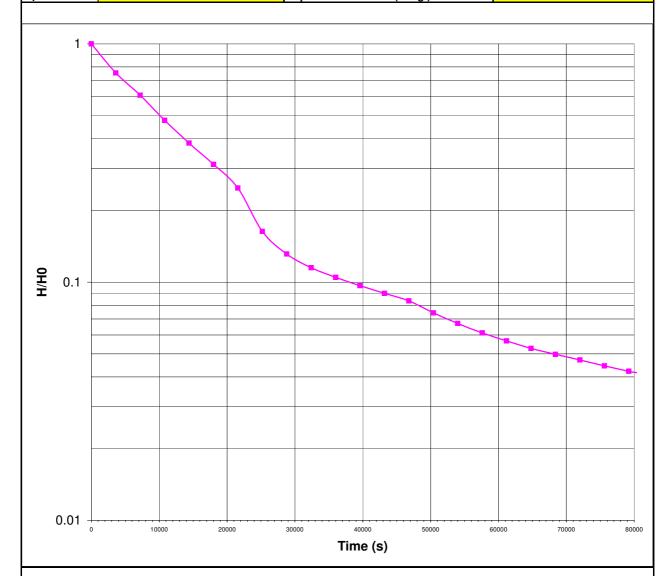
| Site:               | Sk<br>group p | LC _                                   |                                                                                                                          |                                                         | ST       | AT:             | 5     |                | EHOLE<br>ussive)   | RECORD                                                                  | Borel<br>Numb          | er:      |
|---------------------|---------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------|-----------------|-------|----------------|--------------------|-------------------------------------------------------------------------|------------------------|----------|
|                     | 919- 53       | Fitzro                                 | y Park                                                                                                                   |                                                         |          |                 |       | 53 Fitzroy     | Park               |                                                                         | BH2                    | <b>A</b> |
| <b>Clier</b><br>Sma |               | lding a                                | and Constru                                                                                                              | uction Limit                                            | ted      |                 |       | Ground Lo      |                    | <b>Date:</b> 23 Nov 10                                                  | <b>Job No</b> : 241919 |          |
| GRO                 | UND W         | ATER                                   |                                                                                                                          | SAMPLES                                                 | S/TEST   | s               |       |                | STRATA R           | 1                                                                       | Sheet 2                | of 2     |
| Strike              |               | Depth<br>(m)                           | Depth/Type<br>(m)                                                                                                        | SPT 'N'<br>or U Blows                                   | Depth    | Level<br>(mAOD) |       | Key            | Description        |                                                                         |                        |          |
| Rem                 | arks an       | -11<br>-12<br>-13<br>-14<br>-15<br>-16 | 10.50 D 17  11.05-11.56 TLS18  12.00 D 19  12.55-13.00 U 20  13.30 D 21  13.55-14.66 TLS22  14.30 D 23  14.55-15.00 U 24 | N=30 (3,4/5,7,9,9) SN=40 (4,5/8,10,11 [4,5](8,10,10,12) |          | 66.22           | 8.80  |                | slig               | ghtly sandy (fine) at 13.3m ghtly sandy (fine) at 14.3m hole at 15.00 m |                        |          |
| land                | dug servi     | ce pit to                              | 1.2m bgl. See                                                                                                            | page at 4.2m                                            | and 6.0  | 5m Bor          | ehole | dry at 8.5m at | end of 23/11/10;   |                                                                         | Scale:                 | 1:50     |
| verni               | ight water    | level (2                               | 4/11/10) 2.35n<br>n with 150mm                                                                                           | n bgl. Boreho                                           | le compl | eted to 15      | 5m oi | n 24/11/10; wa | ter level at 14.95 | m bgl.                                                                  | Logged by:             | CG       |
|                     |               |                                        |                                                                                                                          |                                                         |          |                 |       |                |                    |                                                                         | Figure:                |          |

| Site:  | 919- 53                               |                            | y Park            |                       | <b>ST/</b>   | AT:                                       | 5    |           | ussive)                                                                                                                                     | RECORD                                                                                                                                                                                                                                                                                                                                    | Borel<br>Numb<br>BH3                                    | er:  |
|--------|---------------------------------------|----------------------------|-------------------|-----------------------|--------------|-------------------------------------------|------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------|
| Clien  |                                       |                            |                   |                       |              |                                           |      | Ground Lo | evel:                                                                                                                                       | Date:                                                                                                                                                                                                                                                                                                                                     | Job No:                                                 |      |
| Sma    | rter Bui                              | lding a                    | and Constru       | uction Limit          | ted          |                                           |      | 80.16mA0  | DD                                                                                                                                          | 7 Dec 10                                                                                                                                                                                                                                                                                                                                  | 241919                                                  |      |
| GRO    | UND W                                 |                            |                   | SAMPLES               | /TEST        | S                                         | 1    |           | STRATA RI                                                                                                                                   | CORD                                                                                                                                                                                                                                                                                                                                      | Sheet 1                                                 | of 1 |
| Strike | Well                                  | Depth<br>(m)               | Depth/Type<br>(m) | SPT 'N'<br>or U Blows | Depth<br>(m) | Level<br>(mAOD)                           |      | Key       | Description                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                           |                                                         |      |
|        | • • • • • • • • • • • • • • • • • • • | -2<br>-3<br>-4<br>-5<br>-7 | 1.10-2.00 B 1     |                       | 3.50         | 79.46<br>79.06<br>78.16<br>76.66<br>76.16 | 0.40 |           | gravelly clay vicoarse flint and MADE GROU MADE GROU gravelly organ subangular to Soft, becomin occasional roi (WEATHERE POSSIBLY PARTICLE) | ND: Grass over brown salvith rootlets. Gravel of fine and brick fragments.  ND: Brown silty CLAY.  ND: Soft, wet, dark-grey spic CLAY. Gravel of fine to subrounded flint. (INFILLI)  g firm, brown and grey CL anded to subrounded flint DLONDON CLAY FORM. ARTLY REWORKED).  d grey-green silty CLAY. (VAY FORMATION).  anole at 4.00 m | lightly sandy coarse ED POND).  AY with gravel. ATION - |      |
|        |                                       |                            | er Observat       |                       | •            |                                           |      |           |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                           | Scale:                                                  | 1:50 |
| vater  | strike at                             | 1.46M b                    | gl, rising to 1.0 | J4m DgI.              |              |                                           |      |           |                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                         | Logged by:                                              | AT   |
|        |                                       |                            |                   |                       |              |                                           |      |           |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                           |                                                         |      |

| Site:  | <b>SK</b><br><b>PROUP P</b><br>919- 53 |                            | / Park            |                       | ST/          | AT:                     | 5            |           | ussive)                                                                                                                                                           | RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Borel<br>Numb<br>BH4                                    | er:  |
|--------|----------------------------------------|----------------------------|-------------------|-----------------------|--------------|-------------------------|--------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------|
| Clien  |                                        |                            |                   |                       |              |                         |              | Ground Le | evel:                                                                                                                                                             | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Job No:                                                 |      |
| Sma    | rter Bui                               | Iding a                    | nd Constru        | uction Limit          | ed           |                         |              | 80.18mA0  | DD                                                                                                                                                                | 7 Dec 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 241919                                                  |      |
| GRO    | UND W                                  |                            |                   | SAMPLES               | /TEST        | S                       |              |           | STRATA RE                                                                                                                                                         | CORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sheet 1                                                 | of 1 |
| Strike | Well                                   | Depth<br>(m)               | Depth/Type<br>(m) | SPT 'N'<br>or U Blows | Depth<br>(m) | Level<br>(mAOD)         |              | Key       | Description                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |      |
|        |                                        | -1<br>-2<br>-3<br>-6<br>-7 |                   |                       | 1.40         | 78.78<br>77.88<br>77.18 | 0.90<br>0.70 |           | brown slightly Gravel of fine fragments, wit  MADE GROU gravelly orgar subangular to  Soft, becomin occasional rot (WEATHERE POSSIBLY P  Brown mottled LONDON CL/ | ND: Grass over firm, becogravelly clay with rootlets to coarse flint and brick th occasional ash fragment in the coarse flint and brick the occasional ash fragment in the coarse flint and fragment in the coarse flint. (INFILLI) in the coarse flint in the coarse flin | lightly sandy coarse ED POND).  AY with gravel. ATION - |      |
| Rema   | arks an                                | d Wate                     | er Observat       | ions<br>Ons           |              |                         | -            |           |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scale:                                                  | 1:50 |
| vvaler | Suike al                               | 1.30III D(                 | yı, nəiny lü T.C  | om byl.               |              |                         |              |           |                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Logged by:                                              | AT   |
|        |                                        |                            |                   |                       |              |                         |              |           |                                                                                                                                                                   | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |      |

| ite: | <b>Sk</b><br><b>PROUP P</b><br>919- 53 |                            | y Park            |                       | STA          | AT:             | 5    | BORI<br>(Perculation:<br>53 Fitzroy | ussive)                                                                          | RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Borel<br>Numb<br>BH5 | er:  |
|------|----------------------------------------|----------------------------|-------------------|-----------------------|--------------|-----------------|------|-------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|
| lien |                                        |                            |                   |                       |              |                 |      | Ground Le                           | evel:                                                                            | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Job No:              |      |
| ma   | rter Bu                                | ilding a                   | and Constru       | uction Limit          | ted          |                 |      | 80.44mA0                            | DD                                                                               | 7 Dec 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 241919               |      |
| RO   | UND W                                  | ATER                       |                   | SAMPLES               | /TEST        | s               |      |                                     | STRATA RI                                                                        | CORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sheet 1              | of 1 |
| rike | Well                                   | Depth<br>(m)               | Depth/Type<br>(m) | SPT 'N'<br>or U Blows | Depth<br>(m) | Level<br>(mAOD) |      | Key                                 | Description                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |      |
|      |                                        | -1<br>-2<br>-3<br>-6<br>-7 |                   |                       | 4.00         | 76.44           | 2.40 |                                     | gravelly clay v<br>coarse flint ar<br>ash and cerar<br>Firm brown m<br>(WEATHERE | IND: Grass over brown slig with rootlets. Gravel of fine hid brick fragments, with ochic pipe fragments.  Ottled grey-green silty CLAD LONDON CLAY FORMAD LONDON CLAY | to<br>casional       |      |
| em   | arks an                                | d Wate                     | er Observat       | ions                  | _            |                 |      |                                     |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scale:               |      |
|      | iter encou                             |                            | Observat          |                       |              |                 |      |                                     |                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scale:               | 1:5  |
|      |                                        |                            |                   |                       |              |                 |      |                                     |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Logged by:           | АТ   |
|      |                                        |                            |                   |                       |              |                 |      |                                     |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Figure:              |      |

| Map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Site: | SK<br>ROUP P | 779                          | . Dad                                                                                                                                                           |                                                                                     | ST   | AT:        | 5      | (Perc         | ussive)                                                                                                                                                                             | RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Borel<br>Numb<br>BH6                                  | oer:   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------|------------|--------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------|
| AND ATTER  SAMPLESTIESTS  STRATA RECORD  Sheet 1 of Scheduling and Construction Limited  82.40mAOD  18 Nov 10  241919  SAMPLESTIESTS  STRATA RECORD  Sheet 1 of Scheduling and Construction Limited  Review Well Depth Depth Depth Depth Level (m) Depth Level |       |              | Fitzro                       | y Park                                                                                                                                                          |                                                                                     |      |            |        |               |                                                                                                                                                                                     | Ι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |        |
| SAMPLES/TESTS  STRATA RECORD  Sheet 1 of Depth Depth Pyrype or U Blows (m) Depth or U Blows ( |       |              | ilding s                     | and Constru                                                                                                                                                     | etion Limit                                                                         | tod  |            |        |               |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |        |
| No. Well Depth Depth/Type or U Blows (m) Depth (mAOD)  1.00 Blows (m) MADE GROUND: Grass over brown dry (descated)sandy slightly gravely day with roots. Gravel of fine to coarse liftin and brick with occasion flagments of clay title.  1.00 Bl.4.0  1.00 |       |              |                              | ina Constru                                                                                                                                                     |                                                                                     |      |            |        | 82.40mAC      |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |        |
| MADE GROUND: Grass over brown dry (desicnated) sandy slightly gravely clay with occasional fragments of clay ite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | trike |              |                              | Denth/Type                                                                                                                                                      |                                                                                     |      |            |        | Key           |                                                                                                                                                                                     | <u>=CORD</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sneet                                                 | 1 01 1 |
| emarks and Water Observations and dug service pit to 1.2m bgl. Seepage at 6.15m. Borehole cased to 1.5m with 150mm casing. Borehole dry on Inpletion. 0.02m of water in base of hole on completion  Scale:  1:6  Logged by:  CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              | (m)<br>1<br>2<br>3<br>4<br>5 | (m)  1.05 D 2 1.20-1.65 SPTLS3  1.90 D 4 2.20-2.65 U 5  2.90 D 6 3.20-3.65 SPTLS7  3.90 D 8 4.20-4.65 U 9  4.90 D 10 5.20-5.65SPTLS11  6.10 D 12 6.55-7.00 U 13 | S N=9 (1.1/2.3.2.2)  N=12 (1.2/2.3.3.4)  S N=16 (2.2/3.4.4.5)  S N=16 (2.2/3.4.4.5) | 1.00 | (mAOD)     | 4.30   |               | MADE GROU (desiccated)s roots. Gravel with occasion  Dry and desic firm, locally so grey-green sil oxide and car LONDON CLslig crysta betwee slig 5.5m  Stiff fissured o (LONDON CL | andy slightly gravelly clay of fine to coarse flint and bal fragments of clay tile.  Totated in uppermost part, both, fissured brown mottled ty CLAY, locally with power bonate precipitate. (WEATAY FORMATION).  In roots httly sandy (fine) at 1.9m  The proof of the p | with prick  Decoming dery iron THERED  selenite size) |        |
| npletion. 0.02m of water in base of hole on completion  Logged by: CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |              | d Wate                       | er Observat                                                                                                                                                     |                                                                                     | -    |            |        | ××<br>××<br>× |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scale:                                                | 1:50   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and c | lug servi    | ce pit to                    | 1.2m bgl. See                                                                                                                                                   | page at 6.15r                                                                       |      | nole cased | d to 1 | .5m with 150m | ım casing. Boreho                                                                                                                                                                   | ole dry on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |                              |                                                                                                                                                                 |                                                                                     |      |            |        |               |                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Figure:                                               | CG     |


| Item: marter Building and Construction Limited   Sound Level: 80.65mAOD   7 loc 10   241919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Site: | <b>Sk</b><br><b>PROUP P</b><br>919- 53 | 77157                             | y Park      |              | ST/    | AT:   | 5    |          | ussive)                                                             | RECORD                                                                                                                                                                     | Borel<br>Numb<br>BH7     | er:  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------|-----------------------------------|-------------|--------------|--------|-------|------|----------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------|
| ROUND WATER  SAMPLES/TESTS  STRATARECORD  Sheet 1 of rike  Well Depth Depth/Type (m) Poly Boyle (m) Poly (m) Po |       |                                        | ilding s                          | and Constru | uction Limit | tod    |       |      |          |                                                                     |                                                                                                                                                                            |                          |      |
| well pepth bepthylips or U Blows or U Blows (in) and D Bl |       |                                        |                                   | and Constit |              |        | •     |      | 80.65MAC |                                                                     |                                                                                                                                                                            |                          | of 1 |
| matrix and Water Observations  water encountered.    MADE GROUND: Grass over brown slightly sandy clay with roofsets and occasional ash fragments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                        |                                   | Donth/Typo  |              |        |       |      | Kov      |                                                                     | ECORD                                                                                                                                                                      | Sneet 1                  | OT 1 |
| Logged by: AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                        | (m)<br>-1<br>-2<br>-3<br>-4<br>-7 | (m)         |              | 0.40 - | 80.25 | 0.40 | XXXXX    | MADE GROUwith rootlets at CLAY, locally carbonate pre FORMATIONslig | and occasional ash fragme brown mottled grey-green with powdery iron oxide a ecipitate. (WEATHERED Lo.). httly sandy (fine) at 0.5m ally slightly sandy (fine) be and 2.0m | nts. silty nd ONDON CLAY |      |
| Logged by: AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                        |                                   | er Observat | ions         | 1      |       |      |          |                                                                     |                                                                                                                                                                            | Scale:                   | 1.5  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                        |                                   |             |              |        |       |      |          |                                                                     | -                                                                                                                                                                          |                          |      |
| ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                        |                                   |             |              |        |       |      |          |                                                                     |                                                                                                                                                                            |                          | ΑТ   |

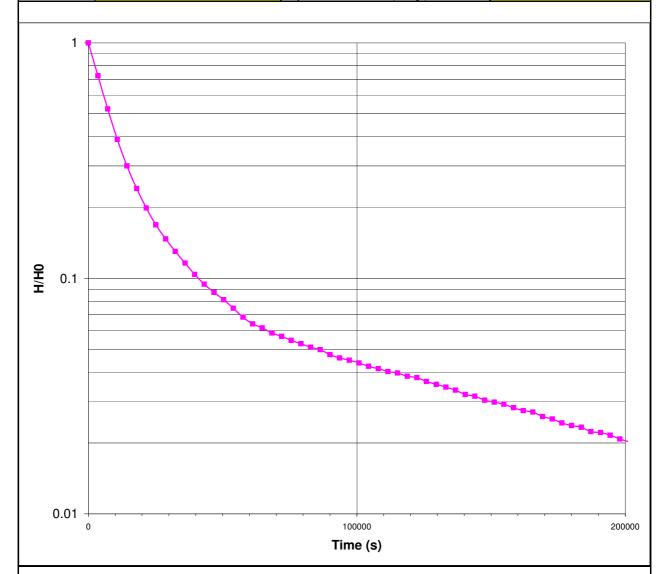
| Site: | 919- 53  |                                  | y Park                                                                                                                                                                              |                                                                                     | STA          | AT:                     | 5                    |                                     | ussive)                                                                                                   | RECORD                                                                                     | Borel<br>Numb<br>BH8                  | er:  |
|-------|----------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------|-------------------------|----------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------|------|
| Clier | nt:      |                                  |                                                                                                                                                                                     |                                                                                     |              |                         |                      | Ground Lo                           | evel:                                                                                                     | Date:                                                                                      | Job No:                               |      |
| Sma   | arter Bu | ilding a                         | and Constr                                                                                                                                                                          | uction Limi                                                                         | ted          |                         |                      | 82.43mA0                            | DD                                                                                                        | 15 Nov 10                                                                                  | 241919                                |      |
| RO    | UND W    | ATER                             |                                                                                                                                                                                     | SAMPLES                                                                             | /TEST        | S                       |                      |                                     | STRATA R                                                                                                  | ECORD                                                                                      | Sheet 1                               | of 1 |
| rike  | Well     | Depth<br>(m)                     | Depth/Type<br>(m)                                                                                                                                                                   | SPT 'N'<br>or U Blows                                                               | Depth<br>(m) | Level<br>(mAOD)         |                      | Key                                 | Description                                                                                               |                                                                                            |                                       |      |
| Z     |          | -1<br>-2<br>-3<br>-4<br>-5<br>-7 | 0.40-0.70 B 1  1.10 D 2 1.20-1.65 U 3  1.95 D 4 2.20-2.65 SPTLS5  2.90 D 6 3.20-3.65 U 7  3.90 D 8 4.20-4.65 SPTLS9  4.90 D 10 5.10 D 11 5.20-5.65 U 12  6.10 D 13 6.55-7.00SPTLS14 | N=9 (1,1/2,2,2,3) [1,1](2,2,2,3) [1,1](2,2,2,3) S N=17 (2,3/4,4,4,5) [2,3](4,4,4,5) | 5.00         | 82.38<br>82.28<br>81.43 | 0.05<br>0.10<br>0.85 |                                     | gravelly clay coarse flint a of clay tile an Firm, locally signey-green si oxide and ca LONDON CLloc 2.2m | JND: Brown slightly sandy<br>with roots. Gravel of fine to<br>nd brick with occasional fra | agments d dery iron FHERED .9m etween |      |
|       |          | -                                | 9.00 D 17<br>9.55-10.00 U 18                                                                                                                                                        | S_                                                                                  |              |                         |                      | × × _ × _ × _ × _ × _ × _ × _ × _ × |                                                                                                           |                                                                                            |                                       |      |
|       |          |                                  | er Observat                                                                                                                                                                         |                                                                                     | . 0000-      | out of 4.0              | m C                  | 2000000 0170                        |                                                                                                           | hole at 10.00 m                                                                            | Scale:                                | 1:50 |
|       |          |                                  | 1.2m bgl. See<br>3m of water ir                                                                                                                                                     |                                                                                     |              |                         | m. Se                | eepage at 7.8n                      | n. Borehole cased                                                                                         | 0 T.6M                                                                                     | Logged by:                            | CG   |
|       |          |                                  |                                                                                                                                                                                     |                                                                                     |              |                         |                      |                                     |                                                                                                           |                                                                                            |                                       | CG   |
|       |          |                                  |                                                                                                                                                                                     |                                                                                     |              |                         |                      |                                     |                                                                                                           |                                                                                            | Figure:                               |      |

