
Expansion of Kingsgate Primary School and Redevelopment of Liddell Road

Flood Risk Assessment

Submitted in support of Application 01 for Phase 01 Application 02 for Phase 02 December 2014

London Borough of Camden Kingsgate Primary School

PRICE&MYERS

Expansion of Kingsgate Primary School & Redevelopment of Liddell Road

Flood Risk Assessment

Revision 04

Submitted in support of the Application for Phases 1 and 2

Prepared by:	Kirsty Burwood MEng
	October 2014
	22885
Checked by:	Dimitris Linardatos BEng MSc CEng MICE

Revisions

Rev	Date	Ву	Notes
DRAFT 01 02 03	17/10/14 18/11/14 21/11/14 26/11/14	KB KB KB KB	Draft Report Issue report for planning Issue report for planning Issue report for planning
04	04/12/14	KB	Issue report for planning

⋇ STRUCTURES ∠ GEOMETRICS ♦ SUSTAINABILITY ○ INFRASTRUCTURE

Contents

1	Intro	duction3
2	Exist	ing Development Site
	2.1	Location and Description
	2.2	Existing Hydraulic Features4
	2.3	Existing Sewerage Infrastructure
	2.4	Geology and Hydrogeology
3	Deve	elopment Proposals
4	Floo	d Risks7
	4.1	Flood Risk from Rivers and/or the Sea7
	4.2	The Sequential and Exception Tests
	4.3	Groundwater Flood Risk9
	4.4	Sewers and Overland Flow Flood Risk10
5	Run	off Assessment
	5.1	Existing Run-off
	5.2	Proposed Run-off
6	Con	clusions and Recommendations17
7	Refe	rences
A	PPENC	IX A – Existing Thames Water Records 19
A	PPENC	IX B – Masterplan
A	PPENC	IX C – Utility Survey
A	PPENC	IX D – Greenfield Run-Off
A	PPEND	IX E – Surface Water Calculations

1 Introduction

Price & Myers have been commissioned to undertake a Flood Risk Assessment (FRA) in support of both planning applications for phase 1 and 2 of a proposed mixed use development. The existing industrial units are to be demolished as part of the works

This FRA is prepared in accordance with the National Planning Policy Framework (NPPF), NPPF accompanying Technical Guidance, The North London Strategic Flood Risk Assessment (SFRA) and the London Plan.

This report is based on a desk-top review of published information. The objectives of this FRA are to:

- Identify and assess the risks of all forms of flooding to and from the development and demonstrate how these flood risks will be managed (if possible).
- Provide evidence to the local planning authority for the purposes of a sequential test; and
- Establish whether the proposed development will be safe from all sources of flooding.

The location of the proposed site is shown below in Figure 1.

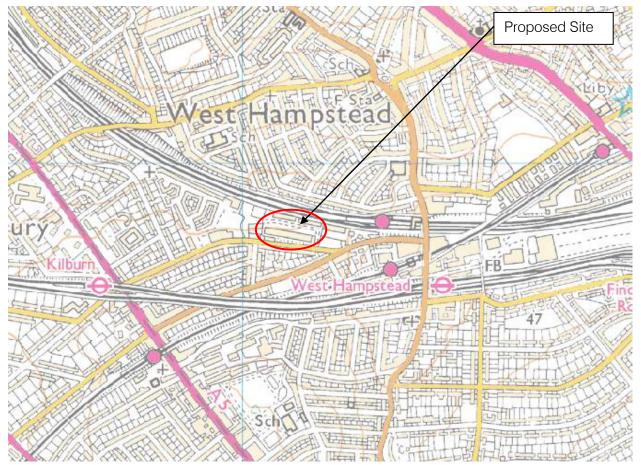


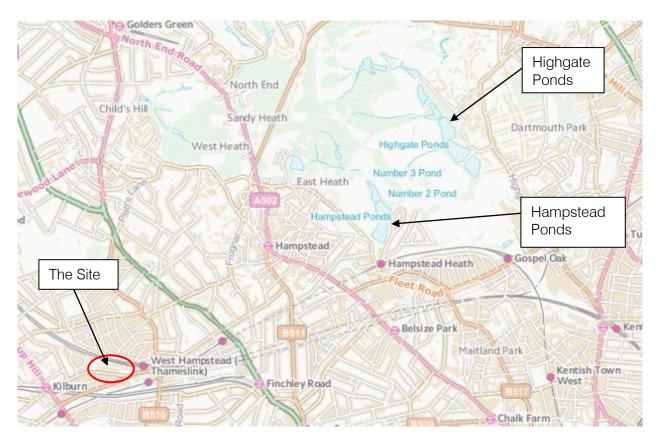
Figure 1 - Site Location (© Environment Agency copyright and database rights 2014. © Ordnance Survey Crown copyright. All rights reserved. Environment Agency, License Number 100026380.)

2 Existing Development Site

2.1 Location and Description

The existing industrial estate is located within West Hampstead in the London Borough of Camden. The postcode is NW6 2EW, national grid reference TQ 25129 84794. The location of the existing industrial estate is shown in the figure below.

Figure 2 – Existing Site Imagery © 2014. The GeoInformation Group, Map data © 2014 Google.


The site is bounded by the Thames Link and South Eastern Railway line in the north, an embankment sloping down to Maygrove Road in the South, Maygrove Peace Park in the West and commercial businesses to the East. The site is occupied by two blocks of single storey commercial units in the north and 17 single storey units in the south with associated parking. Liddell Road runs centrally through the site and joins with Maygrove Road in the southeast.

The site is approximately 1.2Ha in size and is set on a slope falling towards the southeast with a difference of levels of up to 4.5m.

2.2 Existing Hydraulic Features

There are no rivers or other water features within 500m of the site as seen in Figure 3.

The Hampstead and Highgate Ponds are approximately 2.5-3.5km to the north east of the site. They were constructed to increase London's water supply and are fed by the River Fleet. The River Fleet is a subterranean river which historically originates from the springs on Hampstead Heath and drains to the River Thames.

Figure 3 – Existing Watercourses and features © Environment Agency copyright and database rights 2014. © Ordnance Survey Crown copyright. All rights reserved. Environment Agency, 100026380. Contains Royal Mail data © Royal Mail copyright and database right 2014

2.3 Existing Sewerage Infrastructure

The Thames Water records show that a 305mm diameter combined drainage pipe currently runs from east to west along Maygrove Road to the south of the site. There is also an 1143x787 combined sewer beyond the northwest corner of the site. The Thames Water records can be seen in Appendix A.

Within the site there is a 150mm combined sewer in the east of Liddell Road which discharges to the south into Maygrove Road. This picks up the foul water from the industrial units to the south of Liddell Road and a couple of road gullies. The foul water from the units to the north of Liddell Road is taken to the west of the site where it is thought to discharge to the large combined sewer in the northwest. There is also an existing 400mm diameter concrete surface water pipe which runs from the east along Liddell Road to the west where it exits the site. This sewer picks up the surface water run-off from the buildings and the majority of the road gullies on Liddell Road.

2.4 Geology and Hydrogeology

GEA, Geotechnical & Environmental Associates have carried out a Ground Investigation Study. At the time of writing this report only a Summary of Ground Investigation Preliminary Findings [1] was available.

The report states that varying thicknesses of made ground was found to overlay the London Clay Formation. The made ground generally comprised of a concrete slab over very dark grey and blackish silty very gravelly sand with brick and concrete fragments, frequent coal, ash and rare pockets of clay. It extended to depths of between 2.90 – 4.60m. Below this the London Clay

comprised of brown clay with occasional grey markings to depths of between 10.60m and 12.20m, over grey clay which was encountered to the full depth investigated, of 25.00m.

The property is not located within a groundwater source protection zone or groundwater vulnerability zone as shown in Figure 4 below.

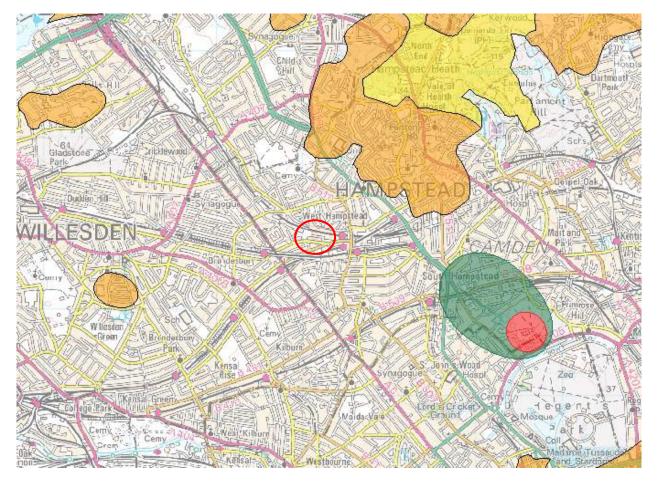


Figure 4 – Groundwater source protection zones and groundwater vulnerability zones. Existing Watercourses © Environment Agency copyright and database rights 2014. © Ordnance Survey Crown copyright. All rights reserved. Environment Agency, 100026380. Contains Royal Mail data © Royal Mail copyright and database right 2014

3 Development Proposals

The proposed mixed-use development will comprise of a school, employment and residential units with two vehicular accesses.

A master plan produced by Maccreanor Lavington Architects can be found in Appendix B.

The development has been split into two phases and a separate planning application has been submitted for each. This report supports both phases. Drawings showing the boundary of each phase can be found in Appendix B.

4 Flood Risks

The following possible sources of flooding will be considered for this site:

- Rivers and/or Sea
- Groundwater
- Sewers and Overland flow

4.1 Flood Risk from Rivers and/or the Sea

The Environment Agency's (EA) indicative flood outline map, shown below in Figure 5, shows that the site is not at risk of flooding from rivers.

Figure 5 - Flood Map for Flooding from Rivers and the Sea © Environment Agency copyright and database rights 2014. © Ordnance Survey Crown copyright. All rights reserved. Environment Agency, 100026380. Contains Royal Mail data © Royal Mail copyright and database right 2014

The two small reservoirs on Hampstead Heath are considered to present a low risk to the site as seen in Figure 6.

Figure 6 - Flood Map for Flooding from Reservoirs © Environment Agency copyright and database rights 2014. © Ordnance Survey Crown copyright. All rights reserved. Environment Agency, 100026380. Contains Royal Mail data © Royal Mail copyright and database right 2014

4.2 The Sequential and Exception Tests

The Sequential Test is to be carried out during the planning process. It aims to ensure that preference for developable land is given to land that has the lowest risk of flooding, based on the data available. The test begins by determining the system of 'Flood Zoning', a system that assesses the risk posed by rivers and in coastal areas; estuaries and the sea. This information is made available by the EA and the LPA. The flood zoning system in England is described in Table 1 below.

