movements to No. 4 Guilford Place building.

For the purposes of this report, the most onerous part of the site has been taken into consideration. The section analysed west of the site, to the back of No. 4 Guildford Place.

This document described the methodology and assumptions for the calculation of the predicted ground movements and a damage assessment for the No. 4 Guilford Place building.

Predicted ground movements presented within this document are based on:

• CIRIA C580, Embedded Retaining Walls – Guidance for Economic Design, and EC7 – Geotechnical Design.

The methodology for the damage assessment for No. 4 Guilford Place bBuilding in this report was based on:

- CIRIA Special Publication 201 Response of buildings to excavation induced ground movements.
- Burland, J.B. and Worth, C.P. (1974). Settlement of buildings and associated damage. Proc. Conference on Settlement of Structures, Cambridge. Pentech Press.

2.0 PROPOSED CONSTRUCTION WORKS:

The redevelopment of the site will entail a double storey deep basement (approx. 8.75m deep), with a proposed sheet pile wall that penetrates at least 2m into the London Clay in order to form a water tight seal. General basement and building information used within this document is presented in Table 1 below:

Item	Description
Basement Storeys	2
Wall type forming the basement	AZ34
Capping Level (mOD)	19.915
Excavation Level (mOD)	11.2
Nearest distance from basement to No. 4 Guilford Place (m)	2.25
Foundation Type and Building Type of No. 4 Guilford Place	Strip footings, Missionary Building.

Table 1: General basement and building information
--

3.0 PREDICTED GROUND MOVEMENTS:

Ground movements behind the retaining wall are assumed to be "greenfield" ground movements and no account has been taken of the stiffening effects of existing underground structures in the vicinity of No.4 Guildford Place and the retaining wall.

A conservative approach has been taken in order to predict the horizontal and vertical ground movements behind the sheet pile wall associated with the excavation in front of the sheet pile wall for the construction of the basement. Hence predicted ground movements at No.4 Guildford Place structure are likely to be conservative.

The CIRIA C580 methodology for predicting horizontal and vertical ground movements is outlined in Figure 1 below. In this approach the deflected horizontal profile of the wall in the vertical plane is rotated into the horizontal plane, and the magnitude of the predicted vertical ground displacements are derived as a proportion of the horizontal wall displacements.

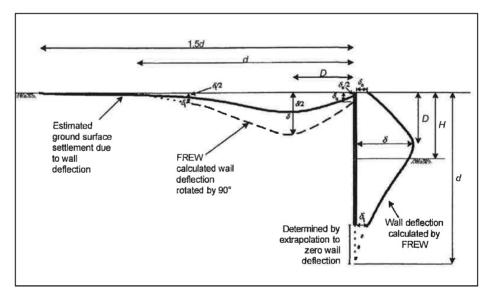


Figure 1: Relationship between analysed lateral (propped) wall deflections and predicted ground surface settlements in stiff soil.

The deflected horizontal profile of the sheet pile wall, constructed using AZ34 sections, was undertaken using WALLAP in accordance with EC7 – Geotechnical Design.

Ground movements due to long-term settlement/heave due to the excavation of the basement have not been included. These movements are expected be small and uniform.

3.1. Assumptions

The stiffness of the existing subsurface structures such as foundations has not been taken into account in the calculation of the predicted ground movements. The following construction sequence has been adopted in order to predict the deflected horizontal profile of the sheet pile wall:

- 1. Apply Surcharge 32kN/m².
- 2. Apply Surcharge 52.6kN/m².
- 3. Excavate berm for piling platform. Piling platform level 19.57mOD. Toe of Berm 18.57mOD.
- 4. Excavate to 18.91mOD.
- 5. Install temporary prop at 19.53mOD.
- 6. Excavate to 15.37mOD.
- 7. Install temporary prop at 16mOD.
- 8. Excavate to 11.2mOD.
- 9. Install B2 Slab.
- 10. Install B1 Slab.
- 11. Remove temporary prop at 16mOD.
- 12. Remove temporary prop at 19.53mOD.
- 13. Install Ground Floor Slab.

The following assumptions were made in the WALLAP analysis:

- Near footing of No. 4 Guildford Place is approx. 2.25m from the sheet pile wall.
- Foundation level of No. 4 Guildford Place is approx. 19.73mOD.
- Surcharge load due to the 2 story part of No. 4 Guildford Place is 32kN/m².
- Surcharge load due to the 4 story part of No. 4 Guildford Place is 52.6kN/m².
- The surcharge from No. 4 Guildford Place will be directly taken by the sheet pile wall and not the existing wall between the sheet pile wall and No. 4 Guildford Place.
- Prop size of CHS 244.5 x 12.5

4.0 RESULTS

4.1. Predicted Ground Movements

Horizontal wall movements from WALLAP indicates that the maximum wall movement is 11mm. Results from WALLAP are included in Appendix 1.

In order to calculate the predicted vertical ground movement behind the retaining wall the CIRIA C580 approach outlined in Section 3 and summarised in Figure 1 was applied. Hence maximum predicted vertical ground movement at No.4 Guildford Place is 5.5mm. This location is a point of inflection and it is considered the worst case of horizontal compressive strain in the context of damage assessment. Figure 2 shows a typical situation of a building adjacent to an excavation and the inflection point.

