

## 159 – 161 Iverson Road,

## **Geo-Environmental Report**

Formation Homes (London) Ltd



Status:InformationRevision:0

Manhire Associates Geo-Environmental Limited Project No.: Date: 13079

19<sup>th</sup> September 2014



## **Contents**

- 1.0 Synopsis
- 2.0 Site Description
- 3.0 Development Proposals
- 4.0 Geology
- 5.0 Field Work
- 6.0 Laboratory Testing
- 7.0 Ground Conditions
- 8.0 Discussion

#### **Appendices**

- Appendix A Bore Hole Records
- Appendix B Laboratory Test Results
- Appendix C Cover System
- Appendix D Figures



#### 1.0 Synopsis

An investigation has been carried out at 159 - 161 Iverson Road in West Hampstead on the instructions of Formation Homes (London) Ltd.

The purpose of the investigation was to determine the ground conditions and to provide advice on geotechnical matters for the proposed mixed use redevelopment of the site.

One boreholes and four windowless sampler holes were completed to determine the ground conditions, supported by a programme of in situ and laboratory testing.

The ground conditions revealed by the investigation comprised Made Ground overlying London Clay. It is expected that piled foundations will be required for the proposed works; whilst contamination results found an excess of one contaminant which will require a cover system to be utilised within the garden and landscaped areas.

#### 2.0 Site Description

The site comprises the existing Iverson Tyres site. This consists of a single storey building at the rear of the site with adjacent portacabon, with rough hardstanding at the front. There is a small overgrown area to the rear north east of the main building, although no access to this area was possible during our works. The general layout of the site is shown at Figure 1 of Appendix D.

The site is located within a mixed retail and residential environment.

Small areas of isolated light staining was noted on the surfacing.

#### 3.0 Development Proposals

It is proposed to demolish all building on site and build a 19 unit multi storey blocks covering the majority of the site, although an area of landscaping is to be provided to the east of the main building as shown at Figure 2. Loading are not yet know but are expected to be moderate and too be carried on pile foundations.

#### 4.0 Geology

Published records of the British Geological Survey indicate the site to lie on London Clay.

#### 5.0 Field Work

The extent of the field work was specified by the Client and comprised one light percussive borehole to 20m depth. This was supplemented by four windowless sampler holes to 3m depth to give a more detailed assessment of near surface soils.

Representative soil samples were recovered from the borehole pits for subsequent laboratory examination and testing; whilst Standard Penetration Tests (SPT) were carried out as appropriate. Details of the strata encountered are provided on the Borehole Record at Appendix A; together with particulars of the samples recovered, groundwater observations and SPT results. The profile of SPT with depth is also presented at Figure 3 of Appendix D.



#### 6.0 Laboratory Testing

The following laboratory tests were conducted on samples recovered during the field work:-

- Natural moisture content: to assess the in situ condition of the soil.
- Liquid and Plastic Limits: to classify cohesive soil into behavioural groups
- Unconsolidated undrained triaxial compression: to determine the shear strength of cohesive material and thus to assess its load bearing capacity.
- Soluble sulphate concentration and pH value: for the specification of buried concrete.
- Contamination: chemical analyses to detect the presence of common contaminants:-
- Metals and semi metals:
- Arsenic
- Cadmium
- Chromium
- Lead
- Mercury
- Selenium
- Copper
- Nickel
- Zinc

Organic compounds Total monohydric phenols Total petroleum hydrocarbons - TPH Speciated polyaromatic hydrocarbons - PAH Others Asbestos

Results of these tests are presented at Appendix B. The variation of shear strength with depth is also shown at Figure 4 of Appendix D.

#### 7.0 Ground Conditions

#### 7.1 Stratigraphy

The stratigraphy of the site as revealed by the boreholes is described in detail at Appendix A and in general terms hereafter.

#### 7.1.1 Made Ground

Made Ground was encountered in all exploratory holes and to a maximum of 2m depth in the percussive borehole.

Beneath the hardstanding it generally comprised a brick rubble with some ashy pockets overlying a brown and occasional grey green sandy clay with various man made detritus.



#### 7.1.2 London Clay

London Clay was proved in all boreholes beneath the Made Ground and was proved to the limit of investigation. It was principally found to be a fissured dark grey clay which is consistent with the un-weathered portion of the London Clay. A layer of brown clay with grey mottling and orange brown sandy silt pockets was encountered initially and represents the upper weathered portion.

Triaxial testing will show it being in a firm to stiff condition, which confirmed the visual assessment.

#### 7.2 Ground Water

No groundwater was only during boring, however the speed of drilling and the low permeability of the London Clay may have masked any inflows.

Details of all groundwater observations are provided on the Borehole Records at Appendix A.

#### 8.0 Discussion

#### 8.1 General

The site has already carried development and it is therefore probable that pockets of Made Ground may exist locally; perhaps deeper, of different character or associated with underground construction; even though not detected during this investigation.

The thickness of the Made Ground and the expected column loads are such that piled foundations are expected to be utilised.

#### 8.2 Piled Foundations

Either driven or bored piles would be suitable in the ground conditions found at this site. However, compared with bored piling, construction of driven piles generates greater noise and vibration which is unlikely to be acceptable in this environment. In particular, high levels of ground - borne vibrations could damage nearby structures. Consideration of the various advantages and disadvantages of the different pile types suggests CFA piles to be preferred. They avoid many of the installation difficulties that would otherwise be experienced; particularly the need for casing and control of water. Parameters for their preliminary design are provided in Tables 1 and 2.

| Table 1: Design | parameters | for bored | piles - | Shaft friction |
|-----------------|------------|-----------|---------|----------------|
|-----------------|------------|-----------|---------|----------------|

| Stratum      | Depth, m   | Ultimate unit shaft friction         |
|--------------|------------|--------------------------------------|
| All material | 0.0 - 2.0  | Ignore                               |
| London Clay  | 2.0 - 20.0 | Increases linearly from 20 to 75 kPa |

Table 1 has been derived in conjunction with an adhesion factor of 0.6 in the London Clay.

| Stratum     | Depth, m    | Ultimate unit end bearing capacity      |
|-------------|-------------|-----------------------------------------|
| London Clay | 10.0 - 20.0 | Increases linearly from 655 to 1080 kPa |

#### Table 2: Design parameters for bored piles - End bearing capacity

A factor of safety must be applied to derive the allowable working load from the ultimate values obtained from Tables 1 and 2. An overall value of 2.5 is commonly employed in compression.

Working pile load tests could be carried out to verify the chosen FoS on a development of this scale. This could result in a lower factor of safety than 2.5 which could result in significant cost savings. The actual factor of safety will be dependent upon the knowledge and experience of the chosen pilling contractor and agreement with relevant parties, but is generally in the order of 2.25.

Tables 1 and 2 predict that a CFA pile of 4500 mm diameter, bored to 18m depth, will have an allowable load capacity of some 460 kN required under an overall factor of safety of 2.5.