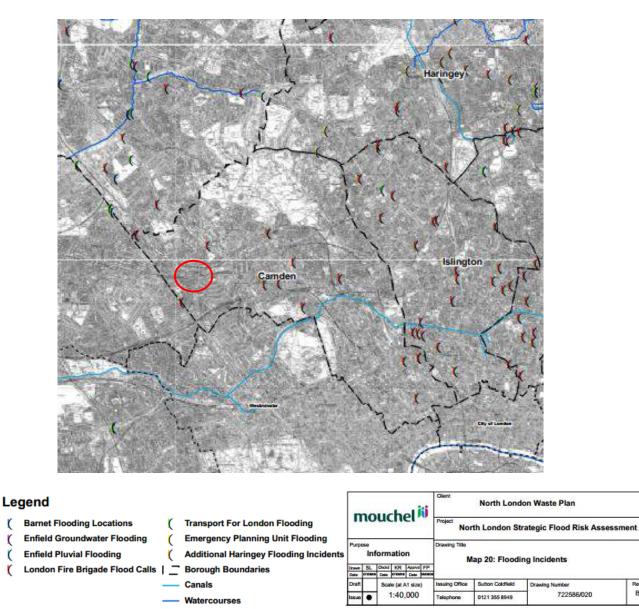
Flood Zone	Definition
Zone 1	This zone comprises land assessed as having a less than 1 in 1000
Low Probability	annual probability of river or sea flooding (<0.1%)
Zone 2	This zone comprises land assessed as having between a 1 in 100 and 1 in
Medium	1000 annual probability of river flooding (1% - 0.1%) or between a 1 in 200
Probability	and 1 in 1000 annual probability of sea flooding (0.5% - 0.1%) in any year.
Zone 3a	This zone comprises land assessed as having a 1 in 100 or greater annual
High Probability	probability of river flooding (>1%), or a 1 in 200 or greater annual
	probability of flooding from the sea (>0.5%) in any year.
Zone 3b	This zone comprises land where water has to flow or be stored in times of
Functional	flood.
Floodplain	Local planning authorities should identify in their Strategic Flood Risk
	Assessments areas of functional floodplain and its boundaries accordingly,
	in agreement with the Environment Agency. The identification of functional
	floodplain should take account of local circumstances and not be defined
	solely on rigid probability parameters. But land which would flood with an
	annual probability of 1 in 20 (5%) or greater in any year, or is designed to
	flood in an extreme (0.1%) flood, should provide a starting point for
	consideration and discussions to identify the functional floodplain.

 Table 1 - Flood Zone Descriptions from the Framework [2]

The aim of the Sequential Test is to propose development in land which lies within Zone 1, prior to developing in high risk Zones 2, 3a and 3b. It also considers the vulnerability of the site to flooding when considering developments within the higher risk flood zones. See Table 2 for the flood risk vulnerability and flood zone compatibility table used. Land uses which are more vulnerable to flooding should be constructed in lower flood risk zones.

vulr	ood risk nerability sification	Essential infrastructure	Water compatible	Highly vulnerable	More vulnerable	Less vulnerable
	Zone 1	\checkmark	\checkmark	\checkmark	✓	✓
zone	Zone 2	\checkmark	\checkmark	Exception Test required	\checkmark	\checkmark
Flood	Zone 3a	Exception Test required	\checkmark	×	Exception Test required	\checkmark
	Zone 3b	Exception Test required	\checkmark	×	×	×

Table 2 - Flood Risk Vulnerability & Flood Zone Compatibility [3]

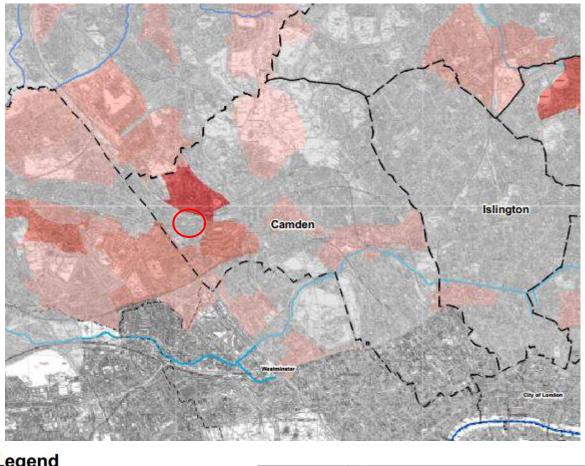

The school and residential uses of the proposed development are classified as "more vulnerable" whilst the rest is classified as "less vulnerable". The EA's map confirms that the site is within Flood Zone 1. Table 2 confirms that the proposed development is suitable in Zone 1 and the Exception Test is not required.

4.3 Groundwater Flood Risk

Flooding can occur in locations where groundwater naturally exists at shallow depths. Prolonged periods of rainfall can result in elevated groundwater levels that may reach the surface. This can pose a flood risk, particularly for basements and cellars. Elevated groundwater can prevent infiltration occurring and could promote the occurrence of overland flow. In addition, groundwater could leak into existing surface water drainage systems that have poor integrity, reducing their ability to accommodate surface water runoff.

The SFRA [4] states that very few groundwater flooding records have been provided by the EA, none of which have occurred within the London Borough of Camden, as seen in Figure 7. During the site investigation groundwater was encountered at a single location within the made ground at a depth of 4.75m, rising to 4.44m following drilling after an hour.

Considering the above and the fact the proposals do not include any basements or lower ground floors, the flood risk from groundwater is considered low.



4.4 Sewers and Overland Flow Flood Risk

Sewer systems in London are often very old, and are sometimes only designed to convey storms of relatively low return periods such as a 1 in 10 year rainfall event. As a result sewer flooding events can often be frequent but with smaller consequences than associated with fluvial flooding. Some of the London sewer network is a combined system with storm and foul drainage served by a single sewer. This makes flash flood events particularly inconvenient and unpleasant as floodwaters will often be contaminated with sewage.

Thames Water have provided information on sewer flooding by truncated postcode over the last 10 years, the results of which can be seen in Figure 8.

B

Leaend

Borough Boundaries	Flooding Events	6-7	mouchel ⁱⁱ	Client North Londo	on Waste Plan	
Watercourses	Total	8-9	mouchel		ategic Flood Risk Asses	sment
Canals	0	10-12	Purpose	Drawing Title		
	1	13-19	Information	Map 13: Sewer	Flooding Incidents by P	osteodo
			Owner Of Lower MCD Invest CD	From Av		osicoue
	2-3	20-44	Draven SL Chickid KR Approd FP Date statement Date parameter Date provet		gust 1997 to August 2007	USICOUP
	2-3	20-44			gust 1997 to August 2007	Rev

As can be seen the site is located outside of a postcode where sewer flooding has been reported. The postcode immediately to the north of the property has suffered from a large number of incidents.

In August 2002 there were some serious floods in the London Borough of Camden. It inflicted considerable damage on some Camden residents and their homes, public services and facilities, and private businesses. High rainfalls levels and flood events are a recurring feature in Camden due to the nature of summer thunderstorms and the topography of Hampstead. It has been found that there are similarities between these floods and those that hit Camden in 1975.

The flood event on the 7th August 2002 was caused by excessive rainfall causing the main sewer system to become completely inundated. The surcharge pressure forced the water to back onto the streets through manholes and gully gratings and into residents' homes at basement and ground floor level. Thames Water's confirmed that the flooding was caused by its sewer system reaching maximum capacity very quickly so that surface water could not be drained at the rate as the rain fell. The map in Figure 9 shows the roads affected by flooding during the August 2002 floods.

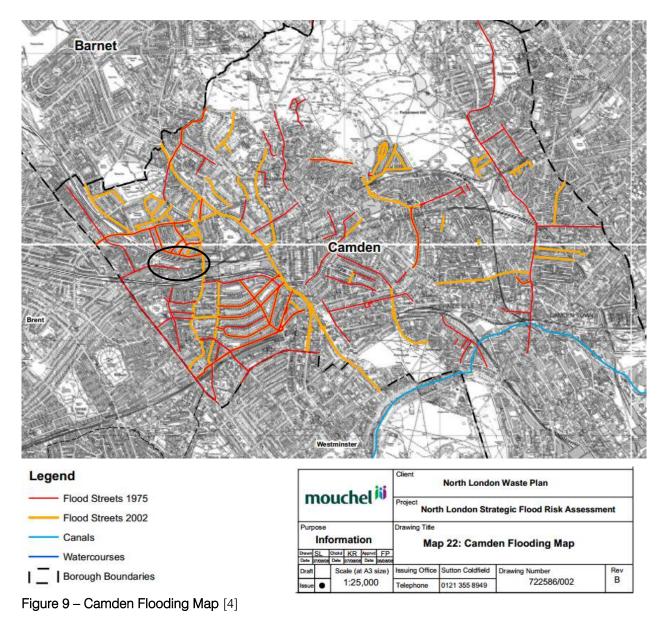


Figure 8 and Figure 9 show reasonable correlation although the Camden floods appear to be more widespread in Figure 8 than in the Thames Water records. This can be attributed to the fact that some of the properties flooded in 2002 will not be included on the Thames Water database unless they flood twice in ten years. The road to the south of the development, Maygrove Road appears to have flooded in 1975, but not in the 2002 floods.

Figure 10 below shows the levels of the surrounding area where it can be seen that the levels fall from north to south. Within the site the levels falls towards the south east with a change in level of up to 4.5m. During intense rainfall events the water should flow away from the site therefore not causing flooding within the development.

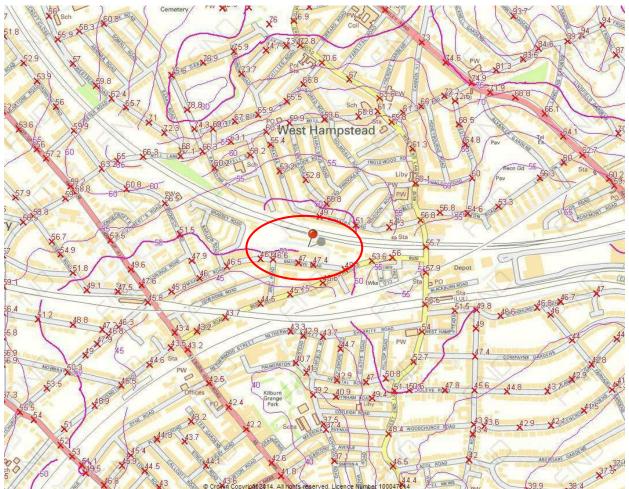


Figure 10 - Surrounding Area Topography (1:7000) Findmaps.co.uk Professional Mapping Intelligence © Crown Copyright 2014. License Number 100047514.

Taking the above into consideration it can be concluded that the site is at a low risk of flooding from sewer failure and overland flow as it is not within a valley, where overland flows will be collected during a storm event which can cause localised flooding. It is however important to ensure there is sufficient discharge capacity and that flood risk is not increased due to the development proposals.

The EA's surface water flood map, shown in Figure 11, also shows that the risk is low in this area. Overland flows will be maintained within the road channels and will flow downstream without affecting the surrounding areas.

Figure 11 – Risk of Flooding from Surface Water © Environment Agency copyright and database rights 2014. © Ordnance Survey Crown copyright. All rights reserved. Environment Agency, 100026380. Contains Royal Mail data © Royal Mail copyright and database right 2014

5 Run-off Assessment

As discussed in section 2 the existing surface water drainage exits the site in two different locations: into a combined sewer in the southeast and in a surface water sewer to the west.

5.1 Existing Run-off

The topographical survey drawing of the site shows that the impermeable area currently covers about 87% of the total site (10,480m²). The total run-off rate was estimated for the 1 in 100 year storm event using the modified rational method, as shown below.

 $Q_{100} = 2.78 \text{ x A x i}$

Where

A = Catchment area (Ha) i = Rainfall intensity (mm/hr)

 $Q_{100} = 2.78 \text{ x } 1.048 \text{ x } 107.183 = 312 \text{ I/s}$

Of this approximately 450m² of surface water can be seen to connect into the combined sewer in Maygrove Road. The existing discharge of which has been calculated below.

 $Q_{100} = 2.78 \times 0.045 \times 107.183 = 13.4 \text{ l/s}$

The rest of the site discharges into the large surface water sewer which is taken off to the west of the site. It is unknown where this discharges into the Thames Water sewer. The utility survey can be seen in Appendix C.

5.2 Proposed Run-off

In accordance with the London Plan, EA guidelines, Building Regulations and Water Authorities advice the preferred means of surface water drainage for any new development is into a suitable soakaway or infiltration drainage system. Sustainable Drainage Systems (SUDS) can reduce the impact of urbanisation on watercourse flows, ensure the protection and enhancement of water quality and encourage recharge of groundwater in a manner that mimics natural conditions. If drainage to an infiltration system proved to be an unsuitable option for the site then drainage to public sewers will be assessed. Drainage to the public sewers can be considered only when all other options proved unsuitable.