In order to predict the horizontal ground movement behind the retaining wall, empirical relationships presented in CIRIA C580 relating the horizontal ground movements to the excavation depth were used. These relationships (2.11(a) in CIRIA C580) are reproduced in Appendix 2. A moderate propping stiffness for predicting horizontal movements was assumed. Hence maximum predicted horizontal ground movements are 22mm, 17mm and 9mm at the near, mid and far footing respectively of No.4 Guildford Place from the retaining wall.

A typical situation that may exist is shown in Figure 2 below.

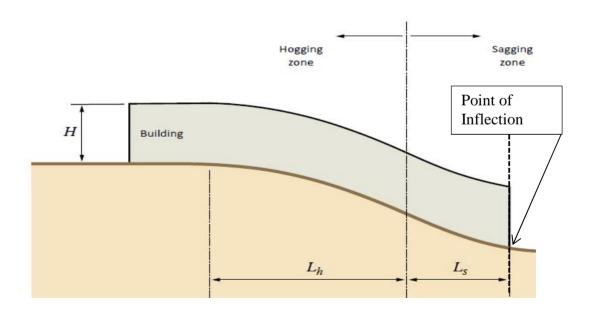


Figure 2: General case of a building affected by an excavation nearby

A summary of the predicted ground movements at No.4 Guildford Place is presented in Table 2 below:

Building	Analysis Location under Building	Distance from Retaining wall (m)	Maximum Vertical Movement (mm)	Maximum Vertical Movement measured at under centre point of the footing (mm)	Maximum Horizontal Movement (mm)
No.4 Guildford	Nearest Foundation to Retaining wall	6	5.5	5	22
	Mid Foundation to Retaining wall	12	3.2		17
	Farest Foundation to Retaining wall	21	1	1.5	9

Table 2: Summary of predicted ground movements

In this case the vertical differential movement between hogging zone of the building and the sagging zone of the building are 0.5mm and 0.25mm respectively. These have been used to calculate the Horizontal strains, which have been used to calculate the total bending strain and the maximum tensile strain due to diagonal distortion.

4.2. Results of damage assessment

It should be noted that to ensure the soil-structure interaction is accounted for, it is important to take into consideration the building stiffness. As a result the strains due to ground settlement, considering the building stiffness were calculated using the approach as outlined by Burland, et Al (1974). (See Appendix 3 for results).

The following assumptions were made using the approach as outlined by Burland, et Al (1974):

- The point of inflection is taken as the max. displacement of 5.5mm.
- The zone between sagging and hogging is established as the point of where the ground is neither sagging nor hogging. In this case it is approx. 1.75m from location where the building splits from 2 floors to 4 floors. There 4 floors are in the hogging zone and 2 floors are in the sagging zone.

The result of the damage assessment undertaken for No.4 Guildford Place is considered to be conservative due to the assumptions described in section 3.1. A summary of the results are presented in Table 3:

Table 3: Results from Damage Assessment

		No. 4 Guilford Place		
Differential Vertic	cal Ground Movement (mm)	0.25	0.5	
Diffential Horizon	tal Ground Movement (mm)	5	8	
Hogging/sagging		Sagging Zone	Hogging Zone	
Strain	Horizontal	0.000833	0.000889	
Component (%)	Bending	0.0000511	0.00003096	
	Diagonal	0.0000332	0.00005366	
Total/Maximum	Bending	0.0007819	0.0009198	
Strain (%)	Tensile	0.000702	0.00089	
Damage Category	1	0	0	

5.0 DAMAGE CATEGORY:

From the predicted maximum tensile stress of No. 4 Guildford Place in the sagging and hogging zones it is possible to categorise the potential damage caused to the structure. This has been based on visible damage criteria of Burland *et al* (1977) as modified by Boscardin and Cording (1989) and Burland (2001) and is the criteria incorporated into the CIRIA C580 methodology, refer to Appendix 4.

From the predicted maximum tensile stress in the sagging and hogging zones of No. 4 Guildford Place indicates the damage Category 0 assessment characterised by 'Negligible visible damage' with crack widths of < 0.1mm.

6.0 SUMMARY:

The calculations presented herein demonstrate that No. 4 Guildford Place will be not be affected by horizontal or vertical ground movement associated excavation in front of the sheet pile wall for the construction of the basement structure at CRRDC.

From the assessment carried out, the potential building damage falls just within the CIRIA C580 Category 0 Damage Classification, with visible damage likely to be negligible.

It should be noted that the analysis presented here can be considered conservative. In order to obtain more accurate predictions of likely ground movements and potential building damage to adjacent structures, a more rigorous analysis such as a finite element study would be required. However based on the findings within this report this would not be considered necessary. Appendix 1

PELL FRISCHMANN CONSULTANTS LTD	Sheet No.
Program: WALLAP Version 6.05 Revision A43.B57.R48	Job No. A12692
Licensed from GEOSOLVE	Made by : AMD
Data filename/Run ID: Sheet Pile Wall, GOSH_SLS	
Great Ormand Street Hospital	Date: 4-02-2015
Sheet Pile Wall - Section 1	Checked :

Units: kN,m

INPUT DATA

SOIL PRO	FILE		
Stratum	Elevation of	Soil	types
no.	top of stratum	Active side	Passive side
1	19.73	1 Made Ground	1 Made Ground
2	16.50	2 WLC	2 WLC
3	14.50	3 London Clay (UD)	3 London Clay (UD)
4	2.80	5 Lambeth Group (UD)	5 Lambeth Group (UD)

