			User E	Notoile:						
Assessor Name: Software Name:	Neil Ingham Stroma FSAP 20			Strom Softwa	are Vei				0002943 on: 1.0.1.9	
Address :	Flat 1, 16, Roches			Address						
1. Overall dwelling dim		iter iviews,	, LOND	314, 1477	30D					
			Are	a(m²)		Av. He	ight(m)		Volume(m	3)
Ground floor					(1a) x		2.8	(2a) =	169.23	(3a)
Total floor area TFA = ((1a)+(1b)+(1c)+(1d)+(1	le)+(1r	n) (60.44	(4)			_		
Dwelling volume					(3a)+(3b))+(3c)+(3c	d)+(3e)+	(3n) =	169.23	(5)
2. Ventilation rate:										
	main heating	secondar heating	'y	other	_	total			m³ per hou	ır
Number of chimneys	0 +	0	+	0	=	0	X	40 =	0	(6a)
Number of open flues	0 +	0	+	0] = [0	X :	20 =	0	(6b)
Number of intermittent	fans					2	X	10 =	20	(7a)
Number of passive ven	ts				Γ	0	x	10 =	0	(7b)
Number of flueless gas	fires				Ī	0	x -	40 =	0	(7c)
								A : I		-
		(a.) (a.) (a.)	- > / > .	<u>-</u> \	_				nanges per he	_
Infiltration due to chimn	eys, flues and fans = been carried out or is inten				ontinuo fr	20		÷ (5) =	0.12	(8)
Number of storeys in		dea, procee	u 10 (17),	ou iei wise i	onunue m	om (9) to	(10)		0	(9)
Additional infiltration	and an oming (no)						[(9)	-1]x0.1 =	0	(10)
Structural infiltration:	0.25 for steel or timbe	r frame or	0.35 fo	r masoni	y constr	uction	- ,		0	(11)
	present, use the value corre	esponding to	the grea	ter wall are	a (after					
•	nings); if equal user 0.35	alad) ar O	1 (000)	ممار مامم	antar A				_	7(40)
•	n floor, enter 0.2 (unse enter 0.05, else enter 0	,	. i (Seai	ea), eise	enter 0				0	(12)
• ,	ws and doors draught								0	(13)
Window infiltration	ws and doors draught	sirippeu		0.25 - [0.2	x (14) ÷ 1	001 =			0	(14)
Infiltration rate				(8) + (10)			+ (15) =		0	(16)
	e, q50, expressed in cu	ubic metre	es per ho	. , , , ,	, , ,	, , ,	, ,	area	5	(17)
If based on air permeat	•		•	•	•			- C C.	0.37	(18)
·	lies if a pressurisation test h					is being u	sed			` ′
Number of sides shelte	red								3	(19)
Shelter factor				(20) = 1 -	[0.075 x (1	9)] =			0.78	(20)
Infiltration rate incorpor	ating shelter factor			(21) = (18) x (20) =				0.29	(21)
Infiltration rate modified	for monthly wind spec	ed		_					-	
Jan Feb	Mar Apr May	/ Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind s	speed from Table 7								_	
(22)m= 5.1 5	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22)m ∸ 4									
(22a)m = 1.27 1.25	1.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18]	
· '				1		<u> </u>			1	

Adjusted infiltr	ation rate (allo	wing for sl	nelter ar	nd wind s	speed) =	: (21a) x	(22a)m					
0.36	0.36 0.35	1 -	0.31	0.27	0.27	0.26	0.29	0.31	0.32	0.34		
	ctive air chang	e rate for i	he appli	cable ca	ise	-	-	-	-	-		
	al ventilation: eat pump using A	anondiy N. (C	93h) - (23	a) × Emy (oguation (NEV othe	rwico (22h	v) = (23a)			0	(23
	n heat recovery: e)) = (23a)			0	(23
	-	-	_					Ol- \ /	(00-) [4 (00-	0	(23
(24a)m= 0	ed mechanical	ventilation 0	with ne	at recov	ery (MV)	HR) (24)	$\frac{a)m = (2a)}{a}$	26)m + (1 0	$\frac{(230) \times [}{0}$	1 - (230) ÷ 100]]	(24
			<u> </u>								_	(24
24b)m= 0	ed mechanical	0	0	0		0 0	$\frac{1}{1} = \frac{2}{2}$	0	0	0	1	(24
											_	(= .
,	ouse extract v n < 0.5 × (23b)		•	•				.5 × (23k	o)			
24c)m= 0	0 0	0	0	0	0	0	0	0	0	0		(24
,	ventilation or v							0.5]			_	
24d)m= 0.57	0.56 0.56		0.55	0.54	0.54	0.53	0.54	0.55	0.55	0.56		(24
Effective air	change rate -	enter (24a	ı) or (24l	b) or (24	c) or (24	ld) in bo	x (25)			•	_	
25)m= 0.57	0.56 0.56	0.55	0.55	0.54	0.54	0.53	0.54	0.55	0.55	0.56		(25
3. Heat losse	s and heat los	s paramet	er:	•	•	,	,	•	,			
ELEMENT	Gross area (m²)	Openir		Net Ar A ,r		U-val W/m2		A X U (W/		k-valu kJ/m²·		A X k kJ/K
Vindows Type	e 1			10.34	4 x1	/[1/(1.4)+	- 0.04] =	13.71				(27
Windows Type	2			2.76	x1	/[1/(1.4)+	- 0.04] =	3.66				(27
Vindows Type	3			2.01	x1	/[1/(1.4)+	- 0.04] =	2.66				(27
Floor				60.44	4 x	0.13		7.8572	<u> </u>		\neg \vdash	(28
Walls Type1	64.4	15.1	1	49.29) x	0.18	=	8.87	= i		7 7	(29
Nalls Type2	21.84	0		21.84	4 ×	0.15	_	3.38			=	(29
Roof	11.05	0	=	11.05	_	0.13	=	1.44	=		= =	(30
Total area of e				157.7	=							` (31
Party wall	,			13.44	=	0		0			\neg \vdash	(32
Party ceiling				49.39	=						룩 누	(32
nternal wall **				66.64	=] [러 누	(32
	roof windows, us	e effective w	indow U-v			n formula i	1/[(1/U-valı	ле)+0.041 г] as aiven in	naragrap		(32
	as on both sides o				atou domi	y rommana :	n _I (n o vale	<i>10)</i> 10.0 1 ₁ 0	ao givoiriii	paragrap		
abric heat los	ss, $W/K = S$ (A	x U)				(26)(30) + (32) =				41.5	3 (33
leat capacity	$Cm = S(A \times k)$)					((28).	(30) + (3	2) + (32a)	(32e) =	11586.	51 (34
hermal mass	parameter (T	MP = Cm -	- TFA) iı	n kJ/m²K			Indica	ative Value	: Medium		250	(35
-	sments where the ad of a detailed c		construc	tion are no	t known pi	recisely th	e indicative	e values of	f TMP in T	able 1f		
Thermal bridge	es : S (L x Y) o	alculated	using Ap	pendix l	K						6.69	(36
	al bridging are not	known (36) :	= 0.15 x (3	31)								
Γotal fabric he	at loss						(33) +	(36) =			48.2	7 (37

Ventilati	ion hea	nt loss ca	alculated	l monthly	y				(38)m	= 0.33 × ((25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	31.62	31.48	31.34	30.68	30.55	29.97	29.97	29.87	30.2	30.55	30.8	31.06		(38)
Heat tra	ınsfer c	oefficier	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	79.89	79.75	79.61	78.95	78.82	78.24	78.24	78.14	78.47	78.82	79.08	79.33		
Heat los	ss para	meter (H	HLP), W/	m²K				•		Average = = (39)m ÷	Sum(39) ₁ - (4)	12 /12=	78.95	(39)
(40)m=	1.32	1.32	1.32	1.31	1.3	1.29	1.29	1.29	1.3	1.3	1.31	1.31		
Number	of day	s in moi	nth (Tab	le 1a)						Average =	Sum(40) ₁	12 /12=	1.31	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wat	er heat	ing ene	rgy requi	irement:								kWh/ye	ear:	
Assume	אל טכנוו	pancy, I	N									00		(42)
if TFA	A > 13.9			[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (ΓFA -13.		99		(42)
								(25 x N)				.56		(43
		_	hot water person per			_	_	to achieve	a water u	se target o	of			
Г				<u> </u>		i .		. .	0					
Hot water	Jan Jan ir	Feb	Mar day for ea	Apr ach month	May $Vd m = fa$	Jun	Jul Table 1c x	Aug (43)	Sep	Oct	Nov	Dec		
г		•	,	1		1	ı	· <i>'</i>	70.00	00.40	00.45	00.74		
(44)m=	89.71	86.45	83.19	79.93	76.66	73.4	73.4	76.66	79.93	83.19	86.45 m(44) ₁₁₂ =	89.71	978.69	(44)
Energy co	ontent of	hot water	used - cal	culated mo	onthly = 4.	190 x Vd,r	m x nm x E	OTm / 3600			ables 1b, 1		970.09	(++,
(45)m=	133.04	116.36	120.07	104.68	100.44	86.68	80.32	92.17	93.27	108.69	118.65	128.84		_
lf instanta	neous w	ater heatii	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46		Total = Su	m(45) ₁₁₂ =	=	1283.22	(45
	19.96	17.45	18.01	15.7	15.07	13	12.05	13.82	13.99	16.3	17.8	19.33		(46
Water s	_					/\/\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		201.2		1				
-		` ,		•			_	within sa	ame ves	sel		0		(47
	se if no	stored	nd no ta		_			(47) ombi boil	ers) ente	er '0' in ((47)			
	•		eclared l	oss facto	or is kno	wn (kWł	n/day):					0		(48
Temper	ature fa	actor fro	m Table	2b								0		(49
Energy	lost fro	m water	storage	, kWh/ye	ear			(48) x (49)) =			0		(50
•			eclared o	-										
			factor fr		e 2 (kW	h/litre/da	ay)					0		(51
	•	eating s from Ta	ee section	on 4.3										(50
			m Table	2b								0		(52 ₎ (53
•			storage		ear			(47) x (51)	x (52) x (53) =				
•		54) in (5	-	, 1. v v i i/ y t	Jui			(TI) X (UI)	,	-		0		(54) (55)
•	,	, ,	culated f	for each	month			((56)m = (55) × (41)	m		<u> </u>		(55)
_	0	0	0	0	0	0	0	0	0	0	0	0		(56
(56)m=	U	U		L "	U		<u> </u>			L		ı ^v		(50

If cylinder	contains	s dedicate	d solar sto	rage, (57)ı	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	om Append	lix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primary	circuit	loss (an	nual) fro	m Table	 ∋ 3	•	•	•				0		(58)
Primary	circuit	loss cal	culated t	for each	month (59)m = ((58) ÷ 36	65 × (41)	m				•	
(modif	fied by	factor fi	rom Tab	le H5 if t	here is s	solar wat	ter heatii	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi lo	oss ca	lculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m=	45.72	39.79	42.39	39.42	39.07	36.2	37.4	39.07	39.42	42.39	42.63	45.72		(61)
Total he	at requ	uired for	water he	eating ca	alculated	for eac	h month	(62)m =	: 0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	178.76	156.15	162.46	144.1	139.51	122.87	117.72	131.23	132.68	151.09	161.28	174.56		(62)
Solar DHV	V input o	calculated	using App	endix G oı	r Appendix	H (negati	ve quantity	/) (enter '0	if no sola	r contribut	ion to wate	er heating)	•	
(add add	ditiona	I lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix (G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output fi	rom w	ater hea	ter											
(64)m=	178.76	156.15	162.46	144.1	139.51	122.87	117.72	131.23	132.68	151.09	161.28	174.56		_
								Outp	out from wa	ater heate	r (annual) ₁	12	1772.43	(64)
Heat gai	ins fro	m water	heating,	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 x	k [(46)m	+ (57)m	+ (59)m	1	
(65)m=	55.67	48.64	50.52	44.66	43.16	37.87	36.06	40.41	40.87	46.74	50.11	54.27		(65)
includ	e (57)	m in cald	culation o	of (65)m	only if o	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Inter	rnal ga	ains (see	Table 5	and 5a):									
Metaboli	ic gain	ıs (Table	5), Wat	ts									_	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	99.7	99.7	99.7	99.7	99.7	99.7	99.7	99.7	99.7	99.7	99.7	99.7		(66)
Lighting	gains	(calcula	ted in Ap	pendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5				_	
(67)m=	15.52	13.78	11.21	8.49	6.34	5.36	5.79	7.52	10.09	12.82	14.96	15.95		(67)
Applianc	es ga	ins (calc	ulated in	Append	dix L, eq	uation L	13 or L1	3a), alsc	see Ta	ble 5				
(68)m=	174.05	175.86	171.31	161.62	149.39	137.89	130.21	128.41	132.96	142.65	154.88	166.37		(68)
Cooking	gains	(calcula	ited in A	ppendix	L, equat	tion L15	or L15a)), also se	ee Table	5			-	
(69)m=	32.97	32.97	32.97	32.97	32.97	32.97	32.97	32.97	32.97	32.97	32.97	32.97		(69)
Pumps a	and fai	ns gains	(Table 5	5a)										
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	e.g. ev	aporatio	n (nega	tive valu	es) (Tab	le 5)	•	•			•		•	
(71)m=	-79.76	-79.76	-79.76	-79.76	-79.76	-79.76	-79.76	-79.76	-79.76	-79.76	-79.76	-79.76		(71)
Water he	eating	gains (T	able 5)		•			•	•	•		•	•	
(72)m=	74.82	72.38	67.91	62.03	58.02	52.6	48.46	54.32	56.76	62.82	69.6	72.94		(72)
Total in	ternal	gains =				(66)	m + (67)m	n + (68)m +	+ (69)m + ((70)m + (7	1)m + (72))m	•	
(73)m=	320.3	317.93	306.33	288.04	269.66	251.75	240.37	246.16	255.72	274.2	295.34	311.18		(73)
6. Sola	r gains	5:												
Color coi		a laulatad	:		T-1-1-0-		iotod ogua	·	way come to the	o applicat	la arianta	ion		
Solar gai	ns are c	calculated	using sola	r flux from	rable 6a	and assoc	iateu equa	itions to co	mvert to th	ie applicat	ne onema	lion.		

Southwest _{0.9x}	0.77	X	2.01	X	36.79		0.63	X	0.7	=	22.6	(79)
Southwest _{0.9x}	0.77	x	2.01	x	62.67]	0.63	X	0.7	=	38.5	(79)
Southwest _{0.9x}	0.77	X	2.01	x	85.75]	0.63	X	0.7	=	52.68	(79)
Southwest _{0.9x}	0.77	X	2.01	x	106.25		0.63	X	0.7	=	65.27	(79)
Southwest _{0.9x}	0.77	X	2.01	х	119.01		0.63	X	0.7	=	73.11	(79)
Southwest _{0.9x}	0.77	x	2.01	x	118.15		0.63	x	0.7	=	72.58	(79)
Southwest _{0.9x}	0.77	x	2.01	x	113.91	Ī	0.63	x	0.7	=	69.97	(79)
Southwest _{0.9x}	0.77	x	2.01	x	104.39	Ī	0.63	x	0.7	=	64.13	(79)
Southwest _{0.9x}	0.77	x	2.01	x	92.85	Ī	0.63	x	0.7	=	57.04	(79)
Southwest _{0.9x}	0.77	х	2.01	x	69.27	ĺ	0.63	x	0.7	=	42.55	(79)
Southwest _{0.9x}	0.77	х	2.01	х	44.07	ĺ	0.63	x	0.7	=	27.07	(79)
Southwest _{0.9x}	0.77	х	2.01	х	31.49	j	0.63	x	0.7	=	19.34	(79)
Northwest _{0.9x}	0.77	х	10.34	х	11.28	x	0.63	x	0.7	=	35.65	(81)
Northwest _{0.9x}	0.77	x	2.76	х	11.28	x	0.63	x	0.7	=	9.52	(81)
Northwest _{0.9x}	0.77	х	10.34	x	22.97	x	0.63	x	0.7	=	72.58	(81)
Northwest _{0.9x}	0.77	x	2.76	x	22.97	x	0.63	x	0.7	=	19.37	(81)
Northwest _{0.9x}	0.77	х	10.34	x	41.38	x	0.63	x	0.7	<u> </u>	130.76	(81)
Northwest _{0.9x}	0.77	х	2.76	x	41.38	x	0.63	x	0.7	=	34.9	(81)
Northwest _{0.9x}	0.77	x	10.34	x	67.96	x	0.63	x	0.7	=	214.74	(81)
Northwest _{0.9x}	0.77	x	2.76	x	67.96	x	0.63	x	0.7	_ =	57.32	(81)
Northwest _{0.9x}	0.77	X	10.34	x	91.35	X	0.63	x	0.7	=	288.66	(81)
Northwest _{0.9x}	0.77	x	2.76	x	91.35	x	0.63	x	0.7	=	77.05	(81)
Northwest _{0.9x}	0.77	x	10.34	x	97.38	x	0.63	x	0.7	=	307.74	(81)
Northwest _{0.9x}	0.77	X	2.76	x	97.38	X	0.63	x	0.7	=	82.14	(81)
Northwest _{0.9x}	0.77	X	10.34	x	91.1	x	0.63	x	0.7	=	287.88	(81)
Northwest _{0.9x}	0.77	X	2.76	x	91.1	X	0.63	X	0.7	=	76.84	(81)
Northwest _{0.9x}	0.77	X	10.34	X	72.63	X	0.63	X	0.7		229.5	(81)
Northwest _{0.9x}	0.77	X	2.76	X	72.63	X	0.63	x	0.7	=	61.26	(81)
Northwest _{0.9x}	0.77	X	10.34	X	50.42	X	0.63	X	0.7	=	159.33	(81)
Northwest 0.9x	0.77	X	2.76	x	50.42	X	0.63	X	0.7	=	42.53	(81)
Northwest _{0.9x}	0.77	X	10.34	X	28.07	X	0.63	x	0.7	=	88.69	(81)
Northwest _{0.9x}	0.77	X	2.76	X	28.07	X	0.63	X	0.7	=	23.67	(81)
Northwest 0.9x	0.77	X	10.34	X	14.2	x	0.63	X	0.7	=	44.86	(81)
Northwest _{0.9x}	0.77	X	2.76	X	14.2	X	0.63	X	0.7	=	11.97	(81)
Northwest _{0.9x}	0.77	X	10.34	x	9.21	X	0.63	X	0.7	=	29.12	(81)
Northwest 0.9x	0.77	X	2.76	x	9.21	X	0.63	X	0.7	=	7.77	(81)
Solar gains in w							n = Sum(74)m.		. 1 1			(00)
` ′	130.45 218		337.33 438.8°		62.46 434.7	354	.89 258.9	154.92	2 83.91	56.23		(83)
Total gains – int	448.38 524	_	$\frac{(64)111 = (73)11}{625.37 708.43}$	`	14.21 675.07	601	.04 514.62	429.1	379.25	367.41		(84)
` '					14.21 6/5.0/	601	.04 514.62	429.1	3/9.25	307.41		(04)
7. Mean intern	•	•			,		TI 4 (0.0)					
Temperature d	•	•		_		ole 9	, Ih1 (°C)				21	(85)
Utilisation facto			<u> </u>	Ť			ua Car	0-1	NI ₅	Da -		
Stroma FSAP 2012	VErsion! 1.d.	1.9 ^r (9.	(P'9!92) http:///	Ww.s	troffia.comJUI	l A	ug Sep	Oct	Nov	Dec	Page	5 of 7