The ground within the site is not suitable for accommodating infiltration systems as it is made ground underlain with London Clay. The proposed development will be reducing the amount of hardstanding area to approximately 83%. The proposed run-off for a 1 in 100year storm with 30% climate change has been calculated below.

 $Q_{100+30\%} = 2.78 \text{ x } 1.0 \text{ x } 139.338 = 387 \text{ I/s}$

The London Plan requires attenuation to Greenfield run-off rates from new developments. Using the online "Greenfield Run-off Estimation for sites" the allowable discharge limit for the site based on the FEH method has been calculated as 14.97l/s for a 1 in 100 year storm with a 30% allowance for climate change. The summary sheet for this calculation can be found in Appendix D.

Preliminary calculations using MicroDrainage software, available in Appendix E, show that a storage volume of approximately 560m³ must be provided in order to attenuate surface water from the site to the Greenfield run-off rate.

The surface water is proposed to discharge in two locations, with an outfall for each phase.

Phase 1 (Planning Application 1)

The school which is the north/northeast of the site will discharge into Maygrove Road in the southeast of the site. The school takes up approximately 50% of the site, therefore a similar proportion of the allowable surface water run-off will discharge at this location. This calculation can be found in Appendix E.

It is proposed that the schools playground surfacing, will utilise permeable paving in order to attenuate the surface water run-off to the discharge limit. Preliminary calculations have been carried out and show that there is a sufficient area of paving available to be made porous. The site falls at around 1:80 and will require a depth of approximately 650mm of type 3 material to provide sufficient attenuation. Other sustainable drainage systems (SuDS), such as ponds and rain gardens, have been proposed as part of the landscape design. Their storage capacity will be developed during the detailed design stage, thus allowing a reduction in the depth of permeable fill.

Phase 2 (Planning Application 2)

The remaining 50% of the site will discharge into Maygrove Road in the south of the site. This area will require approximately 350m³ of storage. This calculation can also be found in Appendix E. This can be provided through the use of a number of SuDS, which will be determined during the detailed design stage:

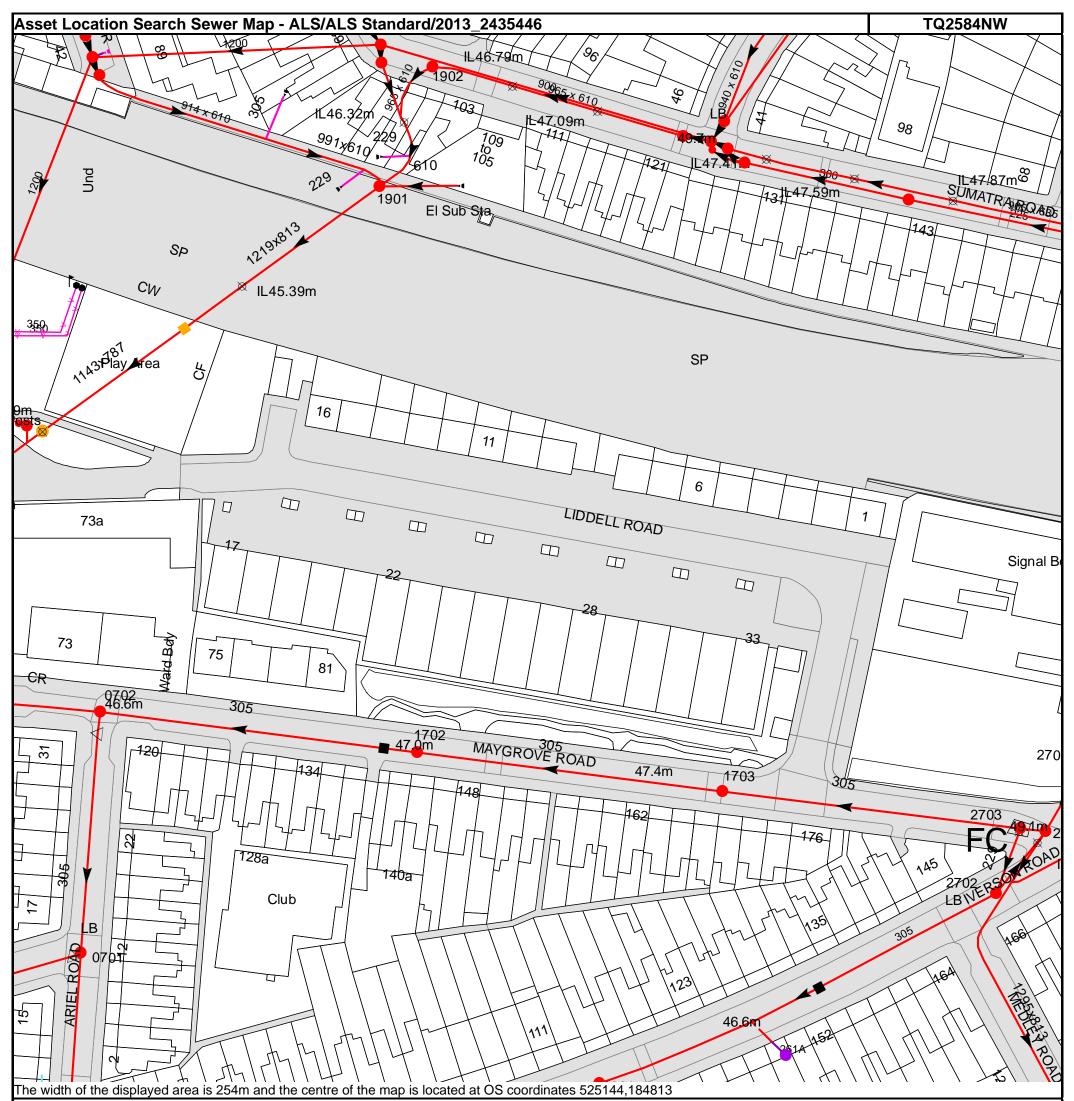
- Cellular attenuation tank
- Linear planting strips
- Stockholm tree planting
- Permeable paving

6 Conclusions and Recommendations

The key flood risk conclusions and how they are to be managed are as follows:

- River and/or Sea
 - o The site lies within Flood Zone 1 where there is less than 1 in 1000 annual probability of river or sea flooding (<0.1%).
 - The proposed mixed use development is classified as more vulnerable within the flood risk vulnerability classification. These are appropriate within Flood Zone 1.
- Groundwater
 - o Groundwater is assumed to be deep.
 - The proposals will not affect the local hydrogeology. Therefore the proposed development will not increase the flood risk from groundwater on site or the surrounding areas.
 - The likelihood of groundwater emerging from the ground is considered to be very low.
 - o Excavations must be made safely with due regard to ground water.
- Sewers and Overland Flow
 - The levels in the surrounding area fall from north to south therefore overland flow generated by the proposed development site or adjacent sites should flow away from the development.
 - In 2002 there were some extreme flood events in Camden due to the failure of the sewer network. The site was unaffected by these floods.
 - o The site is at low risk of flooding from sewer failure and overland flow.
 - o Consultation should continue with Thames Water regarding the proposed discharge into the existing sewer.
- Proposed Discharge
 - o The overall existing surface water discharge from the site is 312 l/s
 - The surface water from the proposed development will be attenuated to meet the Greenfield Run-off Rate.

It can be concluded that the proposed mixed use development will not adversely affect onsite or neighbouring properties or their residual flood risk. This report has not identified any significant risks that should prevent the re-development of the site.

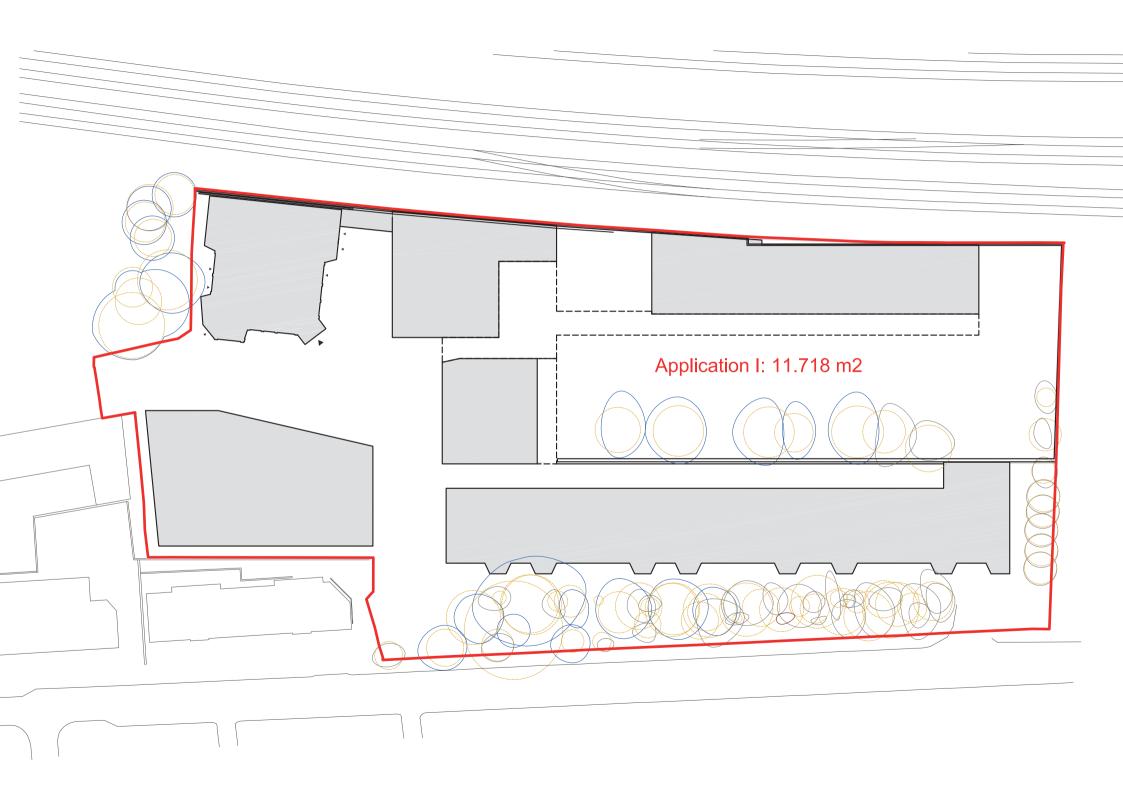

It is recommended that during the detailed design stage:

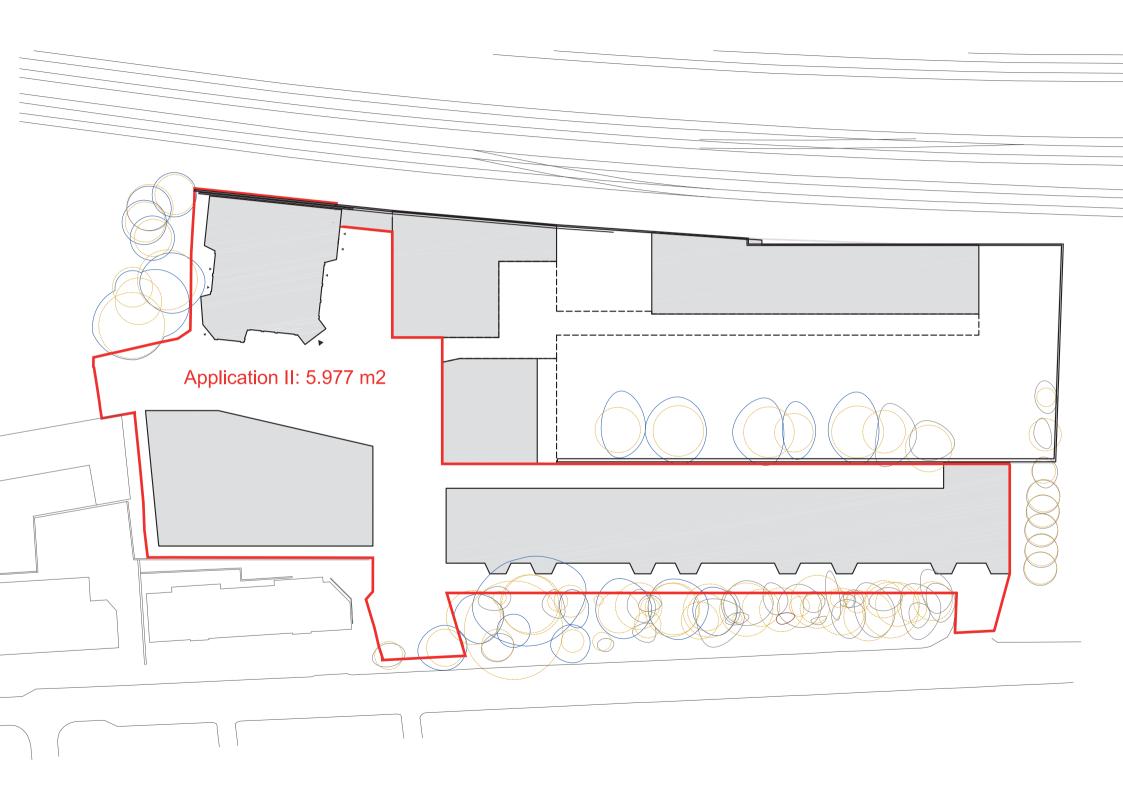
- Existing drainage infrastructure is confirmed; and
- Existing and proposed discharges allowances are confirmed.

7 References

- [1] Summary of Ground Investigation Preliminary Findings, GEA, Revision no. 1, August 2014.
- [2] National Planning Policy Framework, Department for Communities and Local Government, March 2012. <u>http://www.nationalarchives.gov.uk/doc/open-government-licence/</u>
- [3] Technical Guidance to the National Planning Policy Framework, Department for Communities and Local Government, March 2012 <u>http://www.nationalarchives.gov.uk/doc/open-government-licence/</u>
- [4] North London Strategic Flood Risk Assessment (SFRA), Final Report. Mouchel, August 2008
- [5] The London Plan, Spatial Development Strategy for Greater London. Greater London Authority, July 2011.

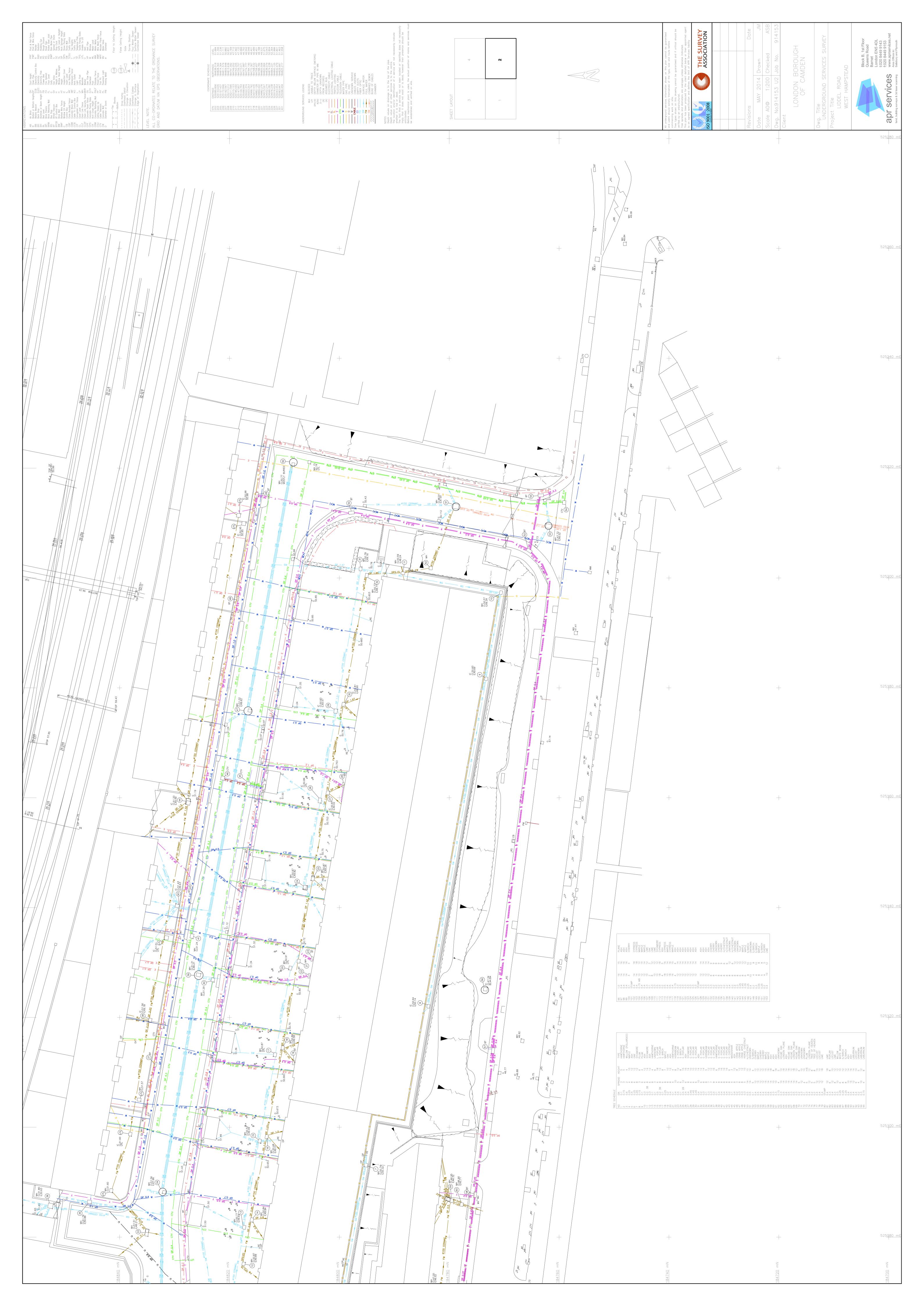
APPENDIX A – Existing Thames Water Records