Table 3 provides preliminary load capacity for bored piles in compression under a factor of safety (FoS) of 2.5 for various pile diameters.

|            | Ultimate Unit |          |          |          | Pile dia. 4  | 30    |           |          | Pile dia.    | 0.45  |           | Pile dia. 0.60 |              |       |           |  |
|------------|---------------|----------|----------|----------|--------------|-------|-----------|----------|--------------|-------|-----------|----------------|--------------|-------|-----------|--|
| Depth      | Cohesion      | Cap      | Capacity |          | ate Load Cap | acity | Allowable | Ultim    | ats Load Cap | Acity | Allowable | Ultim          | ate Losd Cap | acty  | Allowable |  |
| below g.I. |               | Shaft    | End      | Shaft    | End          | Total | Load      | Shaft    | End          | Total | Load      | Shaft          | End          | Total | Load      |  |
|            |               | Friction | Bearing  | Friction | Bearing      |       | Capacity  | Friction | Bearing      |       | Capacity  | Friction       | Bearing      |       | Capacity  |  |
| m          | kPa           | kPa      | kPa      | kN       | kN           | kN    | kN        | kN       | kN           | kN    | kN        | KN             | EN           | kN    | KN        |  |
| 2.0        | 35            | 21       | 315      | 0        | 22           | 22    | 9         | 0        | 50           | 50    | 20        | 0              | 89           | .89   | 36        |  |
| 2.5        | 37            | 22       | 336      | 10       | 24           | 34    | 14        | 15       | 53           | 69    | 28        | 20             | 95           | 116   | 46        |  |
| 3.0        | 40            | 24       | 358      | 21       | 25           | 46    | 19        | 32       | 57           | 89    | 35        | 42             | 101          | 1.43  | 57        |  |
| 3.5        | 42            | 25       | 379      | 33       | 27           | 59    | 24        | 49       | 60           | 109   | 44        | 65             | 1.07         | 172   | 69        |  |
| 4.0        | 44            | 27       | 400      | 45       | 28           | 73    | 29        | 67       | 64           | 131   | 52        | 90             | 113          | 203   | 8         |  |
| 4.5        | 47            | 28       | 421      | 58       | 30           | 88    | 35        | 87       | 67           | 154   | 61        | 116            | 119          | 235   | 94        |  |
| 5.0        | 49            | 30       | 443      | 71       | 31           | 103   | 41        | 107      | 70           | 177   | 71        | 43             | 125          | 268   | 107       |  |
| 5.5        | 52            | 31       | 464      | 86       | 33           | 118   | 47        | 128      | 74           | 202   | 8         | 171            | 131          | 302   | 121       |  |
| 6.0        | 54            | 32       | 485      | 101      | 34           | 135   | 54        | 151      | 77           | 2.28  | 91        | 201            | 137          | 338   | 135       |  |
| 6.5        | 56            | 34       | 506      | 116      | 36           | 152   | 61        | 174      | 81           | 255   | 102       | 232            | 1.43         | 375   | 150       |  |
| 7.0        | 59            | 35       | 528      | 132      | 37           | 170   | 68        | 199      | 84           | 282   | 113       | 265            | 149          | 414   | 166       |  |
| 7.5        | 61            | 37       | 549      | 149      | 39           | 188   | 75        | 224      | 87           | 311   | 124       | 298            | 155          | 454   | 181       |  |
| 8.0        | 63            | 38       | 570      | 167      | 40           | 207   | 83        | 2.50     | 91           | 341   | 136       | 334            | 161          | 495   | 198       |  |
| 8.5        | 66            | 39       | 591      | 185      | 42           | 227   | 91        | 2.78     | 94           | 372   | 149       | 370            | 167          | 537   | 215       |  |
| 9.0        | 68            | -41      | 613      | 204      | 43           | 247   | 99        | 306      | 97           | 403   | 16        | 408            | 173          | 581   | 232       |  |
| 9.5        | 70            | 42       | 634      | 224      | 45           | 268   | 107       | 335      | 101          | 436   | 174       | 447            | 179          | 626   | 251       |  |
| 10.0       | 73            | 44       | 655      | 244      | 46           | 290   | 116       | 366      | 104          | 470   | 188       | 488            | 185          | 673   | 269       |  |
| 10.5       | 75            | 45       | 676      | 265      | 48           | 313   | 125       | 397      | 108          | 505   | 202       | 529            | 191          | 721   | 288       |  |
| 0.11       | 78            | 47       | 698      | 286      | 49           | 336   | 134       | 429      | TH           | 540   | 216       | 573            | 197          | 770   | 308       |  |
| 11.5       | 80            | 48       | 719      | 309      | 51           | 359   | 144       | 463      | 114          | 577   | 231       | 617            | 203          | 820   | 328       |  |
| 12.0       | 82            | 49       | 740      | 331      | 52           | 384   | 153       | 497      | 118          | 615   | 246       | 663            | 209          | 872   | 349       |  |
| 12.5       | 85            | 51       | 761      | 355      | 54           | 409   | 164       | 533      | 121          | 654   | 261       | 710            | 215          | 925   | 370       |  |
| 13.0       | 87            | 52       | 783      | 379      | 55           | 435   | 174       | 569      | 124          | 693   | 277       | 759            | 221          | 980   | 392       |  |
| 13.5       | 89            | 54       | 804      | 40.4     | 57           | 461   | 184       | 606      | 128          | 734   | 294       | 808            | 227          | 1036  | 414       |  |
| 14.0       | 92            | 55       | 825      | 430      | 58           | 488   | 195       | 645      | 131          | 776   | 310       | 860            | 233          | 1093  | 437       |  |
| 14.5       | 94            | 56       | 846      | 456      | 60           | 516   | 206       | 684      | 135          | 819   | 327       | 912            | 239          | 1151  | 46        |  |
| 1.5.0      | 96            | 58       | 868      | 483      | 61           | 544   | 218       | 724      | 1.38         | 862   | 345       | 966            | 245          | 1211  | 484       |  |
| 15.5       | 99            | 59       | 889      | 511      | 63           | 573   | 229       | 766      | [4]          | 907   | 363       | 1021           | 251          | 1272  | 509       |  |
| 16.0       | 101           | 61       | 910      | 539      | 64           | 603   | 241       | 808      | 145          | 953   | 381       | 1078           | 257          | 335   | 534       |  |
| 16.5       | 103           | 62       | 931      | 568      | 66           | 634   | 253       | 852      | 148          | 000   | 400       | 1135           | 263          | 1399  | 559       |  |
| 17.0       | 106           | 64       | 953      | 597      | 67           | 665   | 266       | 896      | 151          | 1047  | 419       | 1195           | 269          | 464   | 586       |  |
| 17.5       | 108           | 65       | 974      | 628      | 69           | 696   | 279       | 941      | 155          | 1096  | 438       | 1255           | 275          | 1530  | 612       |  |
| 18.0       | 111           | 66       | 995      | 658      | 70           | 729   | 292       | 988      | 158          | 1146  | 458       | 1317           | 281          | 1598  | 639       |  |
| 18.5       | 113           | 68       | 1015     | 690      | 72           | 762   | 305       | 1035     | 162          | 1197  | 479       | 1380           | 287          | 667   | 667       |  |
| 19.0       | 115           | 69       | 1038     | 722      | 73           | 796   | 318       | 1083     | 165          | 1249  | #83       | 1445           | 293          | 1738  |           |  |
| 19.5       | 118           | 71       | 1059     | 755      | 75           | 830   |           | 1133     | 168          | 1301  | 122       | 1511           | 299          | 1810  |           |  |
| 20.0       | 120           | 72       | 1080     | 789      | 76           | 865   | 346       | 1183     | 172          | 355   | \$40      | 1578           | 305          | 883   | 233       |  |
|            |               |          |          |          |              |       |           |          |              |       |           |                |              |       |           |  |
|            |               |          |          | -        |              |       |           |          |              | -     |           |                |              |       |           |  |

#### **Table 3: Pile diameters and capacities for bored piles** (FoS of 2.5)

Single piles could stress soil below depth of investigation; prove ground conditions throughout zone of stress before using. Pile groups should be considered separately.