| Sa Fitzroy Park   Sa Fitzroy   | R<br>Gite: | SK<br>ROUP P | LC _                       |                                                                                                                                                       |               | ST       | AT:        | 5      |                                       | ussive)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Borel<br>Numb                                             | er:        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|------------|--------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------|
| ROUND WATER  SAMPLESTESTS  STRATA RECORD  Sheet 1 of Sheet 2 of Sheet 2 of Sheet 2 of Sheet 3 of Sheet 4 of Sheet 3 of Sheet 4 of Sheet 3 of Sheet 4 of Sheet 4 of Sheet 5 of Sheet 5 of Sheet 5 of Sheet 6 of Sheet 1 of Sheet 2 of Sheet 1 of Sheet 2 of Sheet 3 of Sheet 3 of Sheet 2 of Sheet 3 of Sheet 2 of Sheet 2 of Sheet 3 of Sheet 3 of Sheet 2 of Sheet 3 of Sheet 2 of Sheet 2 of Sheet 2 of Sheet 2 of Sheet 3 of Sh | 2419       | 19- 53       | Fitzro                     | y Park                                                                                                                                                |               |          |            |        | 53 Fitzroy                            | / Park                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | - <b>-</b> |
| ROUND WATER  SAMPLES/TESTS  STRATA RECORD  Sheet 1 of Month   Depth   Depth   Depth   Depth   Depth   Level   (m)   Depth   De |            |              |                            |                                                                                                                                                       | ,             |          |            |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |            |
| New   Page   P   |            |              |                            | and Constru                                                                                                                                           |               |          |            |        | 82.30mA0                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |            |
| (m) (m) or U Blows (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |              |                            | Danth/Tuna                                                                                                                                            |               |          |            |        | Key                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sheet 1                                                   | ot 1       |
| LEAN MIX CONCRETE  MADE GROUND: Brown slightly sandy slightly gravely day with rouse. Gravel of fine to coarse first and brick with occasional fragments of day literal dash.  1.50 80.80  1.50 80.80  2 2 20 0 4 1.50 150 59°1.30  2 2 20 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 59°1.30  3.50 0 5 1.50 150 150 150 150 150 150 150 150 150 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rike       | weii         |                            |                                                                                                                                                       |               | (m)      | (mAOD)     |        | Key                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |            |
| emarks and Water Observations and dug service pit to 1.2m bgl. Seepage at 7.15m. Borehole cased to 1.6m with 150mm casing. Borehole dry on Logged by: CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |              | -1<br>-2<br>-3<br>-5<br>-6 | 1.25 D 2 1.50-1.95 SPTLS3 2.20 D 4 2.50-2.95 U 5 3.20 D 6 3.50-3.95 SPTLS7 4.20 D 8 4.50-4.95 U 9 5.20 D 10 5.50-5.95SPTLS11 6.25 D 12 6.55-7.00 U 13 | S             | 1.50     | 80.80      | 4.60   |                                       | MADE GROU gravelly clay coarse flint at of clay tile and of clay tile and clay, locally carbonate pre FORMATION sel size)loc occas silt be sil | JND: Brown slightly sandy with roots. Gravel of fine to and brick with occasional frad ash.  brown mottled grey-green with powdery iron oxide a ecipitate. (WEATHERED L.I).  denite crystals (generally contained as a comparison of fine sand setween 3.5m and 4.2m)  denite crystals (generally contained as a comparison of fine sand setween 3.5m and 4.2m)  denite crystals (generally contained as a comparison of fine sand setween 3.5m and 4.2m)  denite crystals (generally contained as a comparison of fine sand setween 3.5m and 4.2m)  denite crystals (generally contained as a comparison of fine sand contained as a comparison of fine sand fine san | pagments  a silty and ONDON CLAY  coarse sand th d/coarse | <b>Y</b>   |
| and dug service pit to 1.2m bgl. Seepage at 7.15m. Borehole cased to 1.6m with 150mm casing. Borehole dry on mpletion.  Logged by: CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |              |                            |                                                                                                                                                       | S             | }        |            |        | x x x x x x x x x x x x x x x x x x x |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |            |
| Logged by: CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |              |                            |                                                                                                                                                       |               | n Para!  | polo acas  | 1 +0 1 | 6m with 450-                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scale:                                                    | 1:50       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              | ce pit to                  | 1.2m bgl. See                                                                                                                                         | page at 7.15r | n. Boreh | iole cased | ı to 1 | .om with 150m                         | ım casıng. Boreho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oie ary on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Logged by:                                                | CG         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              |                            |                                                                                                                                                       |               |          |            |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |            |

## RisingHead Permeability Test to BS 5930:1999

| Location   | 53 Fitzroy Park                       | Borehole No                       | BH2A |
|------------|---------------------------------------|-----------------------------------|------|
| Client     | Smarter Building and Construction Ltd | Depth to top response zone (m)    | 2    |
| Job Number | 241919-01(00)                         | Depth to bottom response zone (m) | 5    |
| Date       | 13-Dec-10                             | Diameter of Borehole (m)          | 0.15 |
| Operator   | CG                                    | Depth to water table (m bgl)      | 1.5  |




## Calculations

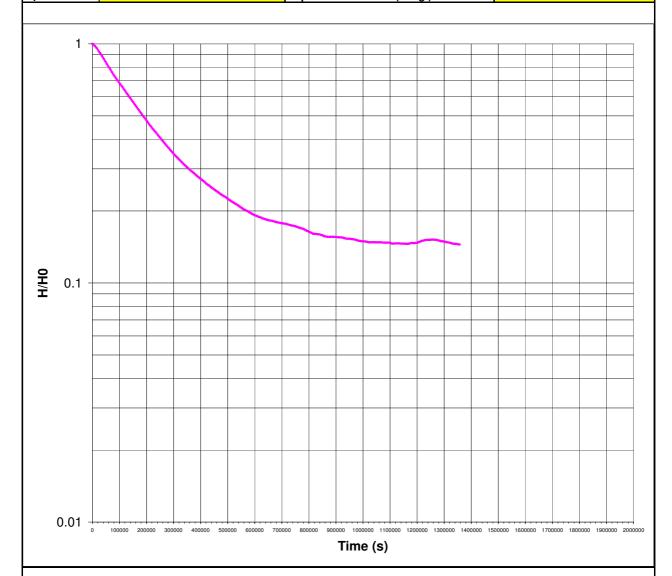
| Area of borehole A (m <sup>2</sup> ) | 0.01767  |
|--------------------------------------|----------|
| Intake Factor F                      | 5.108968 |
| Permeability k (m/s)                 | 1.98E-07 |

APPENDIX B

# RisingHead Permeability Test to BS 5930:1999 Location 53 Fitzroy Park Borehole No Borehole No Client Smarter Building and Construction Ltd Depth to top response zone (m)

| Client     | Smarter Building and Construction Ltd | Depth to top response zone (m)    | 5.5  |
|------------|---------------------------------------|-----------------------------------|------|
| Job Number | 241919-01(00)                         | Depth to bottom response zone (m) | 6.5  |
| Date       | 13-Dec-10                             | Diameter of Borehole (m)          | 0.15 |
| Operator   | CG                                    | Depth to water table (m bgl)      | 1.2  |



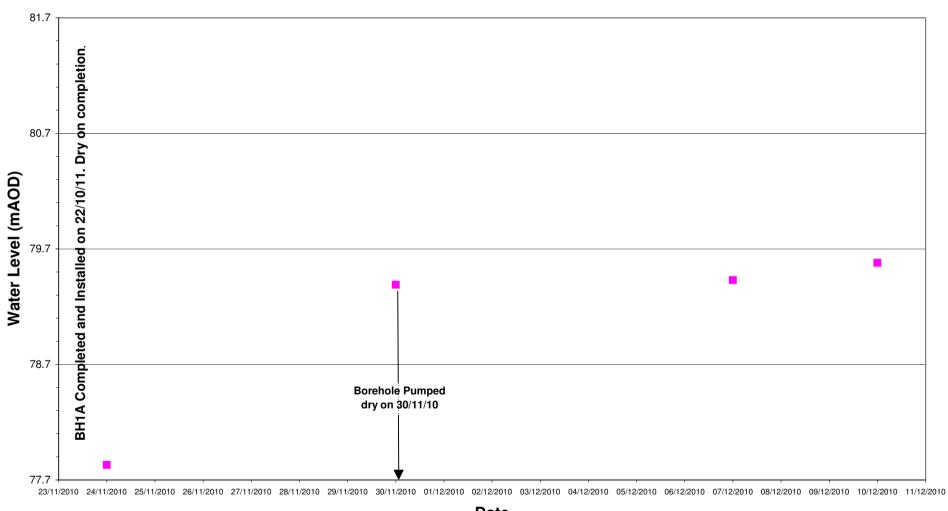

## Calculations

| Area of borehole A (m <sup>2</sup> ) | 0.01767  |
|--------------------------------------|----------|
| Intake Factor F                      | 0.804857 |
| Permeability k (m/s)                 | 1.83E-07 |

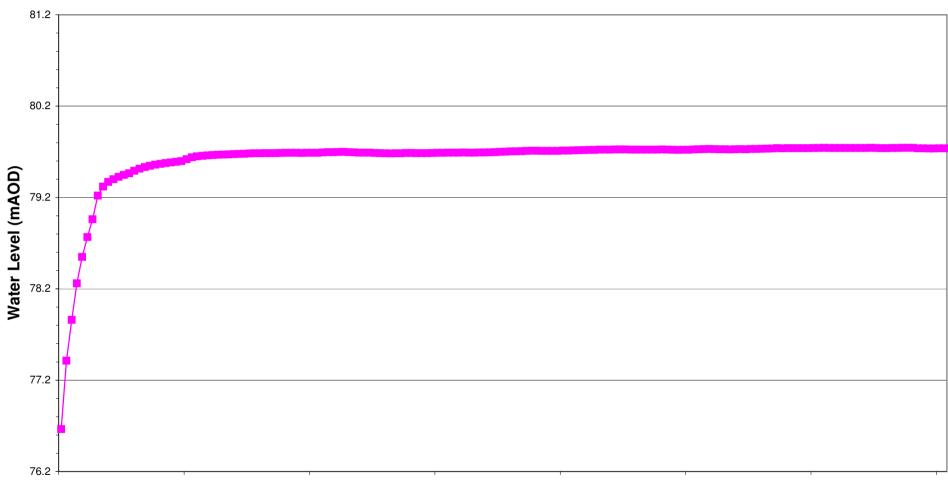
APPENDIX B

## RisingHead Permeability Test to BS 5930:1999

| Location   | 53 Fitzroy Park                       | Borehole No                       | BH9A |
|------------|---------------------------------------|-----------------------------------|------|
| Client     | Smarter Building and Construction Ltd | Depth to top response zone (m)    | 7.5  |
| Job Number | 241919-01(00)                         | Depth to bottom response zone (m) | 9.5  |
| Date       | 13-Dec-10                             | Diameter of Borehole (m)          | 0.15 |
| Operator   | CG                                    | Depth to water table (m bgl)      | 0.8  |



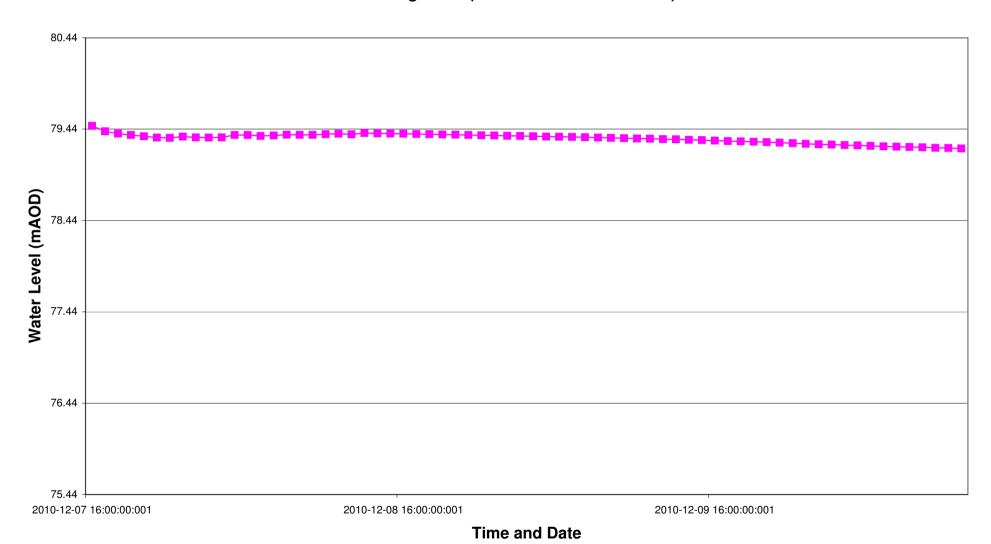

### Calculations


| Area of borehole A (m <sup>2</sup> ) | 0.01767  |
|--------------------------------------|----------|
| Intake Factor F                      | 0.872591 |
| Permeability k (m/s)                 | 1.37E-08 |

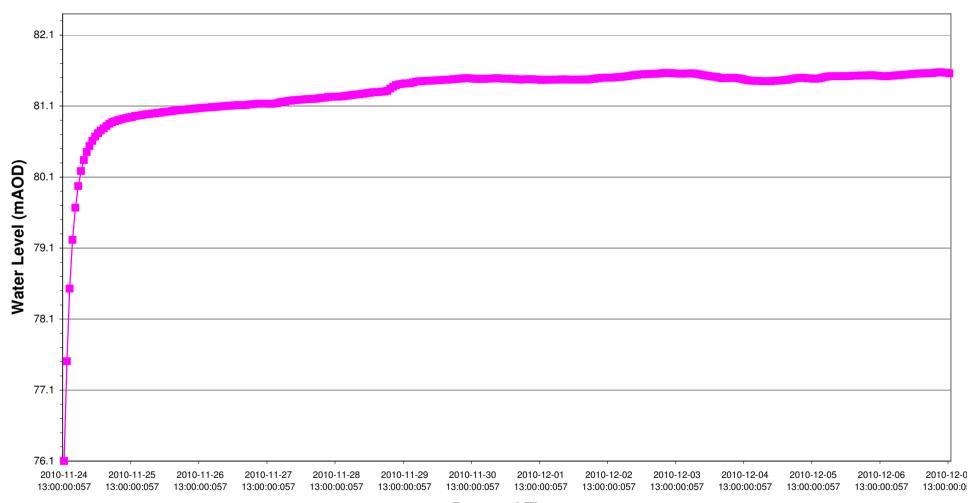
APPENDIX B

## BH1A Groundwater Levels (Ground Level 81.73mAOD)




## **BH2A Rising Head Test (Ground Level 81.22mAOD)**




2010-11-30 12:00:00:001 2010-12-01 12:00:00:001 2010-12-01 12:00:00:001 2010-12-02 12:00:00:001 2010-12-03 12:00:00:001 2010-12-04 12:00:00:001 2010-12-05 12:00:00:001 2010-12-06 12:00:00:001 2010-12-07 12:00

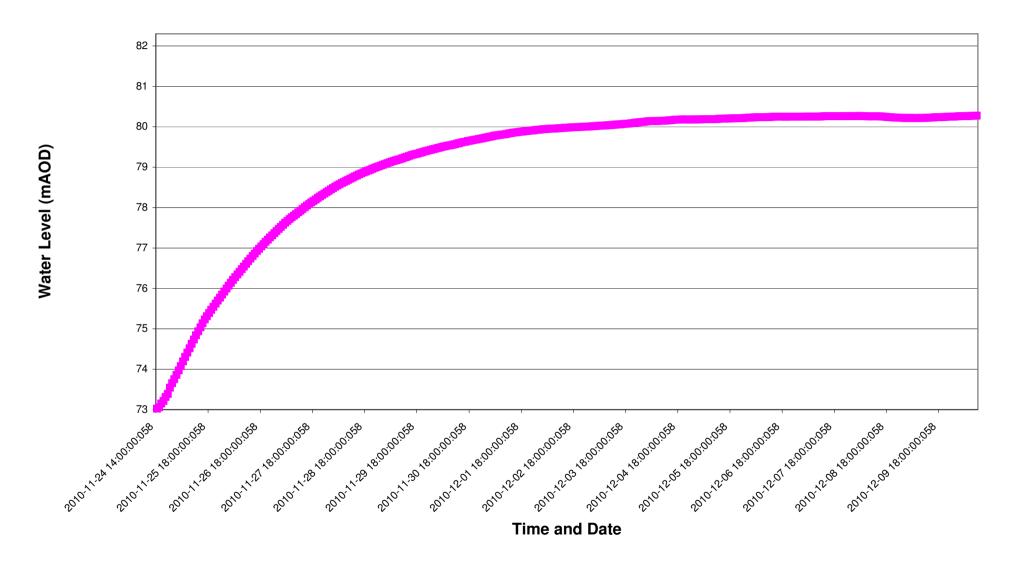
**Date and Time** 

## BH5A Soakage Test (Ground Level 80.44mAOD)



## **BH6A Rising Head Test (Ground Level 82.4mAOD)**




**Date and Time** 

## BH7A Soakage Test (Ground Level (80.56mAOD)



**Time and Date** 

## **BH9A Rising Head Test (Ground Level 82.3mAOD)**



## **APPENDIX C**

## **Geotechnical Laboratory Test Records**

(this appendix contains 21 pages, including this one)







Clive Gerring RSK STATS GEOCONSULT LIMITED 18 Frogmore Road Hemel Hempstead Herts HP3 9RT

STRUCTURAL SOILS LTD

SITE INVESTIGATION

SOIL, ROCK & MATERIAL TESTING

GEOTECHNICAL CONSULTANCY

CONTAMINATED

3<sup>rd</sup> December 2010

### **TESTING REPORT**

YOUR REF: 241919

SITE: 53 Fitzroy Park

CERTIFICATE NUMBER: 581433

DATE SAMPLES RECEIVED: 26<sup>th</sup> November 2010 DATE TESTING COMMENCED: 26<sup>th</sup> November 2010

DATE OF SAMPLE DISPOSAL: 3rd January 2011

INSTRUCTIONS: Please carry out Moisture Content, Atterberg Limits, Particle Size Distribution and Quick Undrained Triaxial tests on samples provided.

I have pleasure in enclosing the test report for the above project that you submitted to us for testing.

Yours sincerely

Alesto.

Paul Kent Laboratory Manager

Enc.