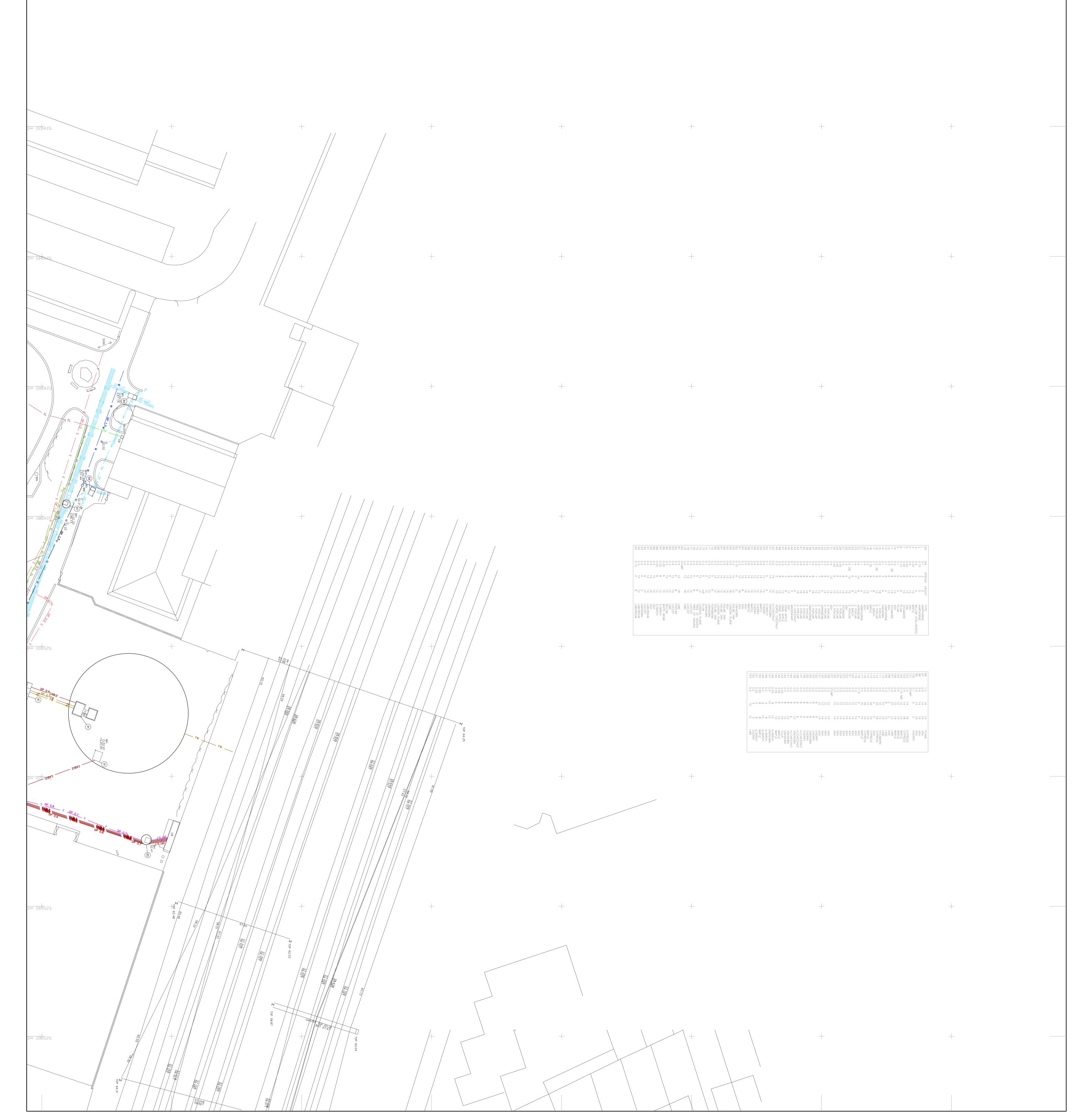


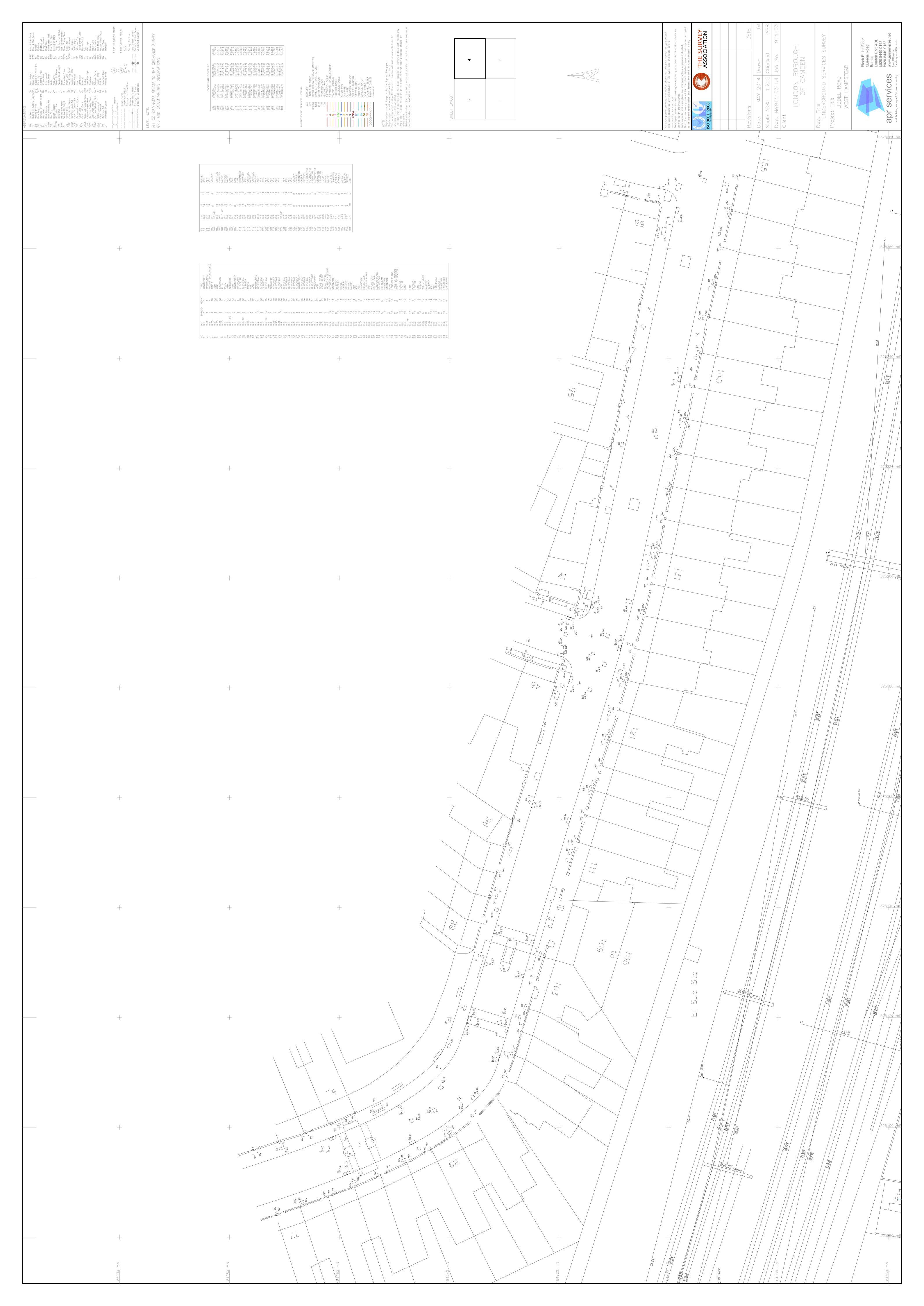

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. WU298557 Crown Copyright Reserved.

APPENDIX B – Masterplan






APPENDIX C – Utility Survey

Apr services.net Iand, building surveys & 3d laser scanning	Revisions Date Date Date Date MAY 2014 Drawn JM Scale AO@ 1:200 Checked ASB Dwg. No.914153 U3 Job No. 914153 Client LONDON BOROUGH 914153 Grawn JM Dwg. Title OF CAMDEN 914153 Dwg. Title OF CAMDEN Project Project Title UNDERGROUND SERVICES SURVEY Project Title WEST HAMPSTEAD	All underground services information shown on this plan cannot be guaranteed and users should satisfy themselves of the type, size and route before commencing work on site. Tree types shown on this drawing cannot be guaranteed and if critical should be verified by an arboriculturist. This plan has been produced for the client detailed below or their appointed agent to an agreed specification and defines the limit of APR Services liability SO 9001 : 2008 THE SUMPORT		SHEET LAYOUT	UNDERGROUND SERVICES LEGEND BUT UNABLE TO TRACE UNABLE TO TRACE LECOROS ASSUMED RUN ELECTRICAL LIGHTING CABLE TELEVISION CABLE TELEVISION CABLE TELEVISION CABLE TELEVISION CABLE UNATER PIPE OLL WITER OLL WITER OL	COORDINATE SCHEDULESTNKORTHINCSLEVEL202525085.856NORTHINCSEVEL203525133.635184828.36451.346204525137.435184828.36451.346205525172.846184813.36350.882206525172.846184813.56350.882207525213.255184813.56350.882208525213.255184813.56350.882210525147.957184491.92250.169211525185.540184763.20547.462214525068.846184763.20747.452215525013.253184764.52747.452216525002.374184764.52746.461217524966.742184772.36746.461218525013.253184768.52746.401219524882.272184788.78446.452220524915.547184768.52649.531221524945.287184758.45746.401222524945.282184454.22152.043223524945.2821848754.35151.886224524945.282184874.33852.8043225525043.453184864.22152.364226525015.623184824.512551.886227525043.453184824.52551.866227525043.453184824.22151.866227525043.453184825.21751.56330152503.943184825.217 </th <th>ABBREVIATIONS A Ar Bick DH Duct Height PRF Pet & Bick Fence B Bolind ar Ck Born File Description ELEC Electicity PKF Pet & Bick Fence BB Bolind ar Ck Born File ELEC Electicity PKF Pet & Kin Fence BH Born Free File File File File RA Radiar BH Berkel Procem File File File File RA Radiar BH Berkel Procem File File File Radiar Rave Recement Rec</th>	ABBREVIATIONS A Ar Bick DH Duct Height PRF Pet & Bick Fence B Bolind ar Ck Born File Description ELEC Electicity PKF Pet & Bick Fence BB Bolind ar Ck Born File ELEC Electicity PKF Pet & Kin Fence BH Born Free File File File File RA Radiar BH Berkel Procem File File File File RA Radiar BH Berkel Procem File File File Radiar Rave Recement Rec
184860 mN	184880 m N	184900 mN	184920 MN	184940 mN	18496 <u>0</u> mN	184980 mN	185000 mN
524 <u>880 mE</u>							

APPENDIX D - Greenfield Run-Off

Site name:	Liddell Road
Site location:	West Hampstead

This is an estimation of the greenfield runoff rate limits that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the CIRIA SUDS Manual (2007). It is not to be used for detailed design of drainage systems. It is recommended that every drainage scheme uses hydraulic modelling software to finalise volume requirements and design details before drawings are produced.

Greenfield runoff estimation for sites

Site coordinates

Latitude:	51.54823° N
Longitude:	0.19645° W
Reference:	gcpv780fnqs3 / 1.2
Date:	21 Nov 2014

Site characteristics

Total site area	1.2	ha
Significant public open space	0.2	ha
Area positively drained	1	ha

Methodology

Greenfield runoff method	FEH	
Qmed estimation method	Calculate from BFI and SA	AR
BFI and SPR estimation method	Specify BFI manually	
HOST class	N/A	
BFI / BFIHOST	0.24	
Qmed	4.13	l/s
Qbar / Qmed Conversion Factor	1.136	

Hydrological characteristics

Default	Edited	
640	640	mm
20	20	mm
0.4	0.4	
0.75	0.75	
6	6	
0.85	0.85	
1.62	1.62	
2.3	2.3	
3.19	3.19	
	640 20 0.4 0.75 6 0.85 1.62 2.3	64064020200.40.40.750.75660.850.851.621.622.32.3

Greenfield runoff rates

	Default	Edited	
Qbar	4.69	4.69	l/s
1 in 1 year	5.00	5.00	l/s
1 in 30 years	10.79	10.79	l/s
1 in 100 years	14.97	14.97	l/s

APPENDIX E – Surface Water Calculations

ce & Myers								Page 1
Newman Street		Liddel	l Ro	ad				
don							4	
1LT								NB
e 17/10/2014			Design	ed b	v KB			MICLO
e Liddell Road FRA	A calce		Checke		-			Drain
	a carca.					1 1 1		
ro Drainage			Source	Con	trol 201	4.1.1		
~	C D 1	-	1.0.0					
<u>Summary c</u>	<u>of Result</u>	ts io	<u>r 100</u>	year	Return	Period	(+30%))
	II-1 f	F Drai	n Timo	. 212	minutes.			
	Hdll	L Drai	n rime	: 342	minutes.			
Storm	Max Ma	ax	Max		Max	Max	Max	Status
Event	Level De	pth Ir	nfiltra	tion (Control D	Outflow	Volume	
	(m) (1	m)	(l/s)		(l/s)	(l/s)	(m³)	
15 min Summer	8 883 0	283		0.0	10.3	10 3	254.9	ОК
30 min Summer				0.0	10.3		234.9 324.7	
60 min Summer				0.0	12.9	12.9		
120 min Summer				0.0	13.7		433.9	
180 min Summer				0.0	13.9	13.9		
240 min Summer				0.0	13.9	13.9		
360 min Summer				0.0	13.8	13.8		
480 min Summer				0.0	13.7		438.1	
600 min Summer				0.0	13.6	13.6		
720 min Summer				0.0	13.5		421.7	
960 min Summer				0.0	13.1		402.4	
1440 min Summer				0.0	12.4		363.4	0 K
2160 min Summer				0.0	11.5	11.5		
2880 min Summer				0.0	10.7		271.4	
4320 min Summer				0.0	9.3	9.3		
5760 min Summer				0.0	8.3		170.7	
7200 min Summer				0.0	7.5		141.8	0 K
8640 min Summer				0.0	6.9		120.5	
10080 min Summer				0.0	6.3		105.2	
15 min Winter	8.930 0.	430		0.0	11.0	11.0	285.8	0 K
	Storm	Ra	ain Fl	ooded	Discharg	e Time-P	eak	
	Event	(mm	/hr) Vo	olume	Volume	(mins	s)	
				(m³)	(m³)			
1 5	min Summe	r 120	338	0.0	248.	4	19	
	min Summe		.071	0.0			33	
11			.351	0.0			62	
	min Cummo	:L JJ					62 122	
60	min Summe					4	エムム	
60 120	min Summe	er 32	.840	0.0		6	180	
60 120 180	min Summe min Summe	er 32 er 23	.880	0.0	530.		180 228	
60 120 180 240	min Summe min Summe min Summe	er 32 er 23 er 18	.880 .941	0.0 0.0	530. 561.	3	228	
60 120 180 240 360	min Summe min Summe min Summe min Summe	er 32 er 23 er 18 er 13	.880 .941 .666	0.0 0.0 0.0	530. 561. 607.	3 7	228 282	
60 120 180 240 360 480	min Summe min Summe min Summe min Summe	er 32 er 23 er 18 er 13 er 10	.880 .941 .666 .831	0.0 0.0 0.0	530. 561. 607. 642.	3 7 2	228 282 346	
60 120 180 240 360 480 600	min Summe min Summe min Summe min Summe min Summe	er 32 er 23 er 18 er 13 er 10 er 9	.880 .941 .666 .831 .038	0.0 0.0 0.0 0.0	530. 561. 607. 642. 669.	3 7 2 8	228 282 346 412	
60 120 180 240 360 480 600 720	min Summe min Summe min Summe min Summe	er 32 er 23 er 18 er 13 er 10 er 9 er 7	.880 .941 .666 .831	0.0 0.0 0.0	530. 561. 607. 642. 669. 692.	3 7 2 8 9	228 282 346	