The actual load capacity achieved in practice depends upon the precise installation procedures. Advice should therefore be sought from specialist contractors to verify the load capacity and settlement characteristics of their particular piles in the ground conditions revealed by this investigation. In any event, it is recommended that the chosen pile configuration be confirmed by preliminary load tests conducted before installation of the contract piles in order to take advantage of minimum FoS and thus minimum cost.

#### 8.3 Ground Floor Slabs

The previously mentioned thickness and variability of the Made Ground is such that suspended ground floor construction should be adopted.

#### 8.4 Excavations

#### 8.4.1 Stability

Made Ground is inherently variable in both composition and compaction and should thus be regarded as unstable. It is recommended that all excavations should be supported at all times. This is especially important for the safety of personnel when required to work in or close to excavations.

It should be ensured that support is always provided to adjacent structures and that temporary works are sufficient to resist the additional lateral earth pressure from the structures without significant deformation.

It is expected that shallow excavations should remain sensibly dry.

#### 8.5 Contamination

Contaminant testing was undertaken on selected soil samples and the results compared with the limited number of CLEA[1] Soil Guideline Values (SGVs) for residential land use that have been published to date. Where not available from that source, reference has also been made to the LQM CIEH Generic Assessment Criteria[2]. Appropriate trigger levels are given within the results at Appendix B. All results for metals and semi metals are below the relevant trigger concentrations.

There is no trigger presently available for lead, but the results are at worst less than half the previous trigger of 450mg/kg and are thus not expected to prejudice the development. In addition the results are below the value of 276mg/kg provided in the AtRiskSoil database produced by Atkins.

The results of the TPH analysis found levels to be below detection limits or at very low concentrations and are thus not expected to prejudice the development.

Elevated level of PAH's have been found for the vigorous carcinogen Benzo (a) pyrene [B(a)P] which was found to be above the trigger concentration of 0.83mg/kg in all samples.

Based on the above it is considered that where in areas of hardstanding or below building footprints, contaminants can remain in situ as the pathway in a source - pathway - receptor model will be blocked.

Due to the elevated levels of PAH it is recommended where in areas of soft landscaping or gardens; a cover system is provided as an appropriate remedial option. This should be constructed in accordance the BRE Cover Systems for Land Regeneration [3].



Based on the recorded concentrations of B(a)P at the site, covered by imported clean material and assuming a mixing zone thickness of 600mm, a cover thickness of 527mm should be utilised with a minimum of 176mm of the overall cover comprising a topsoil layer. A geotextile barrier should be utilised at the base of the cover layer to discourage excavation below that level. It should be ensured that a maximum concentration of 0.6mg/kg of B(a)P should be present within the imported materials.

Validation testing of the soil to be imported should be undertaken at a rate of one sample per garden area or equivalent to ensure suitable imported material is used. In addition the thickness of the imported material should be verified.

No asbestos was detected.

#### 8.6 Buried Concrete

Laboratory tests yielded a maximum soluble sulphate concentration of 0.92g/l which give a Design Sulphate Class[4] of DS-2.

The soil was found to be slightly alkaline and the groundwater conditions are considered mobile. The aggressive chemical environment for concrete, ACEC, is therefore classed as AC-2.



## References

- The Contaminated Land Exposure Assessment Model Department for Environment, Food and Rural Affairs The Environment Agency
   R & D Publications SGV 1 *et al.*, March 2002
- The LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment (2nd Edition)
   Nathanail, C.P., McCaffrey, C. *et al* Land Quality Management Ltd., 2009
- [3] Cover Systems for Land Regeneration Thickness of cover systems for contaminated land BRE Press BR465 2008
- [4] Concrete in aggressive ground BRE Special Digest I Building Research Establishment, 2005



# **PROCEDURAL NOTES for GROUND INVESTIGATIONS**

## General

This report is based upon data obtained from field descriptions of the strata and examination of the samples by an engineer, together with the results of in situ and laboratory tests as appropriate. Responsibility cannot be accepted for variations in ground conditions between and around any of the exploratory points that is not revealed by the data. Whilst the report may offer an opinion on the ground conditions between exploratory points and below the depth of investigation, this is for guidance only and no liability is accepted for its accuracy.

## Drilling procedure

Boring by light cable percussion drilling allows the ground conditions to be reasonably well established. However, a certain amount of disturbance is inevitable and some mixing of soils can occur.

## Sampling procedure

"Undisturbed" samples of predominantly cohesive soils are taken with a 100mm diameter open tube sampler, generally in accordance with BS 5930: 1999.

Where appropriate, or where an undisturbed sample is unsuccessful, disturbed samples are recovered and sealed into polythene bags.

Groundwater samples are taken when water is encountered in sufficient quantity.

## Standard penetration tests

The test is conducted generally in accordance with BS 1377: Part 9: 1990. The sampler tube is subject to a seating drive of 150mm into the soil at the base of the borehole. Results are given on the Borehole Records as the number of blows required to drive the sampler tube a further 300mm and this is known as the "N" value. Where the driving resistance is such that full penetration is not achieved, the test is generally terminated after 50 blows and the actual distance penetrated is recorded.

#### Groundwater

Groundwater observations necessarily reflect the conditions encountered at the time of the exploratory work. Long term monitoring of standpipes is usually required to establish an equilibrium water level since the normal rate of boring is too fast to permit steady state conditions to be achieved.

Groundwater levels are subject to variations caused by changes in drainage conditions and seasonal climatic changes.

Water may necessarily be added to advance the bore whilst casing may be required to maintain an open hole. These can both mask subsequent groundwater observations and are therefore noted on the individual Borehole Record.



# APPENDIX A BOREHOLE RECORDS



#### SYMBOLS and ABBREVIATIONS



suffix identifies separate strikes

|                                           | Manhire Associates MANHIRE ASSOCIATES<br>GEO-ENVIRONMENTAL LIMITED |                        |                        |                         |                                         |                               |           | Site<br>159-161 IVERSON ROAD, LONDON, NW6 2RB                                                    | Borehole<br>Number<br>BH1 |                   |
|-------------------------------------------|--------------------------------------------------------------------|------------------------|------------------------|-------------------------|-----------------------------------------|-------------------------------|-----------|--------------------------------------------------------------------------------------------------|---------------------------|-------------------|
| Boring Meth<br>Cable Percus               | nod<br>ssion                                                       | Casing<br>15           | Diamete<br>Omm cas     | <b>r</b><br>ed to 2.50m | Ground                                  | Level (mC                     | D)        | Client<br>Formation Homes (London) Ltd                                                           | Job<br>Num<br>130         | <b>ber</b><br>179 |
|                                           |                                                                    | Locatio<br>Se          | <b>n</b><br>e site pla | n                       | Dates<br>05                             | 5/09/2014                     |           | Engineer                                                                                         | Shee<br>1/                | t<br>2            |
| Depth<br>(m)                              | Sample / Tests                                                     | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m)  | Field Records           | Level Depth<br>(mOD) (m)<br>(Thickness) |                               | ss)       | Description                                                                                      | Legen                     | <u>Б</u><br>Water |
| 0.50                                      | D4                                                                 |                        |                        |                         |                                         | (0.3                          | 30)<br>30 | CONCRETE<br>MADE GROUND: Brick rubble with some gravel sandy clay<br>and ashy pockets            |                           |                   |
| 0.50                                      | D1                                                                 |                        |                        |                         |                                         | E (0.6                        | 50)<br>90 |                                                                                                  |                           |                   |
| 1.00-1.45                                 | SPT N=6                                                            |                        |                        | 1,1/1,1,2,2             |                                         |                               | 0)        | MADE GROUND: Brown silty clay with some gravel and<br>brick fragments                            |                           |                   |
| 1.50                                      | D2                                                                 |                        |                        |                         |                                         |                               | 0)        |                                                                                                  |                           |                   |
| 2.00-2.45                                 | SPT N=5                                                            |                        |                        | 1,1/1,1,1,2             |                                         | 2.0<br>1                      | 00        | Firm to stiff brown silty CLAY with some orange brown<br>sandy silt pockets and grey laminations |                           | X                 |
| 2.50                                      | D3                                                                 |                        |                        |                         |                                         |                               |           |                                                                                                  | ××                        |                   |
| 3.00-3.45                                 | U1                                                                 |                        |                        | 28 blows                |                                         |                               |           |                                                                                                  | ××                        |                   |
| 3.50                                      | D4                                                                 |                        |                        |                         |                                         |                               |           |                                                                                                  | ×                         |                   |
| 4.00-4.45                                 | SPT N=11                                                           |                        |                        | 2,2/2,3,3,3             |                                         |                               |           |                                                                                                  | ××                        |                   |
| 4.50                                      | D5                                                                 |                        |                        |                         |                                         |                               |           |                                                                                                  | ××                        |                   |
| 5.00-5.45                                 | SPT N=12                                                           |                        |                        | 2,2/3,3,3,3             |                                         |                               |           |                                                                                                  | × × ×                     |                   |
| 6.00                                      | D6                                                                 |                        |                        |                         |                                         | L<br>L<br>L<br>L<br>L<br>(8.4 | 15)       |                                                                                                  | × × ×                     |                   |
| 6.50-6.95                                 | SPT N=14                                                           |                        |                        | 2,3/3,3,4,4             |                                         |                               |           |                                                                                                  | ××                        |                   |
| 7.00                                      | D7                                                                 |                        |                        |                         |                                         |                               |           |                                                                                                  |                           |                   |
| 8.00-8.45                                 | U2                                                                 |                        |                        | 58 blows                |                                         |                               |           |                                                                                                  | xx                        |                   |
| 8.50                                      | D8                                                                 |                        |                        |                         |                                         |                               |           |                                                                                                  |                           |                   |
| 9.50-9.95                                 | SPT N=15                                                           |                        |                        | 3,3/3,4,4,4             |                                         |                               |           |                                                                                                  | × × ×                     |                   |
| Remarks<br>Borehole dry<br>Backfilled wit | th arisings                                                        | 0.50                   |                        |                         |                                         |                               | 1         | Scale<br>(approx)                                                                                | Logg<br>By                | jed               |
| Chiselling fro                            | om 0.00m to 0.30m fo                                               | or 0.50 ho             | urs.                   |                         |                                         |                               |           | 1:50                                                                                             | ljs                       | 6                 |

| ,                           | Manhire Associates | MANI<br>GEO-           | HIRE AS               | SSOCIATES<br>ONMENTAL LIMI |                | Site<br>159-161 IVERSON ROAD, LONDON, NW6 2RB | Borehole<br>Number<br>BH1                                                                    |                     |                                                                                             |       |
|-----------------------------|--------------------|------------------------|-----------------------|----------------------------|----------------|-----------------------------------------------|----------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------|-------|
| Boring Meth<br>Cable Percus | od<br>ssion        | Casing<br>15           | Diamete<br>Omm cas    | <b>r</b><br>ed to 2.50m    | Ground         | Level (mOD                                    | Client<br>Formation Homes (London)                                                           |                     | Job<br>Numbe<br>13079                                                                       | er    |
|                             |                    | Locatio<br>Se          | n<br>e site pla       | n                          | Dates<br>05    | 5/09/2014                                     | Engineer                                                                                     |                     | Sheet<br>2/2                                                                                |       |
| Depth<br>(m)                | Sample / Tests     | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Field Records              | Level<br>(mOD) | Depth<br>(m)<br>(Thickness                    | Description                                                                                  |                     | Legend                                                                                      | Water |
|                             |                    |                        |                       |                            |                | (8.45)                                        | Firm to stiff brown silty CLAY with some orange br<br>sandy silt pockts and grey laminations | own                 | ××                                                                                          |       |
| 10.50                       | D9                 |                        |                       |                            |                | E 10.45                                       | Stiff fissured dark grey silty CLAY with some sand<br>laminations                            | y silt              | ××                                                                                          |       |
| 11.00-11.45                 | U3                 |                        |                       | 64 blows                   |                |                                               |                                                                                              |                     | ××                                                                                          | -     |
| 11.50                       | D10                |                        |                       |                            |                |                                               |                                                                                              |                     | × ×                                                                                         |       |
| 12.50-12.95                 | SPT N=18           |                        |                       | 3,4/4,4,5,5                |                |                                               |                                                                                              |                     | x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x | •     |
| 13.50                       | D11                |                        |                       |                            |                |                                               |                                                                                              |                     |                                                                                             |       |
| 14.00-14.45                 | U4                 |                        |                       | 66 blows                   |                |                                               |                                                                                              |                     | xx                                                                                          |       |
| 14.50                       | D12                |                        |                       |                            |                |                                               |                                                                                              |                     | x<br>x<br>x<br>x<br>x                                                                       |       |
| 15.50-15.95                 | SPT N=21           |                        |                       | 4,4/4,5,6,6                |                |                                               |                                                                                              |                     | x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x |       |
| 16.50                       | D13                |                        |                       |                            |                |                                               |                                                                                              |                     | × ×                                                                                         |       |
| 17.00-17.45                 | U5                 |                        |                       | 69 blows                   |                |                                               |                                                                                              |                     | x<br>×x                                                                                     |       |
| 17.50                       | D14                |                        |                       |                            |                |                                               |                                                                                              |                     | × × ×                                                                                       |       |
| 18.50-18.95                 | SPT N=23           |                        |                       | 4,5/5,6,6,6                |                |                                               |                                                                                              |                     |                                                                                             | •     |
| 19.50                       | D15                |                        |                       |                            |                |                                               |                                                                                              |                     | ×                                                                                           |       |
| 20.00-20.45                 | SPT N=26           |                        |                       | 5,5/6,6,7,7                |                | E<br>E<br>20.00                               |                                                                                              |                     | ××                                                                                          |       |
| Remarks                     |                    |                        |                       |                            |                | . 20.00                                       |                                                                                              | Scale<br>(approx)   | Logge<br>By                                                                                 | d     |
|                             |                    |                        |                       |                            |                |                                               |                                                                                              | 1:50                | ljs                                                                                         |       |
|                             |                    |                        |                       |                            |                |                                               |                                                                                              | Figure N<br>13079 F | <b>lo.</b><br>3H2                                                                           |       |

|                            | Manhire Associates    | MAN<br>GEC     | NHIRE ASSOCIATES<br>D-ENVIRONMENTAL LIN | AITED           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Site<br>159-161 IVERSON ROAD, LONDON, NW6 2RB                                                                                | Number<br>WS1                   |
|----------------------------|-----------------------|----------------|-----------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Excavation<br>Drive-in Win | Method<br>dow Sampler | Dimens         | ions<br>n                               | Ground<br>Dates | Level (mOD)<br>4/09/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Client<br>Formation Homes (London)<br>Engineer                                                                               | Job<br>Number<br>13079<br>Sheet |
| Depth<br>(m)               | Sample / Tests        | Water<br>Depth | Field Records                           | Level<br>(mOD)  | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Description                                                                                                                  | Legend                          |
| 0.00-1.00                  | L1                    | (m)            | 30% recovery                            |                 | (0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35)<br>(0.35) | CONCRETE<br>MADE GROUND: Granite cobble stones over brick and<br>clinker<br>MADE GROUND: Brick rubble with some ashy pockets |                                 |
| 1.00-2.00<br>1.00-1.45     | L2<br>SPT N=5         |                | 90% recovery<br>2/1,1,2,1               |                 | (0.70)<br>1.20<br>(0.60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MADE GROUND: Brown silty clay with some brick and concrete fragments                                                         |                                 |
| 2.00-3.00<br>2.00-2.45     | L3<br>SPT N=6         |                | 90% recovery<br>3/2,1,1,2               |                 | - 1.80<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Firm to stiff brown silty CLAY with some orange brown sandy silt pockets and grey laminations                                |                                 |
| 3.00-3.45                  | SPT N=13              |                | 4/3,3,3,4                               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Complete at 3.00m                                                                                                            |                                 |
| Remarks<br>Borehole dry    | /                     | 1              | 1                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scale<br>(appro<br>1:25                                                                                                      | Logged<br>x) By<br>ljs          |

|                            | Manhire Associates    | MA<br>GE              | NHIRE ASSOCIATES<br>O-ENVIRONMENTAL LI |                | Site<br>159-161 IVERSON ROAD, LONDON, NW6 2RB | Number<br>WS2                                                                                                                        |                        |
|----------------------------|-----------------------|-----------------------|----------------------------------------|----------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Excavation<br>Drive-in Win | Method<br>dow Sampler | Dimens                | ions                                   | Ground         | Level (mOD)                                   | Client<br>Formation Homes (London)                                                                                                   | Job<br>Number<br>13079 |
|                            |                       | Locatio<br>Se         | ee site plan                           | Dates<br>04    | 4/09/2014                                     | Engineer                                                                                                                             | Sheet<br>1/1           |
| Depth<br>(m)               | Sample / Tests        | Water<br>Depth<br>(m) | Field Records                          | Level<br>(mOD) | Depth<br>(m)<br>(Thickness)                   | Description                                                                                                                          | Kater Vegend           |
| 0.00-1.00                  | L1                    |                       | 80% recovery                           |                | (0.07)<br>0.07<br>(0.73)<br>(0.73)            | CONCRETE slab<br>MADE GROUND: Brick rubble with some ashy and clayey<br>pockets<br>MADE GROUND: Brown and grey green silty clay with |                        |
| 1.00-2.00<br>1.00-1.45     | L2<br>SPT N=5         |                       | 90% recovery<br>1/1,1,2,1              |                | - (0.90)<br>- (0.90)<br>- (0.90)              | Firm to stiff brown silty CLAY with some orange brown sandy silt pockets and grey laminations                                        |                        |
| 2.00-3.00<br>2.00-2.45     | L3<br>SPT N=6         |                       | 90% recovery<br>2/1,2,1,2              |                |                                               |                                                                                                                                      |                        |
| 3.00-3.45                  | SPT N=13              |                       | Water strike(1) at 3.00m.<br>4/3,3,3,4 |                |                                               | Complete at 3.00m                                                                                                                    | <u> </u>               |
| Remarks<br>Borehole dry    | /                     |                       | 1                                      |                | <u></u>                                       | Scale<br>(approx                                                                                                                     | () Logged<br>By        |
|                            |                       |                       |                                        |                |                                               | 1:25<br>Figure                                                                                                                       | ljs<br>≱ No.<br>79 WS2 |
| 1                          |                       |                       |                                        |                |                                               |                                                                                                                                      | 0 0002                 |

|                             | Manhire Associates    | MAN<br>GEC            | NHIRE ASSOCIATES<br>D-ENVIRONMENTAL LIM |                | Site<br>159-161 IVERSON ROAD, LONDON, NW6 2RB | Number<br>WS3                                                                                  |                           |                        |
|-----------------------------|-----------------------|-----------------------|-----------------------------------------|----------------|-----------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------|------------------------|
| Excavation<br>Drive-in Wind | Method<br>dow Sampler | Dimens                | ions                                    | Ground         | Level (mOD)                                   | Client<br>Formation Homes (London)                                                             |                           | Job<br>Number<br>13079 |
|                             |                       | Locatio<br>Se         | <b>n</b><br>ee site plan                | Dates<br>04    | 4/09/2014                                     | Engineer                                                                                       |                           | Sheet<br>1/1           |
| Depth<br>(m)                | Sample / Tests        | Water<br>Depth<br>(m) | Field Records                           | Level<br>(mOD) | Depth<br>(m)<br>(Thickness)                   | Description                                                                                    |                           | Kater Kater            |
| 0.00-1.00                   | L1                    |                       | 90% recovery                            |                | (0.15)<br>0.15<br>                            | CONCRETE slab<br>MADE GROUND: Brown silty clay with some bric<br>concrete fragments and gravel | k,                        |                        |
| 1.00-2.00<br>1.00-1.45      | L2<br>SPT N=5         |                       | 70% recovery<br>2/1,1,1,2               |                | - (1.55)<br>                                  | Firm to stiff brown silty CLAY with some orange by sandy silt pockets and grey laminations     | rown                      |                        |
| 2.00-3.00<br>2.00-2.45      | L3<br>SPT N=9         |                       | 100% recovery<br>2/2,2,3,2              |                | - (1.30)<br>- (1.30)<br>- (1.30)              |                                                                                                |                           |                        |
| 3.00-3.45                   | SPT N=12              |                       | Water strike(1) at 3.00m.<br>4/2,3,3,4  |                |                                               | Complete at 3.00m                                                                              |                           | <u> </u>               |
| Remarks<br>Borehole dry     | ,                     |                       |                                         |                |                                               |                                                                                                | Scale<br>(approx)<br>1:25 | Logged<br>By           |
|                             |                       |                       |                                         |                |                                               |                                                                                                | Figure N<br>13079         | <b>o.</b><br>WS3       |

| Manhire Associa<br>consuming inclusion       | es MANHIRE A<br>GEO-ENVIR      | ASSOCIATES<br>RONMENTAL LIMITED | I                                                  | Site<br>159-161 IVERSON ROAD, LONDON, NW6 2RB                                                 | Number<br>WS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|----------------------------------------------|--------------------------------|---------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Excavation Method<br>Drive-in Window Sampler | Dimensions                     | Groun                           | d Level (mOD)                                      | Client<br>Formation Homes (London)                                                            | Job<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                              | Location<br>See site plan      | Dates                           | 04/09/2014                                         | Engineer                                                                                      | Sheet<br>1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Depth<br>(m) Sample / Te                     | Water<br>sts Depth Fiel<br>(m) | Id Records (mOD                 | ) Depth<br>(m)<br>(Thickness)                      | Description                                                                                   | Kater Value |  |  |
| 0.00-1.00 L1                                 | 70% recov                      | ery                             | (0.12)<br>- 0.12<br>- (0.68)<br>- (0.68)<br>- 0.80 | CONCRETE<br>MADE GROUND: Brick rubble with some ashy pockets                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 1.00-2.00 L2<br>1.00-1.45 SPT N=5            | 100% reco<br>1/1,1,1,2         | very                            | - (0.50)                                           | MADE GROUND: Brown silty clay with some brick and<br>concrete fragments                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                              |                                |                                 | - 1.30<br>                                         | Firm to stiff brown silty CLAY with some orange brown sandy silt pockets and grey laminations |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 2.00-3.00<br>2.00-2.45 SPT N=9               | 100% reco<br>2/2,2,3,2         | very                            | - (1.70)<br>- (1.70)                               |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 3.00-3.45 SPT N=12                           | Water strik<br>4/3,3,3,3       | e(1) at 3.00m.                  |                                                    | Complete at 3.00m                                                                             | <u><u>x</u><u>x</u><u>x</u><u>x</u><u>x</u><u>x</u><u>x</u><u>x</u><u>x</u><u>x</u><u>x</u><u>x</u><u>x</u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Remarks<br>Borehole dry                      | 1 1                            | I                               |                                                    | Scale<br>(appro                                                                               | x) By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                              |                                |                                 |                                                    | 1:25                                                                                          | ljs<br>e No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |



# **APPENDIX B**

# LABORATORY TEST RESULTS



| T               | Ηd          |          |         |                   | 7.2                                                                    | 7.2                                                                    | 7.1                                                                  |                                                                      |                                                                      |
|-----------------|-------------|----------|---------|-------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| HEMICA          | (SO4)       | Soil     | (Sol)   | g/]               | 0.76                                                                   | 0.92                                                                   | 0.42                                                                 |                                                                      |                                                                      |
| C               | Sulphate    | Water    | :       | <u>م</u>          |                                                                        |                                                                        |                                                                      |                                                                      |                                                                      |
|                 |             | ı, kPa   | u, deg  |                   |                                                                        |                                                                        |                                                                      |                                                                      |                                                                      |
| S               | Cohesion    | Pa cu    | ing Øt  | 0                 |                                                                        |                                                                        |                                                                      |                                                                      |                                                                      |
| STRES           |             | cu, k    | assum   | ≥nØ               | 54                                                                     | 63                                                                     | 72                                                                   | 86                                                                   | 0                                                                    |
| I - TOTAL       | Deviator    | Stress   |         | kPa               | 108                                                                    | 126                                                                    | 144                                                                  | 171                                                                  | 200                                                                  |
| PRESSION        | Radial      | Stress   |         | kPa               | 60                                                                     | 160                                                                    | 220                                                                  | 28                                                                   | 340                                                                  |
| <b>(IAL COM</b> | Bulk        | Density  |         | Mg/m <sup>3</sup> | 2.01                                                                   | 1.98                                                                   | 2.00                                                                 | 1.98                                                                 | 2.02                                                                 |
| TRIAY           | Moisture    | Content  |         | %                 | 30                                                                     | 29                                                                     | 29                                                                   | 30                                                                   | 28                                                                   |
|                 | Type        |          |         |                   | UU<br>102                                                              | UU<br>102                                                              | UU<br>102                                                            | UU<br>102                                                            | 10 C                                                                 |
|                 | Class       |          |         |                   | S                                                                      |                                                                        |                                                                      |                                                                      |                                                                      |
|                 | Mod.        | Plast.   | Index   | %                 |                                                                        |                                                                        |                                                                      |                                                                      |                                                                      |
| N               | assing      | t25μm    |         | %                 | 001                                                                    |                                                                        |                                                                      |                                                                      |                                                                      |
| FICATIC         | Plast. F    | Index 2  |         | %                 | 48                                                                     |                                                                        |                                                                      |                                                                      |                                                                      |
| CLASS           | Plastic     | Limit    |         | %                 | 28                                                                     |                                                                        |                                                                      |                                                                      |                                                                      |
|                 | Liquid      | Limit    |         | %                 | 76                                                                     |                                                                        |                                                                      |                                                                      |                                                                      |
|                 | Natural     | Moisture | Content | %                 | 30                                                                     |                                                                        |                                                                      |                                                                      |                                                                      |
|                 | Description |          |         |                   | Frim brown and orange brown mottled silty CLAY with some sandy pockets | Frim brown and orange brown mottled silty CLAY with some sandy pockets | Stiff fissured dark grey silty CLAY with some sandy silt laminations | Stiff fissured dark grey silty CLAY with some sandy silt laminations | Stiff fissured dark grey silty CLAY with some sandy silt laminations |
|                 | Depth       |          |         | в                 | 3.00                                                                   | 8.00                                                                   | 00.11                                                                | 14.00                                                                | 17.00                                                                |
|                 | Sample      | No       |         |                   | n                                                                      | U2                                                                     | U3                                                                   | U4                                                                   | S                                                                    |
|                 | Location    |          |         |                   | ВНІ                                                                    |                                                                        |                                                                      |                                                                      |                                                                      |

# SUMMARY OF GEOTECHNICAL TESTS

Note: Soil Classification based upon unmodified Plasticity Index

Manhire Associates CONSULTING ENGINEERS

| Ha                  | anje,          |            |            |      |            |                  |                     |         |                      |         | ensionless             | ×                                                                                              |     |     |    |
|---------------------|----------------|------------|------------|------|------------|------------------|---------------------|---------|----------------------|---------|------------------------|------------------------------------------------------------------------------------------------|-----|-----|----|
|                     |                |            |            |      |            |                  |                     |         |                      |         | hich is dim            | tesidential                                                                                    |     |     |    |
|                     | LORAL CB.      | <5         | Ś          | Š    | 42         | <u>∞</u>         |                     |         |                      |         | pt for pH w            | oted thus: F                                                                                   |     |     |    |
|                     | 5ED 120        | <5         | Š          | Š    | 28         | <u>∞</u>         |                     |         |                      |         | tated, excel           | ptions denc                                                                                    |     |     |    |
| NNOO L              | 123,913        | <5         | <5         | ~5   | 4          | < <u>5</u>       |                     |         |                      |         | otherwise s            | Exce                                                                                           |     |     |    |
| 9 Hall              | CIS CIC        | <5         | 5          | 5    | Š          | <5<br>S          |                     |         |                      |         | soil unless o          |                                                                                                |     |     |    |
|                     | CIO CIS        | S          | Ŝ          | Ş    | Š          | < <u>5</u>       |                     |         |                      |         | weight of              |                                                                                                |     |     |    |
|                     | CIO<br>C8      | S          | Ş          | Ş    | 5          | < <mark>5</mark> |                     |         |                      |         | e mg/kg dry            |                                                                                                |     |     |    |
| OFBRUIC             | 26 JUDIOS      |            |            |      |            |                  |                     |         |                      |         | All units ar           |                                                                                                |     |     |    |
| STOUJJUL            | JUDAHOHOHI TOI | v          | v          | v    | v          | v                | 210                 | 1100000 |                      |         |                        |                                                                                                |     |     |    |
| HV-d                | 2CLGGU         |            |            |      |            |                  |                     |         |                      |         |                        |                                                                                                |     |     |    |
| <sup>IIOJO</sup> ET | 105 Jajen      | <0.5       | <0.5       | <0.5 | <0.5       | <0.5             | 291                 | 92000   |                      |         |                        |                                                                                                |     |     |    |
| Selentiun           |                | 0.6        | 0.7        | 1.2  | Ξ          | 1.2              |                     |         | 350                  | 13000   |                        |                                                                                                |     |     |    |
| Sinc                |                | 78         | 50         | 92   | 101        | 104              | 3750                | 665000  |                      |         |                        |                                                                                                |     |     |    |
| Jatto)              |                | 54         | 57         | 61   | 6          | 84               | 2330                | 71700   |                      |         |                        |                                                                                                |     |     |    |
| Nicker              |                | 17         | 20         | 48   | 58         | 82               |                     |         | 130                  | 1800    |                        |                                                                                                |     |     |    |
| Mercury             | INOLESADIC     | <0.5       | <0.5       | <0.5 | <0.5       | 0.5              |                     |         | 170                  | 3600    |                        |                                                                                                |     |     |    |
| Peo 7               |                | 53         | 28         | 48   | 22         | 86               |                     |         |                      |         |                        |                                                                                                |     |     |    |
| Chroninna           |                | =          | 17         | 26   | 8          | 17               | 627                 | 8840    |                      |         |                        | Er                                                                                             |     |     |    |
| Cadminn             |                | <0.5       | <0.5       | <0.5 | <0.5       | <0.5             | m                   | 348     |                      |         |                        | organic mati<br>c matter                                                                       |     |     |    |
| Arsentic            |                | 12.6       | 18.2       | 8.8  | 9.6        | 22.1             |                     |         | 32                   | 640     |                        | at 1% soil c<br>soil organi                                                                    | 1   |     |    |
| <sup>Inda</sup> q   | 47             | 1.30       | 0.50       | 1.20 | 0.70       | 00.1             | dential             | mercial | dential              | mercial |                        | GAC given<br>given at 6%                                                                       | ,   |     |    |
| UOJP-               |                |            | <b>S2</b>  |      | S3         | S4               | C <sup>1</sup> resi | com     | EA <sup>2</sup> resi | com     | es                     | QM/CIEH (                                                                                      |     |     |    |
| Loc.                | Ansell Hous    | ≤<br>≤ 119 | ≶<br>- 125 | Ewel | Š<br>I Roa | Š<br>d           | <br>GA              |         | CLE                  | l e     | ອ <u></u> ້ອີ<br>ເ: 02 | 0 E<br>- 0<br>- 2<br>- 8<br>- 0<br>- 0<br>- 0<br>- 0<br>- 0<br>- 0<br>- 0<br>- 0<br>- 0<br>- 0 | 390 | 909 | 97 |
|                     | Surbiton       | i, Sur     | rey,       | K16  | бAL        |                  |                     |         | I                    | ra>     | c: 02                  | 08                                                                                             | 390 | 788 | 88 |

CONTAMINANTS IN SOIL

Manhire Associates Geo-Environmental Limited

|                       |            |      |            | opeciated r | UIVAL UILIAUIC T | LYOLFOCALTUOLIS DY O | CIMD         |           |             |                 |          |
|-----------------------|------------|------|------------|-------------|------------------|----------------------|--------------|-----------|-------------|-----------------|----------|
| Loca                  | vition WSI | WS2  | WS2        | WS3         | WS4              |                      |              |           | ΓQ          | 1/CIEH          |          |
| Sam                   | ple        |      |            |             |                  |                      |              | <br>      | U           | AC <sup>3</sup> |          |
| Depth                 | , m 1.30   | 0.50 | 1.20       | 0.70        | 1.00             |                      |              | reside    | ential allo | tments          | ommercia |
| Determinand           |            |      |            |             |                  | Concentr             | ation, mg/kg |           |             |                 |          |
| PAH                   |            |      |            |             |                  |                      |              |           |             |                 |          |
| Naphthalene           | <0.5       | <0.5 | <0.5       | <0.5        | <0.5             |                      |              | <br>      | 5           |                 | 200      |
| Acenaphthylene        | <0.5       | <0.5 | <0.5       | <0.5        | <0.5             |                      |              | <br>17    | 0           | 58              | 84000    |
| Acenaphthene          | <0.5       | <0.5 | <0.5       | <0.5        | <0.5             |                      |              | <br>21    | 0           | 34              | 85000    |
| Fluorene              | <0.5       | <0.5 | <0.5       | <0.5        | <0.5             |                      |              | <br>16    | 0           | 27              | 64000    |
| Phenanthrene          | 2.6        | 2.9  | <0.5       | <0.5        | <0.5             |                      |              | <br>6     | 2           | 9               | 22000    |
| Anthracene            |            | 0.8  | <0.5       | <0.5        | <0.5             |                      |              | <br>23(   | ۳<br>00     | 80              | 530000   |
| Fluoranthene          | 5.2        | 7.2  | <0.5       | <u>8.</u>   | <0.5             |                      |              | <br>26    | 0           | 52              | 23000    |
| Pyrene                |            | 6.1  | <u>8</u> . |             | 0.9              |                      |              | <br>56    | 0           | 0               | 54000    |
| Benzo(a)anthracene    | 1.6        | 8.I  | l.6        | 1.2         |                  |                      |              | <br>'n    | _           | 5               | 90       |
| Chrysene              | 4.1        | 5.2  | 2.1        | 0.6         | 0.8              |                      |              | <br>6.    | 0           | 9.              | I 40     |
| Benzo(b)fluoranthene  | 1.5        | 4.2  | 4.2        | 1.2         | 2.2              |                      |              | <br>5.    | 9           | 5.5             | 00       |
| Benzo(k)fluoranthene  | 1.5        | 3.1  | 2.2        | <u>8.</u>   | 0.9              |                      |              | <br>ö     | 5           | 8.              | I 40     |
| Benzo(a)pyrene        | 2.5        | 2.2  | 6.1        | 2.4         | 2.5              |                      |              | <br>0.8   | 33          | .6              | 4        |
| Indeno(123-cd)pyrene  | 0.9        | 2.1  | 0.9        | <u>8.</u>   | 0.6              |                      |              | <br><br>S | 5           | œ               | 60       |
| Dibenzo(ah)anthracene | <0.5       | 0.6  | <0.5       | <0.5        | <0.5             |                      |              | <br>0.7   | 76 0        | .76             | <u>n</u> |
| Benzo(ghi)perylene    | <0.5       | 0.6  | <0.5       | <0.5        | <0.5             |                      |              | <br>4     | 4           | 02              | 650      |
| Total PAH             | 26.4       | 36.8 | 14.7       | 6.11        | 0.6              |                      |              |           |             |                 |          |
|                       |            |      |            |             |                  |                      |              |           |             |                 |          |



Manhire Associates

Manhire Associates Geo-Environmental Limited

# Tel: 020 8390 9097 Fax: 020 8390 7888

Notes

ŏ

Exceptions denoted thus: Residential

Commercial

Total PAH = Sum of EPA16 identified components

The results are expressed as mg/kg dry weight soil after correction for moisture content
 GAC given at 1% soil organic matter



# CONTAMINANTS IN SOIL

| Sample | Depth |                                      | Asbestos identification                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|-------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | m     | Description of matrix                | Overall percentage of asbestos identified (approx.)                                                                                                                                                                                                                                                                                                               | Type of asbestos identified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | 1.30  | sandy loam                           |                                                                                                                                                                                                                                                                                                                                                                   | none detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | 0.50  | loam                                 |                                                                                                                                                                                                                                                                                                                                                                   | none detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | 1.20  | sandy loam                           |                                                                                                                                                                                                                                                                                                                                                                   | none detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | 0.70  | sandy loam                           |                                                                                                                                                                                                                                                                                                                                                                   | none detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | 1.00  | sandy loam                           |                                                                                                                                                                                                                                                                                                                                                                   | none detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |       |                                      |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       |                                      |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       |                                      |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       |                                      |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       |                                      |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       |                                      |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       |                                      |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       |                                      |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       |                                      |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       |                                      |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       |                                      |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       |                                      |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       |                                      |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       |                                      |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       |                                      |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       |                                      |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       |                                      |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |       | 1.30<br>0.50<br>1.20<br>0.70<br>1.00 | n       Description of matrix         1.30       sandy loam         0.50       loam         1.20       sandy loam         0.70       sandy loam         1.00       sandy loam         1.01       sandy loam         1.02       sandy loam         1.03       sandy loam         1.04       sandy loam         1.05       sandy loam         1.06       sandy loam | n         Description of matrix         Overall percentage of asbestos identified (approx.)           1.30         sandy loam            0.50         loam            1.20         sandy loam            0.70         sandy loam            1.00         sandy loam            1.00         sandy loam            1.01         sandy loam            1.02         sandy loam            1.03         sandy loam            1.04         sandy loam            1.05         sandy loam            1.06         sandy loam            1.07         sandy loam            1.08         sandy loam            1.09         sandy loam            1.00         sandy loam            1.01         sandy loam            1.02         sandy loam            1.03         sandy loam            1.04         sandy loam            1.05         sandy loam            1.10         sandy loam |



# **APPENDIX C**

## **COVER SYSTEM**



| Calculatio                 | ons bas                      | ed on r                     | nixed z                  | one (M)                  | )                             |                                | 600                           | mm                             |                                            |                                                 |
|----------------------------|------------------------------|-----------------------------|--------------------------|--------------------------|-------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------------------|-------------------------------------------------|
| Contaminant                |                              | Site                        | Data                     |                          | Expres                        | sed as a<br>Guidelir           | Factor o<br>ne Value          | f Target                       | Cover Thickne<br>Compliance to<br>Guidelir | ss Required for<br>Specified Target<br>ne Value |
|                            | Contamination of Ground (Cg) | Contamination of Cover (Cc) | Target Guideline Value 1 | Target Guideline Value 2 | Soil / Target Guideline Value | Cover / Target Guideline Value | Soil / Target Guideline Value | Cover / Target Guideline Value | Target Guideline Value 1                   | Target Guideline Value 2                        |
|                            | Ur                           | nits                        | Ur                       | nits                     |                               | Fra                            | ction                         |                                | (m                                         | im)                                             |
| Arsenic                    |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
| Cadmium (Soil pH8)         |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
| Chromium                   |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
| Chromium (VI)              |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
| Mercury                    |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
| Selenium                   |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
| Copper                     |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
| Nickel                     |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
| Zinc                       |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
| Lead                       |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
| Boron (Water sol)          |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
| Sulphate (total)           |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
| Phenols                    |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
| Sulphide                   |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
| Cyanide                    |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
| Solvent Extractable Matter |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
| Benzo (a) pyrene           | 2.5                          | 0.6                         | 0.83                     |                          | 3.0                           | 0.7                            | No TV                         | No TV                          | 527                                        | No TV                                           |
|                            |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
|                            |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
|                            |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
|                            | ——                           |                             | ——                       |                          |                               |                                |                               |                                |                                            |                                                 |
|                            |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
|                            |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
|                            |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
|                            |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
|                            |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
|                            |                              |                             |                          |                          |                               |                                |                               |                                |                                            |                                                 |
|                            |                              |                             |                          |                          | Summa                         | rv                             |                               |                                |                                            |                                                 |

| Summa                                                | ry                       |                          |
|------------------------------------------------------|--------------------------|--------------------------|
|                                                      | Target Guideline ∀alue 1 | Target Guideline Value 2 |
| Number of contaminants                               | 17                       | 17                       |
| Number of contaminants with no thickness calculation | 16                       | 17                       |
| Breakdown - Number for which no TV specfied          | 16                       | 17                       |
| Breakdown - Number for which no soil specified       | 16                       | 16                       |
| Breakdown - Number for which no cover specified      | 16                       | 16                       |
| Breakdown - Number for which cover > TV              | 0                        | 0                        |
|                                                      |                          |                          |
| Number of contaminants with thickness calculation    | 1                        | 0                        |
| Breakdown - Number for which no cover required       | 0                        | 0                        |
| Breakdown - Number for which cover required          | 1                        | 0                        |
|                                                      |                          |                          |
| Overall thickness of cover required                  | 527                      | 0                        |







# APPENDIX D

# FIGURES







SPT PROFILE 159 - 161 IVERSON ROAD, NW6 2RB





## SHEAR STRENGTH PROFILE 159 - 161 IVERSON ROAD, NW6 2RB