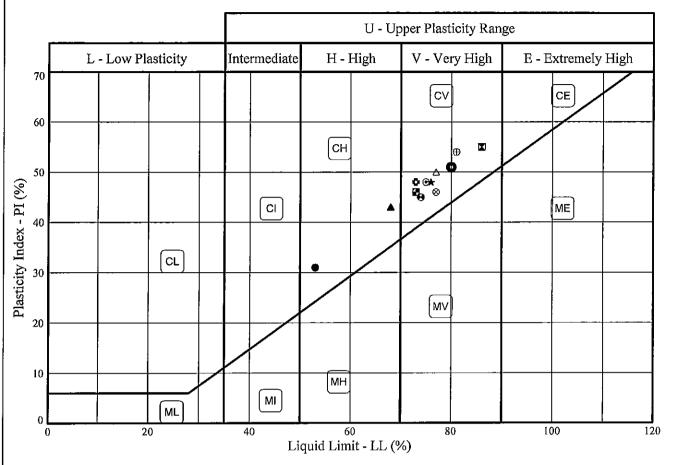
18 FROGMORE ROAD HEMEL HEMPSTEAD HERTS HP3 9RT TEL: 01442 416660 FAX: 01442 437550 hemel@soils.co.uk www.soils.co.uk

> HEAD OFFICE: Bristol

BRANCH OFFICE: Castleford West Yorkshire

| Exploratory Position ID | Depth (m) | Sample Ref | Sample Type | Moisture Content<br>(%) |
|-------------------------|-----------|------------|-------------|-------------------------|
| BH1A                    | 1.10      |            | D           | 18                      |
| ВН1А                    | 2.20      |            | U           | 39                      |
| BH1A                    | 4.20      |            | U           | 32                      |
| BH1A                    | 9.55      |            | U           | 28                      |
| ВН2А                    | 2.10      |            | D           | 34                      |
| ВН2А                    | 3.10      |            | D           | 35                      |
| вн2А                    | 4.35      |            | U           | 36                      |
| ВН2А                    | 12.55     |            | U           | 31                      |
| ВН2А                    | 14.55     |            | U           | 31                      |
| ВН6А                    | 1.20      |            | D           | 29                      |
| ВН6А                    | 2.20      |            | U           | 33                      |
| ВН6А                    | 6.55      |            | U           | 31                      |
| ВН6А                    | 9.55      |            | U           | 29                      |
| ВН8А                    | 1.20      |            | U           | 37                      |
| ВН8А                    | 2.20      |            | D           | 35                      |
| BH8A                    | 5.20      |            | U           | 27                      |
| вн8А                    | 8.05      |            | U           | 32                      |
| ВН9А                    | 1.50      |            | D           | 31                      |
| ВН9А                    | 2.50      |            | U           | 33                      |
| ВН9А                    | 6.55      |            | U           | 30                      |

GINT\_LIBRARY\_V8\_04.GLBIL - COLLECTIONS - MC| 581433-53 FITZROY PARK-241919-RSK STATS GEO.GPJ - v8\_04 | 03/12/10 - 10:51 | PK.


| STRUCTURAL SOILS |
|------------------|
| ···              |
| 18 Frogmore Road |
| Hemel Hempstead  |
| Hertfordshire    |
| LID2 ODT         |

|           | Compiled By |     | Date     | Checked By           | Date    |
|-----------|-------------|-----|----------|----------------------|---------|
|           | chast       | •   | 03/12/10 | Rate.                | 3-12-10 |
| Contract: | #4 F%       | D 1 | •        | Contract Ref: 581433 |         |

53 Fitzroy Park

Page: 2 of 20

PLASTICITY CHART - PI Vs LL
In accordance with clause 42.3 of BS5930:1981
Testing in accordance with BS1377-2:1990



|          | Sample I                   | dentificat | ion          | BS Test         | Preparation | MC | LL | PL | PI | <425um |
|----------|----------------------------|------------|--------------|-----------------|-------------|----|----|----|----|--------|
|          | Exploratory<br>Position ID | Sample     | Depth<br>(m) | Method#         | Method +    | %  | %  | %  | %  | %      |
| •        | BH1A                       | D          | 1.10         | 3.2/4.4/5.3/5.4 | 4.2.3       | 18 | 53 | 22 | 31 | 100    |
| X        | BH1A                       | U          | 2.20         | 3.2/4.4/5.3/5.4 | 4,2.3       | 39 | 86 | 31 | 55 | 100    |
| lack     | BH1A                       | U          | 4.20         | 3.2/4.4/5.3/5.4 | 4.2.3       | 32 | 68 | 25 | 43 | 100    |
| *        | BH1A                       | U          | 9.55         | 3.2/4.4/5.3/5.4 | 4.2.3       | 28 | 76 | 28 | 48 | 100    |
| •        | BH2A                       | D          | 2.10         | 3.2/4.4/5.3/5.4 | 4.2.3       | 34 | 75 | 27 | 48 | 100    |
| ٥        | BH2A                       | D          | 3.10         | 3.2/4.4/5.3/5.4 | 4.2.3       | 35 | 73 | 25 | 48 | 100    |
| 0        | BH2A                       | U          | 4.35         | 3.2/4.4/5.3/5.4 | 4.2.3       | 36 | 80 | 29 | 51 | 100    |
| Δ        | BH2A                       | U          | 12.55        | 3,2/4.4/5.3/5.4 | 4.2.3       | 31 | 77 | 27 | 50 | 100    |
| 8        | BH2A                       | U          | 14.55        | 3.2/4.4/5.3/5.4 | 4.2.3       | 31 | 77 | 31 | 46 | 100    |
| <b>⊕</b> | BH6A                       | D          | 1.20         | 3.2/4.4/5.3/5.4 | 4.2.3       | 29 | 81 | 27 | 54 | 100    |
|          | BH6A                       | U          | 2.20         | 3.2/4,4/5,3/5.4 | 4.2.3       | 33 | 73 | 27 | 46 | 100    |
| 0        | BH6A                       | U          | 6.55         | 3.2/4.4/5.3/5.4 | 4.2.3       | 31 | 74 | 29 | 45 | 100    |
| •        | BH6A                       | U          | 9.55         | 3.2/4.4/5.3/5.4 | 4.2.3       | 29 | 73 | 27 | 46 | 100    |

# Tested in accordance with the following clauses of BS1377-2:1990.

- 3.2 Moisture Content 4.3 Cone Penetrometer Method
- 4.4 One Point Cone Penetrometer Method
- 4.6 One Point Casagrande Method 5.3 Plastic Limit Method 5.4 Plasticity Index

+ Tested in accordance with the following clauses of BS1377-2:1990.

4,2,3 - Natural State

4.2.4 - Wet Sieved

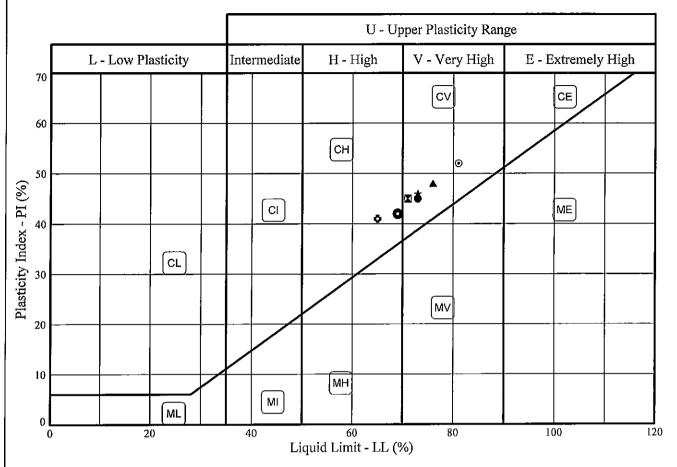
Key: \*= Non standard test, NP = Non plastic.

Approved Signatories: P. KENT S. CAIRNS



STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

|          | Сотр    | iled By       | Date     |
|----------|---------|---------------|----------|
|          | Franks. | PAUL KENT     | 03/12/10 |
| Contract |         | Contract Ref: | •        |


53 Fitzroy Park

581433

Page 3 of 20



PLASTICITY CHART - PI Vs LL
In accordance with clause 42.3 of BS5930:1981
Testing in accordance with BS1377-2:1990



|          | Sample I                   | dentificat | ion          | BS Test         | Preparation | MC | LL | PL   | PI | <425um |
|----------|----------------------------|------------|--------------|-----------------|-------------|----|----|------|----|--------|
|          | Exploratory<br>Position ID | Sample     | Depth<br>(m) | Method #        | Method +    | %  | %  | %    | %  | %      |
|          | BH8A                       | U          | 1.20         | 3.2/4.4/5.3/5.4 | 4.2.3       | 37 | 73 | 28   | 45 | 100    |
|          | BH8A                       | D          | 2.20         | 3.2/4.4/5.3/5.4 | 4.2.3       | 35 | 71 | 26   | 45 | 100    |
| lack     | BH8A                       | U          | 5.20         | 3.2/4.4/5.3/5.4 | 4.2.3       | 27 | 76 | _ 28 | 48 | 100    |
| *        | BH8A                       | U          | 8.05         | 3.2/4.4/5.3/5.4 | 4.2.3       | 32 | 73 | 27   | 46 | 100    |
| 0        | BH9A                       | D          | 1.50         | 3.2/4.4/5.3/5.4 | 4.2.3       | 31 | 81 | 29   | 52 | 100    |
| Ö        | BH9A                       | U          | 2.50         | 3.2/4.4/5.3/5.4 | 4.2.3       | 33 | 65 | 24   | 41 | 100    |
| 0        | ВН9А                       | U          | 6.55         | 3.2/4.4/5.3/5.4 | 4.2.3       | 30 | 69 | 27   | 42 | 100    |
| $\vdash$ |                            |            |              |                 |             |    |    |      |    |        |
|          |                            |            |              |                 |             |    |    |      | -  |        |
|          |                            |            |              |                 |             |    |    |      |    |        |
|          |                            |            |              |                 |             |    |    |      |    |        |
|          | ·                          |            |              |                 |             |    |    |      |    |        |

# Tested in accordance with the following clauses of BS1377-2:1990.

- Moisture Content
- 4.3 Cone Penetrometer Method
- 4.4 One Point Cone Penetrometer Method
- 4.6 One Point Casagrande Method
- 5.3 Plastic Limit Method
- 5.4 Plasticity Index

+ Tested in accordance with the following clauses of BS1377-2:1990.

4.2.3 - Natural State 4.2.4 - Wet Sieved

Compiled By

Key: \* = Non standard test, NP = Non plastic.

Approved Signatories: P. KENT S. CAIRNS



STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

These Contract

53 Fitzroy Park

PAUL KENT

581433

Page 4

Contract Ref:

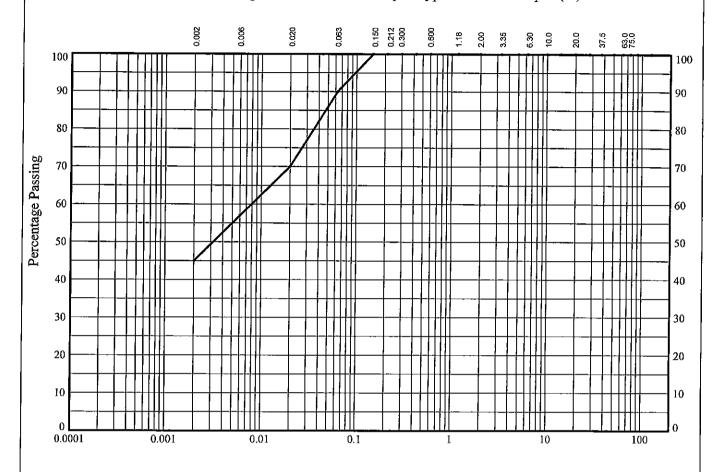
of 20



Date

## PARTICLE SIZE DISTRIBUTION TEST In accordance with clauses 9.2,9.4 of BS1377:Part 2:1990

Borehole: BH2A


Sample Ref:

Sample Type:

U

Depth (m):

2.35



| CLAV | fine | medium | coarse | fine | medium | coarse | fine | medium | coarse | CODDIES |
|------|------|--------|--------|------|--------|--------|------|--------|--------|---------|
| CLAT |      | SILT   |        |      | SAND   |        | •    | GRAVEI |        | CORRIES |

|   | BS Test    | Percentage |
|---|------------|------------|
|   | Sieve (mm) | Passing    |
|   | 125        | 100        |
|   | 90         | 100        |
| į | 75         | 100        |
|   | 63         | 100        |
|   | 50         | 100        |
|   | 37.5       | 100        |
| i | 28         | 100        |
|   | 20         | 100        |
|   | 14         | 100        |
|   | 10         | 100        |
|   | 6.3        | 100        |
| - | 5          | 100        |
| ı | 3.35       | 100        |
| ١ | 2          | 100        |
| ١ | 1.18       | 100        |
| 1 | 0.6        | 100        |
| ١ | 0.425      | 100        |
| ١ | 0.3        | 100        |
| ١ | 0.212      | 100        |
| ı | 0.15       | 100        |
| ١ | 0.063      | 90         |

| Particle | Percentage |
|----------|------------|
| Diameter | Passing    |
| 0.02     | 70         |
| 0.006    | <b>5</b> 7 |
| 0.002    | 45         |

| Soil     | Sieve      |
|----------|------------|
| Fraction | Percentage |
|          |            |
| GRAVEL   | 0          |
| SAND     | 10         |
| SILT     | 45         |
| CLAY     | 45         |
|          |            |

Soil Description:

Brown mottled grey slightly sandy CLAY with occasional pockets of fine sand

Approved Signatories: P. KENT S. CAIRNS



STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire **HP3 9RT** 

Redo

Compiled By

PAUL KENT

03/12/10

Date

Contract

53 Fitzroy Park

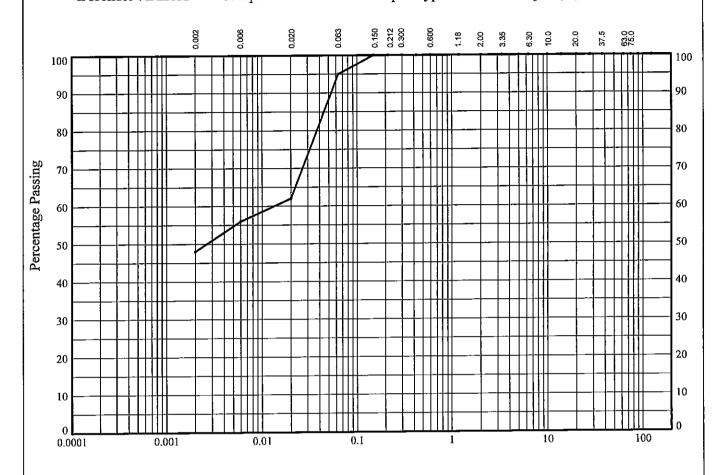
Contract Ref; 581433

Page 5 20 of



## PARTICLE SIZE DISTRIBUTION TEST In accordance with clauses 9.2,9.4 of BS1377:Part 2:1990

Borehole: BH6A


Sample Ref:

Sample Type:

 $\mathbf{D}$ 

Depth (m):

3.90



| CEAN | fine | medium | coarse | fine | medium | coarse | fine | medium | coarse | COBBLES |
|------|------|--------|--------|------|--------|--------|------|--------|--------|---------|
| CLAY |      | SILT   |        |      | SAND   |        | . (  | GRAVEI |        | 000000  |

| BS Test    | Percentage |
|------------|------------|
| Sieve (mm) | Passing    |
| 125        | 100        |
| 90         | 100        |
| 75         | 100        |
| 63         | 100        |
| 50         | 100        |
| 37.5       | 100        |
| 28         | 100        |
| 20         | 100        |
| 14         | 100        |
| 10         | 100        |
| 6.3        | 100        |
| 5          | 100        |
| 3.35       | 100        |
| 2          | 100        |
| 1.18       | 100        |
| 0.6        | 100        |
| 0,425      | 100        |
| 0.3        | 100        |
| 0.212      | 100        |
| 0.15       | 100        |
| 0.063      | 95         |

| Particle | Percentage |
|----------|------------|
| Diameter | Passing    |
| 0.02     | 62         |
| 0.006    | 56         |
|          |            |
| 0.002    | 48         |
|          |            |

| Soil     | Sieve      |
|----------|------------|
| Fraction | Percentage |
|          |            |
| GRAVEL   | 0          |
| SAND     | 5          |
| SILT     | 47         |
| CLAY     | 48         |
|          |            |

Soil Description:

Brown mottled grey CLAY with some pockets of silt

Approved Signatories: P. KENT S. CAIRNS



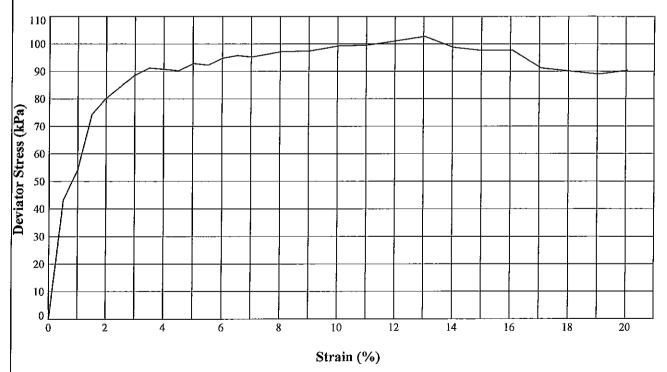
STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

|                          | Compiled I        | Зу                   | Date     |
|--------------------------|-------------------|----------------------|----------|
|                          | Red.              | PAUL KENT            | 03/12/10 |
| Contract 53 Fitzroy Park |                   | Contract Ref: 581433 |          |
|                          | 55 Pitzioj X alik | Page L of 2C         |          |

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH1A

Sample Ref:


Sample Type:

Depth (m):

2.20

Description: Brown mottled grey slightly gravelly (fine to medium) CLAY

| STAGE NUMBER   |                            |         | 1           | 2 | 3 |
|----------------|----------------------------|---------|-------------|---|---|
| SAMPLE DETAILS | Sample Condition           |         | Undisturbed |   |   |
|                | Orientation of sample      |         | Vertical    |   |   |
|                | Diameter                   | (mm)    | 102.47      |   |   |
|                | Height                     | (mm)    | 209.36      |   |   |
|                | Moisture Content           | (%)     | 40          |   |   |
|                | Bulk Density               | (Mg/m³) | 2.02        |   |   |
|                | Dry Density                | (Mg/m³) | 1.45        |   |   |
| TEST DETAILS   | Membrane Thickness         | (mm)    | 0.24        |   |   |
|                | Rate of Axial Displacement | (%/min) | 2.01        |   |   |
|                | Cell Pressure              | (kPa)   | 44          |   |   |
|                | Membrane Correction        | (kPa)   | 0.65        |   |   |
|                | Corrected Deviator Stress  | (kPa)   | 103         |   |   |
|                | Undrained Shear Strength   | (kPa)   | 51          |   |   |
|                | Strain at Failure          | (%)     | 13.0        |   |   |
|                | Mode of Failure            |         | Compound    |   |   |



Approved Signatories: P. KENT S. CAIRNS

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Fred.

Compiled By

PAUL KENT

Date 03/12/10

Contract

53 Fitzroy Park

Contract Ref: 581433

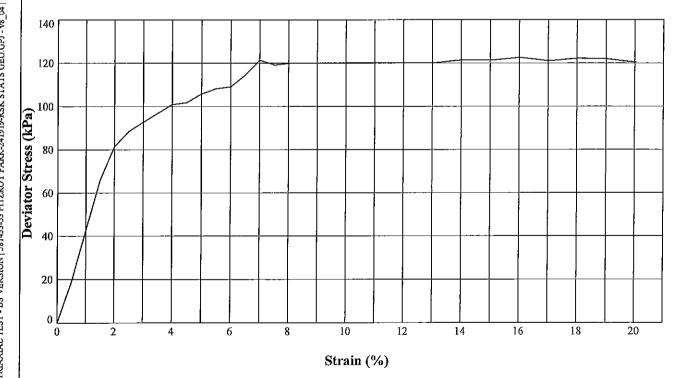
Page

20

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH1A

Sample Ref:


Sample Type:

Depth (m):

4.20

Description: Brown mottled grey CLAY

| STAGE NUMBER   |                            |         | 1           | 2 | 3 |
|----------------|----------------------------|---------|-------------|---|---|
| SAMPLE DETAILS | Sample Condition           |         | Undisturbed |   |   |
|                | Orientation of sample      |         | Vertical    |   |   |
|                | Diameter                   | (mm)    | 102.81      |   |   |
|                | Height                     | (mm)    | 209.56      |   |   |
|                | Moisture Content           | (%)     | 31          |   |   |
|                | Bulk Density               | (Mg/m³) | 1.93        |   |   |
|                | Dry Density                | (Mg/m³) | 1.47        |   |   |
| TEST DETAILS   | Membrane Thickness         | (mm)    | (mm) 0.24   |   |   |
|                | Rate of Axial Displacement | (%/min) | 2.00        |   |   |
|                | Cell Pressure              | (kPa)   | 84          |   |   |
|                | Membrane Correction        | (kPa)   | 0.75        |   |   |
|                | Corrected Deviator Stress  | (kPa)   | 123         |   |   |
|                | Undrained Shear Strength   | (kPa)   | 61          |   |   |
|                | Strain at Failure          | (%)     | 16.0        |   |   |
|                | Mode of Failure            |         | Compound    |   |   |



Approved Signatories: P. KENT S. CAIRNS

જ

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Contract

53 Fitzroy Park

Freedo.