SOIL PROPERTIES

		Bulk	Young's	At rest	Consol	Active	Passive	
	Soil type	density	Modulus	coeff.	state.	limit	limit	Cohesion
No.	Description	kN/m3	Eh,kN/m2	Ko	NC/OC	Ka	Kp	kN/m2
(Datum elev.)		(dEh/dy)	(dKo/dy)	(Nu)	(Kac)	(Kpc)	(dc/dy)
1	Made Ground	18.00	10000	0.577	OC	0.353	3.413	
					(0.200)	(0.000)	(0.000)	
2	WLC	20.00	43000	1.000	OC	1.000	1.000	43.00u
	(16.50)		(6900)		(0.490)	(2.389)	(2.390)	(6.900)
3	London Cl	20.00	56000	1.000	OC	1.000	1.000	56.00u
	(14.50)		(6900)		(0.490)	(2.389)	(2.390)	(6.900)
4	London Cl	20.00	44800	1.000	OC	0.383	3.044	4.000d
	(14.50)		(5520)		(0.200)	(1.452)	(4.816)	
5	Lambeth G	21.00	170000	1.000	OC	1.000	1.000	170.0u
	(2.80)		(4900)		(0.490)	(2.000)	(2.000)	(4.900)
6	Lambeth G	21.00	136000	1.000	OC	0.417	2.726	10.00d
	(2.80)		(3920)		(0.200)	(1.520)	(4.496)	

Additional soil parameters associated with Ka and Kp

		param	eters for	Ka	parameters for Kp		
		Soil	Wall	Back-	Soil	Wall	Back-
	Soil type	friction	adhesion	fill	friction	adhesion	fill
No. Desc	cription	angle	coeff.	angle	angle	coeff.	angle
1 Made	e Ground	25.00	0.642	0.00	25.00	0.642	0.00
2 WLC		0.00	0.500	0.00	0.00	0.500	0.00
3 Long	don Clay (UD)	0.00	0.500	0.00	0.00	0.500	0.00
4 Long	don Clay (D)	23.00	0.646	0.00	23.00	0.646	0.00
5 Lamb	beth Group (UD)	0.00	0.000	0.00	0.00	0.000	0.00
6 Lamb	beth Group (D)	21.00	0.650	0.00	21.00	0.650	0.00

GROUND WATER CONDITIONS

Density of water = 10.00 kN/m3

	Active side	Passive side
Initial water table elevation	18.91	18.91

Automatic water pressure balancing at toe of wall : No

Water	Active side							
press. profile no.	Point no.	Elev.	Piezo elev.	Water press.	Point no.	Elev.	Piezo elev.	Water press.
1	1	m 18.91	m 18.91	kN/m2 0.0	1	m 14.93	m 14.93	kN/m2 0.0 MC+WC
2	1	18.91	18.91	0.0	1	11.20	11.20	0.0 MC+WC

WALL PROPERTIES

Type of structure = Fully Embedded Wall Elevation of toe of wall = 3.00 Maximum finite element length = 1.00 m Youngs modulus of wall E = 2.1000E+08 kN/m2 Moment of inertia of wall I = 7.8700E-04 m4/m run (Arcelor AZ34) E.I = 165270 kN.m2/m run Yield Moment of wall = Not defined

STRUTS and ANCHORS

nsion
owed
Io
Io
Io
Io

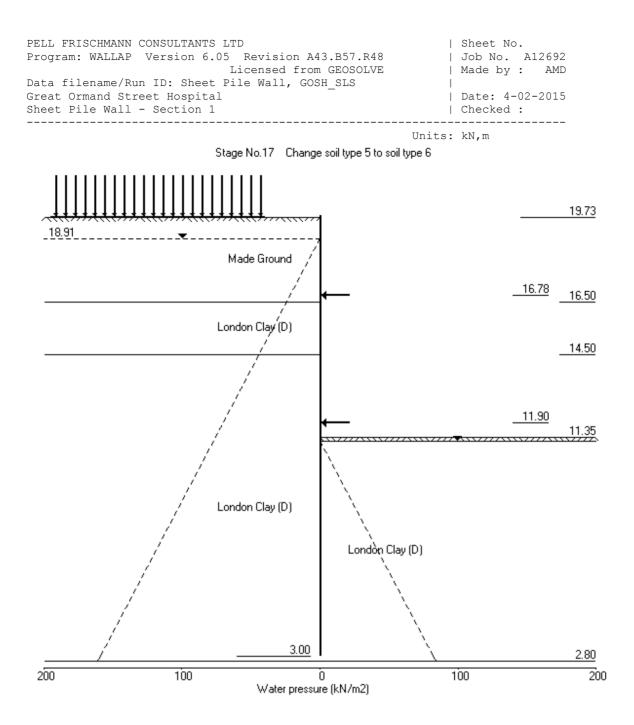
SURCHARGE LOADS

Surch		Distance	Length	Width	Surch	arge	Equiv.	Partial
-arge		from	parallel	perpend.	kN/	m2	soil	factor/
no.	Elev.	wall	to wall	to wall	Near edge	Far edge	type	Category
1	19.73	2.25(A)	20.00	8.00	32.00	=	N/A	1.00 P/U
2	19.73	10.25(A)	20.00	10.70	52.60	=	N/A	1.00 P/U

