

Acoustic Survey Report Reference 145053 55 Rochester Place London NW1 9JU

Client: Charles Newbold

Performed by: Mark Stagg BSc. (Hons) AMIOA

Date of survey: 2^{nd} to 3^{rd} July 2014

Contents

Summary

1	Introduction	Page 1
2	Site Description	Page 2
3	Date and Time of Survey	Page 3
4	Weather	Page 3
5	Instrumentation	Page 3
6	Procedure	Page 3 & 4
7	Findings	Page 4
8	Planning Requirements	Page 5
9	Plant Noise Emission Criterion	Page 5 & 6
10	Plant Noise Data	Page 6
11	Calculation	Page 6
12	Conclusion	Page 7
	Map Sheet 145053/map1	
	Horizon Air Conditioning Drawing J 140422-03D)
	Marked up Horizon Air Conditioning Drawing J 1	40422-03D
	Photographs 145053/photo1-5	
	Acoustic Survey Data Sheets 145053 ASDS 1 & 2	
	Graphs 145053/g1& g2	
	Calculation sheet 145053/ACS1	
	Allaway Acoustics Data Sheet L70D	
	Calibration certificate UCRT13/1163	
	Glossary of Commonly Used Acoustic Terminolog	gy

PO Box 322, West Byfleet Surrey KT14 6YN, UK tel: 01932 352 733 fax: 01932 355 265 www.aesuk.co.uk

Acoustic Engineering Services (UK) Ltd

Acoustic Survey Report Reference 145053 55 Rochester Place NW1 9JU

Summary

A noise level survey has been carried out at 55 Rochester Place NW1 9JU, to establish the existing background noise levels at the closest locations likely to be affected by noise emissions from a proposed air-conditioning plant installation.

Measurements have been made over a typical 24-hour period at a suitable location exposed to representative levels of general background noise with the lowest recorded levels being as follows –

Location	Daytime	Evening	Night		
	07.00hrs - 19.00hrs	19.00hrs –23.00hrs	23.00hrs - 07.00hrs		
Roof Level	42.7dB LA90, 15mins	40.3dB LA90, 10mins	35.1dB LA90, 10mins		

Using the measured background figures a maximum noise emission criterion has been proposed in accordance with our conversation with The London Borough of Camden's Environmental Health Department for the proposed plant operating hours.

Maximum level of plant noise emission 08.00hrs to 20.00hrs	33dB(A)
--	---------

A calculation has been performed using manufacturer's plant and acoustic treatment data confirming that the installation will be compliant with the local authority's requirements.

All comments are subject to approval by the local authority.

Acoustic Survey Report Reference 145053 55 Rochester Place London NW1 9JU

1 Introduction

- 1.1 55 Rochester Place is a commercial building under the planning jurisdiction of the London Borough of Camden.
- 1.2 The property is currently undergoing refurbishment with part of the fit-out works being the provision of air-conditioning, necessitating the installation of two air-cooled condenser units.
- 1.3 In accordance with Camden's standard planning requirements an acoustic survey has been carried out of the existing background noise levels at the site in order to set a maximum level of plant noise emission and thus ensure compliance with the planning conditions likely to be imposed.
- 1.4 This report is prepared solely for the use of Charles Newbold. Acoustic Engineering Services (UK) Ltd accepts no responsibility for its use by any third party.
- 1.5 The report is limited to addressing only the noise aspects specifically identified within the report.

2 Site Description

- 2.1 55 Rochester Place is a three storey building situated adjacent to the junction with Wilmot Place. See the attached map sheet 145053/map1 for a general aerial view of the site and photograph 145053/photo1 for an exterior view.
- 2.2 The surrounding buildings appear to be predominantly residential with a limited number of commercial properties.
- 2.3 It is proposed that the condensers be located internally within a small plant area at second floor level served by an external louvre at the far end of the building. See Horizon Air Conditioning drawing J 140422-03D. We have been advised that the plant room will be lined with acoustically absorbent material and that the louvre will be a 300mm deep acoustic type.
- 2.4 The closest noise sensitive locations which could be affected by noise from the proposed plant are windows on the rear façade of buildings in Wilmot Place. See marked up Horizon Air Conditioning drawing J 140422-03D.
- 2.5 Numbers 1 and 2 are approximately 5m from the louvre and it is understood that they are undergoing building works to convert from office space to residential. See photograph 145053/photo2.
- 2.6 Numbers 3 and 3A Wilmot Place are residential properties backing directly onto 55 Rochester Place. The closest windows are approximately 7m from the condenser louvre. See photographs 145053/photo2, 3 and 4.
- 2.7 It was noted that there are existing air-conditioning condensers located at first floor level on the flat roof at the rear of 2 Wilmot Place. See photograph 145053/photo5. It is not clear whether these are still operational and they did not appear to be working at the time of our visits.
- 2.8 As the survey was unattended we cannot comment on the make up of the background noise throughout the whole survey period. However, at the times of our visits it was perceived as being a relatively quiet area with little disturbance from road traffic or other noise sources. (It should be noted that there were some building works being carried out at 1 and 2 Wilmot Place and within 55 Rochester Place itself although these are not believed to have affected the lowest recorded background noise levels).

3 Date and Time of Survey

3.1 The survey was carried out between approximately 11.30hrs on Wednesday 2nd July 2014 and 10.30hrs on Thursday 3rd July 2014.

4 Weather

- 4.1 Although the survey was unattended it is believed that the weather conditions were favourable, being dry, warm and sunny with little cloud cover and minimal breeze.
- 4.2 The prevailing climatic conditions were therefore suitable for the purposes of the measurements.

5 Instrumentation

- 5.1 RION NL-52 sound level meter serial number 00420711 complete with environmental protection case.
- 5.2 The instrument was calibrated before and after the survey using a RION NC-74 calibrator with no appreciable drift noted.
- 5.3 The current annual calibration certificate UCRT13/1163 is attached.

6 Procedure

6.1 The microphone was mounted on a tripod on the flat roofed area close to the proposed condenser louvre between the roof lights at 2nd floor level. See marked up Horizon Air Conditioning drawing J 140422-03D. This location was chosen as being the most appropriate accessible position at which the microphone could be mounted being exposed to the same level of background noise as the closest sensitive locations.

6 Procedure cont.

- 6.2 Measurements were made generally in accordance with British Standard 4142 "Method for rating industrial noise affecting mixed residential and industrial areas", in terms of the L_{A90} percentile and the L_{Aeq}, continuous equivalent noise level. These are defined in the enclosed Glossary of Commonly Used Acoustic Terminology.
- 6.3 Sample periods of 15 minutes were used.