Compiled By

PAUL KENT Contract Ref:

Page

581433

20

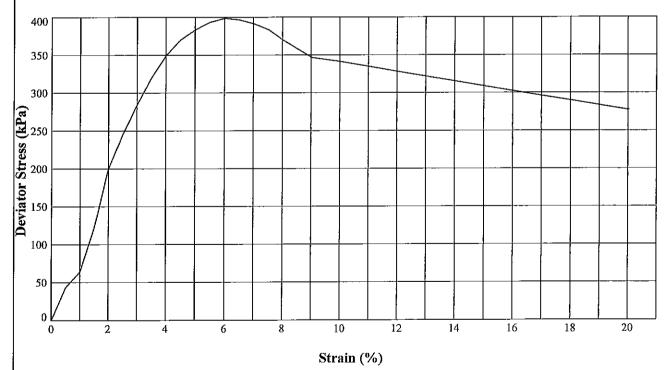
Date

In accordance with BS1377; Part 7:1990, Clause 8

Borehole: BH1A

Sample Ref:

Sample Type:


 $\mathbf{U}$ 

Depth (m):

9.55

Description: Brownish black CLAY

| STAGE NUMBER   |                            |         | 1           | 2            | 3 |
|----------------|----------------------------|---------|-------------|--------------|---|
| SAMPLE DETAILS | Sample Condition           |         | Undisturbed |              |   |
|                | Orientation of sample      |         | Vertical    |              |   |
|                | Diameter                   | (mm)    | 102.61      |              |   |
|                | Height                     | (mm)    | 209.57      |              |   |
|                | Moisture Content           | (%)     | 29          |              |   |
|                | Bulk Density               | (Mg/m³) | 2.01        |              |   |
|                | Dry Density                | (Mg/m³) | 1.56        | <del> </del> |   |
| TEST DETAILS   | Membrane Thickness         | (mm)    | 0.24        |              |   |
|                | Rate of Axial Displacement | (%/min) | 2.00        |              |   |
|                | Cell Pressure              | (kPa)   | 190         |              |   |
|                | Membrane Correction        | (kPa)   | 0.36        |              |   |
|                | Corrected Deviator Stress  | (kPa)   | 399         |              |   |
|                | Undrained Shear Strength   | (kPa)   | 200         |              |   |
|                | Strain at Failure          | (%)     | 6.0         |              |   |
|                | Mode of Failure            |         | Brittle     |              |   |



Approved Signatories: P. KENT S. CAIRNS

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

That-

Compiled By PAUL KENT

Page

Date 03/12/10

Contract

53 Fitzroy Park

Contract Ref: 581433

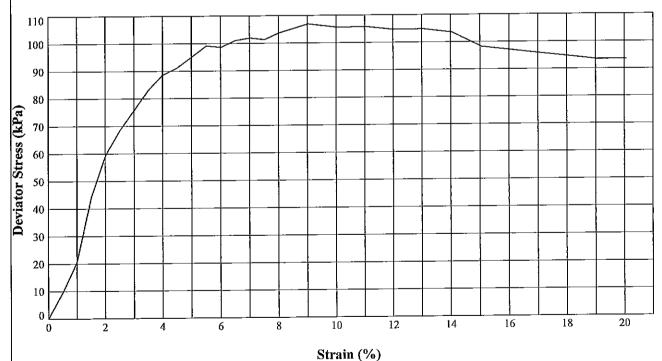
of 20



In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH2A

Sample Ref:


Sample Type:

Depth (m):

4.35

Description: Brown mottled grey CLAY

| STAGE NUMBER   |                            |         | 1           | 2 | 3        |
|----------------|----------------------------|---------|-------------|---|----------|
| SAMPLE DETAILS | Sample Condition           |         | Undisturbed |   |          |
|                | Orientation of sample      |         | Vertical    |   |          |
|                | Diameter                   | (mm)    | 102.84      |   |          |
|                | Height                     | (mm)    | 209.34      |   | <u> </u> |
|                | Moisture Content           | (%)     | 37          |   |          |
|                | Bulk Density               | (Mg/m³) | 1.89        |   |          |
|                | Dry Density                | (Mg/m³) | 1.38        |   |          |
| TEST DETAILS   | Membrane Thickness         | (mm)    | 0.24        |   |          |
|                | Rate of Axial Displacement | (%/min) | 2.00        |   |          |
|                | Cell Pressure              | (kPa)   | 87          |   | <u> </u> |
|                | Membrane Correction        | (kPa)   | 0.49        |   | <u> </u> |
|                | Corrected Deviator Stress  | (kPa)   | 107         |   |          |
|                | Undrained Shear Strength   | (kPa)   | 54          |   | <u></u>  |
|                | Strain at Failure          | (%)     | 9.0         |   |          |
|                | Mode of Failure            |         | Brittle     |   |          |



Approved Signatories: P. KENT S. CAIRNS

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Flat Contract

53 Fitzroy Park

Compiled By

PAUL KENT Contract Ref:

581433

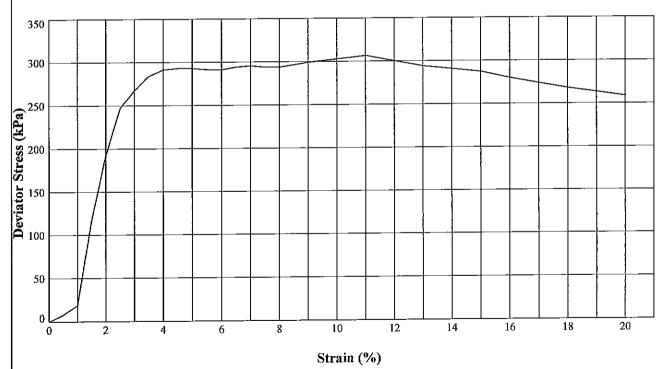
Page 10 of 20

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH2A

Sample Ref:

Sample Type:


U

Depth (m):

12.55

Description: Brownish black CLAY

| STAGE NUMBER   |                            |         | 1           | 2 | 3 |
|----------------|----------------------------|---------|-------------|---|---|
| SAMPLE DETAILS | Sample Condition           |         | Undisturbed |   |   |
|                | Orientation of sample      |         | Vertical    |   |   |
|                | Diameter                   | (mm)    | 102.99      |   |   |
|                | Height                     | (mm)    | 209.78      |   |   |
|                | Moisture Content           | (%)     | 30          |   |   |
|                | Bulk Density               | (Mg/m³) | 1.99        |   |   |
|                | Dry Density                | (Mg/m³) | 1.53        |   |   |
| TEST DETAILS   | Membrane Thickness         | (mm)    | 0.24        | · |   |
|                | Rate of Axial Displacement | (%/min) | 2.00        |   |   |
|                | Cell Pressure              | (kPa)   | 250         |   |   |
|                | Membrane Correction        | (kPa)   | 0.57        |   |   |
|                | Corrected Deviator Stress  | (kPa)   | 307         |   |   |
|                | Undrained Shear Strength   | (kPa)   | 153         |   |   |
|                | Strain at Failure          | (%)     | 11.0        |   |   |
|                | Mode of Failure            | -       | Brittle     |   |   |



Approved Signatories: P. KENT S. CAIRNS

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Fred . Contract

53 Fitzroy Park

Compiled By

PAUL KENT Contract Ref: 581433

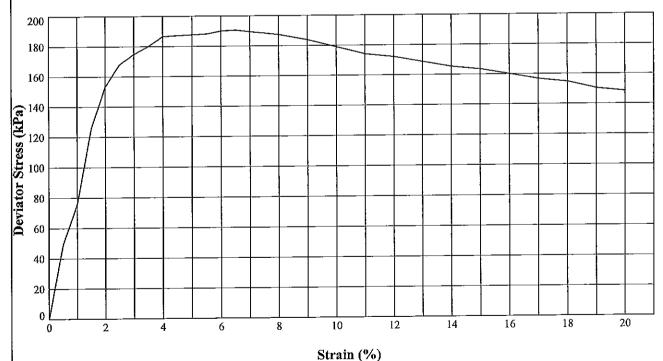
Page H of 20

Date

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH2A

Sample Ref:


Sample Type:

Depth (m):

14.55

Description: Brownish black CLAY

| STAGE NUMBER   |                            |         | 1           | 2          | 3 |
|----------------|----------------------------|---------|-------------|------------|---|
| SAMPLE DETAILS | Sample Condition           |         | Undisturbed |            |   |
|                | Orientation of sample      |         | Vertical    |            |   |
|                | Diameter                   | (mm)    | 102.84      |            |   |
|                | Height                     | (mm)    | 209.73      |            |   |
|                | Moisture Content           | (%)     | 30          |            |   |
|                | Bulk Density               | (Mg/m³) | 1.96        | <u>_</u> . | T |
|                | Dry Density                | (Mg/m³) | 1.51        |            |   |
| TEST DETAILS   | Membrane Thickness         | (mm)    | 0.24        |            |   |
|                | Rate of Axial Displacement | (%/min) | 2.00        |            |   |
|                | Cell Pressure              | (kPa)   | 290         |            |   |
|                | Membrane Correction        | (kPa)   | 0.38        |            |   |
|                | Corrected Deviator Stress  | (kPa)   | 191         |            |   |
|                | Undrained Shear Strength   | (kPa)   | 95          |            |   |
|                | Strain at Failure          | (%)     | 6.5         |            |   |
|                | Mode of Failure            |         | Brittle     |            |   |



Approved Signatories: P. KENT S. CAIRNS

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Contract

53 Fitzroy Park

Franks.

Compiled By

PAUL KENT Contract Ref:

581433

Page 12\_ of 20



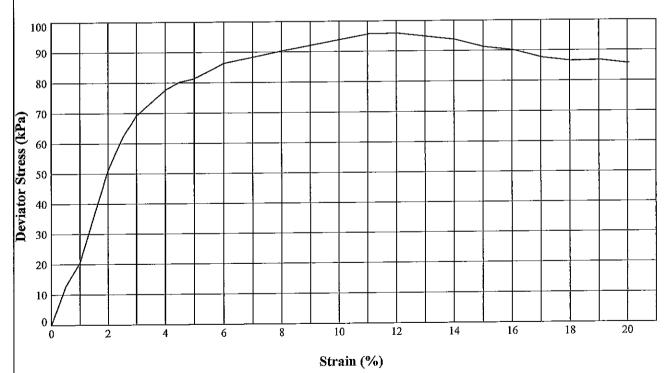
Date

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH6A

Sample Ref:

Sample Type:


 $\mathbf{U}$ 

Depth (m):

2.20

Description: Brown mottled grey CLAY with occasional pockets of fine sand

| STAGE NUMBER   |                                                                                                                                                                                                                                                                                                               |             | 1        | 2 | 3 |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|---|---|
| SAMPLE DETAILS | Sample Condition                                                                                                                                                                                                                                                                                              | Undisturbed |          |   |   |
|                | Orientation of sample                                                                                                                                                                                                                                                                                         |             | Vertical |   |   |
|                | Diameter                                                                                                                                                                                                                                                                                                      | (mm)        | 102.97   | · |   |
|                | Height                                                                                                                                                                                                                                                                                                        | (mm)        | 209.40   |   |   |
|                | Moisture Content                                                                                                                                                                                                                                                                                              | (%)         | 32       |   |   |
|                | Bulk Density                                                                                                                                                                                                                                                                                                  | (Mg/m³)     | 1.87     |   |   |
|                | Dry Density                                                                                                                                                                                                                                                                                                   | (Mg/m³)     | 1.41     |   |   |
| TEST DETAILS   | Membrane Thickness                                                                                                                                                                                                                                                                                            | (mm)        | 0.24     |   |   |
|                | Rate of Axial Displacement                                                                                                                                                                                                                                                                                    | (%/min)     | 2.00     |   |   |
|                | Sample Condition  Orientation of sample  Diameter (m)  Height (m)  Moisture Content (Mg/r)  Dry Density (Mg/r)  Dry Density (Mg/r)  ILS Membrane Thickness (m)  Rate of Axial Displacement (%/m)  Cell Pressure (kl)  Membrane Correction (kl)  Corrected Deviator Stress (kl)  Undrained Shear Strength (kl) | (kPa)       | 44       |   |   |
|                | Membrane Correction                                                                                                                                                                                                                                                                                           | (kPa)       | 0.61     |   |   |
|                | Corrected Deviator Stress                                                                                                                                                                                                                                                                                     | (kPa)       | 96       |   |   |
|                | Undrained Shear Strength                                                                                                                                                                                                                                                                                      | (kPa)       | 48       |   |   |
|                | Strain at Failure                                                                                                                                                                                                                                                                                             | (%)         | 12.0     |   |   |
|                | Mode of Failure                                                                                                                                                                                                                                                                                               |             | Compound |   |   |



Approved Signatories: P. KENT S. CAIRNS

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Contract

53 Fitzroy Park

Flacks.

Compiled By

PAUL KENT Contract Ref:

581433

of 20

Page 13

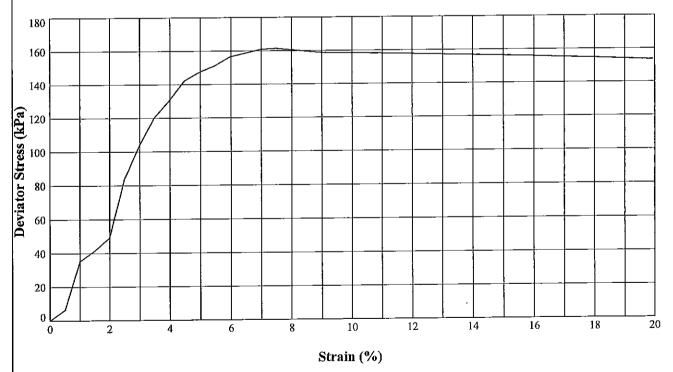
Date

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH6A

Sample Ref:

Sample Type:


U

Depth (m):

6.55

Description: Brownish black CLAY

| STAGE NUMBER   |                            |         | 1           | 2             | 3 |
|----------------|----------------------------|---------|-------------|---------------|---|
| SAMPLE DETAILS | Sample Condition           |         | Undisturbed |               |   |
|                | Orientation of sample      |         | Vertical    |               |   |
|                | Diameter                   | (mm)    | 102.05      |               |   |
|                | Height                     | (mm)    | 200.73      |               |   |
|                | Moisture Content           | (%)     | 31          |               |   |
|                | Bulk Density               | (Mg/m³) | 1.96        | <del></del> _ |   |
|                | Dry Density                | (Mg/m³) | 1.50        |               |   |
| TEST DETAILS   | Membrane Thickness         | (mm)    | 0.24        |               |   |
|                | Rate of Axial Displacement | (%/min) | 2.00        |               |   |
|                | Cell Pressure              | (kPa)   | 130         |               |   |
|                | Membrane Correction        | (kPa)   | 0.43        |               |   |
|                | Corrected Deviator Stress  | (kPa)   | 162         |               |   |
|                | Undrained Shear Strength   | (kPa)   | 81          |               |   |
|                | Strain at Failure          | (%)     | 7.5         |               |   |
|                | Mode of Failure            |         | Compound    | <u> </u>      |   |



Approved Signatories: P. KENT S. CAIRNS

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Contract

53 Fitzroy Park

Fred .

Compiled By

PAUL KENT Contract Ref:

581433

Page 14 of 20

Date

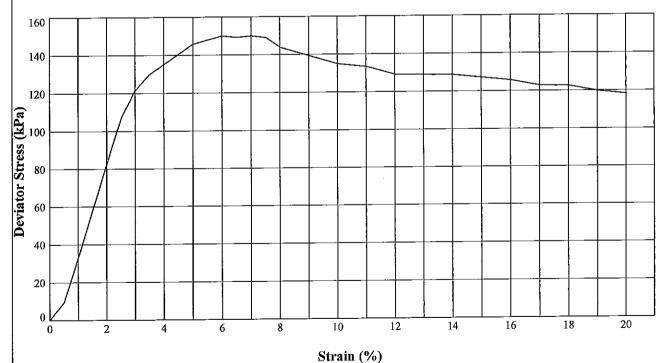
03/12/10

GINT\_LIBRARY\_V8\_04.GLB!L - TRIAXIAL TEST - BS VERSION | 581433-53 FITZROY PARK-241919-RSK STATS GEO.GPJ - v8\_04 | 03/12/10 - 10:57 | PK.

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH6A

Sample Ref:


Sample Type:

Depth (m):

9.55

Description: Brownish black CLAY

| STAGE NUMBER   |                            |         | 1           | 2 | 3 |
|----------------|----------------------------|---------|-------------|---|---|
| SAMPLE DETAILS | Sample Condition           |         | Undisturbed |   | _ |
|                | Orientation of sample      |         | Vertical    |   |   |
|                | Diameter                   | (mm)    | 103,21      |   |   |
|                | Height                     | (mm)    | 209.71      |   |   |
|                | Moisture Content           | (%)     | 31          |   |   |
|                | Bulk Density               | (Mg/m³) | 1.96        |   |   |
|                | Dry Density                | (Mg/m³) | 1.50        |   |   |
| TEST DETAILS   | Membrane Thickness         | (mm)    | 0.24        |   |   |
|                | Rate of Axial Displacement | (%/min) | 2.00        |   |   |
|                | Cell Pressure              | (kPa)   | 190         |   |   |
|                | Membrane Correction        | (kPa)   | 0.36        |   |   |
|                | Corrected Deviator Stress  | (kPa)   | 150         |   |   |
|                | Undrained Shear Strength   | (kPa)   | 75          |   |   |
|                | Strain at Failure          | (%)     | 6.0         |   |   |
|                | Mode of Failure            |         | Brittle     |   |   |



Approved Signatories: P. KENT S. CAIRNS

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Flant

Compiled By

PAUL KENT

Date 03/12/10

Contract

53 Fitzroy Park

Contract Ref: 581433

Page 15 of

20

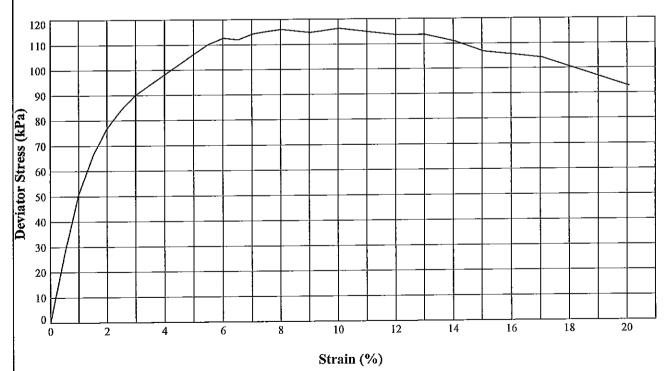
GINT\_LIBRARY\_V8\_04.GLBIL - TRIAXIAL TEST - BS VERSION | 581433-53 FITZROY PARK-241919-RSK STATS GEO.GPJ - v8\_04 | 03/12/10 - 10:57 | PK.

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH8A

Sample Ref:

Sample Type:


 $\mathbf{U}$ 

Depth (m):

1.20

Description: Brown mottled grey CLAY with occasional pockets of fine sand

| STAGE NUMBER   |                            |         | 1           | 2 | 3 |
|----------------|----------------------------|---------|-------------|---|---|
| SAMPLE DETAILS | Sample Condition           |         | Undisturbed |   |   |
|                | Orientation of sample      |         | Vertical    |   |   |
|                | Diameter                   | (mm)    | 102.59      |   |   |
|                | Height                     | (mm)    | 209.17      |   |   |
|                | Moisture Content           | (%)     | 36          |   |   |
|                | Bulk Density               | (Mg/m³) | 1.87        |   |   |
|                | Dry Density                | (Mg/m³) | 1.37        |   |   |
| TEST DETAILS   | Membrane Thickness         | (mm)    | 0.24        |   |   |
|                | Rate of Axial Displacement | (%/min) | 2.00        |   |   |
|                | Cell Pressure              | (kPa)   | 24          |   |   |
|                | Membrane Correction        | (kPa)   | 0.54        |   |   |
|                | Corrected Deviator Stress  | (kPa)   | 116         |   |   |
|                | Undrained Shear Strength   | (kPa)   | 58          |   |   |
|                | Strain at Failure          | (%)     | 10.0        |   |   |
|                | Mode of Failure            |         | Compound    |   |   |



Approved Signatories: P. KENT S. CAIRNS

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Flat

Compiled By

PAUL KENT

Contract Ref:

03/12/10

Contract

53 Fitzroy Park

581433

Page 16 of 20

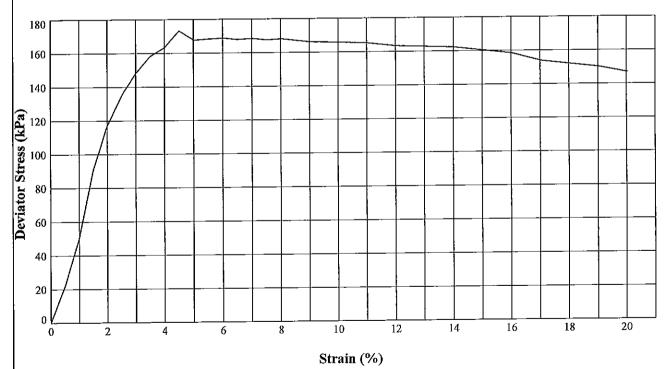
GINT\_LIBRARY\_V8\_04.GLB!L - TRIAXIAL TEST - BS VERSION | 581433-53 FITZROY PARK-241919-RSK STATS GEO.GPJ - v8\_04 | 03/12/10 - 10:58 | PK.

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH8A

Sample Ref:

Sample Type:


 $\mathbf{U}$ 

Depth (m):

5.20

Description: Brownish black CLAY with occasional pockets of silty fine sand

| STAGE NUMBER   |                            |         | 1           | 2 | 3 |
|----------------|----------------------------|---------|-------------|---|---|
| SAMPLE DETAILS | Sample Condition           |         | Undisturbed |   |   |
|                | Orientation of sample      |         | Vertical    |   |   |
|                | Diameter                   | (mm)    | 102.91      |   |   |
|                | Height                     | (mm)    | 209.55      |   |   |
|                | Moisture Content           | (%)     | 28          |   |   |
|                | Bulk Density               | (Mg/m³) | 1.99        |   |   |
|                | Dry Density                | (Mg/m³) | 1.55        |   |   |
| TEST DETAILS   | Membrane Thickness         | (mm)    | 0.24        |   |   |
|                | Rate of Axial Displacement | (%/min) | 2.00        |   |   |
|                | Cell Pressure              | (kPa)   | 105         |   |   |
|                | Membrane Correction        | (kPa)   | 0.29        |   |   |
|                | Corrected Deviator Stress  | (kPa)   | 173         |   |   |
|                | Undrained Shear Strength   | (kPa)   | 87          |   |   |
|                | Strain at Failure          | (%)     | 4.5         |   |   |
|                | Mode of Failure            |         | Compound    |   | l |



Approved Signatories: P. KENT S. CAIRNS



STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire **HP3 9RT** 

Red

Compiled By

PAUL KENT

Date 03/12/10

Contract

53 Fitzroy Park

Contract Ref: 581433

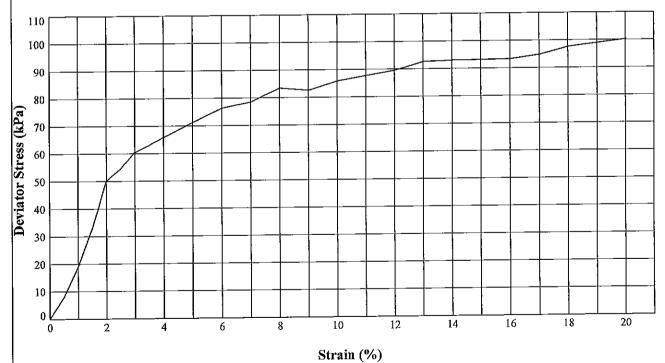
Page 17 of 20 AGS

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH8A

Sample Ref:

Sample Type:


 $\mathbf{U}$ 

Depth (m):

8.05

Description: Brownish black CLAY

| STAGE NUMBER   |                            |         | 1           | 2 | 3        |
|----------------|----------------------------|---------|-------------|---|----------|
| SAMPLE DETAILS | Sample Condition           |         | Undisturbed |   |          |
|                | Orientation of sample      |         | Vertical    |   |          |
|                | Diameter                   | (mm)    | 102.67      |   |          |
|                | Height                     | (mm)    | 209.68      |   |          |
|                | Moisture Content           | (%)     | 35          |   |          |
| :              | Bulk Density               | (Mg/m³) | 1.95        |   |          |
|                | Dry Density                | (Mg/m³) | 1.44        |   |          |
| TEST DETAILS   | Membrane Thickness         | (mm)    | 0.24        |   |          |
|                | Rate of Axial Displacement | (%/min) | 2.00        |   |          |
|                | Cell Pressure              | (kPa)   | 160         |   |          |
|                | Membrane Correction        | (kPa)   | 0.89        |   |          |
|                | Corrected Deviator Stress  | (kPa)   | 100         |   |          |
|                | Undrained Shear Strength   | (kPa)   | 50          |   |          |
|                | Strain at Failure          | (%)     | 20.0        |   |          |
|                | Mode of Failure            |         | Compound    |   | <u> </u> |



Approved Signatories: P. KENT S. CAIRNS

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Frank.