Note: A = Active side, P = Passive side Limit State Categories P/U = Permanent Unfavourable P/F = Permanent Favourable Var = Variable (unfavourable)

CONSTRUCTION STAGES

Construction	Stage description
stage no.	
1	Apply surcharge no.1 at elevation 19.73
2	Excavate to elevation 19.57 on PASSIVE side
	Toe of berm at elevation 18.57
	Width of top of berm = 8.90
	Width of toe of berm = 11.84
3	Apply water pressure profile no.1 (Mod. Conserv.)
4	Excavate to elevation 18.91 on PASSIVE side
5	Install strut or anchor no.1 at elevation 19.53
6	Excavate to elevation 15.37 on PASSIVE side
7	Install strut or anchor no.2 at elevation 16.00
8	Apply water pressure profile no.2 (Mod. Conserv.)
9	Excavate to elevation 11.20 on PASSIVE side
10	Fill to elevation 11.35 on PASSIVE side with soil type 1
11	Install strut or anchor no.4 at elevation 11.90
12	Install strut or anchor no.3 at elevation 16.78
13	Remove strut or anchor no.2 at elevation 16.00
14	Remove strut or anchor no.1 at elevation 19.53
15	Change properties of soil type 3 to soil type 4
	Ko pressures will not be reset
16	Change properties of soil type 2 to soil type 4
	Ko pressures will not be reset
17	Change properties of soil type 5 to soil type 6
	Ko pressures will not be reset


FACTORS OF SAFETY and ANALYSIS OPTIONS

Limit State options: Serviceability Limit State All loads and soil strengths are unfactored Stability analysis: Method of analysis - Strength Factor method Factor on soil strength for calculating wall depth = 1.00 Parameters for undrained strata: = 10.00 kN/m3 Minimum equivalent fluid density Maximum depth of water filled tension crack = 0.00 m Bending moment and displacement calculation: Method - Subgrade reaction model using Influence Coefficients Open Tension Crack analysis? - No Non-linear Modulus Parameter (L) = 0 m Boundary conditions: Length of wall (normal to plane of analysis) = 80.00 m Width of excavation on active side of wall = 20.00 mWidth of excavation on passive side of wall = 20.00 mDistance to rigid boundary on active side = 20.00 m Distance to rigid boundary on passive side = 20.00 m

OUTPUT OPTIONS

Stage Stage description	Outpu	t options	
no.	Displacement	Active,	Graph.
	Bending mom.	Passive	output
	Shear force	pressures	
1 Apply surcharge no.1 at elev. 19.73	No	No	No
2 Excav. to elev. 19.57 on PASSIVE side	No	No	No
3 Apply water pressure profile no.1	No	No	No
4 Excav. to elev. 18.91 on PASSIVE side	No	No	No
5 Install strut no.1 at elev. 19.53	No	No	No
6 Excav. to elev. 15.37 on PASSIVE side	No	No	No
7 Install strut no.2 at elev. 16.00	No	No	No
8 Apply water pressure profile no.2	No	No	No
9 Excav. to elev. 11.20 on PASSIVE side	No	No	No
10 Fill to elev. 11.35 on PASSIVE side	No	No	No
11 Install strut no.4 at elev. 11.90	No	No	No
12 Install strut no.3 at elev. 16.78	No	No	No
13 Remove strut no.2 at elev. 16.00	No	No	No
14 Remove strut no.1 at elev. 19.53	No	No	No
15 Change soil type 3 to soil type 4	No	No	No
16 Change soil type 2 to soil type 4	No	No	No
17 Change soil type 5 to soil type 6	No	No	No
* Summary output	Yes	-	Yes

Program WALLAP - Copyright (C) 2012 by DL Borin, distributed by GEOSOLVE 69 Rodenhurst Road, London SW4, UK. Tel: +44 20 8674 7251

PELL FRISCHMANN CONSULTANTS LTD	Sheet No.
Program: WALLAP Version 6.05 Revision A43.B57.R48	Job No. A12692
Licensed from GEOSOLVE	Made by : AMD
Data filename/Run ID: Sheet Pile Wall, GOSH_SLS	
Great Ormand Street Hospital	Date: 4-02-2015
Sheet Pile Wall - Section 1	Checked :

Units: kN,m

Summary of results

LIMIT STATE PARAMETERS

Limit State: Serviceability Limit State All loads and soil strengths are unfactored

STABILITY ANALYSIS of Fully Embedded Wall according to Strength Factor method Factor of safety on soil strength

				Fos for toe Toe elev. for elev. = 3.00 Fos = 1.000
Stage	G.	L	Strut	Factor Moment Toe Wall
No.	Act.	Pass.	Elev.	of equilib. elev. Penetr
				Safety at elevation
1	19.73	19.73	Cant.	Conditions not suitable for FoS calc.
2	19.73	19.57	Cant.	Conditions not suitable for FoS calc.
3	19.73	19.57	Cant.	Conditions not suitable for FoS calc.
4	19.73	18.91	Cant.	9.475 4.51 18.40 0.51
5	19.73	18.91		No analysis at this stage
6	19.73	15.37	19.53	5.092 n/a 14.69 0.68
7	19.73	15.37		No analysis at this stage
All	remaini	ing stages	have m	nore than one strut - FoS calculation n/a