7 Findings

- 7.1 Please see the enclosed Acoustic Survey Data Sheets 145053 ASDS1 and ASDS2 for details of the recorded background noise levels.
- 7.2 These results are also depicted graphically on graphs 145053/g1 and g2.
- 7.3 The background L_{A90} noise level was found to be consistent throughout the day time, falling gradually during the evening and night before rising back to day time levels.
- 7.4 The L_{Aeq} levels were found to exhibit a generally similar pattern to the L_{A90} figures with more individual peak intensity events presumably due to short term noisy building operations.
- 7.5 The lowest recorded L_{A90} background noise levels were:
- 7.51 Day time (07.00hrs 19.00hrs) 42.7dBL_{A90, 15mins}
- 7.52 Evening (19.00hrs to 23.00hrs) 40.3dBL_{A90, 15mins}
- 7.53 Night time (23.00hrs 07.00hrs) 35.1dBL_{A90, 15mins}

8 Planning Requirements

8.1 The London Borough of Camden's Unitary Development Plan provides noise criteria for mechanical plant within a residential area. It is summarised in Table E as follows –

Noise levels from plant and machinery at which planning permission will *not* be granted

Noise description & location of measurement	Period	Time	Noise level
Noise at 1m external to a sensitive façade	Day, evening and night	0000-2400	5dB(A) <la90< td=""></la90<>
Noise that has a distinguishable discrete continuous note (whine, hiss, screech, hum) at 1m external to a sensitive façade	Day, evening and night	0000-2400	10dB(A) <la90< td=""></la90<>
Noise that has distinct impulses (bangs, clicks, clatters, thumps) at 1m external to a sensitive façade	Day, evening and night	0000-2400	10dB(A) <la90< td=""></la90<>
Noise at 1m external to sensitive façade where LA90>60dB	Day, evening and night	0000-2400	55dBL _{Aeq}

9 Plant Noise Emission Criterion

- 9.1 We have been in contact with Mario Houska of Camden's Environmental Health Department who has advised that the planning requirement for condenser fans is that the noise produced must be at least 10dB below the lowest existing background noise level.
- 9.2 It is understood that the units will operate only during office hours 08.00hrs to 20.00hrs.
- 9.3 We can summarise the expected maximum allowable level of noise emission for new mechanical plant as follows Table 9.3

Maximum level of noise emission at closest noise	
sensitive location due to mechanical plant	33dB(A)
08.00hrs to 20.00hrs	

9 Plant Noise Emission Criterion cont.

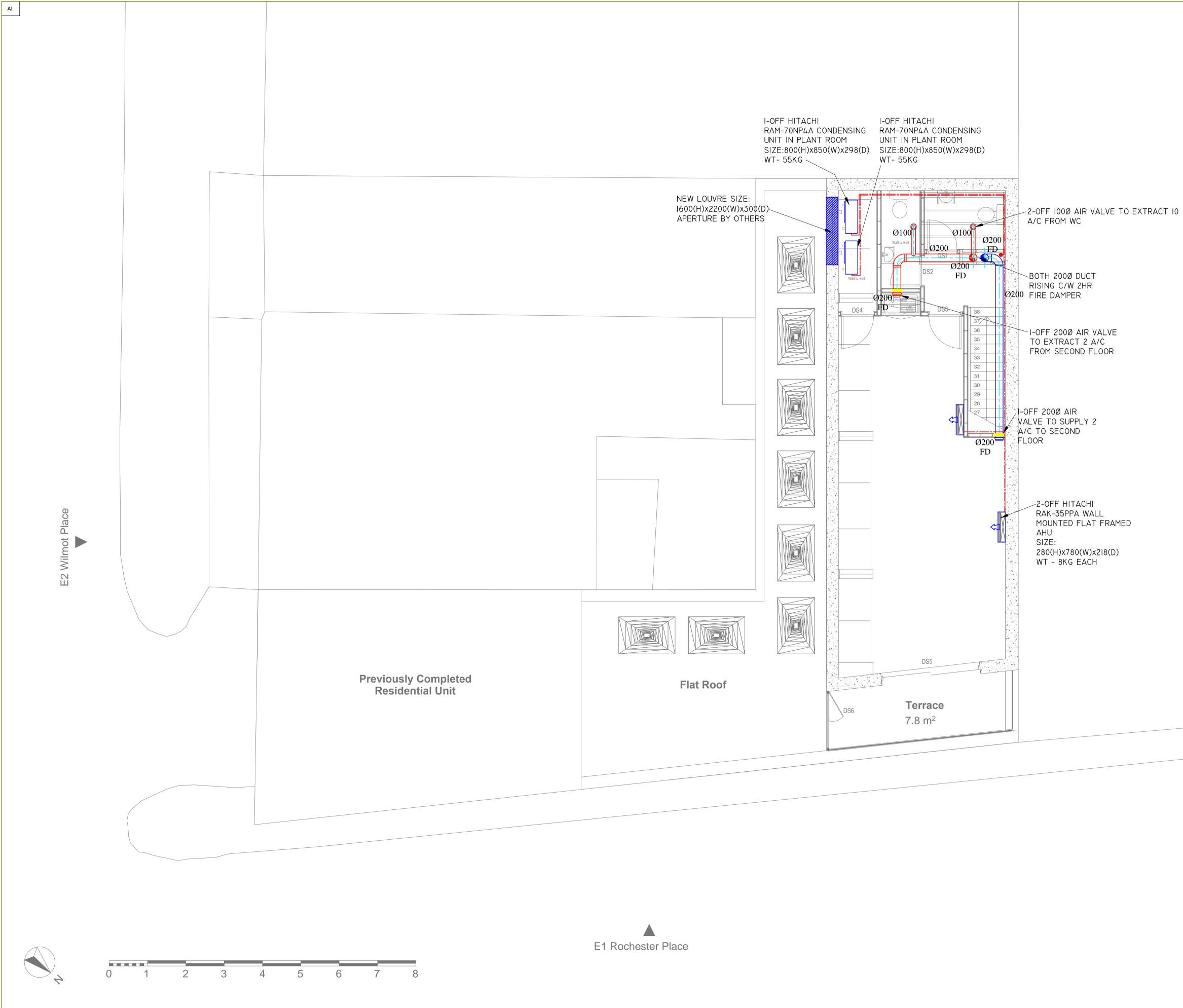
9.4 Noise break-in to 55 Rochester Place itself is outside the scope of this report and has not been considered.