Compiled By

PAUL KENT

Date 03/12/10

Contract

53 Fitzroy Park

Contract Ref: 581433

Page 18 of 20

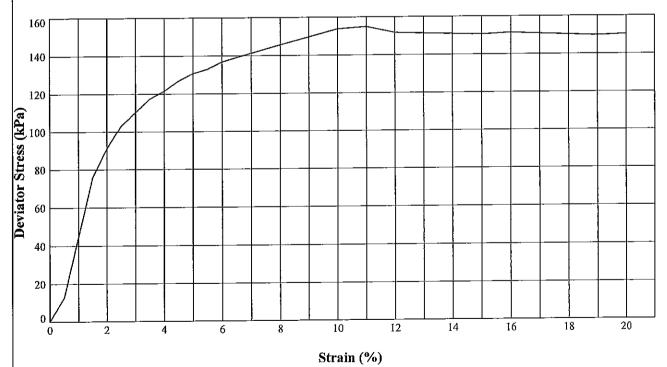
## UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH9A

Sample Ref:

Sample Type:


 $\mathbf{U}$ 

Depth (m):

2.50

Description: Brown mottled grey CLAY with traces of roots and rootlets

| STAGE NUMBER   |                            |         | 1           | 2        | 3 |
|----------------|----------------------------|---------|-------------|----------|---|
| SAMPLE DETAILS | Sample Condition           |         | Undisturbed |          |   |
|                | Orientation of sample      |         | Vertical    |          |   |
|                | Diameter                   | (mm)    | 102.61      |          |   |
|                | Height                     | (mm)    | 209.99      |          |   |
|                | Moisture Content           | (%)     | 29          |          |   |
|                | Bulk Density               | (Mg/m³) | 1.97        | <u> </u> |   |
|                | Dry Density                | (Mg/m³) | 1.53        |          |   |
| TEST DETAILS   | Membrane Thickness         | (mm)    | 0.24        |          |   |
|                | Rate of Axial Displacement | (%/min) | 2.00        |          |   |
|                | Cell Pressure              | (kPa)   | 50          |          |   |
|                | Membrane Correction        | (kPa)   | 0.58        |          |   |
|                | Corrected Deviator Stress  | (kPa)   | 155         |          |   |
|                | Undrained Shear Strength   | (kPa)   | 78          |          |   |
|                | Strain at Failure          | (%)     | 11.0        |          |   |
|                | Mode of Failure            |         | Compound    |          |   |



Approved Signatories: P. KENT S. CAIRNS

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Contract

53 Fitzroy Park

· chaff

Compiled By

PAUL KENT Contract Ref:

581433

Page 19 of 20



Date

03/12/10

GINT\_LIBRARY\_V8\_04.GLB1L - TRIAXIAL TEST - BS VERSION | 581433-53 FITZROY PARK-241919-RSK STATS GEO.GPI - v8\_04 | 05/12/10 - 10:59 | PK.

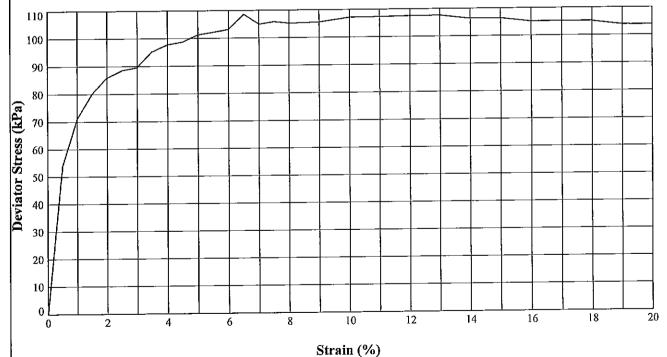
## UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377:Part 7:1990, Clause 8

Borehole: BH9A

Sample Ref:

Sample Type:


U

Depth (m):

6.55

Description: Brownish black CLAY

| STAGE NUMBER   |                            |         | 1           | 2 | 3 |
|----------------|----------------------------|---------|-------------|---|---|
| SAMPLE DETAILS | Sample Condition           |         | Undisturbed |   |   |
|                | Orientation of sample      |         | Vertical    |   |   |
|                | Diameter                   | (mm)    | 102.85      |   |   |
|                | Height                     | (mm)    | 208.14      |   |   |
|                | Moisture Content           | (%)     | 31          |   |   |
|                | Bulk Density               | (Mg/m³) | 2.00        |   |   |
|                | Dry Density                | (Mg/m³) | 1.52        |   |   |
| TEST DETAILS   | Membrane Thickness         | (mm)    | 0.24        |   |   |
|                | Rate of Axial Displacement | (%/min) | 2.00        |   |   |
|                | Cell Pressure              | (kPa)   | 130         |   | l |
|                | Membrane Correction        | (kPa)   | 0.38        |   |   |
|                | Corrected Deviator Stress  | (kPa)   | 109         |   |   |
|                | Undrained Shear Strength   | (kPa)   | 54          |   |   |
|                | Strain at Failure          | (%)     | 6.5         |   |   |
|                | Mode of Failure            |         | Brittle     |   |   |



Approved Signatories: P. KENT S. CAIRNS

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Frest. Contract

53 Fitzroy Park

Compiled By

PAUL KENT Contract Ref:

581433 Page

20 20 of

03/12/10

### **APPENDIX D**

## **Chemical Laboratory Test Records**

(This appendix contains 8 pages, including this)





### FINAL ANALYTICAL TEST REPORT

**Envirolab Job Number:** 10/04101

**Issue Number:** 1 **Date:** 07 December, 2010

Client: RSK STATS Hemel Hempstead

18 Frogmore Road Hemel Hempstead

Hertfordshire

UK

HP3 9RT

Project Manager: Clive Gerring
Project Name: 53 Fitzroy Park

Project Ref: 241919

Order No: Not specified
Date Samples Received: 29/11/10
Date Instructions Received: 29/11/10
Date Analysis Completed: 07/12/10

Prepared by: Approved by:

Melanie Marshall Gill Scott

Laboratory Coordinator Laboratory Manager

Notes - Soil analysis

All results are reported as dry weight (<40 °C).

Marshall

Stones >10mm are removed from the sample prior to analysis and results corrected where appropriate.

Notes - General

For soil samples subscript A indicates analysis performed on the sample as received, D indicates analysis performed on dried & crushed sample.

Superscript M indicates method accredited to MCERTS.

Predominant Matrix Codes - 1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our MCERTS accreditation. Secondary Matrix Codes - A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient sample for analysis. NDP indicates No Determination Possible. NFI indicates No Fibres Identified. Superscript # indicates method accredited to ISO 17025.

Accreditation for TPH (C6-C40) applies to the range C6-C36 only.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.



| _                                                   |            |            |            |            | ••         | r roject ner |            |            |       |                |
|-----------------------------------------------------|------------|------------|------------|------------|------------|--------------|------------|------------|-------|----------------|
| Lab Sample ID                                       | 10/04101/1 | 10/04101/2 | 10/04101/3 | 10/04101/4 | 10/04101/5 | 10/04101/6   | 10/04101/7 | 10/04101/8 |       |                |
| Client Sample No                                    |            |            |            |            |            |              |            |            |       |                |
| Client Sample ID                                    | BH1A       | BH2A       | ВН6А       | ВН8А       | ВН9А       | BH2A         | BH1A       | BH1A       |       |                |
| Depth to Top                                        | 0.40       | 0.45       | 0.25       | 0.40       | 0.40       | 1.35         | 1.90       | 7.50       |       |                |
| Depth To Bottom                                     | 0.70       | 0.90       | 0.70       | 0.70       | 0.70       | 1.80         |            |            |       |                |
| Date Sampled                                        | 24-Nov-10  | 24-Nov-10  | 24-Nov-10  | 24-Nov-10  | 24-Nov-10  | 24-Nov-10    | 24-Nov-10  | 24-Nov-10  |       | <del>J</del> e |
| Sample Type                                         | Soil       | Soil       | Soil       | Soil       | Soil       | Soil         | Soil       | Soil       | ø     | Method ref     |
| Sample Matrix Code                                  | 6E         | 4AE        | 5AE        | 5AE        | 5AE        | 4AE          | 3          | 3          | Units | Meth           |
| ACM Screen <sub>A</sub>                             | NFI        | NFI        | NFI        | NFI        | NFI        | -            | -          | -          |       | Visual         |
| pH <sub>D</sub> <sup>M#</sup>                       | 7.6        | 7.4        | 7.2        | 8.2        | 8.3        | 7.5          | 8.0        | 8.2        | рН    | A-T-031s       |
| Sulphate (water sol 2:1) <sub>D</sub> <sup>M#</sup> | -          | -          | -          | -          | <0.01      | 0.05         | 0.23       | 0.41       | g/l   | A-T-026s       |
| Organic matter <sub>D</sub> <sup>M#</sup>           | -          | 5.5        | 2.3        | -          | 3.6        | -            | -          | -          | % w/w | A-T-032 OM     |
| Arsenic <sub>D</sub> <sup>M#</sup>                  | 22         | 18         | 7          | 11         | 11         | -            | -          | -          | mg/kg | A-T-024        |
| Boron (water soluble) <sub>D</sub> <sup>M#</sup>    | 1.7        | <1.0       | <1.0       | <1.0       | <1.0       | -            | -          | -          | mg/kg | A-T-027s       |
| Cadmium <sub>D</sub> <sup>M#</sup>                  | 0.8        | <0.5       | <0.5       | <0.5       | <0.5       | -            | -          | -          | mg/kg | A-T-024        |
| Copper <sub>D</sub> <sup>M#</sup>                   | 75         | 55         | 19         | 24         | 24         | -            | -          | -          | mg/kg | A-T-024        |
| Chromium <sub>D</sub> <sup>M#</sup>                 | 37         | 16         | 13         | 19         | 20         | -            | -          | -          | mg/kg | A-T-024        |
| Lead <sub>D</sub> <sup>M#</sup>                     | 329        | 469        | 106        | 190        | 200        | -            | -          | -          | mg/kg | A-T-024        |
| Mercury <sub>D</sub>                                | 0.56       | 0.24       | 0.23       | 0.57       | 0.82       | -            | -          | -          | mg/kg | A-T-024        |
| Nickel <sub>D</sub> <sup>M#</sup>                   | 32         | 19         | 8          | 13         | 13         | -            | -          | -          | mg/kg | A-T-024        |
| Selenium <sub>D</sub> <sup>M#</sup>                 | 2          | 1          | <1         | <1         | <1         | -            | -          | -          | mg/kg | A-T-024        |
| Zinc <sub>D</sub> <sup>M#</sup>                     | 397        | 241        | 54         | 79         | 89         | -            | -          | -          | mg/kg | A-T-024        |



| _                                   |            |            |            |            |            |            |            |            |           |             |
|-------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|-------------|
| Lab Sample ID                       | 10/04101/1 | 10/04101/2 | 10/04101/3 | 10/04101/4 | 10/04101/5 | 10/04101/6 | 10/04101/7 | 10/04101/8 |           |             |
| Client Sample No                    |            |            |            |            |            |            |            |            |           |             |
| Client Sample ID                    | BH1A       | BH2A       | ВН6А       | ВН8А       | ВН9А       | BH2A       | BH1A       | BH1A       |           |             |
| Depth to Top                        | 0.40       | 0.45       | 0.25       | 0.40       | 0.40       | 1.35       | 1.90       | 7.50       |           |             |
| Depth To Bottom                     | 0.70       | 0.90       | 0.70       | 0.70       | 0.70       | 1.80       |            |            |           |             |
| Date Sampled                        | 24-Nov-10  |           | e e         |
| Sample Type                         | Soil       | <b>(0</b> | od r        |
| Sample Matrix Code                  | 6E         | 4AE        | 5AE        | 5AE        | 5AE        | 4AE        | 3          | 3          | Units     | Method ref  |
| TPH CWG                             |            |            |            |            |            |            |            |            |           |             |
| Ali >C5-C6 <sub>A</sub>             | -          | <0.01      | <0.01      | -          | <0.01      | -          | -          | -          | mg/kg     | A-T-022s    |
| Ali >C6-C8 <sub>A</sub>             | -          | <0.01      | <0.01      | -          | <0.01      | -          | -          | -          | mg/kg     | A-T-022s    |
| Ali >C8-C10 <sub>A</sub>            | -          | <0.01      | <0.01      | -          | <0.01      | -          | -          | -          | mg/kg     | A-T-022s    |
| Ali >C10-C12 <sub>A</sub> #         | -          | <0.1       | <0.1       | -          | <0.1       | -          | -          | -          | mg/kg     | A-T-023s    |
| Ali >C12-C16 <sub>A</sub> #         | -          | <0.1       | <0.1       | -          | <0.1       | -          | -          | -          | mg/kg     | A-T-023s    |
| Ali >C16-C21 <sub>A</sub> #         | -          | <0.1       | <0.1       | -          | <0.1       | -          | -          | -          | mg/kg     | A-T-023s    |
| Ali >C21-C35 <sub>A</sub> #         | -          | <0.1       | <0.1       | -          | 16.5       | -          | -          | -          | mg/kg     | A-T-023s    |
| Total Aliphatics <sub>A</sub> #     | -          | <0.1       | <0.1       | -          | 16.5       | -          | -          | -          | mg/kg     | A-T-022+23s |
| Aro >C5-C7 <sub>A</sub>             | -          | <0.01      | <0.01      | -          | <0.01      | -          | -          | -          | mg/kg     | A-T-022s    |
| Aro >C7-C8 <sub>A</sub>             | -          | <0.01      | <0.01      | -          | <0.01      | -          | -          | -          | mg/kg     | A-T-022s    |
| Aro >C8-C9 <sub>A</sub>             | -          | <0.01      | 0.02       | -          | 0.03       | -          | -          | -          | mg/kg     | A-T-022s    |
| Aro >C9-C10 <sub>A</sub>            | -          | <0.01      | <0.01      | -          | <0.01      | -          | -          | -          | mg/kg     | A-T-022s    |
| Aro >C10-C12 <sub>A</sub> #         | -          | <0.1       | <0.1       | -          | <0.1       | -          | -          | -          | mg/kg     | A-T-023s    |
| Aro >C12-C16 <sub>A</sub> #         | -          | <0.1       | <0.1       | -          | <0.1       | -          | -          | -          | mg/kg     | A-T-023s    |
| Aro >C16-C21 <sub>A</sub> #         | -          | 17.4       | <0.1       | -          | <0.1       | -          | -          | -          | mg/kg     | A-T-023s    |
| Aro >C21-C35 <sub>A</sub> #         | -          | 33.7       | <0.1       | -          | <0.1       | -          | -          | -          | mg/kg     | A-T-023s    |
| Total Aromatics <sub>A</sub> #      | -          | 51.1       | <0.1       | -          | <0.1       | -          | -          | -          | mg/kg     | A-T-022+23s |
| TPH (Ali & Aro) <sub>A</sub> #      | -          | 51.1       | <0.1       | -          | 16.5       | -          | -          | -          | mg/kg     | A-T-022+23s |
|                                     |            |            |            |            |            |            |            |            |           |             |
| BTEX - Benzene <sub>A</sub> #       | -          | <0.01      | <0.01      | -          | <0.01      | -          | -          | -          | mg/kg     | A-T-022s    |
| BTEX - Toluene <sub>A</sub> #       | -          | <0.01      | <0.01      | -          | <0.01      | -          | -          | -          | mg/kg     | A-T-022s    |
| BTEX - Ethyl Benzene <sub>A</sub> # | -          | <0.01      | <0.01      | -          | <0.01      | -          | -          | -          | mg/kg     | A-T-022s    |
| BTEX - m & p Xylene <sub>A</sub> #  | -          | <0.01      | 0.01       | -          | 0.02       | -          | -          | -          | mg/kg     | A-T-022s    |
| BTEX - o Xylene <sub>A</sub> #      | -          | <0.01      | <0.01      | -          | 0.01       | -          | -          | -          | mg/kg     | A-T-022s    |
| MTBE <sub>A</sub> #                 | -          | <0.01      | <0.01      | -          | <0.01      | -          | -          | -          | mg/kg     | A-T-022s    |
|                                     |            |            |            |            |            |            |            |            |           |             |
|                                     |            |            |            |            |            |            |            |            |           |             |



| B                                               |            |            |            |            |            | i roject nei |            |            |       |            |
|-------------------------------------------------|------------|------------|------------|------------|------------|--------------|------------|------------|-------|------------|
| Lab Sample ID                                   | 10/04101/1 | 10/04101/2 | 10/04101/3 | 10/04101/4 | 10/04101/5 | 10/04101/6   | 10/04101/7 | 10/04101/8 |       |            |
| Client Sample No                                |            |            |            |            |            |              |            |            |       |            |
| Client Sample ID                                | BH1A       | BH2A       | ВН6А       | ВН8А       | ВН9А       | BH2A         | BH1A       | BH1A       |       |            |
| Depth to Top                                    | 0.40       | 0.45       | 0.25       | 0.40       | 0.40       | 1.35         | 1.90       | 7.50       |       |            |
| Depth To Bottom                                 | 0.70       | 0.90       | 0.70       | 0.70       | 0.70       | 1.80         |            |            |       |            |
| Date Sampled                                    | 24-Nov-10  | 24-Nov-10  | 24-Nov-10  | 24-Nov-10  | 24-Nov-10  | 24-Nov-10    | 24-Nov-10  | 24-Nov-10  |       | əĘ         |
| Sample Type                                     | Soil       | Soil       | Soil       | Soil       | Soil       | Soil         | Soil       | Soil       | (n    | Method ref |
| Sample Matrix Code                              | 6E         | 4AE        | 5AE        | 5AE        | 5AE        | 4AE          | 3          | 3          | Units | Meth       |
| PAH 16                                          |            |            |            |            |            |              |            |            |       |            |
| Acenapthene <sub>A</sub> <sup>M#</sup>          | <0.01      | 0.06       | <0.01      | <0.01      | <0.01      | -            | -          | -          | mg/kg | A-T-019s   |
| Acenapthylene <sub>A</sub> <sup>M#</sup>        | <0.01      | 0.07       | <0.01      | <0.01      | <0.01      | -            | -          | -          | mg/kg | A-T-019s   |
| Anthracene <sub>A</sub> <sup>M#</sup>           | 0.04       | 0.32       | 0.07       | <0.01      | 0.01       | -            | -          | -          | mg/kg | A-T-019s   |
| Benzo(a)anthracene <sub>A</sub> #               | 0.07       | 0.62       | 0.20       | <0.01      | <0.01      | -            | -          | -          | mg/kg | A-T-019s   |
| Benzo(a)pyrene <sub>A</sub> <sup>M#</sup>       | 0.04       | 1.43       | 0.05       | <0.01      | <0.01      | -            | -          | -          | mg/kg | A-T-019s   |
| Benzo(b)fluoranthene <sub>A</sub> <sup>M#</sup> | 0.13       | 1.07       | 0.15       | <0.01      | <0.01      | -            | -          | -          | mg/kg | A-T-019s   |
| Benzo(ghi)perylene <sub>A</sub> <sup>M#</sup>   | 0.18       | 1.48       | 0.10       | <0.01      | <0.01      | -            | -          | -          | mg/kg | A-T-019s   |
| Benzo(k)fluoranthene <sub>A</sub>               | 0.14       | 1.26       | 0.14       | <0.01      | <0.01      | -            | -          | -          | mg/kg | A-T-019s   |
| Chrysene <sub>A</sub> <sup>M#</sup>             | 0.17       | 1.49       | 0.15       | <0.01      | <0.01      | -            | -          | -          | mg/kg | A-T-019s   |
| Dibenzo(ah)anthracene <sub>A</sub> #            | <0.01      | 0.11       | <0.01      | <0.01      | <0.01      | -            | -          | -          | mg/kg | A-T-019s   |
| Fluoranthene <sub>A</sub> <sup>M#</sup>         | 0.22       | 2.75       | 0.14       | <0.01      | 0.05       | -            | -          | -          | mg/kg | A-T-019s   |
| Fluorene <sub>A</sub> <sup>M#</sup>             | <0.01      | 0.05       | <0.01      | <0.01      | <0.01      | -            | -          | -          | mg/kg | A-T-019s   |
| Indeno(123-cd)pyrene <sub>A</sub> #             | <0.01      | 0.58       | <0.01      | <0.01      | <0.01      | -            | -          | -          | mg/kg | A-T-019s   |
| Napthalene <sub>A</sub> <sup>M#</sup>           | <0.01      | 0.10       | 0.02       | 0.02       | 0.02       | -            | -          | -          | mg/kg | A-T-019s   |
| Phenanthrene <sub>A</sub> <sup>M#</sup>         | 0.10       | 0.82       | 0.07       | <0.01      | 0.04       | -            | -          | -          | mg/kg | A-T-019s   |
| Pyrene <sub>A</sub> <sup>M#</sup>               | 0.21       | 2.50       | 0.11       | <0.01      | 0.05       | -            | -          | -          | mg/kg | A-T-019s   |
| Total PAH <sub>A</sub> #                        | 1.30       | 14.7       | 1.21       | 0.02       | 0.18       | -            | -          | -          | mg/kg | A-T-019s   |



| Lab Sample ID                                       | 10/04101/9 | 10/04101/10 | 10/04101/11 | 10/04101/12 | 10/04101/13 | 10/04101/14 |  |       |          |
|-----------------------------------------------------|------------|-------------|-------------|-------------|-------------|-------------|--|-------|----------|
| Client Sample No                                    |            |             |             |             |             |             |  |       |          |
| Client Sample ID                                    | BH2A       | ВН6А        | ВН6А        | ВН8А        | ВН8А        | вн9А        |  |       |          |
| Depth to Top                                        | 9.00       | 4.90        | 8.05        | 1.10        | 6.10        | 3.20        |  |       |          |
| Depth To Bottom                                     |            |             | 8.50        |             |             |             |  |       |          |
| Date Sampled                                        | 24-Nov-10  | 24-Nov-10   | 24-Nov-10   | 24-Nov-10   | 24-Nov-10   | 24-Nov-10   |  |       | ref      |
| Sample Type                                         | Soil       | Soil        | Soil        | Soil        | Soil        | Soil        |  | v     | r bot    |
| Sample Matrix Code                                  | 3          | 3           | 3           | 3           | 3           | 3           |  | Units | Method   |
| pH <sub>D</sub> <sup>M#</sup>                       | 8.9        | 8.6         | 8.6         | 7.6         | 8.2         | 7.4         |  | рН    | A-T-031s |
| Sulphate (water sol 2:1) <sub>D</sub> <sup>M#</sup> | 0.28       | 0.17        | 0.26        | 0.27        | 0.28        | 0.47        |  | g/l   | A-T-026s |