PELL FRISCHMANN CONSULTANTS LTD	Sheet No.
Program: WALLAP Version 6.05 Revision A43.B57.R48	Job No. A12692
Licensed from GEOSOLVE	Made by : AMD
Data filename/Run ID: Sheet Pile Wall, GOSH SLS	
Great Ormand Street Hospital	Date: 4-02-2015
Sheet Pile Wall - Section 1	Checked :

Units: kN,m

Summary of results

BENDING MOMENT and DISPLACEMENT ANALYSIS of Fully Embedded Wall Analysis options

Length of wall perpendicular to section = 80.00m Subgrade reaction model - Boussinesq Influence coefficients Soil deformations are elastic until the active or passive limit is reached Open Tension Crack analysis - No

Rigid boundaries: Active side 20.00 from wall

Passive side 20.00 from wall

Limit State: Serviceability Limit State

Calculated Bending Moments and Strut Forces have been multiplied by a factor of 1.35 to obtain values for structural design.

Bending moment, shear force and displacement envelopes

Node	Y	Displa	cement		Bending	moment			- Shear	force	
no.	coord			Calcu	lated	Facto	ored	Calcul	Lated	Fact	ored
		max.	min.	max.	min.	max.	min.	max.	min.	max.	min.
		m	m	kN	.m/m	kN	.m/m	kN/m	kN/m	kN/m	kN/m
1	19.73	0.004	0.000	0	-0	0	-0	0	0	0	0
2	19.57	0.004	0.000	0	0	0	0	1	-0	1	-0
3	19.53	0.004	0.000	0	-0	0	-0	1	-48	1	-64
4	18.91	0.005	0.000	2	-29	3	-39	6	-46	8	-62
5	18.57	0.005	0.000	5	-44	7	-59	10	-43	14	-58
6	17.68	0.006	0.000	22	-76	29	-103	27	-28	37	-38
7	16.78	0.007	0.000	57	-91	77	-123	54	-141	73	-191
8	16.50	0.007	0.000	43	-90	58	-122	53	-131	71	-177
9	16.00	0.008	0.000	73	-82	99	-111	70	-153	95	-206
10	15.37	0.010	0.000	21	-106	28	-143	51	-127	69	-172
11	14.93	0.010	0.000	20	-139	27	-188	43	-107	58	-144
12	14.50	0.011	0.000	18	-164	24	-222	34	-85	46	-115
13	13.75	0.011	0.000	13	-184	18	-248	32	-43	43	-59
14	13.00	0.011	0.000	12	-172	17	-232	93	-6	125	-8
15	12.45	0.010	0.000	17	-159	23	-215	142	-5	191	-6
16	11.90	0.010	0.000	72	-124	97	-168	195	-158	264	-213
17	11.35	0.009	0.000	19	-66	25	-89	130	-100	175	-136
18	11.20	0.009	0.000	19	-45	25	-61	143	-84	193	-114
19	10.60	0.009	0.000	42	-51	57	-69	89	-39	121	-53
20	10.00	0.009	0.000	75	-61	101	-83	44	-4	60	-5
21	9.00	0.008	0.000	77	-49	104	-67	34	-10	46	-13
22	8.00	0.007	0.000	58	-12	79	-16	44	-23	60	-31
23	7.00	0.006	0.000	34	0	46	0	28	-21	38	-29
24	6.00	0.005	0.000	44	0	59	0	3	-14	3	-19
25	5.00	0.004	0.000	36	0	48	0	0	-12	0	-17
26	4.00	0.003	0.000	18	0	25	0	0	-17	0	-24
27	3.00	0.003	0.000	0	-0	0	-0	0	0	0	0

Run ID. Sheet Pile Wall, GOSH_SLS	Sheet No.
Great Ormand Street Hospital	Date: 4-02-2015
Sheet Pile Wall - Section 1	Checked :

Summary of results (continued)

Calculated Bending Moments and Strut Forces have been multiplied by a factor of 1.35 to obtain values for structural design.

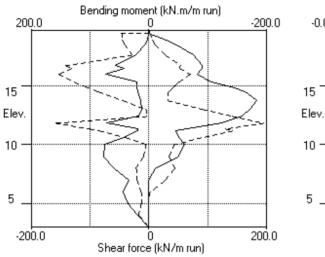
Maximum and minimum bending moment and shear force at each stage

