

Brendan Timlin Llewelyn Davies 44-46 Whitfield Street London W1T 2RJ 6th November 2014 **Ref:** 2012/5570/L1

Dear Brendan

ISEH 163-170 Tottenham Court Road MRI Chiller Plant Noise

In our original report 12/5570/R1 we assessed the noise levels from the plant associated with the ISEH development against noise limits derived from our noise survey at the site. Of particular note we assessed noise levels from the roof mounted plant to the residences north of the site on University Street. We concluded that the derived noise limits were achievable, but that mitigation would be required for the MRI chiller in the form of an acoustic screen. The screen was proposed to be made of acoustic louvers or solid panels at least .2m higher than the chiller itself. It was envisaged that the screen would wrap around the chiller on three sides. However ultimately the consented screen installed formed an L shape extending along the north edge of the roof to the stairwell. This was equally effective at screening the chiller, but also screened the other condenser plant items which our assessment assumed would be unscreened.

When we assessed the plant we were advised that the MRI chiller and MRI DX condenser would operate daytime only (0700-2300 hours), but that the other condensers would operate 24 hours per day.

You have advised however that the MRI equipment still requires some cooling at night so it is possible that the MRI chiller and condenser may operate at night, along with the other plant, i.e. all plant could operate at night. When we undertook our original assessment we concluded that the total plant noise levels at the University Street residences with all plant operating would be 51dBA. This met the daytime noise limit of 53 dBA, but would fail by 3dB to meet the 48dBA night-time limit. However, that assessment was on the basis of the five other condensers being unscreened. As noted above the screening installed does screen them as well as the MRI plant.

We have therefore rerun our calculations including for the full screening as installed. The calculations are in the attached schedules 12/5570/CS1-8. These show that with the screen as installed the total noise levels at the residences as 48dBA, thereby meeting the 24 hour noise limit without further mitigation.

Therefore the planning condition 4 to consent 2014/2082 that requires the plant and machinery to have time clocks so as to not operate 2400-0600 hours is unnecessary and can be deleted. The amenities of the residents are protected by planning condition 3 that limits

the noise levels at the residences and condition 2 which requires the installation and retention of the acoustic screen.

I trust the above is clear, however please call if you have any queries.

Yours sincerely

Neil Jarman

VRF-08: VRF-08 to AP1

-8	-10	-12	-15	-17	-20	-23	-26	
3	3	3	3	3	3	3	3	
-25	-25	-25	-25	-25	-25	-25	-25	
-8	-8	-8	-8	-8	-8	-8	-8	
79	77	75	69	66	62	55	52	72
63	125	250	500	1k	2k	4k	8k	dB(A)
	Octa	ve Ban	d Cent	re Fred	quency	, Hz		
	79 -8 -25 3	63 125 79 77 -8 -8 -25 -25 3 3	63 125 250 79 77 75 -8 -8 -8 -25 -25 -25 3 3 3	63 125 250 500 79 77 75 69 -8 -8 -8 -8 -25 -25 -25 -25 3 3 3 3	63 125 250 500 1k 79 77 75 69 66 -8 -8 -8 -8 -8 -25 -25 -25 -25 -25 3 3 3 3 3	63 125 250 500 1k 2k 79 77 75 69 66 62 -8 -8 -8 -8 -8 -8 -25 -25 -25 -25 -25 -25 3 3 3 3 3 3	79 77 75 69 66 62 55 -8 -8 -8 -8 -8 -8 -8 -25 -25 -25 -25 -25 -25 -25 -25 3 3 3 3 3 3 3 3 3	63 125 250 500 1k 2k 4k 8k 79 77 75 69 66 62 55 52 -8 -8 -8 -8 -8 -8 -8 -8 -8 -25 -25 -25 -25 -25 -25 -25 25 -25 3 3 3 3 3 3 3 3 3

VRF-09: VRF-09 to AP1

		Octav	ve Ban	d Cent	re Fred	quency	, Hz		
	63	125	250	500	1k	2k	4k	8k	dB(A)
VRF-09to12	73	75	66	63	61	56	49	44	67
Server Room VRF unit									
Radiation Loss	-8	-8	-8	-8	-8	-8	-8	-8	
Hemi-Spherical Radiation									
Distance Loss	-22	-22	-22	-22	-22	-22	-22	-22	
13 metres Distance Loss									
Facade Correction	3	3	3	3	3	3	3	3	
Facade Correction									
Barrier Correction	-10	-12	-15	-17	-20	-23	-26	-29	
0.92m Path Difference									
Total	36	36	24	19	14	6	-4	-12	23