(86)m=	1	0.99	0.98	0.94	0.83	0.65	0.5	0.57	0.84	0.97	0.99	1		(86)
Mean i	internal	temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	in Tabl	e 9c)				•	
(87)m=	19.57	19.74	20.04	20.45	20.78	20.95	20.99	20.98	20.84	20.39	19.91	19.54		(87)
Tempe	erature	durina h	eating n	eriods ir	rest of	dwelling	from Ta	hle 9 T	h2 (°C)					
(88)m=	19.82	19.83	19.83	19.84	19.84	19.85	19.85	19.85	19.84	19.84	19.83	19.83		(88)
L	tion foo	tor for a	nina far ı	rest of d	walling	h2 m (oc	L Tabla	00)			l			
(89)m=	1	0.99	0.98	0.92	0.78	0.55	0.37	9a) 0.44	0.76	0.96	0.99	1		(89)
_							<u> </u>	<u> </u>		<u> </u>	0.00	·		()
Г			18.62	the rest	of dwelli	<u> </u>	ollow ste	ps 3 to 19.84	7 in Tabl		10.44	17.0		(90)
(90)m=	17.94	18.18	10.02	19.2	19.04	19.81	19.64	19.64		19.14	18.44 g area ÷ (4	17.9 4) –	0.45	(91)
									'	LA - LIVIII	g arca - (-	-, -	0.45	(91)
Г	1			r the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	A) × T2	1			İ	
(92)m=	18.67	18.88	19.25	19.76	20.15	20.32	20.35	20.35	20.21	19.7	19.1	18.63		(92)
΄΄ Έ									ere appro	·	40.4	40.00	Ī	(02)
(93)m=	18.67	18.88	19.25	19.76	20.15	20.32	20.35	20.35	20.21	19.7	19.1	18.63		(93)
			uirement		ro obtoin	and at at	on 11 of	Table 0	o oo tha	+ Ti m_/	76\m an	d ro oolo	vuloto	
				using Ta		ieu ai sii	ғр і і оі	i able 9i), 50 illa	ıt 11,111=(76)m an	u re-carc	Julate	
Γ	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisat	tion fac		ains, hm	<u> </u>	,		ļ.		<u>'</u>	<u>I</u>	ļ	ļ.		
(94)m=	1	0.99	0.97	0.92	0.79	0.6	0.43	0.5	0.79	0.96	0.99	1		(94)
Useful	gains,	hmGm ,	W = (94	4)m x (84	4)m									
(95)m=	386.13	443.94	511.45	576.53	562.24	426.31	290.01	301.24	406.81	411.43	375.69	365.94		(95)
Month	ly avera	age exte	rnal tem	perature	from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat Ic	oss rate	for mea	an intern	al tempe	erature,	Lm , W =	=[(39)m	x [(93)m	– (96)m]			•	
(97)m=	1148.06	1114.62	1015.23	857.4	666.03	447.61	293.72	308.47	479.8	717.26	948.68	1145.1		(97)
· -							th = 0.02	24 x [(97)m – (95				I	
(98)m=	566.88	450.7	374.82	202.23	77.22	0	0	0	0	227.53	412.55	579.7		_
								Tota	l per year	(kWh/year	r) = Sum(9	8) _{15,912} =	2891.62	(98)
Space	heating	g require	ement in	kWh/m²	?/year								47.84	(99)
9a. Ene	ergy req	uiremer	nts – Indi	ividual h	eating sy	ystems i	ncluding	micro-C	CHP)					
Space	heatin	ıg:												
Fractio	on of sp	ace hea	t from se	econdar	y/supple	mentary	system						0	(201)
Fractio	on of sp	ace hea	t from m	nain syst	em(s)			(202) = 1	- (201) =				1	(202)
Fractio	on of tot	al heatii	ng from	main sys	stem 1			(204) = (2	02) x [1 –	(203)] =			1	(204)
Efficier	ncy of r	nain spa	ce heat	ing syste	em 1								93.4	(206)
Efficier	ncv of s	econda	rv/supple	ementar	v heatin	a svsten	າ. %						0	(208)
Г		Feb	Mar		May	Jun	Jul	Λιια	Son	Oct	Nov	Dec	kWh/ye	
Snace	Jan			Apr alculate			Jui	Aug	Sep	Oct	INOV	Dec	KVVII/ye	ai
· -	566.88	450.7	374.82	202.23	77.22	0	0	0	0	227.53	412.55	579.7		
L	!			l						L	I	I	1	(211)
` <i>′</i> _	606.94	482.55	4)] + (2 l 401.3	0)m } x	82.68	06)	0	0	0	243.61	441.7	620.66		(411)
L	300.04	102.00	.01.0	L 70.02	02.00				_		211),,,,5,10,,,,12		3095.96	(211)
									, ,,,,,	,	r 15,1012		3033.30	

Space heating fuel (secondary), kWh/month								
= {[(98)m x (201)] + (214) m } x 100 ÷ (208)		Τ ο			Ι ,			
(215)m= 0 0 0 0 0	0 0	0 Tota	0 I (kWh/yea	0 ar) =Sum(3	0	0	0	(215)
Water heating		7010	ii (ittiii) yoo	ar) =0am(2	- 10/15,101	2	0	(213)
Output from water heater (calculated above)								
	22.87 117.72	131.23	132.68	151.09	161.28	174.56		
Efficiency of water heater		-					80.3	(216)
(217)m= 87.75 87.57 87.09 85.9 83.63	80.3	80.3	80.3	86.08	87.31	87.84		(217)
Fuel for water heating, kWh/month (219)m = (64)m x 100 ÷ (217)m								
	53.02 146.6	163.43	165.23	175.52	184.72	198.72		
	•	Tota	I = Sum(2	19a) ₁₁₂ =			2090.39	(219)
Annual totals				k'	Wh/yea	r	kWh/year	_
Space heating fuel used, main system 1							3095.96	╛
Water heating fuel used							2090.39	
Electricity for pumps, fans and electric keep-hot								
central heating pump:						30		(230c)
boiler with a fan-assisted flue						45		(230e)
Total electricity for the above, kWh/year		sum	of (230a).	(230g) =			75	(231)
Electricity for lighting							274.03	(232)
12a. CO2 emissions – Individual heating system	s including m	nicro-CHF)					
	Energy kWh/yea	r		Emiss kg CO	ion fac 2/kWh	tor	Emissions kg CO2/yea	
Space heating (main system 1)	(211) x			0.2	16	=	668.73	(261)
Space heating (secondary)	(215) x			0.5	19	=	0	(263)
Water heating	(219) x			0.2	16	=	451.52	(264)
Space and water heating	(261) + (262) + (263) + ((264) =				1120.25	(265)
Electricity for pumps, fans and electric keep-hot	(231) x			0.5	19	=	38.93	(267)
Electricity for lighting	(232) x			0.5	19	=	142.22	(268)

TER =

(273)

21.53

			User [Details:						
Assessor Name:	Neil Inghar	n		Strom	a Num	ber:		STRO	002943	
Software Name:	Stroma FS			Softwa	are Ve	rsion:		Versio	n: 1.0.1.9	
			Property	Address	: Flat 2					
Address :	Flat 2, 16, R	ochester Mew								
Overall dwelling dime			-,	- ,						
<u> </u>			Are	a(m²)		Av. He	eight(m)		Volume(m	3)
Ground floor				36.98	(1a) x		2.8	(2a) =	243.54	, (3a)
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1e)+(1n)	36.98	(4)			_		
Dwelling volume			<u> </u>		(3a)+(3b)+(3c)+(3c	d)+(3e)+	(3n) =	243.54	(5)
2. Ventilation rate:										
2. Voltalation rate.	main heating	second heating		other		total			m³ per hou	ır
Number of chimneys	0	+ 0	+ [0] = [0	x	40 =	0	(6a)
Number of open flues	0	+ 0	= +	0		0	x	20 =	0	(6b)
Number of intermittent fa	ans					3	x	10 =	30	(7a)
Number of passive vents	5				F	0	×	10 =	0	(7b)
Number of flueless gas f	ires				F	0	x	40 =	0	 (7c)
					L					
								Air ch	anges per ho	our
Infiltration due to chimne	ys, flues and fa	ans = $(6a)+(6b)$	+(7a)+(7b)+	(7c) =		30		÷ (5) =	0.12	(8)
If a pressurisation test has b	been carried out or	is intended, proc	eed to (17),	otherwise (continue fr	rom (9) to	(16)			
Number of storeys in t	he dwelling (ns	5)							0	(9)
Additional infiltration							[(9))-1]x0.1 =	0	(10)
Structural infiltration: 0	0.25 for steel or	timber frame	or 0.35 fo	r masoni	ry consti	ruction			0	(11)
if both types of wall are p deducting areas of openi			to the grea	ter wall are	a (after					
If suspended wooden	floor, enter 0.2	(unsealed) or	0.1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, en	nter 0.05, else e	enter 0							0	(13)
Percentage of window	s and doors dr	aught stripped							0	(14)
Window infiltration				0.25 - [0.2	2 x (14) ÷ 1	00] =			0	(15)
Infiltration rate				(8) + (10)	+ (11) + (1	12) + (13)	+ (15) =		0	(16)
Air permeability value,	q50, expresse	d in cubic met	res per ho	our per s	quare m	etre of e	envelope	area	5	(17)
If based on air permeabi	lity value, then	$(18) = [(17) \div 20]$	+(8), otherw	rise (18) =	(16)				0.37	(18)
Air permeability value applie	es if a pressurisatio	on test has been o	done or a de	gree air pe	rmeability	is being u	ised			
Number of sides sheltered	ed								3	(19)
Shelter factor				(20) = 1 -	[0.075 x (′	19)] =			0.78	(20)
Infiltration rate incorpora	ting shelter fac	tor		(21) = (18) x (20) =				0.29	(21)
Infiltration rate modified	for monthly win	d speed	_			,			•	
Jan Feb	Mar Apr	May Jur	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp	peed from Table	e 7								
(22)m= 5.1 5	4.9 4.4	4.3 3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Easter (22a) (2	(2)m · 4									
Wind Factor $(22a)m = (2a)m =$. <u>4</u>	1.00 0.05	0.05	T 0.02	 	T	T	T	1	

1.1

1.08

0.95

0.95

0.92

1.08

1.12

1.18

1.23

(22a)m=

1.27

1.25

Adjusted infiltra	ation rate (a	allowin	g for sh	elter an	d wind s	peed) =	(21a) x	(22a)m					
0.37	0.36	0.35	0.32	0.31	0.27	0.27	0.27	0.29	0.31	0.33	0.34		
Calculate effec		•	ate for ti	he appli	cable ca	se			!			·	
If mechanica			alia NI (Or	0b) (00-	·		VIC)\		\ (00-\			0	(23a)
If exhaust air he		•		, ,	,	. ,		•) = (23a)			0	(23b)
If balanced with		-	-	_						-		0	(23c)
a) If balance		-	ı		i	- ` ` 	, ``	í `	, 		<u>`</u>	÷ 100] 1	(0.4-)
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If balance					ı —	- 	, ``	ŕ	r ´ `		ı	1	(5.41)
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If whole h				•					F (00h	`			
	$0.5 \times (2)$	 -	<u> </u>	, ,		· ` `	r``	ŕ	· ` ·	<u> </u>	1 0	1	(24c)
(24c)m= 0	<u> </u>	0	0	0		0	0	0	0	0	0		(240)
d) If natural if (22b)n	ventilation on the second ventilation of the second ventilation ventilation of the second ventilation of the second ventilation vent			•	•				0.5]			_	
(24d)m= 0.57	0.57	0.56	0.55	0.55	0.54	0.54	0.54	0.54	0.55	0.55	0.56		(24d)
Effective air	change rat	te - ent	er (24a)	or (24b	o) or (24	c) or (24	d) in bo	x (25)	-	-			
(25)m= 0.57	0.57	0.56	0.55	0.55	0.54	0.54	0.54	0.54	0.55	0.55	0.56		(25)
3. Heat losse	s and heat	loss na	aramete	ar.									
ELEMENT	Gross	(Openin	gs	Net Ar		U-val W/m2		A X U (W/ł	()	k-value kJ/m²-ł		A X k kJ/K
Windows Type	area (m	i-)	111	_	A ,r		۷۷/۱۱۱2 +(1.4)/[1]/		`	\ <u>\</u>	KJ/III-iI	`	
					5.6	_			7.42				(27)
Windows Type					8.12	_	/[1/(1.4)+		10.77	_			(27)
Windows Type					1.96		/[1/(1.4)+		2.6	_			(27)
Windows Type	9 4				2.8	x1	/[1/(1.4)+	0.04] =	3.71	╛,			(27)
Floor					86.98	3 X	0.13	=	11.3074	<u> </u>		ᆜ	(28)
Walls Type1	81.48		20.44	<u> </u>	61.04	X	0.18	=	10.99				(29)
Walls Type2	19.88		0		19.88	3 X	0.15	=	3.08				(29)
Roof	34.85		0		34.85	, X	0.13		4.53				(30)
Total area of e	lements, m	1 ²			223.1	9							(31)
Party wall					13.44	X	0		0				(32)
Party ceiling					52.13	3						7 F	(32b)
Internal wall **					136.6	4				Ţ		ī	(32c)
* for windows and	roof windows	s, use eff	ective wii	ndow U-va	alue calcul	ated using	formula 1	/[(1/U-valu	ıe)+0.04] a	ב s given in	paragraph	 n 3.2	
** include the area				s and par	titions								
Fabric heat los		,	J)				(26)(30)) + (32) =				57	(33)
Heat capacity	,	,						((28).	(30) + (32	2) + (32a).	(32e) =	15090.8	(34)
Thermal mass	•	•		•					tive Value:			250	(35)
For design assess can be used instead				construct	ion are no	t known pr	ecisely the	e indicative	e values of	TMP in Ta	able 1f		
Thermal bridge				ısina Ar	pendix I	<						6.69	(36)
if details of therma	,	•		• .	•	•						L 0.09	(00)
			(-0)		,								

Total fabric heat loss calculated monthly Ventilation heat loss calculated monthly (38)m = (33) + (56) = (53)m × (5) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (38)m = (37) × (38
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
(38) (38) (38) (35) (3
Heat transfer coefficient, W/K (39)m= 109.34 109.13 108.93 107.94 107.76 106.91 106.91 106.76 107.24 107.76 108.13 108.52 **Nerage = Sum(39)v/12= 107.94 (39)** Heat loss parameter (HLP), W/m²K (40)m= 1.26 1.25 1.25 1.24 1.24 1.23 1.23 1.23 1.23 1.23 1.24 1.24 1.25 **Average = Sum(40)v/12= 1.24 (40)** Number of days in month (Table 1a) **Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (41)m= 31 28 31 30 31 30 31 30 31 31 30 31 30 31 30 31 30 31 (41)** **Assumed occupancy, N if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9)** if TFA £ 13.9, N = 1 Annual average hot water usage in litres per day Vd, average = (25 x N) + 36 (25 x
(39)me
Average = Sum(39),; /12= 107.94 (39) Heat loss parameter (HLP), W/m²K (40)m = (39)m ÷ (4) (40)m = 1.26 1.25 1.25 1.24 1.24 1.24 1.23 1.23 1.23 1.23 1.24 1.24 1.25 Average = Sum(40),; /12= 1.24 (40) Number of days in month (Table 1a) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (41)m = 31 28 31 30 31 30 31 31 30 31 31 30 31 30 31 (41) 4. Water heating energy requirement: **Whi/year** Assumed occupancy, N 2.58 (42) if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) if TFA £ 13.9, N = 1 Annual average hot water usage in litres per day Vd,average = (25 x N) + 36 (43) Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Hot water usege in litres per day for each month Vd,m = factor from Table 1c x (43) (44)m = 105.08 101.26 97.44 93.61 89.79 85.97 89.79 93.61 97.44 101.26 105.08 Total = Sum(44)1 = 1146.3 (44) Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d) (45)m = 155.83 136.29 140.64 122.61 117.65 101.52 94.07 107.95 109.24 127.31 138.97 150.91 Total = Sum(45)1 = 1502.98 (45) If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)
(40)m=
Average = Sum(40)12/12= 1.24 (40)
Number of days in month (Table 1a) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
4. Water heating energy requirement: KWh/year:
4. Water heating energy requirement: Assumed occupancy, N if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) if TFA £ 13.9, N = 1 Annual average hot water usage in litres per day Vd, average = (25 x N) + 36 Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target or not more that 125 litres per person per day (all water use, hot and cold) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43) (44)m= 105.08 101.26 97.44 93.61 89.79 85.97 85.97 89.79 93.61 97.44 101.26 105.08 Total = Sum(44)1
Assumed occupancy, N if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) if TFA £ 13.9, N = 1 Annual average hot water usage in litres per day Vd, average = (25 x N) + 36 Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Hot water usage in litres per day for each month Vd, m = factor from Table 1c x (43) (44)m= 105.08 101.26 97.44 93.61 89.79 85.97 85.97 89.79 93.61 97.44 101.26 105.08 Total = Sum(44) ₁₁₂ = 1146.3 (44) Energy content of hot water used - calculated monthly = 4.190 x Vd, m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d) (45)m= 155.83 136.29 140.64 122.61 117.65 101.52 94.07 107.95 109.24 127.31 138.97 150.91 Total = Sum(45) ₁₁₂ = 1502.98 (45) If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)
Assumed occupancy, N if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) if TFA £ 13.9, N = 1 Annual average hot water usage in litres per day Vd,average = (25 x N) + 36 Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target or not more that 125 litres per person per day (all water use, hot and cold) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43) (44)m= 105.08 101.26 97.44 93.61 89.79 85.97 85.97 89.79 93.61 97.44 101.26 105.08 Total = Sum(44) ₁₁₂ 1146.3 (44) Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d) (45)m= 155.83 136.29 140.64 122.61 117.65 101.52 94.07 107.95 109.24 127.31 138.97 150.91 Total = Sum(45) ₁₁₂ 1502.98 (45) If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)
if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) if TFA £ 13.9, N = 1 Annual average hot water usage in litres per day Vd,average = (25 x N) + 36 Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43) (44)m= 105.08 101.26 97.44 93.61 89.79 85.97 85.97 89.79 93.61 97.44 101.26 105.08 Total = Sum(44) ₁₁₂ = 1146.3 (44) Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d) (45)m= 155.83 136.29 140.64 122.61 117.65 101.52 94.07 107.95 109.24 127.31 138.97 150.91 Total = Sum(45) ₁₁₂ = 1502.98 (45) If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) (46)m= 23.37 20.44 21.1 18.39 17.65 15.23 14.11 16.19 16.39 19.1 20.85 22.64
if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) if TFA £ 13.9, N = 1 Annual average hot water usage in litres per day Vd,average = (25 x N) + 36 Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43) (44)m= 105.08 101.26 97.44 93.61 89.79 85.97 85.97 89.79 93.61 97.44 101.26 105.08 Total = Sum(44) ₁₁₂ = 1146.3 (44) Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d) (45)m= 155.83 136.29 140.64 122.61 117.65 101.52 94.07 107.95 109.24 127.31 138.97 150.91 Total = Sum(45) ₁₁₂ = 1502.98 (45) If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) (46)m= 23.37 20.44 21.1 18.39 17.65 15.23 14.11 16.19 16.39 19.1 20.85 22.64
if TFA £ 13.9, N = 1 Annual average hot water usage in litres per day Vd, average = (25 x N) + 36 Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Hot water usage in litres per day for each month Vd, m = factor from Table 1c x (43) (44)m= 105.08 101.26 97.44 93.61 89.79 85.97 85.97 89.79 93.61 97.44 101.26 105.08 Total = Sum(44) 112 = 1146.3 (44) Energy content of hot water used - calculated monthly = 4.190 x Vd, m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d) (45)m= 155.83 136.29 140.64 122.61 117.65 101.52 94.07 107.95 109.24 127.31 138.97 150.91 Total = Sum(45) 112 = 1502.98 (45) If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)
Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43) (44)m= 105.08 101.26 97.44 93.61 89.79 85.97 85.97 89.79 93.61 97.44 101.26 105.08 Total = Sum(44) ₁₁₂ = 1146.3 (44) Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d) (45)m= 155.83 136.29 140.64 122.61 117.65 101.52 94.07 107.95 109.24 127.31 138.97 150.91 Total = Sum(45) ₁₁₂ = 1502.98 (45) If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) (46)m= 23.37 20.44 21.1 18.39 17.65 15.23 14.11 16.19 16.39 19.1 20.85 22.64 (46)
Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43) (44)m= 105.08 101.26 97.44 93.61 89.79 85.97 85.97 89.79 93.61 97.44 101.26 105.08 Total = Sum(44) ₁₁₂ = 1146.3 (44) Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d) (45)m= 155.83 136.29 140.64 122.61 117.65 101.52 94.07 107.95 109.24 127.31 138.97 150.91 Total = Sum(45) ₁₁₂ = 1502.98 (45) If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) (46)m= 23.37 20.44 21.1 18.39 17.65 15.23 14.11 16.19 16.39 19.1 20.85 22.64 (46)
Total = Sum(44) ₁₁₂ = 1146.3 (44) Energy content of hot water used - calculated monthly = $4.190 \times Vd$, $m \times nm \times DTm / 3600 \times Wh/month$ (see Tables 1b, 1c, 1d) (45)m= 155.83 136.29 140.64 122.61 117.65 101.52 94.07 107.95 109.24 127.31 138.97 150.91 Total = Sum(45) ₁₁₂ = 1502.98 (45) If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) (46)m= 23.37 20.44 21.1 18.39 17.65 15.23 14.11 16.19 16.39 19.1 20.85 22.64 (46)
Energy content of hot water used - calculated monthly = $4.190 \times Vd$, $m \times nm \times DTm / 3600 \times Wh/month$ (see Tables 1b, 1c, 1d) (45)m= 155.83 136.29 140.64 122.61 117.65 101.52 94.07 107.95 109.24 127.31 138.97 150.91 Total = Sum(45) ₁₁₂ = 1502.98 (45) (46)m= 23.37 20.44 21.1 18.39 17.65 15.23 14.11 16.19 16.39 19.1 20.85 22.64 (46)
(45)m= 155.83 136.29 140.64 122.61 117.65 101.52 94.07 107.95 109.24 127.31 138.97 150.91 Total = Sum(45) ₁₁₂ = 1502.98 (45) (46)m= 23.37 20.44 21.1 18.39 17.65 15.23 14.11 16.19 16.39 19.1 20.85 22.64 (46)
Total = Sum(45) ₁₁₂ = 1502.98 (45) If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) $(46)m = 23.37 20.44 21.1 18.39 17.65 15.23 14.11 16.19 16.39 19.1 20.85 22.64 $ (46)
If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) (46)m= 23.37 20.44 21.1 18.39 17.65 15.23 14.11 16.19 16.39 19.1 20.85 22.64 (46)
(46)m= 23.37 20.44 21.1 18.39 17.65 15.23 14.11 16.19 16.39 19.1 20.85 22.64 (46)
Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)
If community heating and no tank in dwelling, enter 110 litres in (47)
Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)
Water storage loss:
a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)
Temperature factor from Table 2b Energy lost from water storage, kWh/year $(48) \times (49) = 0$ (50)
Energy lost from water storage, kWh/year (48) x (49) = 0 b) If manufacturer's declared cylinder loss factor is not known:
Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51)
If community heating see section 4.3
Volume factor from Table 2a 0 (52)
Temperature factor from Table 2b 0 (53)
Energy lost from water storage, kWh/year $(47) \times (51) \times (52) \times (53) = 0$ (54) Enter (50) or (54) in (55)
Enter (50) or (54) in (55) 0 (55)