## FINAL ANALYTICAL TEST REPORT

**Envirolab Job Number:** 10/04194

**Issue Number:** 1 **Date:** 14 December, 2010

Client: RSK STATS Hemel Hempstead

18 Frogmore Road Hemel Hempstead

Hertfordshire

UK

HP3 9RT

Project Manager: Clive Gerring
Project Name: 53 Fitzroy Park

Project Ref: 241919

Order No:

Date Samples Received:

Date Instructions Received:

Date Analysis Completed:

Not specified
02/12/10
02/12/10
14/12/10

Prepared by: Approved by:

Melanie Marshall John Gustafson

Laboratory Coordinator Director

Notes - Soil analysis

All results are reported as dry weight (<40 °C).

Marshall

Stones >10mm are removed from the sample prior to analysis and results corrected where appropriate.

Notes - General

For soil samples subscript A indicates analysis performed on the sample as received, D indicates analysis performed on dried & crushed sample.

Superscript M indicates method accredited to MCERTS.

Predominant Matrix Codes - 1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our MCERTS accreditation. Secondary Matrix Codes - A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient sample for analysis. NDP indicates No Determination Possible. NFI indicates No Fibres Identified. Superscript # indicates method accredited to ISO 17025.

Accreditation for TPH (C6-C40) applies to the range C6-C36 only.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.





| _                                     |            |            |            | Chent | Project Rei | . 241313 |                |            |
|---------------------------------------|------------|------------|------------|-------|-------------|----------|----------------|------------|
| Lab Sample ID                         | 10/04194/1 | 10/04194/2 | 10/04194/3 |       |             |          |                |            |
| Client Sample No                      |            |            |            |       |             |          |                |            |
| Client Sample ID                      | BH1A       | BH2A       | Pond       |       |             |          |                |            |
| Depth to Top                          |            |            |            |       |             |          |                |            |
| Depth To Bottom                       |            |            |            |       |             |          |                |            |
| Date Sampled                          |            |            |            |       |             |          |                | ef         |
| Sample Type                           | Water - GW | Water - GW | Water - GW |       |             |          | s              | Method ref |
| Sample Matrix Code                    |            |            |            |       |             |          | Units          | Meth       |
| pH (w) <sub>A</sub> #                 | 7.3        | 7.3        | 7.5        |       |             |          | pН             | A-T-031w   |
| Alkalinity (bicarbonate) <sub>A</sub> | -          | 500        | 390        |       |             |          | mg/l Ca<br>CO3 | A-T-038    |
| Alkalinity (carbonate) <sub>A</sub>   | -          | <15        | <15        |       |             |          | mg/l Ca<br>CO3 | A-T-038    |
| Chloride (w) <sub>A</sub> #           | -          | 143        | 40         |       |             |          | mg/l           | A-T-026w   |
| Sulphate (w) <sub>A</sub> #           | 827        | 1753       | 66         |       |             |          | mg/l           | A-T-026w   |
| Calcium (dissolved) <sub>A</sub> #    | -          | 457        | 95.3       |       |             |          | mg/l           | A-T-049    |
| Lead (dissolved) <sub>A</sub> #       | -          | 1          | -          |       |             |          | μg/l           | A-T-025    |
| Magnesium (dissolved) <sub>A</sub> #  | -          | 208        | 23.6       |       |             |          | mg/l           | A-T-049    |
| Potassium (dissolved) <sub>A</sub> #  | -          | 26.5       | 14.5       |       |             |          | mg/l           | A-T-049    |
| Sodium (dissolved) <sub>A</sub> #     | -          | 217        | 28.6       |       |             |          | mg/l           | A-T-049    |
| Benzo(a)pyrene (w) <sub>A</sub> #     | -          | <0.01      | -          |       |             |          | μg/l           | A-T-019w   |

### **APPENDIX E**

## **CLEA Software Output Reports**

(This appendix contains 13 pages, including this)





# Generic Assessment Criteria for Human Health Residential Scenario – Private Gardens

The human health generic assessment criteria (GAC) have been developed during a period of regulatory review and updating of the Contaminated Land Exposure Assessment (CLEA) project. Hence, the Environment Agency (EA) is in the process of publishing updated reports relating to the CLEA project and the GAC presented in this document may change to reflect these updates. This issue was prepared following the publication of soil guideline value reports and associated publications<sup>(1)</sup> for mercury, selenium, benzene, toluene, ethylbenzene and xylene in March 2009 plus arsenic and nickel in May 2009. Where available, the published soil guideline values (SGV)<sup>(1)</sup> have been used as GAC.

### 1. Model Selection

Soil assessment criteria (SAC) were calculated for compounds where SGV have not been published using CLEA v1.04. Groundwater assessment criteria (GrAC) protective of human health via the inhalation pathway were derived using the RBCA 1.3b model. RSK has updated the inputs within RBCA to reflect the UK guidance<sup>(2-5)</sup>. The SAC and GrAC collectively are termed GAC.

### 2. Conceptual Model

In accordance with EA Science Report SC050221/SR3<sup>(3)</sup>, the residential with private garden scenario considers risks to a female child between the ages of 0 and 6 years old. In accordance with Box 3.1, SR3<sup>(3)</sup>, the pathways considered for production of the SAC in the residential with gardens scenario are:

- Direct soil and dust ingestion;
- Consumption of homegrown produce;
- Consumption of soil attached to homegrown produce;
- Dermal contact with soil and indoor dust, and
- Inhalation of indoor and outdoor dust and vapours.

Figure 1 is a conceptual model illustrating these linkages.

The pathway considered in production of the GrAC is the volatilisation of compounds from groundwater and subsequent vapour inhalation by residents whilst indoors. Figure 2 illustrates this linkage. Although the outdoor air inhalation pathway is also valid, this contributes little to the overall risks owing to the dilution in outdoor air.

Within RBCA, the solubility limit of the determinant restricts the extent of volatilisation, which in turn drives the indoor air inhalation pathway. Whilst the same restriction is not built into the CLEA model, the model output cells are flagged red where the soil saturation limit has been exceeded. In accordance with the SGV report for xylene<sup>(1)</sup>, where the soil saturation or solubility limit has been exceeded the GAC has been set at this limit. It should be noted this is a highly conservative assumption. Unless free-phase product is present, concentrations of the chemical are unlikely to be present at sufficient concentration to result in an exceedance of the health criteria value (HCV).

### 3. Input Selection

Chemical data was obtained from EA Report SC050021/SR7<sup>(5)</sup> and the health criteria values (HCV) from the UK TOX reports (published 2002 and 2009) where available.



For total petroleum hydrocarbons (TPH), HCV and chemical specific parameters were taken from the TPH Criteria Working Group (TPHCWG). Until further information is available regarding whether the TPH fractions should be considered cumulatively and/or additional data becomes available regarding background exposure, RSK has taken the conservative view that 50% exposure to TPH fractions is derived from background. Thus, the mean daily intake has been set at 50% of the toxicological data. Aromatic hydrocarbons C<sub>5</sub>-C<sub>8</sub> were not modelled since benzene and toluene are being modelled separately. The aromatic C<sub>8</sub>-C<sub>9</sub> hydrocarbon fraction comprises ethylbenzene, xylene and styrene. Since ethylbenzene and xylene are being modelled separately, the physical, chemical and toxicological data for this band has been taken from styrene. Owing to the lack of UK-specific data, default information in the RBCA model was used to evaluate methyl tertiary butyl ether (MTBE). No published UK data was available for 1,2,4- and 1,3,5-trimethylbenzene, so information was obtained from the US EPA. Toxicity reports were generated by RSK in line with guidance in CLR9<sup>(7)</sup> for 14 of the 16 USEPA polycyclic aromatic hydrocarbons (PAH). RSK notes that CLR9<sup>(7)</sup> has been withdrawn and these toxicity reports may need to be updated using additional references included within SR2<sup>(2)</sup>. However, the data in these documents is considered to remain valid since it broadly follows the approach outlined in SR2. Therefore, the HCV from these reports was used with the chemical data obtained from SR7<sup>(5)</sup>, where available.

RBCA uses toxicity data for the inhalation pathway in different units to the CLEA model and cannot consider separately the mean daily intake (MDI), occupancy periods or breathing rates. Therefore, the HCV was amended to take account of:

- Amendments to the MDI using Table 3.4 of SR2<sup>(2)</sup>;
- A child weighing 13.3kg (average of 0-6 year old female in accordance with Table 4.6 of SR3<sup>(3)</sup>) and breathing 11.85m<sup>3</sup> (average daily inhalation rate for a 0-6yr old female in accordance with Table 4.14 of SR3<sup>(3)</sup>; and
- The 50% rule (for petroleum hydrocarbons, trimethylbenzenes and MTBE)<sup>(2)</sup> where MDI data is not currently available but background exposure is considered important in the overall exposure.

### Physical Parameters

For the residential with private gardens scenario, the CLEA default building is a small two-storey terrace house with concrete ground bearing slab. The house is assumed to have a  $100m^2$  private garden consisting of lawn, flowerbeds and incorporating a  $20m^2$  plot for growing fruit and vegetables consumed by the residents. SR3<sup>(3)</sup> notes this residential building type to be the most conservative in terms of protection from vapour intrusion. The building parameters are outlined in Table 5.

The parameters for a sandy loam soil type were used in line with SR3<sup>(3)</sup>. This includes a value of 6% for the percentage soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site specific risk assessments for this parameter, RSK has produced an additional set of SAC for an SOM of 1%.

For the GrAC, the depth to groundwater was taken as 2.5m based on RSK's experience of assessing the volatilisation pathway from groundwater.

### 4. GAC

The SAC were produced using the input parameters in Tables 1 to 5 and the GrAC using input parameters in Table 6. The final selected GAC are presented by pathway in Table 7 and the combined GAC in Table 8.



Figure 1
Conceptual Model for CLEA Residential Scenario – Private Gardens

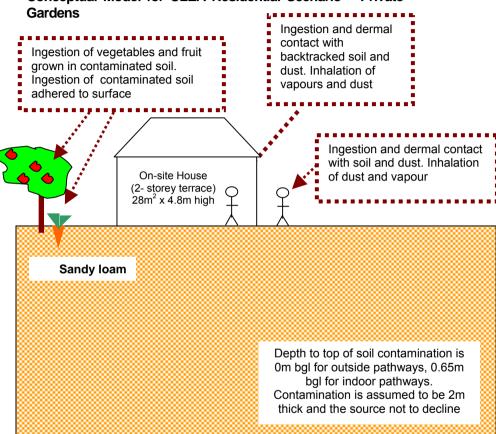



Table 1
Exposure Assessment Parameters for Residential Scenario - Private Gardens – Inputs for RBCA Model

| Parameter            | Value                              | Justification                                                                                                                                                                                                                  |
|----------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Land use             | Residential with homegrown produce | Chosen land use                                                                                                                                                                                                                |
| Receptor             | Female child age 1 to 6            | Key generic assumption given in Box 3.1, SR3                                                                                                                                                                                   |
| Building             | Small terraced house               | Key generic assumption given in Box 3.1, report SC050021/SR3. Two storey small terraced house chosen as it is the most conservative residential building type in terms of protection from vapor intrusion (Section 3.4.6, SR3) |
| Soil type            | Sandy Loam                         | Most common UK soil type (Section 4.3.1, From Table 3.1, SR3)                                                                                                                                                                  |
| Start AC (age class) | 1                                  | Range of age classes corresponding to key generic assumption that the                                                                                                                                                          |
| End AC (age class)   | 6                                  | critical receptor is a young female child aged zero to six. From Box 3.1, report SC050021/SR3.                                                                                                                                 |
| SOM (%)              | (i) 6                              | Representative of sandy loamy soil according to EA Guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents'  To provide SAC for sites where SOM                                        |
| На                   | (ii) 1<br>7                        | <6% as often observed by RSK  Model default                                                                                                                                                                                    |
| μι                   | <u> </u>                           | Model delault                                                                                                                                                                                                                  |



## Table 2 Residential with Private Gardens –Homegrown Produce Data for CLEA Model

|                     | Con   | Consumption Rate (g FW kg <sup>-1</sup> BW day <sup>-1</sup> ) by Age Class |       |       |      | BW   | Dry Weight<br>Conversion<br>Factor | Homegrown<br>Fraction<br>(average) | Homegrown<br>Fraction (high<br>end) | Soil<br>loading<br>factor | Preparation correction factor |
|---------------------|-------|-----------------------------------------------------------------------------|-------|-------|------|------|------------------------------------|------------------------------------|-------------------------------------|---------------------------|-------------------------------|
| Name                | 1     | 2                                                                           | 3     | 4     | 5    | 6    | g DW g <sup>-1</sup> FW            | -                                  | -                                   | g g <sup>-1</sup> DW      | -                             |
| Green<br>vegetables | 7.12  | 6.85                                                                        | 6.85  | 6.85  | 3.74 | 3.74 | 0.096                              | 0.05                               | 0.33                                | 1.00E-03                  | 2.00E-01                      |
| Root<br>vegetables  | 10.69 | 3.30                                                                        | 3.30  | 3.30  | 1.77 | 1.77 | 0.103                              | 0.06                               | 0.4                                 | 1.00E-03                  | 1.00E+00                      |
| Tuber vegetables    | 16.03 | 5.46                                                                        | 5.46  | 5.46  | 3.38 | 3.38 | 0.21                               | 0.02                               | 0.13                                | 1.00E-03                  | 1.00E+00                      |
| Herbaceous<br>fruit | 1.83  | 3.96                                                                        | 3.96  | 3.96  | 1.85 | 1.85 | 0.058                              | 0.06                               | 0.4                                 | 1.00E-03                  | 6.00E-01                      |
| Shrub fruit         | 2.23  | 0.54                                                                        | 0.54  | 0.54  | 0.16 | 0.16 | 0.166                              | 0.09                               | 0.6                                 | 1.00E-03                  | 6.00E-01                      |
| Tree fruit          | 3.82  | 11.96                                                                       | 11.96 | 11.96 | 4.26 | 4.26 | 0.157                              | 0.04                               | 0.27                                | 1.00E-03                  | 6.00E-01                      |
| Justification       |       | Table 4.17, SR3                                                             |       |       |      |      | Table 6.3,<br>SR3                  | Table 4.                           | 19, SR3                             | Table                     | 6.3, SR3                      |



Table 3
Residential with Private Gardens – Land Use Data for CLEA Model

| Doromotor                                     | Unit                                     |          |          |          |            |          |          |
|-----------------------------------------------|------------------------------------------|----------|----------|----------|------------|----------|----------|
| Parameter                                     | Unit                                     | 1        | 2        | 3        | 4          | 5        | 6        |
| EF (soil and dust ingestion)                  | day yr <sup>-1</sup>                     | 180      | 365      | 365      | 365        | 365      | 365      |
| EF (consumption of homegrown produce)         | day yr <sup>-1</sup>                     | 180      | 365      | 365      | 365        | 365      | 365      |
| EF (skin contact, indoor)                     | day yr <sup>-1</sup>                     | 180      | 365      | 365      | 365        | 365      | 365      |
| EF (skin contact, outdoor)                    | day yr <sup>-1</sup>                     | 180      | 365      | 365      | 365        | 365      | 365      |
| EF (inhalation of dust and vapour, indoor)    | day yr <sup>-1</sup>                     | 365      | 365      | 365      | 365        | 365      | 365      |
| EF (inhalation of dust and vapour, outdoor)   | day yr <sup>-1</sup>                     | 365      | 365      | 365      | 365        | 365      | 365      |
| Justification                                 |                                          |          |          |          |            |          |          |
| Occupancy period (indoor)                     | hr day <sup>-1</sup>                     | 23       | 23       | 23       | 23         | 19       | 19       |
| Occupancy period (outdoor)                    | hr day <sup>-1</sup>                     | 1        | 1        | 1        | 1          | 1        | 1        |
| Justification                                 |                                          |          |          | Tabl     | e 3.2, SR3 |          |          |
| Soil to skin<br>adherence factor<br>(indoor)  | mg cm <sup>-2</sup><br>day <sup>-1</sup> | 6.00E-02 | 6.00E-02 | 6.00E-02 | 6.00E-02   | 6.00E-02 | 6.00E-02 |
| Soil to skin<br>adherence factor<br>(outdoor) | mg cm <sup>-2</sup><br>day <sup>-1</sup> | 1.00E+00 | 1.00E+00 | 1.00E+00 | 1.00E+00   | 1.00E+00 | 1.00E+00 |
| Justification                                 |                                          | -        |          | Tabl     | e 8.1, SR3 |          | -        |
| Soil and dust ingestion rate                  | g day <sup>-1</sup>                      | 1.00E-01 | 1.00E-01 | 1.00E-01 | 1.00E-01   | 1.00E-01 | 1.00E-01 |
| Justification                                 |                                          |          |          | Tabl     | e 6.2, SR3 |          |          |

Table 4
Residential with Private Gardens – Receptor Data for CLEA Model

| Parameter                           | Unit                           |      |      | Age ( | Class |      |      | Justification   |
|-------------------------------------|--------------------------------|------|------|-------|-------|------|------|-----------------|
| raiailletei                         | Offic                          | 1    | 2    | 3     | 4     | 5    | 6    | Justilication   |
| Body weight                         | kg                             | 5.6  | 9.8  | 12.7  | 15.1  | 16.9 | 19.7 | Table 4.6, SR3  |
| Body height                         | m                              | 0.7  | 0.8  | 0.9   | 0.9   | 1    | 1.1  | Table 4.0, 013  |
| Inhalation rate                     | m³ day⁻¹                       | 8.5  | 13.3 | 12.7  | 12.2  | 12.2 | 12.2 | Table 4.14, SR3 |
| Max exposed skin fraction (indoor)  | m <sup>2</sup> m <sup>-2</sup> | 0.32 | 0.33 | 0.32  | 0.35  | 0.35 | 0.33 | Table 4.8. SR3  |
| Max exposed skin fraction (outdoor) | m <sup>2</sup> m <sup>-2</sup> | 0.26 | 0.26 | 0.25  | 0.28  | 0.28 | 0.26 | Table 4.0, SNS  |