Stage			Bendin	g moment	;				- Shear	force		
no.	Calculated			Facto	ored		Calc	Calculated		Factored		
	max.	elev.	min.	elev.	max.	min.	max.	elev.		elev.	max.	min.
	kN.m/m		kN.m/m	L	kN	.m/m	kN/m		kN/m		kN/m	kN/m
1	1	7.00	-4	14.50	2	-6	1	11.90	-2	17.68	2	-2
2	1	7.00	-4	14.50	2	-5	1	11.35	-1	17.68	1	-2
3	8	14.93	-4	17.68	11	-5	12	16.50	-3	18.57	16	-4
4	21	15.37	-0	19.73	28	-0	16	16.50	-7	13.75	22	-9
5	No ca	lculati	on at t	his stag	je							
6	19	11.35	-91	16.78	25	-123	51	15.37	-48	19.53	69	-64
7	No ca	lculati	on at t	his stad	je							
8	18	11.90	-90	16.78	24	-122	51	15.37	-47	19.53	69	-64
9	76	9.00	-171	13.00	102	-231	142	11.20	-153	16.00	191	-206
10	77	9.00	-172	13.00	103	-232	143	11.20	-153	16.00	193	-206
11	No ca	lculati	on at t	his stad	je							
12	No ca	lculati	on at t	his stad	je							
13	77	9.00	-184	13.75	104	-248	123	11.90	-141	16.78	167	-191
14	77	9.00	-184	13.75	104	-248	123	11.90	-141	16.78	167	-191
15	71	11.90	-132	14.50	96	-178	194	11.90	-158	11.90	262	-213
16	72	11.90	-134	14.50	97	-181	195	11.90	-158	11.90	264	-213
17	72	11.90	-134	14.50	97	-181	195	11.90	-158	11.90	264	-213

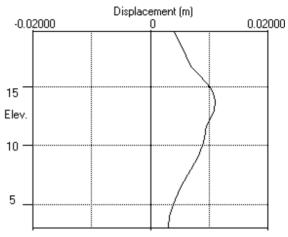
Maximum and minimum displacement at each stage

Stage ----- Displacement ----- Stage description no. maximum elev. minimum elev. _____ m m 0.001 14.93 0.000 19.73 Apply surcharge no.1 at elev. 19.73 1 16.00 0.000 19.73 Excav. to elev. 19.57 on PASSIVE side 0.001 2 19.73 19.73 0.000 19.73 Apply water pressure profile no.1 0.000 19.73 Excav. to elev. 18.91 on PASSIVE side 3 0.002 4 0.004 No calculation at this stage Install strut no.1 at elev. 19.53 5 0.006 16.50 0.000 19.73 Excav. to elev. 15.37 on PASSIVE side 6 at this stageInstall strut no.2 at elev. 16.000.00019.73Apply water pressure profile no.20.00019.73Excav. to elev. 11.20 on PASSIVE side No calculation at this stage 7 8 0.006 16.50 13.00 9 0.010 10 0.010 13.00 0.000 19.73 Fill to elev. 11.35 on PASSIVE side No calculation at this stage Install strut no.4 at elev. 11.90 11 No calculation at this stage Install strut no.3 at elev. 16.78 12 0.011 13.75 0.000 19.73 Remove strut no.2 at elev. 16.00 13 14 0.011 13.75 0.000 19.73 Remove strut no.1 at elev. 19.53 0.010 13.75 0.000 19.73 Change soil type 3 to soil type 4 15 0.010 13.75 0.000 19.73 Change soil type 2 to soil type 4 0.010 13.75 0.000 19.73 Change soil type 5 to soil type 6 16 17

Run ID. Sheet Pile Wall, GOSH_SLS	Sheet No.
Great Ormand Street Hospital	Date: 4-02-2015
Sheet Pile Wall - Section 1	Checked :


Summary of results (continued)

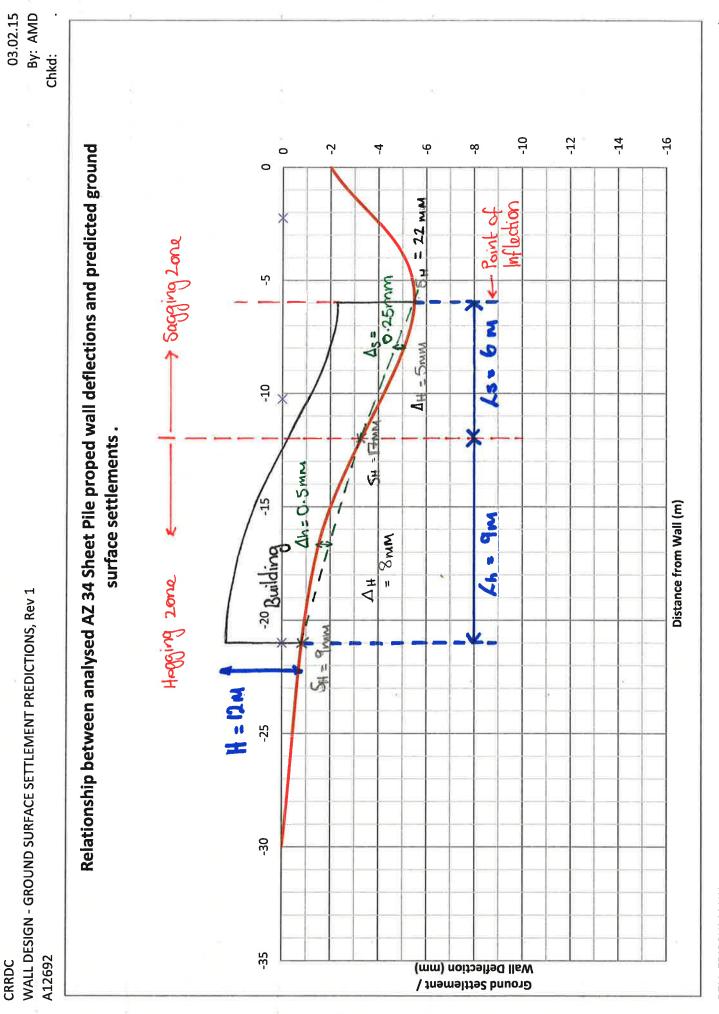
Calculated Bending Moments and Strut Forces have been multiplied by a factor of 1.35 to obtain values for structural design.