VRF-10: VRF-10 to AP1

Total	36	36	25	19	14	6	-4	-12	24
0.69m Path Difference									
Barrier Correction	-9	-11	-14	-16	-19	-22	-25	-28	
Facade Correction									
Facade Correction	3	3	3	3	3	3	3	3	
14 metres Distance Loss									
Distance Loss	-23	-23	-23	-23	-23	-23	-23	-23	
Hemi-Spherical Radiation									
Radiation Loss	-8	-8	-8	-8	-8	-8	-8	-8	
Server Room VRF unit									
VRF-09to12	73	75	66	63	61	56	49	44	67
	63	125	250	500	1k	2k	4k	8k	dB(A)
		Octav	ve Ban	d Cent	re Fred	quency	, Hz		

VRF-11: VRF-11 to AP1

Total	35	35	24	18	13	6	-4	-12	23
0.49m Path Difference									
Barrier Correction	-8	-10	-12	-15	-18	-21	-24	-27	
Facade Correction									
Facade Correction	3	3	3	3	3	3	3	3	
18 metres Distance Loss									
Distance Loss	-25	-25	-25	-25	-25	-25	-25	-25	
Hemi-Spherical Radiation									
Radiation Loss	-8	-8	-8	-8	-8	-8	-8	-8	
Server Room VRF unit									
VRF-09to12	73	75	66	63	61	56	49	44	67
	63	125	250	500	1k	2k	4k	8k	dB(A)
		Octav	ve Ban	d Cent	re Fred	quency	, Hz		

VRF-12: VRF-12 to AP1

Total	35	35	24	18	13	6	-4	-12	23
0.49m Path Difference									
Barrier Correction	-8	-10	-12	-15	-18	-21	-24	-27	
Facade Correction									
Facade Correction	3	3	3	3	3	3	3	3	
18 metres Distance Loss									
Distance Loss	-25	-25	-25	-25	-25	-25	-25	-25	
Hemi-Spherical Radiation									
Radiation Loss	-8	-8	-8	-8	-8	-8	-8	-8	
Server Room VRF unit									
VRF-09to12	73	75	66	63	61	56	49	44	67
	63	125	250	500	1k	2k	4k	8k	dB(A)
		Octav	ve Ban	d Cent	re Frec	quency	, Hz		

MRI chiller: MRI chiller to AP1

48	14	25	35	43	47	48	46	44	Total
									0.21m Path Difference
;	-23	-20	-17	-14	-12	-10	-8	-7	Barrier Correction
									Facade Correction
	3	3	3	3	3	3	3	3	Facade Correction
									14 metres Distance Loss
;	-23	-23	-23	-23	-23	-23	-23	-23	Distance Loss
									Spherical Radiation
	-11	-11	-11	-11	-11	-11	-11	-11	Radiation Loss
									Chiller for MRI unit
92	68	76	83	88	90	88	85	81	MRI Chiller
dB(A	8k	4k	2k	1k	500	250	125	63	
		, Hz	quency	re Frec	d Cent	/e Ban	Octav		

MRI DX: MRI DX to AP1

Total	27	33	24	21	15	3	0	-7	23
0.66m Path Difference									
Barrier Correction	-9	-11	-13	-16	-19	-22	-25	-28	
Tonality Feature Correction									
Misc Correction	5	5	5	5	5	5	5	5	
Facade Correction									
Facade Correction	3	3	3	3	3	3	3	3	
17 metres Distance Loss									
Distance Loss	-25	-25	-25	-25	-25	-25	-25	-25	
Hemi-Spherical Radiation									
Radiation Loss	-8	-8	-8	-8	-8	-8	-8	-8	
DX unit for MRI exam room									
MRI DX	60	69	63	62	59	50	49	46	63
	63	125	250	500	1k	2k	4k	8k	dB(A)
		Octav	ve Ban	d Cent	re Frec	quency	, Hz		

Resultant Noise Levels at AP1 (Day and night) - University Street

AP1 (Day and night) Total	47	48	48	47	43	35	25	14	48
MRI DX to AP1									
MRI DX	27	33	24	21	15	3	0	-7	23
MRI chiller to AP1									
MRI chiller	44	46	48	47	43	35	25	14	48
VRF-12 to AP1									
VRF-12	35	35	24	18	13	6	-4	-12	23
VRF-11 to AP1									
VRF-11	35	35	24	18	13	6	-4	-12	23
VRF-10 to AP1									
VRF-10	36	36	25	19	14	6	-4	-12	24
VRF-09 to AP1									
VRF-09	36	36	24	19	14	6	-4	-12	23
VRF-08 to AP1									
VRF-08	41	38	33	25	19	12	2	-4	29
	63	125	250	500	1k	2k	4k	8k	dB(A
		Octav	ve Ban	d Cent	re Fred	quency	, Hz		