vvator sto	rage loss ca	culated f	for each	month			((56)m = (55) × (41)ı	m				
(56)m=	0 0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinder co	ontains dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	i lix H	
(57)m=	0 0	0	0	0	0	0	0	0	0	0	0		(57)
Primary c	ircuit loss (aı	nnual) fro	om Table	3							0		(58)
•	ircuit loss ca			,	•	` '	` '						
` —	ed by factor f	rom Tab	le H5 if t	here is s	solar wat	er heatii	ng and a	cylinde	r thermo	stat)		•	
(59)m=	0 0	0	0	0	0	0	0	0	0	0	0		(59)
Combi los	s calculated	for each	month ((61)m =	(60) ÷ 36	65 × (41)	m						
(61)m= 50	0.96 46.03	49.65	46.17	45.76	42.4	43.81	45.76	46.17	49.65	49.32	50.96		(61)
Total heat	t required for	water h	eating ca	alculated	for eacl	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m= 20	06.79 182.31	190.29	168.78	163.4	143.92	137.88	153.71	155.41	176.96	188.28	201.87		(62)
Solar DHW	input calculated	using App	endix G o	Appendix	H (negati	ve quantity) (enter '0	if no sola	r contribut	ion to wate	er heating)	•	
(add addi	tional lines if	FGHRS	and/or \	VWHRS	applies	, see Ap	pendix (3)		_	_		
(63)m=	0 0	0	0	0	0	0	0	0	0	0	0		(63)
Output fro	om water hea	iter											
(64)m= 20	06.79 182.31	190.29	168.78	163.4	143.92	137.88	153.71	155.41	176.96	188.28	201.87		
							Outp	out from wa	ater heate	r (annual)₁	12	2069.6	(64)
Heat gain	s from water	heating,	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 x	((46)m	+ (57)m	+ (59)m]	
(65)m= 64	4.55 56.82	59.17	52.31	50.56	44.35	42.23	47.33	47.86	54.74	58.54	62.92		(65)
include	(57)m in cal	culation of	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Intern	nal gains (see	e Table 5	and 5a	١.									
Metabolic	gains (Table).									
		e 5), Wat	ts).									
'	Jan Feb	e 5), Wat Mar	ts Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
—	Jan Feb 29.1 129.1				Jun 129.1	Jul 129.1	Aug 129.1	Sep 129.1	Oct	Nov 129.1	Dec 129.1		(66)
(66)m= 12		Mar 129.1	Apr 129.1	May 129.1	129.1	129.1	129.1	129.1			-		(66)
(66)m= 12 Lighting g	29.1 129.1	Mar 129.1	Apr 129.1	May 129.1	129.1	129.1	129.1	129.1			-		(66) (67)
(66)m= 12 Lighting g (67)m= 20	29.1 129.1 ains (calcula	Mar 129.1 ated in Ap 15.03	Apr 129.1 opendix 11.38	May 129.1 L, equat 8.51	129.1 ion L9 o	129.1 r L9a), a 7.76	129.1 Iso see	129.1 Table 5	129.1 17.19	129.1	129.1		` ,
(66)m= 1: Lighting g (67)m= 20 Appliance	29.1 129.1 pains (calcula 0.81 18.48	Mar 129.1 ated in Ap 15.03	Apr 129.1 opendix 11.38	May 129.1 L, equat 8.51	129.1 ion L9 o	129.1 r L9a), a 7.76	129.1 Iso see	129.1 Table 5	129.1 17.19	129.1	129.1		` ,
(66)m= 12 Lighting g (67)m= 20 Appliance (68)m= 23	29.1 129.1 ains (calcula 0.81 18.48 es gains (calc	Mar 129.1 tted in Ap 15.03 culated in 229.73	Apr 129.1 opendix 11.38 Append 216.74	May 129.1 L, equat 8.51 dix L, eq 200.33	129.1 ion L9 of 7.18 uation L 184.92	129.1 r L9a), a 7.76 13 or L1 174.62	129.1 Iso see 10.09 3a), also	129.1 Table 5 13.54 see Tal 178.3	129.1 17.19 ble 5 191.29	129.1 20.06	129.1 21.39		(67)
(66)m= 1: Lighting g (67)m= 20 Appliance (68)m= 23 Cooking g	29.1 129.1 rains (calcula 0.81 18.48 res gains (calcula 33.41 235.83	Mar 129.1 tted in Ap 15.03 culated in 229.73	Apr 129.1 opendix 11.38 Append 216.74	May 129.1 L, equat 8.51 dix L, eq 200.33	129.1 ion L9 of 7.18 uation L 184.92	129.1 r L9a), a 7.76 13 or L1 174.62	129.1 Iso see 10.09 3a), also	129.1 Table 5 13.54 see Tal 178.3	129.1 17.19 ble 5 191.29	129.1 20.06	129.1 21.39		(67)
(66)m= 1: Lighting g (67)m= 20 Appliance (68)m= 23 Cooking g (69)m= 38	29.1 129.1 pains (calcula 0.81 18.48 ps gains (calcula 0.3.41 235.83 gains (calcula 5.91 35.91	Mar 129.1 Ited in Ap 15.03 culated in 229.73 ated in A 35.91	Apr 129.1 opendix 11.38 Appendix 216.74 opendix 35.91	May 129.1 L, equat 8.51 dix L, eq 200.33 L, equat	129.1 ion L9 of 7.18 uation L 184.92 tion L15	129.1 r L9a), a 7.76 13 or L1 174.62 or L15a)	129.1 lso see 10.09 3a), also 172.2	129.1 Table 5 13.54 see Talle	129.1 17.19 ble 5 191.29	20.06 207.7	129.1 21.39 223.11		(67) (68)
(66)m= 1: Lighting g (67)m= 20 Appliance (68)m= 23 Cooking g (69)m= 38	29.1 129.1 rains (calcula 0.81 18.48 res gains (calcula 33.41 235.83 res gains (calcula	Mar 129.1 Ited in Ap 15.03 culated in 229.73 ated in A 35.91	Apr 129.1 opendix 11.38 Appendix 216.74 opendix 35.91	May 129.1 L, equat 8.51 dix L, eq 200.33 L, equat	129.1 ion L9 of 7.18 uation L 184.92 tion L15	129.1 r L9a), a 7.76 13 or L1 174.62 or L15a)	129.1 lso see 10.09 3a), also 172.2	129.1 Table 5 13.54 see Talle	129.1 17.19 ble 5 191.29	20.06 207.7	129.1 21.39 223.11		(67) (68)
(66)m= 1.2 Lighting g (67)m= 20 Appliance (68)m= 23 Cooking g (69)m= 30 Pumps ar (70)m=	29.1 129.1 rains (calcula 0.81 18.48 rs gains (calcula 33.41 235.83 rgains (calcula 5.91 35.91 rnd fans gains	Mar 129.1 Ited in Ap 15.03 culated in 229.73 ated in A 35.91 s (Table §	Apr 129.1 opendix 11.38 Append 216.74 opendix 35.91 5a)	May 129.1 L, equat 8.51 dix L, eq 200.33 L, equat 35.91	129.1 ion L9 of 7.18 uation L 184.92 tion L15 35.91	129.1 r L9a), a 7.76 13 or L1 174.62 or L15a) 35.91	129.1 lso see 10.09 3a), also 172.2 , also se 35.91	129.1 Table 5 13.54 see Tal 178.3 ee Table 35.91	129.1 17.19 ble 5 191.29 5 35.91	20.06 207.7 35.91	21.39 223.11 35.91		(67) (68) (69)
Lighting g (67)m= 20 Appliance (68)m= 23 Cooking g (69)m= 30 Pumps ar (70)m= Losses e.	29.1 129.1 rains (calcula 0.81 18.48 res gains (calcula 33.41 235.83 regains (calcula 5.91 35.91 red fans gains	Mar 129.1 Ited in Ap 15.03 culated in 229.73 ated in A 35.91 s (Table §	Apr 129.1 opendix 11.38 Append 216.74 opendix 35.91 5a)	May 129.1 L, equat 8.51 dix L, eq 200.33 L, equat 35.91	129.1 ion L9 of 7.18 uation L 184.92 tion L15 35.91	129.1 r L9a), a 7.76 13 or L1 174.62 or L15a) 35.91	129.1 lso see 10.09 3a), also 172.2 , also se 35.91	129.1 Table 5 13.54 see Tal 178.3 ee Table 35.91	129.1 17.19 ble 5 191.29 5 35.91	20.06 207.7 35.91	21.39 223.11 35.91		(67) (68) (69)
(66)m= 1: Lighting g (67)m= 20 Appliance (68)m= 23 Cooking g (69)m= 3: Pumps ar (70)m= Losses e. (71)m= -10	29.1 129.1 pains (calcular) 0.81 18.48 es gains (calcular) 33.41 235.83 gains (calcular) 5.91 35.91 and fans gains 3 3 g. evaporation 03.28 -103.28	Mar 129.1 Ited in Ap 15.03 culated in Ap 229.73 ated in Ap 35.91 c (Table 5 3 on (negar	Apr 129.1 opendix 11.38 n Appendix 216.74 ppendix 35.91 5a) 3	May 129.1 L, equat 8.51 dix L, eq 200.33 L, equat 35.91 3 es) (Tab	129.1 ion L9 of 7.18 uation L 184.92 tion L15 35.91 3	129.1 r L9a), a 7.76 13 or L1 174.62 or L15a) 35.91	129.1 lso see 10.09 3a), also 172.2 , also se 35.91	129.1 Table 5 13.54 see Tal 178.3 ee Table 35.91	17.19 ble 5 191.29 5 35.91	20.06 207.7 35.91	21.39 223.11 35.91		(67) (68) (69) (70)
Lighting g (67)m= 20 Appliance (68)m= 23 Cooking g (69)m= 30 Pumps ar (70)m= Losses e. (71)m= -10 Water hea	29.1 129.1 ains (calcula 0.81 18.48 as gains (calcula 3.41 235.83 gains (calcula 5.91 35.91 and fans gains 3 3 g. evaporatio	Mar 129.1 Ited in Ap 15.03 culated in Ap 229.73 ated in Ap 35.91 c (Table 5 3 on (negar	Apr 129.1 opendix 11.38 n Appendix 216.74 ppendix 35.91 5a) 3	May 129.1 L, equat 8.51 dix L, eq 200.33 L, equat 35.91 3 es) (Tab	129.1 ion L9 of 7.18 uation L 184.92 tion L15 35.91 3	129.1 r L9a), a 7.76 13 or L1 174.62 or L15a) 35.91	129.1 lso see 10.09 3a), also 172.2 , also se 35.91	129.1 Table 5 13.54 see Tal 178.3 ee Table 35.91	17.19 ble 5 191.29 5 35.91	20.06 207.7 35.91	21.39 223.11 35.91		(67) (68) (69) (70)
(66)m= 1: Lighting g (67)m= 20 Appliance (68)m= 23 Cooking g (69)m= 3: Pumps ar (70)m= Losses e. (71)m= -10 Water hea (72)m= 80	29.1 129.1 rains (calcula 0.81 18.48 rs gains (calcula 33.41 235.83 rgains (calcula 5.91 35.91 rnd fans gains 3 3 rg. evaporatio 03.28 -103.28 rating gains (**	Mar 129.1 Ited in Ap 15.03 culated in Ap 229.73 ated in Ap 35.91 c (Table 5 3 on (negation of the color) -103.28 Table 5) 79.54	Apr 129.1 opendix 11.38 Append 216.74 ppendix 35.91 5a) 3 tive valu	May 129.1 L, equat 8.51 dix L, eq 200.33 L, equat 35.91 3 es) (Tab	129.1 ion L9 of 7.18 uation L 184.92 tion L15 35.91 3 ole 5) -103.28	129.1 r L9a), a 7.76 13 or L1 174.62 or L15a) 35.91	129.1 lso see 10.09 3a), also 172.2 , also se 35.91 3	129.1 Table 5 13.54 see Tal 178.3 ee Table 35.91 3 -103.28	129.1 17.19 ble 5 191.29 5 35.91 3 -103.28	20.06 207.7 35.91 3 -103.28	129.1 21.39 223.11 35.91 3 -103.28		(67) (68) (69) (70) (71)
(66)m= 1: Lighting g (67)m= 20 Appliance (68)m= 23 Cooking g (69)m= 3: Pumps ar (70)m=	29.1 129.1 ains (calcula 0.81 18.48 as gains (calcula 3.41 235.83 gains (calcula 5.91 35.91 ad fans gains 3 3 g. evaporatio 03.28 -103.28 ating gains (* 6.76 84.56	Mar 129.1 Ited in Ap 15.03 culated in Ap 229.73 ated in Ap 35.91 c (Table 5 3 on (negation of the color) -103.28 Table 5) 79.54	Apr 129.1 opendix 11.38 Append 216.74 ppendix 35.91 5a) 3 tive valu	May 129.1 L, equat 8.51 dix L, eq 200.33 L, equat 35.91 3 es) (Tab	129.1 ion L9 of 7.18 uation L 184.92 tion L15 35.91 3 ole 5) -103.28	129.1 r L9a), a 7.76 13 or L1 174.62 or L15a) 35.91 3	129.1 lso see 10.09 3a), also 172.2 , also se 35.91 3	129.1 Table 5 13.54 see Tal 178.3 ee Table 35.91 3 -103.28	129.1 17.19 ble 5 191.29 5 35.91 3 -103.28	20.06 207.7 35.91 3 -103.28	129.1 21.39 223.11 35.91 3 -103.28		(67) (68) (69) (70) (71)

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Factor Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Southeast 0.9x	0.77	x	5.6	x	36.79	x	0.63	х	0.7	=	62.97	(77)
Southeast 0.9x	0.77	x	8.12	x	36.79	x	0.63	x	0.7	=	91.31	(77)
Southeast 0.9x	0.77	x	5.6	x	62.67	x	0.63	x	0.7	=	107.26	(77)
Southeast 0.9x	0.77	x	8.12	x	62.67	x	0.63	x	0.7	=	155.53	(77)
Southeast 0.9x	0.77	x	5.6	x	85.75	x	0.63	x	0.7	=	146.76	(77)
Southeast 0.9x	0.77	x	8.12	x	85.75	x	0.63	x	0.7	=	212.8	(77)
Southeast 0.9x	0.77	x	5.6	x	106.25	x	0.63	x	0.7	=	181.84	(77)
Southeast 0.9x	0.77	x	8.12	x	106.25	x	0.63	x	0.7	=	263.67	(77)
Southeast 0.9x	0.77	x	5.6	x	119.01	x	0.63	x	0.7	=	203.68	(77)
Southeast 0.9x	0.77	x	8.12	x	119.01	x	0.63	x	0.7	=	295.33	(77)
Southeast 0.9x	0.77	X	5.6	x	118.15	x	0.63	X	0.7	=	202.21	(77)
Southeast 0.9x	0.77	x	8.12	x	118.15	x	0.63	x	0.7	=	293.2	(77)
Southeast 0.9x	0.77	x	5.6	x	113.91	x	0.63	x	0.7	=	194.95	(77)
Southeast 0.9x	0.77	x	8.12	x	113.91	x	0.63	x	0.7	=	282.67	(77)
Southeast 0.9x	0.77	x	5.6	x	104.39	x	0.63	х	0.7	=	178.66	(77)
Southeast 0.9x	0.77	x	8.12	x	104.39	x	0.63	х	0.7	=	259.05	(77)
Southeast 0.9x	0.77	x	5.6	x	92.85	x	0.63	х	0.7	=	158.91	(77)
Southeast 0.9x	0.77	x	8.12	x	92.85	x	0.63	х	0.7	=	230.42	(77)
Southeast 0.9x	0.77	x	5.6	x	69.27	x	0.63	х	0.7	=	118.55	(77)
Southeast 0.9x	0.77	x	8.12	x	69.27	x	0.63	х	0.7	=	171.89	(77)
Southeast 0.9x	0.77	x	5.6	x	44.07	x	0.63	х	0.7	=	75.42	(77)
Southeast 0.9x	0.77	x	8.12	x	44.07	x	0.63	х	0.7	=	109.36	(77)
Southeast 0.9x	0.77	x	5.6	x	31.49	x	0.63	x	0.7	=	53.89	(77)
Southeast 0.9x	0.77	x	8.12	x	31.49	x	0.63	x	0.7	=	78.14	(77)
Southwest _{0.9x}	0.77	x	1.96	x	36.79]	0.63	x	0.7	=	44.08	(79)
Southwest _{0.9x}	0.77	x	2.8	x	36.79]	0.63	x	0.7	=	31.49	(79)
Southwest _{0.9x}	0.77	x	1.96	x	62.67]	0.63	x	0.7	=	75.08	(79)
Southwest _{0.9x}	0.77	x	2.8	x	62.67]	0.63	x	0.7	=	53.63	(79)
Southwest _{0.9x}	0.77	x	1.96	x	85.75]	0.63	x	0.7	=	102.73	(79)
Southwest _{0.9x}	0.77	x	2.8	x	85.75]	0.63	x	0.7	=	73.38	(79)
Southwest _{0.9x}	0.77	x	1.96	x	106.25]	0.63	x	0.7	=	127.29	(79)
Southwest _{0.9x}	0.77	x	2.8	x	106.25]	0.63	x	0.7	=	90.92	(79)
Southwest _{0.9x}	0.77	x	1.96	x	119.01]	0.63	x	0.7	=	142.58	(79)
Southwest _{0.9x}	0.77	x	2.8	x	119.01]	0.63	x	0.7	=	101.84	(79)
Southwest _{0.9x}	0.77	x	1.96	x	118.15]	0.63	х	0.7	=	141.54	(79)
Southwest _{0.9x}	0.77	X	2.8	x	118.15]	0.63	х	0.7	=	101.1	(79)
Southwest _{0.9x}	0.77	X	1.96	x	113.91]	0.63	х	0.7] =	136.46	(79)
Southwest _{0.9x}	0.77	X	2.8	x	113.91]	0.63	x	0.7] =	97.47	(79)
Southwest _{0.9x}	0.77	X	1.96	x	104.39]	0.63	x	0.7] =	125.06	(79)
				-		-		•		-		_

Southwe	est _{0.9x}	0.77	X	2.8	3	x	1(04.39] [0.63	x	0.7	=	89.33	(79)
Southwe	est _{0.9x}	0.77	X	1.9	16	x	9	2.85] [0.63	x [0.7	=	111.24	(79)
Southwe	est _{0.9x}	0.77	X	2.8	3	x	9	2.85			0.63	x	0.7	=	79.45	(79)
Southwe	est _{0.9x}	0.77	X	1.9	16	x	6	9.27] [0.63	x	0.7	=	82.98	(79)
Southwe	est _{0.9x}	0.77	X	2.8	3	x	6	9.27] [0.63	x [0.7	=	59.27	(79)
Southwe	est _{0.9x}	0.77	X	1.9	16	x	4	4.07			0.63	x	0.7	=	52.8	(79)
Southwe	est _{0.9x}	0.77	X	2.8	3	x	4	4.07			0.63	x	0.7	=	37.71	(79)
Southwe	est _{0.9x}	0.77	x	1.9	16	x	3	1.49			0.63	x	0.7	=	37.72	(79)
Southwe	est _{0.9x}	0.77	X	2.8	3	x	3	1.49			0.63	x	0.7	=	26.94	(79)
	_															
Solar g	ains in	watts, ca	alculated	for eac	n month				(83)m	ı = Sı	um(74)m .	(82)m				
(83)m=	229.84	391.5	535.67	663.73	743.43	73	88.05	711.56	652	2.1	580.02	432.7	275.3	196.7		(83)
Total g	ains – i	nternal a	nd solar	(84)m =	(73)m -	+ (8	33)m	, watts					-			
(84)m=	635.56	795.11	924.7	1029.22	1084.95	10	56.49	1015.43	962.	.73	903.07	779.49	649.09	590.49		(84)
7. Mea	an inter	nal temp	erature	(heating	season)										
			eating p	`		,	area f	from Tab	ole 9,	Th	1 (°C)				21	(85)
•		•	ains for I			•			,		,					
ſ	Jan	Feb	Mar	Apr	May	È	Jun	Jul	Αι	ug	Sep	Oct	Nov	Dec		
(86)m=	1	0.99	0.96	0.91	0.79	0	0.62	0.46	0.5	5	0.74	0.94	0.99	1		(86)
Mean	interna	l temner	ature in l	living ar	22 T1 (fc	الم	w ste	ns 3 to 7	in T	ahle	9c)				l	
(87)m=	19.74	19.97	20.27	20.61	20.85	$\overline{}$	0.96	20.99	20.9	$\overline{}$	20.92	20.59	20.09	19.69		(87)
L						l			l							, ,
· r	19.87	19.88	eating p	erioas ir 19.89	19.89	_	eiiing 9.9	19.9	19.	\neg	12 (°C) 19.89	19.89	19.89	19.88		(88)
(88)m=	19.07	19.00	19.00	19.09	19.09	<u>'</u>	9.9	19.9	19.	.9	19.09	19.09	19.09	19.00		(00)
г		tor for g	ains for r		welling,	h2,ı	m (se	e Table	9a)						l	
(89)m=	0.99	0.98	0.95	0.88	0.73	0).52	0.35	0.3	9	0.65	0.91	0.98	1		(89)
Mean	interna	l temper	ature in t	the rest	of dwelli	ng	T2 (f	ollow ste	ps 3	to 7	in Tabl	e 9c)				
(90)m=	18.21	18.55	18.98	19.45	19.75	19	9.88	19.89	19.8	89	19.84	19.44	18.73	18.15		(90)
											f	LA = Livi	ng area ÷ (4) =	0.33	(91)
Mean	interna	l temper	ature (fo	r the wh	ole dwe	lling	a) = fl	_A × T1	+ (1 -	– fL	A) × T2					
(92)m=	18.71	19.02	19.41	19.83	20.11	_	0.23	20.26	20.2		20.19	19.81	19.18	18.66		(92)
Apply	adjustn	nent to t	he mean	internal	temper	atu	re fro	m Table	4e, \	whe	re appro	priate		!	l	
(93)m=	18.71	19.02	19.41	19.83	20.11	20	0.23	20.26	20.2	25	20.19	19.81	19.18	18.66		(93)
8. Spa	ice hea	ting requ	uirement													
				•		ed	at ste	ep 11 of	Table	e 9b	, so tha	t Ti,m=	(76)m an	d re-calc	culate	
the uti			or gains u			1	_		T .			_	T	I _		
	Jan	Feb	Mar	Apr	May	L	Jun	Jul	Αι	ug	Sep	Oct	Nov	Dec		
г	0.99	tor for g	ains, hm		0.74	_	\ F.F.	0.20	0.4	٦	0.67	0.01	1 0 00	0.00		(94)
(94)m=			0.95	0.88).55	0.38	0.4	-2	0.67	0.91	0.98	0.99		(34)
_	630.15	777.38	, W = (94 875.97	902.32	807.53	58	33.81	388.3	407.	33	607.4	708.56	636.82	586.77		(95)
` ′ L			rnal tem			<u> </u>		000.0	1 +07.	.50	557.7	, 55.55	1 000.02	000.77		(55)
(96)m=	4.3	4.9	6.5	8.9	11.7		4.6	16.6	16.	.4	14.1	10.6	7.1	4.2		(96)
L			an intern											<u> </u>		
Г		1540.67		1179.74	906.38)2.27	390.81	411.	·	653.31	992.95	1305.74	1568.84		(97)
L									Ь——	!	!		ļ.	<u> </u>	ı	