Strut forces at each stage (horizontal components)

Stage	S	trut no.	1	Strut no. 2 Strut no. 3				3		
no.	at	elev. 1	9.53	at	elev. 1	6.00	00 at elev. 16.78			
	Calcu	lated 1	Factored	Calcu	lated	Factored	Calculated Factored			
	kN per	kN per	kN per	kN per	kN per	kN per	kN per	kN per	kN per	
	m run	strut	strut	m run	strut	strut	m run	strut	strut	
6	48	382	516							
8	48	380	513	1	4	6				
9	5	39	53	223	1781	2405				
10	5	40	54	223	1781	2404				
13	slack	slack	slack				196	196	264	
14							196	196	264	
15							178	178	241	
16							181	181	245	
17							181	181	245	
Stage	S	trut no.	4							

) -			
no.	at	elev. 1	1.90
	Calcu	lated	Factored
	kN per	kN per	kN per
	m run	strut	strut
13	60	60	80
14	60	60	80
15	352	352	475
16	353	353	477
17	353	353	477

Bending moment, shear force, displacement envelopes



Appendix 2

Pell	Frisch	m	an	n								Project/Calc No. A12692
												Sheet No.
CAL	CULATIONS	Proje	ect			CF	RDC					Date 03.02.15
Subject Predicted ground movements in accordance with CIRIA C580 - No.4 Guildford Place								By Chkd AMD				
Ref.	Predicted ground move	ements I	n accor	dance w		IA C580	- N0.4 Gu	liatora	Place	•		Output
	Excavation: Section	1										
	0.26	1.:	18	2.41								
	0	Distance fr		max excav 2	ation dep 3	oth	Key: 4	Vall Type				
	-0.2					80 80	CPW:	Contigue	us bor			
			<u>م × م</u>			the state	DW: D	Secant b iaphragn ng post v	n wall	le wali		
		. ×	* ¥	iffnest				pendix : 6/A10 J		tails o	f case histori	es
		· ·	1085			a. 180	x Bell ★ Brit	Commo anic Hou	n SP	v		
	0.26	* *	ow stiffness		modera	ate stiffness	🗱 Eas	ish Libra t of Fallo t of Fallo	den W	ay (1)	CPW	
	0.4 0.5 0.6 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6				linducita		★ Lim	kney Wi ehouse Yard	Link C			
		See App	pendix 2				▼ Nea ♦ Nev	asden [v Palace	Yard			
	0.6 9 0.7						Rea	leigh We iding D ithamsto	w			
	0.8						∔ Wai ⊌ <mark>W</mark> at	thamsto erloo Int	w (2) 'I Term	DW	w	
	(a) Horizo	ontal mo	vements	5			, AM	CAIDW				
	Near Footing:											
	Distance from wa		=	2.25	m	=	0.26					
	Max.excavation dep	oth		8.7	m							
	Horizontal movem		=	χ	mm	=	0.26	%				
	Max.excavation de	pth		8700	mm							
	Therefore:	χ =	22.4	mm	horizo	ontal mov	ement					
	Mid Footing: Distance from wa	11	=	10.25	m	=	1.18					
	Max. excavation dep		_	8.7		_	1.10					
	Horizontal movem	ent		Ŷ			0.00	0/				
	Max.excavation de		=	χ 8700	mm mm	=	0.20	%				
	Therefore:	χ =	17.4	mm	horizo	ontal mov	ement					_
	Far Footing:											
	Distance from wa Max.excavation dep		=	21 8.7	m m	=	2.41					-
	Horizontal movement Max.excavation depth			0.1								
			1			=	0.10	0 %			_	
				8700	mm							-
	Therefore:	χ =	8.7	mm	horizo	ontal mov	ement					
												-

Pell	ell Frischmann						
CALC	ULATIO	ONS	Project		CRRDC		Date 03.02.15
Subject			<u> </u>		By Chkd AMD		
Ref.	Predicted gro	ound moveme	ents in accor	dance with C	CIRIA C580 - No.4 G	Guildford Place	Output
	Total Horiz	zontal Mover	nent				
	Near Footi				tallation + Mover	ment due to excavation	
		=	22 mr	n			
	Mid Footin	g: =	Movemen	t due to Ins	tallation + Mover	ment due to excavation	
		=	17 mn	n			
	Eas Es atim		M		4-11-44		
	Far Footin	g: =	Movemen 9 mn		tallation + Mover	ment due to excavation	_
	Differentia	I Movement					
	Differential	movement Δ	= Ne	ar footing	movement – Mid	footing movement	
			=	5 mm			
	Differential	mournet		id 6		facting a warment	
	interential	movement Δ		id footing 1 8 mm	movement – Far f	footing movement	
							—
							—
							—
							—