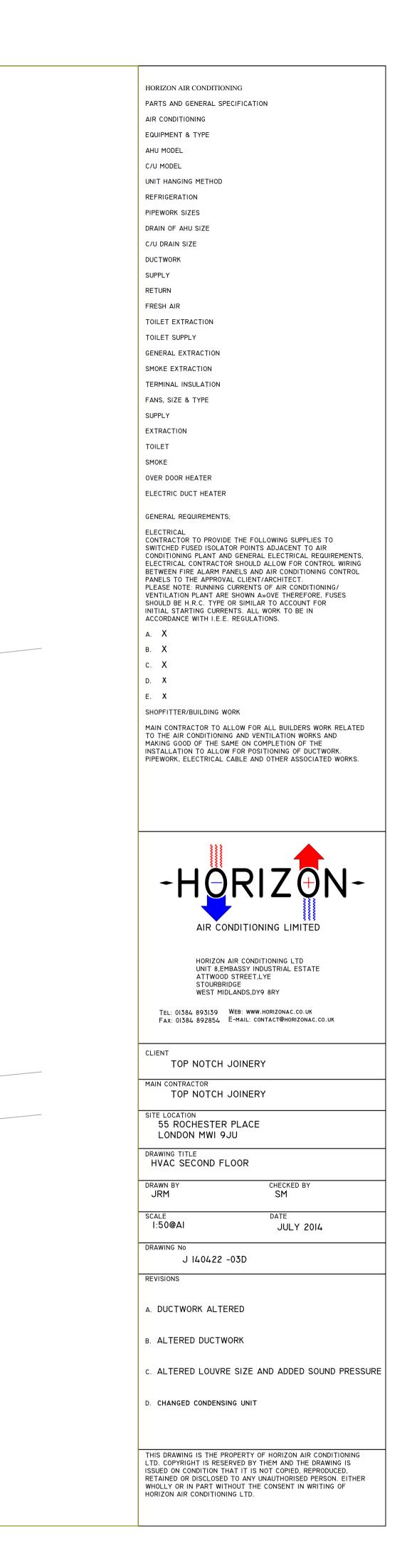
10 Plant Noise Data

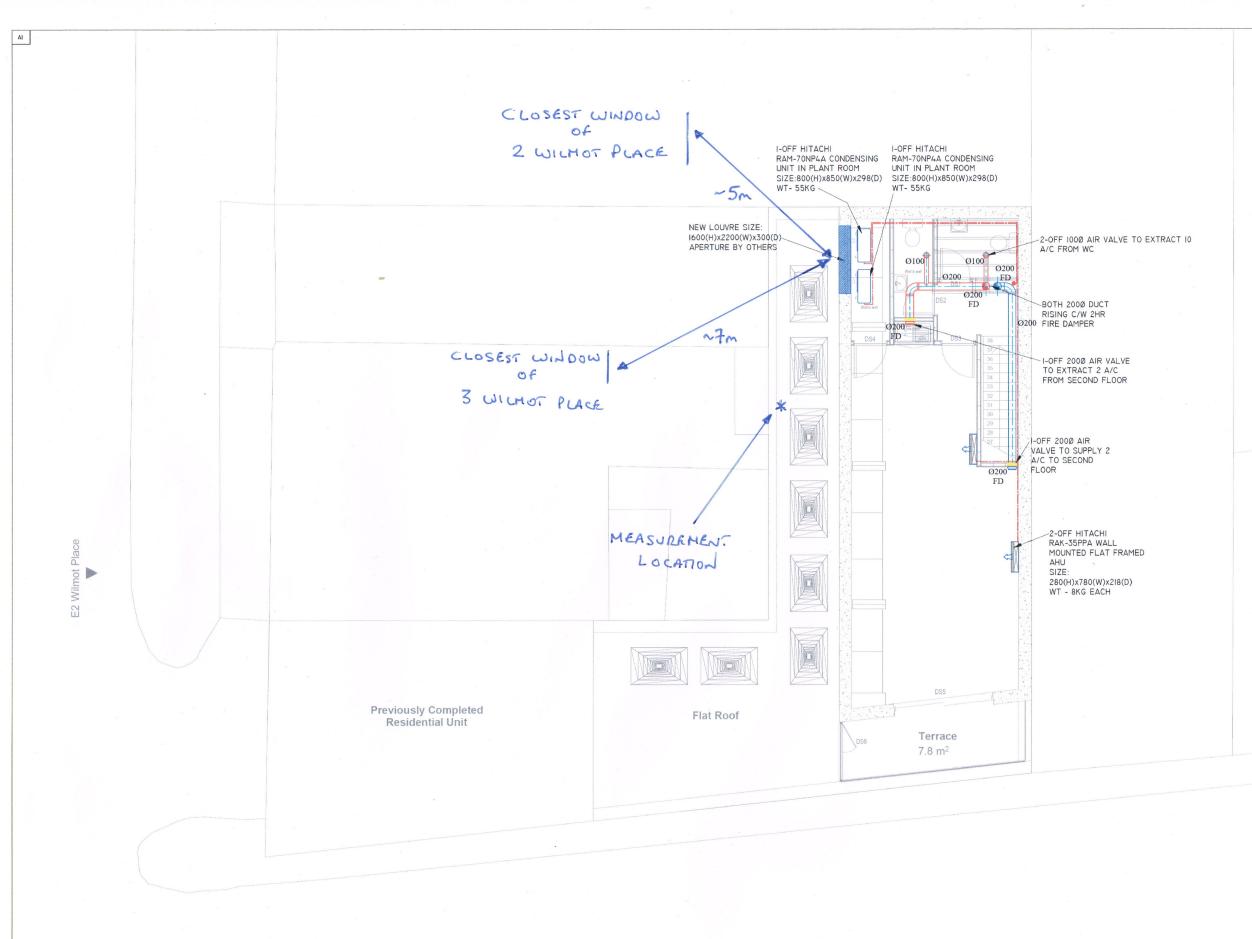
- 10.1 We have been provided with the following manufacturer's data with regard to condenser noise emissions -
- 10.2 2No. Hitachi RAM-70NP3A

10.21 Noise output –		Cooling Heating		48dB(A) @ 1m 52dB(A) @ 1m						
10.22	Frequency	Hz	63	125	250	500	1k	2k	4k	8k
	Lp Cooling	dB	43	48	49	44	42	41	36	37
	Lp Heating	dB	44	49	52	48	45	46	41	38

10.23 All noise levels are understood to be sound pressure levels measured at 1m in free field hemispherical conditions.


11 Calculation

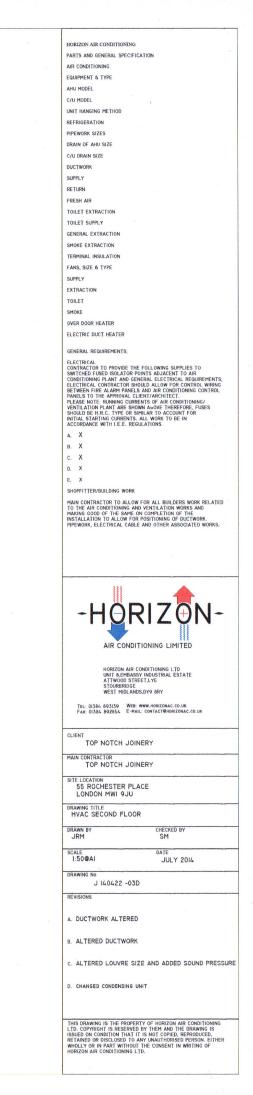

- 11.1 Calculation sheet 145053 ACS1 estimates the resultant noise level at the closest windows on the rear façade of 2 Wilmot Place due to operation of the new condensers in cooling mode as being 31dB(A). This is in line with the planning restriction. The resultant level rises to 33dB(A) with the condensers in heating mode, which is still in line with the planning requirement.
- 11.2 The calculation incorporates acoustic louvre transmission loss data from Allaway Acoustics data sheet attached and typical textbook data for absorbent wall lining materials.