(98)m= 703.73 512.93	ement ic	r each n	nonth, k\	Wh/mont	th = 0.02	24 x [(97)	m – (95)m] x (4′	1)m			
(98)m= 703.73 512.93	394.32	199.74	73.54	0	0	0	0	211.59	481.62	730.66		
						Tota	l per year	(kWh/year) = Sum(9	8) _{15,912} =	3308.14	(98)
Space heating requi	rement in	kWh/m²	/year								38.03	(99)
9a. Energy requireme	nts – Ind	ividual h	eating sy	ystems i	ncluding	micro-C	HP)					
Space heating:	at from a	ooondor	/ournalo	montory	ovotom					Г		(201)
Fraction of space he Fraction of space he				memary	-	(202) = 1 -	- (201) =			L	0	(202)
Fraction of total heat		-	` ,			(204) = (20	, ,	(203)] =		L	1	(204)
Efficiency of main sp	_	-				(204) - (20	32) X [1	(200)] =		L	93.4	(206)
Efficiency of second		• .		a evetom	0/-					L	0	(208)
, , , , , , , , , , , , , , , , , , ,	1				i .	Δ	0	0-4	Mari			 ` ′
Jan Feb Space heating requi	Mar rement (c	Apr	May d above	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ear
703.73 512.93	394.32	199.74	73.54	0	0	0	0	211.59	481.62	730.66		
 211)m = {[(98)m x (2	_ 04)] + (21	L I0)m } x	100 ÷ (2	 206)	<u> </u>							(211)
753.46 549.18	422.19	213.85	78.74	0	0	0	0	226.54	515.66	782.29		` '
-	!					Tota	l (kWh/yea	ar) =Sum(2	211) _{15,1012}		3541.9	(211)
Space heating fuel (secondar	y), kWh/	month							_		
= {[(98)m x (201)] + (2	1	·		ı	<u> </u>							
(215)m= 0 0	0	0	0	0	0	0 Tota	0	0 ar) =Sum(2	0	0		7(045)
Notes booting						Tota	i (KVVII/yea	ai) =3uiii(2	13) _{15,1012}		0	(215)
Water heating												
Output from water he	ater (calc	ulated al	oove)									
Output from water he 206.79 182.31	ater (calc 190.29	ulated a	oove) 163.4	143.92	137.88	153.71	155.41	176.96	188.28	201.87		
206.79 182.31	190.29			143.92	137.88	153.71	155.41	176.96	188.28	201.87	80.3	(216)
206.79 182.31 Efficiency of water he	190.29			143.92	137.88	153.71	155.41	176.96 85.5	188.28 87.31	201.87	80.3	(216)
206.79 182.31 Efficiency of water he 217)m= 87.89 87.51 Fuel for water heating	190.29 ater 86.84	168.78 85.48 onth	163.4								80.3	
	190.29 ater 86.84	168.78 85.48 onth	163.4								80.3	
	190.29 ater 86.84 , kWh/mo 0 ÷ (217)	168.78 85.48 Onth	163.4 83.18	80.3	80.3	80.3	80.3	85.5	87.31	88	80.3	(217)
206.79 182.31 Efficiency of water he 217)m= 87.89 87.51 Fuel for water heating (219)m = (64)m x 10 (219)m= 235.28 208.33	190.29 ater 86.84 , kWh/mo 0 ÷ (217)	168.78 85.48 Onth	163.4 83.18	80.3	80.3	80.3	80.3	85.5 206.97 19a) ₁₁₂ =	87.31	229.39		(217)
206.79 182.31 Efficiency of water he 217)m= 87.89 87.51 Fuel for water heating 219)m = (64)m x 10 219)m= 235.28 208.33 Annual totals	190.29 ater 86.84 kWh/ma 0 ÷ (217) 219.11	85.48 onth m 197.45	83.18 196.44	80.3	80.3	80.3	80.3	85.5 206.97 19a) ₁₁₂ =	87.31	229.39	2444.49	(217
	190.29 ater 86.84 kWh/ma 0 ÷ (217) 219.11 ed, main	85.48 onth m 197.45	83.18 196.44	80.3	80.3	80.3	80.3	85.5 206.97 19a) ₁₁₂ =	87.31	229.39	2444.49 kWh/yea	(217
206.79 182.31 Efficiency of water he 217)m= 87.89 87.51 Fuel for water heating 219)m = (64)m x 10 219)m= 235.28 208.33 Annual totals Space heating fuel us Water heating fuel us	190.29 ater 86.84 1, kWh/mo 0 ÷ (217) 219.11 ed, main	85.48 onth m 197.45	163.4 83.18 196.44	80.3	80.3	80.3	80.3	85.5 206.97 19a) ₁₁₂ =	87.31	229.39	2444.49 kWh/yea 3541.9	(217
206.79 182.31 Efficiency of water he 217)m= 87.89 87.51 Fuel for water heating 219)m = (64)m x 10 219)m= 235.28 208.33 Annual totals Space heating fuel us Water heating fuel us	190.29 ater 86.84 1, kWh/mo 0 ÷ (217) 219.11 ed, main ed fans and	85.48 onth m 197.45	163.4 83.18 196.44	80.3	80.3	80.3	80.3	85.5 206.97 19a) ₁₁₂ =	87.31	229.39	2444.49 kWh/yea 3541.9	(217)
206.79 182.31 Efficiency of water he 217)m= 87.89 87.51 Fuel for water heating 219)m = (64)m x 10 219)m= 235.28 208.33 Annual totals Space heating fuel us Water heating fuel us Electricity for pumps,	190.29 ater 86.84 1, kWh/mo 0 ÷ (217) 219.11 ed, main ed fans and o:	85.48 onth m 197.45	163.4 83.18 196.44	80.3	80.3	80.3	80.3	85.5 206.97 19a) ₁₁₂ =	87.31	229.39	2444.49 kWh/yea 3541.9	(217) (219) r (230)
Efficiency of water he (217)m= 87.89 87.51 Fuel for water heating (219)m = (64)m x 10 (219)m= 235.28 208.33 Annual totals Space heating fuel us Water heating fuel us Electricity for pumps, central heating pump boiler with a fan-ass	190.29 ater 86.84 1, kWh/mc 0 ÷ (217) 219.11 ed, main ed fans and o: sted flue	85.48 onth m 197.45 system electric	163.4 83.18 196.44	80.3	80.3	80.3 191.42 Tota	80.3 193.53 I = Sum(2	85.5 206.97 19a) ₁₁₂ =	87.31 215.64 Wh/year	229.39	2444.49 kWh/yea 3541.9 2444.49	(217) (219) r (230)
Efficiency of water he (217)m= 87.89 87.51 Fuel for water heating (219)m = (64)m x 10 (219)m= 235.28 208.33 Annual totals Space heating fuel us Water heating fuel us Electricity for pumps, central heating pump	190.29 ater 86.84 1, kWh/mc 0 ÷ (217) 219.11 ed, main ed fans and o: sted flue	85.48 onth m 197.45 system electric	163.4 83.18 196.44	80.3	80.3	80.3 191.42 Tota	80.3 193.53 I = Sum(2	85.5 206.97 19a) ₁₁₂ = k\	87.31 215.64 Wh/year	229.39	2444.49 kWh/yea 3541.9	(217)

Energy

kWh/year

Stroma FSAP 2012 Version: 1.0.1.9 (SAP 9.92) - http://www.stroma.com

Emissions

kg CO2/year

Emission factor

kg CO2/kWh

Space heating (main system 1)	(211) x	0.216		765.05 (261	1)
Space heating (secondary)	(215) x	0.519	:	0 (263	3)
Water heating	(219) x	0.216	=	528.01 (264	4)
Space and water heating	(261) + (262) + (263) + (264) =			1293.06 (265	5)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519 =	=	38.93 (267	7)
Electricity for lighting	(232) x	0.519	:	190.73 (268	3)
Total CO2, kg/year	sum	of (265)(271) =		1522.71 (272	2)

TER = 17.51 (273)

			=	N 4 11						
			User L	Details:						
Assessor Name:	Neil Ingham			Strom	a Num	ber:		STRO	0002943	
Software Name:	Stroma FSAP	2012		Softwa	are Ve	rsion:		Versio	n: 1.0.1.9	
		Р	roperty	Address	Flat 3					
Address :		ester Mews	, LOND(ON, NW1	9JB					
Software Name: Stroma FSAP 2012 Software Version: Version: 1.0.1.9										
Construct the con-								1,, ,		<u>-</u>
Ground floor				50.12	(1a) x	2	2.8	(2a) =	140.34	(3a)
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)	+(1e)+(1r	ገ) 5	50.12	(4)					
Dwelling volume					(3a)+(3b)+(3c)+(3c	d)+(3e)+	(3n) =	140.34	(5)
2. Ventilation rate:				-41		4-4-1				
			ту 	otner		totai			m³ per nou	ır —
Number of chimneys	0	+ 0	_] +	0	_ = _	0	X 4	40 =	0	(6a)
Number of open flues	0	+ 0	7 + [0	=	0	x 2	20 =	0	(6b)
Assessor Name: Stroma FSAP 2012 Software Name: Stroma FSAP 2012 Property Address: Flat 3, 16, Rochester Mews, LONDON, NW1 9JE 1. Overall dwelling dimensions: Area(m²) Ground floor Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n) 50.12 (4) Dwelling volume 3.a) 2. Ventilation rate: main				Ī	2	x -	10 =	20	(7a)	
Number of passive vents	5				F	0	x ·	10 =	0	(7b)
Number of flueless gas f	ires				F	0	x	40 =	0	(7c)
The second of th					L					(. %)
								Air ch	nanges per ho	our
Infiltration due to chimne	eys, flues and fans	= (6a)+(6b)+(7a)	7a)+(7b)+((7c) =		20		÷ (5) =	0.14	(8)
		tended, procee	d to (17),	otherwise (continue fr	om (9) to	(16)			_
•	the dwelling (ns)								-	(9)
	0.05 (.	0.05.6				[(9)	-1]x0.1 =		(10)
					•	uction			0	(11)
			The great	ici wali arc	a (anoi					
If suspended wooden	floor, enter 0.2 (un	sealed) or 0	.1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, er	nter 0.05, else ente	r 0							0	(13)
•	s and doors draug	ht stripped							0	(14)
				-	` '	-			0	(15)
									0	(16)
•	•		•	•	•	etre of e	envelope	area	5	(17)
•	-					io hoina u	and		0.39	(18)
		st rias been doi	ie oi a ue	gree air pe	ппеаышу	is being u	seu		3	(19)
	5			(20) = 1 -	[0.075 x (19)] =				(20)
Infiltration rate incorpora	ting shelter factor			(21) = (18) x (20) =				0.3	(21)
Infiltration rate modified	for monthly wind sp	peed								`
Jan Feb	Mar Apr M	lay Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind si	<u> </u>		•			•	•	•	•	
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)										
	ı I					•	•		1	
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)				1						
(∠∠a)m= 1.2/ 1.25	1.23 1.1 1.0	U8 0.95	0.95	0.92	1	1.08	1.12	1.18	J	

Adjusted infiltration rat	e (allowi	na for sh	nelter an	d wind s	speed) =	(21a) x	(22a)m					
0.39 0.38	0.37	0.33	0.33	0.29	0.29	0.28	0.3	0.33	0.34	0.36		
Calculate effective air	-	rate for t	he appli	cable ca	se							
If mechanical ventila											0	(23a
If exhaust air heat pump								o) = (23a)			0	(23b
If balanced with heat reco	•	•	· ·		,		,				0	(23c)
a) If balanced mech					- ` `		ŕ	, 	` 	- ` ´	÷ 100]	
(24a)m = 0 0	0	0	0	0	0	0	0	0	0	0		(24a
b) If balanced mech				1		ЛV) (24b	<u> </u>	2b)m + (23b)		1	
(24b)m = 0 0	0	0	0	0	0	0	0	0	0	0		(24b
c) If whole house ex if (22b)m < 0.5			•	•				.5 × (23k	o)			
(24c)m= 0 0	0	0	0	0	0	0	0	0	0	0		(24c
d) If natural ventilati			•	•				0.51			ı	
if $(22b)m = 1$, th (24d)m = 0.58 = 0.57	0.57	0.56	0.55	0.54	0.54	0.5 + [(2	0.55	0.55	0.56	0.56	l	(24d
` '		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	1 0.00	1 0.00	0.50	I	(2 70
Effective air change (25)m= 0.58 0.57	0.57	0.56	0.55	0.54	0.54	0.54	0.55	0.55	0.56	0.56	1	(25)
(23)111= 0.36 0.37	0.57	0.50	0.55	0.54	0.54	0.54	0.55	0.55	0.30	0.30		(23)
3. Heat losses and he	eat loss p	oaramete	er:									
ELEMENT Gros	T	Openin m		Net Ar A ,n		U-valı W/m2		A X U (W/		k-value kJ/m²·l		A X k kJ/K
Windows Type 1				6.09	х1.	/[1/(1.4)+	0.04] =	8.07				(27)
Windows Type 2				6.44	x1.	/[1/(1.4)+	0.04] =	8.54				(27)
Walls Type1 57.	12	12.5	3	44.59) x	0.18		8.03				(29)
Walls Type2 21.8	34	0		21.84	x x	0.15	च -i	3.38			5 <u>–</u>	(29)
Total area of elements	s, m²			78.96	<u></u>							(31)
Party wall				13.44	x x	0	─	0				(32)
Party floor				50.12	=						7 H	(32a
Party ceiling				50.12	=						$\exists \vdash$	(32b
Internal wall **				66.64	_				L			(32c
* for windows and roof wind	ows use e	effective wi	ndow H-va			ı formula 1	/[(1/Ll-valu	ıe)+0 041 a] as aiven in	naragrant		(320)
** include the areas on both					a.c.a a.cg		, _{[(1} , 0) rand		g	paragrap.	. 0.2	
Fabric heat loss, W/K	= S (A x	U)				(26)(30)	+ (32) =				28.02	(33)
Heat capacity Cm = S	(A x k)						((28).	(30) + (3	2) + (32a).	(32e) =	8698.70	(34)
Thermal mass parame	eter (TMF	P = Cm ÷	- TFA) ir	n kJ/m²K			Indica	ntive Value	: Medium		250	(35)
For design assessments who can be used instead of a de			construct	ion are not	t known pr	ecisely the	e indicative	e values of	TMP in T	able 1f		
Thermal bridges : S (L	x Y) cal	culated (using Ap	pendix k	<						4.26	(36)
if details of thermal bridging	are not kn	own (36) =	= 0.15 x (3	1)								
Total fabric heat loss							(33) +	- (36) =			32.28	(37)
Ventilation heat loss c	alculated	monthly						= 0.33 × ((25)m x (5))	1	
Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m= 26.64 26.5	26.37	25.75	25.63	25.09	25.09	24.99	25.3	25.63	25.87	26.11		(38)
Heat transfer coefficie	nt, W/K						(39)m	ı = (37) + (38)m		_	
(39)m= 58.92 58.78	58.65	58.03	57.91	57.37	57.37	57.27	57.58	57.91	58.15	58.4		
Stroma FSAP 2012 Version	: 1.0.1.9 (S	SAP 9.92)	http://ww	w.stroma.d	com			Average =	Sum(39) ₁	12 /12=	58.0 β	age 2 of (3 / 9)

Heat loss para	meter (l	-II P) \///	m²K					(40)m	= (39)m ÷	- (4)			
		<u> </u>		1 16	1 14	1 14	1 14	` ′	·	T	1 17		
(10)	O me												
Number of day	s in mo	nth (Tabl	le 1a)						rorago	Sum(10)		0	(\ -/
(40)me													
(41)m= 31	28	31			30	31	,		31	30	31		(41)
4. Water heat	ing ene	rgy requi	rement:								kWh/ye	ear:	
if TFA > 13.9	0, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9))2)] + 0.0	0013 x (¯	ΓFA -13		69		(42)
											.42		(43)
	•				-	•	o achieve	a water us	se target o	of ^t			
					lot and co			1	Ī		ı 1		
								Sep	Oct	Nov	Dec		
Hot water usage in	i litres pei	r day for ea	ecn montn	να,m = τa	ctor trom	able 1c x	(43)						
(44)m= 81.87	78.89	75.91	72.93	69.96	66.98	66.98	69.96	72.93	75.91	78.89	81.87		_
Energy content of	hot water	used - cal	culated m	onthly = 4 .	190 x Vd,r	n x nm x D)Tm / 3600					893.08	(44)
										1			
		<u> </u>		l		l		-	rotal = Su	ım(45) ₁₁₂ =	=	1170.96	(45)
If instantaneous wa	ater heati	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46 ₎) to (61)		, ,	'		
(46)m= 18.21	15.93	16.44	14.33	13.75	11.86	10.99	12.62	12.77	14.88	16.24	17.64		(46)
Water storage	loss:												
Storage volume	e (litres)	includin	g any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
•	•			•			` '						
		hot wate	er (this in	icludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in ((47)			
•		oolorod k	ooo foot	or io kno		2/dox4):							(40)
•				JI IS KIIO	WII (KVVI	i/day).							
•											0		, ,
• • •		_	-		or io not		(48) x (49)) =			0		(50)
•			-								0		(51)
	-			_ (., 0, 0.0	-57					<u> </u>		(0.)
•	_										0		(52)
Temperature fa	actor fro	m Table	2b								0		(53)
Energy lost from	m watei	storage	, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54)
Enter (50) or (54) in (5	55)									0		(55)
Water storage	loss cal	culated f	or each	month			((56)m = (55) × (41)ı	m				
(56)m= 0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinder contains	dedicate	d solar sto	rage, (57)ı	m = (56)m	x [(50) – (<u> </u> H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m= 0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primary circuit	loss (ar	nual) fro	m Table	- 3							0		(58)
Primary circuit	•	•			59)m = ((58) ÷ 36	55 × (41)	m					* *
(modified by				•	•	. ,	, ,		r thermo	stat)			
(59)m= 0	0	0	0	0	0	0	0	0	0	0	0		(59)