Table 5
Residential with Private Gardens – Soil and Building Inputs for CLEA Model

| Parameter                                           | Unit                                                        | Value              | Justification                                                                                          |
|-----------------------------------------------------|-------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------|
|                                                     |                                                             | ROPERTIES for      |                                                                                                        |
| Porosity, total                                     | cm <sup>3</sup> cm <sup>-3</sup>                            | 0.53               |                                                                                                        |
| Porosity, air filled                                | cm <sup>3</sup> cm <sup>-3</sup>                            | 0.20               |                                                                                                        |
| Porosity, water filled                              | cm <sup>3</sup> cm <sup>-3</sup>                            | 0.33               |                                                                                                        |
| Residual soil water content                         | cm <sup>3</sup> cm <sup>-3</sup>                            | 0.12               | Default soil type is sandy loam, section 4.3.1, SR3.                                                   |
| Saturated hydraulic conductivity                    | cm s <sup>-1</sup>                                          | 3.56E-03           | Parameters for sandy loam from Table 4.4, SR3                                                          |
| van Genuchten shape parameter                       | OIII 3                                                      |                    |                                                                                                        |
| (m)                                                 | -                                                           | 3.20E-01           |                                                                                                        |
| Bulk density                                        | g cm <sup>-3</sup>                                          | 1.21               |                                                                                                        |
| Threshold value of wind speed at 10m                | m s <sup>-1</sup>                                           | 7.20               | Default value taken from Section 9.2.2, SR3                                                            |
| Empirical function (F <sub>x</sub> ) for dust model | -                                                           | 1.22               | Value taken from Section 9.2.2, SR3                                                                    |
| Ambient soil temperature                            | K                                                           | 283                | Annual average soil temperature representative of UK surface soils. Section 4.3.1, SR3                 |
|                                                     | AIR                                                         | DISPERSION MO      | ,                                                                                                      |
| Mean annual wind speed (10 m)                       | m s <sup>-1</sup>                                           | 5.00               | Default value taken from Section 9.2.2, SR3                                                            |
| Air dispersion factor at height of 0.8              | a m <sup>-2</sup> s <sup>-1</sup>                           | 2400               | Values for a 0.01 ha site, appropriate to a                                                            |
| m                                                   | per kg m <sup>-3</sup><br>g m <sup>-2</sup> s <sup>-1</sup> | 2400               | residential land use in Newcastle (most                                                                |
| Air dispersion factor at height of 1.6 m            | g m <sup>-2</sup> s <sup>-1</sup><br>per kg m <sup>-3</sup> | 0                  | representative city for UK). (from Table 9.1, SR3) Assumed child of 6 is not tall enough to reach 1.6m |
| Fraction of site with hard or vegetative cover      | $m^2 m^{-2}$                                                | 0.75               | Section 3.2.6, SR3 based on residential land use                                                       |
| BUILDING PROPE                                      |                                                             | mall terrace house | with ground-bearing floor slab                                                                         |
| Building footprint                                  | m <sup>2</sup>                                              | 28                 |                                                                                                        |
| Living space air exchange rate                      | hr <sup>-1</sup>                                            | 0.50               | From Table 3.3 and 4.21, SR3                                                                           |
| Living space height (above ground)                  | m                                                           | 4.8                |                                                                                                        |
| Living space height (below ground)                  | m                                                           | 0.0                | Assumed no basement                                                                                    |
| Pressure difference (soil to enclosed space)        | Pa                                                          | 3.1                | From Table 9.3 OP2                                                                                     |
| Foundation thickness                                | m                                                           | 0.15               | From Table 3.3, SR3                                                                                    |
| Floor crack area                                    | cm <sup>2</sup>                                             | 423                |                                                                                                        |
| Dust loading factor                                 | μg m <sup>-3</sup>                                          | 50                 | Default value for a residential site taken from Section 9.3, SR3                                       |
|                                                     |                                                             | VAPOUR MOD         | EL                                                                                                     |
| Default soil gas ingress rate                       | cm <sup>3</sup> s <sup>-1</sup>                             | 25                 | Generic flow rate, Section 10.3, SR3                                                                   |
| Depth to top of source (beneath building)           | cm                                                          | 50                 | Section 3.2.6, SR3 states source is 50cm below building or 65cm below ground surface                   |
| Depth to top of source (no building)                | cm                                                          | 0                  | Section 10.2, SR3 assumes impact from 0-1m for outdoor inhalation pathway                              |
| Thickness of contaminant layer                      | cm                                                          | 200                | Model default for indoor air, Section 4.9, SR4                                                         |
| Time average period for surface emissions           | years                                                       | 6                  | Time period of a 0 to 6 year old, Box 3.5, SR3                                                         |
| User-defined effective air<br>permeability          | cm <sup>2</sup>                                             | 3.05E-08           | Calculated for sandy loam using equations in Appendix 1, SR3                                           |



Figure 2
GrAC Conceptual Model for RBCA Residential with Gardens Scenario

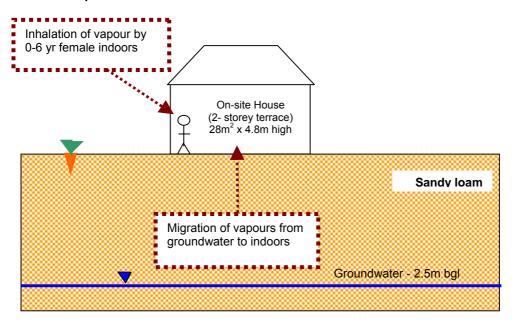



Table 6
Residential with Private Gardens RBCA Inputs

| Parameter                            | Unit               | Value       | Justification                                                                                                                               |  |  |  |  |
|--------------------------------------|--------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                      |                    |             | RECEPTOR                                                                                                                                    |  |  |  |  |
| Averaging time                       | Years              | 6           | From Box 3.1, SR3                                                                                                                           |  |  |  |  |
| Receptor weight                      | kg                 | 13.3        | Average of CLEA 0-6 year old female data, Table 4.6, SR3                                                                                    |  |  |  |  |
| Exposure duration                    | Years              | 6           | From Box 3.1, report, SR3                                                                                                                   |  |  |  |  |
| Exposure frequency                   | Days/yr            | 350         | Weighted using occupancy period of 23 hours per day for 365 days of the year                                                                |  |  |  |  |
|                                      | •                  | SOIL TY     | PE – SANDY LOAM                                                                                                                             |  |  |  |  |
| Total porosity                       | _                  | 0.53        |                                                                                                                                             |  |  |  |  |
| Volumetric water content             | -                  | 0.33        | CLEA value for sandy loam. Parameters for sandy loam from                                                                                   |  |  |  |  |
| Volumetric air content               | -                  | 0.20        | Table 4.4, SR3                                                                                                                              |  |  |  |  |
| Dry bulk density                     | g cm <sup>-3</sup> | 1.21        | ·                                                                                                                                           |  |  |  |  |
| Vertical hydraulic conductivity      | cm s <sup>-1</sup> | 3.56E-3     | CLEA value for saturated conductivity of sandy loam, Table 4.4, SR3                                                                         |  |  |  |  |
| Vapour permeability                  | m <sup>2</sup>     | 3.05E-12    | Calculated for sandy loam using equations in Appendix 1, SR3                                                                                |  |  |  |  |
| Capillary zone thickness             | m                  | 0.1         | Professional judgement                                                                                                                      |  |  |  |  |
| Fraction organic carbon              | %                  | (i) 0.0348  | Representative of sandy loam according to EA Guidance note dated January 2009 entitled Changes We Have Made to the CLEA Framework Documents |  |  |  |  |
|                                      |                    | (ii) 0.0058 | To provide SAC for site's where SOM < 6% as often observed by RSK                                                                           |  |  |  |  |
|                                      |                    |             | BUILDING                                                                                                                                    |  |  |  |  |
| Building volume/area ratio           | m                  | 4.8         | Table 3.3, SR3                                                                                                                              |  |  |  |  |
| Foundation area                      | m <sup>2</sup>     | 28          |                                                                                                                                             |  |  |  |  |
| Foundation perimeter                 | m                  | 22          | Calculated assuming building measures 7m x 4m to give 28m <sup>2</sup> foundation area                                                      |  |  |  |  |
| Building air exchange rate           | d <sup>-1</sup>    | 12          |                                                                                                                                             |  |  |  |  |
| Depth to bottom of foundation slab   | m                  | 0.15        | Table 3.3, SR3                                                                                                                              |  |  |  |  |
| Foundation thickness                 | m                  | 0.15        |                                                                                                                                             |  |  |  |  |
| Foundation crack fraction            | -                  | 0.0151      | Calculated from floor crack area of 423 cm <sup>2</sup> and building footprint of 28m <sup>2</sup> in Table 4.21, SR3                       |  |  |  |  |
| Volumetric water content of cracks   | -                  | 0.33        | Assumed equal to underlying soil type in assumption that cracks                                                                             |  |  |  |  |
| Volumetric air content of cracks     | -                  | 0.2         | become filled with soil over time. Parameters for sandy loam from Table 4.4, SR3                                                            |  |  |  |  |
| Indoor/outdoor differential pressure | Pa                 | 3.1         | From Table 3.3, SR3                                                                                                                         |  |  |  |  |



#### **REFERENCES**

- 1) Environment Agency, 31 March 2009 and May 2009. Science Report SC050021 / benzene SGV, toluene SGV, ethylbenzene SGV, xylene SGV, mercury SGV, selenium SGV, nickel SGV and arsenic SGV. Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel and arsenic. Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel and arsenic.
- 2) Environment Agency, January 2009. Science Report SC050021/SR2 Human Health Toxicological Assessment of Contaminants in Soil.
- 3) Environment Agency, January 2009. Science Report SC050021/SR3 Updated Technical Background to the CLEA Model.
- 4) Environment Agency, January 2009. Science Report SC050021/SR4 CLEA Software (Version 1.04) Handbook.
- 5) Environment Agency. 2008. Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values.
- 6) Environment Agency and DEFRA. Contaminants in Soil: Collation of Toxicological Data and Intake Values for Humans. Numbers 1–12, 14, 16–25.
- 7) Environment Agency. March 2002. CLR 9. Contaminants in soil: Collation of Toxicological Data and Intake Values for Humans.

### GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL WITH PRIVATE GARDENS

Table 7 Human Health Generic Assessment Criteria by Pathway for Residential Scenario - Private Gardens



|                                       |        | GrAC       | SAC Appropri | ate to Pathway So | OM 1% (ma/ka) | Soil Saturation   | SAC Appropris | Soil Saturation |          |               |  |
|---------------------------------------|--------|------------|--------------|-------------------|---------------|-------------------|---------------|-----------------|----------|---------------|--|
| Compound                              |        | (mg/l)     | Oral         | Inhalation        | Combined      | Limit (mg/kg)     | Oral          | Inhalation      | Combined | Limit (mg/kg) |  |
| Metals                                |        | (g.,       |              |                   |               | ziiiit (iiig/itg/ |               |                 |          | Limit (mg/kg) |  |
| Arsenic                               | (b,c)  | -          | 3.24E+01     | 8.50E+01          | 2.35E+01      | NR                | 3.24E+01      | 8.50E+01        | 2.35E+01 | NR            |  |
| Cadmium                               | (5,0)  | -          | 6.21E+01     | 4.25E+01          | 2.93E+01      | NR                | 6.21E+01      | 4.25E+01        | 2.93E+01 | NR<br>NR      |  |
| Chromium (hexavalent)                 |        | _          | 2.78E+02     | 4.25E+01          | 3.76E+01      | NR<br>NR          | 2.78E+02      | 4.25E+01        | 3.76E+01 | NR<br>NR      |  |
| Copper                                |        | -          | 8.96E+03     | 6.08E+03          | 4.74E+03      | NR<br>NR          | 8.96E+03      | 6.08E+03        | 4.74E+03 | NR NR         |  |
| Lead                                  | (a)    | -          | 4.50E+02     | -                 | -             | NR                | 4.50E+02      | -               | -        | NR            |  |
| Elemental Mercury (Hg <sup>0</sup> )  | (b,d)  | 9.40E-03   | 4.00E10E     | 1.70E-01          | -             | 4.31E+00          | -             | 1.02E+00        | -        | 2.58E+01      |  |
| Inorganic Mercury (Hg <sup>2+</sup> ) | . , ,  | 9.401-03   | 1.81E+02     | 2.55E+03          | 1.69E+02      | NR                | 1.81E+02      | 2.55E+03        | 1.69E+02 | 2.36E+01      |  |
|                                       | (b)    |            |              |                   |               |                   |               |                 |          |               |  |
| Methyl Mercury (Hg <sup>4+</sup> )    | (b)    | 2.00E+01   | 1.39E+01     | 1.59E+01          | 7.40E+00      | 7.33E+01          | 1.39E+01      | 6.53E+01        | 1.14E+01 | 3.04E+02      |  |
| Nickel                                | (b,d)  | -          | 5.31E+02     | 1.27E+02          | 1.19E+02      | NR                | 5.31E+02      | 1.27E+02        | 1.19E+02 | NR            |  |
| Selenium                              | (b,c)  | -          | 3.51E+02     | -                 | -             | NR                | 3.51E+02      | -               | -        | NR            |  |
| Zinc                                  | (c)    | -          | 2.53E+04     | -                 | -             | NR                | 2.53E+04      | -               | -        | NR            |  |
| Cyanide                               |        | -          | 2.66E+01     | 3.97E+00          | 3.68E+00      | NR                | 2.66E+01      | 3.97E+00        | 3.68E+00 | NR            |  |
| V-1-41- 01- 01-                       |        |            |              |                   |               |                   |               |                 |          |               |  |
| Volatile Organic Compounds            | 1 // 3 | 0.005 : 04 | 4.405.04     | 0.005.04          | 7.005.00      | 4.005.00          | 4.005.04      | 4.045.00        | 0.005.04 | 4.745 : 00    |  |
| Benzene                               | (b)    | 2.60E+01   | 1.12E-01     | 2.69E-01          | 7.92E-02      | 1.22E+03          | 4.89E-01      | 1.04E+00        | 3.32E-01 | 4.71E+03      |  |
| Toluene                               | (b)    | 1.90E+03   | 1.47E+02     | 6.26E+02          | 1.19E+02      | 8.69E+02          | 7.59E+02      | 3.14E+03        | 6.11E+02 | 4.36E+03      |  |
| Ethylbenzene                          | (b)    | 2.60E+02   | 1.06E+02     | 1.70E+02          | 6.52E+01      | 5.18E+02          | 5.70E+02      | 9.32E+02        | 3.54E+02 | 2.84E+03      |  |
| Xylene - m                            |        | 8.40E+01   | 2.02E+02     | 5.56E+01          | 4.36E+01      | 6.25E+02          | 1.09E+03      | 3.07E+02        | 2.40E+02 | 3.46E+03      |  |
| Xylene - o                            | (b)    | 1.00E+02   | 1.85E+02     | 5.98E+01          | 4.52E+01      | 4.78E+02          | 9.96E+02      | 3.27E+02        | 2.46E+02 | 2.62E+03      |  |
| Xylene - p                            |        | 8.70E+01   | 1.91E+02     | 5.34E+01          | 4.17E+01      | 5.76E+02          | 1.02E+03      | 2.94E+02        | 2.28E+02 | 3.17E+03      |  |
| Total xylene                          |        | 8.40E+01   | 2.02E+02     | 5.56E+01          | 4.36E+01      | 6.25E+02          | 1.09E+03      | 3.07E+02        | 2.40E+02 | 3.46E+03      |  |
| Methyl t-Butyl ether                  |        | 2.20E+03   | 1.75E+00     | 1.84E+02          | 1.75E+00      | 1.66E+04          | 7.41E+00      | 3.70E+02        | 7.37E+00 | 3.34E+04      |  |
| Trichloroethene                       |        | 1.80E+00   | 2.83E+00     | 1.10E-01          | 1.06E-01      | 1.54E+03          | 1.40E+01      | 5.11E-01        | 4.93E-01 | 7.14E+03      |  |
| Tetrachloroethene                     |        | 3.60E+00   | 1.06E+01     | 1.60E+00          | 1.39E+00      | 4.24E+02          | 5.55E+01      | 8.21E+00        | 7.15E+00 | 2.18E+03      |  |
| 1,1,1-Trichloroethane                 |        | 2.60E+01   | 3.20E+02     | 6.33E+00          | 6.21E+00      | 1.43E+03          | 1.55E+03      | 2.84E+01        | 2.79E+01 | 6.39E+03      |  |
| 1,1,1,2Tetrachloroethane              |        | 1.40E+01   | 5.19E+00     | 1.08E+00          | 8.93E-01      | 2.60E+03          | 2.78E+01      | 5.83E+00        | 4.82E+00 | 1.40E+04      |  |
| 1,1,2,2-Tetrachloroethane             |        | 1.40E+01   | 2.70E+00     | 2.76E+00          | 1.37E+00      | 2.67E+03          | 1.30E+01      | 1.24E+01        | 6.34E+00 | 1.20E+04      |  |
| Carbon Tetrachloride                  |        | 5.50E-02   | 1.05E+00     | 1.81E-02          | 1.79E-02      | 1.52E+03          | 5.44E+00      | 8.99E-02        | 8.92E-02 | 7.54E+03      |  |
| 1,2-Dichloroethane                    |        | 3.00E-01   | 3.06E-02     | 6.46E-03          | 5.34E-03      | 3.41E+03          | 1.05E-01      | 1.60E-02        | 1.39E-02 | 8.43E+03      |  |
| Vinyl Chloride                        |        | 1.90E-02   | 3.69E-03     | 5.43E-04          | 4.73E-04      | 1.36E+03          | 1.21E-02      | 1.07E-03        | 9.86E-04 | 2.69E+03      |  |
| 1,2,4-Trimethylbenzene                |        | 7.50E-02   | 3.39E+01     | 7.42E-01          | 7.38E-01      | 1.03E+02          | 1.87E+02      | 4.19E+00        | 4.17E+00 | 5.85E+02      |  |
| 1,3,5-Trimethylbenzene                |        | 4.70E-02   | 1.45E+01     | 4.60E-01          | 4.56E-01      | 9.47E+01          | 7.94E+01      | 2.59E+00        | 2.56E+00 | 5.33E+02      |  |
|                                       |        |            |              |                   |               |                   |               |                 |          |               |  |
| Semi-Volatile Organic Compou          | unds   |            |              |                   | _             |                   |               | _               | _        | _             |  |
| Acenaphthene                          |        | 3.20E+00   | 2.05E+02     | 7.34E+00          | 7.08E+00      | 1.32E+02          | 7.49E+02      | 4.32E+01        | 4.09E+01 | 7.89E+02      |  |
| Acenaphthylene                        |        | 4.20E+00   | 1.23E+01     | 5.45E-01          | 5.22E-01      | 3.89E+02          | 5.32E+01      | 3.21E+00        | 3.03E+00 | 2.31E+03      |  |
| Anthracene                            |        | 2.10E-02   | 4.26E+04     | 1.39E+03          | 1.34E+03      | 3.60E+00          | 5.15E+04      | 7.40E+03        | 6.47E+03 | 2.16E+01      |  |
| Benzo(a)anthracene                    |        | 3.80E-03   | 1.42E+01     | 8.09E+00          | 5.16E+00      | 1.71E+00          | 1.57E+01      | 2.05E+01        | 8.90E+00 | 1.03E+01      |  |
| Benzo(b)fluoranthene                  |        | 2.00E-03   | 1.47E+01     | 2.50E+01          | 9.25E+00      | 1.22E+00          | 1.58E+01      | 2.87E+01        | 1.02E+01 | 7.29E+00      |  |
| Benzo(g,h,i)perylene                  |        | 2.60E-04   | 2.35E+03     | 5.38E+04          | 2.25E+03      | 1.87E-02          | 2.40E+03      | 5.63E+04        | 2.30E+03 | 1.12E-01      |  |
| Benzo(k)fluoranthene                  |        | 8.00E-04   | 1.50E+01     | 2.66E+01          | 9.60E+00      | 6.87E-01          | 1.59E+01      | 2.91E+01        | 1.03E+01 | 4.12E+00      |  |
| Chrysene                              |        | 2.00E-03   | 1.37E+02     | 1.95E+02          | 8.03E+01      | 4.40E-01          | 1.55E+02      | 2.72E+02        | 9.90E+01 | 2.64E+00      |  |
| Dibenzo(a,h)anthracene                |        | 6.00E+04   | 1.53E+00     | 2.37E+00          | 9.28E-01      | 3.93E-03          | 1.59E+00      | 2.85E+00        | 1.02E+00 | 2.36E-02      |  |
| Fluoranthene                          |        | 2.30E-01   | 1.12E+02     | 1.51E+01          | 1.33E+01      | 1.89E+01          | 1.50E+02      | 7.18E+01        | 4.85E+01 | 1.13E+02      |  |
| Fluorene                              |        | 1.90E+00   | 2.35E+03     | 8.85E+01          | 8.53E+01      | 1.53E+02          | 6.86E+03      | 5.23E+02        | 4.86E+02 | 9.13E+02      |  |
| Indeno(1,2,3-cd)pyrene                |        | 2.00E-04   | 1.45E+01     | 2.43E+01          | 9.08E+00      | 6.14E-02          | 1.58E+01      | 2.86E+01        | 1.02E+01 | 3.68E-01      |  |
| Phenanthrene                          |        | 5.30E-01   | 2.39E+03     | 1.17E+03          | 7.85E+02      | 7.06E+01          | 3.03E+03      | 6.33E+03        | 2.05E+03 | 4.23E+02      |  |
| Pyrene                                |        | 1.30E-01   | 1.08E+03     | 1.44E+02          | 1.27E+02      | 2.20E+00          | 1.49E+03      | 6.93E+02        | 4.73E+02 | 1.32E+01      |  |
| Benzo(a)pyrene                        |        | 3.80E-03   | 1.49E+00     | 2.62E+00          | 9.49E-01      | 9.11E-01          | 1.58E+00      | 2.90E+00        | 1.02E+00 | 5.46E+00      |  |
| Naphthalene                           |        | 1.90E+01   | 2.68E+01     | 1.64E+00          | 1.54E+00      | 7.64E+01          | 1.43E+02      | 9.27E+00        | 8.71E+00 | 4.32E+02      |  |
| Phenol                                | (c)    | -          | 4.40E+02     | -                 | _             | 4.16E+04          | 1.98E+03      | -               | -        | 1.74E+05      |  |