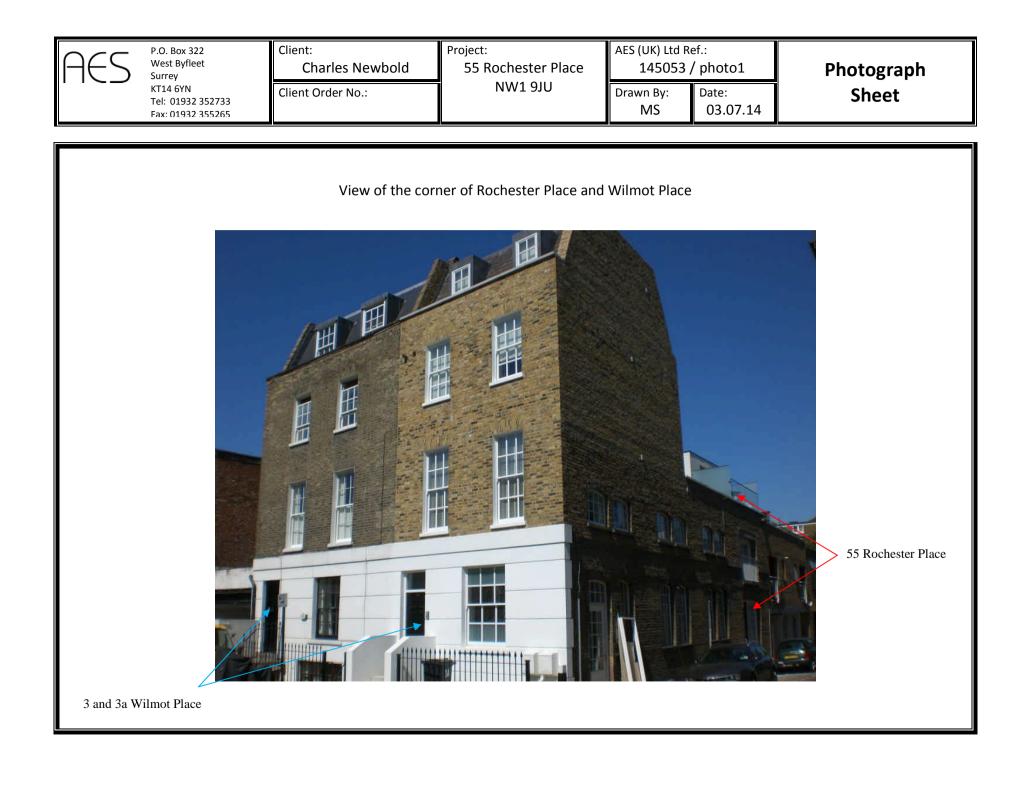

12 Conclusion

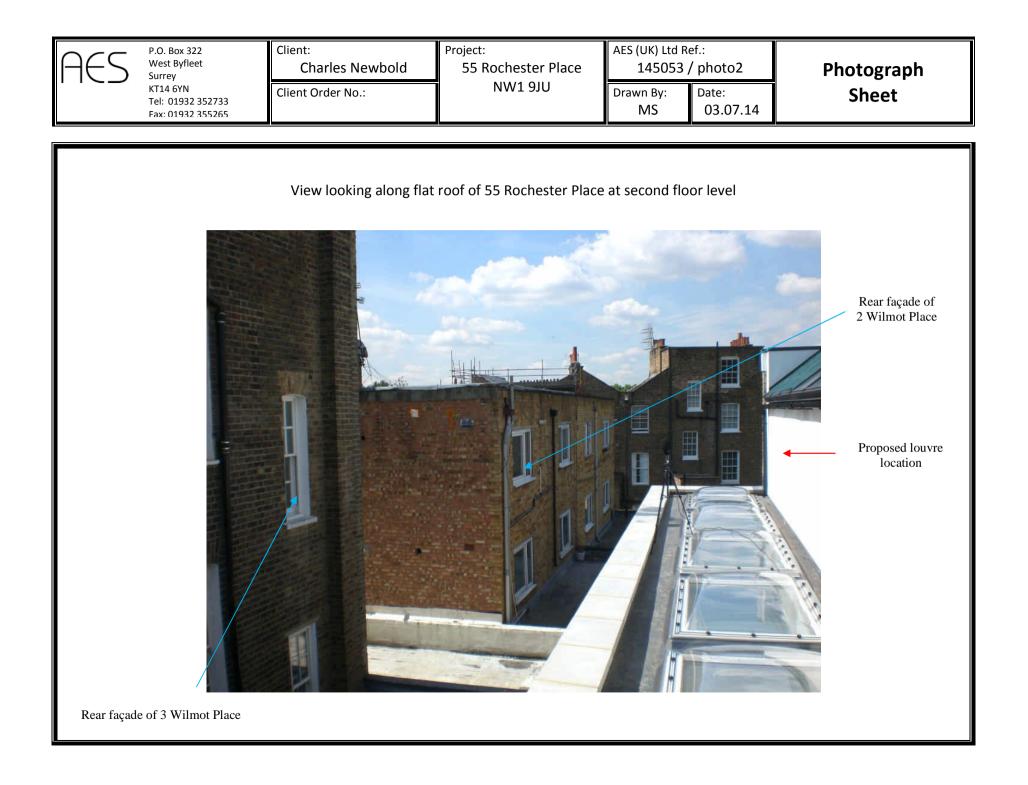
- 12.1 A background noise level survey has been carried out in order to establish the existing environmental noise climate at relevant locations close to a proposed air-conditioning condenser installation at 55 Rochester Place, London NW1 9JU.
- 12.2 A plant noise emission criterion has been set based on the results of the measurements and taking into account the planning requirements of the Local Authority.
- 12.3 A calculation has been performed based on manufacturer's noise output data, and provisional drawings of the proposed installation which demonstrates compliance with the planning restriction.
- 12.4 All findings are subject to local authority approval and it is advised that no works should be carried out until such approval is received.