Combi loss o				<u> </u>	<u> </u>	- ` ` 	<u> </u>					1	
(61)m= 41.72	36.31	38.68	35.97	35.65	33.03	34.13	35.65	35.97	38.68	38.9	41.72		(61)
Total heat re	quired for	water h	eating ca	alculated	for eac	h month	(62)m	= 0.85 ×	(45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m= 163.1	2 142.49	148.25	131.49	127.31	112.13	107.42	119.75	121.08	137.87	147.17	159.29		(62)
Solar DHW inpu	it calculated	using App	endix G o	r Appendix	H (negat	ive quantity	y) (enter	'0' if no sola	r contribut	ion to wate	er heating)		
(add addition	al lines if	FGHRS	and/or \	WWHRS	applies	s, see Ap	pendix	(G)	,	,	,	1	
(63)m = 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from	water hea	ter				_							
(64)m= 163.1	2 142.49	148.25	131.49	127.31	112.13	107.42	119.75	121.08	137.87	147.17	159.29		,
							O	utput from w	ater heate	r (annual) ₁	l12	1617.38	(64)
Heat gains fr	om water	heating,	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)	m] + 0.8	x [(46)m	+ (57)m	+ (59)m	[]	
(65)m= 50.8	44.38	46.1	40.75	39.39	34.56	32.9	36.88	37.29	42.65	45.73	49.52		(65)
include (57	7)m in cal	culation	of (65)m	only if c	ylinder i	s in the	dwellin	g or hot w	ater is f	om com	munity h	neating	
5. Internal	gains (see	e Table 5	and 5a):									
Metabolic ga	ins (Table	e 5), Wat	ts										
Jan		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
(66)m= 84.68	84.68	84.68	84.68	84.68	84.68	84.68	84.68	84.68	84.68	84.68	84.68	1	(66)
Lighting gain	s (calcula	ted in Ap	pendix	L, equat	ion L9 o	r L9a), a	lso se	e Table 5	•	•	•	•	
(67)m= 13.15	11.68	9.5	7.19	5.38	4.54	4.9	6.38	8.56	10.87	12.68	13.52]	(67)
Appliances g	ains (calc	ulated ir	Append	dix L, eq	uation L	.13 or L1	3a), al	so see Ta	ble 5				
(68)m= 147.5		145.22	137	126.64	116.89	110.38	108.85		120.92	131.29	141.03]	(68)
Cooking gair	ns (calcula	ted in A	ppendix	L, equat	ion L15	or L15a), also	see Table	5	!	!	J	
(69)m= 31.47	_`	31.47	31.47	31.47	31.47	31.47	31.47		31.47	31.47	31.47	1	(69)
Pumps and f	ans gains	(Table !	 5а)	I		ı			<u> </u>	<u> </u>	<u> </u>	J	
(70)m= 3	3	3	3	3	3	3	3	3	3	3	3]	(70)
Losses e.g.	 evaporatio	n (nega	tive valu	es) (Tab	le 5)	Į						J	
(71)m= -67.74	<u> </u>	-67.74	-67.74	-67.74	-67.74	-67.74	-67.74	-67.74	-67.74	-67.74	-67.74	1	(71)
Water heating												J	
(72)m= 68.27	``	61.97	56.6	52.94	48	44.22	49.57	51.79	57.33	63.51	66.56	1	(72)
Total interna	_					1	ļ	n + (69)m +	I	I	I	J	,
(73)m= 280.3	_	268.09	252.2	236.36	220.83	210.91	216.2	<u> </u>	240.52	258.88	272.52	1	(73)
6. Solar gai		200.00	202.2	200.00	220.00	210.01	210.2	221110	2 10.02	200.00	272.02		(- /
Solar gains are		using sola	r flux from	Table 6a	and assoc	iated equa	ations to	convert to th	ne applicat	ole orientat	tion.		
Orientation:	Access F	actor	Area		Flu	ıx		g_		FF		Gains	
	Table 6d		m²		Ta	ble 6a		Table 6b	Т	able 6c		(W)	
Southwest _{0.9}	0.77	X	6.4	14	x :	36.79	1 [0.63	х	0.7	=	72.42	(79)
Southwest _{0.9}	0.77	X	6.4	14	x (62.67	i F	0.63	=	0.7		123.35	(79)
Southwest _{0.9}		x				85.75	i F	0.63	- x	0.7	= =	168.77] (79)
Southwest _{0.9}	<u> </u>	×	6.4			06.25	i F	0.63	-	0.7		209.12	(79)
Southwest _{0.9}		×		==	=	19.01	i H	0.63	- x	0.7	= =	234.23](79)
3.07	0.17	^	U.,	r-r	·'	10.01	J L	0.00	^ L	0.1		204.20	٦٬٠٠٠,

F		_			r			1 1						_
<u>L</u>	0.77	X	6.4	14	X	1	18.15		0.63	X	0.7	=	232.54	(79)
Southwest _{0.9x}	0.77	X	6.4	14	x	11	13.91		0.63	X	0.7	=	224.19	(79)
Southwest _{0.9x}	0.77	X	6.4	ļ 4	x [10	04.39		0.63	X	0.7	=	205.46	(79)
Southwest _{0.9x}	0.77	X	6.4	14	x	9	2.85		0.63	X	0.7	=	182.75	(79)
Southwest _{0.9x}	0.77	X	6.4	14	x	6	9.27		0.63	X	0.7	=	136.33	(79)
Southwest _{0.9x}	0.77	X	6.4	14	x	4	4.07		0.63	x	0.7		86.74	(79)
Southwest _{0.9x}	0.77	X	6.4	14	x	3	1.49		0.63	x	0.7	=	61.97	(79)
Northwest _{0.9x}	0.77	х	6.0)9	x	1	1.28	X	0.63	x	0.7	=	21	(81)
Northwest 0.9x	0.77	х	6.0)9	x	2	2.97	X	0.63	x	0.7	=	42.75	(81)
Northwest 0.9x														
Northwest _{0.9x}	0.77	x	6.0)9	x	6	7.96	x	0.63	x	0.7	_	126.48	(81)
Northwest _{0.9x}	0.77	x	6.0)9	x	9	1.35	x	0.63	x	0.7	=	170.01	(81)
Northwest _{0.9x}	0.77	x	6.0)9	×	9	7.38	x	0.63	x	0.7	=	181.25	(81)
Northwest _{0.9x}	0.77	x	6.0)9	x	9	91.1	x	0.63	x	0.7		169.56	(81)
Northwest _{0.9x}	0.77													
Northwest 0.9x	0.77	x	6.0)9	x	5	0.42	x	0.63	x	0.7	<u> </u>	93.84	(81)
Northwest 0.9x	0.77	x	6.0)9	x	2	8.07	x	0.63	x	0.7	=	52.24	(81)
Northwest 0.9x	0.77	x	6.0)9	x	,	14.2	x	0.63	x	0.7	=	26.42	(81)
Northwest 0.9x	0.77	x	6.0)9	×	(9.21	x	0.63	x	0.7		17.15	(81)
•					-					_				_
Solar gains in	watts, calc	ulated	for eac	h month	ì			(83)m	ı = Sum(74)m .	(82)m				
(83)m= 93.42	166.1 2	45.79	335.6	404.24	41	13.79	393.75	340	.63 276.59	188.5	7 113.16	79.12		(83)
Total gains – i	nternal and	d solar	(84)m =	= (73)m	+ (8	33)m	, watts				_		•	
(84)m= 373.79	westo, se													
7. Mean inter	Duthwest0 9, 0.77													
Temperature	Southwesto, 9x													
Utilisation fac	uthwesto 9, 0.77													
Jan	Feb		iving are	ea, h1,m) (SE	ee Ta	ble 9a)	ole 9,	Th1 (°C)				21	(85)
	. 00	Mar			Ť					Oct	Nov	Dec	21	(85)
(86)m= 0.99	 	-	Apr	May	Ì,	Jun	Jul	A	ug Sep	 	+		21	
` ′	0.99	0.97	Apr 0.9	May 0.75	0	Jun).56	Jul 0.41	A:	ug Sep 7 0.73	 	+		21	
Mean interna	0.99	0.97 ure in l	Apr 0.9 iving are	May 0.75 ea T1 (fo	ollov	Jun 0.56 w ste	Jul 0.41 ps 3 to 7	0.4 ' in T	ug Sep .7 0.73	0.94	0.99	1	21	(86)
Mean interna (87)m= 19.86	0.99 Il temperatu 20.05 2	0.97 ure in 1 20.34	Apr 0.9 iving are 20.67	May 0.75 ea T1 (fo 20.9	ollov	Jun 0.56 w ste 0.98	Jul 0.41 ps 3 to 7	0.4 7 in T 20.9	ug Sep .7 0.73 .7able 9c) .99 20.94	0.94	0.99	1	21	(86)
Mean interna (87)m= 19.86 Temperature	0.99 Il temperatu 20.05 2 during hea	0.97 ure in l 20.34 ating p	Apr 0.9 iving are 20.67 eriods ir	May 0.75 ea T1 (for 20.9) rest of	ollov 20	Jun 0.56 w ste 0.98 elling	Jul 0.41 ps 3 to 7 21 from Ta	0.47 in T 20.9	ug Sep 7 0.73 Table 9c) 99 20.94 9, Th2 (°C)	20.63	0.99	19.82	21	(86)
Mean interna (87)m= 19.86 Temperature (88)m= 19.94	0.99 Il temperatu 20.05 2 during hea	0.97 ure in l 20.34 ating p	Apr 0.9 iving are 20.67 eriods ir 19.95	May 0.75 ea T1 (for 20.9) n rest of 19.96	ollov 20 dwo	Jun 0.56 w ste 0.98 elling 9.96	Jul 0.41 ps 3 to 7 21 from Ta 19.96	Au 0.47 in T 20.9	ug Sep 7 0.73 Table 9c) 99 20.94 9, Th2 (°C)	20.63	0.99	19.82	21	(86)
Mean internation (87)m= 19.86 Temperature (88)m= 19.94 Utilisation factors	0.99 Il temperatu 20.05	0.97 ure in 1 20.34 ating p 19.94	Apr 0.9 iving are 20.67 eriods ir 19.95 est of d	May 0.75 ea T1 (for 20.9) rest of 19.96 welling,	00 ollov 20 dwe	Jun 0.56 w ste 0.98 elling 9.96 m (se	Jul 0.41 ps 3 to 7 21 from Ta 19.96 ee Table	Ai 0.47 in T 20.93 able 9 19.9	ug Sep 17 0.73 Table 9c) 199 20.94 19, Th2 (°C) 19.96	0.94 20.63 19.96	0.99 20.18	19.82	21	(86) (87) (88)
Mean internation (87)m= 19.86 Temperature (88)m= 19.94 Utilisation fact (89)m= 0.99	0.99 Il temperatu 20.05	0.97 ure in 1 20.34 ating p 19.94 ns for r 0.95	Apr 0.9 iving are 20.67 eriods ir 19.95 est of d	May 0.75 ea T1 (for 20.9) n rest of 19.96 welling, 0.69	0 ollow 20 dwo	Jun 0.56 w ste 0.98 elling 9.96 m (se 0.48	Jul 0.41 ps 3 to 7 21 from Ta 19.96 ee Table 0.32	Au 0.4 7 in T 20.3 able 9 19.3 9a) 0.3	ug Sep 17 0.73 Table 9c) 99 20.94 9, Th2 (°C) 97 19.96	0.94 20.63 19.96	0.99 20.18	19.82	21	(86) (87) (88)
Mean interna (87)m= 19.86 Temperature (88)m= 19.94 Utilisation fac (89)m= 0.99 Mean interna	0.99 Il temperatu 20.05 during hea 19.94 ctor for gair 0.98 Il temperatu	0.97 ure in 1 20.34 ating p 19.94 ns for r 0.95 ure in t	Apr 0.9 iving are 20.67 eriods in 19.95 est of d 0.87	May 0.75 ea T1 (for 20.9) n rest of 19.96 welling, 0.69 of dwell	00 ollov 20 dwo 19 h2,1 o	Jun 0.56 w ste 0.98 elling 9.96 m (se 0.48	Jul 0.41 ps 3 to 7 21 from Ta 19.96 ee Table 0.32 ollow ste	Ai 0.4 7 in T 20.9 able 9 19.9 9a) 0.3	ug Sep 7 0.73 Table 9c) 99 20.94 9, Th2 (°C) 97 19.96 17 0.64 to 7 in Table	0.94 20.63 19.96 0.91 le 9c)	0.99 20.18 19.95 0.98	1 19.82 19.95	21	(86) (87) (88) (89)
Mean interna (87)m= 19.86 Temperature (88)m= 19.94 Utilisation fac (89)m= 0.99 Mean interna	0.99 Il temperatu 20.05 during hea 19.94 ctor for gair 0.98 Il temperatu	0.97 ure in 1 20.34 ating p 19.94 ns for r 0.95 ure in t	Apr 0.9 iving are 20.67 eriods in 19.95 est of d 0.87	May 0.75 ea T1 (for 20.9) n rest of 19.96 welling, 0.69 of dwell	00 ollov 20 dwo 19 h2,1 o	Jun 0.56 w ste 0.98 elling 9.96 m (se 0.48	Jul 0.41 ps 3 to 7 21 from Ta 19.96 ee Table 0.32 ollow ste	Ai 0.4 7 in T 20.9 able 9 19.9 9a) 0.3	ug Sep 7 0.73 Table 9c) 99 20.94 9, Th2 (°C) 97 19.96 17 0.64 to 7 in Table 96 19.92	0.94 20.63 19.96 0.91 le 9c)	0.99 20.18 19.95 0.98	1 19.82 19.95 0.99		(86) (87) (88) (89)
Mean interna (87)m= 19.86 Temperature (88)m= 19.94 Utilisation fac (89)m= 0.99 Mean interna	0.99 Il temperatu 20.05 during hea 19.94 ctor for gair 0.98 Il temperatu	0.97 ure in 1 20.34 ating p 19.94 ns for r 0.95 ure in t	Apr 0.9 iving are 20.67 eriods in 19.95 est of d 0.87	May 0.75 ea T1 (for 20.9) n rest of 19.96 welling, 0.69 of dwell	00 ollov 20 dwo 19 h2,1 o	Jun 0.56 w ste 0.98 elling 9.96 m (se 0.48	Jul 0.41 ps 3 to 7 21 from Ta 19.96 ee Table 0.32 ollow ste	Ai 0.4 7 in T 20.9 able 9 19.9 9a) 0.3	ug Sep 7 0.73 Table 9c) 99 20.94 9, Th2 (°C) 97 19.96 17 0.64 to 7 in Table 96 19.92	0.94 20.63 19.96 0.91 le 9c)	0.99 20.18 19.95 0.98	1 19.82 19.95 0.99		(86) (87) (88) (89)
Mean interna (87)m= 19.86 Temperature (88)m= 19.94 Utilisation fac (89)m= 0.99 Mean interna (90)m= 18.44 Mean interna	0.99 Il temperatu 20.05 during hea 19.94 ctor for gair 0.98 Il temperatu 18.72	0.97 ure in 1 20.34 ating p 19.94 ns for r 0.95 ure in 1 19.13	Apr 0.9 iving are 20.67 eriods ir 19.95 est of d 0.87 the rest 19.59 r the wh	May 0.75 ea T1 (for 20.9) n rest of 19.96 welling, 0.69 of dwell 19.86	0 0 0 20	Jun 0.56 w ste 0.98 elling 9.96 m (se 0.48 T2 (fo 9.95	Jul 0.41 ps 3 to 7 21 from Ta 19.96 ee Table 0.32 ollow ste 19.96	Al 0.4 7 in T 20.9 19.9 9a) 0.3 19.9 + (1	ug Sep 7 0.73 Table 9c) 99 20.94 9, Th2 (°C) 97 19.96 7 0.64 to 7 in Table 96 19.92	0.94 20.63 19.96 0.91 le 9c) 19.55 fLA = Liv	0.99 20.18 19.95 0.98 18.91 ving area ÷ (4	1 19.82 19.95 0.99 18.39		(86) (87) (88) (89) (90) (91)
Mean interna (87)m= 19.86 Temperature (88)m= 19.94 Utilisation fac (89)m= 0.99 Mean interna (90)m= 18.44 Mean interna (92)m= 19.15	0.99 Il temperatu 20.05	0.97 ure in 1 20.34 ating p 19.94 ns for r 0.95 ure in 1 19.13 ure (fo	Apr 0.9 iving are 20.67 eriods ir 19.95 est of dr 0.87 the rest 19.59 r the wh	May 0.75 ea T1 (for 20.9) n rest of 19.96 welling, 0.69 of dwell 19.86 nole dwell 20.38	00000000000000000000000000000000000000	Jun 0.56 w ste 0.98 elling 9.96 m (se 0.48 T2 (fo 9.95 g) = fl 0.47	Jul 0.41 ps 3 to 7 21 from Ta 19.96 ee Table 0.32 ollow ste 19.96 _A × T1 20.48	9a) 0.3 19. 4 (1 20.	ug Sep 17 0.73 Table 9c) 99 20.94 0, Th2 (°C) 97 19.96 17 0.64 10 7 in Table 96 19.92	0.94 20.63 19.96 0.91 le 9c) 19.55 fLA = Liv	0.99 20.18 19.95 0.98 18.91 ving area ÷ (4)	1 19.82 19.95 0.99 18.39		(86) (87) (88) (89) (90) (91)

			·							1	1	ı	
(93)m= 19.15	19.39	19.74	20.14	20.38	20.47	20.48	20.48	20.43	20.09	19.55	19.11		(93)
8. Space hea													
Set Ti to the the utilisation			•		ed at ste	ep 11 of	Table 9	b, so tha	t Ti,m=(76)m an	d re-calc	culate	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisation fac	L		<u> </u>	I way	<u> </u>	- Oui	_ / tug	СОР	000	1101	200		
(94)m= 0.99	0.98	0.95	0.87	0.72	0.52	0.37	0.42	0.68	0.92	0.98	0.99		(94)
Useful gains,	hmGm	, W = (94	4)m x (8	4)m	ļ	<u> </u>				!	1	l	
(95)m= 370.58	435.64	489.31	513.38	460.85	330.13	221.85	232.08	340.96	393.86	365.38	349.32		(95)
Monthly aver	age exte	rnal tem	perature	from Ta	able 8						•		
(96)m= 4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat loss rat	e for mea	an intern	al tempe	erature,	Lm , W =	=[(39)m	x [(93)m	– (96)m]	-		•	
(97)m= 875.03	851.76	776.38	652.06	502.83	336.77	222.77	233.77	364.42	549.57	723.72	870.62		(97)
Space heating		1	r each n	nonth, k	Wh/mon	h = 0.02	24 x [(97)m – (95)m] x (4	1)m	,		
(98)m= 375.31	279.63	213.58	99.85	31.23	0	0	0	0	115.85	258	387.84		_
							Tota	l per year	(kWh/yeaı	r) = Sum(9	8)15,912 =	1761.29	(98)
Space heating	g require	ement in	kWh/m²	²/year								35.14	(99)
9a. Energy red	quiremer	nts – Indi	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
Space heati	ng:					J		, ,					
Fraction of sp	pace hea	at from se	econdar	y/supple	mentary	system						0	(201)
Fraction of sp	oace hea	at from m	nain syst	em(s)			(202) = 1	- (201) =				1	(202)
Fraction of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficiency of	main spa	ace heat	ing syste	em 1								93.4	(206)
Efficiency of	•				a svstem	າ. %						0	(208)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	」` ′
Space heating	I		<u> </u>		L	- Oui	l rug	СОР	000	1101	200	i kvinyot	A 1
375.31	279.63	213.58	99.85	31.23	0	0	0	0	115.85	258	387.84		
(211)m = {[(98	3)m x (20		l (1) m } x	100 ÷ (2	(06)		!						(211)
401.83	299.39	228.67	106.9	33.44	0	0	0	0	124.04	276.23	415.25		(/
	!	<u> </u>		<u> </u>			Tota	l (kWh/yea	ar) =Sum(2	1 211) _{15,1012}	<u> </u>	1885.75	(211)
Space heating	a fuel (s	econdar	v). kWh/	month									_
$= \{[(98)m \times (200)]\}$	•		• / ·										
(215)m= 0	0	0	0	0	0	0	0	0	0	0	0		
				!			Tota	I (kWh/yea	ar) =Sum(2	215) _{15,101}	<u></u>	0	(215)
Water heating	9												_
Output from w	ater hea	ter (calc	ulated a	bove)								•	
163.12	142.49	148.25	131.49	127.31	112.13	107.42	119.75	121.08	137.87	147.17	159.29		_
Efficiency of w	ater hea	iter									-	80.3	(216)
(217)m= 87.08	86.72	85.97	84.37	82.11	80.3	80.3	80.3	80.3	84.62	86.45	87.21		(217)
Fuel for water	•												
(219)m = (64) (219)m = 187.32	m x 100 164.31) ÷ (217) 172.45	m 155.86	155.05	139.63	133.78	149.13	150.78	162.93	170.24	182.66		
(213)111= 107.32	104.31	172.45	133.80	133.05	139.03	133.78		150.78 Il = Sum(2°		170.24	102.00	1024.45	(240)
Annual totals							1010	– Juiii(Z		Wh/yeaı		1924.15	(219)
Space heating		ed, main	system	1					ĸ	•••#yedi		kWh/year 1885.75	7
		·	•									<u> </u>	J

					_
Water heating fuel used				1924.15	
Electricity for pumps, fans and electric keep-hot					
central heating pump:			30]	(230c)
boiler with a fan-assisted flue			45]	(230e)
Total electricity for the above, kWh/year	sum of (23	30a)(230g) =		75	(231)
Electricity for lighting				232.3	(232)
12a. CO2 emissions – Individual heating system	s including micro-CHP				
	Energy kWh/year	Emission fac kg CO2/kWh	ctor	Emissions kg CO2/yea	
Space heating (main system 1)	(211) x	0.216	=	407.32	(261)
Space heating (secondary)	(215) x	0.519	=	0	(263)
Water heating	(219) x	0.216	=	415.62	(264)
Space and water heating	(261) + (262) + (263) + (264) =	=		822.94	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	=	38.93	(267)
Electricity for lighting	(232) x	0.519	=	120.56	(268)
Total CO2, kg/year	SI	um of (265)(271) =		982.43	(272)

TER =

(273)