2160 min Summer

2880 min Summer

4320 min Summer

5760 min Summer

7200 min Summer

8640 min Summer

15 min Winter 139.338

10080 min Summer

3.167

2.498

1.785

1.406

1.167

1.002

0.881

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2014 XP Solutions

851.4

894.8 956.0

1009.8

1047.5

1078.4

1103.0

279.2

1280

1668

2380

3120

3824

4504

5248

18

London W1T 1LT	CICCC			Lidd	ell Roa	ad			Page 2
W1T 1LT Date 17/10/	30 Newman Street London								4
Date 17/10/									L.
	Date 17/10/2014					- VD			- Micro
File Liddel						y KB			Draina
		• • • •		ked by	1 0 0 1	4 1 1		Braina	
Micro Drain	age			Sour	ce Cont	crol 201	4.1.1		
	Summary o	of Resu	lts f	or 10	0 vear	Return	Period	(+30%)	
	<u>building</u> (JI KCSU	103 I	01 10	<u>v ycar</u>	Recuin	ICIIOU	(1008)	_
	Storm	Max	Max	Ma	x	Max	Max	Max	Status
	Event	Level I	-			Control S			
		(m)	(m)	(1/	's)	(l/s)	(l/s)	(m³)	
30	min Winter	9.048 (.548		0.0	12.5	12.5	364.4	ОК
	min Winter				0.0	13.7	13.7		0 K
120	min Winter	9.237 0	.737		0.0	14.5	14.5	489.9	ОК
180	min Winter	9.263 (.763		0.0	14.8	14.8	507.2	ОК
240	min Winter	9.266 (.766		0.0	14.8	14.8	509.6	O K
360	min Winter	9.254 (.754		0.0	14.7	14.7	501.6	O K
	min Winter				0.0	14.6	14.6		O K
	min Winter				0.0	14.4	14.4		O K
	min Winter				0.0	14.2	14.2		ОК
	min Winter				0.0	13.7	13.7		ΟK
	min Winter				0.0	12.8	12.8		ОК
	min Winter				0.0	11.5	11.5		ОК
	min Winter				0.0	10.4	10.4		ОК
	min Winter min Winter				0.0	8.6 7.4	8.6	183.0 137.2	ок ок
	min Winter				0.0	6.4		107.8	0 K
	min Winter				0.0	5.8	5.8		ОК
	min Winter				0.0	5.1	5.1		ОК
		Storm Event		Rain	Flooded Volume	Discharge Volume	e Time-P (mins		
		Event	(111	m/ III)	(m ³)	(m ³)	(mins	5)	
							-	2.2	
		min Win			0.0	363.3		33 62	
		min Win min Win		5.351 2.840	0.0	458. 545.1		62 120	
		min Win		3.880	0.0	594.9		120 176	
		min Win		8.941	0.0	629.3		230	
		min Win		3.666	0.0	681.2		296	
		min Win		0.831	0.0	719.9		368	
			tor	9.038			`	446	
		min Win	LEI	5.050	0.0	750.8	5	110	
	600	min Win min Win		7.792	0.0	750.8 776.7		520	
	600 720 960	min Win min Win	ter ter	7.792 6.162	0.0	776. ⁻ 818.0	7 6	520 668	
	600 720 960 1440	min Win min Win min Win	ter ter ter	7.792 6.162 4.421	0.0 0.0 0.0	776. 818.0 879.4	7 6 4	520 668 952	
	600 720 960 1440 2160	min Win min Win min Win min Win	ter ter ter ter	7.792 6.162 4.421 3.167	0.0 0.0 0.0 0.0	776. 818.0 879.4 954.0	7 6 4 0 1	520 668 952 360	
	600 720 960 1440 2160 2880	min Win min Win min Win min Win min Win	ter ter ter ter ter	7.792 6.162 4.421 3.167 2.498	0.0 0.0 0.0 0.0 0.0	776. 818.0 879.4 954.0 1002.7	7 6 4 0 1 7 1	520 668 952 360 732	
	600 720 960 1440 2160 2880 4320	min Win min Win min Win min Win min Win min Win	ter ter ter ter ter	7.792 6.162 4.421 3.167 2.498 1.785	0.0 0.0 0.0 0.0 0.0	776. 818.0 879.4 954.0 1002.7 1071.8	7 6 4 0 1 7 1 8 2	520 668 952 360 732 468	
	600 720 960 1440 2160 2880 4320 5760	min Win min Win min Win min Win min Win min Win	ter ter ter ter ter ter	7.792 6.162 4.421 3.167 2.498 1.785 1.406	0.0 0.0 0.0 0.0 0.0 0.0	776. 818.6 879.4 954.0 1002. 1071.8 1131.2	7 6 4 0 1 7 1 8 2 2 3	520 668 952 360 732 468 176	
	600 720 960 1440 2160 2880 4320 5760 7200	min Win min Win min Win min Win min Win min Win min Win	ter ter ter ter ter ter ter	7.792 6.162 4.421 3.167 2.498 1.785 1.406 1.167	0.0 0.0 0.0 0.0 0.0 0.0 0.0	776. 818.6 879.4 954.0 1002.7 1071.8 1131.2 1173.6	7 6 4 7 1 8 2 2 3 6 3	520 668 952 360 732 468 176 888	
	600 720 960 1440 2160 2880 4320 5760 7200 8640	min Win min Win min Win min Win min Win min Win	ter ter ter ter ter ter ter	7.792 6.162 4.421 3.167 2.498 1.785 1.406	0.0 0.0 0.0 0.0 0.0 0.0	776. 818.6 879.4 954.0 1002.7 1071.8 1131.2 1173.6	7 6 4 0 1 7 1 8 2 2 3 6 3 4 4	520 668 952 360 732 468 176	

Price & Myers Page 3 30 Newman Street Liddell Road WiT 1LT Date 17/10/2014 Designed by KB File Liddell Road FRA calcs Checked by Micro Drainage Source Control 2014.1.1 Rainfall Model FSR Winter Storms Yes Return Period (years) Retion Control 2014.00 M5-60 (mm) C1.000 Shortest Storm (mina) 1080 Summer Storms Yes Climate Change % +30 Time Area Diagram Total Area (ha) 1.000 Time (mins) Area From: To: (ha) 0 4 1.000
London W1T 1LT Date 17/10/2014 File Liddell Road FRA calcs Micro Drainage Rainfall Model Rainfall Model Return Period (years) Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 21.000 Shortest Storm (mins) 15 Ratio R Summer Storms Yes Climate Change % +30 Time Area Diagram Total Area (ha) 1.000 Time (mins) Area From: To: (ha)
WIT 1LT Date 17/10/2014 File Liddell Road FRA calcs Micro Drainage Rainfall Model Rainfall Details Rainfall Model Region England and Wales N5-60 (mm) Summer Storms Summer Storms File Liddell Road FRA calcs Checked by Source Control 2014.1.1 Summer Storms Summer Storms
Date 17/10/2014 File Liddell Road FRA calcs Micro Drainage Rainfall Model Return Period (years) M5-60 (mm) Summer Storms Summer Storms Summer Storms Summer Storms Summer Storms Time Area Diagram Total Area (ha) 1.000 Time (mins) Area From: To: (ha)
File Liddell Road FRA calcs Checked by Micro Drainage Source Control 2014.1.1 Rainfall Model Rainfall Model FSR Return Period (years) 100 CV (Summer) 0.750 Region England and Wales Cv (Summer) M5-60 (mm) 21.000 Shortest Storm (mins) Summer Storms Yes Climate Change % +30 Time Area Diagram Total Area (ha) 1.000 Time (mins) Area From: To:
Micro Drainage Source Control 2014.1.1 <u>Rainfall Details</u> Rainfall Model FSR Winter Storms Yes Return Period (years) 100 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 21.000 Shortest Storm (mins) 15 Ratio R 0.435 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +30 <u>Time Area Diagram</u> Total Area (ha) 1.000 Time (mins) Area From: To: (ha)
Rainfall Details Rainfall Model FSR Winter Storms Yes Return Period (years) 100 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 21.000 Shortest Storm (mins) 15 Ratio R 0.435 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +30 Time Area Diagram Total Area (ha) 1.000 Time (mins) Area From: To: (ha)
Rainfall ModelFSRWinter StormsYesReturn Period (years)100Cv (Summer)0.750Region England and WalesCv (Winter)0.840M5-60 (mm)21.000 Shortest Storm (mins)15Ratio R0.435 Longest Storm (mins)10080Summer StormsYesClimate Change %Harea DiagramTotal Area (ha)1.000Time (mins) AreaFrom:To:From:To:(ha)
Return Period (years) 100 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 21.000 Shortest Storm (mins) 15 Ratio R 0.435 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +30 <u>Time Area Diagram</u> Total Area (ha) 1.000 Time (mins) Area From: To: (ha)
Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 21.000 Shortest Storm (mins) 15 Ratio R 0.435 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +30 <u>Time Area Diagram</u> Total Area (ha) 1.000 <u>Time (mins) Area</u> From: To: (ha)
M5-60 (mm) Ratio R Summer Storms 21.000 Shortest Storm (mins) 15 0.435 Longest Storm (mins) 10080 Yes Climate Change % +30 <u>Time Area Diagram</u> Total Area (ha) 1.000 <u>Time (mins) Area</u> From: To: (ha)
Ratio R 0.435 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +30 <u>Time Area Diagram</u> Total Area (ha) 1.000 Time (mins) Area From: To: (ha)
Summer Storms Yes Climate Change % +30 <u>Time Area Diagram</u> Total Area (ha) 1.000 Time (mins) Area From: To: (ha)
Total Area (ha) 1.000 Time (mins) Area From: To: (ha)
Time (mins) Area From: To: (ha)
From: To: (ha)
From: To: (ha)
0 4 1.000

Price & Myers 30 Newman Street	Tidda	ell Road		Page 4
London	LIUDE	LI KUdu		2
WIT 1LT				1 mm
Date 17/10/2014	Decie	ned by KB		Micro
File Liddell Road FRA calc		ined by KB		Drainage
Micro Drainage		ed by e Control 2	01/ 1 1	
micro brainage	50010		014.1.1	
	Model	<u>Details</u>		
Storag	ge is Online C	over Level (m)	10.000	
<u>C</u>	ellular Stor	rage Structu	<u>ire</u>	
Infiltration Coef: Infiltration Coef:	ficient Base (Poros	tor 2.0 ity 0.95
Depth (m) Area (m²)	Inf. Area (m²)	Depth (m) Ar	ea (m²) Inf	. Area (m²)
0.000 700.0 0.800 700.0	700.0 788.0		0.0	788.0
	Pipe Outfi	Low Control		
	<u> </u>			
Roughness k (1	dan) 0.000			