Appendix 3

Ŧ

PELL FRISCHMANN

Page 1/1

			Project/Calc No.
Po	Il Frischmann		#12692
			Sheet No.
	CALCULATIONS Project CRRDC		Date 04-02-15
Subject 1	Predicted Ground Movements - No.4 Guildford Pla	ace.	AMD Chkd
Ref.			Output
	<u>Note</u> : For Masionary Building $\underline{E} = 2.6$		
	$\frac{A}{\lambda} = \left\{ \frac{L}{12E} + \frac{3T}{3ELH} \frac{E}{G} \right\} Eb$	(1)	
	$\frac{\Lambda}{L} = \left\{ 1 + \frac{HL^2}{18I} \stackrel{G}{=} \right\} Ed$	(2)	
	Sbt = Sh + Sb	(4)	
	$EdE = 0.35 Eh + [(0.65 Eh)^2 + Ed^2]^{0.5}$	(5)	
	$\mathcal{E}_h = \Delta_H$	(3)	
	$\frac{\text{Hogging 2one}}{(1) \ 0.0005} = \left\{ \frac{9}{12(12)} + \frac{3(576)}{2(12)(9)(12)}, 2.6 \right\} Cb H = 13 \\ \chi = 9$	2 m	
	e = 3	1.6	
	$E_{b} = 0.356 \times 10^{-4}$ I = H	$\frac{3}{5} = 576r$	3
	$t_{h} = 1$	0000311	
	(2) $\frac{0.0005}{9} = \left\{ 1 + \frac{12(9)^2}{18(576)}, \frac{1}{2.6} \right\} \in d$		
	$0.556 \times 10^{-4} = (1.0361) \text{Ed}$		
	$Ed = 0.356 \times 10^{-4}$ 1.0361		
	Ed = 0.00005366		
	$(3) \ \mathcal{E}_{h} = \frac{0.008}{9} = \frac{0.000889}{9}$		
	$(4) \ \mathcal{E}_{bt} = 0.000889 + 0.00003096 = 0.0001$	9198	

Pe	Il Frischmann	Project/Calc No. A12 69 2 Sheet No.
	Project	2 Date
Subject	CALCULATIONS	04.02.15 by the Chkd
-	CALCULATIONS Project CRRDC Preclicted Ground Movements - No.4 Guildford Place (5) Edt = 0.35 (0.000859) + [(0.65 (0.000589)) ² + 0.00005366 ²] -5 (5) Edt = 0.00031115 + 0.00058 Eate = 0.00031115 + 0.00058 Eate = 0.00039 Eate = 0.00039 (1) 0.00025 = { $\frac{6}{12(3)} + \frac{3}{2(3)(6)(6)} + 2.6$ } Eb H = 6m (1) 0.00025 = { $\frac{6}{12(3)} + \frac{3}{2(3)(6)(6)} + 2.6$ } Eb G = 8.6 0.417x10 ⁻⁴ = { $0.1667 + 0.65$ } Eb G = 8.6 Eb = 0.01667 + 0.65 } Eb G = 8.6 Cb = 0.0000511 Ak = 0.0005m (2) 0.00025 = { $1 + \frac{(6)(6)^2}{18(17)} + \frac{1}{2.6}$ } Ed (2) 0.00025 = { $1 + \frac{(6)(6)^2}{18(17)} + \frac{1}{2.6}$ } Ed (2) 0.00025 = { $1 + \frac{(6)(6)^2}{18(17)} + \frac{1}{2.6}$ } Ed (2) 0.00025 = { $1 + \frac{(6)(6)^2}{12564}$ Ed = 0.0000332 (3) Eh = 0.000332 (4) Eht = 0.000332	Sheet No. 2 Date. OU · O 2 · J S by AM/2 Output
	(5) $Edt = 0.35 (0.000833) + [6.65(0.000833))^2 + 0.0000332^2 J^{0.5}$ Edt = 0.00002916 + 0.000672 = 0.000702 Damage Category O, Negligible affect.	

Appendix 4

Category of damage		Description of typical damage (ease of repair is underlined)	Approximate crack width (mm)	Limiting tensile strain ɛ _{lim} (per cent)	
0	Negligible	Hairline cracks of less than about 0.1 mm are classed as negligible.	< 0.1	0.0–0.05	
1	Very slight	Fine cracks that can easily be treated during normal decoration. Perhaps isolated slight fracture in building. Cracks in external brickwork visible on inspection.	<1	0.05–0.075	
2	Slight	<u>Cracks easily filled. Redecoration probably</u> <u>required.</u> Several slight fractures showing inside of building. Cracks are visible externally and <u>some repointing may be required externally</u> to ensure weathertightness. Doors and windows may stick slightly.	< 5	0.075–0.15	
3	Moderate	The cracks require some opening up and can be patched by a mason. Recurrent cracks can be masked by suitable linings. Repointing of external brickwork and possibly a small amount of brickwork to be replaced. Doors and windows sticking. Service pipes may fracture. Weathertightness often impaired.	5–15 or a number of cracks > 3	0.15–0.3	
4	Severe	Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Windows and frames distorted, floor sloping noticeably. Walls leaning or bulging noticeably, some loss of bearing in beams. Service pipes disrupted.	15–25 but also depends on number of cracks	> 0.3	
5	Very severe	This requires a major repair involving partial or complete rebuilding. Beams lose bearings, walls lean badly and require shoring. Windows broken with distortion. Danger of instability.	but depends		

Classification of visible damage to walls (after Burland et al, 1977, Boscardin and Cording, 1989; and Burland, 2001)

Notes

1. In assessing the degree of damage, account must be taken of its location in the building or structure.

2. Crack width is only one aspect of damage and should not be used on its own as a direct measure of it.