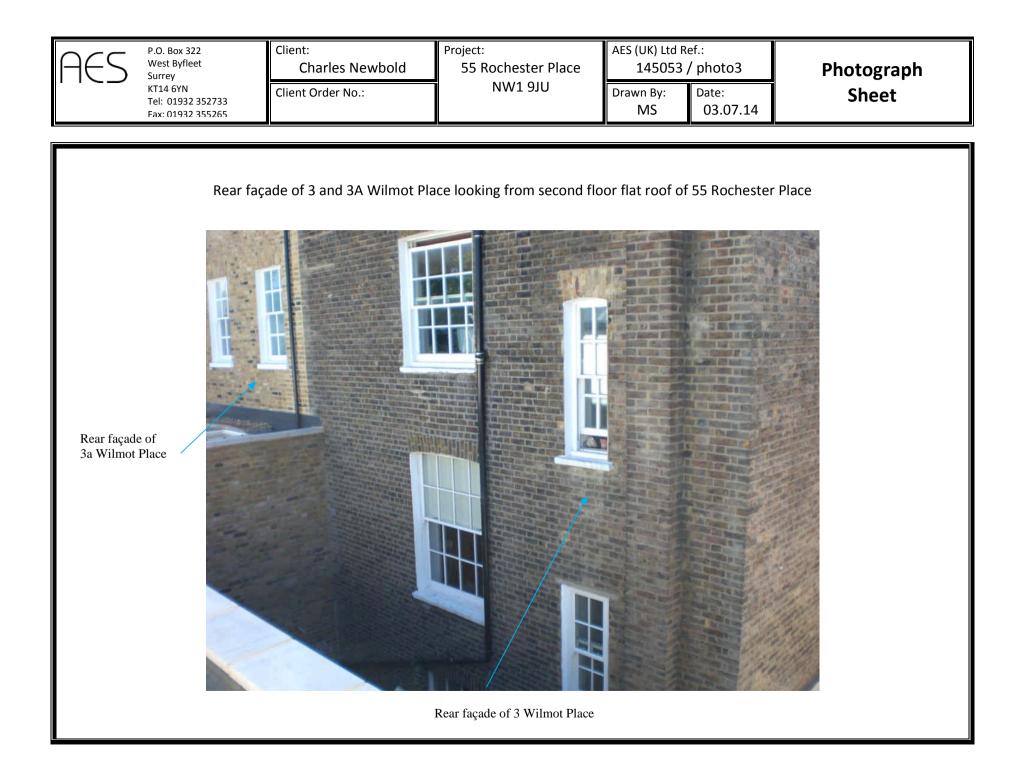
AES	P.O. Box 322 West Byfleet Surrey KT14 6YN Tel: 01932 352733 Fax: 01932 355265	Client: Charles Newbold Client Order No.:	Project: 55 Rochester Place NW1 9JU	AES (UK) Ltd 145053 Drawn By: MS	Ref.: / map1 Date: 03.07.14	Map Sheet
			Aerial View of Site			
			7+8			
55 Rocheste Place	r					
Closest windows or					1	
rear façade o Wilmot Plac	pf ee					
	2 1945		ୁଇଥିଧାୟ ଓଡେଖୁନ ଅନ୍ତର୍କୁତ ଅଥିଧି ମିହର ବିର୍ଦ୍ଧାନୀନମ୍ମାଣୀon Group Imagery D	ate: 7//19/2013 51°32'37.6	and the second s	39 m eye at 110 m O

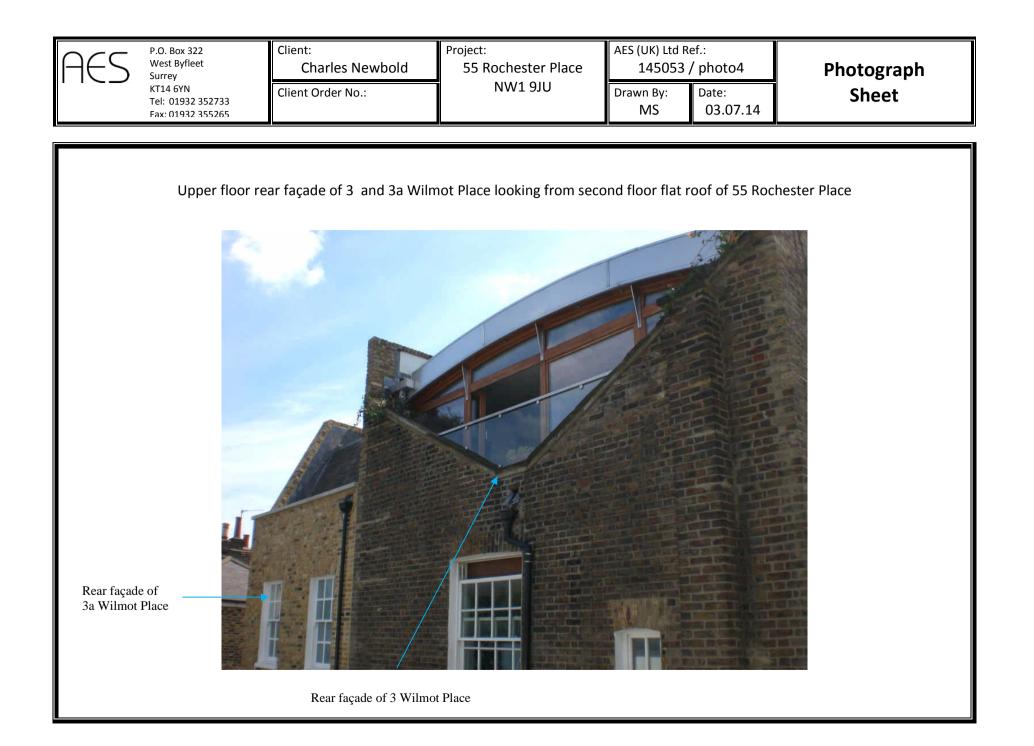
E1 Rochester Place


ия жи жи жи на <u>наконскителистики</u> 0 1 2


4


3


5


6 7 8

PO Box 322, West Byfleet Surrey KT14 6YN, UK tel: 01932 352 733 fax: 01932 355 265 www.aesuk.co.uk

Acoustic Engineering Services (UK) Ltd

ACOUSTIC SURVEY DATA SHEET 145053 ASDS1

Client: Charles Newbold

Date of Survey: 2nd & 3rd July 2014

Project: 55 Rochester Place NW1 9JU

Description: L_{A90} background noise levels

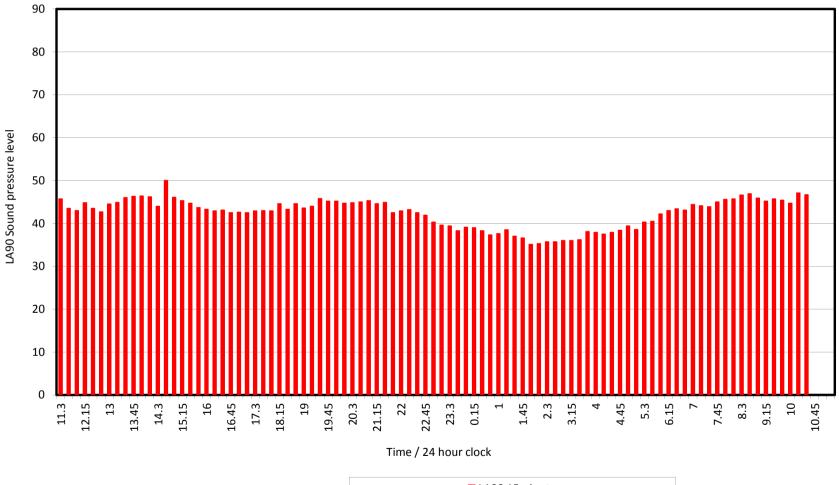
Time	L _{A90}						
24-hour	dB	24-hour	dB	24-hour	dB	24-hour	dB
11.30	45.7	17.45	43.0	0.00	39.1	6.15	43.0
11.45	43.5	18.00	42.9	0.15	39.0	6.30	43.4
12.00	43.0	18.15	44.6	0.30	38.3	6.45	43.1
12.15	44.8	18.30	43.3	0.45	37.3	7.00	44.4
12.30	43.5	18.45	44.6	1.00	37.6	7.15	44.1
12.45	42.7	19.00	43.6	1.15	38.5	7.30	43.9
13.00	44.5	19.15	44.0	1.30	37.0	7.45	45.0
13.15	44.9	19.30	45.8	1.45	36.6	8.00	45.6
13.30	46.0	19.45	45.2	2.00	35.1	8.15	45.7
13.45	46.3	20.00	45.2	2.15	35.3	8.30	46.6
14.00	46.4	20.15	44.7	2.30	35.7	8.45	46.9
14.15	46.2	20.30	44.8	2.45	35.7	9.00	45.9
14.30	44.0	20.45	45.0	3.00	36.0	9.15	45.2
14.45	50.0	21.00	45.3	3.15	36.0	9.30	45.7
15.00	46.1	21.15	44.6	3.30	36.2	9.45	45.4
15.15	45.3	21.30	44.9	3.45	38.1	10.00	44.7
15.30	44.7	21.45	42.5	4.00	37.9	10.15	47.1
15.45	43.7	22.00	42.9	4.15	37.5	10.30	46.7
16.00	43.3	22.15	43.2	4.30	37.9	10.45	
16.15	42.9	22.30	42.5	4.45	38.4	11.00	
16.30	43.1	22.45	41.9	5.00	39.4	11.15	
16.45	42.7	23.00	40.3	5.15	38.6		
17.00	42.6	23.15	39.6	5.30	40.3		
17.15	42.8	23.30	39.4	5.45	40.5		
17.30	42.9	23.45	38.3	6.00	42.2		

PO Box 322, West Byfleet Surrey KT14 6YN, UK tel: 01932 352 733 fax: 01932 355 265 www.aesuk.co.uk

Acoustic Engineering Services (UK) Ltd

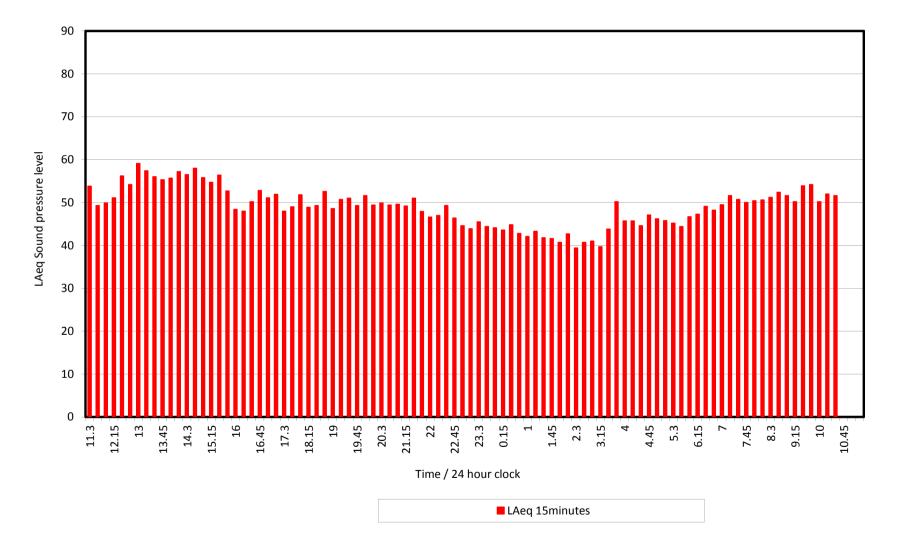
ACOUSTIC SURVEY DATA SHEET 145053 ASDS2

Client: Charles Newbold


Date of Survey: 2nd & 3rd July 2014

Project: 55 Rochester Place NW1 9JU

Description: L_{Aeq} background noise levels


Time	L _{Aeg}	Time	L _{Aeq}	Time	L _{A90}	Time	L _{Aeq}
24-hour	dB	24-hour	dB	24-hour	dB	24-hour	dB
11.30	53.8	17.45	49.0	0.00	44.1	6.15	47.3
11.45	49.3	18.00	51.8	0.15	43.6	6.30	49.1
12.00	49.9	18.15	48.9	0.30	44.8	6.45	48.2
12.15	51.1	18.30	49.3	0.45	42.8	7.00	49.5
12.30	56.2	18.45	52.6	1.00	42.1	7.15	51.6
12.45	54.2	19.00	48.6	1.15	43.3	7.30	50.7
13.00	59.1	19.15	50.7	1.30	41.8	7.45	50.0
13.15	57.4	19.30	51.0	1.45	41.6	8.00	50.4
13.30	56.0	19.45	49.3	2.00	40.7	8.15	50.6
13.45	55.3	20.00	51.6	2.15	42.7	8.30	51.2
14.00	55.7	20.15	49.4	2.30	39.4	8.45	52.4
14.15	57.2	20.30	49.9	2.45	40.7	9.00	51.6
14.30	56.5	20.45	49.4	3.00	41.0	9.15	50.2
14.45	58.0	21.00	49.6	3.15	39.7	9.30	53.9
15.00	55.8	21.15	49.2	3.30	43.8	9.45	54.2
15.15	54.7	21.30	51.0	3.45	50.2	10.00	50.2
15.30	56.4	21.45	47.9	4.00	45.7	10.15	52.0
15.45	52.7	22.00	46.6	4.15	45.7	10.30	51.6
16.00	48.4	22.15	47.0	4.30	44.6	10.45	
16.15	48.0	22.30	49.3	4.45	47.1	11.00	
16.30	50.2	22.45	46.4	5.00	46.2	11.15	
16.45	52.8	23.00	44.6	5.15	45.8		
17.00	51.1	23.15	43.9	5.30	45.2		
17.15	51.9	23.30	45.5	5.45	44.4		
17.30	48.0	23.45	44.4	6.00	46.7		

LA90 15minutes

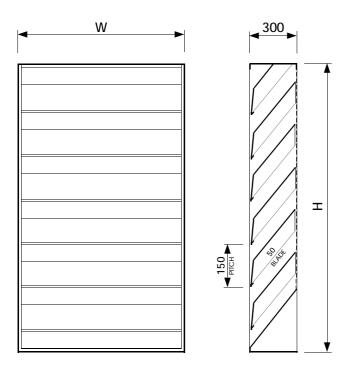
Acoustic Engineering Services (UK) Ltd

ACOUSTIC CALCULATION SHEET 145053 ACS1

Client: Charles Newbold

Date: 03.03.2014

Project: 55 Rochester Place NW1 9JU


Description: Calculation of resultant noise level at closest windows of 2 Wilmot Place

Frequency / Hz									
	dB(A)	63	125	250	500	1k	2k	4k	8k
Cooling									
Calculate sound power level									
Hitachi RAM-70NP3A Lp@ 1m		43	48	49	44	42	41	36	37
2No.		+3	+3	+3	+3	+3	+3	+3	+3
Convert Lp to Lw hemispherical radiation		+8	+8	+8	+8	+8	+8	+8	+8
Total sound power level Lw of plant		54	59	60	55	53	52	47	48
Calculate plant room noise 10m ² of absorbent lining									
Reverberant Lp=Lw+10log4/R _c					+				
	-								
Direct Lp=Lw+10logQ/4πr ²									
Overall effect		+4	+2	-1	-1	-1	-1	-1	-1
Plant room Lp		58	61	59	54	52	51	46	47
Calculate noise transference to closest window									
+10log louvre area (2.2m x 1.6m)		+5	+5	+5	+5	+5	+5	+5	+5
-20log distance (4m)		-12	-12	-12	-12	-12	-12	-12	-12
-R 300mm deep acoustic louvre		-5	-6	-8	-11	-18	-25	-20	-16
Reverberant to direct field correction		-6	-6	-6	-6	-6	-6	-6	-6
Directivity 1/4 sphere		-5	-5	-5	-5	-5	-5	-5	-5
Façade correction		+3	+3	+3	+3	+3	+3	+3	+3
Resultant with plant in cooling mode	31	38	40	36	28	19	11	11	16
Heating	-								
Calculate sound power level									
Hitachi RAM-70NP3A Lp@ 1m		44	49	52	48	44	46	41	38
2No.		+3	+3	+3	+3	+3	+3	+3	+3
Convert Lp to Lw hemispherical radiation		+8	+8	+8	+8	+8	+8	+8	+8
Total sound power level Lw of plant		55	60	63	59	55	57	52	49
Calculate plant room noise 10m ² of absorbent lining									
Reverberant Lp=Lw+10log4/R _c									
Direct Lp=Lw+10logQ/ $4\pi r^2$									
Overall effect		+4	+2	-1	-1	-1	-1	-1	-1
Plant room Lp		59	62	62	58	-1 54	-1 56	-1 51	48
			02	02	50	51		51	10
Calculate noise transference to closest window									
+10log louvre area (2.2m x 1.6m)		+5	+5	+5	+5	+5	+5	+5	+5
-20log distance (4m)		-12	-12	-12	-12	-12	-12	-12	-12
-R 300mm deep acoustic louvre		-5	-6	-8	-11.00	-18.00	-25.00	-20.00	-16.0
Reverberant to direct field correction		-6	-6	-6	-6	-6	-6	-6	-6
Directivity 1/4 sphere		-5	-5	-5	-5	-5	-5	-5	-5
Façade correction		+3	+3	+3	+3	+3	+3	+3	+3
Resultant with plant in heating mode	33	39	41	39	32	9	16	16	17
	1		I	I	1	I	1		

DATA SHEET L70D ACOUSTIC LOUVRE MODEL AL3015

THIS IS NOT A STAND ALONE DOCUMENT AND UNLESS REFERRED TO IN A DATED EQUIPMENT SCHEDULE IS SUBJECT TO REVISION WITHOUT NOTICE.

DIMENSIONS

SPECIFICATION

LOUVRES ARE CONSTRUCTED FROM FOLDED SHEET METAL AND HAVE A SERIES OF HORIZONTAL BLADES CONTAINED WITHIN A FOUR SIDED EXTERNAL FRAME.

THE MATERIAL OF CONSTRUCTION MAY BE PRE-GALVANISED STEEL (SUFFIX G) OR ALUMINIUM (SUFFIX A).

LOUVRE BLADES HAVE LOWER FACES OF PERFORATED SHEET METAL, CONTAINING A FIBROUS SOUND ABSORBENT INFILL THAT IS NON-SHEDDING, NON-COMBUSTIBLE, NON-HYGROSCOPIC AND CHEMICALLY INERT. THE INFILL IS FACED WITH GLASS CLOTH TO MINIMISE FIBRE MIGRATION.

GALVANISED BIRD SCREENS ARE FITTED AS STANDARD

CASING SIDES ARE PROVIDED WITH 10mm DIA HOLES FOR FIXING ADJACENT SECTIONS TOGETHER, OR FIXING THE LOUVRE INTO THE BUILDERSWORK OPENING.

LOUVRES ARE SUPPLIED SELF FINISH AS STANDARD OR WITH AN OPTIONAL POLYESTER POWDER FINISH (SUFFIX P).

NOTES

THIS DATA SHEET IS TO BE READ IN CONJUNCTION WITH THE EQUIPMENT SCHEDULE.

WIDTH (W) AND HEIGHT (H) DIMENSIONS GIVEN ON THE EQUIPMENT SCHEDULE ARE AS MANUFACTURED. ADEQUATE CLEARANCE MUST BE ALLOWED WHEN CON-STRUCTING THE BUILDERSWORK OPENING, A MINIMUM OF 10 mm IS RECOM-MENDED.

LOUVRES WILL BE SUPPLIED WITHOUT SUPPORT STEELWORK, CLEATS, BRACKETS, FIXINGS, FLASHING, MASTIC, OR OTHER SUCH ITEMS, UNLESS OTHERWISE STATED.

EXCESSIVELY LARGE OR HEAVY LOUVRES MAY BE MANUFACTURED IN MATING SECTIONS FOR EASE OF HANDLING.

LOUVRES ARE MANUFACTURED TO STANDARD SHEET METAL TOLERANCES OF +/- 3 mm.

STANDARD SIZES

THERE ARE NO STANDARD SIZES. ALL LOUVRES ARE MADE TO ORDER.

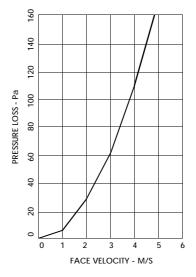
SUFFIX

THE SUFFIX DEFINES ADDITIONAL FEATURES OR SPECIAL CONSTRUCTIONAL DETAILS

- A ALUMINIUM CONSTRUCTION.
- G GALVANISED STEEL CONSTRUCTION
- P POLYESTER POWDER COAT.
- X SPECIAL CONSTRUCTION REFER TO EQUIPMENT SCHEDULE FOR DETAILS.

WEIGHT

LOUVRE WEIGHTS ARE GIVEN ON THE EQUIPMENT SCHEDULE. APPROXIMATELY:


52kg/M² GALVANISED CONSTRUCTION 37kg/M² ALUMINIUM CONSTRUCTION

ACOUSTIC PERFORMANCE

SOUND REDUCTION INDEX B.S. 2750/3-1980 (ISO 140/3 -1978)

63	125	250	500	1000	2000	4000	8000	HZ
5	6	8	11	18	25	20	16	dB

PRESSURE LOSS

CERTIFICATE **OF CALIBRATION**

Date of Issue: 08 October 2013

Telephone 01908 642846 Fax 01908 642814 E-Mail: info@noise-and-vibration.co.uk Web: www.noise-and-vibration.co.uk

Acoustics Noise and Vibration Ltd trading as ANV Measurement Systems

ANV Measurement Systems Beaufort Court 17 Roebuck Way Milton Keynes MK5 8HL

Certificate Number: UCRT13/1163

Page	1	of	2	Pages	
Approv	ed Si	gnatory			
Ň	NK		/		
M. Bre	slin [1	K. Mi	stry[]	

Customer

Issued by:

ANV Measurement Systems Beaufort Court 17 Roebuck Way Milton Keynes MK5 8HL

Order No. Description	ANV MS HIRE	ter / Pre-amn / N	Vicropho	ne / Associa	ated C	alibrator	
Identification	Manufacturer	ound Level Meter / Pre-amp / Microphone / Associate Ianufacturer Instrument Type				Serial No. / Version	
	Rion	Sound Level N	/leter	NL-52		00420711	
	Rion	Firmware				1.5	
	Rion	Pre Amplifier N		NH-25		10744	
	Rion	Microphone UC		UC-59		03508	
	Brüel & Kjær	Calibrator 4231			3002998		
		Calibrator adaptor type if applicable UC 0210					
Performance Class	1						
Test Procedure	TP 2.SLM 61672-3 TPS-49						
	Procedures from	EC 61672-3:200	6 were use	ed to perform	the pe	eriodic tests.	
Type Approved to IEC	61672-1:2002	YES Ap	Approval Number		21.2	21.21 / 13.02	
	If YES above there is public evidence that the SLM has successfully completed the applicable pattern evaluation tests of IEC 61672-2:2003						
Date Received	04 October 2013	1	ANV	Job No.	UKA	S13/10097	
Date Calibrated	08 October 2013	i					

The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2006, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2003, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2002, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1:2002.

Previous Certificate	Dated	Certificate No.	Laboratory	
	Initial Calibration			
This certificate is issued	I in accordance with the	laboratory accreditation	requirements of the United Kingdom	
Accreditation Service. It pr	rovides traceability of meas	surement to the SI system	of units and/or to units of measurement	
realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not				
be reproduced other than	in full, except with the prior	written approval of the iss	uing laboratory.	

CERTIFICATE OF CALIBRATION

UKAS Accredited Calibration Laboratory No. 7623

Certificate Number

UCRT13/1163

2

Page

of 2 Pages

Sound Level Mete	er Instruction manual a	and data used to ad	ust th	e sound leve	els ind	icated.		
SLM instruction ma								
SLM instruction ma	nual ref / issue	11-03						
SLM instruction ma	nual source	Manufacture	r					
Internet download o	late if applicable	N/A						
Case corrections av	vailable	Yes						
Uncertainties of cas	se corrections	Yes						
Source of case data	а	Manufacture	r					
Wind screen correct	tions available	Yes						
Uncertainties of win	nd screen corrections	Yes						
Source of wind scre	een data	Manufacture	r					
Mic pressure to free	e field corrections	Yes						
Uncertainties of Mic	to F.F. corrections	Yes						
Source of Mic to F.I	F. corrections	Manufacture	r					
Total expanded und	certainties within the requ	irements of IEC 6167	2-1:20	02 Yes				
Specified or equival	lent Calibrator	Specified						
Customer or Lab Ca	alibrator	Lab Calibrato	r					
Calibrator adaptor t	ype if applicable	UC 0210						
Calibrator cal. date		07 October 20	13					
Calibrator cert. num	nber	UCRT13/1160						
Calibrator cal cert is	ssued by	ANV Measurement	Syste	ms				
Calibrator SPL @ S		94.12	dB		eferen	ce sound pre	ssure lev	vel
Calibrator frequenc	1000.00	Hz	Calibration of					
Reference level ran		25 - 130	dB					
Accessories used o	or corrected for during ca	libration - Exten	sion C	able & Wind	Shield	WS-15		
1	extension cable is listed							
Environmental cond		Start		End	7			
	Temperature	23.22		23.23	±	0.20 °C	٦	
	Humidity	56.6		55.1		3.00 %RH		
	Ambient Pressure			101.32	+	0.03 kPa	4	
Bosponso to opena	iated Calibrator at the en	-	c abou		<u> </u>	0.00 11 4		
-						01.1		
Initial indicate				ndicated level		94.1	dB	
	he associated calibrator					0.10	dB	
Self Generated Noi		ntly not performed by I	his La		(4)			
Microphone installe			N/A		A Weighting			
Uncertainty of the m	nicrophone installed self	generated noise ±		N/A	dB			
Microphone replaced with electrical input device - UR = Under Range indicated								
Weighting A C Z								
	13.6 dB UR	18.3 dB	UR	23.5	dB	UR		
Uncertainty of the e	lectrical self generated n	oise ±		0.12	dB			
The reported expan	nded uncertainty is based	on a standard uncert	ainty n	nultiplied by a	covera	age factor k =	2, provid	lina

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

For the test of the frequency weightings as per paragraph 12. of IEC 61672-3:2006 the Actual microphone free field response was used.

The acoustical frequency tests of a frequency weighting as per paragraph 11 of IEC 61672-3:2006 were carried out using an electrostatic actuator.

END

Calibrated by: A Albans Additional Comments None

Acoustic Engineering Services (UK) Ltd

GLOSSARY OF COMMONLY USED ACOUSTIC TERMINOLOGY

Decibel (dB)	Unit of measurement of sound. The human ear has an approximately logarithmic response to sound over a large dynamic range and hence a logarithmic scale is used to describe sound levels.					
Sound power level (Lw)	This is an inherent property of the noise source and is independent of its surroundings. It is the decibel measure of the ratio of power output in watts to a reference power of 1ρ W.					
Sound pressure level (Lp)	This is the level of sound pressure as measured at a particular point in space by a sound level meter. It is the decibel measure of the ratio of the level of pressure generated by the sound compared to a standard reference pressure (20μ Pa). It is dependent on the acoustic properties of the surroundings.					
Octave and Third Octave Bands	The human ear is sensitive to sound over a range of frequencies – approximately 20Hz to 20kHz. To define the frequency content of a sound the spectrum is divided into frequency bands and a sound pressure measurement made at each band. The most commonly used frequency bands are full octave bands in which the mid frequency of each band is twice that of the band below it. For finer analysis each full octave band may be split into three bands thus producing third octaves.					
"A" Weighting	In an attempt to replicate the inconsistent response of the human ear to different frequencies the "A" weighting is applied to provide a single figure index of the subjective loudness of a sound.					
Noise Rating (NR) Noise Criteria (NC)	Sets of curves giving a single figure rating by limiting values of sound pressure level in each full octave band					
L _{A90, T}	The A-weighted sound pressure level exceeded for ninety per cent of the measurement time period, T. It is used in British Standard 4142:1997 as a measure of background noise level.					
L _{A10, T}	The A-weighted sound pressure level exceeded for ten percent the measurement time period, T. It is widely used to measure traf noise.					
L _{Aeq, T}	The A-weighted equivalent continuous sound level. It is defined as the steady sound level that would contain the same quantity of acoustic energy as the time varying source over the measurement					

time period, T.