Price & Myers									Page 1
30 Newman Stree									
London						4			
W1T 1LT							Micco		
Date 21/11/201	4 16:00	6		Desi	gned b	y kburwo	od		
File Permeable	Pavino	q — Li	dd		ked by				Drainac
Micro Drainage						trol 201	4.1.1		
Sur	<u>mmary c</u>	of Res	ults f	<u>Eor 10</u>	0 year	Return	Period	(+30%))
		I	Half Dr	ain Tin	ne : 265	minutes.			
Sto	rm	Max	Max	Ма	x	Max	Max	Max	Status
Eve		Level		Infilt	ration (Control S	Outflow	Volume	
		(m)	(m)	(1/	's)	(1/s)	(1/s)	(m³)	
15	~	0 0 0 0	0 0 0 0		0 0	<i>c c</i>	6.6	101 0	o
	n Summer n Summer				0.0 0.0	6.6 6.6	6.6 6.6		ОК ОК
	1 Summer 1 Summer				0.0	6.6	6.6		0 K
	n Summer				0.0	6.6		170.2	ОК
	1 Summer				0.0	6.6		171.5	ОК
	1 Summer				0.0	6.6	6.6		0 K
360 mir	n Summer	0.529	0.529		0.0	6.6	6.6	159.6	ОК
480 mir	n Summer	0.505	0.505		0.0	6.6	6.6	151.5	O K
	n Summer				0.0	6.6	6.6		O K
	n Summer				0.0	6.6	6.6		O K
	1 Summer				0.0	6.6	6.6		ОК
1440 min 2160 min					0.0	6.6	6.6		ОК
2160 min 2880 min					0.0	6.6	6.6		OK
2880 min 4320 min					0.0	6.5 5.7	6.5 5.7		ОК ОК
4320 min 5760 min					0.0	4.7	4.7	14.8	O K
7200 min					0.0	4.0	4.0		
8640 min					0.0	3.4	3.4		0 K
	Summer				0.0	3.0	3.0		
10080 min	n Winter	0.399	0.399		0.0	6.6	6.6	115.2	0 K
		Storm		Pain	Floodod	Discharg	o Timo-D	ook	
		Storm		Rain		Discharg Volume			
		Storm Event		Rain mm/hr)	Flooded Volume (m³)	Discharg Volume (m³)	e Time-P (mins		
		Event	(1	mm/hr)	Volume (m³)	Volume (m ³)	(mins	5)	
	15	Event min Su	(1 ummer 13	mm/hr) 37.494	Volume (m³) 0.0	Volume (m ³) 106.	(mins	1 8	
	15 30	Event	(I ummer 13 ummer 8	mm/hr)	Volume (m³)	Volume (m ³) 106. 139.	(mins 7 4	5)	
	15 30 60	Event min Su min Su	(n ummer 13 ummer 3	mm/hr) 37.494 88.809	Volume (m ³) 0.0 0.0	Volume (m ³) 106. 139. 172.	(mins 7 4 5	18 33	
	15 30 60 120	Event min Su min Su min Su	(n ummer 1 ummer 1 ummer 1 ummer 1	mm/hr) 37.494 88.809 54.549	Volume (m ³) 0.0 0.0 0.0	Volume (m ³) 106. 139. 172. 205.	(mins 7 4 5 7	18 33 62	
	15 30 60 120 180	min Su min Su min Su min Su min Su	(n ummer 1: ummer 2 ummer 2 ummer 2	mm/hr) 37.494 88.809 54.549 32.365	Volume (m ³) 0.0 0.0 0.0 0.0	Volume (m ³) 106. 139. 172. 205. 224. 238.	(mins 7 4 5 7 8 1	18 33 62 122	
	15 30 60 120 180 240 360	Event min Su min Su min Su min Su min Su min Su min Su	(n ummer 1 ummer 2 ummer 2 ummer 2 ummer 2 ummer 2 ummer 2	mm/hr) 37.494 88.809 54.549 32.365 23.543 18.683 13.462	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 106. 139. 172. 205. 224. 238. 257.	(mins 7 4 5 7 8 1 6	18 33 62 122 180 222 280	
	15 30 60 120 180 240 360 480	Event min Su min Su min Su min Su min Su min Su min Su min Su	(n ummer 1 ummer 2 ummer 2 ummer 2 ummer 2 ummer 2 ummer 2 ummer 2	mm/hr) 37.494 88.809 54.549 32.365 23.543 18.683 13.462 10.666	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 106. 139. 172. 205. 224. 238. 257. 272.	(mins 7 4 5 7 8 1 6 2	<pre>18 33 62 122 180 222 280 346</pre>	
	15 30 60 120 180 240 360 480 600	min Su min Su min Su min Su min Su min Su min Su min Su min Su min Su	(n nmmer 1 nmmer 2 nmmer 2 nmmer 2 nmmer 2 nmmer 2 nmmer 2 nmmer 2 nmmer 2	mm/hr) 37.494 88.809 54.549 32.365 23.543 18.683 13.462 10.666 8.898	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 106. 139. 172. 205. 224. 238. 257. 272. 283.	(mins 7 4 5 7 8 1 6 2 8	<pre>18 33 62 122 122 180 222 280 346 414</pre>	
	15 30 60 120 180 240 360 480 600 720	min Su min Su min Su min Su min Su min Su min Su min Su min Su min Su	(n ummer 1 ummer 2 ummer 2	mm/hr) 37.494 88.809 54.549 32.365 23.543 18.683 13.462 10.666 8.898 7.671	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 106. 139. 172. 205. 224. 238. 257. 272. 283. 293.	(mins 7 4 5 7 8 1 6 2 8 6 6	18 33 62 122 180 222 280 346 414 484	
	15 30 60 120 180 240 360 480 600 720 960	Event min Su min Su min Su min Su min Su min Su min Su min Su min Su	(n ummer 1 ummer 2 ummer 2 umm	mm/hr) 37.494 88.809 54.549 32.365 23.543 18.683 13.462 10.666 8.898 7.671 6.064	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 106. 139. 172. 205. 224. 238. 257. 272. 283. 293. 309.	(mins 7 4 5 7 8 1 6 2 8 6 3	<pre>18 33 62 122 122 180 222 280 346 414 484 608</pre>	
	15 30 60 120 180 240 360 480 600 720 960 1440	Event min Su min Su min Su min Su min Su min Su min Su min Su min Su min Su	(n mmer 1 mmer 2 mmer 3 mmer 2 mmer 2 mmer 3 mmer 3	mm/hr) 37.494 88.809 54.549 32.365 23.543 18.683 13.462 10.666 8.898 7.671 6.064 4.349	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 106. 139. 172. 205. 224. 238. 257. 272. 283. 293. 309. 332.	(mins 7 4 5 7 8 1 6 2 8 6 3 2	<pre>18 33 62 122 180 222 280 346 414 484 608 866</pre>	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160	Event min Su min Su min Su min Su min Su min Su min Su min Su min Su min Su	(r ummer 1 ummer 2 ummer 3 ummer 3 umm	mm/hr) 37.494 88.809 54.549 32.365 23.543 18.683 13.462 10.666 8.898 7.671 6.064 4.349 3.115	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 106. 139. 172. 205. 224. 238. 257. 272. 283. 293. 309. 332. 355.	(mins 7 4 5 7 8 1 6 2 8 6 3 2 9 1	<pre>18 33 62 122 180 222 280 346 414 484 608 866 212</pre>	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	Event min Su min Su min Su min Su min Su min Su min Su min Su min Su min Su	(n mmer 1 mmer 2 mmer 3 mmer 3	mm/hr) 37.494 88.809 54.549 32.365 23.543 18.683 13.462 10.666 8.898 7.671 6.064 4.349	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 106. 139. 172. 205. 224. 238. 257. 272. 283. 293. 309. 332. 355. 372.	(mins 7 4 5 7 8 1 6 2 8 6 3 2 9 1 9 1	<pre>18 33 62 122 180 222 280 346 414 484 608 866</pre>	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	Event min Su min Su	(n mmer 1: mmer 2 mmer 3 mmer	mm/hr) 37.494 88.809 54.549 32.365 23.543 18.683 13.462 10.666 8.898 7.671 6.064 4.349 3.115 2.456	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 106. 139. 172. 205. 224. 238. 257. 272. 283. 293. 309. 332. 355. 372. 397.	(mins) 7 4 5 7 8 1 6 2 8 6 3 2 9 1 9 1 2 2 2 2	<pre>18 33 62 122 180 222 280 346 414 484 608 866 212 556</pre>	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	Event min Su min Su	(1 ummer 1 ummer 2 ummer 2	mm/hr) 37.494 88.809 54.549 32.365 23.543 18.683 13.462 10.666 8.898 7.671 6.064 4.349 3.115 2.456 1.755	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 106. 139. 172. 205. 224. 238. 257. 272. 283. 293. 309. 332. 355. 372. 397. 414.	(mins) 7 4 5 7 8 1 6 2 8 6 3 2 9 1 9 1 2 2 2 3 2 2 3 2 2	<pre>18 33 62 122 122 180 222 280 346 414 484 608 866 212 556 208</pre>	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	Event min Su min Su	(1 ummer 1 ummer 2 ummer 2	mm/hr) 37.494 88.809 54.549 32.365 23.543 18.683 13.462 10.666 8.898 7.671 6.064 4.349 3.115 2.456 1.755 1.381	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 106. 139. 172. 205. 224. 238. 257. 272. 283. 293. 309. 332. 355. 372. 397. 414. 427.	(mins) 7 4 5 7 8 1 6 2 8 6 3 2 9 1 9 1 2 2 2 3 2 2 3	<pre>18 33 62 122 122 180 222 280 346 414 484 608 866 212 556 208 936</pre>	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	Event min Su min Su	(1 ummer 1 ummer 2 ummer 2	mm/hr) 37.494 88.809 54.549 32.365 23.543 18.683 13.462 10.666 8.898 7.671 6.064 4.349 3.115 2.456 1.755 1.381 1.147 0.985 0.866	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 106. 139. 172. 205. 224. 238. 257. 272. 283. 293. 309. 332. 355. 372. 397. 414. 427. 437.	(mins) 7 4 5 7 8 1 6 2 8 6 3 2 9 1 9 1 2 2 2 3 2 2 3 5 4 9 5 5	<pre>18 33 62 122 122 180 222 280 346 414 484 608 866 212 556 208 936 672</pre>	

ce & Myer									Page
Newman St	reet								
don									4
1LT									Mice
ate 21/11/2014 16:06					gned b	y kburw	ood		
le Permeable Paving - Lidd					ked by	-			Drai
ro Draina						trol 20	14.1.1		
	5-								
	Summary o	of Res	ults	for 10	0 year	Return	Period	(+30%))
									_
S	Storm	Max	Max	Ma	ж	Max	Max	Max	Status
E	Ivent		-				Coutflow		
		(m)	(m)	(1,	s)	(1/s)	(1/s)	(m³)	
30	min Winter	0.495	0.495		0.0	6.6	6.6	147.9	ОК
	min Winter				0.0	6.6		175.9	ΟK
120	min Winter	0.631	0.631		0.0	6.6	6.6	194.6	ΟK
180	min Winter	0.641	0.641		0.0	6.6	6.6	197.7	ΟK
240	min Winter	0.632	0.632		0.0	6.6	6.6	194.9	ΟK
360	min Winter	0.601	0.601		0.0	6.6	6.6	184.1	ΟK
480	min Winter	0.572	0.572		0.0	6.6	6.6	174.1	ΟK
600	min Winter	0.540	0.540		0.0	6.6	6.6	163.3	ΟK
720	min Winter	0.507	0.507		0.0	6.6	6.6	152.1	ΟK
960	min Winter	0.436	0.436		0.0	6.6	6.6	127.6	ΟK
1440	min Winter	0.308	0.308		0.0	6.6	6.6	83.9	ΟK
2160	min Winter	0.180	0.180		0.0	6.5	6.5	40.1	ΟK
2880	min Winter	0.129	0.129		0.0	6.0	6.0	22.9	ΟK
4320	min Winter	0.099	0.099		0.0	4.4	4.4	13.4	ΟK
5760	min Winter	0.085	0.085		0.0	3.5	3.5	9.8	O K
7200	min Winter	0.075	0.075		0.0	2.9	2.9	7.8	ΟK
8640	min Winter	0.069	0.069		0.0	2.5	2.5	6.5	ΟK
10080	min Winter	0.064	0.064		0.0	2.2	2.2	5.5	ΟK
		Storm Event	(Rain mm/hr)	Flooded Volume (m ³)		ge Time-P e (min:		
	20	min Wi	ntor	88.809	0.0	156	0	33	
		min Wi		54.549	0.0			53 62	
		min Wi						118	
		min Wi						176	
		min Wi						230	
		min Wi						294	
		min Wi						368	
		min Wi		8.898				446	
	720	min Wi		7.671	0.0			522	
		min Wi						666	
	1440	min Wi	nter	4.349	0.0	373	.2	922	
	2160	min Wi	nter	3.115	0.0) 399	.9 1	236	
	2880	min Wi	nter	2.456	0.0	419	.2 1	528	
	4320	min Wi	nter	1.755	0.0	446	.8 2	208	
		min Wi		1.381	0.0	466	.3 2	936	
		min Wi						672	
		min Wi				493	.2 4	408	
	10080	min Wi	nter	0.866	0.0	503	.1 5	136	

Price & Myers		Page 3
30 Newman Street		
London		4
W1T 1LT		Miccon
Date 21/11/2014 16:06	Designed by kburwood	WILLIU
File Permeable Paving - Lidd	Checked by	Urainage
Micro Drainage	Source Control 2014.1.1	
Ra	infall Details	
Rainfall Model	FSR Winter Storms Y	es
Return Period (years)	100 Cv (Summer) 0.7	
Region Engla M5-60 (mm)	and and Wales Cv (Winter) 0.8 20.700 Shortest Storm (mins)	
Ratio R	0.438 Longest Storm (mins) 100	
Summer Storms	Yes Climate Change % +	30
<u>Tin</u>	ne Area Diagram	
Tota	al Area (ha) 0.436	
	me (mins) Area om: To: (ha)	
	0 4 0.436	
	0 10.100	