			User [Details:						
Assessor Name:	Neil Inghan	n		Strom	a Num	ber:		STRO	002943	
Software Name:	Stroma FS			Softwa				Versio	n: 1.0.1.9	
			Property							
Address :	Flat 4, 16, R	ochester Mev	·							
Overall dwelling dime				- ,						
5			Are	a(m²)		Av. He	eight(m)		Volume(m ³	3)
Ground floor					(1a) x	_	2.8	(2a) =	141.71	, (3a)
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1e)+	(1n) (1n)	50.61	(4)			_		
Dwelling volume					I (3a)+(3b)+(3c)+(3c	d)+(3e)+	(3n) =	141.71	(5)
2. Ventilation rate:										
2. Ventuation rate.	main heating	second heatin		other		total			m³ per hou	ır
Number of chimneys	0	+ 0	9 	0	 =	0	x	40 =	0	(6a)
Number of open flues	0	+ 0		0	j = [0	x	20 =	0	(6b)
Number of intermittent fa	ans					2	x	10 =	20	(7a)
Number of passive vents	5				F	0	×	10 =	0	(7b)
Number of flueless gas f	ires				F	0	x	40 =	0	 (7c)
					L					
								Air ch	anges per ho	our
Infiltration due to chimne	ys, flues and fa	ans = (6a) + (6b)	+(7a)+(7b)+	(7c) =		20		÷ (5) =	0.14	(8)
If a pressurisation test has t	been carried out or	is intended, prod	eed to (17),	otherwise (continue fr	rom (9) to	(16)			
Number of storeys in t	he dwelling (ns)							0	(9)
Additional infiltration							[(9)-1]x0.1 =	0	(10)
Structural infiltration: 0	0.25 for steel or	timber frame	or 0.35 fo	r masoni	ry consti	ruction			0	(11)
if both types of wall are p deducting areas of openi			g to the grea	ter wall are	ea (after					
If suspended wooden	floor, enter 0.2	(unsealed) o	0.1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, en	nter 0.05, else e	enter 0							0	(13)
Percentage of window	s and doors dra	aught stripped	t						0	(14)
Window infiltration				0.25 - [0.2	2 x (14) ÷ 1	100] =			0	(15)
Infiltration rate				(8) + (10)	+ (11) + (1	12) + (13)	+ (15) =		0	(16)
Air permeability value,	q50, expresse	d in cubic me	tres per ho	our per s	quare m	etre of e	envelope	area	5	(17)
If based on air permeabi	lity value, then	(18) = [(17) ÷ 20]+(8), otherw	rise (18) = ((16)				0.39	(18)
Air permeability value applie	es if a pressurisatio	n test has been	done or a de	gree air pe	rmeability	is being u	ised			 ` ′
Number of sides sheltered	ed								3	(19)
Shelter factor				(20) = 1 -	[0.075 x (19)] =			0.78	(20)
Infiltration rate incorpora	ting shelter fac	tor		(21) = (18	s) x (20) =				0.3	(21)
Infiltration rate modified	for monthly win	d speed							•	
Jan Feb	Mar Apr	May Ju	n Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp	peed from Table	e 7								
(22)m= 5.1 5	4.9 4.4	4.3 3.8	3.8	3.7	4	4.3	4.5	4.7		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10) 1									
Wind Factor (22a)m = (2	:∠)m ÷ 4	1.00 0.00	0.05	1 0.00				_	1	

1.1

1.08

0.95

0.95

0.92

1.08

1.12

1.18

1.23

(22a)m=

1.27

1.25

Adjusted infiltr	ation rate	e (allowi	ng for sl	nelter an	d wind s	speed) =	(21a) x	(22a)m					
b) If balanced mechanical ventilation without heat recovery (MV) (24b)m = (22b)m + (23b) (24b)m = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
		•	rate for t	пе арріі	cable ca	ise						0	(2:
If exhaust air h	eat pump (using Appe	endix N, (2	3b) = (23a	a) × Fmv (e	equation (I	N5)) , othe	rwise (23b) = (23a)				
If balanced with	h heat reco	overy: effic	iency in %	allowing t	or in-use f	actor (fron	n Table 4h) =				0	(2:
a) If balance	ed mecha	anical ve	entilation	with he	at recov	ery (MVI	HR) (24a	a)m = (22)	2b)m + (23b) × [1 – (23c)	÷ 100]	
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(24
b) If balance	ed mecha	anical ve	entilation	without	heat red	covery (N	MV) (24b	o)m = (22	2b)m + (23b)	_	-	
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(24
,				•					5 v (23h)			
		<u> </u>	· ` `	<u> </u>	ŕ	· ` `	ŕ	ŕ	· ` `	ŕ	0]	(24
	ventilatio	n or wh	ole hous	e positi	ve input	ventilatio						J	•
,				•	•				0.5]			_	
(24d)m= 0.57	0.57	0.57	0.56	0.55	0.54	0.54	0.54	0.55	0.55	0.56	0.56		(24
Effective air	change	rate - er	nter (24a) or (24l	o) or (24	c) or (24	d) in bo	x (25)	•		,	•	
(25)m= 0.57	0.57	0.57	0.56	0.55	0.54	0.54	0.54	0.55	0.55	0.56	0.56		(25
3. Heat losse	s and he	eat loss p	paramet	er:									
ELEMENT		_		=									
Windows Type	e 1				8.73	x1	/[1/(1.4)+	0.04] =	11.57				(27
Windows Type	e 2				1.96	x1	/[1/(1.4)+	0.04] =	2.6				(27
Walls Type1	56.5	56	12.6	5	43.9′	ı x	0.18	=	7.9				(29
Walls Type2	19.8	38	0		19.88	3 X	0.15	=	3.08				(29
Roof	35.7	7	0		35.7	X	0.13	=	4.64				(30
Total area of e	elements	, m²			112.1	4							(3
Party wall					13.44	1 ×	0		0				(32
Party floor					50.6	1							(32
Party ceiling					14.9	1				Ī			(32
Internal wall **	ŧ				43.12	2				Ī			(32
						lated using	g formula 1	/[(1/U-valu	ue)+0.04] a	as given in	paragrapl	h 3.2	
Fabric heat los				o ana par			(26)(30) + (32) =				32.	.4 (33
Heat capacity		•	,					((28).	(30) + (32	2) + (32a).	(32e) =	7613	
Thermal mass	,	,	P = Cm -	- TFA) ir	n kJ/m²K	, <u>.</u>		Indica	itive Value	: Medium		25	
For design asses				construct	ion are no	t known pi	recisely the	e indicative	e values of	TMP in Ta	able 1f		
Thermal bridg				using Ar	pendix l	K						5.0	08 (36
if details of therm					-								(0.
Total fabric he	at loss							(33) +	(36) =			37.4	48 (37
Ventilation hea	at loss ca	alculated	monthl	/				- ` ` ` 	= 0.33 × ((25)m x (5))	7	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	

			•	•							•		
(38)m= 26.88	26.74	26.6	25.98	25.86	25.32	25.32	25.22	25.53	25.86	26.1	26.35		(38)
Heat transfer of	coefficie	nt, W/K						(39)m	= (37) + (38)m			
(39)m= 64.35	64.21	64.08	63.46	63.34	62.79	62.79	62.69	63	63.34	63.57	63.82		_
Heat loss para	meter (H	HLP), W/	/m²K		_		-		Average = = (39)m ÷	Sum(39)₁ · (4)	12 /12=	63.46	(39)
(40)m= 1.27	1.27	1.27	1.25	1.25	1.24	1.24	1.24	1.24	1.25	1.26	1.26		_
Number of day	e in mo	nth (Tah	lo 1a)					,	Average =	Sum(40) ₁	12 /12=	1.25	(40)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m= 31	28	31	30	31	30	31	31	30	31	30	31		(41)
(11)		<u> </u>				<u> </u>			<u> </u>				` '
4 Water beat	ing one	rav regui	iromont:								kWh/ye	oar:	
4. Water heat	ing ene	igy requi	nement.								KVVII/y	zai.	
Assumed occu if TFA > 13.9 if TFA £ 13.9	9, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (ΓFA -13.		.71		(42)
Annual averag	,	ater usad	ae in litre	es per da	av Vd.av	erage =	(25 x N)	+ 36		74	l.77		(43)
Reduce the annua	al average	hot water	usage by	5% if the c	lwelling is	designed			se target o				(1-)
not more that 125	litres per	person per	r day (all w r	ater use, i	hot and co	ld) T						I	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water usage ii			1	1	1	1	· <i>'</i>			1	<u> </u>	I	
(44)m= 82.24	79.25	76.26	73.27	70.28	67.29	67.29	70.28	73.27	76.26	79.25	82.24		7
Energy content of	hot water	used - cal	culated mo	onthly = 4.	190 x Vd,r	m x nm x E	OTm / 3600			m(44) ₁₁₂ = ables 1b, 1		897.21	(44)
(45)m= 121.97	106.67	110.08	95.97	92.08	79.46	73.63	84.49	85.5	99.64	108.77	118.12		_
If instantaneous w	ator hooti	na at paint	of uso (no	hot water	r etorago)	ontor O in	haves (16		Γotal = Su	m(45) ₁₁₂ =	=	1176.38	(45)
									44.05	1,000	17.70	1	(46)
(46)m= 18.29 Water storage	16 loss:	16.51	14.4	13.81	11.92	11.04	12.67	12.83	14.95	16.32	17.72		(46)
Storage volum) includin	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
If community h	eating a	and no ta	ınk in dw	elling, e	nter 110	litres in	(47)						, ,
Otherwise if no	-			_			` '	ers) ente	er '0' in (47)			
Water storage													
a) If manufact				or is kno	wn (kWh	n/day):					0		(48)
Temperature f											0		(49)
Energy lost fro		_	-		ar ia nat		(48) x (49)) =			0		(50)
b) If manufactHot water stora			-								0		(51)
If community h	•			_ (-77							()
Volume factor	from Ta	ble 2a									0		(52)
Temperature f	actor fro	m Table	2b								0		(53)
Energy lost fro	m water	storage	, kWh/ye	ear			(47) x (51)	x (52) x (53) =		0		(54)
Enter (50) or ((54) in (5	55)									0		(55)
Water storage	loss cal	culated f	for each	month			((56)m = (55) × (41)ı	m				
(56)m= 0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinder contains	dedicate	d solar sto	rage, (57)ı	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m= 0	0	0	0	0	0	0	0	0	0	0	0		(57)

Primary circuit loss (annual) from Table 3			0 ((58)
Primary circuit loss calculated for each month (59)m = (5	3) ÷ 365 × (41)m			
(modified by factor from Table H5 if there is solar wate	heating and a cylinde	r thermostat)		
(59)m= 0 0 0 0 0	0 0 0	0 0	0 ((59)
Combi loss calculated for each month (61)m = (60) ÷ 365	× (41)m			
(61)m= 41.91 36.48 38.86 36.13 35.81 33.18	34.29 35.81 36.13	38.86 39.08	41.91	(61)
Total heat required for water heating calculated for each	month (62)m = 0.85 × ((45)m + (46)m +	(57)m + (59)m + (61)m	
	07.92 120.31 121.64	138.51 147.85	` ' ' ' '	(62)
Solar DHW input calculated using Appendix G or Appendix H (negative	quantity) (enter '0' if no sola	r contribution to wate	er heating)	
(add additional lines if FGHRS and/or WWHRS applies,			.	
(63)m= 0 0 0 0 0 0	0 0 0	0 0	0 ((63)
Output from water heater	ļ ļ	!		
	07.92 120.31 121.64	138.51 147.85	160.03	
	Output from w	ater heater (annual) _{1.}	12 1624.86 ((64)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 ×	(45)m + (61)ml + 0.8 x	x [(46)m + (57)m	+ (59)m 1	
	33.06 37.05 37.46	42.85 45.94		(65)
include (57)m in calculation of (65)m only if cylinder is	n the dwelling or hot w	vater is from com	munity heating	
5. Internal gains (see Table 5 and 5a):	in the aweiling of flot w	rater is from com	manity floating	
Metabolic gains (Table 5), Watts	Jul Aug Sep	Oct Nov	Dec	
Jan Feb Mar Apr May Jun	Jul Aug Sep 85.4 85.4 85.4	85.4 85.4		(66)
` '	<u> </u>	03.4 03.4	03.4	,00)
Lighting gains (calculated in Appendix L, equation L9 or l	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 	10.06 12.70	12.64	(67)
(67)m= 13.27 11.78 9.58 7.26 5.42 4.58	4.95 6.43 8.63	10.96 12.79	13.64	(67)
Appliances gains (calculated in Appendix L, equation L13				(00)
	11.33 109.79 113.68	121.97 132.42	142.25	(68)
Cooking gains (calculated in Appendix L, equation L15 o	 			
	31.54 31.54 31.54	31.54 31.54	31.54	(69)
Pumps and fans gains (Table 5a)				
(70)m= 3 3 3 3 3 3	3 3 3	3 3	3 ((70)
Losses e.g. evaporation (negative values) (Table 5)				
(71)m= -68.32 -68.32 -68.32 -68.32 -68.32 -68.32	68.32 -68.32 -68.32	-68.32 -68.32	-68.32	(71)
Water heating gains (Table 5)				
(72)m= 68.59 66.35 62.25 56.86 53.19 48.22	44.43 49.8 52.03	57.59 63.8	66.87	(72)
Total internal gains = (66)m	+ (67)m + (68)m + (69)m +	(70)m + (71)m + (72)	m	
(73)m= 282.3 280.12 269.93 253.93 237.96 222.32	212.33 217.64 225.97	242.14 260.64	274.38	(73)
6. Solar gains:				
Solar gains are calculated using solar flux from Table 6a and associate	ed equations to convert to the	ne applicable orientat	ion.	
Orientation: Access Factor Area Flux	g_ -	FF	Gains	
Table 6d m ² Table	e 6a Table 6b	Table 6c	(W)	
Southeast 0.9x 0.77 x 8.73 x 36.	79 × 0.63	x 0.7	= 98.17 ((77)
Southeast 0.9x 0.77 x 8.73 x 62.	87 × 0.63	x 0.7	= 167.21	(77)

					_		,			-				_
Southeast 0.9x	0.77	X	8.7	73	x	85.75	X	0.63		X	0.7	=	228.79	(77)
Southeast 0.9x	0.77	х	8.7	' 3	X	106.25	X	0.63		X	0.7	=	283.48	(77)
Southeast _{0.9x}	0.77	X	8.7	' 3	X	119.01	X	0.63		X	0.7	=	317.52	(77)
Southeast 0.9x	0.77	X	8.7	' 3	X	118.15	X	0.63		x	0.7	=	315.22	(77)
Southeast 0.9x	0.77	X	8.7	' 3	X	113.91	X	0.63		x	0.7	=	303.91	(77)
Southeast 0.9x	0.77	X	8.7	' 3	X	104.39	X	0.63		x	0.7	=	278.51	(77)
Southeast 0.9x	0.77	X	8.7	' 3	x	92.85	X	0.63		x	0.7	=	247.73	(77)
Southeast 0.9x	0.77	X	8.7	' 3	x	69.27	X	0.63		x [0.7	=	184.81	(77)
Southeast 0.9x	0.77	Х	8.7	73	x	44.07	X	0.63		x	0.7	=	117.58	(77)
Southeast 0.9x	0.77	Х	8.7	73	x	31.49	X	0.63		x	0.7	=	84.01	(77)
Southwest _{0.9x}	0.77	x	1.9	96	x	36.79	Ī	0.63		x	0.7		44.08	(79)
Southwest _{0.9x}	0.77	X	1.9	96	x	62.67	Ī	0.63		x	0.7	_ =	75.08	(79)
Southwest _{0.9x}	0.77	X	1.9	96	x	85.75	Ī	0.63		x	0.7	=	102.73	(79)
Southwest _{0.9x}	0.77	Х	1.9	96	X	106.25	ĺ	0.63		x	0.7	=	127.29	(79)
Southwest _{0.9x}	0.77	Х	1.9	96	X	119.01	ĺ	0.63		x	0.7	=	142.58	(79)
Southwest _{0.9x}	0.77	X	1.9	96	X	118.15	j .	0.63		×	0.7		141.54	(79)
Southwest _{0.9x}	0.77	х	1.9	96	X	113.91	j	0.63		×	0.7	=	136.46	(79)
Southwest _{0.9x}	0.77	х	1.9	96	X	104.39	ĺ	0.63		x [0.7		125.06	(79)
Southwest _{0.9x}	0.77	x	1.9	96	x	92.85	ĺ	0.63		×	0.7	_ =	111.24	(79)
Southwest _{0.9x}	0.77	X	1.9	96	x	69.27	ĺ	0.63		×	0.7	_ =	82.98	(79)
Southwest _{0.9x}	0.77	X	1.9	96	x	44.07	ĺ	0.63		×	0.7	_ =	52.8	(79)
Southwest _{0.9x}	0.77	X	1.9	96	x	31.49	i	0.63		×	0.7		37.72	(79)
'							_							
Solar gains in	watts, ca	alculated	for eac	h month			(83)m	n = Sum(74))m(8	2)m				
(83)m= 142.25	242.3	331.52	410.77	460.1	456.77	440.37	403	.57 358.	97 26	67.79	170.38	121.73		(83)
Total gains –	internal a	nd solar	(84)m =	= (73)m -	+ (83)m	n , watts							_	
(84)m= 424.54	522.42	601.45	664.7	698.06	679.09	652.71	621	.21 584.	93 50	9.93	431.02	396.11		(84)
7. Mean inte	rnal temp	erature	(heating	season)									
Temperature			,			from Tal	ble 9	, Th1 (°C)				21	(85)
Utilisation fac	ctor for g	ains for I	iving are	ea, h1,m	(see T	able 9a)								
Jan	Feb	Mar	Apr	May	Jun	Jul	A	ug Se	ер	Oct	Nov	Dec		
(86)m= 0.99	0.98	0.95	0.88	0.75	0.57	0.42	0.4	16 0.69	9 0).91	0.98	0.99		(86)
Mean interna	al temper	ature in	living an	ea T1 (fo	ollow st	ens 3 to 3	7 in T	able 9c)			-!		_	
(87)m= 19.81	20.05	20.35	20.66	20.88	20.97	21	20.		04 20	0.65	20.16	19.77	1	(87)
` '	ا به مانسانه ما ام				مالا مسلم							<u> </u>		
Temperature (88)m= 19.86	19.87	19.87	19.88	19.88	19.89	19.89	19.		-	9.88	19.88	19.87	1	(88)
				<u> </u>			<u> </u>	19.0	~ ¹³	J.00	13.00	19.07	J	(30)
Utilisation fac	T -					1	T -					ı	7	(00)
(89)m= 0.99	0.97	0.93	0.84	0.68	0.48	0.32	0.3	35 0.6	0).88	0.98	0.99		(89)
Mean interna	al temper	ature in	the rest	of dwelli	ng T2 (follow ste	eps 3	to 7 in T	able 9	(c)	_		-	
(90)m= 18.32	18.66	19.08	19.51	19.77	19.87	19.89	19.	89 19.8		19.5	18.83	18.25		(90)
									fLA :	= Liv	ing area ÷ (4	4) =	0.63	(91)

