WEBB YATES ENGINEERS Job No. Rev. Sheet No. J1879 Drg. Ref. Made by Date Checked | | AL DATA
properties | | | | | | | | | | |--|--|---|---|--|--|--|--|--|--|---------------------------| | | Descript | | Unit Wt | K0 | Ka | Кp | Kac | Kpc | Kr | Earth | | | | | f1-37 (2.1 | | | | | | | pressure
coefficients. | | 1 | Made Cre | und | [kN/m³] | 0 66 | 0.10 | 2 04 | 1 40 | 2 96 | | Calculated | | 2 | Firm Lor | don | 17.00 | 0.63 | 0.45 | 2.20 | 1.35 | 2.97 | 0.50 | Calculated | | | Clay | | | | | | | | | | | 3 | | ff | 19.50 | 0.63 | 0.44 | 2.28 | 1.32 | 3.02 | 0.50 | Calculated | | | London C | | | | | | | | | | | No. | c0 | y0 | Gradi | | E(|) Gra | | | ained/ | | | | [kN/m²] | [] | | f c | la 37 / m 2 1 | []-37 | of I | | | | | 1 | 0.00 | 0 00 | [KIV / III - | 00 | 15000 | [KN) | 0.00 |) Und | rained | | | 2 | 0.00 | 0.00 | 0 | .00 | 15000. | | 0.00 | Und: | rained | | | 3 | 60.00 | 0.00 | 0 | .00 | 15000. | | 0.00 | Und: | rained | | | | | | | | | | | | | | | | meters us | | | | | sure o | coeffic | cients | | | | No. | | | Phi Bet
tio [º | | | | | | | | | 1 | 20 00 | Λα | .00 0.0 |) Rac | 00 | | | | | | | 2 | 20.00 | 0 | .00 0.0 | 0 0. | 00 | | | | | | | 3 | 23.00 | 0 | .00 0.0 | 0 0. | 00 | | | | | | | 0 cu | Strength F
ment and
DA1 Combi | case | : t | an Ph | | | c'
.25 | | Cu | E
1.00 | | 0 cu
C7
(2 | ment and
DA1 Combi
011)
: Only th | case
nati | : t
on
rameter | an Ph
1.
s in | 25
bold h | 1.
nave h | .25
been a | affec | 1.40
ted by | | | C7
(2
lote | ment and
DA1 Combi
011)
: Only th
No geom | case
nations
e par
etry | : t
on
rameter
or oth | an Ph
1.
s in
er fa | 25
bold h
ctors | 1.
nave h
have | .25
been a | ffec | 1.40
ted by | 1.00 | | C7 (2
lote | ment and
DA1 Combi
011)
: Only th | case
nations
e par
netry | : t on rameter or oth | an Ph
1.
s in
er fa
apply | 25
bold h
ctors | ave have | . 25
been a
been | effectorian | 1.40
ted by
ged. | 1.00 | | Ocu
C7
(2
lote | ment and
DA1 Combi
011)
: Only th
No geom | case
nations
e par
netry | : t on rameter or oth | an Ph
1.
s in
er fa
apply | 25
bold h
ctors | ave have | been a been | chan
chan
Ea:
pres: | 1.40
ted by
ged. | 1.00
Partial Fact | | (2)
(ote
(bote
(ote)
(ote) | ment and DA1 Combi 011) : Only th No geom gn Soil pro Unit Wt | case
natione par
metry
operting | es after | an Ph
1.
s in
er fa
apply
Kp | 25
bold h
ctors
ing Pa | ave have have | been a been actors | chan
chan
Ea:
pres: | 1.40
ted by
ged.
rth
sure
cients | 1.00
Partial Fact | | Ocus
C7 (2
lote
Designo. | ment and DA1 Combi 011) : Only th No geom gn Soil pro Unit Wt [kN/m³] 16.00 17.00 | case
nations particle | es after Ka 0.56 1 0.53 1 | an Ph 1. s in er fa apply Kp .78 1 .89 1 | bold hotors ing Pa Kac H | nave have rrial F | been a been a correction of the th | Ea: pres: calcu | ted by ged. rth sure cients lated lated | 1.00
Partial Fact | | Ocus
C7 (2
lote
Designo. | ment and DA1 Combi 011) : Only th No geom gn Soil pro Unit Wt [kN/m³] 16.00 | case
nations particle | : ton rameter or oth es after Ka 0.56 1 0.53 1 0.51 1 | an Ph
1.
s in
er fa
apply
Kp
.78 1
.89 1 | bold hotors ing Pa Kac H | 1. nave h have rtial F (pc 67 0. 75 0. 79 0. | been a been a been a been a been actors Kr | Ea: pres: calcu. Calcu. | ted by ged. rth sure cients lated lated | 1.00
Partial Fact | | Designo. | ment and DA1 Combi 011) : Only th No geom Unit Wt [kN/m³] 16.00 17.00 19.50 | case
natione parametry
Dperti
KO
0.66
0.63
0.63 | es after Ka 0.56 1 0.53 1 0.51 1 Gradi | an Ph
1.
s in
er fa
apply
Kp
.78 1
.89 1 | 25
bold h
ctors
ring Pa
Kac H
.50 2. | 1. nave h have rtial F Gpc 67 0. 75 0. 79 0. Gra | been a be | Ea: pres: calcu: Calcu: | ced by
ged.
rth
sure
cients
lated
lated | 1.00
Partial Fact | | Designo. | ment and DA1 Combi O11) : Only th No geom gn Soil pre Unit Wt [kN/m³] 16.00 17.00 19.50 | case
nations
e para
etry
coperti
KO
0.66
0.63
0.63 | es after Ka 0.56 1 0.53 1 0.51 1 Gradi | an Ph 1. s in er fa apply Kp .78 1 .89 1 .95 1 ent f c | 25
bold h
ctors
ing Pa
Kac H
.50 2.
.46 2.
.43 2. | 1. nave h have rtial F (pc | co. 50 (co. | Ea: pres: calcu. Calcu. Calcu. | 1.40 ced by ged. rth sure cients lated lated lated | 1.00
Partial Fact | | Designo. | ment and DA1 Combi O11) : Only th No geom gn Soil pre Unit Wt [kN/m³] 16.00 17.00 19.50 c0 [kN/m²] | case
nation
le para
letry
coperti
KO
0.66
0.63
0.63
vo
[m] | : ton rameter or oth ies after Ka 0.56 1 0.53 1 0.51 1 Gradi | an Ph 1. s in er fa apply Kp .78 1 .89 1 .95 1 ent f c | 25
bold hottors
ring Pa
Kac H
.50 2.
.46 2.
.43 2.
kN/m²] | nave have rtial F pc 67 0. 75 0. 79 0. Gra (kN) | constant of I | Ea: pres: pres: calcu. Calcu. Calcu. Culturation Undi | rth sure cients lated lated lated rained/ | 1.00 Partial Fact | | Designo. | ment and DA1 Combi 011) : Only th No geom gn Soil pre Unit Wt [kN/m³] 16.00 17.00 19.50 c0 [kN/m²] 0.00 | 0.66
0.63
0.63
0.00 | ton rameter or oth les after Ka 0.56 1 0.53 1 0.51 1 Gradi o [kN/m² | an Ph 1. s in er fa apply Kp .78 1 .89 1 .95 1 ent f c /m] [| 25
bold factors
ring Pa
Kac I
.50 2.
.46 2.
.43 2.
EC
kN/m²] | nave have ritial Face. | constant of I | pressolution Calculation Calcu | ted by
ged.
rth
sure
cients
lated
lated
lated
rained/
rained/ | 1.00 Partial Fact | | Designo. | ment and DA1 Combi Com | 0.66
0.63
0.63
y0
[m]
0.00 | : ton rameter or oth les after Ka 0.56 1 0.53 1 0.51 1 Gradi o [kN/m² 0 | an Ph
1.
s in
er fa
apply
Kp
.78 1
.89 1
.95 1
ent
f c
/m] [
.00 | 25
bold hottors
ring Pa
Kac H
.50 2.
.46 2.
.43 2.
kN/m²] | nave have rtial F cpc 67 0. 75 0. 79 0. Gra | 25 been a | pressolution Calculation Calcu | rth sure cients lated lated lated rained/ | 1.00 Partial Fact | | COCUMENT (2 dote) | ment and DA1 Combi Com | 0.66
0.63
0.63
y0
[m]
0.00 | : ton rameter or oth les after Ka 0.56 1 0.53 1 0.51 1 Gradi o [kN/m² 0 | an Ph
1.
s in
er fa
apply
Kp
.78 1
.89 1
.95 1
ent
f c
/m] [
.00 | 25
bold hotors
ing Pa
Kac I
.50 2.
.46 2.
.43 2.
E(kN/m²]
15000. | nave have rtial F cpc 67 0. 75 0. 79 0. Gra | 25 been a | pressolution Calculation Calcu | rth
sure
cients
lated
lated
rained/
rained
rained | 1.00 Partial Fact | | CC7 : (2 dote Designo. 1 2 3 | ment and Dall Combit 2011 10 10 11 11 11 11 11 | 0.66
0.63
0.63
0.00
0.00
0.00 | : ton rameter or oth les after Ka 0.56 1 0.53 1 0.51 1 Gradi o [kN/m² 0 0 calculat | an Ph 1. s in er fa apply Kp .78 1 .89 1 .95 1 ent f c /m] [.00 .00 .00 | 25 bold Potents ing Pa Kac I .50 246 246 243 2. E(kN/m²] 15000. 15000. | 1. nave h have rtial Fape 67 0. 75 0. 79 0. Gra | .25 been a | Ear pressociate under the | 1.40 ted by ged. rth sure cients lated lated lated rained rained rained rained | 1.00 Partial Fact | | CC7 (2 (2 dote CC7) (2 (2 dote CC7) (3 dote CC7) (3 dote CC7) (4 dote CC7) (4 dote CC7) (5 dote CC7) (6 | ment and Dal Combit 2011) 1011) 1011y th No geom geom geom geom geom geom geom geo | case nati- ne par netry pperti K0 0.666 0.633 0.633 y0 0.000 0.000 0.000 0.000 | : ton rameter or oth les after Ka 0.56 1 0.53 1 0.51 1 Gradii 0 0 (kN/m² 0 0 0 calculat | an Ph 1. s in er fa apply Kp .78 1 .89 1 .95 1 ent f c /m] [.00 .00 .00 e designation | 25 bold heters ing Pa Kac 1 .50 246 243 2. E(kN/m²] 15000. 15000. ign Ea | 1. nave h have rtial Fape 67 0. 75 0. 79 0. Gra | .25 been a | Ear pressociate under the | 1.40 ted by ged. rth sure cients lated lated lated rained rained rained rained | 1.00 Partial Fact | | Designo. 1 2 3 No. 1 2 3 | ment and DAI Combidition of the combination | case nati e pa etry pperti K0 0.66 0.63 0.63 0.00 0.00 0.00 0.00 0. | : ton rameter or oth les after Ka 0.56 1 0.53 1 0.51 1 Gradi 0 0 0 0 Calculat Phi Bet tio [° | an Ph 1. s in er fa apply Kp .78 1 .89 1 .95 1 ent f c /m] [.00 .00 .00 e desi] Rat | 25 bold h ctors ring Pa Kac H .50 246 243 2. KN/m²] 15000. 15000. 15000. | 1. nave h have rtial Fape 67 0. 75 0. 79 0. Gra | .25 been a | Ear pressociate under the | 1.40 ted by ged. rth sure cients lated lated lated rained rained rained rained | 1.00 Partial Fact | | Design No. | ment and bal combination of the | case nati- netry pperti K0 0.66 0.63 0.63 y0 [m] 0.000 0.000 0.00 edita/i Rai 0 | : ton rameter or oth les after Ka 0.56 1 0.53 1 0.51 1 Gradii 0 [kN/m² 0 0 calculat Phi Bet tio [° | an Ph 1. s in er fa apply Kp .78 1 .89 1 .89 1 .000 .00 .00 e des | 25 bold h ctors ing Pa Kac I .50 246 243 2. E0 kN/m²] 15000. 15000. ign Ea /C io | 1. nave h have rtial Fape 67 0. 75 0. 79 0. Gra | .25 been a | Ear pressociate under the | 1.40 ted by ged. rth sure cients lated lated lated rained rained rained rained | 1.00 Partial Fact | | Document (CC7) (CC | ment and DAI Combidition of the combination | case nati- le paraletry ppertit K0 0.666 0.633 0.633 y0 0.000 0.000 0.000 ed to 1ta/: Rat 0.000 0.000 | : ton rameter or oth les after Ka 0.56 1 0.53 1 0.51 1 Gradi 0 0 0 0 Calculat Phi Bet tio [° | an Ph 1. s in er fa apply Kp .78 1 .89 1 .95 1 ent c .00 .00 .00 .00 .00 .00 .00 .00 .00 . | 25 bold h ctors ing Pa Kac I .50 246 243 2. E0 kN/m²] 15000. 15000. ign Ea /C io 00 00 | 1. nave h have rtial Fape 67 0. 75 0. 79 0. Gra | .25 been a | Ear pressociate under the | 1.40 ted by ged. rth sure cients lated lated lated rained rained rained rained | 1.00 Partial Fact | Surcharge properties No. Stage Side Level Pressure Partial Offset Width Ks Note: Only the parameters in bold have been affected by Partial Factors. Strut properties No. Stage Node Level Prestress Stiffness Angle Lever ### In Out [m] [kN/m] [kN/m/m] [°] [m] 1 1 - 4 -1.00 0.00 100000.00 0.00 0.30 STAGE 0 : INITIAL CONDITION Ground level [m] LEFT: 0.00 RIGHT: 0.00 Soil zones changed ## Water data on LEFT side No. Level Pressure Unit m [kN/m²] [kN/m³] 1 0.00 0.00 10.00 $\begin{array}{c|c} \textbf{Water data on RIGHT side} \\ \textbf{No. Level Pressure} & \textbf{Unit} \\ & \textbf{wt.} \\ & [\textbf{m}] & [k\textbf{N}/\textbf{m}^2] & [k\textbf{M}/\textbf{m}^3] \\ \textbf{1} & \textbf{0.00} & \textbf{0.00} & \textbf{10.00} \\ \end{array}$ Analysis details SAFE model with redistribution and without friction at wall/soil interface and without friction at wall/soil interface E profile Generated Boundary distances [m] : 50.00 50.00 Convergence control parameters Maximum number of iterations: 900 Tolerance for displacement convergence [mm]: 0.01 Tolerance for pressure convergence [kN/m²]: 0.10 Damping coefficient: 1.00 Maximum incremental displacement [m]: 1.00 ## RESULTS FOR STAGE 0 : Initial condition Surcharge or strut changes Surcharge no. 1 applied at this stage | Summary Results | | | | | | | |-----------------|------|-------|-------------------|-------------------|-----------------|--| | | Node | Level | Displacement [mm] | Moment
[kNm/m] | Shear
[kN/m] | | | | | [m] | | | | | | Top wall node | 1 | 0.00 | 0.00 | 0.00 | 0.0 | | ## STAGE 1 : PERMANENT CONDITION Ground level [m] LEFT: 0.00 RIGHT: -2.80 Soil zones changed and wall EI changed # Water data on LEFT side No. Level Pressure Unit # $\begin{array}{c|c} \textbf{Water data on RIGHT side} \\ \textbf{No. Level Pressure} & \textbf{Unit} \\ \hline \textbf{Mo.} & [m] & [kN/m^2] & [kN/m^3] \\ 1 & -2.80 & 0.00 & 10.00 \\ \end{array}$ RESULTS FOR STAGE 1 : Permanent Condition Surcharge or strut changes Strut no 1 inserted at this stage | Summary nesures | Node | Level | Displacement | Moment | Shear | |--------------------------------|------|-------|--------------|----------------|-----------------| | | | [m] | [mm] | [kNm/m] | [kN/m] | | Top wall node | 1 | 0.00 | -1.64 | 0.00 | 0.00 | | Above strut 1
Below strut 1 | 4 | -1.00 | 0.80 | -6.26
-6.26 | 21.21
-58.78 | | Dig level (R) | 8 | -3.04 | 5.32 | 66.56 | -9.61 | | Max BM | 9 | -3.51 | 6.10 | 68.04 | 2.32 | | Wall toe | 18 | -7.50 | 8.69 | 0.00 | 0.00 | # Strut Forces | idt i orces | | | | | | | | | | |-------------|---|----------------|-------|---------|--------------|--|--|--|--| | | | Strut
force | | Moment | Max
strut | | | | | | | | | | | force | | | | | | | | | | [kNm/m] | | | | | | | 1 | 4 | 79.99 | 79.99 | 0.00 | 79.99 | | | | | | | | | | | | | | | |