Price & Myers		Page 4
30 Newman Street		
London		4
W1T 1LT		~~~
Date 21/11/2014 16:06	Designed by kburwood	MICLO
File Permeable Paving - Lidd	Checked by	Drainage
	Source Control 2014.1.1	Construction of the second sec
Micro Drainage	Source control 2014.1.1	
	Adal Dataila	
<u>1</u>	<u>Model Details</u>	
Storage is Or	nline Cover Level (m) 1.000	
Porous	<u>Car Park Structure</u>	
Infiltration Coefficient Dece	(m/hm) 0 00000	114 0
Infiltration Coefficient Base Membrane Percolation (1		
Max Percolation		
Safety	Factor 5.0 Depression Storage (mm)	
	rosity 0.30 Evaporation (mm/day)	
Invert Lev	el (m) 0.000 Cap Volume Depth (m)	0.650
Hydro-Brake	Optimum® Outflow Control	
[] [] [] [] [] [] [] [] [] [] [] [] [] [Reference MD-SHE-0125-6600-0645-6600	
	n Head (m) 0.645	
-	Flow (1/s) 6.6	
	Flush-Flo™ Calculated	
	Objective Minimise upstream storage	
	meter (mm) 125	
	Level (m) 0.000 meter (mm) 150	
Minimum Outlet Pipe Dia Suggested Manhole Dia		
Control Po		
Design Point (Ca	alculated) 0.645 6.6 Flush-Flo™ 0.212 6.6	
	Kick-Flo® 0.462 5.6	
Mean Flow over H		
	een based on the Head/Discharge relation	-
	Should another type of control device on these storage routing calculations w	
invalidated		
Depth (m) Flow (1/s) Depth (m) Flow	v (l/s) Depth (m) Flow (l/s) Depth (m)	Flow (l/s)
0.100 4.5 1.200	8.8 3.000 13.5 7.000	20.3
0.200 6.6 1.400	9.4 3.500 14.6 7.500	20.3
0.300 6.4 1.600	10.1 4.000 15.5 8.000	21.7
0.400 6.1 1.800	10.6 4.500 16.4 8.500	22.4
0.500 5.8 2.000	11.2 5.000 17.3 9.000	
0.600 6.3 2.200	11.7 5.500 18.1 9.500	23.6
0.800 7.3 2.400	12.2 6.000 18.9	
1.000 8.1 2.600	12.7 6.500 19.5	

ce & Mye									Page
Jewman S	treet								
don									4
1LT									
21/11/	2014 16:3	3		Desic	med h	y kburwa	od		- MIC
				-		-			Drai
	SITE - LID	DELL R			ked by				Second Second
o Drain	lage			Sourc	ce Con	trol 202	14.1.1		
	Summary o	of Res	ults	<u>for 10</u>) year	Return	Period	(+30%))
		F	Half Dr	ain Tim	e : 341	minutes.			
	Storm	Max	Max	Ma	ĸ	Max	Max	Max	Status
	Event	Level	Depth	Infiltr	ation (Control D	Outflow	Volume	
		(m)	(m)	(1/:	s)	(1/s)	(l/s)	(m³)	
1 6	5 min Summer	8 892	0 392		0.0	8.4	8 /	164.0	ОК
) min Summer				0.0	8.4 8.4		208.8	
) min Summer) min Summer				0.0	8.4	8.4		
) min Summer) min Summer				0.0	8.4		278.3	
) min Summer				0.0	8.4		286.6	ОК
) min Summer				0.0	8.4		285.9	
) min Summer				0.0	8.4		277.4	
) min Summer				0.0	8.4	8.4		
) min Summer				0.0	8.4		258.5	
) min Summer) min Summer				0.0	8.4		248.5	
) min Summer) min Summer				0.0	8.4		228.7	
) min Summer				0.0	8.4		191.7	
) min Summer				0.0	8.4		146.2	
) min Summer				0.0	8.2		112.7	
) min Summer) min Summer				0.0	7.7	7.7		
) min Summer				0.0	6.8	6.8		
) min Summer				0.0	5.9	5.9		
) min Summer				0.0	5.2		44.6	
) min Summer				0.0	4.6	4.6		
	5 min Winter				0.0	8.4	8.4		
		Storm				l Discharg	-		
		Event	(mm/hr)	Volume	Volume	(min:	5)	
					(m³)	(m³)			
	15	min Su	mmer 1	39.338	0.0	166	. 2	18	
	30	min Su	mmer	90.071	0.0	215	. 6	33	
	60	min Su	mmer	55.351	0.0	268	.0	62	
	120	min Su	mmer	32.840	0.0	318	.3	122	
	180	min Su	mmer	23.880	0.0	347	.3	182	
	240	min Su	mmer	18.941	0.0	367	.3	240	
	360	min Su	mmer	13.666	0.0	397	. 6	304	
	480	min Su	mmer	10.831	0.0	420	.2	362	
	600	min Su	mmer	9.038	0.0	438	.3	424	
	720	min Su	mmer	7.792	0.0	453	. 5	492	
	960	min Su	mmer	6.162	0.0			624	
	1440	min Su	mmer	4.421	0.0		.3	882	
	2160	min Su	mmer	3.167	0.0			256	
	2100								
		min Su	mmer	2.498	0.0	583	.1 1	612	
	2880	min Su min Su		2.498 1.785	0.0 0.0			612 292	
	2880 4320		mmer			624	.0 2		
	2880 4320 5760	min Su	mmer mmer	1.785	0.0	624 657	.0 2 .1 2	292	

 7200 min Summer
 1.167

 8640 min Summer
 1.002

 10080 min Summer
 0.881

15 min Winter 139.338

0.0

0.0

0.0

©1982-2014 XP Solutions

702.3

719.2

186.4

4408

5136

18

ice & Myer Newman St									Page 2
	treet								2
London VIT 1LT									1 mg
	014 16 06								- Micro
te 21/11/2					-	y kburwo	od		Draina
le WEST SI		DELL R	0A		ked by				I BILLINI
cro Draina	age			Sour	ce Con	trol 201	4.1.1		
	Summary c	of Res	ults f	for 10)0 vear	Return	Period	(+30%)
	_				-				
	Storm Event	Max	Max		ax	Max Control Σ	Max	Max	Status
	Lvent	(m)	(m)		/s)	(1/s)	(1/s)	(m ³)	
		()	()	(-/	,	(=/ =/	(=, =,	()	
	min Winter				0.0	8.4		234.9	
	min Winter				0.0	8.4		280.8	0 K
	min Winter				0.0	8.4		317.1	
	min Winter				0.0	8.4		329.5	ΟK
	min Winter				0.0	8.4		331.8	O K
	min Winter				0.0	8.4		325.7	
	min Winter				0.0	8.4		310.5	
	min Winter				0.0	8.4		296.2	0 K
	min Winter				0.0	8.4		281.7	
	min Winter				0.0	8.4	8.4		0 K
	min Winter				0.0	8.4		195.9	
	min Winter				0.0	8.3		129.9	ΟK
	min Winter				0.0	8.0	8.0		0 K
	min Winter				0.0	6.6	6.6		
	min Winter				0.0	5.3	5.3		
	min Winter				0.0	4.4	4.4		
	min Winter min Winter				0.0 0.0	3.8 3.4	3.8 3.4		
		Storm Event		Rain mm/hr)	Flooded Volume	l Discharc Volume			
					(m³)	(m³)			
	30	min Wi	nter 9	90.071	0.0	241.	.7	33	
	60	min Wi	nter 5	55.351	0.0			62	
	120	min Wi	nter 3	32.840	0.0	356.	6	120	
	180	min Wi	nter 2	23.880	0.0	389.	1	178	
		min Wi				411.	6	234	
		min Wi						346	
		min Wi						440	
		min Wi						466	
		min Wi						540	
		min Wi						684	
		min Wi						954	
		min Wi						.320	
		min Wi		2.498				.644	
		min Wi						288 992	
		min Wi min Wi						1992 1680	
		min Wi						408	
		min Wi						5144	

Price & Myers	Page 3
30 Newman Street	
London	L
WIT 1LT	1 decem
Date 21/11/2014 16:33	Designed by kburwood
File WEST SITE - LIDDELL ROA	Checked by Ufainage
Micro Drainage	Source Control 2014.1.1
Ra	infall Details
Rainfall Model	FSR Winter Storms Yes
Return Period (years)	100 Cv (Summer) 0.750
Region Engla	and and Wales Cv (Winter) 0.840
M5-60 (mm) Ratio R	21.000 Shortest Storm (mins) 15
Summer Storms	0.435 Longest Storm (mins) 10080 Yes Climate Change % +30
<u></u>	ne Area Diagram
Tota	al Area (ha) 0.650
Ti	me (mins) Area
Fr	om: To: (ha)
	0 4 0.650

rice & Myers									Page	e 4
) Newman Street			_	_	_	_	_		5	
ondon									2	4
1T 1LT									Mi	
ate 21/11/2014 16:3			-	ned by	y kk	ourwoo	od		D C	inan
File WEST SITE - LIDDELL ROA Checked by Micro Drainage Source Control 20									DIG	
icro Drainage		S	ourc	e Cont	trol	201	4.1.1			
		Mod	del I	Detail	<u>.s</u>					
	Storage i	s Onli	ne Cc	ver Le	vel	(m) 10	0.000			
	<u>Cell</u>	ular	Stor	age S	truc	cture				
	lon Coeffici	ient Ba	ase (n	n/hr) O	.000	000		Factor 2. rosity 0.9		
Depth (m) Are	ea (m²) Inf	. Area	(m²)	Depth	(m)	Area	(m²)	Inf. Area	(m²)	
0.000 0.800	440.0 440.0		440.0 507.2	0.	900		0.0	5	07.2	
	<u>Hydro-Bra</u>	ake Op	otimu	m® Ou	tflo	ow Co	ntrol	<u>-</u>		
		Ilnit R	oforo	nce MD	-SHE	-0131-	-8400-	1200-8400		
		esign			JIL	0101	0100	1.200		
		ign Fl						8.4		
		Fl	ush-F	lom			С	alculated		
			-		inim	ise up	ostrea	m storage		
	Tn	Diame vert L		'				131 8.500		
	Outlet Pipe ted Manhole	Diame	ter (mm)				150 1200		
	Contro	l Poin	ts	Hea	ad (r	n) Flo	w (l/s	5)		
I	Design Point						8.	. 4		
				-0 TM			8.			
1	lean Flow ou		ick-Fl ad Rar		0.76	- -	6. 7.	.8 .3		
The hydrological calc				2	the	Head/I			onshir) for t
Hydro-Brake Optimum® Hydro-Brake Optimum® invalidated	as specifie	ed. Sh	ould	anothe	r ty	pe of	contr	ol device	other	than a
Depth (m) Flow (l/s)	Depth (m)	Flow ((l/s)	Depth	(m)	Flow	(l/s)	Depth (m)	Flow	(1/s)
0.100 4.7			8.4		.000		12.9	7.000		19.3
0.200 7.9 0.300 8.3			9.0 9.6		.500		13.9 14.8	7.500		20.0 20.6
0.400 8.3			10.1		. 500		15.6	8.500		20.0
0.500 8.2	2.000		10.6		.000		16.4			21.8
0.600 7.9			11.1		500		17.2	9.500		22.4
0.800 6.9 1.000 7.7			11.6 12.0		.000		17.9			
1.000	2.000		⊥∠ . U	0.			18.6	I		