N A ' - (1		-1 /6-					. /4 (1	۸\ <u>T</u> ۵					
Mean internal (92)m= 19.26	tempera 19.54	ature (fo 19.88	20.24	ole dwel	ling) = fi 20.57	LA × 11 20.58	+ (1 – fL 20.58	.A) × 12	20.22	19.67	19.21		(92)
` '										19.07	19.21		(32)
Apply adjustm (93)m= 19.26	19.54	19.88	20.24	20.47	20.57	20.58	20.58	20.53	20.22	19.67	19.21		(93)
8. Space heat				20.47	20.01	20.50	20.00	20.00	20.22	13.07	10.21		(00)
Set Ti to the m	nean int	ernal ter	nperatur		ed at sto	ep 11 of	Table 9l	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisation fact				iviay	Odii	<u> </u>		СОР	001	1101	200		
(94)m= 0.99	0.97	0.93	0.86	0.72	0.54	0.38	0.42	0.65	0.89	0.97	0.99		(94)
Useful gains, l	hmGm ,	W = (94	4)m x (84	4)m									
(95)m= 419.19	506.69	561.63	568.52	502.18	364.19	248.55	259.67	380.15	453.48	419.68	392.31		(95)
Monthly avera	ige exte	rnal tem	perature	from Ta	able 8	•							
(96)m= 4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat loss rate	for mea	an intern	al tempe	erature, l	Lm , W =	=[(39)m	x [(93)m	– (96)m]				
(97)m= 962.65	939.86	857.38	719.53	555.41	374.62	250.2	262.26	405.28	609.59	799.07	957.72		(97)
Space heating)m – (95		·			
(98)m= 404.33	291.09	220.04	108.73	39.6	0	0	0	0	116.15	273.16	420.67		_
							Tota	l per year	(kWh/year) = Sum(9	8) _{15,912} =	1873.76	(98)
Space heating	g require	ement in	kWh/m²	/year								37.02	(99)
9a. Energy req	uiremen	ıts – Indi	vidual h	eating sy	ystems i	ncluding	micro-C	HP)					
Space heatin	g:												
Fraction of spa	ace hea	t from se	econdary	y/supple	mentary	system						0	(201)
Fraction of spa	aca haa												
	ace nea	t from m	nain syst	em(s)			(202) = 1	- (201) =				1	(202)
Fraction of total			•	, ,			(202) = 1 (204) = (2		(203)] =			1	(202)
·	al heatir	ng from i	main sys	stem 1					(203)] =				╡
Fraction of total	al heatir nain spa	ng from i	main sysing syste	stem 1 em 1	g systen				(203)] =			1	(204)
Fraction of total	al heatir nain spa	ng from i	main sysing syste	stem 1 em 1	g system Jun		(204) = (2		(203)] =	Nov	Dec	1 93.4	(204) (206) (208)
Fraction of total	al heatir nain spa econda Feb	ng from i ace heati ry/supple Mar	main sys ing syste ementar Apr	stem 1 em 1 y heating May	Jun	າ, %		02) × [1 –	. /-	Nov	Dec	93.4 0	(204) (206) (208)
Fraction of total Efficiency of m Efficiency of s	al heatir nain spa econda Feb	ng from i ace heati ry/supple Mar	main sys ing syste ementar Apr	stem 1 em 1 y heating May	Jun	າ, %	(204) = (2	02) × [1 –	. /-	Nov 273.16	Dec 420.67	93.4 0	(204) (206) (208)
Fraction of total Efficiency of m Efficiency of s Jan Space heating	al heatir nain spa econdar Feb g require 291.09	ng from in ace heating ry/supplement (c 220.04	main systementary Apr Alculated 108.73	em 1 y heating May d above)	Jun) 0	n, % Jul	(204) = (2	02) × [1 –	Oct			93.4 0	(204) (206) (208)
Efficiency of m Efficiency of s Jan Space heating	al heatir nain spa econdar Feb g require 291.09	ng from in ace heating ry/supplement (c 220.04	main systementary Apr Alculated 108.73	em 1 y heating May d above)	Jun) 0	n, % Jul	(204) = (2	02) × [1 –	Oct			93.4 0	(204) (206) (208) ar
Fraction of total Efficiency of modern Efficiency of s Jan Space heating 404.33 (211)m = {[(98)]	al heatir nain spa econdar Feb g require 291.09 m x (20	ng from ince heating mar Mar ement (c 220.04	main systementary Apr Alculated 108.73	etem 1 em 1 y heating May d above) 39.6	Jun 0 0	n, % Jul o	(204) = (2 Aug 0	02) × [1 - Sep 0	Oct 116.15	273.16 292.46	420.67 450.39	93.4 0	(204) (206) (208) ar
Fraction of total Efficiency of modern Efficiency of s Jan Space heating 404.33 (211)m = {[(98)]	al heatin nain spa econdar Feb g require 291.09 m x (20 311.66	mg from a rece heating mar lement (c 220.04 4)] + (21 235.59	main systementary Apr alculated 108.73 0)m } x	stem 1 em 1 y heating May d above) 39.6 100 ÷ (2	Jun 0 0	n, % Jul o	(204) = (2 Aug 0	02) × [1 - Sep 0	Oct 116.15	273.16 292.46	420.67 450.39	1 93.4 0 kWh/ye	(204) (206) (208) ar
Fraction of total Efficiency of m Efficiency of s Jan Space heating 404.33 (211)m = {[(98)	reduire 291.09 m x (20 311.66	Mar ement (c 220.04 4)] + (21 235.59	main systementary Apr Alculated 108.73 0)m } x 116.41	month	Jun 0 0	n, % Jul o	(204) = (2 Aug 0	02) × [1 - Sep 0	Oct 116.15	273.16 292.46	420.67 450.39	1 93.4 0 kWh/ye	(204) (206) (208) ar
Fraction of total Efficiency of m Efficiency of s Jan Space heating 404.33 (211)m = {[(98) 432.9} Space heating	reduire 291.09 m x (20 311.66	Mar ement (c 220.04 4)] + (21 235.59	main systementary Apr Alculated 108.73 0)m } x 116.41	month	Jun 0 0	n, % Jul o	(204) = (2 Aug 0 Tota	02) × [1 – Sep 0 I (kWh/yea	Oct 116.15 124.36 ar) =Sum(2)	273.16 292.46 211) _{15,1012}	420.67 450.39	1 93.4 0 kWh/ye	(204) (206) (208) ar
Fraction of total Efficiency of modern Efficiency of substitution Space heating 404.33 (211)m = {[(98) 432.9 Space heating = {[(98)m x (20) 1	al heatin nain spa econdar Feb g require 291.09 m x (20 311.66	mg from a lace heating mar Mar ement (c 220.04 4)] + (21 235.59 econdary	main systementary Apr alculated 108.73 0)m } x 116.41 y), kWh/	month 208)	Jun 0 06)	n, % Jul 0	(204) = (2 Aug 0 Tota	02) × [1 – Sep 0 I (kWh/yea	Oct 116.15 124.36 ar) =Sum(2	273.16 292.46 211) _{15,1012}	420.67 450.39	1 93.4 0 kWh/ye	(204) (206) (208) ar
Fraction of total Efficiency of modern Efficiency of substitution Space heating 404.33 (211)m = {[(98) 432.9 Space heating = {[(98)m x (20) 1	reduire 291.09 m x (20 311.66 g fuel (se 1)] + (21 0	mg from a lace heating mar Mar ement (c 220.04 4)] + (21 235.59 econdary	main systementary Apr alculated 108.73 0)m } x 116.41 y), kWh/	month 208)	Jun 0 06)	n, % Jul 0	(204) = (2 Aug 0 Tota	02) × [1 – Sep 0 I (kWh/yea	Oct 116.15 124.36 ar) =Sum(2)	273.16 292.46 211) _{15,1012}	420.67 450.39	1 93.4 0 kWh/ye	(204) (206) (208) ar (211)
Fraction of total Efficiency of moderate Efficiency of substituting Efficiency of substituting Incomplete Inco	al heatinnain sparecondaring Feb grequire 291.09 m x (20 311.66 green fuel (settle 1)] + (21 0	mg from a lace heating supplement (constant) with the suppleme	main systementary Apr alculated 108.73 0)m } x 116.41 y), kWh/ x 100 ÷ (x 0	month 208)	Jun 0 06) 0	o 0	(204) = (2 Aug 0 Tota 0 Tota	02) × [1 – Sep 0 1 (kWh/yea	Oct 116.15 124.36 ar) =Sum(2	273.16 292.46 211) _{15,1012} 0 215) _{15,1012}	420.67	1 93.4 0 kWh/ye	(204) (206) (208) ar (211)
Fraction of total Efficiency of modern Efficiency of substitution Space heating 404.33 (211)m = {[(98)	reduire 291.09 m x (20 311.66 lb] + (21 0 lb) atter hear 143.15	Mar ement (c 220.04 4)] + (21 235.59 econdary 14) m } x 0 ter (calce	main systementary Apr alculated 108.73 0)m } x 116.41 y), kWh/x 100 ÷ (x	stem 1 em 1 y heating May d above) 39.6 100 ÷ (2 42.4 month 208) 0	Jun 0 06)	n, % Jul 0	(204) = (2 Aug 0 Tota	02) × [1 – Sep 0 I (kWh/yea	Oct 116.15 124.36 ar) =Sum(2)	273.16 292.46 211) _{15,1012}	420.67 450.39	1 93.4 0 kWh/ye 2006.17	(204) (206) (208) ar (211) (211)
Fraction of total Efficiency of modern Efficiency of some serious of the Efficiency of some serious of the Efficiency of some serious of the Efficiency of t	reduire 291.09 m x (20 311.66 g fuel (se 1)] + (21 0 atter hear 143.15 atter hear 143.15	Mar ement (c 220.04 4)] + (21 235.59 econdary 14) m } x 0	main systementary Apr alculated 108.73 0)m } x 116.41 y), kWh/(100 ÷ (2) 0 ulated alculated alc	month 208) oove) 127.9	Jun 0 06) 0	o 0 107.92	(204) = (2 Aug 0 Tota 120.31	02) × [1 – Sep 0 0 I (kWh/yea 121.64	Oct 116.15 124.36 ar) =Sum(2 0 ar) =Sum(2	273.16 292.46 211) _{15,1012} 0 215) _{15,1012}	420.67 450.39 = 0 =	1 93.4 0 kWh/ye	(204) (206) (208) ar (211) (211)
Fraction of total Efficiency of moderate Efficiency of substituting Efficiency of substituting Efficiency of substituting Efficiency of substituting Efficiency of water heating Output from water heating Efficiency of water Efficiency of substituting Efficiency of substitutin	al heatin sparecondar Feb grequire 291.09 m x (20 311.66 green full (sq. 1)] + (21 0 g	mg from ince heating ry/supplement (company) 220.04 4)] + (21 235.59 econdary 14) m } x 0 ter (calculater (calculater 86.03)	main systementary Apr alculated 108.73 0)m } x 116.41 y), kWh/ x 100 ÷ (x 0	month 208)	Jun 0 06) 0	o 0	(204) = (2 Aug 0 Tota 0 Tota	02) × [1 – Sep 0 1 (kWh/yea	Oct 116.15 124.36 ar) =Sum(2	273.16 292.46 211) _{15,1012} 0 215) _{15,1012}	420.67	1 93.4 0 kWh/ye 2006.17	(204) (206) (208) ar (211) (211)
Fraction of total Efficiency of moderate Efficiency of moderate Efficiency of substitution of the Efficiency of substitution of the Efficiency of water heating Output from water heating efficiency of water from water fro	al heatin sparecondar Feb grequire 291.09 m x (20 311.66 grequire 0 grequire 143.15 ater heat 86.8 neating,	mg from ince heating ry/supplement (comment (com	main systementary Apr alculated 108.73 0)m } x 116.41 y), kWh/ x 100 ÷ (x 0 ulated alculated a	month 208) oove) 127.9	Jun 0 06) 0	o 0 107.92	(204) = (2 Aug 0 Tota 120.31	02) × [1 – Sep 0 0 I (kWh/yea 121.64	Oct 116.15 124.36 ar) =Sum(2 0 ar) =Sum(2	273.16 292.46 211) _{15,1012} 0 215) _{15,1012}	420.67 450.39 = 0 =	1 93.4 0 kWh/ye 2006.17	(204) (206) (208) ar (211) (211)
Fraction of total Efficiency of moderate Efficiency of substituting Efficiency of substituting Efficiency of substituting Efficiency of substituting Efficiency of water heating Output from water heating Efficiency of water Efficiency of substituting Efficiency of substitutin	al heatin sparecondar Feb grequire 291.09 m x (20 311.66 grequire 0 grequire 143.15 ater heat 86.8 neating,	mg from ince heating ry/supplement (comment (com	main systementary Apr alculated 108.73 0)m } x 116.41 y), kWh/ x 100 ÷ (x 0 ulated alculated a	month 208) oove) 127.9	Jun 0 06) 0	o 0 107.92	(204) = (2 Aug 0 Tota 120.31	02) × [1 – Sep 0 0 I (kWh/yea 121.64	Oct 116.15 124.36 ar) =Sum(2 0 ar) =Sum(2	273.16 292.46 211) _{15,1012} 0 215) _{15,1012}	420.67 450.39 = 0 =	1 93.4 0 kWh/ye 2006.17	(204) (206) (208) ar (211) (211)
Fraction of total Efficiency of more Efficiency of more Efficiency of some Jan Space heating 404.33 (211)m = {[(98)	reduired spanning spa	mg from ince heating ry/supplement (continue 220.04 doi: 10.00 doi	main systementary Apr alculated 108.73 0)m } x 116.41 y), kWh/(x 100 ÷ (x 100 in the continuous con	month 208) 0 0 0 0 0 0 0 0 0 0 0 0 0	Jun 0 0 06) 0 112.64	o 0 0 107.92 80.3	(204) = (2 Aug 0 Tota 120.31 80.3	02) × [1 – Sep 0 0 I (kWh/yea 121.64 80.3	Oct 116.15 124.36 124.36 0 ar) =Sum(2 138.51 84.61	273.16 292.46 211) _{15,1012} 0 215) _{15,1012} 147.85	420.67 450.39 = 0 = 160.03	1 93.4 0 kWh/ye 2006.17	(204) (206) (208) ar (211) (211)

Annual totals		1/\/\/h /\/.oo#	kWh/year
Space heating fuel used, main system 1		kWh/year	2006.17
Water heating fuel used			1930.79
Electricity for pumps, fans and electric keep-hot			
central heating pump:		30	(230c)
boiler with a fan-assisted flue		45	(230e)
Total electricity for the above, kWh/year	sum of (230a	a)(230g) =	75 (231)
Electricity for lighting			234.31 (232)
12a. CO2 emissions – Individual heating systems	s including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	433.33 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216 =	417.05 (264)
Space and water heating	(261) + (262) + (263) + (264) =		850.38 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519 =	38.93 (267)
Electricity for lighting	(232) x	0.519 =	121.6 (268)
Total CO2, kg/year	sum	of (265)(271) =	1010.91 (272)

TER =

(273)

19.97

			User D	Notoile:						
Assessor Name: Software Name:	Neil Ingham Stroma FSAP 20			Strom Softwa	are Vei				0002943 on: 1.0.1.9	
Address :	Flat 5, 16, Rochest			Address						
Overall dwelling dime			, 201121	J. 1, 1111	002					
Ground floor				a(m²) 70.74	(1a) x		ight(m) 2.8	(2a) =	Volume(m 3	(3a)
Total floor area TFA = (1	la)+(1b)+(1c)+(1d)+(1	e)+(1r	n) <u>7</u>	70.74	(4)					
Dwelling volume					(3a)+(3b))+(3c)+(3c	d)+(3e)+	.(3n) =	198.07	(5)
2. Ventilation rate:				-41		4-4-1				-
Number of chimneys Number of open flues		secondar heating 0	ry +	0 0] = [0 0		40 = 20 =	0 0	(6a) (6b)
Number of intermittent fa	ans					3	X '	10 =	30	(7a)
Number of passive vents	S				Γ	0	x	10 =	0	(7b)
Number of flueless gas f	fires				Ī	0	X 4	40 =	0	(7c)
								Air ch	nanges per ho	our
Infiltration due to chimne	eys, flues and fans = (6a)+(6b)+(7	7a)+(7b)+((7c) =	Γ	30		÷ (5) =	0.15	(8)
If a pressurisation test has	been carried out or is intend	ded, procee	d to (17),	otherwise o	continue fr	om (9) to	(16)			
Number of storeys in t	the dwelling (ns)								0	(9)
Additional infiltration							[(9)	-1]x0.1 =	0	(10)
deducting areas of open	oresent, use the value corre ings); if equal user 0.35	sponding to	the great	ter wall are	a (after	uction			0	(11)
If suspended wooden	•	alea) or U	.1 (seale	ea), eise	enter U				0	(12)
If no draught lobby, er Percentage of window		stripped							0	(13)
Window infiltration	s and doors draught s	sirippeu		0.25 - [0.2	x (14) ÷ 1	001 =			0	(14)
Infiltration rate				(8) + (10)			+ (15) =		0	(16)
Air permeability value	, q50, expressed in cu	bic metre	es per ho					area	5	(17)
If based on air permeabi	• •		•	•	•		•		0.4	(18)
Air permeability value appli	es if a pressurisation test ha	as been dor	ne or a de	gree air pe	rmeability	is being u	sed			
Number of sides shelter	ed			(22)					3	(19)
Shelter factor				(20) = 1 -		[9)] =			0.78	(20)
Infiltration rate incorpora	-			(21) = (18) x (20) =				0.31	(21)
Infiltration rate modified		1		T .			T		1	
Jan Feb	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp	1	T 00		1		1.0	1.5	1	1	
(22)m= 5.1 5	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7	J	
Wind Factor $(22a)m = (2a)m =$	22)m ÷ 4								_	
(22a)m= 1.27 1.25	1.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjusted infilti	ration rat	e (allowi	ng for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m					
0.4	0.39	0.38	0.34	0.33	0.3	0.3	0.29	0.31	0.33	0.35	0.37		
Calculate effe		•	rate for t	he appli	cable ca	se			•	•			
If mechanic			andiv N. 70	2h) _ (22c) Em. (a	auation (N	JEN otho	ruino (22h) - (22a)			0	(238
If exhaust air h) = (23a)			0	(23k
If balanced wit		-	•	_					> /			0	(230
a) If balance	1					- ` ` - 		<u> </u>	 	- 	- ` ´	i ÷ 100] I	(0.4)
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0		(248
b) If balance	1							<u> </u>	r ´ `	r ´		1	(0.41
24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24)
c) If whole h	nouse ex m < 0.5 >				•				.5 × (23b	o)		_	
24c)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24
d) If natural if (22b)	ventilation ventilation			•	•				0.5]	-			
24d)m= 0.58	0.58	0.57	0.56	0.56	0.54	0.54	0.54	0.55	0.56	0.56	0.57		(240
Effective air	r change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	d) in box	(25)	•	•	•	•	
25)m= 0.58	0.58	0.57	0.56	0.56	0.54	0.54	0.54	0.55	0.56	0.56	0.57]	(25)
2. Heat lead		at loss r	o romot	0.51					•	•	•	1	
3. Heat losse ELEMENT	Gros area	SS	Openin m	gs	Net Ar A ,r		U-valı W/m2		A X U (W/I		k-value kJ/m²·l		A X k <j k<="" td=""></j>
Vindows Type		` ,			4.36		/[1/(1.4)+	0.04] =	5.78	$\stackrel{\prime}{\Box}$			(27)
Vindows Type					5.64	x1.	/[1/(1.4)+	0.041 =	7.48	=			(27)
Windows Type					7.69	_	· /[1/(1.4)+		10.2	\dashv			(27)
Valls Type1		10	17.6			=		—, ¦		╡╶			(29)
Valls Type1	81.4			<u>"</u>	63.79	=	0.18	_	11.48	륵 ¦		-	==
	32.4		0	_	32.48	=	0.15	_ =	5.03	믁 ¦		┥	(29)
Roof	70.7		0		70.74	_	0.13	=	9.2				(30)
otal area of	eiements	, m²			184.7	<u>'</u>				-			(31)
Party floor					70.74					اِ		_	(32
nternal wall *					73.92					L			(32
for windows and * include the are						ated using	formula 1	/[(1/U-valu	ıe)+0.04] a	as given in	paragraph	1 3.2	
Fabric heat lo				is and pan	uuons		(26)(30)	+ (32) =				40.16	(33)
Heat capacity	•	•	0)				(==):::(==)		(30) + (32	2) + (32a)	(32e) =	49.16	==
Thermal mass		,	P – Cm –	_ TΕΔ\ ir	k I/m²K				tive Value	, , ,	(020) =	9907.74	(34)
or design asses	•	•		•			ecisely the				able 1f	250	(35)
an be used inste				CONSTRUCT	ion are not	. Kilowii pi	colocity tire	maroative	valace of	11011 111 11	abic ii		
Thermal bridg	jes : S (L	x Y) cal	culated (using Ap	pendix ł	<						5.08	(36)
f details of therm	al bridging	are not kn	own (36) =	= 0.15 x (3	1)								
Total fabric he	eat loss							(33) +	(36) =			54.24	(37)
entilation he	at loss ca	alculated	monthly	/				(38)m	= 0.33 × ((25)m x (5))	1	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
38)m= 37.83	37.63	37.43	36.51	36.34	35.54	35.54	35.39	35.85	36.34	36.69	37.05		(38)
Heat transfer	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
39)m= 92.07	91.87	91.68	90.75	90.58	89.78	89.78	89.63	90.09	90.58	90.93	91.3		

Heat loss para	meter (l	HLP). W/	m²K					(40)m	= (39)m ÷	- (4)			
(40)m= 1.3	1.3	1.3	1.28	1.28	1.27	1.27	1.27	1.27	1.28	1.29	1.29		
()						<u> </u>				Sum(40) ₁ .		1.28	(40)
Number of day	s in mo	nth (Tabl	le 1a)						3	(),			`
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m= 31	28	31	30	31	30	31	31	30	31	30	31		(41)
						l	<u> </u>	<u> </u>	<u> </u>	<u> </u>			
											1200		
4. Water heat	ing ene	rgy requi	rement:								kWh/ye	ear:	
Assumed occur if TFA > 13.9 if TFA £ 13.9	9, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (¯	TFA -13.		26		(42)
Annual averag	ıl average	hot water	usage by	5% if the a	lwelling is	designed t			se target o		.97		(43)
not more that 125	nires per	r in per	uay (ali w		ioi anu co								
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water usage ir	n litres pe	r day for ea	ch month	Vd,m = fa	ctor from	Table 1c x	(43)	_					
(44)m= 96.77	93.25	89.73	86.21	82.69	79.17	79.17	82.69	86.21	89.73	93.25	96.77		
Energy content of	hot water	used - cal	culated m	onthly = 4 .	190 x Vd,r	n x nm x E)Tm / 3600			m(44) ₁₁₂ = ables 1b, 1		1055.64	(44)
(45)m= 143.5	125.51	129.51	112.91	108.34	93.49	86.63	99.41	100.6	117.24	127.98	138.97		
` '		<u> </u>				l	<u> </u>		I Total = Su	M(45) ₁₁₂ =	<u> </u>	1384.11	(45)
If instantaneous w	ater heati	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46			(- /			
(46)m= 21.53	18.83	19.43	16.94	16.25	14.02	13	14.91	15.09	17.59	19.2	20.85		(46)
Water storage	loss:	<u> </u>				l	<u> </u>	<u> </u>	1	1	<u> </u>		
Storage volum	e (litres)) includin	g any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
If community h	eating a	and no ta	nk in dw	velling, e	nter 110	litres in	(47)						
Otherwise if no	stored	hot wate	er (this in	icludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
Water storage													
a) If manufact	urer's d	eclared l	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Temperature fa	actor fro	m Table	2b								0		(49)
Energy lost fro	m watei	storage	, kWh/ye	ear			(48) x (49)) =			0		(50)
b) If manufact			-										
Hot water stora	-			e 2 (kWl	h/litre/da	ay)					0		(51)
If community h	•		on 4.3										(50)
Temperature fa			2h							—	0		(52)
•							()	> .	>		0		(53)
Energy lost fro		•	, KVVh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54)
Enter (50) or (,					//>				0		(55)
Water storage	loss cal	culated f	or each	month			((56)m = (55) × (41)ı	m 	_			
(56)m= 0 If cylinder contains	0 dedicate	0 d solar sto	0 rage. (57)	0 m = (56)m	0 x [(50) – (0 H11)] ÷ (5)	0 0), else (5	0 7)m = (56)	0 m where (0 H11) is fro	0 m Append	ix H	(56)
(57)m= 0	0	0	0	0	0	0	0	0	0	0	0		(57)
	1 /		T .l.l.			l	<u> </u>	<u> </u>	<u> </u>	<u> </u>	0		(58)
Primary circuit	•	•			50\ ~	(EQ) + 20	SE > (44)	m			0		(30)
Primary circuit (modified by				•	•	. ,	, ,		r thermo	stat)			
(59)m= 0	0	0	0	0	0	0	0	0	0	0	n		(59)
(35)111= 0	U	L	U	U	U	<u> </u>					0		(55)

Combi loss calculated for each month $(61)m = (60) \div 365 \times (41)m$													
				<u> </u>	<u> </u>	· ` `	_			Т		1	
(61)m= 49.31	42.92	45.73	42.51	42.14	39.04	40.35	42.14		45.73	45.99	49.31		(61)
Total heat req	uired for					1	`		(45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m= 192.81	168.43	175.24	155.43	150.48	132.54	126.98	141.5	5 143.12	162.97	173.96	188.29		(62)
Solar DHW input									r contribu	tion to wate	er heating)		
(add additiona	l lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendi	(G)				1	
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from w	ater heat	ter											
(64)m= 192.81	168.43	175.24	155.43	150.48	132.54	126.98	141.5	5 143.12	162.97	173.96	188.29		,
							0	utput from w	ater heate	r (annual)	12	1911.79	(64)
Heat gains fro	m water	heating,	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m] + 0.8 x	k [(46)m	+ (57)m	+ (59)m]	
(65)m= 60.04	52.46	54.49	48.17	46.56	40.85	38.89	43.59	44.08	50.41	54.05	58.54		(65)
include (57)	m in calc	ulation o	of (65)m	only if c	ylinder i	s in the	dwellir	g or hot w	ater is f	rom com	munity h	neating	
5. Internal ga	ains (see	Table 5	and 5a):									
Metabolic gain	s (Table	5). Wat	ts										
Jan	Feb	Mar	Apr	May	Jun	Jul	Au	g Sep	Oct	Nov	Dec]	
(66)m= 113.2	113.2	113.2	113.2	113.2	113.2	113.2	113.2	2 113.2	113.2	113.2	113.2		(66)
Lighting gains	(calculat	ted in Ap	pendix	L, equat	ion L9 o	r L9a), a	lso se	e Table 5		1		1	
(67)m= 17.74	15.76	12.82	9.7	7.25	6.12	6.62	8.6	11.54	14.66	17.11	18.24]	(67)
Appliances ga	ins (calc	ulated in	Append	dix L. ea	uation L	13 or L1	 3a). al	so see Ta	ble 5	1	!	ı	
(68)m= 199.02		195.88	184.8	170.82	157.67	148.89	146.8		163.11	177.09	190.24	1	(68)
Cooking gains	(calcula	ted in A	opendix	L. eguat	ion L15	or L15a	L), also	see Table	5	!		ı	
(69)m= 34.32	34.32	34.32	34.32	34.32	34.32	34.32	34.32		34.32	34.32	34.32]	(69)
Pumps and fai	ne naine	(Tahle F	[[a]	<u> </u>			<u> </u>		<u> </u>	<u> </u>		I	
(70)m= 3	3	3	3	3	3	3	3	3	3	3	3	1	(70)
Losses e.g. ev				ļ	ļ							l	(- /
(71)m= -90.56	-90.56	-90.56	-90.56	-90.56	-90.56	-90.56	-90.5	6 -90.56	-90.56	-90.56	-90.56	1	(71)
			-90.50	-90.00	-90.50	-90.50	-90.5	90.30	-90.50	-90.50	-90.50	l	(, ,)
Water heating (72)m= 80.7	78.07	73.25	66.91	62.58	56.73	52.27	58.59	61.22	67.76	75.07	78.68	1	(72)
	ļ!		00.91	02.36		l		Ļ					(12)
Total internal			004.07	000.04				m + (69)m +	•	•		1	(72)
(73)m= 357.42	354.87	341.9	321.37	300.61	280.49	267.74	273.9	7 284.75	305.49	329.23	347.11		(73)
6. Solar gains Solar gains are of		ucina colo	r flux from	Table 6a	and accor	siated equa	utions to	convert to th	o applica	olo orientat	tion		
Orientation: A		•	Area		Flu	•	ilions to		іс арріісаі	FF	iioii.	Gains	
	Table 6d	actor	m ²			ble 6a		g_ Table 6b	Т	able 6c		(W)	
Southeast 0.9x	0.77	x	7.6	20	x ;	36.79] _x [0.63	x [0.7		86.47	(77)
Southeast 0.9x		_			-		┆ ╞		≓		=		╡
Southeast 0.9x	0.77	x	7.6			52.67] ×	0.63	×	0.7	_ =	147.29](77)] ₍₇₇₎
Southeast 0.9x	0.77	x	7.6			35.75] × <u> </u>	0.63		0.7	=	201.53](77)] ₍₇₇₎
<u>L</u>	0.77	X	7.6		=	06.25]	0.63	×	0.7	=	249.71	(77)
Southeast 0.9x	0.77	X	7.6	69	X 1	19.01	X	0.63	X	0.7	=	279.69	(77)

Southeast 0.9x 0.77 x 7.69 x 118.15 x 0.63 x 0.7	277.67 (77)
Southoost of Control C	267.71 (77)
Couthoost of	245.33 (77)
Couthoost of	218.22 (77)
Southoost of Control C	162.79 (77)
Courthogat a a	103.57 (77)
Couthoods o	= 74 (77)
Couthwests a	63.42 (79)
Couthwest a	108.03 (79)
Couthwests a	= 147.81 (79)
Couthwest a	183.14 (79)
Couthwester	205.13 (79)
Cauthurate	203.65 (79)
Couthweate a Couth	196.34 (79)
Couthwests a	179.93 (79)
Couthwest -	160.04 (79)
Couthwest a	119.39 (79)
Couthweater	75.96 (79)
Couthwest -	54.27 (79)
Northwest a a	15.03 (81)
Northwest a a	30.6 (81)
Northwest	55.14 (81)
Northwest e.e.	90.55 (81)
Northwest a a	121.72 (81)
Northwest	129.76 (81)
Northwest a c	121.39 (81)
Northwest	96.77 (81)
Northwest	67.18 (81)
Northwest a a	37.4 (81)
Neathwest as	18.92 (81)
Northwest	12.28 (81)
4.30 \ 9.21 \ \ 0.03 \ \ 0.7	12.20
Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m	
(83)m= 164.93 285.92 404.48 523.4 606.54 611.08 585.44 522.04 445.45 319.58 198.45 140.5	5 (83)
Total gains – internal and solar (84)m = (73)m + (83)m , watts	
(84)m= 522.35 640.79 746.38 844.77 907.15 891.57 853.18 796.01 730.2 625.07 527.68 487.6	7 (84)
7. Mean internal temperature (heating season)	
Temperature during heating periods in the living area from Table 9, Th1 (°C)	21 (85)
Utilisation factor for gains for living area, h1,m (see Table 9a)	L
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov De	
(86)m= 1 0.99 0.97 0.91 0.79 0.61 0.46 0.51 0.75 0.94 0.99 1	(86)
Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)	_
	(87)
(87)m= 19.69 19.91 20.21 20.57 20.84 20.96 20.99 20.99 20.9 20.54 20.04 19.64	(01)

· r							from Ta	1	h2 (°C)				ı	
(88)m=	19.84	19.84	19.84	19.85	19.86	19.86	19.86	19.87	19.86	19.86	19.85	19.85		(88)
Utilisa	tion fac	tor for g	ains for	rest of d	welling,	h2,m (se	e Table	9a)						
(89)m=	0.99	0.98	0.96	0.88	0.73	0.52	0.34	0.39	0.66	0.92	0.99	1		(89)
Mean	internal	temper	ature in	the rest	of dwelli	ing T2 (f	ollow ste	eps 3 to	7 in Tabl	e 9c)				
(90)m=	18.11	18.44	18.88	19.38	19.71	19.84	19.86	19.86	19.79	19.35	18.64	18.06		(90)
•									f	LA = Livin	g area ÷ (4	1) =	0.47	(91)
Mean	internal	l temner	ature (fo	or the wh	ole dwe	lling) – f	LA × T1	+ (1 – fl	Δ) v T2			!		
(92)m=	18.85	19.12	19.5	19.94	20.24	20.36	20.39	20.39	20.31	19.91	19.29	18.8		(92)
L							m Table	ļ		ļ				
(93)m=	18.85	19.12	19.5	19.94	20.24	20.36	20.39	20.39	20.31	19.91	19.29	18.8		(93)
8. Spa	ace hea	ting requ	uirement											
					re obtair	ned at st	ep 11 of	Table 9l	o, so tha	t Ti,m=(76)m an	d re-calc	culate	
			or gains	•						, ,			•	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa			ains, hm	i e									ı	
(94)m=	0.99	0.98	0.95	0.88	0.75	0.56	0.4	0.44	0.7	0.92	0.98	0.99		(94)
г			W = (94)	<u> </u>	<u> </u>	ı		ı		ı			ı	
(95)m=	517.96	627.91	710.93	746.69	680.91	499.37	337.35	352.55	510.55	575.19	518.45	484.59		(95)
г			rnal tem	r	1		T		1		ı		İ	(20)
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
						1	=[(39)m :			 	4400.0	4000.0	1	(07)
L			1191.99		L	517.57	340.22	357.38	559.58	843.21	1108.6	1332.8		(97)
	611.1	456.06	357.91	183.59	68.59	vvn/mon	$\frac{th = 0.02}{0}$	24 X [(97])m – (95 0	199.41	424.91	631.07		
(98)m=	011.1	430.00	357.91	163.59	00.39			<u> </u>	<u> </u>	<u> </u>	<u> </u>		0000.04	7(00)
_								Tota	l per year	(KWII/yeai) = Sum(9	O) _{15,912} =	2932.64	(98)
Space	heating	g require	ement in	kWh/m²	² /year								41.46	(99)
9a. Ene	ergy red	uiremer	nts – Indi	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
-	heatin	•										1		_
Fraction	on of sp	ace hea	at from so	econdar	y/supple	mentary	system						0	(201)
Fraction	on of sp	ace hea	at from m	nain syst	em(s)			(202) = 1	- (201) =				1	(202)
Fraction	on of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ncy of r	main spa	ace heat	ing syste	em 1								93.4	(206)
Efficie	ncy of s	seconda	ry/supple	ementar	y heatin	g systen	ո, %						0	(208)
Г	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	 ⊇ar
Space			ement (c		<u> </u>			7 tug	ССР		1101	Doo	(KVVIII y C	, ai
]	611.1	456.06	357.91	183.59	68.59	0	0	0	0	199.41	424.91	631.07		
۱ (211)m	_ {[(98	m x (20	 (4)] + (21	I(1) m } x	100 ± (2	206)	1							(211)
(211)	654.29	488.29	383.2	196.56	73.43	0	0	0	0	213.5	454.94	675.66		(211)
L									l (kWh/yea				3139.87	(211)
Space	heatin	a fual (e	econdar	v) k\//b/	month					,	7 15, 10 12		0.00.0.	` ′
•		• ,	14) m } x	• •										
(215)m=	0	0	0	0	0	0	0	0	0	0	0	0		
			!	!	Į		!	Tota	l I (kWh/yea	ar) =Sum(2	1 215) _{15,1012}	=	0	(215)
											.,			_

Water heating								
Output from water heater (calculated above) 192.81	32.54 126.98	141.55	143.12	162.97	173.96	188.29	1	
Efficiency of water heater	l						80.3	(216)
(217)m= 87.75 87.43 86.81 85.47 83.21 8	80.3 80.3	80.3	80.3	85.56	87.21	87.86		(217)
Fuel for water heating, kWh/month	•						•	
$(219)m = (64)m \times 100 \div (217)m$ (219)m = 219.72	65.05 158.13	176.28	178.23	190.47	199.47	214.3]	
	!	Tota	= Sum(2	19a) ₁₁₂ =			2258.84	(219)
Annual totals				k\	Wh/year	•	kWh/year	- -
Space heating fuel used, main system 1							3139.87	<u> </u>
Water heating fuel used							2258.84	
Electricity for pumps, fans and electric keep-hot								
central heating pump:						30]	(230c)
boiler with a fan-assisted flue						45]	(230e)
Total electricity for the above, kWh/year		sum	of (230a).	(230g) =			75	(231)
Electricity for lighting							313.34	(232)
12a. CO2 emissions – Individual heating systems	s including mi	icro-CHP						
	Energy kWh/year			Emiss kg CO	ion fac 2/kWh	tor	Emissions kg CO2/yea	ır
Space heating (main system 1)	(211) x			0.2	16	=	678.21	(261)
Space heating (secondary)	(215) x			0.5	19	=	0	(263)
Water heating	(219) x			0.2	16	=	487.91	(264)
Space and water heating	(261) + (262)	+ (263) + (264) =				1166.12	(265)
Electricity for pumps, fans and electric keep-hot	(231) x			0.5	19	=	38.93	(267)
Electricity for lighting	(232) x			0.5	19	=	162.62	(268)
Total CO2, kg/year			sum o	f (265)(2	271) =		1367.67	(272)

TER =

(273)

19.33

BRUKL Output Document

Compliance with England Building Regulations Part L 2013

Project name

16 Rochester Mews

As designed

Date: Tue Oct 07 10:51:51 2014

Administrative information

Building Details

Address: Workshop Premises, 16 Rochester Mews,

LONDON, NW1 9JB

Certification tool

Calculation engine: SBEM

Calculation engine version: v5.2.d.2

Interface to calculation engine: DesignBuilder SBEM

Interface to calculation engine version: v4.2.0

BRUKL compliance check version: v5.2.d.2

Owner Details

Name: Palmhurst Group Telephone number:

Address: , ,

Certifier details

Name: Neil Ingham

Telephone number: 07736 771584

Address: 7 Rosemary Way, Cleethorpes, DN35 0SR

Criterion 1: The calculated CO₂ emission rate for the building should not exceed the target

The building does not comply with England Building Regulations Part L 2013

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	14
Target CO₂ emission rate (TER), kgCO₂/m².annum	14
Building CO ₂ emission rate (BER), kgCO ₂ /m ² .annum	15.6
Are emissions from the building less than or equal to the target?	BER > TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and the building services should achieve reasonable overall standards of energy efficiency

Values not achieving standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	U _{a-Limit}	Ua-Calc	Ui-Calc	Surface where the maximum value occurs*
Wall**	0.35	0.27	0.27	Workshop - Zone 1_W_6
Floor	0.25	0.2	0.2	Workshop - Zone 1_S_3
Roof	0.25	0.16	0.16	Workshop - Zone 1_R_5
Windows***, roof windows, and rooflights	2.2	1.25	1.25	Workshop - Zone 1_G_7
Personnel doors	2.2	1.5	1.5	Workshop - Zone 1_D_11
Vehicle access & similar large doors	1.5	-	-	"No external vehicle access doors"
High usage entrance doors	3.5	-	-	"No external high usage entrance doors"

U_{a-Limit} = Limiting area-weighted average U-values [W/(m²K)]

U_{a-Calc} = Calculated area-weighted average U-values [W/(m²K)]

U_{i-Calc} = Calculated maximum individual element U-values [W/(m²K)]

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building
m³/(h.m²) at 50 Pa	10	5

^{*} There might be more than one surface where the maximum U-value occurs.

^{**} Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

^{***} Display windows and similar glazing are excluded from the U-value check.

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	NO
Whole building electric power factor achieved by power factor correction	<0.9

1- Gas heating

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency
This system	0.8	-	0.65	-	-
Standard value	0.86	N/A	0.55	N/A	N/A
Automatic moni	toring & targeting w	ith alarms for out-of	-range values for th	is HVAC syster	n NO

1- PoU

	Water heating efficiency	Storage loss factor [kWh/litre per day]
This building	1	-
Standard value	1	N/A

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide
Α	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
E	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
Н	Fan coil units
1	Zonal extract system where the fan is remote from the zone with grease filter

Zone name	SFP [W/(I/s)]				fficiency						
ID of system type	Α	В	С	D	E	F	G	Н	1	HR efficiency	
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
Workshop - Zone 1	0.6	-	-	-	-	-	-	-	-	-	N/A

General lighting and display lighting	Lumino	us effic	acy [lm/W]	
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
Workshop - Zone 1	76	-	-	1295

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
Workshop - Zone 1	YES (+53.6%)	NO

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?	NO
Is evidence of such assessment available as a separate submission?	NO
Are any such measures included in the proposed design?	NO

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

	Actual	Notional
Area [m²]	213.9	213.9
External area [m²]	447.4	447.4
Weather	LON	LON
Infiltration [m³/hm²@ 50Pa]	5	7
Average conductance [W/K]	184	150.88
Average U-value [W/m²K]	0.41	0.34
Alpha value* [%]	15.42	55.42

^{*} Percentage of the building's average heat transfer coefficient which is due to thermal bridging

Building Use

% Area Building Type

A1/A2 Retail/Financial and Professional services

A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways

100 **B1 Offices and Workshop businesses**

B2 to B7 General Industrial and Special Industrial Groups

B8 Storage or Distribution

C1 Hotels

C2 Residential Inst.: Hospitals and Care Homes

C2 Residential Inst.: Residential schools

C2 Residential Inst.: Universities and colleges

C2A Secure Residential Inst.

Residential spaces

D1 Non-residential Inst.: Community/Day Centre

D1 Non-residential Inst.: Libraries, Museums, and Galleries

D1 Non-residential Inst.: Education

D1 Non-residential Inst.: Primary Health Care Building D1 Non-residential Inst.: Crown and County Courts

D2 General Assembly and Leisure, Night Clubs and Theatres

Others: Passenger terminals Others: Emergency services

Others: Miscellaneous 24hr activities

Others: Car Parks 24 hrs Others - Stand alone utility block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	16.31	21.14
Cooling	0	0
Auxiliary	3.19	2.13
Lighting	18.38	15.31
Hot water	1.65	1.91
Equipment*	17.75	17.75
TOTAL**	39.53	40.49

^{*} Energy used by equipment does not count towards the total for calculating emissions.

** Total is net of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO, Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m²]	177.93	84.34
Primary energy* [kWh/m²]	91.19	80.1
Total emissions [kg/m²]	15.6	14

^{*} Primary energy is net of any electrical energy displaced by CHP generators, if applicable

H	HVAC Systems Performance									
Sys	stem Type	Heat dem MJ/m2	Cool dem MJ/m2	Heat con kWh/m2		Aux con kWh/m2	Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool gen SEER
[ST	[ST] Flued radiant heater, [HS] Unitary radiant heater, [HFT] Natural Gas, [CFT] Natural Gas									
	Actual	37.6	140.3	16.3	0	3.2	0.64	0	0.8	0
	Notional	65.4	18.9	21.1	0	2.1	0.82	0		Andrews

Key to terms

Heat dem [MJ/m2] = Heating energy demand
Cool dem [MJ/m2] = Cooling energy demand
Heat con [kWh/m2] = Heating energy consumption
Cool con [kWh/m2] = Cooling energy consumption
Aux con [kWh/m2] = Auxiliary energy consumption

Heat SSEFF = Heating system seasonal efficiency (for notional building, value depends on activity glazing class)

Cool SSEER = Cooling system seasonal energy efficiency ratio

Heat gen SSEFF = Heating generator seasonal efficiency

Cool gen SSEER = Cooling generator seasonal energy efficiency ratio

ST = System type
HS = Heat source
HFT = Heating fuel type
CFT = Cooling fuel type

Key Features

The BCO can give particular attention to items with specifications that are better than typically expected.

Building fabric

Element	U _{i-Typ}	U _{i-Min}	Surface where the minimum value occurs*
Wall	0.23	0.27	Workshop - Zone 1_W_6
Floor	0.2	0.2	Workshop - Zone 1_S_3
Roof	0.15	0.16	Workshop - Zone 1_R_5
Windows, roof windows, and rooflights	1.5	1.25	Workshop - Zone 1_G_7
Personnel doors	1.5	1.5	Workshop - Zone 1_D_11
Vehicle access & similar large doors	1.5	-	"No external vehicle access doors"
High usage entrance doors	1.5	-	"No external high usage entrance doors"
U _{I-Typ} = Typical individual element U-values [W/(m²h	()]		U _{i-Min} = Minimum individual element U-values [W/(m²K)]

 $[\]ensuremath{^{\star}}$ There might be more than one surface where the minimum U-value occurs.

Air Permeability	Typical value	This building	
m³/(h.m²) at 50 Pa	5	5	