Table 7 RSK GAC\_2009\_02

#### GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL WITH PRIVATE GARDENS

#### Table 7 Human Health Generic Assessment Criteria by Pathway for Residential Scenario - Private Gardens



|                                                            |     | GrAC     | SAC Appropri | ate to Pathway So | OM 1% (mg/kg) | Soil Saturation | SAC Appropr | iate to Pathway So | OM 6% (mg/kg) | Soil Saturation |  |
|------------------------------------------------------------|-----|----------|--------------|-------------------|---------------|-----------------|-------------|--------------------|---------------|-----------------|--|
| Compound                                                   |     | (mg/l)   | Oral         | Inhalation        | Combined      | Limit (mg/kg)   | Oral        | Inhalation         | Combined      | Limit (mg/kg)   |  |
| Total Petroleum Hydrocarbons                               |     |          |              |                   |               |                 |             |                    |               |                 |  |
| Aliphatic hydrocarbons EC <sub>5</sub> -EC <sub>6</sub>    |     | 1.00E+01 | 8.97E+03     | 2.47E+01          | 2.47E+01      | 3.69E+02        | 4.31E+04    | 8.04E+01           | 8.03E+01      | 1.20E+03        |  |
| Aliphatic hydrocarbons >EC <sub>6</sub> -EC <sub>8</sub>   |     | 5.40E+00 | 1.52E+04     | 5.11E+01          | 5.10E+01      | 1.69E+02        | 6.62E+04    | 2.39E+02           | 2.39E+02      | 7.93E+02        |  |
| Aliphatic hydrocarbons >EC <sub>8</sub> -EC <sub>10</sub>  |     | 2.30E-01 | 3.14E+03     | 1.11E+01          | 1.11E+01      | 8.46E+01        | 4.12E+03    | 6.29E+01           | 6.27E+01      | 4.79E+02        |  |
| Aliphatic hydrocarbons >EC <sub>10</sub> -EC <sub>12</sub> |     | 3.40E-02 | 3.99E+03     | 5.36E+01          | 5.35E+01      | 5.02E+01        | 4.34E+03    | 3.18E+02           | 3.12E+02      | 2.98E+02        |  |
| Aliphatic hydrocarbons >EC <sub>12</sub> -EC <sub>16</sub> |     | 7.60E-04 | 4.39E+03     | 2.48E+02          | 2.45E+02      | 2.22E+01        | 4.41E+03    | 1.49E+03           | 1.34E+03      | 1.33E+02        |  |
| Aliphatic hydrocarbons >EC <sub>16</sub> -EC <sub>21</sub> | (c) | -        | 8.84E+04     | -                 | -             | 9.15E+00        | 8.84E+04    | -                  | -             | 5.49E+01        |  |
| Aliphatic hydrocarbons >EC <sub>21</sub> -EC <sub>35</sub> | (c) | -        | 8.84E+04     | -                 | -             | 6.45E+00        | 8.84E+04    | -                  | -             | 3.87E+01        |  |
| Aromatic hydrocarbons >EC <sub>8</sub> -EC <sub>9</sub>    |     | 6.50E+01 | 1.66E+02     | 2.65E+02          | 1.33E+02      | 6.20E+02        | 8.50E+02    | 1.54E+03           | 7.02E+02      | 3.61E+03        |  |
| Aromatic hydrocarbons >EC <sub>9</sub> -EC <sub>10</sub>   |     | 7.40E+00 | 5.53E+01     | 1.77E+01          | 1.60E+01      | 6.20E+02        | 2.83E+02    | 1.03E+02           | 9.17E+01      | 3.61E+03        |  |
| Aromatic hydrocarbons >EC <sub>10</sub> -EC <sub>12</sub>  |     | 2.50E+01 | 8.04E+01     | 9.74E+01          | 5.84E+01      | 3.72E+02        | 3.90E+02    | 5.74E+02           | 3.04E+02      | 2.19E+03        |  |
| Aromatic hydrocarbons >EC <sub>12</sub> -EC <sub>16</sub>  |     | 5.80E+00 | 1.40E+02     | 5.05E+02          | 1.29E+02      | 1.70E+02        | 6.01E+02    | 3.00E+03           | 5.67E+02      | 1.01E+03        |  |
| Aromatic hydrocarbons >EC <sub>16</sub> -EC <sub>21</sub>  | (c) | -        | 8.84E+04     | -                 | -             | 5.99E+01        | 8.84E+04    | -                  | -             | 3.59E+02        |  |
| Aromatic hydrocarbons >EC <sub>21</sub> -EC <sub>35</sub>  | (c) | -        | 1.11E+03     | -                 | -             | 4.82E+00        | 1.29E+03    | -                  | -             | 2.89E+01        |  |

#### Notes

-' Generic assessment criteria not calculated owing to low volatility of substance and therefore no pathway, or an absence of toxicological data.

EC - equivalent carbon. GrAC - groundwater assessment criteria. SAC - soil assessment criteria.

The CLEA model output is colour coded depending upon whether the soil saturation limit has been exceeded.



Calculated SAC exceeds soil saturation limit and may significantly effect the interpretation of any exceedances since the contribution of the indoor and outdoor vapour pathway to total exposure is >10%. This shading has also been used for the RBCA output where the theoretical solubility limit has been exceeded. SAC/GrAC is set at soil saturation/solubility limit.

Calculated SAC exceeds soil saturation limit but will not effect the SSV significantly since the contribution of the indoor and outdoor vapour pathway to total exposure is <10%.

Calculated SAC does not exceed the soil saturation limit.

For consistency where the theoretical solubility limit within RBCA has been exceeded in production of the GrAC, these cellis have also been hatched red.

The SAC for organic compounds are dependant upon soil organic matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994.

SAC for TPH fractions, polycyclic aromatic hydrocarbons, MTBE, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway, section 10.1.1, SR3

(a) GAC taken as former Soil Guideline Value owing to uncertainty regarding toxicological approach to be adopted by the Environment Agency.

(b) GAC taken from the Environment Agency SGV reports published March and May 2009.

(c) SAC for selenium, zinc, phenol, aliphatic and aromatic hydrocarbons > EC16 does not include inhalation pathway owing to absence of toxicity data. SAC for arsenic is only based on oral contribution (rather than combined) owing to the relative small contribution from inhalation in accordance with the SGV report.

(d) SAC for elemental mercury and nickel is based on the inhalation pathway only owing to an absence of toxicity for elemental mercury andr in accordance with the SGV report for nickel.

Table 7 RSK GAC\_2009\_02



#### Table 8 Human Health Generic Assessment Criteria for Residential Scenario - Private Gardens

| Compound                                                   | GrAC for Groundwater (mg/l) | SAC for Soil SOM 1%<br>(mg/kg) | SAC for Soil SOM 6%<br>(mg/kg) |
|------------------------------------------------------------|-----------------------------|--------------------------------|--------------------------------|
| Metals                                                     |                             | , , ,                          | , , ,                          |
| Arsenic                                                    | 1 -                         | 32                             | 32                             |
| Cadmium                                                    | -                           | 29                             | 29                             |
| Chromium (hexavalent)                                      | -                           | 38                             | 38                             |
| Copper                                                     | -                           | 4,700                          | 4,700                          |
| Lead                                                       | -                           | 450                            | 450                            |
| Elemental Mercury (Hg <sup>0</sup> )                       | 0.009                       | 0.17                           | 1.0                            |
| Inorganic Mercury (Hg <sup>2+</sup> )                      | -                           | 170                            | 170                            |
| Methyl Mercury (Hg4+)                                      | 20                          | 7.4                            | 11                             |
| Nickel                                                     | -                           | 130                            | 130                            |
| Selenium                                                   | -                           | 350                            | 350                            |
| Zinc                                                       | -                           | 25,000                         | 25,000                         |
| Cyanide                                                    | -                           | 3.7                            | 3.7                            |
| Volatile Organic Compounds                                 |                             |                                |                                |
| Benzene                                                    | 26                          | 0.08                           | 0.33                           |
| Toluene                                                    | 1,900                       | 120                            | 610                            |
| Ethylbenzene                                               | 260                         | 65                             | 350                            |
| Xylene - m                                                 | 84                          | 44                             | 240                            |
| Xylene - o                                                 | 100                         | 45                             | 250                            |
| Xylene - p                                                 | 87                          | 42                             | 230                            |
| Total xylene                                               | 84                          | 44                             | 240                            |
| Methyl t-Butyl ether                                       | 2,200                       | 1.8                            | 7.4                            |
| Trichloroethene                                            | 1.8                         | 0.11                           | 0.49                           |
| Tetrachloroethene                                          | 3.6                         | 1.4                            | 7.2                            |
| 1,1,1-Trichloroethane                                      | 26                          | 6.2                            | 28                             |
| 1,1,1,2Tetrachloroethane<br>1,1,2,2-Tetrachloroethane      | 14<br>14                    | 0.89<br>1.4                    | 4.8<br>6.3                     |
| Carbon Tetrachloride                                       | 0.06                        | 0.02                           | 0.09                           |
| 1,2-Dichloroethane                                         | 0.3                         | 0.005                          | 0.03                           |
| Vinyl Chloride                                             | 0.02                        | 0.0005                         | 0.001                          |
| 1,2,4-Trimethylbenzene                                     | 0.08                        | 0.74                           | 4.2                            |
| 1,3,5-Trimethylbenzene                                     | 0.05                        | 0.46                           | 2.6                            |
| Semi-Volatile Organic Compounds                            |                             |                                | <u> </u>                       |
| Acenaphthene                                               | 3.2                         | 7.1                            | 41                             |
| Acenaphthylene                                             | 4.2                         | 0.52                           | 3.0                            |
| Anthracene                                                 | 0.02                        | 1,300                          | 6,500                          |
| Benzo(a)anthracene Benzo(b)fluoranthene                    | 0.004<br>0.002              | 5.2<br>9.3                     | 8.9<br>10                      |
| Benzo(g,h,i)perylene                                       | 0.0003                      | 2,300                          | 2,300                          |
| Benzo(k)fluoranthene                                       | 0.0008                      | 9.6                            | 10                             |
| Chrysene                                                   | 0.002                       | 80                             | 99                             |
| Dibenzo(a,h)anthracene                                     | 0.0006                      | 0.93                           | 1.0                            |
| Fluoranthene                                               | 0.23                        | 13                             | 49                             |
| Fluorene                                                   | 1.9                         | 85                             | 490                            |
| Indeno(1,2,3-cd)pyrene                                     | 0.0002                      | 9.1                            | 10                             |
| Phenanthrene                                               | 0.53                        | 790                            | 2,100                          |
| Pyrene                                                     | 0.13                        | 130                            | 470                            |
| Benzo(a)pyrene                                             | 0.004                       | 0.95                           | 1.0                            |
| Naphthalene                                                | 19                          | 1.5                            | 8.7                            |
| Phenol                                                     | -                           | 440                            | 2,000                          |
| Total Petroleum Hydrocarbons                               |                             |                                |                                |
| Aliphatic hydrocarbons EC <sub>5</sub> -EC <sub>6</sub>    | 10                          | 25                             | 80                             |
| Aliphatic hydrocarbons >EC <sub>6</sub> -EC <sub>8</sub>   | 5.4                         | 51                             | 240                            |
| Aliphatic hydrocarbons >EC <sub>8</sub> -EC <sub>10</sub>  | 0.23                        | 11                             | 63                             |
| Aliphatic hydrocarbons >EC <sub>10</sub> -EC <sub>12</sub> | 0.03                        | 50                             | 300                            |
| Aliphatic hydrocarbons >EC <sub>12</sub> -EC <sub>16</sub> | 0.0008                      | 22                             | 130                            |
| Aliphatic hydrocarbons >EC <sub>16</sub> -EC <sub>21</sub> |                             | 88,000                         |                                |
|                                                            | -                           | ,                              | 88,000                         |
| Aliphatic hydrocarbons >EC <sub>21</sub> -EC <sub>35</sub> | -                           | 88,000                         | 88,000                         |
| Aromatic hydrocarbons >EC <sub>8</sub> -EC <sub>9</sub>    | 65                          | 130                            | 700                            |
| Aromatic hydrocarbons >EC <sub>9</sub> -EC <sub>10</sub>   | 7.4                         | 16                             | 92                             |
| Aromatic hydrocarbons >EC <sub>10</sub> -EC <sub>12</sub>  | 25                          | 58                             | 300                            |
| Aromatic hydrocarbons >EC <sub>12</sub> -EC <sub>16</sub>  | 5.8                         | 130                            | 570                            |
| Aromatic hydrocarbons $>EC_{16}-EC_{21}$                   |                             | 88,000                         | 88,000                         |
|                                                            | -                           | '                              | · ·                            |
| Aromatic hydrocarbons >EC <sub>21</sub> -EC <sub>35</sub>  | -                           | 1,100                          | 1,300                          |

#### Notes

- -' Generic assessment criteria not calculated owing to low volatility of substance and therefore no pathway, or an absence of toxicological data.
- EC equivalent carbon. GrAC groundwater assessment criteria. SAC soil assessment criteria.

The SAC for organic compounds are dependent on Soil Organic Matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994.

SAC for TPH fractions, polycyclic aromatic hydrocarbons, MTBE, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway, section 10.1.1, SR3.

SAC for aliphatic C10-C12 and C12-C16 is taken as soil saturation limit in acordance with CLEA. For consistency with CLEA, the GrAC for aliphatic and aromatic C12-C16 hydrocarbons and all PAH (acenaphthylene) has been set as the theoretical solubility limit.

Calculated SAC exceeds soil saturation limit (SSL), thus SSL taken as SAC in line with recently published SGV. For consistency where the GrAC exceeds the solubility limit, GrAC has been set at the solubility limit. These are highly conservative since concentrations of the chemical are very unlikely to be at sufficient concentration to result in an exceedance of the health criteria value at the point of exposure (i.e. indoor air) provided free-phase product is absent.

Table 8 RSK GAC\_2009\_02

### **APPENDIX F**

## **HASWASTE Assessment**

(This appendix contains 2 pages, including this)



HASWASTE v4. Envirolab's Contaminated Land Soil Hazardous Waste Assessment Tool. Envirolab, Sandpits Business Park, Mottram Road, Hyde, Cheshire SK14 3AR.



#### Site Code and Name

TP/WS/BH

CrVI or Chromium ead lickel Zinc Cadmium Mercury

Seleniun Barium Beryllium Cobalt Manganese Molybdenum

Acenaphthylene Anthracene
Benzo(a)anthracene
Benzo(a)pyrene
Benzo(b)fluoranthene

Fluoranthene Fluorene Indeno(123cd)pyrene Naphthalene Phenanthrene Pyrene

Benzo(j) Benzene Toluene Ethylbenzene Xylenes Trimethylbenzenes Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene

1.4-Dichlorobenzene 1,2,4-Trichlorobenzene 2-Chlorotoluene 4-Chlorotoluene

Trichloroethene (TCE) Oil in Waste Carcinogenic H7

Total TPH
Petrol or (C6-C10)
Diesel or (C10-C25) or (conservative C10-C35) tube Oil or (C25+) or (conservative C21+)

8 IARC H7 Carcinogenic PAI
8 LARC H3 Ext (anolicable to 1 Kerosene

Creosote pH Corrosive H8 (Irritant H4)
pH (soil)
pH (leachate) Alkali Reserve (gNaOH/100g)

Free Cyanide Thiocyanate PCBs Total Phenois Total by HPLO Phenol Cresols Xylenols 1-Naphthol Resourcinol

2,3,5,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 4-Chloro-3-methylphenol Pentachlorophenol Pentachlorophenol Bis(2-ethylhexyl)phthalate

Butylbenzylphthalate Di-n-butylphthalate

Visual Fibre Screen or Asbestos ID (enter Y or N) Irritant H4 Irritant H4 Harmful H5 Toxic H6 (Harmful H5) Toxic H6 (Harmful H5) Carcinogenic H7
Carcinogenic H7 Corrosive H8 (Irritant H4) Toxic for Reproduction H10
Toxic for Reproduction H10
Mutagenic H11
Mutagenic H11
Ecotoxic H14

New Ecotoxic H14 individua substance specific threshold New Ecotoxic H14 individual substance specific threshold

| BH1A         | BH2A         | BH6A         | BH8A         | BH9A         |       |       |       |       |       |       |       |       |       |
|--------------|--------------|--------------|--------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.40         | 0.45         | 0.25         | 0.40         | 0.40         |       |       |       |       |       |       |       |       |       |
| mg/kg        | mg/kg        | mg/kg        | mg/kg        | mg/kg        | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg |
| 22           | 18           | 7            | 11           | 11           |       |       |       |       |       |       |       |       |       |
| 37           | 16           | 13           | 19           | 20           |       |       |       |       |       |       |       |       |       |
| 75           | 55           | 19           | 24           | 24           |       |       |       |       |       |       |       |       |       |
| 329          | 469          | 106          | 190          | 200          |       |       |       |       |       |       |       |       |       |
| 32<br>397    | 19<br>241    | 8<br>54      | 13<br>79     | 13<br>89     |       |       |       |       |       |       |       |       |       |
| 391          | 241          | 34           | 79           | 09           |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
| 0.01         | 0.06         | 0.01         | 0.01         | 0.01         |       |       |       |       |       |       |       |       |       |
| 0.01         | 0.07         | 0.01         | 0.01         | 0.01         |       |       |       |       |       |       |       |       |       |
| 0.04         | 0.32         | 0.07         | 0.01         | 0.01         |       |       |       |       |       |       |       |       |       |
| 0.07         | 0.62         | 0.20         | 0.01         | 0.01         |       |       |       |       |       |       |       |       |       |
| 0.04         | 1.43         | 0.05         | 0.01         | 0.01         |       |       |       |       |       |       |       |       |       |
| 0.13<br>0.18 | 1.07<br>1.48 | 0.15<br>0.10 | 0.01<br>0.01 | 0.01<br>0.01 |       |       |       |       |       |       |       |       |       |
| 0.16         | 1.46         | 0.10         | 0.01         | 0.01         |       |       |       |       |       |       |       |       |       |
| 0.14         | 1.49         | 0.14         | 0.01         | 0.01         |       |       |       |       |       |       |       |       |       |
| 0.01         | 0.11         | 0.01         | 0.01         | 0.01         |       |       |       |       |       |       |       |       |       |
| 0.22         | 2.75         | 0.14         | 0.01         | 0.05         |       |       |       |       |       |       |       |       |       |
| 0.01         | 0.05         | 0.01         | 0.01         | 0.01         |       |       |       |       |       |       |       |       |       |
| 0.01         | 0.58         | 0.01         | 0.01         | 0.01         |       |       |       |       |       |       |       |       |       |
| 0.01         | 0.10         | 0.02         | 0.02         | 0.02         |       |       |       |       |       |       |       |       |       |
| 0.10         | 0.82         | 0.07         | 0.01         | 0.04         |       |       |       |       |       |       |       |       |       |
| 0.21         | 2.50         | 0.11         | 0.01         | 0.05         |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              | 51.1         | 0.1          |              | 16.5         |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |
|              |              |              |              |              |       |       |       |       |       |       |       |       |       |

| #DIV/0! |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|         |         |         |         |         |         |         |         |         |         |         |         |         |         |
|         |         |         |         |         |         |         |         |         |         |         |         |         |         |
|         |         |         |         |         |         |         |         |         |         |         |         |         |         |
|         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| 7.6     | 7.4     | 7.2     | 8.2     | 8.3     |         |         |         |         |         |         |         |         |         |

| 7.6 | 7.4 | 7.2 | 8.2 | 8.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 7.6 | 7.4 | 7.2 | 8.2 | 8.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|     |     |     |     |     |     |     |     |     |     |     |     |     |     |

| N       | N       | N       | N       | N       |         |         |         |         |         |         |         |         |         |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| %       | %       | %       | %       | %       | %       | %       | %       | %       | %       | %       | %       | %       | %       |
| 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| 0.006   | 0.004   | 0.002   | 0.003   | 0.003   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| 0.063   | 0.084   | 0.019   | 0.033   | 0.036   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| 0.010   | 0.006   | 0.003   | 0.004   | 0.004   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| 0.012   | 0.005   | 0.004   | 0.006   | 0.007   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| 0.048   | 0.068   | 0.015   | 0.028   | 0.029   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| 0.048   | 0.068   | 0.015   | 0.028   | 0.029   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| 0.006   | 0.004   | 0.002   | 0.003   | 0.003   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| 0.448   | 0.381   | 0.105   | 0.166   | 0.177   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| •       | •       |         |         |         |         |         |         |         |         |         |         |         |         |
| 0.00001 | 0.00006 | 0.00002 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |