



CLIENT: Sudaj Ltd

Sustainability and Energy Statement

FOR THE PROPOSED

**Residential Units** 

at

82 Guildford Street Bloomsbury London WC1N 1DF

01 August 2014

BSE3d Consulting Engineers Ltd 231 Vauxhall Bridge Road, London, SW1V 1EH t:+44(0) 20 7193 7146 e: mail@bse3d.com | www.bse3d.com



#### CONFIDENTIAL INFORMATION

This document is made available to the recipient on the express understanding that the information contained in it be regarded and treated by the recipient as strictly confidential. The contents of this document are intended only for the sole use of the recipient and should not be disclosed or furnished to any other person.

#### DISCLAIMER OF LIABILITY

The information contained in this document is provided for the sole use of the recipient and no reliance should be placed on the information by any other person. In the event that the information is disclosed or furnished to any other person, the BSE3d Limited accepts no liability for any loss or damage incurred by that person whatsoever as a result of using the information.

#### COPYRIGHT©

All rights reserved. No part of the content of this document may be reproduced, published, transmitted or adapted in any form or by any means without the written permission of the BSE3d Limited.



#### Project reference: P3124

#### ISSUE RECORD:

| DATE<br>ISSUED | ISSUE STATUS       | REVISION | CHECKED/<br>AUTHORISED |
|----------------|--------------------|----------|------------------------|
| 01/08/2014     | Final for Planning | -        | P Todd                 |
|                |                    |          |                        |
|                |                    |          |                        |
|                |                    |          |                        |
|                |                    |          |                        |
|                |                    |          |                        |
|                |                    |          |                        |

#### BSE3d QUALITY CONTROL:

|                             | Name                                              | Date       |
|-----------------------------|---------------------------------------------------|------------|
| Author:                     | P. Todd BEng (Hons) C.Eng MCIBSE, MIET, BREEAM AP | 18/06/2014 |
| Edited by:                  | R. Mistry MSC(Hons) LCC LCEA CACI                 | 15/07/2014 |
| Checked by:                 | F. Pelegrin BSC(Hons) AMIMechE                    | 15/07/2014 |
| Authorised for first issue: | P.Todd BEng (Hons) C.Eng MCIBSE, BREEAM AP        | 15/07/2014 |





BSE 3D are a Building Services, Energy and Environmental, multi-disciplinary consultancy consisting of engineers, energy consultants, environmental experts, BREEAM assessors, BIM specialists and BREEAM accredited professionals.



| CON | TENTS                                                                                                                                                                                                                                                                                                               | Page<br>No.                    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 1.  | EXECUTIVE SUMMARY                                                                                                                                                                                                                                                                                                   | 3                              |
| 2.  | INTRODUCTION                                                                                                                                                                                                                                                                                                        | 5                              |
|     | 2.1 Proposed development                                                                                                                                                                                                                                                                                            | 5                              |
|     | 2.2 Camden Council Sustainability Requirements and Policies                                                                                                                                                                                                                                                         | 5                              |
|     | <ul> <li>2.2.1 Camden Council – Planning Guidance Existing Buildings</li> <li>2.2.2 The London Plan</li> <li>2.2.3 Historic and Listed Buildings</li> <li>2.2.4 BREEAM Domestic Refurbishment Pre- Assessment</li> </ul>                                                                                            | 5<br>7<br>7<br>8               |
| 3.  | PASSIVE AND ENERGY EFFICIENT DESIGN STRATEGIES                                                                                                                                                                                                                                                                      | 9                              |
|     | 3.1 Building form and design                                                                                                                                                                                                                                                                                        | 9                              |
|     | 3.2 Building Fabric Performance                                                                                                                                                                                                                                                                                     | 9                              |
|     | <ul> <li>3.2.1 Air permeability and Thermal Bridging</li> <li>3.2.2 Limiting solar gain in summer</li> <li>3.3.1 Principles</li> <li>3.3.2 Heating, Ventilation and Cooling</li> <li>3.3.3 Domestic Hot &amp; Cold Water</li> <li>3.3.4 Lighting</li> <li>3.3.5 Enhanced User Understanding and Controls</li> </ul> | 9<br>9<br>10<br>10<br>10<br>10 |
| 4.  | LOW AND ZERO CARBON TECHNOLOGIES                                                                                                                                                                                                                                                                                    | 11                             |
| 5.  | Air source heat pumps                                                                                                                                                                                                                                                                                               | 11                             |
|     | 5.1 Technology explained:                                                                                                                                                                                                                                                                                           | 11                             |
|     | 5.2 Potentials for Guildford Street Development                                                                                                                                                                                                                                                                     | 12                             |
|     | 5.2.1 Natural Resources<br>5.2.2 Technical feasibility                                                                                                                                                                                                                                                              | 12<br>12                       |
| 6.  | Solar Thermal energy                                                                                                                                                                                                                                                                                                | 12                             |
|     | 6.1 Technology explained:                                                                                                                                                                                                                                                                                           | 12                             |
|     | 6.2 Potential for Guilford Street Development                                                                                                                                                                                                                                                                       | 12                             |
|     | 6.2.1 Natural Resources<br>6.2.2 Technical feasibility                                                                                                                                                                                                                                                              | 12<br>13                       |
| 7.  | Photovoltaic (PV) panels                                                                                                                                                                                                                                                                                            | 13                             |
|     | 7.1 Technology explained:                                                                                                                                                                                                                                                                                           | 13                             |
|     | 7.2 Potentials for Guilford Street Development                                                                                                                                                                                                                                                                      | 14                             |
|     | 7.2.1 Natural Resources<br>7.2.2 Technical feasibility                                                                                                                                                                                                                                                              | 14<br>14                       |



| 8. | BREEAM Domestic Refurbishment                             | 14 |
|----|-----------------------------------------------------------|----|
|    | 8.1 Management                                            | 14 |
|    | 8.2 Health and Wellbeing                                  | 15 |
|    | 8.3 Energy                                                | 15 |
|    | 8.4 Water                                                 | 17 |
|    | 8.5 Materials                                             | 18 |
|    | 8.6 Waste                                                 | 19 |
|    | 8.7 Pollution                                             | 19 |
| 9. | Conclusion 20                                             |    |
|    | 9.1 BREEAM Domestic Refurbishment Pre- Assessment Results | 20 |

### **APPENDIX A Outline Design Drawings**

### **APPENDIX B SAP Assessment Calculations**



#### 1. EXECUTIVE SUMMARY

This report has been prepared on behalf of Sudaj Ltd to present and summarise the work of the design team exploring the energy options and strategies for the proposed development of 4 residential units on the site currently known as 82 Guildford Street, Bloomsbury, London WC1N 1DF.

The proposed scheme is a reconfiguration of the existing building within the constraints of an existing listed building and whilst the target is to strive to achieve a BREEAM Domestic Refurbishment rating of Very Good, the team need to consider the building fabric and associated services and use best endeavours to achieve the best practical overall rating. Very Good may prove unachievable due to the limitations of the listed building.

The pre-assessment carried out for the development predicts a score of 51.55 credits, which does not quite achieve the required 55 credits for BREEAM Domestic Refurbishment 'Very Good'.

The chart on the following page provides a summary of the CO2 savings achieved by the proposed change of use over the development with existing building fabric and systems. The 19.72% reduction in CO2 emissions reflects regulated energy use only, in accordance with Part L Building Regulations. Unregulated energy use is not taken into account in the calculation of BREEAM credits (e.g. plug-in load and appliances).

The number of credits obtained in the BREEAM pre- assessment reflects the client and design team's aspirations in incorporating as many sustainability measures as possible.

#### ENERGY STATEMENT

The figures below are based on SAP calculations carried out on the basement, ground floor and third floor. These calculations are provided in the appendix to this document.

|                                | CO2 Emissions/m2 | % reduction over baseline |
|--------------------------------|------------------|---------------------------|
| Baseline scenario              | 1.01             |                           |
| Baseline + energy efficiency   | 0.99             | 1.76                      |
| Baseline + energy efficiency + | 0.79             | 19.72                     |
| efficient services             |                  |                           |

The total 19.72% improvement over the baseline for the improved envelope is calculated using the methods given in BREEAM Domestic Refurbishment. The actual reduction in carbon emissions is much greater than this. (see page 13 section 2.2 for an explanation of this)

# Measures suggested by Camden Council for listed buildings and how they have been incorporated.

A range of thermal efficiency measures can be implemented, which avoid harm to the historic environment. Ranked according to their impact on heritage and the technical risks, these include:

1. Ensure that the building is in a good state of repair.



The building will be thoroughly refurbished with a new roof, windows and doors. Approximately 35% of the project cost will be spent on improvements to energy efficiency.

#### 2. Minor interventions - upgrade the easier and non-contentious elements:

#### • Insulate roof spaces and suspended floors;

This is to be carried out to achieve a u-value of 0.15W/m2K for both roof and floor.

#### • Provide flue dampers - (close in winter, open in summer);

All existing chimneys are to be sealed.

#### • Use curtains, blinds and window shutters;

Curtains and blinds to be fitted.

#### • Provide energy efficient lighting and appliances;

Energy efficient lighting and appliances will be provided.

#### • Draught-seal doors and windows;

New windows and doors to be provided with full draught stripping.

#### • Provide hot water tank and pipe insulation.

There will be no hot water tanks. Pipes will be insulated.

#### 3. Moderate interventions - upgrade vulnerable elements:

• install secondary (or double) glazing (if practicable);

Secondary glazing to be fitted to the front elevation (subject to permission being given) and highly efficient double glazing to the rear.

# 4. Upgrade building services and give advice to building users on managing them efficiently:

#### • Install high-efficiency boiler and heating controls;

Gas boilers of 90% efficiency to be installed with weather compensation boiler interlock and TRV's.

#### • Install smart metering;

Smart metering to water, gas and electricity will be installed.

#### • Install solar panels, where not visible from the street or public spaces.

In this case there is no suitable position for solar technologies. There is only a very small inward sloping roof. Roof windows have been chosen over solar technologies to provide natural daylight to the top floor flat.



# 5. Major interventions - upgrade more difficult and contentious elements (where impact on heritage values and level of technical risk shown to be acceptable) provide solid wall insulation.

Solid wall insulation is to be provided. 200mm of fibreboard is to be used to the front and rear of the existing solid walls with lime plaster to maintain 'breathability. The new walls to the rear will be blockwork with external wall insulation. All external walls to achieve a u-value of 0.17W/m2K.

#### 2. INTRODUCTION

#### 2.1 Proposed development

82 Guilford Street is located along Guilford Street, in a close proximity to Russell Square underground station, within the London Borough of Camden. The proposed development includes the refurbishment of an existing Grade II Listed Building. The site lies within walking distance of shops and services in town centre.

The approximate site location is shown in the figure below.



#### 2.2 Camden Council Sustainability Requirements and Policies

#### 2.2.1 Camden Council – Planning Guidance Existing Buildings

The Camden Planning Guidance support the policies set out in the Local Development Framework (LDF). While the Camden LDF contains policies relating to sustainability in their Core Strategy and Development Policies documents, the Council also has a separate planning guidance specific to sustainability.

According to the Camden Council,



- All buildings, whether being updated or refurbished, are expected to reduce their carbon emissions by making improvements to the existing building. Work involving a change of use or an extension to an existing property is included. As a guide, at least 10% of the project cost should be spent on the improvements.
- Where retro-fitting measures are not identified at application stage we will most likely secure the implementation of environmental improvements by way of condition. Appendix 1 sets out a checklist of retro fit improvements for applicants.
- Development involving a change of use or a conversion of 5 or more dwellings or 500sq m of any floor space, will be expected to achieve 60% of the un-weighted credits in the Energy category in their EcoHomes or BREEAM assessment, whichever is applicable. (See the section on Sustainability assessment tools for more details).
- Special consideration will be given to buildings that are protected e.g. listed buildings to ensure that their historic and architectural features are preserved.



The sections that will be covered the Sustainability Statement listed below:

- The energy hierarchy
- Energy efficiency: new buildings
- Decentralised energy networks and combined
- heat and power
- Renewable Energy
- Water Efficiency
- Sustainable use of materials
- Sustainability assessment tools
- Brown roofs, green roofs and green walls
- Flooding
- Adapting to climate change
- Biodiversity



#### 2.2.2 The London Plan

The London Plan 2011 requires compliance with the following policies relating to climate change:

- Policy 5.2 Minimising Carbon Dioxide Emissions (refer to the supplementary Energy Report)
- Policy 5.3 Sustainable Design and Construction
- Policy 5.5 Decentralised Energy Networks (refer to the supplementary Energy Report)
- Policy 5.6 Decentralised Energy in Development Proposals (refer to the supplementary Energy Report)
- Policy 5.7 Renewable Energy (refer to the supplementary Energy Report for more details)
- Policy 5.9 Overheating and Cooling
- Policy 5.10 Urban Greening
- Policy 5.11 Green Roofs
- Policy 5.12 Flood Risk Management
- Policy 5.13 Sustainable Drainage
- Policy 5.15 Water use and Supplies
- Policy 5.16 Waste Self-Sufficiency
- Policy 5.18 Construction. Excavation and Demolition Waste
- Policy 5.19 Hazardous Waste
- Policy 5.20 Aggregates

Where possible, the London Plan policies have been met through the implementation of the BREEAM Domestic Refurbishment.

#### 2.2.3 Historic and Listed Buildings

The refurbishment of this building has been planned according to the guidance given on Camden Councils website:

A range of thermal efficiency measures can then be implemented, which avoid harm to the historic environment. Ranked according to their impact on heritage and the technical risks, these include:

1. Ensure that the building is in a good state of repair

- 2. Minor interventions upgrade the easier and non-contentious elements:
  - insulate roof spaces and suspended floors;
  - provide flue dampers (close in winter, open in summer);
  - use curtains, blinds and window shutters;
  - provide energy efficient lighting and appliances
  - draught-seal doors and windows;
  - provide hot water tank and pipe insulation.

3. Moderate interventions - upgrade vulnerable elements:

• install secondary (or double) glazing (if practicable);

4. Upgrade building services and give advice to building users on managing them efficiently:

- install high-efficiency boiler and heating controls;
- install smart metering;



• install solar panels, where not visible from the street or public spaces.

5. Major interventions - upgrade more difficult and contentious elements (where impact on heritage values and level of technical risk shown to be acceptable)

• provide solid wall insulation.

#### 2.2.4 BREEAM Domestic Refurbishment Pre- Assessment

BREEAM Domestic Refurbishment is a performance based assessment method and certification scheme for domestic buildings undergoing refurbishment, providing an authoritative rating for refurbished homes, covering houses, flats and apartments. It also recognises limitations of existing buildings including their inherent built form and location. Since June 2012, BREEAM Domestic Refurbishment has superseded the EcoHomes assessment method.

BREEAM Domestic Refurbishment measures the sustainability of a development against design categories, rating the entire development as a complete package. Each standard requires developments to gain credits by meeting sustainable design principles over seven key areas:

- 1. Management
- 2. Health and Wellbeing
- 3. Energy
- 4. Water
- 5. Materials
- 6. Waste
- 7. Pollution

Camden Council sets Ecohomes 'Excellent' rating for refurbishments and conversions as a requirement from 2013. However, since Ecohomes was superseded by BREEAM Domestic Refurbishment in 2012, the development at 82 Guilford Street aims to reach BREEAM Domestic Refurbishment 'Excellent', reflecting the design team's aspirations in incorporating appropriate sustainability measures. The following section outlines the measures to be adopted at 82 Guilford Street to achieve BREEAM Domestic Refurbishment 'Excellent'.





#### 3. PASSIVE AND ENERGY EFFICIENT DESIGN STRATEGIES

#### 3.1 Building form and design

The building is listed and therefore there are restrictions on what changes can be made. The building form and front elevation must remain unchanged.

#### 3.2 Building Fabric Performance

U-values are to be improved where this is permitted.

- Existing walls will be improved to 0.17W/m2K (from approximately 2.1w/m2K). Internal wall insulation is permitted within the restriction of the listed building to existing walls. This must be a natural insulation to maintain the 'breathability of the solid walls'. 200mm of fibreboard will be used in this case together with lime plaster to prevent any problems with condensation and mould growth. New walls to the rear will achieve a u-value of 0.17W/m2K using externally insulated blockwork.
- **Windows** to the front elevation will be retained, refurbished and draught stripped, with secondary glazing added. Windows to the rear will have new high efficiency double glazing of u-value 1.2W/m2K.
- Roof and external floors are to be improved to u-value 0.15W/m2K

|                     | U-value          | U-value                                        |
|---------------------|------------------|------------------------------------------------|
| Fabric<br>Element   | Part L1B<br>2010 | Proposed Refurbished<br>Building               |
| External Wall       | 0.28             | 0.17                                           |
| Exposed<br>Floor    | 0.22             | 0.15                                           |
| Exposed<br>Roof     | 0.18             | 0.15                                           |
| External<br>Glazing | 1.6              | Secondary glazing 2.4, new windows to rear 1.2 |

Table 1 Building Fabric Standards in Guildford Street Development

The u-values which inform the BREEAM Domestic Refurbishment assessment prior to development are the backstop values given in Part L 2013 which are in fact much greater than those of the existing building. For example the wall u-value that needs to be used prior to development in the SAP calculation is 0.28, whereas in actual fact it was 2.1W/m2K this means that the actual energy and carbon savings of the refurbishment of this building will be much greater than those shown.

#### 3.2.1 Air permeability and Thermal Bridging

The building refurbishment has been carefully designed to improve airtightness and thermal bridge-free detailing is also given priority. The calculations are based on an airtightness of 10m3/m2/hr.

It is expected that a better value than this can be achieved in practice.

#### 3.2.2 Limiting solar gain in summer

Blinds will be fitted to the front elevation of this building to limit solar gain.



## 3.3 Efficient Building Services

#### 3.3.1 Principles

The policies on energy have been considered thoroughly throughout the pre-planning design. The approach to achieving the planning policy energy objectives has been to adopt the Mayor's Energy and Heating Hierarchies, and to consider strategies and technologies to achieve a low energy and carbon footprint for the scheme.

The energy strategy for the scheme follows the energy hierarchy:

- Using less energy by passive design and energy efficiency measures
- Supplying energy efficiently by means of highly efficient gas combi boilers
- In this case renewable energy is not appropriate

#### 3.3.2 Heating, Ventilation and Cooling

A simple low carbon heating strategy has been designed.

- Natural ventilation with fans to bathrooms and kitchens
- High efficiency individual gas combi boilers
- Radiators
- Local, efficient, simple but effective controls are provided for the units. Local controls will be provided to connect to the room temperature sensors. A weather compensated system will be provided for the heating system.

Each dwelling will be provided with their own gas, water and electricity meters for individual metering and billing.

#### 3.3.3 Domestic Hot & Cold Water

This will be provided by gas combi boilers.

#### 3.3.4 Lighting

The lighting to each of the apartments will be provided by at least 80% low energy fittings. In addition external lighting will be energy efficient with daylight cut-off

#### 3.3.5 Enhanced User Understanding and Controls

Ensuring that building users understand how the building works is crucial to limiting energy consumption. Engineering the building to operate autonomously and making it simple to use and operate further helps reduce consumption. The team will work closely to ensure the final building solution is understandable and manageable by the users.

#### 3.3.6 Smart Metering

Smart meters will be provided to each flat to show consumption data for electricity, water and gas. This is required to achieve credits in the BREEAM Domestic Refurbishment assessment and aims to assist the occupants in minimising their consumption.



#### 4. LOW AND ZERO CARBON TECHNOLOGIES

To reduce the carbon emission of the buildings, the first step has been to adopt a passive design whereby the architectural design of the building, including fabric specification and engineering services help in minimising the energy demand of the building.

To further help reduce the carbon emissions from the building we can look to the installation of Low and Zero Carbon technologies. Careful consideration and calculation of these options can help in reducing energy consumption and carbon emission of the buildings over time to realise an economical benefit for the building owner / occupier.

Therefore this part of the report investigates the feasibility of installing different low/zero carbon technologies that could be considered appropriate for the area. The technologies considered in this report include:

- Air source heat pumps
- Solar thermal energy capture
- Photovoltaic Panels

It is important to consider the use of renewable technologies however in this case it is thought to be inappropriate to include any for the reasons outlined below.

#### 5. AIR SOURCE HEAT PUMPS

#### 5.1 Technology explained:

Air source heat pumps use similar principles as ground source heat pumps. The principle of the heat pump, is to take low-grade energy from the surrounding air by means of a fan pulling the outside air through a heat exchanger at a lower temperature to pick up heat in the refrigerant cycle. The compressor within the refrigerant cycle then compresses the refrigerant gas increasing the temperature concurrently. The heat is then removed for heating and the whole process continues.

Unlike the ground source heat pumps where the temperature of ground is relatively stable throughout the year, in air source heat pumps the temperature can be highly variable in accordance with the weather. In the past, to run the system most efficiently, it is sometimes best to combine the system with another system such as conventional boilers or a CHP machine to run when the air temperature is very low and the coefficient of performance (COP) of ASHP is lower. However, more efficient machines and refrigerants are now available that mean higher COP's during colder ambient temperatures thus removing the necessity for combining with traditional boilers to further save infrastructure charges.





Figure 13 - Air Source Heat Pump principles

#### 5.2 Potentials for Guildford Street Development

#### **5.2.1 Natural Resources**

System uses ambient air as the renewable energy source and using electricity –converts low grade heat to higher grade heat.

#### 5.2.2 Technical feasibility

This technology cannot be easily installed to this building as there is not a suitable position which would be acceptable to the occupants and noise from the compressors, pumps and fans would be unacceptable in such a tight site.

#### 6. SOLAR THERMAL ENERGY

#### 6.1 Technology explained:

Solar collectors absorb the solar radiation and sun's energy and provide heating and hot water. There are two basic types of solar heating systems, liquid based system or air based system. Liquid based systems are usually used with storage which makes the solar thermal system more viable, matching the demand with the availability of hot water. The circulation of heat can be passive (relying on water pressure) or active (using pumps). The two most common types of solar collectors are flat plate and evacuated tube collectors. Evacuated tubes are more sophisticated, more efficient and also more expensive than flat panels.

#### 6.2 Potential for Guilford Street Development

#### 6.2.1 Natural Resources





The peak solar radiation in London is just less than 1 kW/m<sup>2</sup>. The best location for solar thermal panels are on building roofs or walls, facing south (within 15°).

#### 6.2.2 Technical feasibility



1:50

The roof plan provided shows how roof windows have been incorporated into the top floor flat to improve the daylighting and thus the need for electric lighting. This does not leave sufficient space for the installation of solar technologies on this small inward sloping roof.

#### 7. PHOTOVOLTAIC (PV) PANELS

#### 7.1 Technology explained:

Photovoltaic systems use solar cells to convert sunlight into electricity. The PV cell consists of semi-conducting material usually silicon. It creates an electric field when light shines on the cell which causes electricity to flow. There are different kinds of PV panels on the market today, thin films, polycrystalline and monocrystalline. These have different efficiencies normally ranging from 12-28%.

PV panels can be integrated with the fabric of the building. In ideal circumstances the modules replace building components such as curtain walls, roof tiles, atria and structural glazing and vertical walls. Framed PV modules can either be roof mounted or free standing.



#### 7.2 Potentials for Guilford Street Development

#### 7.2.1 Natural Resources

The annual isolation is reasonably good in this area.

#### 7.2.2 Technical feasibility

As outlined previously for solar water heating there is not sufficient roof space to install solar photovoltaics.

#### 8. BREEAM DOMESTIC REFURBISHMENT

#### 8.1 Management

#### MAN 1 Home User Guide

A 'Home User Guide' will be made available to the dwelling providing occupants with an understanding of the energy associated with the operation of their home. This nontechnical guide will include operational instructions, recommendations on improving energy use and information on the surrounding area (local amenities) to obtain full credits in this section.

#### **MAN 2 Responsible Construction Practices**

The tender specification will require contractors to be compliant with the Considerate Constructors Scheme (CCS). It is expected that formal certification will be achieved and that contractors will operate beyond compliance level (CCS Code of Considerate Practice score between 35 and 40 with score 7 in each section).

#### MAN 3 Construction Site Impacts

To minimise the construction impacts of the site, contractors will be required to monitor, report and set targets for the production of CO2 arising from site activities in respect to energy use and water consumption.

#### MAN 4 Security

All external doors and accessible windows will meet minimum BREEAM standards and be appropriately fitted.

An Architectural Liaison Officer will be consulted and their advice will be incorporated into the design of the development in accordance with 'Secured By Design' standards.

The requirement is for putty (where present) to be on the inside of windows for security. However this is not possible in the case of the existing windows. In this case negotiation with the ALO is required to ensure security is achieved within the restrictions of the list building status.





#### MAN 5 Protection and Enhancement of Ecological Features

The development is currently located on a site with low ecological value as there are no existing features of ecological value at the site. Therefore, this credit can be awarded by default.

#### MAN 6 Project Management

A project implementation plan will be compiled by the project manager; individual and shared responsibilities will be assigned amongst the project team during an initiation meeting.

#### 8.2 Health and Wellbeing

#### HEA 1 Daylighting

These credits are unlikely to be achievable as the size of the windows cannot be changed.

#### HEA 2 Sound Insulation

Building elements will be designed to meet Building Regulations Part E.

#### **HEA 5 Ventilation**

A minimum level of background ventilation will be provided (e.g. trickle ventilators) for all habitable rooms, kitchens, utility rooms and bathrooms compliant with section 7, Part F, 2010. Extract ventilation will be provided in all wet rooms (e.g. kitchen, utility and bathrooms), and will be compliant with section 5, Building Regulations Approved Document Part F 2010. In addition, purge ventilation will be provided in all habitable rooms and wet rooms in compliance with section 7, Building Regulations Approved Document Part F, 2010.

The refurbishment will be designed to meet the requirements of Building Regulations Part F section 3.11–3.16.

#### HEA 6 Safety

Smoke and carbon monoxide detection systems will be installed as part of the refurbishment. A compliant fire detection and alarm system will also be provided Energy

#### 8.3 Energy

#### ENE 1 Improvement in Energy Efficiency Rating (EER)

The Energy Efficiency Rating (EER) is a measure of the overall efficiency of a dwelling. It accounts for regulated energy use in terms of heating, hot water, equipment, lighting and auxiliary energy use.

The methodology set out by the Department of Energy and Climate Change (DECC) for assessing the energy use of dwellings is the Standard Assessment Procedure (SAP). The version of SAP used for BREEAM Domestic Refurbishment is SAP 2009.

Preliminary SAP calculations have been carried out to assess the potential CO2 savings achieved through

- energy efficiency measures
- the efficient supply of energy

The average reduction in the EER for this development is calculated to be 4.33. This is not sufficient to achieve credits.



#### ENE 2 Energy Efficiency Rating (EER) Post Refurbishment

The reduction in energy demand of the proposed development has been outlined previously in this report. The SAP calculations show that and average of 3 credits can be achieved here.

#### **ENE 3 Primary Energy Demand**

An average primary energy demand of 153.94 kWh/m2/year will be achieved by the building post refurbishment. This achieves 6 credits.

#### **ENE 5 Energy Labelled White Goods**

All residential units in 82 Guilford Street will be supplied with an EU Energy Efficiency Labelling Scheme Leaflet, which provides guidance on the purchase of energy efficient white goods.

The dwellings will also be supplied with energy efficient white goods which meet the following standard:

- Fridges and freezers or fridge freezers, washing machines and dishwashers Energy Saving Trust recommended appliances
- Tumble dryers or washer dryers B rating under EU Energy Efficiency

#### **ENE 6 Drying Space**

The proposed development will include provisions for internal clothes drying, thereby reducing the amount of electricity consumed through the use of tumble dryers. Each 1-2 bedroom dwelling will include at least 4m of retractable drying lines, while a minimum of 6m will be provided in dwellings of 3 bedrooms, all within well-ventilated bathrooms.

#### **ENE7** Lighting

Internal - When daylight is inadequate, lighting will be designed to give occupants flexibility in achieving desired illuminance levels without excessive energy use. The design will aim to achieve a maximum average wattage of 9 watts/m2 across the total floor area of the dwelling.

External - Energy efficient light fittings will be installed in the external spaces. In addition, external lights will be fitted with controls to reduce the energy consumption of the building during periods of infrequent use:





#### ENE 8 Energy Display Devices

Energy display devices will be installed in all flats to enable the occupants to gain an understanding of their energy consumption and to enable them to reduce their energy use in the future. The display devices will provide information on current electricity and primary heating consumption data.

#### ENE 8 Cycle Storage

Cycle spaces will be provided within the development to reduce the frequency of short car journeys. The cycle storage will be adequately sized, secure and accessible to all occupants, thereby achieving a credit in this category.

The provision of bicycle storage will be at a rate of 1 space for every flat.

#### 8.4 Water

#### WAT 1 Internal Water Use

The water category aims to reduce the consumption of potable water in the home from all sources. These are mandatory credits within BREEAM Domestic Refurbishment, with BREEAM 'Excellent' setting an upper limit of 117 litres per person per day.

The development at 82 Guilford Street aims to reduce water consumption through the use of water efficient fittings, including dual flush toilet, water efficient shower heads and taps. The average capacity and maximum flow rates of the water fittings are listed below.

It is estimated that the proposed development will achieve a water consumption rate of 104.6 litres/ person/day.

#### WAT 2 External Water Use

Flat with a private garden will be equipped with a compliant rainwater collection system for external/ internal irrigation use. The volume of a rainwater butt for a 1-2 bedroom home with a private garden should be 150 litres.

Flats without garden space, as well as flats that only have balconies provided, achieve this credit by default.

#### WAT 3 Water meter

Water meters providing visual display of mains potable water consumption installed at a secure and visible location within all flats. The water meters will be capable of recording and displaying historical water consumption, and allowing occupants to monitor their water consumption over time. The meter will also be able to display current consumption either instantaneously or at half hourly intervals.



|                               | ResidentialUnits              |                               |  |  |  |  |  |  |  |  |
|-------------------------------|-------------------------------|-------------------------------|--|--|--|--|--|--|--|--|
| Fitting                       | Average capacity/Flow<br>rate | Consumption<br>(I/person/day) |  |  |  |  |  |  |  |  |
| WC (full flush)               | 6 litres per flush            | 17.64                         |  |  |  |  |  |  |  |  |
| WC (half flush)               | 3 litres per flush            | 17.04                         |  |  |  |  |  |  |  |  |
| Kitchen and utility sink taps | 6 litres per min              | 13                            |  |  |  |  |  |  |  |  |
| Wash basin tap                | 4 litres per min              | 7.9                           |  |  |  |  |  |  |  |  |
| Bath                          | 180L capacity to overflow     | 19.8                          |  |  |  |  |  |  |  |  |
| Shower                        | 8 litres per min              | 34.96                         |  |  |  |  |  |  |  |  |
| Washingmachine                | 8.17L per kg (dry load)       | 17.16                         |  |  |  |  |  |  |  |  |
| Dishwasher                    | 1.25L per place setting       | 4.5                           |  |  |  |  |  |  |  |  |
| Net internal water            |                               | 114.96                        |  |  |  |  |  |  |  |  |
| consumption                   |                               |                               |  |  |  |  |  |  |  |  |
| Normalisation factor          |                               | 0.91                          |  |  |  |  |  |  |  |  |
| Total Water Use               |                               | 104.6                         |  |  |  |  |  |  |  |  |

Estimated Water Consumption

#### 8.5 Materials

#### **MAT 1 Environmental Impact of Materials**

Embodied energy is the energy that is used in the manufacture, processing and the transportation of the materials to site.

The construction build-ups for each of the main building elements are rated from A+ to E. Each element to be used in the building has been rated according to the BRE Green Guide to Specification whereby:

A+ rated elements are least likely to affect the environment

E rated elements are most likely to affect the environment

It is assumed that most of the main building elements within this development will achieve between an A+ to C rating.

#### MAT 2 & MAT 3 Responsible Sourcing of Materials and Insulation

At least 80% of the materials specified will be obtained from legally and responsible sources. This includes all basic building elements, comprising the building frame, floors, roof, external walls, foundations and internal walls and all finishing elements.

In addition, 100% of all timber used on site will be legally sourced, thereby satisfying the mandatory requirements set out in this category. Any timber used in the structural and finishing elements will be specified from certified sustainable sources such as FSC or PEFC.

Where possible, on-site materials will be reused and recycled to lower transport CO2 emissions associated with off-site recycling. Where practicable, materials with a high recycled or waste content will be specified.



The insulation index for all new insulation used in external walls, ground floor, roof and building services will be less than 2 when calculated using the BREEAM Mat3 Insulation Calculator..

#### 8.6 Waste

#### WAS 1 Household Waste

Non-recyclable: External space will be allocated for non-recyclable household waste, this will be collected by the Local Authority

Recyclable: A Local Authority Collection Scheme is in operation for the collection of recyclable household waste. Each dwelling will be provided with a bin, with a total capacity of 30 litres and to be located in a dedicated position in the kitchen.

#### WAS 2 Construction Site Waste Management

The development will minimise the impact of construction waste on the environment through a Site Waste Management Plan (SWMP). This plan will include:

- benchmarks for resource efficiency
- procedures and commitments to reduce hazardous and non-hazardous waste
- monitoring hazardous and non-hazardous waste

All waste generated through the refurbishment process will be managed in accordance with BREEAM recommendations.

A pre-refurbishment audit of the existing building, which covers demolition materials, will be completed. Non-hazardous demolition waste generated by the dwellings refurbishment will meet or exceed the refurbishment and demolition waste diversion benchmarks.



#### 8.7 Pollution

#### **POL1 NOx Emissions**

This section aims to reduce the release of nitrogen oxide (NOx) into the atmosphere. Space heating and hot water requirements will be met by high efficiency gas combi boilers with low inherent NOx emissions. Gas boilers with NOx emissions of less than 70 mg/kWh will be specified.

#### POL3 Flooding

The Environment Agency flood map (as below) shows the site to be at low risk of flooding, however this credit is not achievable without a full flood risk assessment.





Flooding from rivers or sea without defences Extent of Extreme flood Areas benefiting from flood defences

Approximate Site Location

#### 9. CONCLUSION

A number of steps have been considered and will continue to be considered to reduce the energy consumption and to provide a percentage of renewable energy for the proposed refurbishment.

#### 9.1 BREEAM Domestic Refurbishment Pre- Assessment Results

A BREEAM Domestic Refurbishment pre- assessment was carried out for the 82 Guilford Street refurbishment, using the targets set by the client and project team. This reflects the client's and project team's commitment in adopting a range of sustainability measures over the life-cycle of the development.

The table below summarises the number of credits achieved in each of the BREEAM categories, using the BRE Pre-Assessment Estimator.



The proposed development achieves a total of 51.55 credits, which exceeds the requirement for BREEAM 'Good'.

|            |                                                       |                 | Score Assessment     |              |                     |                 |  |  |
|------------|-------------------------------------------------------|-----------------|----------------------|--------------|---------------------|-----------------|--|--|
|            |                                                       | Credit<br>Score | Credits<br>Available | Sub<br>Total | Weighting<br>Factor | Points<br>Score |  |  |
| Management | MAN 1 Home User Guide                                 | 3               | 3                    |              |                     |                 |  |  |
|            | MAN 2 Responsible Construction Practices              | 0               | 2                    |              |                     |                 |  |  |
|            | MAN 3 Construction Site Impacts                       | 1               | 1                    |              |                     |                 |  |  |
|            | MAN 4 Security                                        | 0               | 2                    | 6            | 12%                 | 6.00            |  |  |
|            | MAN 5 Protection & Enhancement of Ecological Features | 1               | 1                    |              |                     |                 |  |  |
|            | MAN 6 Project Management                              | 1               | 2                    |              |                     |                 |  |  |
| Health &   | HEA 1 Daylighting                                     | 0               | 2                    |              |                     |                 |  |  |
| Wellbeing  | HEA 2 Sound Insulation                                | 2               | 4                    |              |                     |                 |  |  |
|            | HEA 3 Volatile Organic Compounds                      | 1               | 1                    | _            | 4 = 0 (             |                 |  |  |
|            | HEA 4 Inclusive Design                                | 0               | 2                    | 5            | 17%                 | 7.08            |  |  |
|            | HEA 5 Ventilation                                     | 1               | 2                    |              |                     |                 |  |  |
|            | HEA 6 Safety                                          | 1               | 1                    |              |                     |                 |  |  |
| Energy     | ENE 1 Improvement in Energy Efficiency Rating         | 0               | 6                    |              |                     |                 |  |  |
|            | ENE 2 Energy Efficiency Rating Post Refurbishment     | 3               | 4                    |              |                     |                 |  |  |
|            | ENE 3 Primary Energy Demand                           | 6               | 7                    |              |                     |                 |  |  |
|            | ENE 4 Renewable Technologies                          | 0               | 2                    |              |                     |                 |  |  |
|            | ENE 5 Energy Labelled White Goods                     | 1               | 2                    | 4.6          | 420/                | 22.72           |  |  |
|            | ENE 6 Drying Space                                    | 1               | 1                    | 16           | 43%                 | 23.72           |  |  |
|            | ENE 7 Lighting                                        | 2               | 2                    |              |                     |                 |  |  |
|            | ENE 8 Display Energy Devices                          | 2               | 2                    |              |                     |                 |  |  |
|            | ENE 9 Cycle Storage                                   | 1               | 2                    |              |                     |                 |  |  |
|            | ENE 10 Home Office                                    | 0               | 1                    |              |                     |                 |  |  |
| Water      | WAT 1 Internal Water Use                              | 1               | 3                    |              |                     |                 |  |  |
|            | WAT 2 External Water Use                              | 1               | 1                    | 3            | 11%                 | 6.60            |  |  |
|            | WAT 3 Water Meter                                     | 1               | 1                    |              |                     |                 |  |  |
| Materials  | MAT 1 Environmental Impact of Materials               | 6               | 25                   |              |                     |                 |  |  |
|            | MAT 2 Responsible Sourcing                            | 4               | 12                   | 14           | 8%                  | 2.49            |  |  |
|            | MAT 3 Insulation                                      | 4               | 8                    |              |                     |                 |  |  |
| Waste      | WAS 1 Household Waste                                 | 2               | 2                    | Л            | 2%                  | 2.40            |  |  |
|            | WAS 2 Refurbishment Site Waste Management             | 2               | 3                    | +            | 578                 | 2.40            |  |  |
| Pollution  | POL 1 NOx Emissions                                   | 2               | 3                    |              |                     |                 |  |  |
|            | POL 2 Surface Water Runoff                            | 1               | 3                    | 3            | 6%                  | 2.25            |  |  |
|            | POL 3 Flooding                                        | 0               | 2                    |              |                     |                 |  |  |
| Innovation | MAN 6 Early Design Input                              | 1               | 1                    | 1            | 10%                 | 1.00            |  |  |
|            |                                                       | Corr            |                      | Total P      | o int Soored        | <b>E1 EE</b> 97 |  |  |
|            | Level Achieved:                                       | 6000            |                      | Total P      | om scored:          | 51.55%          |  |  |



Appendix A

**Outline Design Drawings** 











Appendix B

SAP calculations

# **Predicted Energy Assessment**

82 Guilford Street London WC1N 1DF Dwelling type: Date of assessment: Produced by: Total floor area: Top floor Flat 15 July 2014 Stroma Certification 34.6 m<sup>2</sup>

Environmental Impact (CO<sub>2</sub>) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

#### **Energy Efficiency Rating**



The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.



| User Details:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |                             |                   |              |                   |                         |          |                                               |      |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------|-------------------|--------------|-------------------|-------------------------|----------|-----------------------------------------------|------|--|--|--|--|
| Assessor Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test User                                               |                             | Strom             | STRO         | 000000            |                         |          |                                               |      |  |  |  |  |
| Software Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stroma FSAP 200                                         | 9                           | Softwa            | are Ver      | sion:             |                         | Versio   | on: 1.5.0.74                                  |      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | Prope                       | rty Address:      | Third flo    | oor flat          |                         |          |                                               |      |  |  |  |  |
| Address :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 82 Guilford Street, L                                   | ondon, WC1                  | N 1DF             |              |                   |                         |          |                                               |      |  |  |  |  |
| 1. Overall dwelling dimer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsions:                                                 |                             | ( A)              |              |                   |                         |          |                                               |      |  |  |  |  |
| Basement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         |                             | Area(m²)<br>34.6  | (1a) x       | <b>Ave He</b> 2.6 | 6 <b>ight(m)</b><br>693 | (2a) =   | 93.18                                         | (3a) |  |  |  |  |
| Total floor area TFA = (1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )+(1b)+(1c)+(1d)+(1e)                                   | )+(1n)                      | 34.6              | (4)          |                   |                         |          |                                               |      |  |  |  |  |
| Dwelling volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                             |                   | (3a)+(3b)    | +(3c)+(3d         | )+(3e)+                 | .(3n) =  | 93.18                                         | (5)  |  |  |  |  |
| 2. Ventilation rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                                       |                             |                   |              |                   |                         |          | <u>, , , , , , , , , , , , , , , , , , , </u> |      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | main Se<br>heating h                                    | econdary<br>eating          | other             |              | total             |                         |          | m <sup>3</sup> per hour                       |      |  |  |  |  |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 +                                                     | 0 +                         | 0                 | =            | 0                 | x 4                     | 40 =     | 0                                             | (6a) |  |  |  |  |
| Number of open flues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 +                                                     | 0 +                         | 0                 | ] = [        | 0                 | x 2                     | 20 =     | 0                                             | (6b) |  |  |  |  |
| Number of intermittent far                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | is                                                      |                             |                   | - E          | 2                 | x 1                     | 0 =      | 20                                            | (7a) |  |  |  |  |
| Number of passive vents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                             |                   | Ē            | 0                 | x 1                     | 0 =      | 0                                             | (7b) |  |  |  |  |
| Number of flueless gas fir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | es                                                      |                             |                   |              | 0                 | x 4                     | 40 =     | 0                                             | (7c) |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                             |                   |              |                   |                         | I        |                                               | _    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                             |                   |              |                   |                         | Air ch   | anges per ho                                  | ur   |  |  |  |  |
| Infiltration due to chimney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s, flues and fans = $(6a)$                              | a)+(6b)+(7a)+(7             | b)+(7c) =         |              | 20                | -                       | ÷ (5) =  | 0.21                                          | (8)  |  |  |  |  |
| If a pressurisation test has be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | en carried out or is intende                            | d, proceed to (1            | 7), otherwise o   | continue fro | om (9) to (       | 16)                     | I        |                                               |      |  |  |  |  |
| Additional infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e aweiling (ns)                                         |                             |                   |              |                   | [(9)-                   | 11x0 1 = | 0                                             | (9)  |  |  |  |  |
| Structural infiltration: 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25 for steel or timber f                                | rame or 0.35                | o for masonr      | v constru    | uction            | [(0)                    | 17.0.1 - | 0                                             | (10) |  |  |  |  |
| if both types of wall are pre<br>deducting areas of opening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | esent, use the value corresp<br>gs); if equal user 0.35 | oonding to the g            | reater wall are   | a (after     |                   |                         | I        | Ū                                             | ], , |  |  |  |  |
| If suspended wooden fle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oor, enter 0.2 (unseale                                 | ed) or 0.1 (se              | ealed), else      | enter 0      |                   |                         |          | 0                                             | (12) |  |  |  |  |
| If no draught lobby, ente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | er 0.05, else enter 0                                   |                             |                   |              |                   |                         |          | 0                                             | (13) |  |  |  |  |
| Percentage of windows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and doors draught sti                                   | ripped                      |                   |              |                   |                         |          | 0                                             | (14) |  |  |  |  |
| Window infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |                             | 0.25 - [0.2       | x (14) ÷ 10  | = [00             |                         |          | 0                                             | (15) |  |  |  |  |
| Infiltration rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                                                      | • • • • • • • • • • • •     | (8) + (10)        | + (11) + (1  | 2) + (13) +       | - (15) =                |          | 0                                             | (16) |  |  |  |  |
| Air permeability value, o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150, expressed in cub                                   | IC metres pe                | r nour per so     | quare me     | etre of e         | nvelope                 | area     | 10                                            |      |  |  |  |  |
| Air permeability value applies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | if a pressurisation test has                            | $r \rightarrow 20 + (0), 0$ | a degree air pei  | rmeabilitv i | s heina us        | sed                     |          | 0.71                                          | (18) |  |  |  |  |
| Number of sides on which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sheltered                                               |                             | l dogi oo dii poi | incusiinty i | o bonng uc        | ,ou                     | I        | 2                                             | (19) |  |  |  |  |
| Shelter factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |                             | (20) = 1 -        | 0.075 x (1   | 9)] =             |                         |          | 0.85                                          | (20) |  |  |  |  |
| Infiltration rate incorporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng shelter factor                                       |                             | (21) = (18)       | x (20) =     |                   |                         |          | 0.61                                          | (21) |  |  |  |  |
| Infiltration rate modified for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r monthly wind speed                                    |                             |                   |              |                   |                         | -        |                                               | _    |  |  |  |  |
| Jan Feb I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mar Apr May                                             | Jun Ju                      | ıl Aug            | Sep          | Oct               | Nov                     | Dec      |                                               |      |  |  |  |  |
| Monthly average wind spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ed from Table 7                                         |                             |                   |              |                   |                         |          |                                               |      |  |  |  |  |
| (22)m= 5.4 5.1 §                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.1 4.5 4.1                                             | 3.9 3.                      | 7 3.7             | 4.2          | 4.5               | 4.8                     | 5.1      |                                               |      |  |  |  |  |
| Wind Factor $(22a)m = (22a)m $ | )m ÷ 4                                                  |                             |                   |              |                   |                         |          |                                               |      |  |  |  |  |
| (22a)m= 1.35 1.27 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .27 1.12 1.02                                           | 0.98 0.9                    | 0.92              | 1.05         | 1.12              | 1.2                     | 1.27     |                                               |      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | I                           |                   |              |                   |                         |          |                                               |      |  |  |  |  |

| Adjust                 | ed infiltr               | ation rat                        | e (allowi                  | ng for sh                | elter an                 | d wind s               | peed) =                         | (21a) x        | (22a)m      | -              | -             | -                  | _          |            |
|------------------------|--------------------------|----------------------------------|----------------------------|--------------------------|--------------------------|------------------------|---------------------------------|----------------|-------------|----------------|---------------|--------------------|------------|------------|
| ~ ' '                  | 0.82                     | 0.77                             | 0.77                       | 0.68                     | 0.62                     | 0.59                   | 0.56                            | 0.56           | 0.64        | 0.68           | 0.73          | 0.77               |            |            |
| Calcul<br>If me        | ate ette                 | <i>ctive air (</i><br>al ventila | change i<br>ition:         | rate for t               | he appli                 | cable ca               | Se                              |                |             |                |               |                    | 0          | (23a)      |
| lf exh                 | naust air h              | eat pump (                       | using Appe                 | endix N, (2              | 3b) = (23a               | a) × Fmv (e            | equation (I                     | N5)), othei    | wise (23b   | ) = (23a)      |               |                    | 0          | (23b)      |
| If bala                | anced with               | n heat reco                      | overy: effic               | iency in %               | allowing f               | or in-use f            | actor (fron                     | n Table 4h     | ) =         | , , ,          |               |                    | 0          | (23c)      |
| a) If                  | balance                  | ed mecha                         | anical ve                  | entilation               | with he                  | at recove              | erv (MVI                        | HR) (24a       | m = (22)    | 2b)m + (       | 23b) x [′     | 1 – (23c)          | <br>- 100] | (200)      |
| (24a)m=                | 0                        | 0                                | 0                          | 0                        | 0                        | 0                      | 0                               | 0              | 0           | 0              | 0             | 0                  | ]          | (24a)      |
| b) If                  | balance                  | ed mecha                         | anical ve                  | ntilation                | without                  | heat rec               | coverv (N                       | MV) (24b       | )m = (22    | 1<br>2b)m + (; | 23b)          |                    | 1          |            |
| ,<br>(24b)m=           | 0                        | 0                                | 0                          | 0                        | 0                        | 0                      | 0                               | 0              | 0           | 0              | 0             | 0                  | ]          | (24b)      |
| c) If                  | whole h                  | iouse ex                         | tract ver                  | tilation o               | or positiv               | ve input v             | ventilatio                      | on from c      | outside     |                |               |                    | 1          |            |
| í                      | if (22b)r                | n < 0.5 ×                        | : (23b), t                 | hen (240                 | c) = (23b                | ); otherv              | wise (24                        | c) = (22b      | o) m + 0.   | 5 × (23b       | )             |                    |            |            |
| (24c)m=                | 0                        | 0                                | 0                          | 0                        | 0                        | 0                      | 0                               | 0              | 0           | 0              | 0             | 0                  | ]          | (24c)      |
| d) If                  | natural                  | ventilatio                       | on or wh                   | ole hous                 | e positiv                | e input                | ventilatio                      | on from I      | oft         | _              |               |                    |            |            |
| (                      | if (22b)r                | n = 1, the                       | en (24d)                   | m = (22t                 | o)m othe                 | erwise (2              | 24d)m =                         | 0.5 + [(2      | 2b)m² x     | 0.5]           |               |                    | 1          |            |
| (24d)m=                | 0.84                     | 0.8                              | 0.8                        | 0.73                     | 0.69                     | 0.68                   | 0.66                            | 0.66           | 0.7         | 0.73           | 0.77          | 0.8                | ]          | (240)      |
| Effe                   | ctive air                | change                           | rate - er                  | nter (24a                | ) or (24t                | o) or (240             | c) or (24                       | d) in boy      | (25)        | 0.70           | 0.77          | 0.0                | 1          | (25)       |
| (25)m=                 | 0.84                     | 0.8                              | 0.8                        | 0.73                     | 0.69                     | 0.68                   | 0.66                            | 0.66           | 0.7         | 0.73           | 0.77          | 0.8                | J          | (25)       |
| 3. He                  | at losse                 | s and he                         | eat loss p                 | paramete                 | er:                      |                        |                                 |                |             |                |               |                    |            |            |
| ELEN                   | IENT                     | Gros<br>area                     | ss<br>(m²)                 | Openin<br>m              | gs<br>²                  | Net Ar<br>A ,r         | rea<br>m²                       | U-valı<br>W/m2 | le<br>K     | A X U<br>(W/I  | <b>&lt;</b> ) | k-valu∉<br>kJ/m²∙l | e A<br>K k | ∖Xk<br>J/K |
| Doors                  |                          |                                  |                            |                          |                          | 1.91                   | x                               | 1.8            | =           | 3.438          |               |                    |            | (26)       |
| Windo                  | ws Type                  | e 1                              |                            |                          |                          | 1.39                   | x1                              |                | (27)        |                |               |                    |            |            |
| Windo                  | ws Type                  | e 2                              |                            |                          |                          | 1.85                   | 1.85 	 x1/[1/(1.2)+0.04] = 2.12 |                |             |                |               |                    |            | (27)       |
| Rooflig                | ghts Typ                 | e 1                              |                            |                          |                          | 0.53                   | x1                              | /[1/(1.2) +    | 0.04] =     | 0.636          |               |                    |            | (27b)      |
| Rooflig                | ghts Typ                 | e 2                              |                            |                          |                          | 0.36                   |                                 | /[1/(1.2) +    | 0.04] =     | 0.432          |               |                    |            | (27b)      |
| Walls                  |                          | 21.7                             | 9                          | 1.91                     |                          | 19.88                  | 3 X                             | 0.17           |             | 3.38           | Ξ r           |                    |            | (29)       |
| Roof                   |                          | 34.6                             | 6                          | 1.78                     |                          | 32.82                  | 2 X                             | 0.15           |             | 4.92           |               |                    | $\exists$  | (30)       |
| Total a                | area of e                | elements                         | , m²                       |                          |                          | 61.02                  | 4                               |                | I           |                |               |                    |            | (31)       |
| * for win<br>** inclug | ndows and<br>de the area | l roof winde<br>as on both       | ows, use e<br>sides of ir  | effective wi             | ndow U-va<br>Is and part | alue calcul<br>titions | ated using                      | g formula 1,   | /[(1/U-valu | ıe)+0.04] a    | ns given in   | paragraph          | 1 3.2      |            |
| Fabric                 | heat los                 | ss, W/K =                        | = S (A x                   | U)                       |                          |                        |                                 | (26)(30)       | + (32) =    |                |               |                    | 21.99      | (33)       |
| Heat c                 | apacity                  | Cm = S(                          | Axk)                       |                          |                          |                        |                                 |                | ((28)       | (30) + (32     | 2) + (32a).   | (32e) =            | 633.408    | (34)       |
| Therm                  | al mass                  | parame                           | ter (TMF                   | ⊃ = Cm ÷                 | - TFA) ir                | n kJ/m²K               |                                 |                | Indica      | tive Value     | : Low         |                    | 100        | (35)       |
| For desi<br>can be ι   | ign asses:<br>used inste | sments wh<br>ad of a dei         | ere the de<br>tailed calci | tails of the<br>ulation. | construct                | ion are not            | t known pi                      | recisely the   | indicative  | e values of    | TMP in Ta     | able 1f            |            |            |
| Therm                  | al bridg                 | es : S (L                        | x Y) cal                   | culated u                | using Ap                 | pendix ł               | <                               |                |             |                |               |                    | 9.15       | (36)       |
| if details             | s of therma              | al bridging                      | are not kn                 | own (36) =               | = 0.15 x (3              | 1)                     |                                 |                |             |                |               |                    | -          |            |
| Total fa               | abric he                 | at loss                          |                            |                          |                          |                        |                                 |                | (33) +      | (36) =         |               |                    | 31.14      | (37)       |
| Ventila                | ation hea                | at loss ca                       | alculated                  | l monthly                | /                        |                        |                                 | 1              | (38)m       | = 0.33 × (     | 25)m x (5)    |                    | 1          |            |
|                        | Jan                      | Feb                              | Mar                        | Apr                      | May                      | Jun                    | Jul                             | Aug            | Sep         | Oct            | Nov           | Dec                |            |            |
| (38)m=                 | 25.71                    | 24.6                             | 24.6                       | 22.55                    | 21.33                    | 20.77                  | 20.23                           | 20.23          | 21.63       | 22.55          | 23.54         | 24.6               | J          | (38)       |
| Heat tr                | ransfer o                | coefficier                       | nt, W/K                    |                          |                          |                        |                                 | <b></b>        | (39)m       | = (37) + (3    | 38)m          |                    | 1          |            |
| (39)m=                 | 56.85                    | 55.74                            | 55.74                      | 53.69                    | 52.47                    | 51.91                  | 51.37                           | 51.37          | 52.77       | 53.69          | 54.68         | 55.74              |            |            |
|                        |                          |                                  |                            |                          |                          |                        |                                 |                |             | Average =      | Sum(39)1      | 12 /12=            | 53.83      | (39)       |

| Heat lo                                                                                                                                | oss para       | ameter (H               | HLP), W           | /m²K                    |                          |                         |                     |                        | (40)m                 | = (39)m ÷      | · (4)                  |            |         |              |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|-------------------|-------------------------|--------------------------|-------------------------|---------------------|------------------------|-----------------------|----------------|------------------------|------------|---------|--------------|
| (40)m=                                                                                                                                 | 1.64           | 1.61                    | 1.61              | 1.55                    | 1.52                     | 1.5                     | 1.48                | 1.48                   | 1.53                  | 1.55           | 1.58                   | 1.61       |         |              |
| Numbe                                                                                                                                  | er of day      | vs in mo                | nth (Tah          |                         | •                        |                         | •                   | •                      |                       | Average =      | Sum(40)1.              | 12 /12=    | 1.56    | (40)         |
| Numbe                                                                                                                                  | Jan            | Feb                     | Mar               | Apr                     | May                      | Jun                     | Jul                 | Aug                    | Sep                   | Oct            | Nov                    | Dec        |         |              |
| (41)m=                                                                                                                                 | 31             | 28                      | 31                | 30                      | 31                       | 30                      | 31                  | 31                     | 30                    | 31             | 30                     | 31         |         | (41)         |
|                                                                                                                                        |                |                         |                   |                         |                          |                         |                     |                        |                       |                |                        |            | 1       |              |
| 4. Wa                                                                                                                                  | ater hea       | ting ene                | rgy requ          | irement:                |                          |                         |                     |                        |                       |                |                        | kWh/ye     | ear:    |              |
| •                                                                                                                                      |                | Ū                       |                   |                         |                          |                         |                     |                        |                       |                |                        |            | 1       |              |
| Assum<br>if TF                                                                                                                         | $^{1}$ A > 13. | upancy,<br>9, N = 1     | N<br>+ 1.76 x     | ( [1 - exp              | o(-0.0003                | 849 x (TF               | FA -13.9            | ))2)] + 0.(            | 0013 x ( <sup>-</sup> | TFA -13        | 1.<br>.9)              | 27         |         | (42)         |
| if TF                                                                                                                                  | A £ 13.        | 9, N = 1                |                   | ara in liter            |                          | v Valav                 |                     |                        |                       |                |                        |            | I       | (10)         |
| Annua<br>Reduce                                                                                                                        | the annu       | ge not wa<br>al average | hot water         | ge in litre<br>usage by | es per da<br>5% if the c | ay va,av<br>Iwelling is | erage =<br>designed | (25 X N)<br>to achieve | + 36<br>a water us    | se target o    | 64<br>f                | 4.4        |         | (43)         |
| not mor                                                                                                                                | e that 125     | ō litres per            | person pe         | r day (all w            | vater use, i             | hot and co              | ld)                 |                        |                       |                |                        |            |         |              |
|                                                                                                                                        | Jan            | Feb                     | Mar               | Apr                     | May                      | Jun                     | Jul                 | Aug                    | Sep                   | Oct            | Nov                    | Dec        |         |              |
| Hot wat                                                                                                                                | er usage i     | in litres pei           | r day for e       | ach month               | Vd,m = fa                | ctor from               | Table 1c x          | : (43)                 |                       |                |                        |            | -       |              |
| (44)m=                                                                                                                                 | 70.83          | 68.26                   | 65.68             | 63.11                   | 60.53                    | 57.96                   | 57.96               | 60.53                  | 63.11                 | 65.68          | 68.26                  | 70.83      |         | _            |
| Energy                                                                                                                                 | content o      | f hot water             | used - ca         | lculated m              | onthly — 1               | 100 v Vd r              | n v nm v l          | DTm / 360(             | kW/b/mor              | Total = Su     | m(44) <sub>112</sub> = | =<br>c 1d) | 772.74  | (44)         |
| Lifergy                                                                                                                                |                |                         |                   |                         | 0//////y = 4.            |                         |                     |                        |                       |                |                        |            | 1       |              |
| (45)m=                                                                                                                                 | 105.3          | 92.09                   | 95.03             | 82.85                   | 79.5                     | 68.6                    | 63.57               | 72.95                  | 73.82                 | 86.03          | 93.9                   | 101.97     | 1015.61 | <b>(</b> 45) |
| $Total = Sum(45)_{112} = 1015.61$ If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) |                |                         |                   |                         |                          |                         |                     |                        |                       |                |                        |            | 1015.01 |              |
| (46)m=                                                                                                                                 | 15.79          | 13.81                   | 14.25             | 12.43                   | 11.92                    | 10.29                   | 9.54                | 10.94                  | 11.07                 | 12.9           | 14.09                  | 15.3       |         | (46)         |
| Water                                                                                                                                  | storage        | loss:                   |                   |                         |                          |                         |                     |                        |                       |                |                        |            | 1       |              |
| a) If m                                                                                                                                | anufact        | urer's de               | clared lo         | oss facto               | or is knov               | wn (kWh                 | /day):              |                        |                       |                |                        | 0          |         | (47)         |
| Tempe                                                                                                                                  | erature f      | factor fro              | m Table           | e 2b                    |                          |                         |                     |                        |                       |                |                        | 0          |         | (48)         |
| Energy                                                                                                                                 | y lost fro     | om water                | r storage         | e, kWh/y<br>ndor loc    | ear<br>Stoctor i         | e not kny               | 2000                | (47) x (48)            | ) =                   |                |                        | 0          |         | (49)         |
| Cylind                                                                                                                                 | er volun       | ne (litres              | ) includi         | ng any s                | olar stor                | age with                | nin same            | 9                      |                       |                |                        | 0          |         | (50)         |
| If con                                                                                                                                 | nmunity h      | eating and              | ,<br>I no tank ii | n dwelling,             | enter 110                | litres in bo            | ox (50)             |                        |                       |                |                        | -          | 1       |              |
| Othe                                                                                                                                   | rwise if no    | o stored ho             | ot water (th      | nis includes            | s instantan              | eous com                | bi boilers)         | enter '0' in           | box (50)              |                |                        |            |         |              |
| Hot wa                                                                                                                                 | ater stor      | age loss                | factor f          | rom Tab                 | le 2 (kW                 | h/litre/da              | ay)                 |                        |                       |                |                        | 0          |         | (51)         |
| Volum                                                                                                                                  | e factor       | from Ta                 | ble 2a            |                         |                          |                         |                     |                        |                       |                |                        | 0          |         | (52)         |
| Tempe                                                                                                                                  | erature f      | factor fro              | m Table           | e 2b                    |                          |                         |                     |                        |                       |                |                        | 0          |         | (53)         |
| Energy                                                                                                                                 | y lost fro     | om water                | r storage         | e, kWh/y                | ear                      |                         |                     | ((50) x (51            | l) x (52) x           | (53) =         |                        | 0          |         | (54)         |
| Enter (                                                                                                                                | (49) or (      | 54) in (5               | 5)                |                         |                          |                         |                     |                        |                       |                |                        | 0          |         | (55)         |
| Water                                                                                                                                  | storage        | loss cal                | culated           | for each                | month                    |                         | 1                   | ((56)m = (             | 55) × (41)            | m              |                        |            | 1       |              |
| (56)m=                                                                                                                                 | 0              | 0                       | 0                 | 0                       | 0                        | 0                       | 0                   | 0                      | 0                     | 0              | 0                      | 0          |         | (56)         |
| If cylinde                                                                                                                             | er contain     | is dedicate             | a solar sto       | orage, (57)             | m = (56)m<br>1           | x [(50) – (             | [H11)]÷(5<br>1      | 0), else (5            | 7)m = (56)<br>I       | m wnere (<br>I | H11) IS Tro<br>T       | m Append   | IX H    |              |
| (57)m=                                                                                                                                 | 0              | 0                       | 0                 | 0                       | 0                        | 0                       | 0                   | 0                      | 0                     | 0              | 0                      | 0          |         | (57)         |
| Primar                                                                                                                                 | y circuit      | t loss (ar              | nnual) fro        | om Table                | e 3                      |                         |                     |                        |                       |                |                        | 0          |         | (58)         |
| Primar                                                                                                                                 | y circuit      | t loss cal              | Iculated          | for each                | month (                  | 59)m = (                | (58) ÷ 30           | 65 × (41)              | m<br>Novilia - La     | r th a r       | ata <sup>1</sup>       |            |         |              |
| (110)<br>(59)m=                                                                                                                        |                |                         |                   |                         |                          |                         |                     |                        |                       |                |                        | 0          | 1       | (59)         |
| O creation                                                                                                                             |                | <u> </u>                | <u> </u>          |                         | (04)                     |                         |                     | )                      |                       |                |                        | -          | l       | . /          |
|                                                                                                                                        |                |                         | ior each          |                         | $(0^{\circ})^{\circ} =$  | (60) ÷ 36               | 05 × (41            | )m                     | 24.40                 | 22.47          | 22.60                  | 26.4       | l       | (61)         |
| (01)[[]=                                                                                                                               | 30.1           | 31.42                   | 33.47             | 31.12                   | 30.85                    | 20.58                   | 29.53               | 30.85                  | 31.12                 | 33.47          | 33.00                  | 30.1       | l .     | (01)         |

Stroma FSAP 2009 Version: 1.5.0.74 (SAP 9.90) - http://www.stroma.com

| Total h                                 | neat req              | uired for  | water       | he          | ating ca  | alculate    | d fo     | r eac   | h month     | (62)    | m =              | 0.85 × (      | 45)m     | +        | (46)m +     | (57)   | m +   | (59)m + (61)m |       |
|-----------------------------------------|-----------------------|------------|-------------|-------------|-----------|-------------|----------|---------|-------------|---------|------------------|---------------|----------|----------|-------------|--------|-------|---------------|-------|
| (62)m=                                  | 141.39                | 123.51     | 128.5       |             | 113.97    | 110.34      | 9        | 97.18   | 93.1        | 103     | 8.79             | 104.94        | 119.     | .5       | 127.57      | 138    | 8.07  |               | (62)  |
| Solar D                                 | HW input              | calculated | using Ap    | ope         | ndix G or | Appendi     | хH       | (negati | ve quantity | /) (ent | ter '0'          | if no solar   | r contri | ibuti    | ion to wate | er hea | ting) | -             |       |
| (add a                                  | dditiona              | I lines if | FGHR        | Sa          | and/or V  | WWHR        | S ap     | plies   | , see Ap    | penc    | dix G            | B)            |          |          |             |        |       |               |       |
| (63)m=                                  | 0                     | 0          | 0           |             | 0         | 0           |          | 0       | 0           | C       | )                | 0             | 0        |          | 0           | (      | )     |               | (63)  |
| Outpu                                   | t from w              | ater hea   | ter         |             |           |             |          |         |             |         |                  |               |          |          |             |        |       |               |       |
| (64)m=                                  | 141.39                | 123.51     | 128.5       | Τ           | 113.97    | 110.34      | 9        | 97.18   | 93.1        | 103     | 8.79             | 104.94        | 119.     | .5       | 127.57      | 138    | 8.07  |               |       |
|                                         |                       | -          |             |             |           |             |          |         |             |         | Outp             | out from wa   | ater he  | ate      | r (annual)  | 12     |       | 1401.87       | (64)  |
| Heat g                                  | ains fro              | m water    | heatin      | g,          | kWh/m     | onth 0.2    | 25 x     | [0.85   | 5 × (45)m   | n + (6  | 61)n             | n] + 0.8 x    | k [(46   | )m       | + (57)m     | + (5   | 59)m  | ו ]           |       |
| (65)m=                                  | 44.04                 | 38.48      | 39.97       |             | 35.33     | 34.14       | 2        | 9.95    | 28.52       | 31.     | .97              | 32.32         | 36.9     | )7       | 39.64       | 42.    | .93   |               | (65)  |
| inclu                                   | ude (57)              | m in calo  | ulatior     | ۱0          | f (65)m   | only if     | cylii    | nder i  | s in the o  | dwel    | ling             | or hot w      | ater i   | s fr     | om com      | mun    | ity h | eating        |       |
| 5. Internal gains (see Table 5 and 5a): |                       |            |             |             |           |             |          |         |             |         |                  |               |          |          |             |        |       |               |       |
| Metab                                   | olic gair             | ns (Table  | 5) W        | atte        | s         |             |          |         |             |         |                  |               |          |          |             |        |       |               |       |
| motab                                   | Jan                   | Feb        | Mar         |             | Apr       | May         | Τ        | Jun     | Jul         | A       | ug               | Sep           | 00       | ct       | Nov         | D      | ec    |               |       |
| (66)m=                                  | 76.28                 | 76.28      | 76.28       | ╈           | 76.28     | 76.28       | 7        | 6.28    | 76.28       | 76.     | .28              | 76.28         | 76.2     | 8        | 76.28       | 76.    | .28   |               | (66)  |
| Liahtir                                 | na aains              | (calcula   | ted in /    | <br>Арі     | pendix    | L. equa     | tion     | L9 o    | r L9a). a   | lso s   | see <sup>-</sup> | Lable 5       |          |          |             |        |       | 1             |       |
| (67)m=                                  | 28.95                 | 25.71      | 20.91       | T           | 15.83     | 11.83       |          | 9.99    | 10.79       | 14.     | .03              | 18.83         | 23.9     | )1       | 27.91       | 29.    | .75   |               | (67)  |
| Applia                                  | nces da               | ins (calc  | ulated      | in          | Append    | l<br>dixleo | ມ        | tion I  | 13 or I 1   | 3a)     | also             | see Tab       | ole 5    |          |             |        |       | 1             |       |
| (68)m=                                  | 161.54                | 163.21     | 158.99      | <br>        | 150       | 138.65      | 1 1      | 27.98   | 120.85      | 119     | 0.17             | 123.4         | 132.     | 39       | 143.74      | 154    | .41   | ]             | (68)  |
| Cookir                                  |                       |            | L<br>ted in | _L<br>∆n    | nendiv    |             |          | 115     | or   15a    |         | :0 SE            | a Table       | 5        |          |             |        |       | I             |       |
| (69)m=                                  | 43.9                  | 43.9       | 43.9        |             | 43.9      | 43.9        |          | 43.9    | 43.9        | 43      | .9               | 43.9          | 43.9     | 9        | 43.9        | 43     | .9    | ]             | (69)  |
| Dump                                    |                       |            | (Table      |             | 2)        |             | _        |         | 1010        |         |                  | 1010          |          | <u> </u> |             |        |       | I             |       |
| (70)m-                                  | 10 10                 |            |             | -<br>-<br>- | a)<br>10  | 10          | 1        | 10      | 10          | 1       | 0                | 10            | 10       |          | 10          | 1      | 0     | 1             | (70)  |
|                                         |                       |            |             |             |           |             |          | -10<br> | 10          |         | 0                | 10            | 10       |          | 10          |        | 0     | l             | (10)  |
| (71)m-                                  | 5 e.g. e              |            |             |             |           | es) (Ta     |          |         |             |         |                  | 50.05 50.05   |          | 50.85    | 50          | 95     | 1     | (71)          |       |
| (71)III=                                | -50.85                | -50.85     |             | <u>`</u>    | -30.85    | -30.85      | <u> </u> | 50.85   | -30.83      | -50     | .05              | -50.65        | -50.0    | 55       | -50.85      | -50    | .05   | l             | (7.1) |
| vvater                                  | neating               | gains (1   |             | )<br>       | 40.07     | 45.00       | Т        | 44.0    | 20.22       | 40      | 07               | 44.0          | 40.0     |          |             |        |       | 1             | (72)  |
| (72)m=                                  | 59.19                 | 57.26      | 53.72       |             | 49.07     | 45.89       |          | 41.6    | 38.33       | 42.     | .97              | 44.9          | 49.6     | .9       | 55.05       | 57     | .7    |               | (12)  |
| Total                                   | Internal              | gains =    |             | . T         | 004.00    | 075 7       |          | (66)    | im + (67)m  | 1 + (68 | 8)m +            | - (69)m + (   | 70)m -   | + (/     | 1)m + (72)  | m      |       | 1             | (70)  |
| (73)m=                                  | 329                   | 325.51     | 312.94      | •           | 294.22    | 275.7       |          | 258.9   | 249.3       | 25      | 5.5              | 266.45        | 285.     | 32       | 306.03      | 321    | .19   |               | (73)  |
| 0. Solar (                              | nains are             | S.         | usina so    | lar         | flux from | Table 6a    | and      | 25500   | iated equa  | tions   | to co            | nvert to th   | e annl   | icah     | le orientat | ion    |       |               |       |
| Orient                                  | ation:                |            | actor       |             |           |             | and      | Flu     | v           |         | 10 00            | a             | c appi   | icac     | FF          | 1011.  |       | Gains         |       |
| Onent                                   | -                     | Table 6d   | actor       |             | m²        |             |          | Tal     | ble 6a      |         | Т                | 9_<br>able 6b |          | Та       | able 6c     |        |       | (W)           |       |
| Southe                                  | ast 0.9x              | 1          |             | x           | 1.3       | 9           | x        | 3       | 37.39       | ×       |                  | 0.76          | x        | Г        | 0.7         |        | =     | 49.77         | (77)  |
| Southe                                  | ast 0.9x              | 1          |             | x           | 1.3       | 39          | x        | 6       | 3.74        | x       |                  | 0.76          | - x      | F        | 0.7         |        | =     | 84.84         | ](77) |
| Southe                                  | ast 0.9x              | 1          |             | x           | 1.3       | 39          | x        | 6       | 34.22       | x       |                  | 0.76          | ۲<br>× ۲ | F        | 0.7         |        | =     | 112.1         | ](77) |
| Southe                                  | ast <mark>0.9x</mark> | 1          |             | x           | 1.3       | 39          | x        | 1       | 03.49       | x       |                  | 0.76          | ۲<br>×   | F        | 0.7         |        | =     | 137.75        | (77)  |
| Southe                                  | ast 0.9x              | 1          |             | x           | 1.3       | 9           | x        | 1       | 13.34       | ×       |                  | 0.76          | ۲<br>× آ | F        | 0.7         |        | =     | 150.86        | (77)  |
| Southe                                  | ast <mark>0.9x</mark> | 1          |             | x           | 1.3       | 39          | x        | 1       | 15.04       | ×       |                  | 0.76          | ×        | Ē        | 0.7         |        | =     | 153.13        | (77)  |
| Southe                                  | ast 0.9x              | 1          |             | x           | 1.3       | 39          | x        | 1       | 12.79       | ×       |                  | 0.76          | ×        | Γ        | 0.7         |        | =     | 150.13        | (77)  |
| Southe                                  | ast 0.9x 1 x 1.39     |            | 39          | x           | 1         | 05.34       | ×        |         | 0.76        | x       |                  | 0.7           |          | =        | 140.22      | (77)   |       |               |       |

| Southeast 0.9x  | 1 | x | 1.39 | x | 92.9  | x | 0.76 | x | 0.7 | =   | 123.65 | (77)       |
|-----------------|---|---|------|---|-------|---|------|---|-----|-----|--------|------------|
| Southeast 0.9x  | 1 | × | 1.39 | x | 72.36 | × | 0.76 | x | 0.7 | i = | 96.32  | -<br> (77) |
| Southeast 0.9x  | 1 | × | 1.39 | x | 44.83 | x | 0.76 | x | 0.7 | =   | 59.67  | _<br>(77)  |
| Southeast 0.9x  | 1 | × | 1.39 | x | 31.95 | x | 0.76 | x | 0.7 | =   | 42.53  | _<br>(77)  |
| Northwest 0.9x  | 1 | x | 1.85 | x | 11.51 | × | 0.63 | x | 0.7 | =   | 8.45   | (81)       |
| Northwest 0.9x  | 1 | × | 1.85 | x | 23.55 | x | 0.63 | x | 0.7 | =   | 17.3   | (81)       |
| Northwest 0.9x  | 1 | × | 1.85 | x | 41.13 | × | 0.63 | x | 0.7 | =   | 30.2   | (81)       |
| Northwest 0.9x  | 1 | × | 1.85 | x | 67.8  | × | 0.63 | x | 0.7 | =   | 49.78  | (81)       |
| Northwest 0.9x  | 1 | × | 1.85 | x | 89.77 | × | 0.63 | x | 0.7 | ] = | 65.91  | (81)       |
| Northwest 0.9x  | 1 | x | 1.85 | x | 97.5  | × | 0.63 | x | 0.7 | ] = | 71.59  | (81)       |
| Northwest 0.9x  | 1 | x | 1.85 | x | 92.98 | × | 0.63 | x | 0.7 | =   | 68.27  | (81)       |
| Northwest 0.9x  | 1 | x | 1.85 | x | 75.42 | x | 0.63 | x | 0.7 | =   | 55.38  | (81)       |
| Northwest 0.9x  | 1 | x | 1.85 | x | 51.24 | x | 0.63 | x | 0.7 | =   | 37.63  | (81)       |
| Northwest 0.9x  | 1 | x | 1.85 | x | 29.6  | x | 0.63 | x | 0.7 | =   | 21.73  | (81)       |
| Northwest 0.9x  | 1 | x | 1.85 | x | 14.52 | x | 0.63 | x | 0.7 | =   | 10.67  | (81)       |
| Northwest 0.9x  | 1 | x | 1.85 | x | 9.36  | × | 0.63 | x | 0.7 | ] = | 6.87   | (81)       |
| Rooflights 0.9x | 1 | x | 0.53 | x | 26    | x | 0.63 | x | 0.8 | =   | 12.5   | (82)       |
| Rooflights 0.9x | 1 | x | 0.36 | x | 26    | x | 0.63 | x | 0.8 | =   | 8.49   | (82)       |
| Rooflights 0.9x | 1 | x | 0.53 | x | 54    | x | 0.63 | x | 0.8 | =   | 25.96  | (82)       |
| Rooflights 0.9x | 1 | x | 0.36 | x | 54    | x | 0.63 | x | 0.8 | =   | 17.64  | (82)       |
| Rooflights 0.9x | 1 | x | 0.53 | x | 94    | x | 0.63 | x | 0.8 | =   | 45.2   | (82)       |
| Rooflights 0.9x | 1 | x | 0.36 | x | 94    | x | 0.63 | x | 0.8 | =   | 30.7   | (82)       |
| Rooflights 0.9x | 1 | x | 0.53 | x | 150   | x | 0.63 | x | 0.8 | =   | 72.12  | (82)       |
| Rooflights 0.9x | 1 | × | 0.36 | x | 150   | × | 0.63 | x | 0.8 | =   | 48.99  | (82)       |
| Rooflights 0.9x | 1 | x | 0.53 | x | 190   | x | 0.63 | x | 0.8 | ] = | 91.36  | (82)       |
| Rooflights 0.9x | 1 | x | 0.36 | x | 190   | × | 0.63 | x | 0.8 | =   | 62.05  | (82)       |
| Rooflights 0.9x | 1 | x | 0.53 | x | 201   | x | 0.63 | x | 0.8 | =   | 96.64  | (82)       |
| Rooflights 0.9x | 1 | x | 0.36 | x | 201   | × | 0.63 | x | 0.8 | =   | 65.64  | (82)       |
| Rooflights 0.9x | 1 | x | 0.53 | x | 194   | x | 0.63 | x | 0.8 | =   | 93.28  | (82)       |
| Rooflights 0.9x | 1 | x | 0.36 | x | 194   | x | 0.63 | x | 0.8 | =   | 63.36  | (82)       |
| Rooflights 0.9x | 1 | x | 0.53 | x | 164   | x | 0.63 | x | 0.8 | =   | 78.85  | (82)       |
| Rooflights 0.9x | 1 | x | 0.36 | x | 164   | × | 0.63 | x | 0.8 | =   | 53.56  | (82)       |
| Rooflights 0.9x | 1 | x | 0.53 | x | 116   | x | 0.63 | x | 0.8 | =   | 55.77  | (82)       |
| Rooflights 0.9x | 1 | x | 0.36 | x | 116   | x | 0.63 | x | 0.8 | =   | 37.88  | (82)       |
| Rooflights 0.9x | 1 | x | 0.53 | x | 68    | x | 0.63 | x | 0.8 | =   | 32.7   | (82)       |
| Rooflights 0.9x | 1 | x | 0.36 | × | 68    | × | 0.63 | × | 0.8 | ] = | 22.21  | (82)       |
| Rooflights 0.9x | 1 | x | 0.53 | × | 33    | × | 0.63 | x | 0.8 | =   | 15.87  | (82)       |
| Rooflights 0.9x | 1 | x | 0.36 | × | 33    | × | 0.63 | x | 0.8 | =   | 10.78  | (82)       |
| Rooflights 0.9x | 1 | x | 0.53 | x | 21    | × | 0.63 | x | 0.8 | ] = | 10.1   | (82)       |
| Rooflights 0.9x | 1 | x | 0.36 | x | 21    | × | 0.63 | x | 0.8 | ] = | 6.86   | (82)       |

| Solar gains in watts, calculated for each month |       |        |        |        |        |        |        |        | (83)m = Sum(74)m(82)m |        |       |       |      |  |  |
|-------------------------------------------------|-------|--------|--------|--------|--------|--------|--------|--------|-----------------------|--------|-------|-------|------|--|--|
| (83)m=                                          | 79.21 | 145.73 | 218.19 | 308.64 | 370.18 | 387.01 | 375.04 | 328.01 | 254.94                | 172.96 | 96.98 | 66.36 | (83) |  |  |

| (84)m=                                                       | 408.21                                                                         | 471.24                                                             | 531.13                                                     | 602.86                                                   | 645.88                                            | 645.91              | 624.34             | 583.5                                         | 521.39                                               | 458.28                | 403.01      | 387.55     |                                 | (84)                                    |
|--------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|---------------------|--------------------|-----------------------------------------------|------------------------------------------------------|-----------------------|-------------|------------|---------------------------------|-----------------------------------------|
| 7. Me                                                        | an inter                                                                       | nal temp                                                           | erature                                                    | (heating                                                 | season                                            | )                   |                    |                                               |                                                      |                       |             |            |                                 |                                         |
| Temp                                                         | erature                                                                        | during h                                                           | eating p                                                   | eriods ir                                                | n the livir                                       | ng area f           | from Tab           | ole 9, Th                                     | 1 (°C)                                               |                       |             |            | 21                              | (85)                                    |
| Utilisa                                                      | ation fac                                                                      | tor for g                                                          | ains for                                                   | living are                                               | ea, h1,m                                          | (see Ta             | ble 9a)            |                                               |                                                      |                       |             |            |                                 |                                         |
|                                                              | Jan                                                                            | Feb                                                                | Mar                                                        | Apr                                                      | May                                               | Jun                 | Jul                | Aug                                           | Sep                                                  | Oct                   | Nov         | Dec        |                                 |                                         |
| (86)m=                                                       | 0.9                                                                            | 0.86                                                               | 0.8                                                        | 0.72                                                     | 0.59                                              | 0.45                | 0.32               | 0.34                                          | 0.55                                                 | 0.75                  | 0.86        | 0.9        |                                 | (86)                                    |
| Mean                                                         | interna                                                                        | l temper                                                           | ature in                                                   | living are                                               | ea T1 (fo                                         | nllow ste           | ns 3 to 7          | in Tabl                                       | e 9c)                                                |                       | <u> </u>    |            |                                 |                                         |
| (87)m=                                                       | 18.48                                                                          | 18.84                                                              | 19.38                                                      | 19.97                                                    | 20.51                                             | 20.81               | 20.94              | 20.93                                         | 20.69                                                | 20.07                 | 19.13       | 18.56      |                                 | (87)                                    |
| Tom                                                          |                                                                                | l<br>during h                                                      |                                                            | l<br>orioda ir                                           | roct of                                           | dwolling            | from To            |                                               | h2 (°C)                                              |                       |             |            |                                 |                                         |
| (88)m=                                                       | 19.59                                                                          | 19.61                                                              | 19.61                                                      | 19.65                                                    | 19.68                                             | 19.69               | 197                | 19.7                                          | 19.67                                                | 19.65                 | 19.63       | 19.61      |                                 | (88)                                    |
| (00)                                                         |                                                                                |                                                                    |                                                            | 10.00                                                    |                                                   | 10.00               |                    |                                               | 10.01                                                | 10.00                 | 10.00       | 10.01      |                                 | ()                                      |
| Utilisa                                                      | ation fac                                                                      | tor for g                                                          | ains for                                                   | rest of d                                                | welling, I                                        | n2,m (se            |                    | 9a)                                           | 0.47                                                 | 0.7                   | 0.04        | 0.00       | l                               | (80)                                    |
| (89)m=                                                       | 0.88                                                                           | 0.84                                                               | 0.78                                                       | 0.68                                                     | 0.53                                              | 0.37                | 0.22               | 0.24                                          | 0.47                                                 | 0.7                   | 0.84        | 0.88       |                                 | (09)                                    |
| Mean                                                         | interna                                                                        | l temper                                                           | ature in                                                   | the rest                                                 | of dwelli                                         | ng T2 (fo           | ollow ste          | ps 3 to 7                                     | 7 in Tabl                                            | e 9c)                 |             |            | I                               |                                         |
| (90)m=                                                       | 17.39                                                                          | 17.75                                                              | 18.27                                                      | 18.84                                                    | 19.34                                             | 19.59               | 19.68              | 19.68                                         | 19.49                                                | 18.95                 | 18.05       | 17.48      |                                 | (90)<br>¬                               |
|                                                              |                                                                                |                                                                    |                                                            |                                                          |                                                   |                     |                    |                                               | f                                                    | LA = Livin            | g area ÷ (4 | 1) =       | 0.49                            | (91)                                    |
| Mean                                                         | interna                                                                        | l temper                                                           | ature (fo                                                  | or the wh                                                | ole dwe                                           | lling) = fl         | LA × T1            | + (1 – fL                                     | A) × T2                                              |                       |             |            |                                 |                                         |
| (92)m=                                                       | 17.92                                                                          | 18.28                                                              | 18.81                                                      | 19.39                                                    | 19.91                                             | 20.19               | 20.3               | 20.3                                          | 20.08                                                | 19.5                  | 18.58       | 18.01      |                                 | (92)                                    |
| Apply                                                        | adjustr                                                                        | nent to t                                                          | ne mear                                                    | n internal                                               | temper                                            | ature fro           | m Table            | 4e, whe                                       | ere appro                                            | opriate               |             |            | L                               |                                         |
| (93)m=                                                       | 17.92                                                                          | 18.28                                                              | 18.81                                                      | 19.39                                                    | 19.91                                             | 20.19               | 20.3               | 20.3                                          | 20.08                                                | 19.5                  | 18.58       | 18.01      |                                 | (93)                                    |
| 8. Space heating requirement                                 |                                                                                |                                                                    |                                                            |                                                          |                                                   |                     |                    |                                               |                                                      |                       |             |            |                                 |                                         |
| Set T                                                        | i to the i                                                                     | mean int                                                           | ernal ter                                                  | mperatui                                                 | re obtain                                         | ed at ste           | ep 11 of           | Table 9                                       | o, so tha                                            | t Ti,m=(              | 76)m an     | d re-calc  | ulate                           |                                         |
| uie ui                                                       | lan                                                                            | Feh                                                                | Mar                                                        | Δnr                                                      | May                                               | lun                 | lul                | Διια                                          | Sen                                                  | Oct                   | Nov         | Dec        |                                 |                                         |
| Utilisa                                                      | ation fac                                                                      | tor for a                                                          | ains. hm                                                   | ):                                                       | may                                               | Uun                 | Uui                | , tug                                         | 000                                                  | 001                   | 1101        | 000        |                                 |                                         |
| (94)m=                                                       | 0.86                                                                           | 0.82                                                               | 0.76                                                       | 0.67                                                     | 0.54                                              | 0.4                 | 0.27               | 0.28                                          | 0.5                                                  | 0.69                  | 0.82        | 0.86       |                                 | (94)                                    |
| Usefu                                                        | ul gains,                                                                      | hmGm ,                                                             | W = (94                                                    | 4)m x (84                                                | 4)m                                               |                     |                    |                                               |                                                      |                       |             |            |                                 |                                         |
| (95)m=                                                       | 349.77                                                                         | 385.79                                                             | 402.25                                                     | 403.9                                                    | 350.76                                            | 261.18              | 167.44             | 166.21                                        | 258.07                                               | 317.75                | 330.89      | 333.68     |                                 | (95)                                    |
| Montl                                                        | hly aver                                                                       | age exte                                                           | rnal tem                                                   | perature                                                 | e from Ta                                         | able 8              |                    |                                               |                                                      |                       |             |            |                                 |                                         |
| (96)m=                                                       | 4.5                                                                            | 5                                                                  | 6.8                                                        | 8.7                                                      | 11.7                                              | 14.6                | 16.9               | 16.9                                          | 14.3                                                 | 10.8                  | 7           | 4.9        |                                 | (96)                                    |
| Heat                                                         | loss rate                                                                      | e for mea                                                          | an intern                                                  | al tempe                                                 | erature,                                          | Lm , W =            | =[(39)m :          | x [(93)m                                      | – (96)m                                              | ]                     |             |            | I                               |                                         |
| (97)m=                                                       | 763.13                                                                         | 740.41                                                             | 669.58                                                     | 574.21                                                   | 430.89                                            | 290.06              | 174.75             | 174.49                                        | 305.12                                               | 467.07                | 633.24      | 730.75     |                                 | (97)                                    |
| Space                                                        | e heatin                                                                       | g require                                                          | ement fo                                                   | or each n                                                | nonth, k                                          | Nh/mont             | th = 0.02          | 24 x [(97)                                    | )m – (95                                             | )m] x (4′             | 1)m         |            | l                               |                                         |
| (98)m=                                                       | 307.53                                                                         | 238.31                                                             | 198.89                                                     | 122.62                                                   | 59.61                                             | 0                   |                    |                                               |                                                      |                       | 217 60      | 295 42     |                                 | _                                       |
|                                                              |                                                                                |                                                                    |                                                            |                                                          |                                                   | Ű                   | Ű                  | 0                                             | 0                                                    | 111.1                 | 217.09      | 200.12     |                                 | (00)                                    |
| Space heating requirement in kWh/m²/year                     |                                                                                |                                                                    |                                                            |                                                          |                                                   |                     |                    |                                               |                                                      | (kWh/year             | ) = Sum(9   | 8)15,912 = | 1551.18                         | (98)                                    |
| Space                                                        | e heatin                                                                       | g require                                                          | ement in                                                   | kWh/m²                                                   | /year                                             | 0                   |                    | Tota                                          | l per year                                           | (kWh/year             | ) = Sum(9   | 8)15,912 = | 1551.18<br>44.83                | (98)<br>(99)                            |
| Spac<br>9a. En                                               | e heatin<br>ergy rec                                                           | g require<br>quiremer                                              | ement in<br>hts – Ind                                      | kWh/m²<br>ividual h                                      | /year<br>eating sy                                | ystems i            | ncluding           | Tota<br>micro-C                               | l per year                                           | (kWh/year             | ) = Sum(9   | 8)15,912 = | 1551.18<br>44.83                | (98)<br>(99)                            |
| Space<br>9a. En<br><b>Spac</b>                               | e heatin<br>ergy rec<br><b>e heatir</b>                                        | g require<br>quiremer<br><b>1g:</b>                                | ement in<br>hts – Ind                                      | kWh/m²<br>ividual h                                      | /year<br>eating sy                                | ystems i            | ncluding           | Tota<br>micro-C                               | l per year                                           | (kWh/year             | ) = Sum(9   | 8)15,912 = | 1551.18<br>44.83                | (98)<br>(99)                            |
| Space<br>9a. En<br><b>Spac</b><br>Fracti                     | e heatin<br>ergy rec<br><b>e heatir</b><br>ion of sp                           | g require<br>quiremer<br><b>1g:</b><br>bace hea                    | ement in<br>its – Indi<br>it from se                       | kWh/m²<br>ividual h<br>econdar                           | /year<br>eating sy<br>y/supple                    | ystems i<br>mentary | ncluding<br>system | Tota<br>micro-C                               | l per year<br>CHP)                                   | (kWh/year             | ) = Sum(9   | 8)15.912 = | 1551.18<br>44.83<br>0           | (98)<br>(99)<br>(201)                   |
| Space<br>9a. En<br><b>Spac</b><br>Fracti<br>Fracti           | e heatin<br>ergy rec<br>e heatir<br>ion of sp<br>ion of sp                     | g require<br>quiremer<br>ng:<br>pace hea<br>pace hea               | ement in<br>its – Ind<br>it from s<br>it from m            | kWh/m²<br>ividual h<br>econdar<br>nain syst              | ?/year<br>eating sy<br>y/supple<br>em(s)          | ystems i<br>mentary | ncluding<br>system | Tota<br>micro-C<br>(202) = 1 -                | 0<br>I per year<br>CHP)<br>- (201) =                 | (kWh/year             | ) = Sum(9   | 8)15,912 = | 1551.18<br>44.83<br>0<br>1      | (98)<br>(99)<br>(201)<br>(202)          |
| Space<br>9a. En<br><b>Spac</b><br>Fracti<br>Fracti<br>Fracti | e heatin<br>ergy rec<br><b>e heatir</b><br>ion of sp<br>ion of sp<br>ion of to | g require<br>quiremen<br>ng:<br>bace hea<br>bace hea<br>tal heatin | ement in<br>its – Ind<br>it from s<br>it from m<br>ng from | kWh/m²<br>ividual h<br>econdar<br>nain syst<br>main syst | /year<br>eating sy<br>y/supple<br>em(s)<br>stem 1 | ystems i<br>mentary | ncluding<br>system | Tota<br>micro-C<br>(202) = 1 -<br>(204) = (2) | 0<br>I per year<br>CHP)<br>- (201) =<br>02) × [1 - 1 | (kWh/year<br>(203)] = | ) = Sum(9   | 8)15,912 = | 1551.18<br>44.83<br>0<br>1<br>1 | (98)<br>(99)<br>(201)<br>(202)<br>(204) |

Total gains – internal and solar (84)m = (73)m + (83)m, watts

| Efficie                   | ency of              | main spa              | ace heat               | ting syste | em 1      |          |                           |           |                             |                       |                                 |                       | 92.6                       | (206)             |
|---------------------------|----------------------|-----------------------|------------------------|------------|-----------|----------|---------------------------|-----------|-----------------------------|-----------------------|---------------------------------|-----------------------|----------------------------|-------------------|
| Efficie                   | ency of              | seconda               | ry/suppl               | ementar    | y heating | g systen | n, %                      |           |                             |                       |                                 |                       | 0                          | (208)             |
|                           | Jan                  | Feb                   | Mar                    | Apr        | May       | Jun      | Jul                       | Aug       | Sep                         | Oct                   | Nov                             | Dec                   | kWh/yea                    | ar                |
| Space                     | e heatin             | g requir              | ement (o               | alculate   | d above)  | )        |                           |           |                             |                       |                                 |                       |                            |                   |
|                           | 307.53               | 238.31                | 198.89                 | 122.62     | 59.61     | 0        | 0                         | 0         | 0                           | 111.1                 | 217.69                          | 295.42                |                            |                   |
| (211)m                    | ) = {[(98            | )m x (20              | 94)] + (2 <sup>-</sup> | 10)m } x   | 100 ÷ (2  | 06)      |                           |           |                             | -                     |                                 |                       |                            | (211)             |
|                           | 332.11               | 257.35                | 214.79                 | 132.42     | 64.38     | 0        | 0                         | 0         | 0                           | 119.98                | 235.09                          | 319.03                |                            | _                 |
|                           |                      |                       |                        |            |           |          |                           | Tota      | ll (kWh/yea                 | ar) =Sum(2            | 211) <sub>15,1012</sub>         | -                     | 1675.14                    | (211)             |
| Space                     | e heatin             | g fuel (s             | econdar                | ∙y), kWh/  | month     |          |                           |           |                             |                       |                                 |                       |                            |                   |
| = {[(98]                  | )m x (20             | 01)] + (2             | 14) m } >              | x 100 ÷ (  | 208)      | r        |                           |           |                             |                       |                                 |                       |                            |                   |
| (215)m=                   | 0                    | 0                     | 0                      | 0          | 0         | 0        | 0                         | 0         | 0                           | 0                     | 0                               | 0                     |                            | _                 |
|                           |                      |                       |                        |            |           |          |                           | Tota      | ıl (kWh/yea                 | ar) =Sum(2            | 2 <b>15)</b> <sub>15,1012</sub> | =                     | 0                          | (215)             |
| Water                     | heating              | 9                     |                        |            |           |          |                           |           |                             |                       |                                 |                       |                            |                   |
| Output                    | from w               | ater hea              | ter (calc              | ulated a   | bove)     | 07.40    |                           | 400.70    | 404.04                      | 440.5                 | 407.57                          | 100.07                | I                          |                   |
| <b>F</b> ((), ) ,         | 141.39               | 123.51                | 128.5                  | 113.97     | 110.34    | 97.18    | 93.1                      | 103.79    | 104.94                      | 119.5                 | 127.57                          | 138.07                |                            |                   |
| Efficier                  | ncy of w             | ater hea              | ater<br>T              |            |           |          |                           |           |                             |                       |                                 |                       | 79.5                       | (216)             |
| (217)m=                   | 86.15                | 85.88                 | 85.34                  | 84.43      | 82.77     | 79.5     | 79.5                      | 79.5      | 79.5                        | 84.07                 | 85.58                           | 86.12                 |                            | (217)             |
| Fuel fo                   | r water              | heating,              | , kWh/m                | onth       |           |          |                           |           |                             |                       |                                 |                       |                            |                   |
| (219)II<br>(219)m=        | 164.12               | 143.83                | 150.57                 | 134.99     | 133.31    | 122.24   | 117.11                    | 130.56    | 132                         | 142.15                | 149.06                          | 160.33                |                            |                   |
| . ,                       |                      | I                     |                        |            |           |          |                           | Tota      | l<br>I = Sum(2 <sup>-</sup> | 19a) <sub>112</sub> = | 1                               |                       | 1680.25                    | (219)             |
| Annua                     | l totals             |                       |                        |            |           |          |                           |           |                             | k                     | Wh/vear                         |                       | kWh/vear                   |                   |
| Space                     | heating              | fuel use              | ed, main               | system     | 1         |          |                           |           |                             |                       | , <b>j</b>                      |                       | 1675.14                    | 7                 |
| Water                     | heating              | fuel use              | ed                     |            |           |          |                           |           |                             |                       |                                 |                       | 1680.25                    | f                 |
| Electric                  | citv for r           | oumps. f              | ans and                | electric   | keep-ho   | t        |                           |           |                             |                       |                                 |                       |                            |                   |
| centra                    | al heatir            | ng pump               | :                      |            |           |          |                           |           |                             |                       |                                 | 130                   |                            | (230c)            |
| boiler                    | with a f             | an-assis              | sted flue              |            |           |          |                           |           |                             |                       |                                 | 45                    |                            | (230e)            |
| Total e                   | lectricit            | v for the             | above.                 | kWh/vea    | r         |          |                           | sum       | of (230a).                  | (230g) =              |                                 |                       | 175                        | (231)             |
| Electric                  | city for I           | iahtina               |                        | .,         |           |          |                           |           |                             |                       |                                 |                       | 204.48                     | ]<br>(232)        |
| 10a F                     |                      | sts - indiv           | vidual he              | eating sv  | stems:    |          |                           |           |                             |                       |                                 |                       | 20 10                      |                   |
| roarr                     |                      |                       | riddar rit             | Sating by  |           |          |                           |           |                             |                       |                                 |                       |                            |                   |
|                           |                      |                       |                        |            |           | Fu<br>kV | i <b>el</b><br>Vh/year    |           |                             | Fuel P<br>(Table      | r <b>ice</b><br>12)             |                       | <b>Fuel Cost</b><br>£/year |                   |
| Space                     | heating              | - main s              | system ?               | 1          |           | (21      | 1) x                      |           |                             | 3.                    | 1                               | x 0.01 =              | 51.9294                    | (240)             |
| Space                     | heating              | - main s              | system 2               | 2          |           | (21      | 3) x                      |           |                             | 0                     |                                 | x 0.01 =              | 0                          | (241)             |
| Space heating - secondary |                      |                       |                        |            |           | (21      | 5) x                      |           |                             | 0                     |                                 | x 0.01 =              | 0                          | (242)             |
| Water                     | heating              | cost (ot              | her fuel)              |            |           | (21      | 9)                        |           |                             | 3.1                   | 1                               | x 0.01 =              | 52.09                      | (247)             |
| Pumps                     | , fans a             | ind elect             | ric keep               | -hot       |           | (23      | 1)                        |           |                             | 11.4                  | 46                              | x 0.01 =              | 20.06                      | (249)             |
| (if off-p<br>Energy       | eak tari<br>for ligh | iff, list ea<br>nting | ach of (2              | 30a) to (  | 230g) se  | eparatel | y as app<br><sup>2)</sup> | licable a | nd apply                    | / fuel prid           | ce accor                        | ding to 7<br>x 0.01 = | Table 12a                  | (250)             |
| Additio                   | nal star             | -<br>ndina chi        | arges (T               | able 12)   |           |          |                           |           |                             | L                     | <u> </u>                        |                       | 106                        | $\frac{1}{(251)}$ |
| ,                         | na sta               | any on                | 900 ( I                | 3510 12)   |           |          |                           |           |                             |                       |                                 |                       | 100                        |                   |
| Appendix Q items: repeat lines (253) and (254)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ) as needed               |                                      |                              |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------|------------------------------|----------------|
| Total energy cost(245)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (247) + (250)(254) =      |                                      | 253.5058                     | (255)          |
| 11a. SAP rating - individual heating systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                                      |                              |                |
| Energy cost deflator (Table 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                      | 0.47                         | (256)          |
| Energy cost factor (ECF) [(255) >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (256)] ÷ [(4) + 45.0] =   |                                      | 1.4968                       | (257)          |
| SAP rating (Section 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                                      | 79.1192                      | (258)          |
| 12a. CO2 emissions – Individual heating systematic systematics and the systematic systematic systematic systematics and the systematic systematic systematics and the systematic systematic systematics and the systematic systemater systematic syst | ems including micro-CH    | Р                                    |                              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Energy</b><br>kWh/year | <b>Emission factor</b><br>kg CO2/kWh | Emissions<br>kg CO2/ye       | <b>s</b><br>ar |
| Space heating (main system 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (211) x                   | 0.198 =                              | 331.68                       | (261)          |
| Space heating (secondary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (215) x                   | 0 =                                  | 0                            | (263)          |
| Water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (219) x                   | 0.198 =                              | 332.69                       | (264)          |
| Space and water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (261) + (262) + (263) +   | (264) =                              | 664.37                       | (265)          |
| Electricity for pumps, fans and electric keep-ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ot (231) x                | 0.517 =                              | 90.48                        | (267)          |
| Electricity for lighting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (232) x                   | 0.517 =                              | 105.72                       | (268)          |
| Total CO2, kg/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | sum of (265)(271) =                  | 860.56                       | (272)          |
| CO2 emissions per m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | (272) ÷ (4) =                        | 24.87                        | (273)          |
| El rating (section 14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                                      | 86                           | (274)          |
| 13a. Primary Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                                      |                              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Energy</b><br>kWh/year | <b>Primary</b><br>factor             | <b>P. Energy</b><br>kWh/year |                |
| Space heating (main system 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (211) x                   | 1.02 =                               | 1708.64                      | (261)          |
| Space heating (secondary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (215) x                   | 0 =                                  | 0                            | (263)          |
| Energy for water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (219) x                   | 1.02 =                               | 1713.86                      | (264)          |
| Space and water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (261) + (262) + (263) +   | (264) =                              | 3422.5                       | (265)          |
| Electricity for pumps, fans and electric keep-ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ot (231) x                | 2.92 =                               | 511                          | (267)          |
| Electricity for lighting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (232) x                   | 0 =                                  | 597.09                       | (268)          |
| 'Total Primary Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | sum of (265)(271) =                  | 4530.59                      | (272)          |

(272) ÷ (4) =

Primary energy kWh/m²/year

(273)

130.94

|                                                             |                                                       |              | User D      | etails:              |             |             |                         |           |                            |            |
|-------------------------------------------------------------|-------------------------------------------------------|--------------|-------------|----------------------|-------------|-------------|-------------------------|-----------|----------------------------|------------|
| Assessor Name:                                              | Test User                                             | 0            | :           | Stroma               | a Num       | ber:        |                         | STRO      | 000000<br>p: 1 5 0 74      |            |
| Software Name:                                              | Stroma FSAP 200                                       | 9<br>Dr      | operty /    |                      | Third fl    | SION:       | ing                     | versio    | n. 1.3.0.74                |            |
| Address ·                                                   | 82 Guilford Street                                    | ondon V      | VC1N 1      | DF                   | THICH       |             | ing                     |           |                            |            |
| 1. Overall dwelling dimer                                   | isions:                                               |              | VOINT       |                      |             |             |                         |           |                            |            |
| Basement                                                    |                                                       |              | Area<br>3   | 1 <b>(m²)</b><br>4.6 | (1a) x      | Ave He      | e <b>ight(m)</b><br>693 | (2a) =    | <b>Volume(m³)</b><br>93.18 | (3a)       |
| Total floor area TFA = (1a                                  | )+(1b)+(1c)+(1d)+(1e                                  | )+(1n)       | ) 3         | 4.6                  | (4)         | L           |                         | J 1       |                            | _          |
| Dwelling volume                                             | , , , , , , , , , , , , , , , , , , , ,               | , ( ,        |             |                      | (3a)+(3b)   | +(3c)+(3d   | )+(3e)+                 | .(3n) =   | 93.18                      | (5)        |
| 2. Ventilation rate:                                        |                                                       |              |             |                      |             |             |                         |           |                            |            |
|                                                             | main Se                                               | econdary     | y o         | other                |             | total       |                         |           | m <sup>3</sup> per hour    | •          |
| Number of chimneys                                          |                                                       | 0            | ] + [       | 0                    | ] = [       | 0           | x 4                     | 40 =      | 0                          | (6a)       |
| Number of open flues                                        |                                                       | 0            | i + [       | 0                    | 」<br>  = [  | 0           | x2                      | 20 =      | 0                          | (6b)       |
| Number of intermittent fan                                  | s                                                     |              |             |                      |             | 2           | x ′                     | 10 =      | 20                         | _<br>](7a) |
| Number of passive vents                                     |                                                       |              |             |                      |             | 0           | x ^                     | 10 =      | 0                          | _<br>](7b) |
| Number of flueless gas fire                                 | es                                                    |              |             |                      |             | 0           | x 4                     | 40 =      | 0                          | _<br>](7c) |
| 0                                                           |                                                       |              |             |                      | L           | -           |                         |           | -                          |            |
|                                                             |                                                       |              |             |                      |             |             |                         | Air ch    | anges per ho               | ur         |
| Infiltration due to chimney                                 | s, flues and fans = $(6a)$                            | a)+(6b)+(7a  | a)+(7b)+(7  | /c) =                | Г           | 20          | <u> </u>                | ÷ (5) =   | 0.21                       | (8)        |
| If a pressurisation test has be                             | en carried out or is intende                          | d, proceed   | to (17), o  | therwise c           | ontinue fro | om (9) to ( | 16)                     |           |                            | _          |
| Number of storeys in the                                    | e dwelling (ns)                                       |              |             |                      |             |             |                         | 11-0.4    | 0                          | (9)        |
| Structural infiltration: 0.2                                | 25 for steel or timber f                              | rame or l    | 0 35 for    | maconr               | v constr    | uction      | [(9)-                   | -1]XU.1 = | 0                          | (10)       |
| if both types of wall are pre<br>deducting areas of opening | sent, use the value corresp<br>s); if equal user 0.35 | conding to   | the greate  | er wall area         | a (after    | uction      |                         | l         | U                          |            |
| If suspended wooden flo                                     | oor, enter 0.2 (unseale                               | ed) or 0.1   | l (seale    | d), else             | enter 0     |             |                         |           | 0                          | (12)       |
| If no draught lobby, ente                                   | er 0.05, else enter 0                                 |              |             |                      |             |             |                         |           | 0                          | (13)       |
| Percentage of windows                                       | and doors draught sti                                 | ripped       |             |                      |             |             |                         |           | 0                          | (14)       |
| Window infiltration                                         |                                                       |              | (           | 0.25 - [0.2          | x (14) ÷ 1  | = [00       |                         |           | 0                          | (15)       |
| Infiltration rate                                           |                                                       |              |             | (8) + (10) -         | + (11) + (1 | 2) + (13) + | + (15) =                |           | 0                          | (16)       |
| Air permeability value, c                                   | 50, expressed in cub                                  | ic metres    | s per ho    | ur per so            | quare m     | etre of e   | nvelope                 | area      | 10                         | (17)       |
| If based on air permeabilit                                 | y value, then $(18) = [(1)$                           | 7) ÷ 20]+(8) | ), otherwis | se (18) = (          | 16)         |             | 1                       |           | 0.71                       | (18)       |
| Air permeability value applies                              | it a pressurisation test has                          | been done    | e or a deg  | ree air pei          | meability i | is being us | sea                     | 1         | 2                          | 7(10)      |
| Shelter factor                                              | Sherierea                                             |              |             | (20) = 1 - [         | 0.075 x (1  | 9)] =       |                         |           | 0.85                       | (13)       |
| Infiltration rate incorporatir                              | ng shelter factor                                     |              |             | (21) = (18)          | x (20) =    |             |                         |           | 0.61                       | ](21)      |
| Infiltration rate modified fo                               | r monthly wind speed                                  |              |             |                      |             |             |                         | I         |                            |            |
| Jan Feb N                                                   | Mar Apr May                                           | Jun          | Jul         | Aug                  | Sep         | Oct         | Nov                     | Dec       |                            |            |
| Monthly average wind spe                                    | ed from Table 7                                       |              |             |                      |             |             |                         |           |                            |            |
| (22)m= 5.4 5.1 5                                            | 5.1 4.5 4.1                                           | 3.9          | 3.7         | 3.7                  | 4.2         | 4.5         | 4.8                     | 5.1       |                            |            |
| Wind Factor $(22a)m = (22)^{2}$                             | )m ÷ 4                                                |              |             |                      |             |             |                         |           |                            |            |
| (22a)m= 1.35 1.27 1                                         | .27 1.12 1.02                                         | 0.98         | 0.92        | 0.92                 | 1.05        | 1.12        | 1.2                     | 1.27      |                            |            |
|                                                             |                                                       |              |             |                      |             |             |                         |           |                            |            |

| Adjust          | ed infiltr             | ation rat                      | e (allowi                 | ng for sh    | nelter an            | d wind s       | speed) =     | : (21a) x      | (22a)m      |               |                      |                    | _          |            |
|-----------------|------------------------|--------------------------------|---------------------------|--------------|----------------------|----------------|--------------|----------------|-------------|---------------|----------------------|--------------------|------------|------------|
| 0.1.1           | 0.82                   | 0.77                           | 0.77                      | 0.68         | 0.62                 | 0.59           | 0.56         | 0.56           | 0.64        | 0.68          | 0.73                 | 0.77               |            |            |
| Calcul<br>If me | ate ette<br>echanic:   | <i>ctive air</i><br>al ventila | <i>change</i> .<br>ition: | rate for t   | ne appli             | cable ca       | se           |                |             |               |                      |                    | 0          | (23a)      |
| lf exh          | aust air h             | eat pump                       | using Appe                | endix N, (2  | 3b) = (23a           | a) × Fmv (e    | equation (I  | N5)) , othei   | wise (23b   | ) = (23a)     |                      |                    | 0          | (23b)      |
| lf bala         | anced with             | h heat reco                    | overy: effic              | iency in %   | allowing f           | or in-use f    | actor (fron  | n Table 4h     | ) =         |               |                      |                    | 0          | (23c)      |
| a) If           | balance                | ed mecha                       | anical ve                 | entilation   | with he              | at recove      | erv (MV      | HR) (24a       | ı)m = (22   | 2b)m + (:     | 23b) × [             | 1 – (23c)          | ÷ 100]     | (====)     |
| ,<br>(24a)m=    | 0                      | 0                              | 0                         | 0            | 0                    | 0              | 0            | 0              | 0           | 0             | 0                    | 0                  |            | (24a)      |
| b) If           | balance                | ed mecha                       | anical ve                 | ntilation    | without              | heat rec       | covery (I    | MV) (24b       | )m = (22    | 2b)m + (2     | 23b)                 |                    | 1          |            |
| (24b)m=         | 0                      | 0                              | 0                         | 0            | 0                    | 0              | 0            | 0              | 0           | 0             | 0                    | 0                  | ]          | (24b)      |
| c) If           | whole h                | iouse ex                       | tract ver                 | tilation o   | or positiv           | ve input v     | ventilatio   | on from c      | outside     |               |                      |                    |            |            |
|                 | if (22b)r              | n < 0.5 ×                      | (23b), t                  | hen (240     | c) = (23b            | o); otherv     | wise (24     | c) = (22b      | o) m + 0.   | 5 × (23b      | )                    |                    |            |            |
| (24c)m=         | 0                      | 0                              | 0                         | 0            | 0                    | 0              | 0            | 0              | 0           | 0             | 0                    | 0                  |            | (24c)      |
| d) If           | natural                | ventilatio                     | on or wh                  | ole hous     | e positiv            | ve input       | ventilati    | on from I      | oft         | 0 51          |                      |                    |            |            |
| (24d)m-         | 0.84                   | 1 = 1, un                      |                           | 111 = (221)  |                      |                | 40) = 0.66   | 0.5 + [(2)]    | 20)III- X   | 0.5]          | 0.77                 | 0.8                | 1          | (24d)      |
| Effo            | ctive air              |                                | rate - or                 | tor (24a     | 1  or  (24k)         | (24)           | c) or (24)   |                | (25)        | 0.70          | 0.11                 | 0.0                | J          | (=,        |
| (25)m=          | 0.84                   |                                |                           | 0.73         | 0.69                 | 0.68           |              | 0.66           | 0.7         | 0.73          | 0.77                 | 0.8                | 1          | (25)       |
| (20)111-        | 0.01                   | 0.0                            | 0.0                       | 0.10         | 0.00                 | 0.00           | 0.00         | 0.00           | 0.1         | 0.10          | 0.11                 | 0.0                | ]          | ()         |
| 3. He           | at losse               | s and he                       | eat loss                  | paramete     | er:                  |                |              |                |             |               |                      |                    |            |            |
| ELEN            | IENT                   | Gros<br>area                   | ss<br>(m²)                | Openin<br>m  | gs<br>I <sup>2</sup> | Net Ar<br>A ,r | ea<br>n²     | U-valı<br>W/m2 | le<br>K     | A X U<br>(W/ł | <b>&lt;</b> )        | k-value<br>kJ/m²₊l | e A<br>K k | X k<br>J/K |
| Doors           |                        |                                |                           |              |                      | 1.91           | x            | 1.8            | =           | 3.438         |                      |                    |            | (26)       |
| Windo           | ws Type                | e 1                            |                           |              |                      | 1.39           | x1           | /[1/( 2.4 )+   | 0.04] =     | 3.04          |                      |                    |            | (27)       |
| Windo           | ws Type                | e 2                            |                           |              |                      | 1.85           | x1           | /[1/( 1.6 )+   | 0.04] =     | 2.78          |                      |                    |            | (27)       |
| Rooflig         | ghts Typ               | e 1                            |                           |              |                      | 0.53           | x1           | /[1/(1.6) +    | 0.04] =     | 0.848         |                      |                    |            | (27b)      |
| Rooflig         | ghts Typ               | e 2                            |                           |              |                      | 0.36           |              | /[1/(1.6) +    | 0.04] =     | 0.576         |                      |                    |            | (27b)      |
| Walls           |                        | 21.7                           | 79                        | 1.91         |                      | 19.88          | 3 X          | 0.28           | =           | 5.57          |                      |                    |            | (29)       |
| Roof            |                        | 34.0                           | 6                         | 1.78         |                      | 32.82          | <u>2</u> x   | 0.18           |             | 5.91          | i F                  |                    | $\exists$  | (30)       |
| Total a         | area of e              | elements                       | , m²                      | L            |                      | 61.02          | 4            | L              | '           |               |                      |                    |            | (31)       |
| * for win       | dows and               | l roof winde                   | ows, use e                | effective wi | ndow U-va            | alue calcul    | ated using   | g formula 1,   | /[(1/U-valu | ıe)+0.04] a   | ns given in          | paragraph          | n 3.2      |            |
| ** inclua       | le the area            | as on both                     | sides of ir               | nternal wali | ls and par           | titions        |              | (26) (20)      | (22) -      |               |                      |                    |            |            |
|                 | neat los               | 55, VV/K :                     | = 5 (A X                  | 0)           |                      |                |              | (20)(30)       | ((20)       | (20) + (20    | 2) (22a)             | (22a)              | 26.46      | (33)       |
| Thorm           |                        | CIII = S(                      | $(A \times K)$            | 2 – Cm ·     |                      | k l/m2k        |              |                | ((20)       | (30) + (32)   | 2) + (32a).<br>: Low | (320) =            | 633.408    | (34)       |
| For desi        | al IIIass<br>ian asses | sments wh                      |                           | r = 011 -    | construct            | ion are not    | t known ni   | recisely the   | indicative  |               | TMP in T             | ahle 1f            | 100        | (35)       |
| can be ι        | used inste             | ad of a de                     | tailed calc               | ulation.     | 00/101/001           |                | i nilowii pi | colocity and   | maloative   |               |                      |                    |            |            |
| Therm           | al bridg               | es : S (L                      | x Y) cal                  | culated u    | using Ap             | pendix ł       | <            |                |             |               |                      |                    | 9.15       | (36)       |
| if details      | of therma              | al bridging                    | are not kn                | own (36) =   | = 0.15 x (3          | 1)             |              |                |             |               |                      |                    |            |            |
| Total f         | abric he               | at loss                        |                           |              |                      |                |              |                | (33) +      | (36) =        |                      |                    | 35.61      | (37)       |
| Ventila         | ation hea              | at loss ca                     | alculated                 | monthly      | /                    |                |              |                | (38)m       | = 0.33 × (    | 25)m x (5)           | )                  | 1          |            |
| (20)            | Jan                    | Feb                            | Mar                       | Apr          | May                  | Jun            | Jul          | Aug            | Sep         | Oct           | NOV                  | Dec                |            | (38)       |
| (30)11)=        | 20./1                  | 24.0                           | 24.0                      | 22.00        | 21.33                | 20.77          | 20.23        | 20.23          | 21.03       | 22.55         | 23.34                | 24.0               | ]          | (30)       |
| Heat tr         | ranster o              | coefficier                     | nt, W/K                   | F0.47        | 50.05                | 50.00          | <b>55.04</b> | <b>FF 04</b>   | (39)m       | = (37) + (37) | 38)m                 | 00.01              | 1          |            |
| (ວອ)ເມ=         | 01.33                  | 00.21                          | 00.21                     | 58.17        | 26.95                | 50.38          | 55.84        | 55.84          | ə7.24       |               | 59.16<br>Sum(30)     | 12/12-             | 58 31      | (39)       |
|                 |                        |                                |                           |              |                      |                |              |                |             |               |                      |                    | 00.01      | ()         |

| Heat lo                 | oss para                      | ameter (H                       | HLP), W                | /m²K                      |                             |                           |                   |              | (40)m                 | = (39)m ÷   | · (4)                  |          |         |      |
|-------------------------|-------------------------------|---------------------------------|------------------------|---------------------------|-----------------------------|---------------------------|-------------------|--------------|-----------------------|-------------|------------------------|----------|---------|------|
| (40)m=                  | 1.77                          | 1.74                            | 1.74                   | 1.68                      | 1.65                        | 1.63                      | 1.61              | 1.61         | 1.65                  | 1.68        | 1.71                   | 1.74     |         |      |
| Numbe                   | er of dav                     | vs in mo                        | nth (Tab               | le 1a)                    |                             |                           |                   |              |                       | Average =   | Sum(40)1               | 12 /12=  | 1.69    | (40) |
|                         | Jan                           | Feb                             | Mar                    | Apr                       | May                         | Jun                       | Jul               | Aug          | Sep                   | Oct         | Nov                    | Dec      |         |      |
| (41)m=                  | 31                            | 28                              | 31                     | 30                        | 31                          | 30                        | 31                | 31           | 30                    | 31          | 30                     | 31       |         | (41) |
|                         |                               |                                 |                        |                           |                             |                           |                   |              |                       |             |                        |          |         |      |
| 4. Wa                   | iter hea                      | ting ene                        | rav reau               | irement:                  |                             |                           |                   |              |                       |             |                        | kWh/ve   | ear:    |      |
|                         |                               | J                               |                        |                           |                             |                           |                   |              |                       |             |                        |          |         |      |
| Assum<br>if TF<br>if TF | ed occi<br>A > 13.<br>A £ 13. | upancy,<br>9, N = 1<br>9, N = 1 | N<br>+ 1.76 x          | ( [1 - exp                | (-0.0003                    | 849 x (TF                 | FA -13.9          | )2)] + 0.(   | 0013 x ( <sup>-</sup> | TFA -13.    | 1.<br>.9)              | 27       |         | (42) |
| Annua                   | l averag                      | je hot wa                       | ater usag              | ge in litre               | es per da                   | ay Vd,av                  | erage =           | (25 x N)     | + 36                  |             | 64                     | 4.4      |         | (43) |
| Reduce<br>not more      | the annua<br>e that 125       | al average<br>i litres per j    | hot water<br>person pe | ˈusage by<br>r day (all w | 5% if the a<br>/ater use, l | lwelling is<br>hot and co | designed :<br>ld) | to achieve   | a water us            | se target o | f                      |          |         |      |
|                         | Jan                           | Feb                             | Mar                    | Apr                       | Mav                         | Jun                       | Jul               | Aua          | Sep                   | Oct         | Nov                    | Dec      |         |      |
| Hot wate                | er usage i                    | in litres per                   | r day for ea           | ach month                 | Vd,m = fa                   | ctor from                 | Table 1c x        | (43)         | <u> </u>              |             |                        |          |         |      |
| (44)m=                  | 70.83                         | 68.26                           | 65.68                  | 63.11                     | 60.53                       | 57.96                     | 57.96             | 60.53        | 63.11                 | 65.68       | 68.26                  | 70.83    |         |      |
| _                       |                               |                                 |                        |                           |                             |                           |                   |              |                       | Total = Su  | m(44) <sub>112</sub> = | =        | 772.74  | (44) |
| Energy o                | content of                    | f hot water                     | used - ca              | lculated m                | onthly = 4.                 | 190 x Vd,r                | n x nm x [        | OTm / 3600   | ) kWh/mor             | nth (see Ta | ables 1b, 1            | c, 1d)   |         |      |
| (45)m=                  | 105.3                         | 92.09                           | 95.03                  | 82.85                     | 79.5                        | 68.6                      | 63.57             | 72.95        | 73.82                 | 86.03       | 93.9                   | 101.97   |         |      |
| lf instant              | taneous v                     | vater heati                     | ng at poin             | t of use (no              | o hot water                 | r storage),               | enter 0 in        | boxes (46    | ) to (61)             | Total = Su  | m(45) <sub>112</sub> = | =        | 1015.61 | (45) |
| (46)m=                  | 15.79                         | 13.81                           | 14.25                  | 12.43                     | 11.92                       | 10.29                     | 9.54              | 10.94        | 11.07                 | 12.9        | 14.09                  | 15.3     |         | (46) |
| vvater                  | storage                       | IOSS:<br>urer's de              | clared l               | nee facto                 | n is know                   | wn (k\//h                 | (dav).            |              |                       |             |                        | 0        |         | (47) |
| Tompo                   | anulaci                       | actor fro                       |                        | 255 1aulu                 |                             |                           | /uay).            |              |                       |             |                        | 0        |         | (47) |
| Energy                  | / lost fro                    | m water                         | r storage              | , ∠0<br>≥ kWh/v           | ear                         |                           |                   | (47) x (48)  | ) =                   |             |                        | 0        |         | (40) |
| If man                  | ufacture                      | er's decla                      | ared cyli              | nder loss                 | s factor is                 | s not kno                 | own:              | (11) x (10)  | , –                   |             |                        | 0        |         | (43) |
| Cylinde                 | er volun                      | ne (litres                      | ) includi              | ng any s                  | olar stor                   | age with                  | iin same          | )            |                       |             | 1                      | 50       |         | (50) |
| If con                  | nmunity h                     | eating and                      | l no tank ir           | n dwelling,               | enter 110                   | litres in bo              | ox (50)           |              |                       |             |                        |          |         |      |
| Other                   | wise if no                    | stored ho                       | ot water (th           | us includes               | s instantan                 | eous comi                 | bi boilers)       | enter '0' ın | box (50)              |             |                        |          |         |      |
| Hot wa                  | iter stor                     | age loss                        | actor fi               | rom Tab                   | le 2 (kW                    | h/litre/da                | ay)               |              |                       |             | 0.                     | .02      |         | (51) |
| Volum                   | e factor                      | from 1a                         | ble 2a<br>m Table      | 2h                        |                             |                           |                   |              |                       |             | 0.                     | .93      |         | (52) |
| Epora                   | / loct fre                    |                                 |                        |                           | oor                         |                           |                   | ((50) x (51  | l) v (52) v           | (52) -      |                        | .0       |         | (53) |
| Enter (                 | 49) or (                      | 54) in (5                       | 5)                     | , KVVII/y                 | cai                         |                           |                   | ((JU) X (JI  | 1) X (32) X           | (33) =      | 1                      | .6       |         | (54) |
| Water                   | storage                       | loss cal                        | culated                | for each                  | month                       |                           |                   | ((56)m = (   | 55) × (41)            | m           | · · ·                  | .0       |         | ()   |
| (56)m=                  | 49.48                         | 44.69                           | 49.48                  | 47.88                     | 49.48                       | 47.88                     | 49.48             | 49.48        | 47.88                 | 49.48       | 47.88                  | 49.48    |         | (56) |
| If cylinde              | er contain                    | s dedicate                      | d solar sto            | prage, (57)               | m = (56)m                   | x [(50) – (               | H11)] ÷ (5        | 0), else (5  | 7)m = (56)            | m where (   | H11) is fro            | m Append | ix H    |      |
| (57)m=                  | 49.48                         | 44.69                           | 49.48                  | 47.88                     | 49.48                       | 47.88                     | 49.48             | 49.48        | 47.88                 | 49.48       | 47.88                  | 49.48    |         | (57) |
| Drimor                  |                               |                                 | l<br>nuol) fr          | I<br>om Toble             |                             |                           |                   |              |                       |             | 6                      | 10       |         | (58) |
| Primar                  | v circuit                     | loss (al                        | lculated               | for each                  | month (                     | 59)m = (                  | (58) ÷ 36         | 65 x (41)    | m                     |             | 0                      | 10       |         | (00) |
| (mod                    | dified by                     | / factor f                      | rom Tab                | le H5 if t                | here is s                   | solar wat                 | ter heati         | ng and a     | cylinde               | r thermo    | stat)                  |          |         |      |
| (59)m=                  | 51.81                         | 46.79                           | 51.81                  | 50.14                     | 51.81                       | 50.14                     | 51.81             | 51.81        | 50.14                 | 51.81       | 50.14                  | 51.81    |         | (59) |
| Combi                   | loss ca                       | lculated                        | for each               | month                     | (61)m =                     | (60) ÷ 30                 | 65 × (41          | )m           |                       |             |                        |          |         |      |
| (61)m=                  | 0                             | 0                               | 0                      | 0                         | 0                           | 0                         | 0                 | 0            | 0                     | 0           | 0                      | 0        |         | (61) |
|                         | -                             | •                               | •                      | •                         | •                           | •                         | •                 | •            | •                     | •           | •                      |          |         |      |

Stroma FSAP 2009 Version: 1.5.0.74 (SAP 9.90) - http://www.stroma.com

| Total h  | neat req          | uired for        | water l               | ne        | ating ca  | alculate  | d fo     | r eac         | h month        | (62)       | m =          | 0.85 × (    | (45)m   | ۱+   | (46)m +         | (57)       | m +    | (59)m + (61)m |                          |
|----------|-------------------|------------------|-----------------------|-----------|-----------|-----------|----------|---------------|----------------|------------|--------------|-------------|---------|------|-----------------|------------|--------|---------------|--------------------------|
| (62)m=   | 206.58            | 183.58           | 196.32                |           | 180.87    | 180.78    | 1        | 66.62         | 164.85         | 174        | .23          | 171.83      | 187.    | 31   | 191.92          | 203        | 3.26   |               | (62)                     |
| Solar D  | HW input          | calculated       | using Ap              | pe        | ndix G or | Appendi   | хH       | (negati       | ve quantity    | /) (ent    | ter '0'      | if no sola  | r contr | ibut | tion to wate    | er hea     | ating) | -             |                          |
| (add a   | dditiona          | l lines if       | FGHR                  | Sa        | and/or V  | VWHR      | S ap     | plies         | , see Ap       | penc       | dix G        | 3)          |         |      | -               |            |        |               |                          |
| (63)m=   | 0                 | 0                | 0                     |           | 0         | 0         |          | 0             | 0              | C          | )            | 0           | 0       |      | 0               | (          | 0      |               | (63)                     |
| Outpu    | t from w          | ater hea         | ter                   |           |           |           |          |               |                |            |              |             |         |      |                 |            |        |               |                          |
| (64)m=   | 206.58            | 183.58           | 196.32                |           | 180.87    | 180.78    | 1        | 66.62         | 164.85         | 174        | .23          | 171.83      | 187.    | 31   | 191.92          | 203        | 3.26   |               | _                        |
|          |                   |                  |                       |           |           |           |          |               |                | -          | Outp         | ut from wa  | ater he | eate | er (annual)     | 12         |        | 2208.15       | (64)                     |
| Heat g   | ains fro          | m water          | heating               | g, I      | kWh/mo    | onth 0.2  | 25 x     | [0.85         | <b>x</b> (45)m | 1 + (6     | 61)m         | n] + 0.8 x  | x [(46  | 5)m  | n + (57)m       | + (5       | 59)m   | ו ]           |                          |
| (65)m=   | 116.04            | 103.81           | 112.63                |           | 105.96    | 107.46    | 1        | 01.22         | 102.16         | 105        | .28          | 102.96      | 109.    | 63   | 109.64          | 114        | .93    |               | (65)                     |
| inclu    | ude (57)          | m in calo        | culation              | 0         | f (65)m   | only if   | cyliı    | nder i        | s in the c     | dwell      | ling         | or hot w    | ater i  | s f  | rom com         | mun        | ity h  | neating       |                          |
| 5. In    | ternal ga         | ains (see        | Table                 | 5         | and 5a    | ):        |          |               |                |            |              |             |         |      |                 |            |        |               |                          |
| Metab    | olic gair         | ns (Table        | 5) Wa                 | atte      | s         |           |          |               |                |            |              |             |         |      |                 |            |        |               |                          |
| motab    | Jan               | Feb              | Mar                   | T         | Apr       | May       | Γ        | Jun           | Jul            | A          | ug           | Sep         | 0       | ct   | Nov             | D          | ec     |               |                          |
| (66)m=   | 76.28             | 76.28            | 76.28                 | Ť         | 76.28     | 76.28     | 7        | 6.28          | 76.28          | 76.        | 28           | 76.28       | 76.2    | 28   | 76.28           | 76.        | .28    |               | (66)                     |
| Lightir  | ng gains          | (calcula         | ted in A              | ı<br>۱۹/  | pendix    | L, equa   | tion     | L9 o          | r L9a), a      | lso s      | iee T        | Table 5     |         |      |                 |            |        | 1             |                          |
| (67)m=   | 41.01             | 36.42            | 29.62                 | Ť         | 22.42     | 16.76     | 1        | 4.15          | 15.29          | 19.        | 88           | 26.68       | 33.8    | 37   | 39.54           | 42.        | .15    |               | (67)                     |
| Applia   | nces da           | ins (calc        | ulated                | <br>in    | Append    | dix L. ea | nuat     | tion L        | 13 or L1       | 3a),       | also         | see Tal     | ble 5   |      | 1               |            |        | 1             |                          |
| (68)m=   | 161.54            | 163.21           | 158.99                | Т         | 150       | 138.65    | 1        | 27.98         | 120.85         | 119        | .17          | 123.4       | 132.    | 39   | 143.74          | 154        | 1.41   |               | (68)                     |
| Cookir   |                   | l<br>(calcula    | L<br>Ited in <i>i</i> | _L<br>An  | nendix    |           | tion     | 115           | or I 15a)      | l<br>als   |              | e Table     | 5       |      |                 |            |        | I             |                          |
| (69)m=   | 43.9              | 43.9             | 43.9                  | Ť         | 43.9      | 43.9      |          | 43.9          | 43.9           | 43         | .9           | 43.9        | 43.     | 9    | 43.9            | 43         | 3.9    | ]             | (69)                     |
| Pump     | s and fa          | ns dains         | (Table                | <br>5:    | a)        |           | 1        |               |                |            | -            |             |         | -    |                 |            | -      | I             |                          |
| (70)m=   | 10                | 10               | 10                    | T         | 10        | 10        | Т        | 10            | 10             | 1          | 0            | 10          | 10      | )    | 10              | 1          | 0      | ]             | (70)                     |
|          |                   |                  |                       |           |           |           |          | 5)            |                |            | ° I          |             |         |      |                 |            | 0      | l             | ( - )                    |
| (71)m-   | -50.85            | -50.85           | -50.85                | T         | -50.85    | -50.85    |          | 50.85         | -50.85         | -50        | 85           | -50.85      | -50     | 85   | -50.85          | -50        | 85     | 1             | (71)                     |
| Wotor    | booting           |                  |                       |           | 00.00     | 00.00     |          | .00           | 00.00          | 00         | .00          | 00.00       | 00.     |      | 00.00           | 00         |        | l             | (***)                    |
| (72)m-   | 155 07            | gains (1         | able 5                | ,<br>T    | 147 17    | 111 11    | 1        | 40.50         | 127.22         | 1.4.1      | 51           | 1/2         | 147     | 25   | 152.27          | 15/        | 1 / 9  | 1             | (72)                     |
|          | 100.07            | 134.47           | 101.50                |           | 147.17    | 144.44    | <u> </u> | 40.00         | 107.02         |            | .51<br>2)m 1 | (60)m + (   | (70)m   | . (7 | $(1)_{2}^{(1)}$ | - 134<br>m | 1.40   | l             | ()                       |
| (72)m-   |                   | gains =          | 410.22                | Т         | 208 02    | 270.17    | 12       | (00)<br>62.04 | 252 70         | 250        |              | 272.4       | 202     |      | <u> 111 99</u>  | 420        | 1 27   | 1             | (73)                     |
| (73)III= | lar gain          | 433.44           | 419.52                | <u> </u>  | 390.92    | 579.17    | 3        | 02.04         | 552.79         | 339        | .00          | 572.4       | 392.    | 94   | 414.88          | 430        |        |               | (73)                     |
| Solar o  | pains are o       | s.<br>calculated | usina so              | ar        | flux from | Table 6a  | and      | assoc         | iated equa     | tions      | to co        | nvert to th | e appl  | ical | ble orientat    | ion.       |        |               |                          |
| Orient   | ation:            | Access F         | actor                 |           | Area      |           |          | Flu           | x              |            |              | a           |         |      | FF              |            |        | Gains         |                          |
|          | -                 | Table 6d         |                       |           | m²        |           |          | Tal           | ble 6a         |            | Та           | able 6b     |         | Т    | able 6c         |            |        | (W)           |                          |
| Southe   | ast 0.9x          | 1                |                       | x         | 1.3       | 9         | x        | 3             | 37.39          | ×          |              | 0.76        | ٦ x     | Г    | 0.7             |            | =      | 49.77         | (77)                     |
| Southe   | ast 0.9x          | 1                |                       | x         | 1.3       | 39        | x        | 6             | 3.74           | x          |              | 0.76        | ۲ ×     | F    | 0.7             |            | =      | 84.84         | ](77)                    |
| Southe   | ast 0.9x          | 1                |                       | x         | 1.3       | 39        | x        |               | 34 22          | <br>  x    |              | 0.76        | ۲,      | F    | 0.7             |            | _      | 112 1         | ](77)                    |
| Southe   | ast 0.9x          | 1                |                       | x         | 1 9       | 19        | x        |               | 03 49          | <br>  x    |              | 0.76        | ۲,      | F    | 0.7             |            | _      | 137.75        | ](77)                    |
| Southe   | ast 0.9x          | 1                |                       | ·  <br>x  | 1 9       | <u></u>   | x        |               | 13.34          | l î<br>l x |              | 0.76        | ╡ᆠ      | L    | 0.7             | $\dashv$   | _      | 150.86        | ](77)                    |
| Southe   | ast <u>n ov</u> [ | 1                |                       | -  <br>x  | 1.0       |           | x        |               | 15.04          |            |              | 0.76        | ۲Ĵ      | L    | 0.7             | $\dashv$   | =      | 153.13        | ](77)                    |
| Southe   | ast n ov          | 1                |                       | •  <br>•  | 1.0       | 20        | x        |               | 12 70          |            |              | 0.76        | ۲Ŷ      | L    | 0.7             |            | _      | 150.13        | ](77)                    |
| Southe   | astoov            | ۱<br>۸           |                       | °`  <br>↓ | 1.3       |           | Ŷ        |               | 05.24          | ^<br>  ↓   | <u> </u>     | 0.70        | ╡Ĵ      | L    | 0.7             | $\dashv$   | _      | 140.00        | ]( <i>'''</i> )<br>](77) |
| Journe   |                   | 1                |                       | ^         | 1.3       | 99        | ^        |               | 00.34          | <b>^</b>   |              | 0.76        | ×       | L    | 0.7             |            | -      | 140.22        |                          |

| Southeast 0.9x  | 1 | x | 1.39 | x | 92.9  | x | 0.76 | x | 0.7 | ] =        | 123.65 | (77)          |
|-----------------|---|---|------|---|-------|---|------|---|-----|------------|--------|---------------|
| Southeast 0.9x  | 1 | × | 1.39 | x | 72.36 | x | 0.76 | x | 0.7 | i =        | 96.32  | <b>–</b> (77) |
| Southeast 0.9x  | 1 | x | 1.39 | x | 44.83 | x | 0.76 | x | 0.7 | =          | 59.67  | (77)          |
| Southeast 0.9x  | 1 | × | 1.39 | x | 31.95 | x | 0.76 | x | 0.7 | ] =        | 42.53  | (77)          |
| Northwest 0.9x  | 1 | × | 1.85 | x | 11.51 | x | 0.63 | x | 0.7 | <b>j</b> = | 8.45   | (81)          |
| Northwest 0.9x  | 1 | x | 1.85 | x | 23.55 | x | 0.63 | x | 0.7 | =          | 17.3   | (81)          |
| Northwest 0.9x  | 1 | x | 1.85 | x | 41.13 | x | 0.63 | x | 0.7 | ] =        | 30.2   | (81)          |
| Northwest 0.9x  | 1 | × | 1.85 | x | 67.8  | x | 0.63 | x | 0.7 | =          | 49.78  | (81)          |
| Northwest 0.9x  | 1 | x | 1.85 | x | 89.77 | x | 0.63 | x | 0.7 | ] =        | 65.91  | (81)          |
| Northwest 0.9x  | 1 | × | 1.85 | x | 97.5  | x | 0.63 | x | 0.7 | ] =        | 71.59  | (81)          |
| Northwest 0.9x  | 1 | x | 1.85 | x | 92.98 | x | 0.63 | x | 0.7 | ] =        | 68.27  | (81)          |
| Northwest 0.9x  | 1 | × | 1.85 | x | 75.42 | x | 0.63 | x | 0.7 | =          | 55.38  | (81)          |
| Northwest 0.9x  | 1 | x | 1.85 | x | 51.24 | x | 0.63 | x | 0.7 | ] =        | 37.63  | (81)          |
| Northwest 0.9x  | 1 | x | 1.85 | x | 29.6  | x | 0.63 | x | 0.7 | =          | 21.73  | (81)          |
| Northwest 0.9x  | 1 | x | 1.85 | x | 14.52 | x | 0.63 | x | 0.7 | =          | 10.67  | (81)          |
| Northwest 0.9x  | 1 | × | 1.85 | x | 9.36  | x | 0.63 | x | 0.7 | =          | 6.87   | (81)          |
| Rooflights 0.9x | 1 | x | 0.53 | x | 26    | x | 0.63 | x | 0.8 | =          | 12.5   | (82)          |
| Rooflights 0.9x | 1 | x | 0.36 | x | 26    | x | 0.63 | x | 0.8 | =          | 8.49   | (82)          |
| Rooflights 0.9x | 1 | × | 0.53 | x | 54    | x | 0.63 | x | 0.8 | =          | 25.96  | (82)          |
| Rooflights 0.9x | 1 | x | 0.36 | x | 54    | x | 0.63 | x | 0.8 | =          | 17.64  | (82)          |
| Rooflights 0.9x | 1 | x | 0.53 | x | 94    | x | 0.63 | x | 0.8 | ] =        | 45.2   | (82)          |
| Rooflights 0.9x | 1 | x | 0.36 | x | 94    | x | 0.63 | x | 0.8 | ] =        | 30.7   | (82)          |
| Rooflights 0.9x | 1 | x | 0.53 | x | 150   | x | 0.63 | x | 0.8 | =          | 72.12  | (82)          |
| Rooflights 0.9x | 1 | × | 0.36 | x | 150   | x | 0.63 | x | 0.8 | ] =        | 48.99  | (82)          |
| Rooflights 0.9x | 1 | x | 0.53 | x | 190   | x | 0.63 | x | 0.8 | ] =        | 91.36  | (82)          |
| Rooflights 0.9x | 1 | × | 0.36 | x | 190   | x | 0.63 | x | 0.8 | ] =        | 62.05  | (82)          |
| Rooflights 0.9x | 1 | x | 0.53 | x | 201   | x | 0.63 | x | 0.8 | ] =        | 96.64  | (82)          |
| Rooflights 0.9x | 1 | × | 0.36 | x | 201   | x | 0.63 | x | 0.8 | =          | 65.64  | (82)          |
| Rooflights 0.9x | 1 | x | 0.53 | x | 194   | x | 0.63 | x | 0.8 | =          | 93.28  | (82)          |
| Rooflights 0.9x | 1 | x | 0.36 | x | 194   | x | 0.63 | x | 0.8 | =          | 63.36  | (82)          |
| Rooflights 0.9x | 1 | × | 0.53 | x | 164   | x | 0.63 | x | 0.8 | =          | 78.85  | (82)          |
| Rooflights 0.9x | 1 | x | 0.36 | x | 164   | x | 0.63 | x | 0.8 | =          | 53.56  | (82)          |
| Rooflights 0.9x | 1 | × | 0.53 | x | 116   | x | 0.63 | x | 0.8 | =          | 55.77  | (82)          |
| Rooflights 0.9x | 1 | x | 0.36 | x | 116   | x | 0.63 | x | 0.8 | =          | 37.88  | (82)          |
| Rooflights 0.9x | 1 | × | 0.53 | x | 68    | x | 0.63 | x | 0.8 | =          | 32.7   | (82)          |
| Rooflights 0.9x | 1 | x | 0.36 | x | 68    | x | 0.63 | x | 0.8 | ] =        | 22.21  | (82)          |
| Rooflights 0.9x | 1 | x | 0.53 | x | 33    | x | 0.63 | × | 0.8 | ] =        | 15.87  | (82)          |
| Rooflights 0.9x | 1 | x | 0.36 | × | 33    | × | 0.63 | x | 0.8 | =          | 10.78  | (82)          |
| Rooflights 0.9x | 1 | x | 0.53 | x | 21    | x | 0.63 | × | 0.8 | ] =        | 10.1   | (82)          |
| Rooflights 0.9x | 1 | x | 0.36 | × | 21    | x | 0.63 | x | 0.8 | =          | 6.86   | (82)          |
|                 |   |   |      |   |       |   |      |   |     |            |        |               |

| Solar g | ains in | watts, ca | alculated | for eac | h month |        |        | (83)m = S | um(74)m . | (82)m  |       |       | _    |
|---------|---------|-----------|-----------|---------|---------|--------|--------|-----------|-----------|--------|-------|-------|------|
| (83)m=  | 79.21   | 145.73    | 218.19    | 308.64  | 370.18  | 387.01 | 375.04 | 328.01    | 254.94    | 172.96 | 96.98 | 66.36 | (83) |

| (84)m=  | 517.05     | 579.17                | 637.51                | 707.56               | 749.35               | 749.06      | 727.83    | 687.89      | 627.34     | 565.9              | 511.85      | 496.72     |         | (84)      |
|---------|------------|-----------------------|-----------------------|----------------------|----------------------|-------------|-----------|-------------|------------|--------------------|-------------|------------|---------|-----------|
| 7. Me   | an inter   | nal temp              | erature               | (heating             | season               | )           |           |             |            |                    |             |            |         |           |
| Temp    | erature    | during h              | eating p              | eriods ir            | n the livir          | ng area f   | from Tab  | ole 9, Th   | 1 (°C)     |                    |             |            | 21      | (85)      |
| Utilisa | ation fac  | tor for g             | ains for              | living are           | ea, h1,m             | (see Ta     | ble 9a)   |             |            |                    |             |            |         | _         |
|         | Jan        | Feb                   | Mar                   | Apr                  | May                  | Jun         | Jul       | Aug         | Sep        | Oct                | Nov         | Dec        |         |           |
| (86)m=  | 0.86       | 0.82                  | 0.77                  | 0.68                 | 0.56                 | 0.42        | 0.3       | 0.31        | 0.5        | 0.69               | 0.82        | 0.86       |         | (86)      |
| Mean    | interna    | temper                | ature in              | living are           | ea T1 (fo            | bllow ste   | ps 3 to 7 | r in Tabl   | e 9c)      |                    |             |            |         |           |
| (87)m=  | 18.59      | 18.91                 | 19.43                 | 19.98                | 20.51                | 20.81       | 20.94     | 20.93       | 20.71      | 20.12              | 19.23       | 18.67      |         | (87)      |
| Tomp    |            | during b              | ooting n              | l<br>orioda ir       |                      | dwolling    | from To   |             |            |                    |             |            |         |           |
| (88)m=  | 19.49      | 19.52                 | 19.52                 | 19.56                | 19.58                | 19.6        | 19.61     | 19.61       | 19.58      | 19.56              | 19.54       | 19.52      |         | (88)      |
|         |            |                       |                       |                      |                      |             |           |             |            |                    |             |            |         |           |
| Utilisa |            | tor for g             | ains for              | rest of d            | welling, I           | h2,m (se    |           | 9a)         | 0.40       | 0.64               | 0.70        | 0.94       |         | (80)      |
| (69)11= | 0.84       | 0.8                   | 0.73                  | 0.64                 | 0.5                  | 0.35        | 0.2       | 0.21        | 0.42       | 0.64               | 0.79        | 0.64       |         | (03)      |
| Mean    | interna    | l temper              | ature in              | the rest             | of dwelli            | ng T2 (fo   | ollow ste | eps 3 to 7  | 7 in Tabl  | e 9c)              |             |            |         | (22)      |
| (90)m=  | 17.43      | 17.75                 | 18.24                 | 18.77                | 19.25                | 19.5        | 19.59     | 19.59       | 19.42      | 18.92              | 18.08       | 17.53      |         | (90)<br>T |
|         |            |                       |                       |                      |                      |             |           |             | Ť          | 'LA = Livin        | g area ÷ (4 | 4) =       | 0.49    | (91)      |
| Mean    | interna    | l temper              | ature (fo             | or the wh            | ole dwe              | lling) = fl | _A × T1   | + (1 – fL   | A) × T2    |                    |             |            |         |           |
| (92)m=  | 18         | 18.32                 | 18.82                 | 19.37                | 19.87                | 20.14       | 20.25     | 20.25       | 20.05      | 19.51              | 18.65       | 18.09      |         | (92)      |
| Apply   | adjustn    | nent to t             | ne mear               | n internal           | temper               | ature fro   | m Table   | 4e, whe     | ere appro  | opriate            |             |            |         |           |
| (93)m=  | 18         | 18.32                 | 18.82                 | 19.37                | 19.87                | 20.14       | 20.25     | 20.25       | 20.05      | 19.51              | 18.65       | 18.09      |         | (93)      |
| 8. Sp   | ace hea    | ting requ             | uirement              |                      | • · •                | • • •       |           |             |            | /                  |             |            |         |           |
| Set I   | i to the r | nean int<br>factor fo | ernal ter<br>or gains | mperatui<br>using Ta | re obtain<br>able 9a | ied at ste  | ep 11 of  | l able 9    | o, so tha  | t II,m=(           | 76)m an     | d re-calc  | ulate   |           |
|         | Jan        | Feb                   | Mar                   | Apr                  | Mav                  | Jun         | Jul       | Aua         | Sep        | Oct                | Nov         | Dec        |         |           |
| Utilisa | ation fac  | tor for g             | ains, hm              | 1 <u>'</u><br>1:     |                      |             |           | - 5         | 1          |                    |             |            |         |           |
| (94)m=  | 0.81       | 0.78                  | 0.72                  | 0.63                 | 0.51                 | 0.38        | 0.25      | 0.26        | 0.45       | 0.64               | 0.77        | 0.81       |         | (94)      |
| Usefu   | ıl gains,  | hmGm ,                | W = (94               | 4)m x (84            | 4)m                  |             |           |             |            |                    |             |            |         |           |
| (95)m=  | 419.65     | 449                   | 456.05                | 447.3                | 382.45               | 282.29      | 179.59    | 178.56      | 283.08     | 361.89             | 393.74      | 404.13     |         | (95)      |
| Month   | nly avera  | age exte              | rnal tem              | perature             | e from Ta            | able 8      |           |             |            |                    |             |            |         |           |
| (96)m=  | 4.5        | 5                     | 6.8                   | 8.7                  | 11.7                 | 14.6        | 16.9      | 16.9        | 14.3       | 10.8               | 7           | 4.9        |         | (96)      |
| Heat    | loss rate  | e for mea             | an intern             | al tempe             | erature,             | Lm , W =    | =[(39)m : | x [(93)m    | – (96)m    | ]                  |             |            |         | (07)      |
| (97)m=  | 827.68     | 802.21                | 723.89                | 620.52               | 465.08               | 312.32      | 187.23    |             | 329.1      | 506.73             | 688.88      | 794.26     |         | (97)      |
| Space   | e heatin   | g require             |                       | r each n             |                      |             | h = 0.02  | 24 x [(97]  | )m – (95   | )m] x (4<br>107.76 | 1)m         | 200.26     |         |           |
| (90)11= | 303.57     | 237.30                | 199.27                | 124.72               | 01.40                | 0           | 0         | U<br>Toto   |            |                    | 212.01      | 290.20     | 1526.02 |           |
|         |            |                       |                       |                      | .,                   |             |           | Tota        | i per year | (KVVII/year        | ) = Sum(9   | 0)15,912 = | 1536.92 |           |
| Space   | e heatin   | g require             | ement in              | kWh/m <sup>2</sup>   | /year                |             |           |             |            |                    |             |            | 44.42   | (99)      |
| 9a. En  | ergy rec   | luiremer              | its – Ind             | ividual h            | eating sy            | ystems i    | ncluding  | micro-C     | CHP)       |                    |             |            |         |           |
| Spac    | e heatir   | ng:                   | 1 f                   |                      |                      |             |           |             |            |                    |             |            |         |           |
| Fracti  | ion of sp  | ace nea               | it from S             | econdar              | y/supple             | mentary     | system    | (000) (     | (204)      |                    |             |            | 0       |           |
| ⊢racti  | ion of sp  | ace hea               | it from m             | nain syst            | em(s)                |             |           | (202) = 1 - | - (∠∪1) =  | (2.2.2.)-          |             |            | 1       | (202)     |
| Fracti  | ion of to  | tal heatii            | ng from               | main sys             | stem 1               |             |           | (204) = (2) | 02) × [1 – | (203)] =           |             |            | 1       | (204)     |
|         |            |                       |                       |                      |                      |             |           |             |            |                    |             |            |         |           |

Total gains – internal and solar (84)m = (73)m + (83)m, watts

| Efficie                          | ncy of I                         | main spa                           | ace heat              | ting syste            | em 1      |                  |                           |           |              |                       |                         |                        | 78.9                              | (206)           |
|----------------------------------|----------------------------------|------------------------------------|-----------------------|-----------------------|-----------|------------------|---------------------------|-----------|--------------|-----------------------|-------------------------|------------------------|-----------------------------------|-----------------|
| Efficie                          | ncy of s                         | seconda                            | ry/suppl              | ementar               | y heating | g systen         | n, %                      |           |              |                       |                         |                        | 0                                 | (208)           |
|                                  | Jan                              | Feb                                | Mar                   | Apr                   | May       | Jun              | Jul                       | Aug       | Sep          | Oct                   | Nov                     | Dec                    | kWh/ye                            | ar              |
| Space                            | heatin                           | g require                          | ement (o              | calculate             | d above)  | )                |                           |           |              |                       |                         |                        |                                   |                 |
|                                  | 303.57                           | 237.36                             | 199.27                | 124.72                | 61.48     | 0                | 0                         | 0         | 0            | 107.76                | 212.51                  | 290.26                 |                                   |                 |
| (211)m                           | = {[(98                          | )m x (20                           | 4)] + (2 <sup>-</sup> | 10)m } x              | 100 ÷ (2  | 06)              |                           | -         | -            | -                     | -                       |                        |                                   | (211)           |
|                                  | 384.75                           | 300.83                             | 252.56                | 158.07                | 77.92     | 0                | 0                         | 0         | 0            | 136.58                | 269.34                  | 367.88                 |                                   | _               |
|                                  |                                  |                                    |                       |                       |           |                  |                           | Tota      | al (kWh/yea  | ar) =Sum(2            | 211) <sub>15,1012</sub> | F                      | 1947.94                           | (211)           |
| Space                            | heatin                           | g fuel (s                          | econdar               | ′y), kWh/             | month     |                  |                           |           |              |                       |                         |                        |                                   |                 |
| = {[(98)]<br>                    | m x (20                          | 01)] + (2 <sup>-</sup>             | 14) m }               | x 100 ÷ (             | 208)      | r                |                           | 1         | 1            | 1                     | 1                       | r                      | 1                                 |                 |
| (215)m=                          | 0                                | 0                                  | 0                     | 0                     | 0         | 0                | 0                         | 0         | 0            | 0                     | 0                       | 0                      |                                   | <b>-</b>        |
|                                  |                                  |                                    |                       |                       |           |                  |                           | lota      | ai (kvvn/yea | ar) = Sum(2)          | 215) <sub>15,1012</sub> | F                      | 0                                 | (215)           |
| Water h                          | heating                          | <b>)</b><br>                       | ton ( l.              |                       | h a a )   |                  |                           |           |              |                       |                         |                        |                                   |                 |
|                                  | 206.58                           | ater nea                           | ter (calc             | 180.87                | 180.78    | 166.62           | 164.85                    | 174.23    | 171.83       | 187.31                | 191.92                  | 203.26                 | 1                                 |                 |
| L<br>Efficien                    | cv of w                          | ater hea                           | iter                  |                       |           |                  |                           |           |              |                       |                         | 200.20                 | 68.8                              | (216)           |
| (217)m=                          | 74.47                            | 74.15                              | 73.54                 | 72.59                 | 71.11     | 68.8             | 68.8                      | 68.8      | 68.8         | 72.17                 | 73.76                   | 74.4                   | 00.0                              | (217)           |
| Euel for                         | water                            | heating                            | kWh/m                 | onth                  |           |                  |                           |           |              |                       |                         |                        | I                                 |                 |
| (219)m_                          | = (64)                           | <u>m x 100</u>                     | $) \div (217)$        | )m                    |           | -                |                           | -         | -            |                       | -                       | -                      | _                                 |                 |
| (219)m=                          | 277.39                           | 247.56                             | 266.94                | 249.16                | 254.23    | 242.18           | 239.61                    | 253.24    | 249.76       | 259.53                | 260.19                  | 273.19                 |                                   |                 |
|                                  |                                  |                                    |                       |                       |           |                  |                           | Tota      | al = Sum(2)  | 19a) <sub>112</sub> = |                         |                        | 3072.98                           | (219)           |
| Annual                           | totals                           |                                    |                       |                       |           |                  |                           |           |              | k                     | Wh/year                 | •                      | kWh/year                          | _               |
| Space I                          | heating                          | fuel use                           | ed, main              | system                | 1         |                  |                           |           |              |                       |                         |                        | 1947.94                           |                 |
| Water h                          | neating                          | fuel use                           | d                     |                       |           |                  |                           |           |              |                       |                         |                        | 3072.98                           |                 |
| Electric                         | ity for p                        | oumps, f                           | ans and               | electric              | keep-ho   | t                |                           |           |              |                       |                         |                        |                                   | _               |
| centra                           | l heatir                         | ig pump                            | :                     |                       |           |                  |                           |           |              |                       |                         | 130                    |                                   | (230c)          |
| boiler                           | with a f                         | an-assis                           | sted flue             |                       |           |                  |                           |           |              |                       |                         | 45                     |                                   | (230e)          |
| Total el                         | ectricity                        | y for the                          | above,                | kWh/yea               | ır        |                  |                           | sum       | of (230a).   | (230g) =              |                         |                        | 175                               | (231)           |
| Electric                         | ity for li                       | ighting                            |                       |                       |           |                  |                           |           |              |                       |                         |                        | 289.68                            | (232)           |
| 10a. F                           | uel cos                          | sts - indiv                        | vidual he             | eating sy             | stems:    |                  |                           |           |              |                       |                         |                        |                                   |                 |
|                                  |                                  |                                    |                       |                       |           | _                |                           |           |              |                       |                         |                        |                                   |                 |
|                                  |                                  |                                    |                       |                       |           | Fu<br>kW         | <b>lel</b><br>Vh/year     |           |              | (Table                | ' <b>rice</b><br>12)    |                        | Fuel Cost<br>£/year               |                 |
| Space ł                          | heating                          | - main s                           | system 2              | 1                     |           | (21              | 1) x                      |           |              | 3.                    | 1                       | x 0.01 =               | 60.3861                           | (240)           |
| Space ł                          | heating                          | - main s                           | system 2              | 2                     |           | (21              | 3) x                      |           |              |                       |                         | x 0.01 =               | 0                                 | ](241)          |
| '<br>Space l                     | heating                          | - secon                            | darv                  |                       |           | (21              | 5) x                      |           |              |                       |                         | x 0.01 =               | 0                                 | _`´´´<br>](242) |
| '<br>Water h                     | neating                          | cost (ot                           | ,<br>her fuel)        |                       |           | (21              | 9)                        |           |              | 3                     | 1                       | x 0.01 =               | 95.26                             | ](247)          |
| Pumps.                           | . fans a                         | nd elect                           | ric keep              | -hot                  |           | (23              | 1)                        |           |              | 11                    | 46                      | x 0.01 =               | 20.06                             | _`´´<br>](249)  |
| (if off-pe                       | eak tari                         | ff, list ea                        | ach of (2             | 30a) to (             | 230a) se  | eparatel         | v as apn                  | licable a | nd apply     | / fuel pri            | ce accor                | dina to T              | L <u></u><br>Fable 12a            |                 |
| Energy                           | for ligh                         | iting                              | \                     | .,                    | 0, 5      | (23              | 2)                        |           | · · · · · ·  | 11.                   | 46                      | x 0.01 =               | 33.2                              | (250)           |
| Additior                         | nal star                         | nding cha                          | arges (T              | able 12)              |           |                  |                           |           |              |                       |                         |                        | 106                               | (251)           |
| (if off-pe<br>Energy<br>Additior | eak tari<br>for ligh<br>nal star | ff, list ea<br>iting<br>inding cha | ach of (2<br>arges (T | 30a) to (<br>able 12) | (230g) se | eparately<br>(23 | y as app<br><sup>2)</sup> | licable a | nd apply     | / fuel pri<br>11.     | ce accor<br>46          | rding to 7<br>x 0.01 = | Fable 12           3:           1 | 2a<br>3.2<br>06 |

| Appendix Q items: repeat lines (253) and (2   | 54) as needed                |                                      |                                |            |
|-----------------------------------------------|------------------------------|--------------------------------------|--------------------------------|------------|
| Total energy cost (24                         | 5)(247) + (250)(254) =       |                                      | 314.901                        | (255)      |
| 11a. SAP rating - individual heating system   | าร                           |                                      |                                |            |
| Energy cost deflator (Table 12)               |                              |                                      | 0.47                           | (256)      |
| Energy cost factor (ECF) [(25                 | 5) x (256)] ÷ [(4) + 45.0] = |                                      | 1.8593                         | (257)      |
| SAP rating (Section 12)                       |                              |                                      | 74.0622                        | (258)      |
| 12a. CO2 emissions – Individual heating s     | ystems including micro-CHP   |                                      |                                |            |
|                                               | <b>Energy</b><br>kWh/year    | <b>Emission factor</b><br>kg CO2/kWh | <b>Emissions</b><br>kg CO2/yea | ar         |
| Space heating (main system 1)                 | (211) x                      | 0.198 =                              | 385.69                         | (261)      |
| Space heating (secondary)                     | (215) x                      | 0 =                                  | 0                              | (263)      |
| Water heating                                 | (219) x                      | 0.198 =                              | 608.45                         | (264)      |
| Space and water heating                       | (261) + (262) + (263) + (2   | 64) =                                | 994.14                         | (265)      |
| Electricity for pumps, fans and electric keep | -hot (231) x                 | 0.517 =                              | 90.48                          | (267)      |
| Electricity for lighting                      | (232) x                      | 0.517 =                              | 149.77                         | (268)      |
| Total CO2, kg/year                            |                              | sum of (265)(271) =                  | 1234.38                        | (272)      |
| CO2 emissions per m <sup>2</sup>              |                              | (272) ÷ (4) =                        | 35.68                          | _<br>(273) |
| EI rating (section 14)                        |                              |                                      | 79                             | (274)      |
| 13a. Primary Energy                           |                              |                                      |                                |            |
|                                               | <b>Energy</b><br>kWh/year    | <b>Primary</b><br>factor             | <b>P. Energy</b><br>kWh/year   |            |
| Space heating (main system 1)                 | (211) x                      | 1.02 =                               | 1986.9                         | (261)      |
| Space heating (secondary)                     | (215) x                      | 0 =                                  | 0                              | (263)      |
| Energy for water heating                      | (219) x                      | 1.02 =                               | 3134.44                        | (264)      |
| Space and water heating                       | (261) + (262) + (263) + (2   | 64) =                                | 5121.34                        | (265)      |
| Electricity for pumps, fans and electric keep | -hot (231) x                 | 2.92 =                               | 511                            | (267)      |
| Electricity for lighting                      | (232) x                      | 0 =                                  | 845.87                         | (268)      |
| 'Total Primary Energy                         |                              | sum of (265)(271) =                  | 6478.21                        | _<br>(272) |

Primary energy kWh/m²/year

(272) ÷ (4) =

(273)

187.23

|                      |           |               |                 |                       |                    | User D       | etails:                        |                         |             |           |           |                         |          |
|----------------------|-----------|---------------|-----------------|-----------------------|--------------------|--------------|--------------------------------|-------------------------|-------------|-----------|-----------|-------------------------|----------|
| Assessor Na          | me:       | Tes           | st User         |                       |                    |              | Strom                          | a Num                   | ber:        |           | STRC      | 000000                  |          |
| Software Nar         | ne:       | Str           | oma FS          | AP 200                | 9                  |              | Softwa                         | are Ver                 | rsion:      |           | Versio    | on: 1.5.0.74            |          |
|                      |           |               |                 |                       | Р                  | roperty      | Address                        | Ground                  | l floor m   | aisonette | e propos  | ed                      |          |
| Address :            |           | 82            | Guilford        | Street, L             | ondon,             | WC1N 1       | IDF                            |                         |             |           |           |                         |          |
| 1. Overall dwell     | ling dir  | nension       | s:              |                       |                    |              |                                |                         |             |           |           |                         |          |
| Decement             |           |               |                 |                       |                    | Area         | a(m²)                          |                         | Ave He      | eight(m)  |           | Volume(m <sup>3</sup> ) |          |
| Basement             |           |               |                 |                       |                    | 4            | 5.71                           | (1a) x                  | 2           | 2.4       | (2a) =    | 109.7                   | (3a)     |
| Ground floor         |           |               |                 |                       |                    | 4            | 0.51                           | (1b) x                  | 3           | .46       | (2b) =    | 140.16                  | (3b)     |
| Total floor area     | TFA =     | (1a)+(1b      | o)+(1c)+        | (1d)+(1e              | e)+(1r             | ו) נ         | 36.22                          | (4)                     |             |           |           |                         |          |
| Dwelling volume      |           |               |                 |                       |                    |              |                                | (3a)+(3b)               | )+(3c)+(3d  | l)+(3e)+  | .(3n) =   | 249.87                  | (5)      |
| 2. Ventilation ra    | ate:      |               |                 |                       |                    |              |                                |                         |             |           |           |                         |          |
|                      |           | I             | main<br>neating | S<br>h                | econdai<br>leating | у            | other                          |                         | total       |           |           | m <sup>3</sup> per hou  | •        |
| Number of chim       | neys      | Γ             | 0               | +                     | 0                  | +            | 0                              | ] = [                   | 0           | X 4       | 40 =      | 0                       | (6a)     |
| Number of open       | flues     | Г             | 0               | _ + _                 | 0                  | <u> </u> + [ | 0                              | _<br>] = [              | 0           | x         | 20 =      | 0                       | (6b)     |
| Number of intern     | nittent   | fans          |                 |                       |                    |              |                                | - F                     | 4           | x ′       | 10 =      | 40                      | (7a)     |
| Number of passi      | ve ven    | nts           |                 |                       |                    |              |                                | Ē                       | 0           | x /       | 10 =      | 0                       | (7b)     |
| Number of fluele     | ess gas   | s fires       |                 |                       |                    |              |                                | Г                       | 0           | X 4       | 40 =      | 0                       | (7c)     |
|                      |           |               |                 |                       |                    |              |                                | L                       |             |           |           |                         |          |
|                      |           |               |                 |                       |                    |              |                                |                         |             |           | Air ch    | nanges per ho           | ur       |
| Infiltration due to  | o chimr   | neys, flu     | es and f        | ans = <mark>(6</mark> | a)+(6b)+(7         | a)+(7b)+(    | 7c) =                          |                         | 40          |           | ÷ (5) =   | 0.16                    | (8)      |
| If a pressurisation  | test ha   | s been ca     | rried out or    | r is intende          | ed, procee         | d to (17),   | otherwise o                    | continue fr             | om (9) to ( | (16)      |           |                         |          |
| Additional infil     | tration   | i the dw      | ening (n        | 5)                    |                    |              |                                |                         |             | [(0)]     | -11v0 1 – | 0                       | (9)      |
| Structural infilt    | tration:  | 0.25 fo       | r steel o       | r timber f            | frame or           | 0.35 fo      | r masoni                       | v constr                | uction      | [(0)      | 1,00.1 -  | 0                       | (10)     |
| if both types of     | wall are  | e present,    | use the va      | lue corres            | ponding to         | the great    | ter wall are                   | a (after                |             |           |           | Ŭ                       |          |
| deducting area       | is of ope | enings); if ( | equal user      | 0.35                  |                    | 4 (          |                                |                         |             |           |           |                         | <b>-</b> |
| If suspended v       | noodel    | n lloor, e    | enter U.Z       | (unseal               | ea) or 0.          | T (seale     | ea), eise                      | enter U                 |             |           |           | 0                       | (12)     |
| Percentage of        | windo     | ws and        | doors dr        | aught st              | rinned             |              |                                |                         |             |           |           | 0                       | (13)     |
| Window infiltra      | ation     | wo unu        |                 | augin or              | nppeu              |              | 0.25 - [0.2                    | x (14) ÷ 1              | 00] =       |           |           | 0                       | (15)     |
| Infiltration rate    | ;         |               |                 |                       |                    |              | (8) + (10)                     | + (11) + (1             | 2) + (13) + | + (15) =  |           | 0                       | (16)     |
| Air permeabilit      | ty valu   | e, q50, e     | expresse        | ed in cub             | oic metre          | s per ho     | our per s                      | quare m                 | etre of e   | nvelope   | area      | 10                      | (17)     |
| If based on air p    | ermea     | bility val    | ue, then        | (18) = [(1            | 7) ÷ 20]+(8        | 3), otherw   | ise (18) = (                   | (16)                    |             |           |           | 0.66                    | (18)     |
| Air permeability v   | alue app  | olies if a pi | ressurisatio    | on test has           | s been dor         | e or a de    | gree air pe                    | rmeability              | is being us | sed       |           |                         | _        |
| Number of sides      | on wh     | ich shel      | tered           |                       |                    |              | (20) – 1 -                     | [0 075 x (1             | 9)1 -       |           |           | 2                       | (19)     |
| Infiltration rate in | ornoi     | ratina sh     | altar fac       | tor                   |                    |              | $(20) = 1^{-1}$<br>(21) = (18) | $(0.070 \times (10)) =$ | [0]] –      |           |           | 0.85                    | (20)     |
| Infiltration rate m  | odifier   | d for mo      | nthly wir       | noi<br>nd sneer       | 4                  |              | (21) = (10)                    | , ^ (20) -              |             |           |           | 0.56                    | _(21)    |
|                      | Feh       | Mar           | Anr             | Mav                   | Jun                | Jul          | Aug                            | Sen                     | Oct         | Nov       | Dec       | 1                       |          |
| Monthly average      | wind      | sneed fr      | om Tahl         | e 7                   |                    |              | Ling                           |                         |             |           |           | 1                       |          |
| (22)m= 5.4           | 5.1       | 5,1           | 4.5             | 4.1                   | 3.9                | 3.7          | 3.7                            | 4.2                     | 4.5         | 4.8       | 5.1       | 1                       |          |
| · /                  |           |               | L               |                       | 1                  |              | 1                              | l                       | L           |           |           | J                       |          |

| Wind Factor (22a)m = (22)m ÷ 4                                                                     |                            |                             |                |           |               |           |             |       |
|----------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|----------------|-----------|---------------|-----------|-------------|-------|
| (22a)m= 1.35 1.27 1.27 1.12 1.02                                                                   | 0.98                       | 0.92 0.92                   | 1.05           | 1.12      | 1.2           | 1.27      |             |       |
| Adjusted infiltration rate (allowing for shelter an                                                | d wind spe                 | ed) = (21a) x               | (22a)m         |           |               |           |             |       |
| 0.76 0.72 0.72 0.63 0.58                                                                           | 0.55                       | 0.52 0.52                   | 0.59           | 0.63      | 0.67          | 0.72      |             |       |
| Calculate effective air change rate for the appli                                                  | cable case                 |                             |                |           |               |           | _           |       |
| II Mechanical ventilation:                                                                         |                            | ation (N5)) other           | wieg (23h      | (23a)     |               |           | 0           | (23a) |
| If balanced with best recovery: efficiency in % allowing f                                         | or in-use fact             | or (from Table $4b^{\circ}$ | wise (200      | ) – (23a) |               |           | 0           | (230) |
| a) If balanced mechanical ventilation with her                                                     | at recovery                | v (MVHR) (24a               | )<br>)m = (2   | 2b)m + (  | 23b) × [′     | 1 – (23c) | 0<br>÷ 100] | (230) |
| (24a)m= 0 0 0 0 0                                                                                  | 0                          | 0 0                         | 0              | 0         | 0             | 0         | -           | (24a) |
| b) If balanced mechanical ventilation without                                                      | heat recov                 | very (MV) (24b              | )m = (22       | 2b)m + (i | 23b)          |           | I           |       |
| (24b)m= 0 0 0 0 0                                                                                  | 0                          | 0 0                         | 0              | 0         | 0             | 0         |             | (24b) |
| c) If whole house extract ventilation or positiv                                                   | e input ver                | ntilation from c            | outside        | -         | •             | -         |             |       |
| if (22b)m < 0.5 × (23b), then (24c) = (23b                                                         | ); otherwis                | e (24c) = (22b              | ) m + 0        | .5 × (23b | )             |           | I           |       |
| (24c)m= 0 0 0 0 0                                                                                  | 0                          | 0 0                         | 0              | 0         | 0             | 0         |             | (24c) |
| d) If natural ventilation or whole house positivity if $(22b)m = 1$ , then $(24d)m = (22b)m$ other | ve input ve<br>erwise (24d | ntilation from $I$          | oft<br>2b)m² x | 0.51      |               |           |             |       |
| (24d)m= 0.79 0.76 0.76 0.7 0.67                                                                    | 0.65                       | 0.63 0.63                   | 0.67           | 0.7       | 0.73          | 0.76      |             | (24d) |
| Effective air change rate - enter (24a) or (24k                                                    | ) or (24c) (               | or (24d) in box             | (25)           | Į         |               | <u> </u>  |             |       |
| (25)m= 0.79 0.76 0.76 0.7 0.67                                                                     | 0.65                       | 0.63 0.63                   | 0.67           | 0.7       | 0.73          | 0.76      |             | (25)  |
| 3 Heat losses and heat loss narameter                                                              |                            |                             |                |           | •             |           |             |       |
| FIFMENT Gross Openings                                                                             | Net Area                   | U-valı                      | le             | AXU       |               | k-value   | ;           | AXk   |
| area (m²) m²                                                                                       | A ,m²                      | W/m2                        | K              | (W/I      | <b>&lt;</b> ) | kJ/m²∙ł   | <           | kJ/K  |
| Doors Type 1                                                                                       | 1.89                       | × 1.6                       | =              | 3.024     |               |           |             | (26)  |
| Doors Type 2                                                                                       | 1.89                       | × 1.6                       | =              | 3.024     |               |           |             | (26)  |
| Windows Type 1                                                                                     | 1.29                       | x1/[1/(2.4)+                | 0.04] =        | 2.82      |               |           |             | (27)  |
| Windows Type 2                                                                                     | 2.39                       | x1/[1/( 1.2 )+              | 0.04] =        | 2.74      |               |           |             | (27)  |
| Windows Type 3                                                                                     | 3.82                       | x1/[1/( 1.8 )+              | 0.04] =        | 6.41      |               |           |             | (27)  |
| Windows Type 4                                                                                     | 2.32                       | x1/[1/( 2.4 )+              | 0.04] =        | 5.08      |               |           |             | (27)  |
| Windows Type 5                                                                                     | 1.61                       | x1/[1/( 1.2 )+              | 0.04] =        | 1.84      |               |           |             | (27)  |
| Windows Type 6                                                                                     | 0.61                       | x1/[1/( 1.2 )+              | 0.04] =        | 0.7       |               |           |             | (27)  |
| Rooflights                                                                                         | 0.41                       | x1/[1/(1.2) +               | 0.04] =        | 0.492     |               |           |             | (27b) |
| Floor                                                                                              | 45.71                      | x 0.15                      | =              | 6.86      |               |           |             | (28)  |
| Walls Type1 72.16 7.22                                                                             | 64.94                      | × 0.17                      | =              | 11.04     |               |           |             | (29)  |
| Walls Type2 33.65 8.43                                                                             | 25.22                      | × 0.17                      | =              | 4.29      |               |           | 7           | (29)  |
| Walls Type3 42.17 3.78                                                                             | 38.39                      | x 0.24                      | =              | 9.07      |               |           |             | (29)  |
| Walls Type4 6.26 0                                                                                 | 6.26                       | x 0.39                      | =              | 2.44      |               |           |             | (29)  |
| Roof 4.84 0.82                                                                                     | 4.02                       | × 0.15                      | =              | 0.6       | _ ī           |           |             | (30)  |
| Total area of elemente m <sup>2</sup>                                                              |                            |                             |                |           | -             |           |             |       |
|                                                                                                    | 204.789                    |                             |                |           |               |           |             | (31)  |

\* for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2 \*\* include the areas on both sides of internal walls and partitions

Fabric heat loss,  $W/K = S (A \times U)$ 

| (26)(30) | + (32) = |
|----------|----------|
|----------|----------|

| Heat c<br>Therm<br><i>For desi</i>                                                                                                                                                                             | apacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cm = S(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                                            |                                                                                                      |                                                                                                      |                                                                                                          |                                                                                                           |                                                        | _                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Therm<br>For desi                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 = 0(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Axk)                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                                            | ((28)                                                                                                | .(30) + (32                                                                                          | 2) + (32a).                                                                                              | (32e) =                                                                                                   | 8478.6729                                              | (34)                                                                                                                                                                               |
| For des                                                                                                                                                                                                        | al mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | parame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ter (TMF                                                                                                                                                                                                                                         | <sup>-</sup> = Cm ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ÷ TFA) ir                                                                                                                                                                                                                      | n kJ/m²K                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                            | Indica                                                                                               | tive Value                                                                                           | : Low                                                                                                    |                                                                                                           | 100                                                    | (35)                                                                                                                                                                               |
| can be ι                                                                                                                                                                                                       | gn assess<br>ised instea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ments wh<br>ad of a det                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ere the de<br>tailed calc                                                                                                                                                                                                                        | tails of the<br>ulation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | construct                                                                                                                                                                                                                      | ion are no                                                                                                                                                                                                                                              | t known pr                                                                                                                                                                                               | ecisely the                                                                                                                                | indicative                                                                                           | values of                                                                                            | TMP in Ta                                                                                                | able 1f                                                                                                   |                                                        |                                                                                                                                                                                    |
| Therm                                                                                                                                                                                                          | al bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | es : S (L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x Y) cal                                                                                                                                                                                                                                         | culated u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | using Ap                                                                                                                                                                                                                       | pendix l                                                                                                                                                                                                                                                | <                                                                                                                                                                                                        |                                                                                                                                            |                                                                                                      |                                                                                                      |                                                                                                          |                                                                                                           | 30.72                                                  | (36)                                                                                                                                                                               |
| if details                                                                                                                                                                                                     | of therma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l bridging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | are not kn                                                                                                                                                                                                                                       | own (36) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 0.15 x (3                                                                                                                                                                                                                    | 1)                                                                                                                                                                                                                                                      |                                                                                                                                                                                                          |                                                                                                                                            |                                                                                                      |                                                                                                      |                                                                                                          |                                                                                                           |                                                        |                                                                                                                                                                                    |
| Total f                                                                                                                                                                                                        | abric he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | at loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                                            | (33) +                                                                                               | (36) =                                                                                               |                                                                                                          |                                                                                                           | 99.5                                                   | (37)                                                                                                                                                                               |
| Ventila                                                                                                                                                                                                        | ition hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t loss ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alculated                                                                                                                                                                                                                                        | monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          | 1                                                                                                                                          | (38)m                                                                                                | = 0.33 × (                                                                                           | 25)m x (5)                                                                                               |                                                                                                           | 1                                                      |                                                                                                                                                                                    |
|                                                                                                                                                                                                                | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mar                                                                                                                                                                                                                                              | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | May                                                                                                                                                                                                                            | Jun                                                                                                                                                                                                                                                     | Jul                                                                                                                                                                                                      | Aug                                                                                                                                        | Sep                                                                                                  | Oct                                                                                                  | Nov                                                                                                      | Dec                                                                                                       |                                                        |                                                                                                                                                                                    |
| (38)m=                                                                                                                                                                                                         | 64.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 62.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62.33                                                                                                                                                                                                                                            | 57.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54.86                                                                                                                                                                                                                          | 53.57                                                                                                                                                                                                                                                   | 52.33                                                                                                                                                                                                    | 52.33                                                                                                                                      | 55.54                                                                                                | 57.65                                                                                                | 59.92                                                                                                    | 62.33                                                                                                     |                                                        | (38)                                                                                                                                                                               |
| Heat ti                                                                                                                                                                                                        | ansfer c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oefficier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt, W/K                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                                            | (39)m                                                                                                | = (37) + (                                                                                           | 38)m                                                                                                     |                                                                                                           | 1                                                      |                                                                                                                                                                                    |
| (39)m=                                                                                                                                                                                                         | 164.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 161.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 161.83                                                                                                                                                                                                                                           | 157.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 154.37                                                                                                                                                                                                                         | 153.07                                                                                                                                                                                                                                                  | 151.84                                                                                                                                                                                                   | 151.84                                                                                                                                     | 155.04                                                                                               | 157.16                                                                                               | 159.42                                                                                                   | 161.83                                                                                                    |                                                        | _                                                                                                                                                                                  |
| Heat lo                                                                                                                                                                                                        | oss para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | meter (H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HLP), W                                                                                                                                                                                                                                          | /m²K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                                            | ہ<br>(40)m                                                                                           | Average =<br>= (39)m ÷                                                                               | Sum(39)₁.<br>· (4)                                                                                       | 12 /12=                                                                                                   | 157.48                                                 | (39)                                                                                                                                                                               |
| (40)m=                                                                                                                                                                                                         | 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.88                                                                                                                                                                                                                                             | 1.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.79                                                                                                                                                                                                                           | 1.78                                                                                                                                                                                                                                                    | 1.76                                                                                                                                                                                                     | 1.76                                                                                                                                       | 1.8                                                                                                  | 1.82                                                                                                 | 1.85                                                                                                     | 1.88                                                                                                      |                                                        |                                                                                                                                                                                    |
| Numbe                                                                                                                                                                                                          | er of day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rs in mor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nth (Tab                                                                                                                                                                                                                                         | le 1a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                                            | ,                                                                                                    | Average =                                                                                            | Sum(40)₁.                                                                                                | <sub>12</sub> /12=                                                                                        | 1.83                                                   | (40)                                                                                                                                                                               |
|                                                                                                                                                                                                                | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mar                                                                                                                                                                                                                                              | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | May                                                                                                                                                                                                                            | Jun                                                                                                                                                                                                                                                     | Jul                                                                                                                                                                                                      | Aug                                                                                                                                        | Sep                                                                                                  | Oct                                                                                                  | Nov                                                                                                      | Dec                                                                                                       | ]                                                      |                                                                                                                                                                                    |
| (41)m=                                                                                                                                                                                                         | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31                                                                                                                                                                                                                                               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                      | 31                                                                                                                                                                                                       | 31                                                                                                                                         | 30                                                                                                   | 31                                                                                                   | 30                                                                                                       | 31                                                                                                        |                                                        | (41)                                                                                                                                                                               |
|                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          | •                                                                                                                                          |                                                                                                      |                                                                                                      |                                                                                                          |                                                                                                           |                                                        |                                                                                                                                                                                    |
| 4. Wa                                                                                                                                                                                                          | ter heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ing ener                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gy requ                                                                                                                                                                                                                                          | irement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                                            |                                                                                                      |                                                                                                      |                                                                                                          | kWh/y                                                                                                     | ear:                                                   |                                                                                                                                                                                    |
| •                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                                            |                                                                                                      |                                                                                                      |                                                                                                          |                                                                                                           | 1                                                      |                                                                                                                                                                                    |
| Assum                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ipancy, i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                                            |                                                                                                      |                                                                                                      |                                                                                                          |                                                                                                           |                                                        | (42)                                                                                                                                                                               |
| IT IF                                                                                                                                                                                                          | A > 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9, N = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | + 1.76 x                                                                                                                                                                                                                                         | [1 - exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (-0.0003                                                                                                                                                                                                                       | 849 x (TF                                                                                                                                                                                                                                               | FA -13.9                                                                                                                                                                                                 | )2)] + 0.0                                                                                                                                 | 0013 x (1                                                                                            | ГFA -13.                                                                                             | 2.<br>.9)                                                                                                | 57                                                                                                        | ]                                                      | (42)                                                                                                                                                                               |
| if TF<br>if TF<br>Annua                                                                                                                                                                                        | A > 13.9<br>A £ 13.9<br>I averag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9, N = 1<br>9, N = 1<br>e hot wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + 1.76 x<br>ater usad                                                                                                                                                                                                                            | : [1 - exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (-0.0003<br>es per da                                                                                                                                                                                                          | 849 x (TF<br>av Vd.av                                                                                                                                                                                                                                   | FA -13.9<br>erage =                                                                                                                                                                                      | )2)] + 0.(<br>(25 x N)                                                                                                                     | )013 x (⊺<br>+ 36                                                                                    | ГFA -13.                                                                                             | <u>2</u> .<br>.9)                                                                                        | 25                                                                                                        | ]                                                      | (42)                                                                                                                                                                               |
| if TF<br>if TF<br>Annua<br><i>Reduce</i>                                                                                                                                                                       | A > 13.8<br>A £ 13.9<br>I averag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9, N = 1<br>9, N = 1<br>e hot wa<br>al average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | + 1.76 x<br>ater usag<br>hot water                                                                                                                                                                                                               | t [1 - exp<br>ge in litre<br>usage by t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (-0.0003<br>es per da<br>5% if the d                                                                                                                                                                                           | 349 x (TF<br>ay Vd,av<br>Iwelling is                                                                                                                                                                                                                    | FA -13.9<br>erage =<br>designed                                                                                                                                                                          | )2)] + 0.(<br>(25 x N)<br>to achieve                                                                                                       | )013 x (1<br>+ 36<br>a water us                                                                      | ΓFA -13.<br>se target o                                                                              | 2.<br>9)                                                                                                 | .25                                                                                                       | ]                                                      | (42)                                                                                                                                                                               |
| If IF<br>if TF<br>Annua<br>Reduce<br>not more                                                                                                                                                                  | A > 13.8<br>A £ 13.9<br>I averag<br>the annua<br>e that 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9, N = 1<br>9, N = 1<br>e hot wa<br>al average<br>litres per p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | + 1.76 x<br>ater usag<br>hot water<br>person per                                                                                                                                                                                                 | t [1 - exp<br>ge in litre<br>usage by t<br>r day (all w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (-0.0003<br>es per da<br>5% if the d<br>vater use, l                                                                                                                                                                           | 849 x (TF<br>ay Vd,av<br>Iwelling is<br>hot and co                                                                                                                                                                                                      | FA -13.9<br>erage =<br>designed i<br>ld)                                                                                                                                                                 | )2)] + 0.(<br>(25 x N)<br>to achieve                                                                                                       | 0013 x (1<br>+ 36<br>a water us                                                                      | ΓFA -13.<br>se target o                                                                              | 9)<br>2.<br>9)<br>95                                                                                     | .25                                                                                                       | ]                                                      | (42)                                                                                                                                                                               |
| If IF<br>if TF<br>Annua<br>Reduce<br>not more                                                                                                                                                                  | A > 13.5<br>A £ 13.5<br>I averag<br>the annua<br>the that 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9, N = 1<br>9, N = 1<br>e hot wa<br>al average<br>litres per p<br>Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar                                                                                                                                                                                          | t [1 - exp<br>ge in litre<br>usage by t<br>r day (all w<br>Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (-0.0003<br>es per da<br>5% if the o<br>vater use, l<br>May                                                                                                                                                                    | 349 x (TF<br>ay Vd,av<br>Iwelling is<br>hot and co                                                                                                                                                                                                      | FA -13.9<br>erage =<br>designed :<br>Id)                                                                                                                                                                 | )2)] + 0.0<br>(25 x N)<br>to achieve                                                                                                       | 0013 x (1<br>+ 36<br>a water us<br>Sep                                                               | rFA -13.<br>se <i>target o</i><br>Oct                                                                | 9)<br>2.<br>9)<br>7<br>7<br>Nov                                                                          | .25<br>Dec                                                                                                | ]                                                      | (42)                                                                                                                                                                               |
| If IF<br>if TF<br>Annua<br>Reduce<br>not more<br>Hot wate                                                                                                                                                      | A > 13.8<br>A £ 13.9<br>I averag<br>the annua<br>that 125<br>Jan<br>er usage in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9, N = 1<br>9, N = 1<br>e hot wa<br>al average<br>litres per p<br>Feb<br>n litres per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar<br>day for ea                                                                                                                                                                            | t [1 - exp<br>ge in litre<br>usage by t<br>r day (all w<br>Apr<br>ach month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (-0.0003<br>es per da<br>5% if the d<br>vater use, l<br>May<br>Vd,m = fa                                                                                                                                                       | 849 x (TF<br>ay Vd,av<br>Iwelling is<br>hot and co<br>Jun<br>ctor from T                                                                                                                                                                                | FA -13.9<br>erage =<br>designed i<br>ld)<br>Jul<br>Table 1c x                                                                                                                                            | )2)] + 0.0<br>(25 x N)<br>to achieve<br>Aug<br>(43)                                                                                        | 0013 x (7<br>+ 36<br><i>a water us</i><br>Sep                                                        | FFA -13.<br>se target o<br>Oct                                                                       | 9)<br>2.<br>9)<br>1<br>95<br>7<br>Nov                                                                    | .25<br>Dec                                                                                                | ]                                                      | (42)                                                                                                                                                                               |
| If TF<br>if TF<br>Annua<br>Reduce<br>not more<br>Hot wate<br>(44)m=                                                                                                                                            | $A > 13.5$ $A \pm 13.5$ $I averag$ $the annual the annual the that 125 Jan I average in 104.77$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>P, N = 1</li> <li>P, N = 1</li> <li>P, N = 1</li> <li>P hot was</li> <li>P hot w</li></ul> | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar<br>day for ea<br>97.15                                                                                                                                                                   | [1 - exp<br>ge in litre<br>usage by s<br>r day (all w<br>Apr<br>ach month<br>93.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (-0.0003<br>es per da<br>5% if the d<br>vater use, l<br>May<br>Vd,m = fa<br>89.53                                                                                                                                              | 849 x (TF<br>ay Vd,av<br>Iwelling is<br>hot and co<br>Jun<br>ctor from 7<br>85.72                                                                                                                                                                       | FA -13.9<br>erage =<br>designed i<br>ld)<br>Jul<br>Table 1c x<br>85.72                                                                                                                                   | )2)] + 0.0<br>(25 x N)<br>to achieve<br>Aug<br>(43)<br>89.53                                                                               | 0013 x (7<br>+ 36<br>a water us<br>Sep<br>93.34                                                      | FFA -13.<br>se target o<br>Oct<br>97.15                                                              | 9)<br>9)<br>100.96                                                                                       | .25<br>Dec<br>104.77                                                                                      | ]                                                      | (42)                                                                                                                                                                               |
| If IF<br>if TF<br>Annua<br>Reduce<br>not more<br>Hot wate<br>(44)m=<br>Enerav                                                                                                                                  | A > 13.8<br>A £ 13.9<br>I averag<br>the annua<br>e that 125<br>Jan<br>Jan<br>104.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P, N = 1<br>P, N = 1<br>P, N = 1<br>P, N = 1<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar<br>day for ea<br>97.15<br>used - cal                                                                                                                                                     | t [1 - exp<br>ge in litre<br>usage by s<br>r day (all w<br>Apr<br>ach month<br>93.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (-0.0003) es per da<br>5% if the of<br>vater use, I<br>May<br>Vd,m = fa<br>89.53<br>onthly = 4.                                                                                                                                | 349 x (TF<br>ay Vd,av<br>Iwelling is<br>hot and co<br>Jun<br>ctor from 7<br>85.72                                                                                                                                                                       | FA -13.9<br>erage =<br>designed i<br>ld)<br>Jul<br>Table 1c x<br>85.72                                                                                                                                   | )2)] + 0.0<br>(25 x N)<br>to achieve<br>(43)<br>(43)<br>89.53                                                                              | 0013 x (7<br>+ 36<br>a water us<br>Sep<br>93.34                                                      | FFA -13.<br>Se target o<br>Oct<br>97.15<br>Total = Su<br>th (see Ta                                  | 2.<br>9)<br>7<br>Nov<br>100.96<br>m(44) <sub>112</sub> =                                                 | .25<br>Dec<br>104.77<br>c. 1d)                                                                            | 1142.95                                                | (42)                                                                                                                                                                               |
| If TF<br>if TF<br>Annua<br>Reduce<br>not more<br>Hot wate<br>(44)m=<br>Energy                                                                                                                                  | A > 13.8<br>A £ 13.9<br>I averag<br>the annuation<br>that 125<br>Jan<br>Jan<br>104.77<br>content of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P, N = 1<br>P, N = 1<br>P, N = 1<br>P hot was<br>P hot water<br>P hot water<br>P hot water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar<br>day for ea<br>97.15<br>used - cal                                                                                                                                                     | E [1 - exp<br>ge in litre<br>usage by a<br>r day (all w<br>Apr<br>ach month<br>93.34<br>culated mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (-0.0003) es per da<br>5% if the or<br>vater use, I<br>May<br>Vd,m = fa<br>89.53<br>onthly = 4.                                                                                                                                | A49 x (TF<br>ay Vd,av<br>Iwelling is<br>hot and co<br>Jun<br>ctor from 1<br>85.72<br>190 x Vd,r                                                                                                                                                         | FA - 13.9 $erage =$ $designed =$ $Id$ $Jul$ $Table 1c x$ $85.72$ $n x nm x E$ $94.02$                                                                                                                    | )2)] + 0.0<br>(25 x N)<br>to achieve<br>Aug<br>(43)<br>89.53<br>07m / 3600                                                                 | 0013 x (7<br>+ 36<br>a water us<br>Sep<br>93.34<br>0 kWh/mon                                         | FFA -13.<br>se target o<br>Oct<br>97.15<br>Fotal = Su<br>th (see Ta                                  | 2.<br>9)<br>100.96<br>m(44)112 =<br>ables 1b, 1<br>138.89                                                | 57<br>.25<br>Dec<br>104.77<br><i>c, 1d</i> )                                                              | 1142.95                                                | (42)                                                                                                                                                                               |
| If IF<br>if TF<br>Annua<br>Reduce<br>not more<br>Hot wate<br>(44)m=<br>Energy<br>(45)m=                                                                                                                        | $A > 13.5$ $A \ge 13.5$ $A = 13.5$ $A \ge 13.5$ $A = 13.5$ | P, N = 1<br>P, N = 1<br>P, N = 1<br>P hot was<br>P hot was<br>P hot water<br>P hot water<br>P hot water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar<br>day for ea<br>97.15<br>used - cal<br>140.56                                                                                                                                           | E [1 - exp<br>ge in litre<br>usage by a<br>r day (all w<br>Apr<br>ach month<br>93.34<br>culated mo<br>122.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (-0.0003<br>es per da<br>5% if the d<br>vater use, l<br>May<br>Vd,m = fa<br>89.53<br>onthly = 4.                                                                                                                               | A9 x (TF<br>ay Vd,av<br>Iwelling is<br>hot and co<br>Jun<br>ctor from 7<br>85.72<br>190 x Vd,r<br>101.47                                                                                                                                                | FA -13.9<br>erage =<br>designed i<br>ld)<br>Jul<br>Table 1c x<br>85.72<br>m x nm x D<br>94.02                                                                                                            | )2)] + 0.0<br>(25 x N)<br>to achieve<br>Aug<br>(43)<br>89.53<br>07m / 3600<br>107.89                                                       | 0013 x (7<br>+ 36<br>a water us<br>Sep<br>93.34<br>0 kWh/mon<br>109.18                               | FFA -13.<br>se target o<br>Oct<br>97.15<br>Fotal = Su<br>th (see Ta<br>127.24<br>Fotal = Su          | 2.<br>9)<br>100.96<br>m(44)112<br>ables 1b, 1<br>138.89<br>m(45), 12                                     | 57<br>.25<br>Dec<br>104.77<br>c, 1d)<br>150.83                                                            | 1142.95                                                | (42)<br>(43)<br>](44)<br>](45)                                                                                                                                                     |
| If IF<br>if TF<br>Annua<br>Reduce<br>not more<br>Hot wate<br>(44)m=<br>Energy<br>(45)m=<br>If instan                                                                                                           | $A > 13.8$ $A > 13.8$ $A \pm 13.8$ $A \pm 13.8$ $A \pm 13.8$ $A \pm 125$ $Jan$ $ar usage in$ $104.77$ $104.77$ $155.74$ $taneous w$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P, N = 1<br>P, N = 1<br>P, N = 1<br>P + N              | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar<br>day for ea<br>97.15<br>used - cal<br>140.56                                                                                                                                           | [1 - exp         ge in litre         usage by a         r day (all w         Apr         ach month         93.34         culated mode         122.54         f of use (not)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (-0.0003) es per da<br>5% if the of<br>vater use, I<br>May<br>Vd,m = fa<br>89.53<br>onthly = 4.<br>117.58<br>o hot water                                                                                                       | A9 x (TF<br>Ay Vd,av<br>Iwelling is<br>hot and co<br>Jun<br>ctor from 7<br>85.72<br>190 x Vd,r<br>101.47                                                                                                                                                | A -13.9<br>erage =<br>designed i<br>ld)<br>Jul<br>Table 1c x<br>85.72<br>m x nm x D<br>94.02<br>enter 0 in                                                                                               | )2)] + 0.0<br>(25 x N)<br>to achieve<br>(43)<br>89.53<br>07m / 3600<br>107.89<br>boxes (46)                                                | 0013 x (7<br>+ 36<br>a water us<br>Sep<br>93.34<br>9 kWh/mor<br>109.18                               | FFA -13.<br>se target o<br>Oct<br>97.15<br>Total = Su<br>th (see Ta<br>127.24<br>Total = Su          | 2.<br>9)<br>100.96<br>m(44) <sub>112</sub> =<br>ables 1b, 1<br>138.89<br>m(45) <sub>112</sub> =          | 57<br>.25<br>Dec<br>104.77<br><i>c, 1d)</i><br>150.83                                                     | 1142.95                                                | (42)<br>(43)<br>](44)<br>](45)                                                                                                                                                     |
| If IF<br>if TF<br>Annua<br>Reduce<br>not more<br>Hot wate<br>(44)m=<br>Energy<br>(45)m=<br>If instan<br>(46)m=                                                                                                 | A > 13.8<br>A $\ge$ 13.8<br>A $\pounds$ 13.9<br>I averag<br>the annual<br>e that 125<br>Jan<br>104.77<br>104.77<br>content of<br>155.74<br>taneous w<br>23.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P, N = 1<br>P, N = 1<br>P, N = 1<br>P hot was<br>P hot was<br>P hot water<br>P hot water P h               | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar<br>day for ea<br>97.15<br>used - cal<br>140.56<br>ng at point<br>21.08                                                                                                                   | E [1 - exp<br>ge in litre<br>usage by a<br>r day (all w<br>Apr<br>ach month<br>93.34<br>culated mo<br>122.54<br>f of use (no<br>18.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (-0.0003) es per da<br>5% if the of<br>vater use, I<br>May<br>Vd,m = fa<br>89.53<br>onthly = 4.<br>117.58<br>o hot water<br>17.64                                                                                              | Ay Vd,av<br>welling is<br>hot and co<br>Jun<br>ctor from 1<br>85.72<br>190 x Vd,r<br>101.47<br>r storage),<br>15.22                                                                                                                                     | FA -13.9<br>erage =<br>designed i<br>ld)<br>Table 1c x<br>85.72<br>n x nm x E<br>94.02<br>enter 0 in<br>14.1                                                                                             | )2)] + 0.0<br>(25 x N)<br>to achieve<br>(43)<br>89.53<br>07m / 3600<br>107.89<br>boxes (46,<br>16.18                                       | 0013 x (7<br>+ 36<br>a water us<br>Sep<br>93.34<br>9 kWh/mon<br>109.18<br>109.18                     | FFA -13.<br>se target o<br>Oct<br>97.15<br>Fotal = Su<br>127.24<br>Fotal = Su<br>19.09               | 2.<br>9)<br>100.96<br>m(44) <sub>112</sub> =<br>ables 1b, 1<br>138.89<br>m(45) <sub>112</sub> =<br>20.83 | 57<br>.25<br>Dec<br>104.77<br>=<br>c, 1d)<br>150.83<br>=<br>22.62                                         | 1142.95                                                | (42)<br>(43)<br>(44)<br>(45)<br>(46)                                                                                                                                               |
| If IF<br>if TF<br>Annua<br>Reduce<br>not more<br>Hot wate<br>(44)m=<br>Energy<br>(45)m=<br>If instan<br>(46)m=<br>Water                                                                                        | A > 13.8<br>A $\ge$ 13.8<br>A $\pounds$ 13.8<br>I averag<br>the annual<br>the annual the annual<br>the annual the annual<br>the annual the annual the annual<br>the annual the annual the annual the annual<br>the annual the                                                          | P, N = 1<br>P, N = 1<br>P, N = 1<br>P             | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar<br>day for ea<br>97.15<br>used - cal<br>140.56<br>ng at point<br>21.08                                                                                                                   | E [1 - exp<br>ge in litre<br>usage by s<br>r day (all w<br>Apr<br>ach month<br>93.34<br>culated mo<br>122.54<br>f of use (no<br>18.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (-0.0003) es per da<br>5% if the of<br>vater use, I<br>May<br>Vd,m = fa<br>89.53<br>onthly = 4.<br>117.58<br>o hot water<br>17.64                                                                                              | A9 x (TF<br>ay Vd,av<br>Iwelling is<br>hot and co<br>Jun<br>ctor from 7<br>85.72<br>190 x Vd,r<br>101.47<br>r storage),<br>15.22                                                                                                                        | FA -13.9<br>erage =<br>designed i<br>ld)<br>Table 1c x<br>85.72<br>m x nm x D<br>94.02<br>enter 0 in<br>14.1                                                                                             | )2)] + 0.0<br>(25 x N)<br>to achieve<br>Aug<br>(43)<br>89.53<br>07m / 3600<br>107.89<br>boxes (46,<br>16.18                                | 0013 x (7<br>+ 36<br>a water us<br>Sep<br>93.34<br>0 kWh/mon<br>109.18<br>0 to (61)<br>16.38         | FFA -13.<br>ee target o<br>Oct<br>97.15<br>Fotal = Su<br>127.24<br>Fotal = Su<br>19.09               | 2.<br>9)<br>7<br>Nov<br>100.96<br>m(44)112<br>ables 1b, 1<br>138.89<br>m(45)112<br>20.83                 | 57<br>.25<br>Dec<br>104.77<br><i>c, 1d)</i><br>150.83                                                     | 1142.95                                                | (42)<br>(43)<br>(44)<br>(45)<br>(46)                                                                                                                                               |
| If IF<br>if TF<br>Annua<br>Reduce<br>not more<br>Hot wate<br>(44)m=<br>Energy<br>(45)m=<br>If instan<br>(46)m=<br>Water<br>a) If m                                                                             | A > 13.8<br>A $\ge$ 13.8<br>A $\pounds$ 13.9<br>I averag<br>the annual<br>e that 125<br>Jan<br>104.77<br>104.77<br>content of<br>155.74<br>taneous w<br>23.36<br>storage<br>anufactu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P, N = 1<br>P, N = 1<br>P, N = 1<br>P             | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar<br>day for ea<br>97.15<br>used - cal<br>140.56<br>ng at point<br>21.08<br>clared lo                                                                                                      | Image in litre         usage by a         r day (all w         Apr         ach month         93.34         culated mod         122.54         t of use (not         18.38         poss facto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (-0.0003) es per da<br>5% if the a<br>vater use, l<br>May<br>Vd,m = fa<br>89.53<br>onthly = 4.<br>117.58<br>o hot water<br>17.64<br>or is know                                                                                 | A49 x (TF<br>ay Vd,av<br><i>twelling is</i><br><i>hot and co</i><br>Jun<br><i>ctor from 1</i><br>85.72<br>190 x Vd,r<br>101.47<br><i>r storage),</i><br>15.22<br>wn (kWh                                                                                | A -13.9<br>erage =<br>designed i<br>ld)<br>Jul<br>Table 1c x<br>85.72<br>m x nm x D<br>94.02<br>enter 0 in<br>14.1<br>/day):                                                                             | )2)] + 0.0<br>(25 x N)<br>to achieve<br>(43)<br>89.53<br>07m / 3600<br>107.89<br>boxes (46)<br>16.18                                       | 0013 x (7<br>+ 36<br>a water us<br>Sep<br>93.34<br>98Wh/mon<br>109.18<br>0 to (61)<br>16.38          | FFA -13.<br>se target o<br>Oct<br>97.15<br>Total = Su<br>127.24<br>Total = Su<br>19.09               | 2.<br>9)<br>100.96<br>m(44) <sub>112</sub> =<br>ables 1b, 1<br>138.89<br>m(45) <sub>112</sub> =<br>20.83 | 57<br>.25<br>Dec<br>104.77<br><i>c, 1d)</i><br>150.83<br>22.62<br>0                                       | 1142.95                                                | (42)<br>(43)<br>(44)<br>(44)<br>(45)<br>(46)<br>(47)                                                                                                                               |
| If IF<br>if TF<br>Annua<br>Reduce<br>not more<br>Hot wate<br>(44)m=<br>Energy<br>(45)m=<br>If instan<br>(46)m=<br>Water<br>a) If m                                                                             | A > 13.8<br>A £ 13.8<br>I averag<br>the annuation<br>that 125<br>Jan<br>ar usage in<br>104.77<br>content of<br>155.74<br>taneous w<br>23.36<br>storage<br>anufactue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P, N = 1<br>P, N = 1<br>P, N = 1<br>P, N = 1<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar<br>day for ea<br>97.15<br>used - cal<br>140.56<br>ng at point<br>21.08<br>clared lo<br>m Table                                                                                           | [1 - exp         ge in litre         usage by s         r day (all w         Apr         ach month         93.34         culated mod         122.54         cof use (not         18.38         poss facto         2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (-0.0003) es per da<br>5% if the of<br>vater use, I<br>May<br>Vd,m = fa<br>89.53<br>onthly = 4.<br>117.58<br>o hot water<br>17.64<br>or is know                                                                                | A49 x (TF<br>ay Vd,av<br>Iwelling is<br>hot and co<br>Jun<br>ctor from 1<br>85.72<br>190 x Vd,r<br>101.47<br>r storage),<br>15.22<br>wn (kWh                                                                                                            | FA -13.9<br>erage =<br>designed i<br>ld)<br>Jul<br>Table 1c x<br>85.72<br>m x nm x L<br>94.02<br>enter 0 in<br>14.1<br>/day):                                                                            | )2)] + 0.0<br>(25 x N)<br>to achieve<br>Aug<br>(43)<br>89.53<br>07m / 3600<br>107.89<br>boxes (46)<br>16.18                                | 0013 x (7<br>+ 36<br>a water us<br>Sep<br>93.34<br>0 kWh/mon<br>109.18<br>0 to (61)<br>16.38         | FFA -13.<br>ee target o<br>Oct<br>97.15<br>Fotal = Su<br>th (see Ta<br>127.24<br>Fotal = Su<br>19.09 | 2.<br>9)<br>9)<br>100.96<br>m(44)112<br>ables 1b, 1<br>138.89<br>m(45)112<br>20.83                       | 57<br>.25<br>Dec<br>104.77<br>=<br>c, 1d)<br>150.83<br>=<br>22.62<br>0<br>0                               | 1142.95                                                | (42)<br>(43)<br>(44)<br>(44)<br>(45)<br>(46)<br>(47)<br>(48)                                                                                                                       |
| If IF<br>if TF<br>Annua<br>Reduce<br>not more<br>Hot wate<br>(44)m=<br>Energy<br>(45)m=<br>If instan<br>(46)m=<br>Water<br>a) If m<br>Tempe<br>Energy                                                          | A > 13.8<br>A $\ge$ 13.8<br>A $\pounds$ 13.8<br>I averag<br>the annual<br>the annual<br>the annual<br>the annual<br>the annual<br>transaction<br>(104.77)<br>104.77<br>(104.77)<br>104.77<br>(104.77)<br>105.74<br>(105.74)<br>taneous w<br>23.36<br>(105.74)<br>taneous w<br>23.36<br>(105.74)<br>taneous w<br>(23.36)<br>storage<br>anufacture fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P, N = 1<br>P, N = 1<br>P, N = 1<br>P, N = 1<br>P hot was<br>P hot was<br>P hot water<br>100.96<br>hot water<br>136.21<br>P hot water<br>20.43<br>P hoss:<br>P are solved<br>P hoss for the solved<br>P hose solv            | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar<br>day for ea<br>97.15<br>used - cal<br>140.56<br>ng at point<br>21.08<br>clared lo<br>m Table                                                                                           | <ul> <li>[1 - exp</li> <li>ge in litre</li> <li>usage by service</li> <li>day (all we have (all we have)</li> <li>Apr</li> <li>ach month</li> <li>93.34</li> <li>culated mode</li> <li>122.54</li> <li>f of use (not</li> <li>18.38</li> <li>oss facto</li> <li>2b</li> <li>k, kWh/ye</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (-0.0003) es per da<br>5% if the of<br>vater use, I<br>May<br>Vd,m = fa<br>89.53<br>onthly = 4.<br>117.58<br>o hot water<br>17.64<br>or is know<br>ear                                                                         | A9 x (TF<br>Ay Vd,av<br>Iwelling is<br>hot and co<br>Jun<br>ctor from 7<br>85.72<br>190 x Vd,r<br>101.47<br>r storage),<br>15.22<br>wn (kWh                                                                                                             | <ul> <li>A -13.9</li> <li>erage =<br/>designed i<br/>ld)</li> <li>Jul</li> <li>Table 1c x</li> <li>85.72</li> <li>m x nm x E</li> <li>94.02</li> <li>enter 0 in</li> <li>14.1</li> <li>/day):</li> </ul> | )2)] + 0.0<br>(25 x N)<br>to achieve<br>(43)<br>89.53<br>07m / 3600<br>107.89<br>boxes (46,<br>16.18                                       | 0013 x (7<br>+ 36<br>a water us<br>Sep<br>93.34<br>98.Wh/mor<br>109.18<br>0 to (61)<br>16.38         | FFA -13.<br>se target o<br>Oct<br>97.15<br>Fotal = Su<br>127.24<br>Fotal = Su<br>19.09               | 2.<br>9)<br>100.96<br>m(44)112<br>ables 1b, 1<br>138.89<br>m(45)112<br>20.83                             | 57<br>.25<br>Dec<br>104.77<br><i>c, 1d)</i><br>150.83<br>22.62<br>0<br>0                                  | <br> <br> <br> <br> <br> <br> <br> <br>                | (42)<br>(43)<br>(43)<br>(44)<br>(45)<br>(45)<br>(46)<br>(47)<br>(48)<br>(49)                                                                                                       |
| If IF<br>if TF<br>Annua<br><i>Reduce</i><br><i>not more</i><br><i>Hot wate</i><br>(44)m=<br><i>Energy</i><br>(45)m=<br><i>If instan</i><br>(46)m=<br>Water<br>a) If m<br>Tempe<br>Energy<br>If man<br>Cvlind   | A > 13.8<br>A $\ge$ 13.8<br>A $\pounds$ 13.8<br>I averag<br>the annual<br>e that 125<br>Jan<br>104.77<br>104.77<br>content of<br>155.74<br>taneous w<br>23.36<br>storage<br>anufacture<br>facture facture<br>er volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P, N = 1<br>P, N = 1<br>P, N = 1<br>P, N = 1<br>P hot was<br>P hot was<br>P hot water<br>P hot water $P$ hot water<br>P hot water<br>P hot water $P$ hot               | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar<br>day for ea<br>97.15<br>used - cal<br>140.56<br>ng at point<br>21.08<br>clared lo<br>m Table<br>storage<br>ured cylin<br>) includii                                                    | <ul> <li>[1 - exp</li> <li>ge in litre usage by a r day (all w</li> <li>Apr</li> <li>ach month</li> <li>93.34</li> <li>culated model</li> <li>for use (not</li> <li>122.54</li> <li>for use (not</li> <li>18.38</li> <li>poss facto</li> <li>2b</li> <li>kWh/yee</li> <li>nder loss</li> <li>any s</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (-0.0003) es per da<br>5% if the or<br>vater use, I<br>May<br>Vd,m = fa<br>89.53<br>onthly = 4.<br>117.58<br>o hot water<br>17.64<br>or is know<br>ear<br>s factor is<br>olar stor                                             | A49 x (TF<br>ay Vd,av<br><i>twelling is</i><br><i>hot and co</i><br>Jun<br><i>ctor from 1</i><br>85.72<br>190 x Vd,r<br>101.47<br>r <i>storage),</i><br>15.22<br>wn (kWh                                                                                | FA -13.9<br>erage =<br>designed i<br>ld)<br>Jul<br>Table 1c x<br>85.72<br>n x nm x E<br>94.02<br>enter 0 in<br>14.1<br>/day):<br>pwn:<br>in same                                                         | )2)] + 0.0<br>(25 x N)<br>to achieve<br>(43)<br>89.53<br>07m / 3600<br>107.89<br>boxes (46)<br>16.18                                       | 0013 x (7<br>+ 36<br>a water us<br>Sep<br>93.34<br>9 kWh/mon<br>109.18<br>0 to (61)<br>16.38         | FFA -13.<br>se target o<br>Oct<br>97.15<br>Total = Su<br>127.24<br>Total = Su<br>19.09               | 2.<br>9)<br>100.96<br>m(44) <sub>112</sub> =<br>ables 1b, 1<br>138.89<br>m(45) <sub>112</sub> =<br>20.83 | 57<br>.25<br>Dec<br>104.77<br><i>c, 1d)</i><br>150.83<br>22.62<br>0<br>0<br>0                             | <br>1142.95<br>1502.18                                 | <ul> <li>(42)</li> <li>(43)</li> <li>(43)</li> <li>(44)</li> <li>(45)</li> <li>(46)</li> <li>(47)</li> <li>(48)</li> <li>(49)</li> <li>(50)</li> </ul>                             |
| If IF<br>if TF<br>Annua<br>Reduce<br>not more<br>Hot wate<br>(44)m=<br>Energy<br>(45)m=<br>If instan<br>(46)m=<br>Water<br>a) If m<br>Tempe<br>Energy<br>If man<br>Cylind<br>If cor                            | A > 13.8<br>A £ 13.8<br>I averag<br>the annuate<br>that 125<br>Jan<br>104.77<br>104.77<br>content of<br>155.74<br>taneous w<br>23.36<br>storage<br>anufacture<br>facture facture<br>oufacture<br>er volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P, N = 1<br>P, N = 1<br>P, N = 1<br>P, N = 1<br>P hot was<br>P hot was<br>P hot water<br>100.96<br>hot water<br>136.21<br>P hot water<br>20.43<br>P hoss:<br>P hoss:            | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar<br>day for ea<br>97.15<br>used - cal<br>140.56<br>ng at point<br>21.08<br>clared lo<br>m Table<br>storage<br>ired cylir<br>) includin<br>no tank ir                                      | Image in litre         usage by strate         r day (all w         Apr         ach month         93.34         culated mod         122.54         cof use (not         18.38         poss facto         2b         e, kWh/yee         nder loss         nder loss         adwelling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (-0.0003) es per da<br>5% if the of<br>vater use, I<br>May<br>Vd,m = fa<br>89.53<br>onthly = 4.<br>117.58<br>o hot water<br>17.64<br>or is know<br>ear<br>s factor is<br>olar stor<br>enter 110                                | A49 x (TF<br>ay Vd,av<br>Iwelling is<br>hot and co<br>Jun<br>ctor from 7<br>85.72<br>190 x Vd,r<br>101.47<br>r storage),<br>15.22<br>wn (kWh<br>s not kno<br>age with<br>litres in bo                                                                   | FA -13.9<br>erage =<br>designed i<br>ld)<br>Jul<br>Table 1c x<br>85.72<br>enter 0 in<br>14.1<br>/day):<br>own:<br>in same<br>ox (50)                                                                     | )2)] + 0.0<br>(25 x N)<br>to achieve<br>Aug<br>(43)<br>89.53<br>07m / 3600<br>107.89<br>boxes (46)<br>16.18                                | 0013 x (7<br>+ 36<br>a water us<br>Sep<br>93.34<br>0 kWh/mon<br>109.18<br>0 to (61)<br>16.38         | FFA -13.<br>ee target o<br>Oct<br>97.15<br>Fotal = Su<br>th (see Ta<br>127.24<br>Fotal = Su<br>19.09 | 2.<br>9)<br>100.96<br>m(44)112<br>ables 1b, 1<br>138.89<br>m(45)112<br>20.83                             | 57<br>.25<br>Dec<br>104.77<br>=<br>c, 1d)<br>150.83<br>=<br>22.62<br>0<br>0<br>0<br>0                     | <br> <br> <br> <br> <br> <br> <br> <br>                | <ul> <li>(42)</li> <li>(43)</li> <li>(43)</li> <li>(44)</li> <li>(45)</li> <li>(45)</li> <li>(46)</li> <li>(47)</li> <li>(48)</li> <li>(49)</li> <li>(50)</li> </ul>               |
| If IF<br>if TF<br>Annua<br>Reduce<br>not more<br>Hot wate<br>(44)m=<br>Energy<br>(45)m=<br>If instan<br>(46)m=<br>Water<br>a) If m<br>Tempe<br>Energy<br>If man<br>Cylind<br>If cor<br>Othe                    | A > 13.8<br>A $\ge$ 13.8<br>A $\pounds$ 13.8<br>I averag<br>the annual<br>e that 125<br>Jan<br>104.77<br>104.77<br>content of<br>155.74<br>taneous w<br>23.36<br>storage<br>anufacture<br>fature fa<br>v lost fro<br>ufacture<br>er volum<br>nmunity he<br>rwise if no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P, N = 1<br>P, N = 1<br>P, N = 1<br>P, N = 1<br>P hot was<br>P hot was<br>P hot water<br>100.96<br>hot water<br>136.21<br>P hot water<br>20.43<br>P hore the the the the the the the the the th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar<br>Mar<br>97.15<br>used - cal<br>140.56<br>ng at point<br>21.08<br>clared lo<br>m Table<br>storage<br>ired cylin<br>) includin<br>no tank ir<br>t water (th                              | Image in litre         usage by a         r day (all w         Apr         ach month         93.34         culated mod         122.54         cof use (not         18.38         poss facto         2b         x, kWh/ye         nder loss         nder loss         ndwelling,         is includes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (-0.0003) es per da<br>5% if the a<br>vater use, l<br>May<br>Vd,m = fa<br>89.53<br>onthly = 4.<br>117.58<br>o hot water<br>17.64<br>or is know<br>ear<br>s factor is<br>olar stor<br>enter 110<br>s instantan                  | 349 x (TF<br>ay Vd,av<br><i>twelling is</i><br><i>hot and co</i><br>Jun<br><i>ctor from</i><br>85.72<br>190 x Vd,r<br>101.47<br><i>r storage),</i><br>15.22<br>wn (kWh<br><i>s not kno</i><br><i>age with</i><br><i>litres in bo</i><br><i>eous com</i> | FA -13.9<br>erage =<br>designed i<br>ld)<br>Jul<br>Table 1c x<br>85.72<br>n x nm x D94.02<br>enter 0 in<br>14.1<br>/day):<br>but boilers)                                                                | )2)] + 0.0<br>(25 x N)<br>to achieve<br>(43)<br>89.53<br>07m / 3600<br>107.89<br>boxes (46,<br>16.18<br>(47) x (48)<br>enter '0' in        | 0013 x (7<br>+ 36<br>a water us<br>Sep<br>93.34<br>98.Wh/mon<br>109.18<br>109.18<br>100.61)<br>16.38 | FFA -13.<br>se target o<br>Oct<br>97.15<br>Fotal = Su<br>127.24<br>Fotal = Su<br>19.09               | 2.<br>9)<br>100.96<br>m(44)112<br>ables 1b, 1<br>138.89<br>m(45)112<br>20.83                             | 57<br>.25<br>Dec<br>104.77<br><i>c, 1d)</i><br>150.83<br>22.62<br>0<br>0<br>0<br>0                        | <br> <br> <br> <br> <br> <br> <br> <br>                | <ul> <li>(42)</li> <li>(43)</li> <li>(44)</li> <li>(44)</li> <li>(45)</li> <li>(46)</li> <li>(47)</li> <li>(48)</li> <li>(49)</li> <li>(50)</li> </ul>                             |
| If IF<br>if TF<br>Annua<br>Reduce<br>not more<br>Hot wate<br>(44)m=<br>(44)m=<br>(45)m=<br>If instan<br>(46)m=<br>Water<br>a) If m<br>Tempe<br>Energy<br>If man<br>Cylind<br>If con<br>Othe<br>Hot wate        | A > 13.8<br>A £ 13.8<br>I averag<br>the annual<br>the annual<br>the annual<br>the annual<br>the annual<br>the annual<br>transaction<br>taneous w<br>23.36<br>Storage<br>anufacture<br>trature fa<br>v lost fro<br>ufacture<br>the volum<br>munity he<br>twise if no<br>atter stora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P, N = 1<br>P, N = 1<br>P, N = 1<br>P, N = 1<br>P hot was<br>P hot was<br>P hot water<br>100.96<br>hot water<br>136.21<br>P hot water<br>20.43<br>P hot water<br>P hot water             | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar<br>day for ea<br>97.15<br>used - cal<br>140.56<br>ng at point<br>21.08<br>clared lo<br>m Table<br>storage<br>ared cylin<br>) includin<br>no tank ir<br>t water (th<br>factor fi          | <ul> <li>[1 - exp</li> <li>ge in litre usage by a rady (all we have (all we have) (all</li></ul> | (-0.0003) es per da<br>5% if the of<br>vater use, I<br>May<br>Vd,m = fa<br>89.53<br>onthly = 4.<br>117.58<br>o hot water<br>17.64<br>or is know<br>ear<br>s factor is<br>olar stor<br>enter 110<br>s instantan<br>le 2 (kW     | A49 x (TF<br>ay Vd,av<br>Iwelling is<br>hot and co<br>Jun<br>ctor from 1<br>85.72<br>190 x Vd,r<br>101.47<br>r storage),<br>15.22<br>wn (kWh<br>s not kno<br>age with<br>litres in bo<br>eous comi<br>h/litre/da                                        | FA -13.9<br>erage =<br>designed i<br>ld)<br>Jul<br>Table 1c x<br>85.72<br>enter 0 in<br>14.1<br>/day):<br>in same<br>x (50)<br>bi boilers)<br>ay)                                                        | )2)] + 0.0<br>(25 x N)<br>to achieve<br>Aug<br>(43)<br>89.53<br>07m / 3600<br>107.89<br>boxes (46)<br>16.18<br>(47) x (48)                 | 0013 x (7<br>+ 36<br>a water us<br>Sep<br>93.34<br>9 kWh/mon<br>109.18<br>0 to (61)<br>16.38         | FFA -13.<br>ee target o<br>Oct<br>97.15<br>Fotal = Su<br>th (see Ta<br>127.24<br>Fotal = Su<br>19.09 | 2.<br>9)<br>100.96<br>m(44) <sub>112</sub> =<br>ables 1b, 1<br>138.89<br>m(45) <sub>112</sub> =<br>20.83 | 57<br>.25<br>Dec<br>104.77<br><i>c, 1d)</i><br>150.83<br>22.62<br>0<br>0<br>0<br>0<br>0                   | <br>1142.95<br>1502.18                                 | <ul> <li>(42)</li> <li>(43)</li> <li>(43)</li> <li>(44)</li> <li>(45)</li> <li>(46)</li> <li>(47)</li> <li>(48)</li> <li>(49)</li> <li>(50)</li> <li>(51)</li> </ul>               |
| If IF<br>if TF<br>Annua<br>Reduce<br>not more<br>Hot wate<br>(44)m=<br>Energy<br>(45)m=<br>If instan<br>(46)m=<br>Water<br>a) If m<br>Tempe<br>Energy<br>If man<br>Cylind<br>If cor<br>Othe<br>Hot wa<br>Volum | A > 13.8<br>A £ 13.8<br>I averag<br>the annuation<br>that 125<br>Jan<br>ar usage in<br>104.77<br>content of<br>155.74<br>taneous w<br>23.36<br>storage<br>anufacture<br>facture fa<br>v lost fro<br>ufacture<br>ar volum<br>nmunity he<br>rwise if no<br>ater stora<br>e factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P, N = 1<br>P, N = 1<br>P, N = 1<br>P, N = 1<br>P, N = 1<br>P<br>P<br>P<br>P<br>P<br>P<br>P<br>P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar<br>day for ea<br>97.15<br>used - cal<br>140.56<br>ng at point<br>21.08<br>clared lo<br>m Table<br>storage<br>red cylir<br>) includin<br>no tank ir<br>t water (th<br>factor fr<br>ble 2a | Image in litre         usage by strate         r day (all w         Apr         ach month         93.34         culated mod         122.54         cof use (not         18.38         poss facto         2b         x, kWh/yee         nder loss         nder loss         adwelling,         is includes         rom Tabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e(-0.0003<br>es per da<br>5% if the of<br>vater use, I<br>May<br>Vd,m = fa<br>89.53<br>onthly = 4.<br>117.58<br>o hot water<br>17.64<br>or is know<br>ear<br>s factor is<br>olar stor<br>enter 110<br>s instantant<br>le 2 (kW | 849 x (TF<br>ay Vd,av<br>Iwelling is<br>hot and co<br>Jun<br>ctor from 7<br>85.72<br>190 x Vd,r<br>101.47<br>r storage),<br>15.22<br>wn (kWh<br>s not kno<br>age with<br>litres in bo<br>eous comi<br>h/litre/da                                        | FA -13.9<br>erage =<br>designed i<br>ld)<br>Jul<br>Table 1c x<br>85.72<br>enter 0 in<br>14.1<br>/day):<br>bi same<br>bi boilers)<br>ay)                                                                  | )2)] + 0.0<br>(25 x N)<br>to achieve<br>Aug<br>(43)<br>89.53<br>07m / 3600<br>107.89<br>boxes (46)<br>16.18<br>(47) x (48)<br>enter '0' in | 0013 x (7<br>+ 36<br>a water us<br>Sep<br>93.34<br>0 kWh/mon<br>109.18<br>0 to (61)<br>16.38         | FFA -13.<br>e target o<br>Oct<br>97.15<br>Fotal = Su<br>127.24<br>Fotal = Su<br>19.09                | 2.<br>9)<br>100.96<br>m(44)112<br>ables 1b, 1<br>138.89<br>m(45)112<br>20.83                             | 57<br>.25<br>Dec<br>104.77<br>=<br>c, 1d)<br>150.83<br>=<br>22.62<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | <br> | <ul> <li>(42)</li> <li>(43)</li> <li>(43)</li> <li>(44)</li> <li>(45)</li> <li>(46)</li> <li>(47)</li> <li>(48)</li> <li>(49)</li> <li>(50)</li> <li>(51)</li> <li>(52)</li> </ul> |
| (41)m=<br>4. Wa<br>Assum                                                                                                                                                                                       | 31<br>ater heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28<br>ing ener                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31<br>rgy requ<br>N                                                                                                                                                                                                                              | 30<br>irement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                      | 31                                                                                                                                                                                                       | 31                                                                                                                                         | 30                                                                                                   | 31                                                                                                   | 30                                                                                                       | 31<br>kWh/y                                                                                               | ear:                                                   | (41)                                                                                                                                                                               |
| (41)m=                                                                                                                                                                                                         | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31                                                                                                                                                                                                                                               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                      | 31                                                                                                                                                                                                       | 31                                                                                                                                         | 30                                                                                                   | 31                                                                                                   | 30                                                                                                       | 31                                                                                                        |                                                        | (41)                                                                                                                                                                               |
|                                                                                                                                                                                                                | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mar                                                                                                                                                                                                                                              | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | May                                                                                                                                                                                                                            | Jun                                                                                                                                                                                                                                                     | Jul                                                                                                                                                                                                      | Aug                                                                                                                                        | Sep                                                                                                  | Oct                                                                                                  | Nov                                                                                                      | Dec                                                                                                       | ]                                                      |                                                                                                                                                                                    |
| Numbe                                                                                                                                                                                                          | er of day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rs in mor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nth (Tab                                                                                                                                                                                                                                         | le 1a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                                            |                                                                                                      |                                                                                                      |                                                                                                          |                                                                                                           | 1                                                      |                                                                                                                                                                                    |
| Numb                                                                                                                                                                                                           | un of day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | re in mor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uth (Tab                                                                                                                                                                                                                                         | le 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                        |                                                                                                                                            | /                                                                                                    | Average =                                                                                            | Sum(40) <sub>1</sub> .                                                                                   | 12 /12=                                                                                                   | 1.83                                                   | (40)                                                                                                                                                                               |
| (40)m=                                                                                                                                                                                                         | 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.88                                                                                                                                                                                                                                             | 1.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.79                                                                                                                                                                                                                           | 1.78                                                                                                                                                                                                                                                    | 1.76                                                                                                                                                                                                     | 1.76                                                                                                                                       | 1.8                                                                                                  | 1.82                                                                                                 | 1.85                                                                                                     | 1.88                                                                                                      | ]                                                      |                                                                                                                                                                                    |
| Heat lo                                                                                                                                                                                                        | oss para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | meter (H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HLP), W                                                                                                                                                                                                                                          | /m²K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                                            | ر<br>(40)m                                                                                           | = (39)m ÷                                                                                            | Sum(39)₁.<br>· (4)                                                                                       | 12 / 12=                                                                                                  | 137.40                                                 |                                                                                                                                                                                    |
| (39)m=                                                                                                                                                                                                         | 164.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 161.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 161.83                                                                                                                                                                                                                                           | 157.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 154.37                                                                                                                                                                                                                         | 153.07                                                                                                                                                                                                                                                  | 151.84                                                                                                                                                                                                   | 151.84                                                                                                                                     | 155.04                                                                                               | 157.16                                                                                               | 159.42<br>Sum(30)                                                                                        | 161.83                                                                                                    | 157 /8                                                 | (39)                                                                                                                                                                               |
| Heat ti                                                                                                                                                                                                        | anster c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt, W/K                                                                                                                                                                                                                                          | 457.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 454.07                                                                                                                                                                                                                         | 452.07                                                                                                                                                                                                                                                  | 454.04                                                                                                                                                                                                   | 454.04                                                                                                                                     | (39)m                                                                                                | = (37) + (                                                                                           | 38)m                                                                                                     | 404.00                                                                                                    | 1                                                      |                                                                                                                                                                                    |
| (30)11=                                                                                                                                                                                                        | 04.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02.33                                                                                                                                                                                                                                            | 57.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54.00                                                                                                                                                                                                                          | 55.57                                                                                                                                                                                                                                                   | 52.55                                                                                                                                                                                                    | 52.55                                                                                                                                      | 55.54                                                                                                | 57.05                                                                                                | 59.92                                                                                                    | 02.33                                                                                                     |                                                        | (30)                                                                                                                                                                               |
| (20)                                                                                                                                                                                                           | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mar                                                                                                                                                                                                                                              | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | May                                                                                                                                                                                                                            | Jun                                                                                                                                                                                                                                                     | JUI                                                                                                                                                                                                      | Aug                                                                                                                                        | Sep                                                                                                  | OCt                                                                                                  | NOV                                                                                                      | Dec                                                                                                       |                                                        | (29)                                                                                                                                                                               |
| Ventila                                                                                                                                                                                                        | tion hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t loss ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alculated                                                                                                                                                                                                                                        | monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y<br>L Ma                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                                            | (38)m                                                                                                | = 0.33 × (                                                                                           | 25)m x (5)                                                                                               | Du                                                                                                        | 1                                                      |                                                                                                                                                                                    |
| Total f                                                                                                                                                                                                        | abric he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | at loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                                            | (33) +                                                                                               | (36) =                                                                                               |                                                                                                          |                                                                                                           | 99.5                                                   | (37)                                                                                                                                                                               |
| if details                                                                                                                                                                                                     | of therma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l bridging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | are not kn                                                                                                                                                                                                                                       | own (36) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 0.15 x (3                                                                                                                                                                                                                    | 1)                                                                                                                                                                                                                                                      |                                                                                                                                                                                                          |                                                                                                                                            |                                                                                                      |                                                                                                      |                                                                                                          |                                                                                                           |                                                        |                                                                                                                                                                                    |
| Therm                                                                                                                                                                                                          | al bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | es : S (L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x Y) cal                                                                                                                                                                                                                                         | culated u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | using Ap                                                                                                                                                                                                                       | pendix l                                                                                                                                                                                                                                                | <                                                                                                                                                                                                        |                                                                                                                                            |                                                                                                      |                                                                                                      |                                                                                                          |                                                                                                           | 30.72                                                  | (36)                                                                                                                                                                               |
| can be ι                                                                                                                                                                                                       | used instea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ad of a det                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tailed calc                                                                                                                                                                                                                                      | ulation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | construct                                                                                                                                                                                                                      | ion are no                                                                                                                                                                                                                                              | t known pi                                                                                                                                                                                               | ecisely life                                                                                                                               | muicative                                                                                            | values of                                                                                            |                                                                                                          |                                                                                                           |                                                        |                                                                                                                                                                                    |
| 1 01 003                                                                                                                                                                                                       | al IIIass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | parame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                  | = $ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - IFA) II                                                                                                                                                                                                                      | ion are no                                                                                                                                                                                                                                              | t known n                                                                                                                                                                                                | ocisoly the                                                                                                                                | indicative                                                                                           |                                                                                                      | TMP in Ta                                                                                                | blo 1f                                                                                                    | 100                                                    | (35)                                                                                                                                                                               |
| For desi                                                                                                                                                                                                       | al mace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | narama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tor (TME                                                                                                                                                                                                                                         | - Cm -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - TFΔ) ir                                                                                                                                                                                                                      | n k l/m²k                                                                                                                                                                                                                                               |                                                                                                                                                                                                          |                                                                                                                                            |                                                                                                      | tive Value                                                                                           | -) (02u).<br>· Low                                                                                       | (020) =                                                                                                   | 6476.0729                                              |                                                                                                                                                                                    |
| Therm<br>For desi                                                                                                                                                                                              | apaony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Axk)                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                                            | ((28)                                                                                                | (30) + (32)                                                                                          | (32a)                                                                                                    | (32e) =                                                                                                   | 8478 6720                                              | (34)                                                                                                                                                                               |

| Energy lost from water storage, kWh/year<br>Enter (49) or (54) in (55) |                         |                       |                      |            |                      |                       | ((50) x (51             | l) x (52) x          | (53) =        |             | 0           |            | (54)          |      |
|------------------------------------------------------------------------|-------------------------|-----------------------|----------------------|------------|----------------------|-----------------------|-------------------------|----------------------|---------------|-------------|-------------|------------|---------------|------|
| Water                                                                  | storage                 | loss cal              | culated :            | for each   | month                |                       |                         | ((56)m = (           | 55) x (41)ı   | m           |             | 0          |               | (55) |
| (56)m                                                                  |                         |                       |                      |            |                      | 0                     | 0                       |                      |               |             | 0           | 0          |               | (56) |
| lf cylind                                                              | er contain:             | s dedicate            | d solar sto          | rage, (57) | m = (56)m            | x [(50) – (           | U<br>H11)] ÷ (50        | 0), else (5          | 7)m = (56)    | m where (   | H11) is fro | m Append   | ix H          | (00) |
| (57)~                                                                  |                         | 0                     |                      |            |                      |                       |                         |                      | , (,          |             | ,           |            |               | (57) |
| (57)m=                                                                 | 0                       | 0                     | 0                    | 0          | 0                    | 0                     | 0                       | 0                    | 0             | 0           |             | 0          |               | (57) |
| Prima                                                                  | ry circuit              | loss (ar              | nual) fro            | om Table   | e 3                  | 50)                   | (50) 00                 |                      |               |             |             | 0          |               | (58) |
| Prima<br>(mo                                                           | ry circuit<br>dified by | loss cal<br>factor fi | culated              | for each   | montn (<br>boro is s | 59)m = (<br>solar wat | (58) ÷ 36<br>tor boatir | 5 × (41)<br>og and s | m<br>cylinder | r thormo    | etat)       |            |               |      |
| (110<br>(59)m=                                                         |                         |                       |                      |            |                      |                       |                         |                      |               |             |             | 0          |               | (59) |
| Comb                                                                   |                         |                       | l                    | month      | (G1)m                |                       | 25 (44)                 | L                    | 1             | l           | I           |            |               |      |
|                                                                        | 50.06                   |                       |                      |            | (01)(11) =           | $(00) \div 30$        | 00 × (41)               | 111                  | 46.02         | 40.51       | 40.22       | 50.06      |               | (61) |
|                                                                        | 50.90                   | 40.03                 | 49.51                | 40.05      |                      | 42.27                 | 43.00                   | 40.02                | 40.03         | (45) m      | (40)        | (57)       | (50)          | (01) |
| 10tal 1                                                                |                         |                       | water n              |            |                      |                       |                         | (02) III =           | 0.85 X (      | (45)m +     | (46)m +     | (57)m +    | (59)m + (61)m | (62) |
| (02)III=                                                               |                         |                       |                      | 100.00     |                      | 143.74                |                         | (optor '0            | lif no colo   | r contribut |             | 201.79     |               | (02) |
| (add a                                                                 | dditiona                | l lines if            | FGHRS                | and/or \   |                      | annlies               | see An                  | nendix (             |               | r contribut | ION IO WAIE | er neaung) |               |      |
| (63)m=                                                                 |                         |                       |                      |            |                      |                       |                         |                      |               | 0           | 0           | 0          |               | (63) |
| Outou                                                                  | t from w                | ater hea              | tor                  | -          |                      | -                     | -                       | -                    | -             | -           | -           | -          |               |      |
| (64)m=                                                                 | 206.7                   | 182.24                | 190.07               | 168.58     | 163.21               | 143.74                | 137.71                  | 153.52               | 155.21        | 176.75      | 188.21      | 201.79     |               |      |
| ()                                                                     |                         |                       |                      |            |                      |                       |                         | Outr                 | out from wa   | ater heate  | r (annual)₁ |            | 2067.72       | (64) |
| Heat                                                                   | nains fro               | m water               | heating              | k\//h/m    | onth 0.2             | 5 x [0 85             | 5 <b>x</b> (45)m        | 1 + (61)r            | n] + 0 8 s    | x [(46)m    | + (57)m     | 1 + (59)m  | 1             | ], , |
| (65)m=                                                                 | 64.52                   | 56.8                  | 59.11                | 52.25      | 50.5                 | 44.31                 | 42.18                   | 47.28                | 47.81         | 54.68       | 58.51       | 62.89      | · 1           | (65) |
| inclu                                                                  | <br>Ide (57)            | n in cale             |                      | of (65)m   | only if c            | vlinder i             | s in the c              | l                    | or hot w      | ater is fr  |             | munity h   | eating        |      |
| 5 In                                                                   | ternal as               | nine (soc             |                      | and 5a     | ).                   | yiiriddi i            |                         | awoning              | or not w      |             | oni ooni    | indincy i  | loating       |      |
| O. III                                                                 |                         | a (Table              |                      |            | )•                   |                       |                         |                      |               |             |             |            |               |      |
| Metab                                                                  | olic gain               | Feb                   | <u>), wai</u><br>Mar | IS<br>Anr  | May                  | Jun                   | Jul                     | Aug                  | Sen           | Oct         | Nov         | Dec        |               |      |
| (66)m=                                                                 | 154.22                  | 154.22                | 154.22               | 154.22     | 154.22               | 154.22                | 154.22                  | 154.22               | 154.22        | 154.22      | 154.22      | 154.22     |               | (66) |
| Lightin                                                                |                         | (calcula              | L<br>ted in Δι       | nendix     |                      | ion I 9 o             | rl0a)a                  |                      | Table 5       | _           | -           | -          |               |      |
| (67)m=                                                                 | 64.75                   | 57.51                 | 46.77                | 35.41      | 26.47                | 22.35                 | 24.15                   | 31.39                | 42.13         | 53.49       | 62.43       | 66.55      |               | (67) |
| Annlia                                                                 | nces da                 | ins (calc             | L<br>ulated in       |            |                      | Luation L             | 13 or I 1               | (<br>3a) also        | see Ta        | hle 5       |             |            |               |      |
| (68)m=                                                                 | 346.19                  | 349.79                | 340.73               | 321.46     | 297.13               | 274.27                | 258.99                  | 255.4                | 264.45        | 283.73      | 308.05      | 330.92     |               | (68) |
| Cooki                                                                  |                         | (calcula              | ted in A             | nnendiv    |                      | tion   15             | or   15a)               |                      | <br>A Table   | 5           |             |            |               |      |
| (69)m=                                                                 | 52.99                   | 52.99                 | 52.99                | 52.99      | 52.99                | 52.99                 | 52.99                   | 52.99                | 52.99         | 52.99       | 52.99       | 52.99      |               | (69) |
| Pump                                                                   | s and fai               |                       | (Table /             | [<br>52)   |                      |                       |                         |                      |               |             |             |            |               |      |
| (70)m=                                                                 | 10                      | 10 10                 | 10                   | 10         | 10                   | 10                    | 10                      | 10                   | 10            | 10          | 10          | 10         |               | (70) |
|                                                                        |                         |                       |                      | tivo valu  | As) (Tab             | <u> </u>              |                         |                      |               |             |             |            |               |      |
| (71)m=                                                                 | -102.81                 | -102.81               | -102.81              | -102.81    | -102.81              | -102.81               | -102.81                 | -102.81              | -102.81       | -102.81     | -102.81     | -102.81    |               | (71) |
| Water                                                                  | heating                 | naine (T              | able 5)              |            |                      |                       |                         |                      |               |             |             |            |               | . /  |
| (72)m=                                                                 | 86.73                   | 84.52                 | 79.45                | 72.57      | 67.88                | 61.54                 | 56.7                    | 63.55                | 66.4          | 73.5        | 81.27       | 84.53      |               | (72) |
| Total                                                                  | internal                | aaine –               |                      |            |                      |                       | L                       | L                    | L (69)m + (   | (70)m + (7  | 1)m + (72)  |            |               | × /  |
| (73)m=                                                                 | 612.07                  | 606.22                | 581.36               | 543 84     | 505 88               | 472.55                | 454 24                  | 464 74               | 487.38        | 525 11      | 566 15      | 596.4      |               | (73) |
|                                                                        |                         |                       |                      |            |                      |                       |                         |                      | 101.00        |             |             | 0000.1     |               |      |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:   | Access Factor<br>Table 6d |   | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |     | Gains<br>(W) |               |
|----------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|-----|--------------|---------------|
| Southeast 0.9x | 0.54                      | x | 1.29       | × | 37.39            | × | 0.76           | × | 0.7            | =   | 24.94        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 37.39            | x | 0.76           | x | 0.7            | =   | 44.85        | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 63.74            | x | 0.76           | x | 0.7            | =   | 42.52        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | × | 63.74            | × | 0.76           | × | 0.7            | =   | 76.46        | <b>–</b> (77) |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 84.22            | x | 0.76           | x | 0.7            | ] = | 56.18        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | × | 84.22            | × | 0.76           | × | 0.7            | ] = | 101.03       | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 103.49           | × | 0.76           | x | 0.7            | =   | 69.03        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 103.49           | x | 0.76           | x | 0.7            | =   | 124.15       | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 113.34           | x | 0.76           | x | 0.7            | =   | 75.6         | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 113.34           | × | 0.76           | x | 0.7            | =   | 135.97       | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 115.04           | x | 0.76           | x | 0.7            | =   | 76.74        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 115.04           | × | 0.76           | x | 0.7            | =   | 138.02       | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 112.79           | × | 0.76           | x | 0.7            | =   | 75.24        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 112.79           | x | 0.76           | x | 0.7            | =   | 135.31       | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 105.34           | × | 0.76           | x | 0.7            | =   | 70.27        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 105.34           | x | 0.76           | x | 0.7            | =   | 126.38       | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 92.9             | x | 0.76           | x | 0.7            | =   | 61.97        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 92.9             | x | 0.76           | x | 0.7            | =   | 111.45       | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 72.36            | x | 0.76           | x | 0.7            | =   | 48.27        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 72.36            | x | 0.76           | x | 0.7            | =   | 86.81        | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | × | 44.83            | x | 0.76           | × | 0.7            | =   | 29.9         | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 44.83            | x | 0.76           | x | 0.7            | =   | 53.78        | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 31.95            | x | 0.76           | x | 0.7            | =   | 21.31        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 31.95            | x | 0.76           | x | 0.7            | ] = | 38.33        | (77)          |
| Northwest 0.9x | 0.54                      | x | 2.39       | x | 11.51            | x | 0.63           | x | 0.7            | =   | 5.9          | (81)          |
| Northwest 0.9x | 0.54                      | x | 3.82       | x | 11.51            | x | 0.63           | x | 0.7            | =   | 9.42         | (81)          |
| Northwest 0.9x | 0.54                      | x | 1.61       | × | 11.51            | x | 0.63           | x | 0.7            | ] = | 3.97         | (81)          |
| Northwest 0.9x | 0.54                      | x | 0.61       | x | 11.51            | × | 0.63           | x | 0.7            | =   | 1.5          | (81)          |
| Northwest 0.9x | 0.54                      | x | 2.39       | × | 23.55            | × | 0.63           | × | 0.7            | =   | 12.07        | (81)          |
| Northwest 0.9x | 0.54                      | x | 3.82       | x | 23.55            | x | 0.63           | x | 0.7            | ] = | 19.28        | (81)          |
| Northwest 0.9x | 0.54                      | x | 1.61       | x | 23.55            | x | 0.63           | x | 0.7            | ] = | 8.13         | (81)          |
| Northwest 0.9x | 0.54                      | x | 0.61       | × | 23.55            | x | 0.63           | × | 0.7            | ] = | 3.08         | (81)          |
| Northwest 0.9x | 0.54                      | x | 2.39       | x | 41.13            | x | 0.63           | x | 0.7            | =   | 21.07        | (81)          |
| Northwest 0.9x | 0.54                      | x | 3.82       | × | 41.13            | x | 0.63           | x | 0.7            | ] = | 33.67        | (81)          |
| Northwest 0.9x | 0.54                      | x | 1.61       | x | 41.13            | x | 0.63           | x | 0.7            | =   | 14.19        | (81)          |
| Northwest 0.9x | 0.54                      | x | 0.61       | x | 41.13            | x | 0.63           | x | 0.7            | =   | 5.38         | (81)          |
| Northwest 0.9x | 0.54                      | x | 2.39       | × | 67.8             | x | 0.63           | x | 0.7            | ] = | 34.73        | (81)          |
| Northwest 0.9x | 0.54                      | x | 3.82       | × | 67.8             | × | 0.63           | × | 0.7            | ] = | 55.51        | (81)          |
| Northwest 0.9x | 0.54                      | x | 1.61       | x | 67.8             | x | 0.63           | x | 0.7            | ] = | 23.39        | (81)          |

| Northwest 0.9x  | 0.54 | x   | 0.61 | x | 67.8  | x        | 0.63 | x | 0.7 | =          | 8.86  | (81)      |
|-----------------|------|-----|------|---|-------|----------|------|---|-----|------------|-------|-----------|
| Northwest 0.9x  | 0.54 | ] x | 2.39 | x | 89.77 | x        | 0.63 | x | 0.7 | <b>j</b> = | 45.98 | ]<br>(81) |
| Northwest 0.9x  | 0.54 | x   | 3.82 | x | 89.77 | x        | 0.63 | x | 0.7 | =          | 73.49 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 1.61 | x | 89.77 | x        | 0.63 | x | 0.7 | =          | 30.98 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 0.61 | x | 89.77 | x        | 0.63 | x | 0.7 | =          | 11.74 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 2.39 | x | 97.5  | x        | 0.63 | x | 0.7 | =          | 49.94 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 3.82 | × | 97.5  | x        | 0.63 | x | 0.7 | ] =        | 79.83 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 1.61 | x | 97.5  | x        | 0.63 | x | 0.7 | =          | 33.64 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 0.61 | x | 97.5  | x        | 0.63 | x | 0.7 | =          | 12.75 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 2.39 | x | 92.98 | x        | 0.63 | x | 0.7 | =          | 47.63 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 3.82 | x | 92.98 | x        | 0.63 | x | 0.7 | =          | 76.12 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 1.61 | x | 92.98 | x        | 0.63 | x | 0.7 | =          | 32.08 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 0.61 | x | 92.98 | x        | 0.63 | x | 0.7 | =          | 12.16 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 2.39 | x | 75.42 | x        | 0.63 | x | 0.7 | =          | 38.63 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 3.82 | x | 75.42 | x        | 0.63 | x | 0.7 | =          | 61.75 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 1.61 | x | 75.42 | x        | 0.63 | x | 0.7 | =          | 26.02 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 0.61 | x | 75.42 | x        | 0.63 | x | 0.7 | =          | 9.86  | (81)      |
| Northwest 0.9x  | 0.54 | x   | 2.39 | x | 51.24 | x        | 0.63 | x | 0.7 | =          | 26.25 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 3.82 | x | 51.24 | x        | 0.63 | x | 0.7 | =          | 41.96 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 1.61 | x | 51.24 | x        | 0.63 | x | 0.7 | =          | 17.68 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 0.61 | x | 51.24 | x        | 0.63 | x | 0.7 | =          | 6.7   | (81)      |
| Northwest 0.9x  | 0.54 | x   | 2.39 | x | 29.6  | x        | 0.63 | x | 0.7 | =          | 15.16 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 3.82 | x | 29.6  | x        | 0.63 | x | 0.7 | =          | 24.23 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 1.61 | x | 29.6  | x        | 0.63 | x | 0.7 | =          | 10.21 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 0.61 | x | 29.6  | x        | 0.63 | x | 0.7 | =          | 3.87  | (81)      |
| Northwest 0.9x  | 0.54 | x   | 2.39 | x | 14.52 | x        | 0.63 | x | 0.7 | =          | 7.44  | (81)      |
| Northwest 0.9x  | 0.54 | x   | 3.82 | x | 14.52 | x        | 0.63 | x | 0.7 | ] =        | 11.89 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 1.61 | x | 14.52 | x        | 0.63 | x | 0.7 | =          | 5.01  | (81)      |
| Northwest 0.9x  | 0.54 | x   | 0.61 | x | 14.52 | x        | 0.63 | x | 0.7 | =          | 1.9   | (81)      |
| Northwest 0.9x  | 0.54 | x   | 2.39 | x | 9.36  | x        | 0.63 | x | 0.7 | ] =        | 4.79  | (81)      |
| Northwest 0.9x  | 0.54 | x   | 3.82 | x | 9.36  | x        | 0.63 | x | 0.7 | =          | 7.66  | (81)      |
| Northwest 0.9x  | 0.54 | x   | 1.61 | x | 9.36  | x        | 0.63 | x | 0.7 | ] =        | 3.23  | (81)      |
| Northwest 0.9x  | 0.54 | x   | 0.61 | x | 9.36  | x        | 0.63 | x | 0.7 | =          | 1.22  | (81)      |
| Rooflights 0.9x | 1    | x   | 0.41 | x | 26    | x        | 0.63 | x | 0.8 | =          | 9.67  | (82)      |
| Rooflights 0.9x | 1    | x   | 0.41 | x | 54    | x        | 0.63 | x | 0.8 | =          | 20.09 | (82)      |
| Rooflights 0.9x | 1    | x   | 0.41 | x | 94    | x        | 0.63 | x | 0.8 | =          | 34.96 | (82)      |
| Rooflights 0.9x | 1    | x   | 0.41 | x | 150   | x        | 0.63 | x | 0.8 | =          | 55.79 | (82)      |
| Rooflights 0.9x | 1    | x   | 0.41 | × | 190   | x        | 0.63 | x | 0.8 | =          | 70.67 | (82)      |
| Rooflights 0.9x | 1    | x   | 0.41 | × | 201   | <b>x</b> | 0.63 | x | 0.8 | =          | 74.76 | (82)      |
| Rooflights 0.9x | 1    | x   | 0.41 | × | 194   | x        | 0.63 | × | 0.8 | ] =        | 72.16 | (82)      |
| Rooflights 0.9x | 1    | x   | 0.41 | × | 164   | x        | 0.63 | x | 0.8 | =          | 61    | (82)      |

| Rooflig | nts 0.9x      | 1           | ×         | 0.4                          | 11           | x        |          | 116            | ) x 🔽               | 0.63                 | <b>]</b> × [  | 0.8                  | =                  | 43.15   | (82)          |
|---------|---------------|-------------|-----------|------------------------------|--------------|----------|----------|----------------|---------------------|----------------------|---------------|----------------------|--------------------|---------|---------------|
| Rooflig | nts 0.9x      | 1           | ×         | 0.4                          | 11           | x        |          | 68             | x [                 | 0.63                 |               | 0.8                  | =                  | 25.29   | (82)          |
| Rooflig | nts 0.9x      | 1           | ×         | 0.4                          | 11           | x        |          | 33             | x [                 | 0.63                 |               | 0.8                  | =                  | 12.27   | (82)          |
| Rooflig | nts 0.9x      | 1           | ×         | 0.4                          | ¥1           | x        |          | 21             | ,<br>               | 0.63                 |               | 0.8                  | =                  | 7.81    | (82)          |
|         | L             |             |           |                              |              |          |          |                |                     |                      |               |                      |                    |         |               |
| Solar o | ains in       | watts, ca   | alculate  | d for eac                    | h month      | ı        |          |                | (83)m = S           | um(74)m .            | (82)m         |                      |                    |         |               |
| (83)m=  | 100.26        | 181.62      | 266.48    | 371.48                       | 444.43       | 4        | 65.68    | 450.7          | 393.91              | 309.15               | 213.85        | 122.2                | 84.37              | 1       | (83)          |
| Total g | ains – i      | nternal a   | ind sola  | r (84)m =                    | -<br>= (73)m | + (      | 83)m     | , watts        |                     | <u>!</u>             |               | <u> </u>             |                    | 1       |               |
| (84)m=  | 712.33        | 787.84      | 847.84    | 915.32                       | 950.31       | 9        | 38.23    | 904.94         | 858.64              | 796.53               | 738.97        | 688.34               | 680.76             |         | (84)          |
| 7. Me   | an inter      | nal temp    | perature  | (heating                     | seasor       | י.<br>ר( |          | •              | •                   |                      | •             | •                    | •                  |         |               |
| Temp    | erature       | durina h    | eating    | periods in                   | n the liv    | ina      | area     | from Tab       | ole 9. Th           | 1 (°C)               |               |                      |                    | 21      | (85)          |
| Utilisa | ation fac     | tor for a   | ains for  | living are                   | a h1 n       | n (s     | ee Ta    | ble 9a)        |                     | ( )                  |               |                      |                    |         |               |
| Otinoc  | Jan           | Feb         | Mar       |                              | May          | T        | Jun      |                | Aug                 | Sen                  | Oct           | Nov                  | Dec                | 1       |               |
| (86)m-  | 0.95          | 0.93        | 0.91      | 0.87                         | 0.8          | ╋        | 0.69     | 0.54           | 0.56                | 0.75                 | 0.87          | 0.93                 | 0.95               |         | (86)          |
| (00)11- | 0.00          | 0.00        | 0.01      | 0.07                         | 0.0          |          | 0.05     | 0.04           | 0.00                | 0.75                 | 0.07          | 0.00                 | 0.00               | l       | (00)          |
| Mean    | interna       | l temper    | ature in  | living ar                    | ea T1 (f     | ollo     | w ste    | ps 3 to 7      | 7 in Tabl           | e 9c)                |               | · · · ·              |                    | 1       | ()            |
| (87)m=  | 17.66         | 17.93       | 18.47     | 19.09                        | 19.85        | 2        | 20.43    | 20.77          | 20.76               | 20.26                | 19.39         | 18.35                | 17.76              | J       | (87)          |
| Temp    | erature       | during h    | eating    | periods in                   | n rest of    | dw       | elling   | from Ta        | able 9, T           | h2 (°C)              |               |                      |                    |         |               |
| (88)m=  | 19.4          | 19.42       | 19.42     | 19.46                        | 19.48        | ſ        | 19.49    | 19.5           | 19.5                | 19.48                | 19.46         | 19.44                | 19.42              |         | (88)          |
| Utilisa | ation fac     | tor for a   | ains for  | rest of d                    | wellina      | h2       | m (se    | ee Table       | 9a)                 |                      |               | •                    | •                  | •       |               |
| (89)m=  | 0.94          | 0.92        | 0.89      | 0.84                         | 0.75         | T        | 0.59     | 0.39           | 0.4                 | 0.67                 | 0.84          | 0.92                 | 0.94               |         | (89)          |
|         | • • • • • • • |             |           | 1                            |              |          | το ((    |                |                     |                      |               |                      |                    | 1       |               |
| Mean    | Interna       | I temper    | ature in  | the rest                     | of dwel      | ling     | 12 (1    | ollow ste      | eps 3 to            | / in Tabl            |               | 47.40                | 40.50              | 1       | ( <b>00</b> ) |
| (90)m=  | 16.48         | 16.76       | 17.29     | 17.91                        | 18.65        |          | 19.17    | 19.43          | 19.42               | 19.03                | 18.22         | 17.19                | 16.59              |         |               |
|         |               |             |           |                              |              |          |          |                |                     |                      |               | ng area ÷ (          | +) =               | 0.22    | (91)          |
| Mean    | interna       | l temper    | ature (fo | or the wh                    | ole dwe      | ellin    | g) = fl  | $LA \times T1$ | + (1 – fL           | A) × T2              | i             |                      |                    | •       |               |
| (92)m=  | 16.74         | 17.02       | 17.55     | 18.17                        | 18.91        | 1        | 19.44    | 19.72          | 19.71               | 19.29                | 18.47         | 17.44                | 16.84              |         | (92)          |
| Apply   | adjustr       | nent to t   | he mea    | n interna                    | l tempe      | ratu     | ure fro  | m Table        | 4e, whe             | ere appro            | opriate       |                      |                    | 1       |               |
| (93)m=  | 16.74         | 17.02       | 17.55     | 18.17                        | 18.91        |          | 9.44     | 19.72          | 19.71               | 19.29                | 18.47         | 17.44                | 16.84              |         | (93)          |
| 8. Sp   | ace hea       | ting requ   | uiremen   | t                            |              |          |          |                |                     |                      |               |                      |                    |         |               |
| Set T   | i to the I    | mean int    | ernal te  | mperatu                      | re obtai     | nec      | l at ste | ep 11 of       | Table 9             | b, so tha            | t Ti,m=       | (76)m an             | d re-calo          | culate  |               |
| the ut  | ilisation     | factor to   | or gains  |                              |              | T        |          |                |                     |                      |               |                      |                    | 1       |               |
| 1.1411: | Jan           | Feb         | Mar       | Apr                          | May          |          | Jun      | Jul            | Aug                 | Sep                  | Oct           | Nov                  | Dec                | J       |               |
| Utilisa |               | tor for $g$ | ains, nn  |                              | 0.70         | Т        | 0.50     | 0.44           | 0.42                | 0.66                 | 0.01          | 0.00                 | 0.01               | 1       | (94)          |
| (94)m=  | 0.91          | 0.89        | 0.00      | 1) m x (0                    | (1)          |          | 0.59     | 0.41           | 0.43                | 0.00                 | 0.61          | 0.89                 | 0.91               | J       | (34)          |
| Useiu   | ii gains,     |             | , VV = (9 | $\frac{4}{1742.25}$          | 4)m          | 5        | 52 16    | 272.00         | 269.76              | 525.07               | 600.81        | 614 15               | 622 72             | 1       | (95)          |
| (95)m=  |               | 704.30      | rpol top  | 743.33                       | from T       |          | 00.10    | 373.99         | 308.70              | 525.97               | 000.01        | 014.15               | 022.73             | J       | (55)          |
|         |               |             |           |                              |              |          | 146      | 16.0           | 16.0                | 1/1 2                | 10.9          | 7                    | 4.0                | 1       | (96)          |
|         | 4.5           |             | 0.0       |                              |              |          | 14.0     | -[(20)m        | 10.9<br>v [(02)m    | (06)m                | 10.0          | 1                    | 4.9                | J       | (30)          |
| (07)m-  | 2011 26       | 10/ 110     | 1730.46   | 1488 16                      | 1112 47      |          | 1, VV =  | 428.05         | X [(93)]]<br>126 70 | 774.08               | 1205.88       | 1664.41              | 1033.06            | 1       | (97)          |
| Space   | 2011.20       |             |           | $\int \frac{1400.10}{1400h}$ | 000th        | <u> </u> | -0.74    | h = 0.00       | $1 \times 10.19$    | $\frac{1}{100}$      | $m_{1200.00}$ | 1)m                  | 1900.00            | J       | (07)          |
| (98)m-  | 1012 76       | 833 /1      | 751 10    | 536.26                       | 317 /9       |          |          | u1 = 0.02<br>∩ |                     | <del>ر</del> (95 م ا | 450 17        | 756 10               | 974 88             | 1       |               |
| (00)11- | 1012.70       | 000.41      | 101.13    | 000.20                       |              |          | 0        |                |                     |                      |               | $r_{\rm r} = Sum(0)$ | 8)                 | 5622.24 | (98)          |
| -       |               |             |           |                              | .,           |          |          |                | TOLE                | a per year           | (KVVII/Y88    | a) = 3011(9          | <b>UJ</b> 15,912 = | 5052.34 |               |
| Space   | e heatin      | g require   | ement ir  | n kWh/m²                     | ²/year       |          |          |                |                     |                      |               |                      |                    | 65.33   | (99)          |

| 9a. En                                                                       | ergy re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | quiremer           | nts – Ind            | lividual h | eating sy | /stems i | ncluding             | micro-C     | CHP)         |                         |                        |          |                            |                |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|------------|-----------|----------|----------------------|-------------|--------------|-------------------------|------------------------|----------|----------------------------|----------------|
| Space heating:<br>Fraction of space heat from secondary/supplementary system |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                      |            |           |          |                      |             |              |                         |                        |          |                            |                |
| Fraction of space heat from main system(s) $(202) = 1 - (201) =$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                      |            |           |          |                      |             |              |                         |                        |          | 0                          | (201)          |
| Fracti                                                                       | on of s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bace hea           | at from n            | naın syst  | em(s)     |          |                      | (202) = 1 - | - (201) =    | (000)]                  |                        | ·        | 1                          | (202)          |
| Fracti                                                                       | on of to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tal heati          | ng from              | main sys   | stem 1    |          |                      | (204) = (20 | 02) × [1 – 1 | (203)] =                |                        |          | 1                          | (204)          |
| Efficie                                                                      | ency of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | main spa           | ace heat             | ting syste | em 1      |          |                      |             |              |                         |                        |          | 92.6                       | (206)          |
| Efficie                                                                      | ency of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | seconda            | ry/suppl             | ementar    | y heating | g system | ז, %                 |             |              |                         |                        |          | 0                          | (208)          |
| _                                                                            | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Feb                | Mar                  | Apr        | Мау       | Jun      | Jul                  | Aug         | Sep          | Oct                     | Nov                    | Dec      | kWh/yea                    | ır             |
| Space                                                                        | e heatir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ng require         | ement (c             |            | d above)  | 0        |                      | 0           | 0            | 450.47                  | 750.40                 | 074.00   |                            |                |
| (0.1.1)                                                                      | 1012.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 833.41             | /51.19               | 536.26     | 317.48    | 0        | 0                    | 0           | 0            | 450.17                  | 756.19                 | 974.88   |                            | (2.1.1)        |
| (211)m                                                                       | $1 = \{[(98)] = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (1003) = (100) = (100) = (100) = (100) = (1003) = (1003) = (1003) = $ | $\frac{3}{100001}$ | $[4)] + (2^{\circ})$ | 10)m } x   | 100 ÷ (2  | 06)      | 0                    | 0           | 0            | 196 11                  | 916.62                 | 1052 70  |                            | (211)          |
|                                                                              | 1093.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 900.01             | 011.23               | 579.11     | 342.03    | 0        | 0                    | U<br>Tota   | l (kWh/vea   | 400.14                  | 211)                   | =        | 6082.44                    | <b>1</b> (211) |
| Snace                                                                        | a haatir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | na fuel (s         | econdar              | ·ν) k\Λ/h/ | month     |          |                      |             | ( )          |                         | /15,101                | 2        | 0002.44                    | ](2)           |
| = {[(98                                                                      | )m x (20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01)] + (2          | 14) m } ;            | x 100 ÷ (2 | 208)      |          |                      |             |              |                         |                        |          |                            |                |
| (215)m=                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                  | 0                    | 0          | 0         | 0        | 0                    | 0           | 0            | 0                       | 0                      | 0        |                            |                |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                      |            |           |          |                      | Tota        | l (kWh/yea   | ar) =Sum(2              | 215) <sub>15,101</sub> | 2=       | 0                          | (215)          |
| Water                                                                        | heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g                  |                      |            |           |          |                      |             |              |                         |                        |          |                            | -              |
| Output                                                                       | from w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ater hea           | ter (calc            | ulated a   | bove)     | 440.74   | 407.74               | 450.50      | 455.04       | 470 75                  | 400.04                 | 004 70   |                            |                |
| Efficier                                                                     | 206.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 182.24             | 190.07               | 168.58     | 163.21    | 143.74   | 137.71               | 153.52      | 155.21       | 176.75                  | 188.21                 | 201.79   | 70.5                       | 1(216)         |
| (217)m-                                                                      | 87 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 87.6               | 87 36                | 86.96      | 85.89     | 79 5     | 79.5                 | 79.5        | 79.5         | 86 5                    | 87 39                  | 87.69    | 79.5                       | (217)          |
| Euel fo                                                                      | or water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heating            | kWh/m                | onth       | 00.00     | 10.0     | 10.0                 | 10.0        | 10.0         | 00.0                    | 01.00                  | 01.00    |                            | ( )            |
| (219)m                                                                       | n = (64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>)m x 100</u>    | ) ÷ (217)            | )m         |           |          |                      |             |              |                         |                        |          |                            |                |
| (219)m=                                                                      | 235.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 208.03             | 217.57               | 193.86     | 190.01    | 180.81   | 173.22               | 193.1       | 195.24       | 204.33                  | 215.37                 | 230.12   |                            | -              |
| _                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                      |            |           |          |                      | Tota        | I = Sum(2'   | 19a) <sub>112</sub> =   |                        |          | 2437.32                    | (219)          |
| Annua                                                                        | I totals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i<br>n fuel usa    | ad main              | svetem     | 1         |          |                      |             |              | k                       | Wh/yeai                | r        | kWh/year                   | 1              |
| Watar                                                                        | heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                      | system     |           |          |                      |             |              |                         |                        |          | 0002.44                    | J              |
| valer                                                                        | neating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iuei use           | eu .                 |            |           |          |                      |             |              |                         |                        |          | 2437.32                    | ]              |
| Electric                                                                     | city for p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oumps, f           | ans and              | electric   | keep-ho   | t        |                      |             |              |                         |                        |          |                            |                |
| centra                                                                       | al heatir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng pump            | :                    |            |           |          |                      |             |              |                         |                        | 130      |                            | (230c)         |
| boiler                                                                       | with a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fan-assis          | sted flue            |            |           |          |                      |             |              |                         |                        | 45       |                            | (230e)         |
| Total e                                                                      | electricit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y for the          | above,               | kWh/yea    | r         |          |                      | sum         | of (230a).   | (230g) =                |                        |          | 175                        | (231)          |
| Electric                                                                     | city for I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ighting            |                      |            |           |          |                      |             |              |                         |                        |          | 457.41                     | (232)          |
| 10a. I                                                                       | -<br>uel cos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sts - indi         | vidual he            | eating sy  | stems:    |          |                      |             |              |                         |                        |          |                            | J              |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                      |            |           | Fu<br>kW | <b>el</b><br>/h/year |             |              | <b>Fuel P</b><br>(Table | r <b>ice</b><br>12)    |          | <b>Fuel Cost</b><br>£/year |                |
| Space                                                                        | heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g - main :         | system <sup>2</sup>  | 1          |           | (21      | 1) x                 |             |              | 3.4                     | 1                      | x 0.01 = | 188.5556                   | (240)          |
| Space                                                                        | heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g - main :         | system 2             | 2          |           | (21:     | 3) x                 |             |              | 0                       |                        | x 0.01 = | 0                          | (241)          |
| Space                                                                        | heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g - secon          | idary                |            |           | (21      | 5) x                 |             |              |                         |                        | x 0.01 = | 0                          | (242)          |
| Water                                                                        | heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cost (ot           | her fuel)            |            |           | (219     | 9)                   |             |              | 3.4                     | 1                      | x 0.01 = | 75.56                      | (247)          |

| Pumps, fans and electric keep-hot                                         | (231)                                  | 11.46 x 0.01 =                                        | 20.06 (249)                     |
|---------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------|---------------------------------|
| (if off-peak tariff, list each of (230a) to (230g)<br>Energy for lighting | separately as applicable an (232)      | d apply fuel price according to $11.46 \times 0.01 =$ | Table 12a                       |
| Additional standing charges (Table 12)                                    |                                        |                                                       | 106 (251)                       |
|                                                                           | - 4)                                   |                                                       |                                 |
| Appendix Q items: repeat lines (253) and (25<br>Total energy cost (245)   | 04) as needed<br>)(247) + (250)(254) = |                                                       | 442 5864 (255)                  |
| 11a. SAP rating - individual heating systems                              | s                                      |                                                       |                                 |
| Energy cost deflator (Table 12)                                           |                                        |                                                       | 0.47 (256)                      |
| Energy cost factor (ECF) [(255                                            | 5) x (256)] ÷ [(4) + 45.0] =           |                                                       | 1.5852 (257)                    |
| SAP rating (Section 12)                                                   |                                        |                                                       | 77.8859 (258)                   |
| 12a. CO2 emissions – Individual heating sy                                | stems including micro-CHP              |                                                       |                                 |
|                                                                           | <b>Energy</b><br>kWh/year              | Emission factor<br>kg CO2/kWh                         | <b>Emissions</b><br>kg CO2/year |
| Space heating (main system 1)                                             | (211) x                                | 0.198 =                                               | 1204.32 (261)                   |
| Space heating (secondary)                                                 | (215) x                                | 0 =                                                   | 0 (263)                         |
| Water heating                                                             | (219) x                                | 0.198 =                                               | 482.59 (264)                    |
| Space and water heating                                                   | (261) + (262) + (263) + (26            | 64) =                                                 | 1686.91 (265)                   |
| Electricity for pumps, fans and electric keep-                            | hot (231) x                            | 0.517 =                                               | 90.48 (267)                     |
| Electricity for lighting                                                  | (232) x                                | 0.517 =                                               | 236.48 (268)                    |
| Total CO2, kg/year                                                        |                                        | sum of (265)(271) =                                   | 2013.87 (272)                   |
| CO2 emissions per m <sup>2</sup>                                          |                                        | (272) ÷ (4) =                                         | 23.36 (273)                     |
| El rating (section 14)                                                    |                                        |                                                       | 79 (274)                        |
| 13a. Primary Energy                                                       |                                        |                                                       |                                 |
|                                                                           | <b>Energy</b><br>kWh/year              | <b>Primary</b><br>factor                              | <b>P. Energy</b><br>kWh/year    |
| Space heating (main system 1)                                             | (211) x                                | 1.02 =                                                | 6204.09 (261)                   |
| Space heating (secondary)                                                 | (215) x                                | 0 =                                                   | 0 (263)                         |
| Energy for water heating                                                  | (219) x                                | 1.02 =                                                | 2486.06 (264)                   |
| Space and water heating                                                   | (261) + (262) + (263) + (26            | 64) =                                                 | 8690.15 (265)                   |
| Electricity for pumps, fans and electric keep-                            | hot (231) x                            | 2.92 =                                                | 511 (267)                       |
| Electricity for lighting                                                  | (232) x                                | 0 =                                                   | 1335.63 (268)                   |
| 'Total Primary Energy                                                     |                                        | sum of (265)(271) =                                   | 10536.78 (272)                  |
| Primary energy kWh/m²/year                                                |                                        | (272) ÷ (4) =                                         | 122.21 (273)                    |

|                          |               |                 |                       |                   | User D                 | etails:      |                       |                       |            |           |                         |      |
|--------------------------|---------------|-----------------|-----------------------|-------------------|------------------------|--------------|-----------------------|-----------------------|------------|-----------|-------------------------|------|
| Assessor Name:           | Те            | st User         |                       |                   |                        | Strom        | a Num                 | ber:                  |            | STRO      | 000000                  |      |
| Software Name:           | Str           | oma FS          | AP 200                | 9                 |                        | Softwa       | are Ver               | rsion:                |            | Versic    | on: 1.5.0.74            |      |
|                          |               |                 |                       | Р                 | roperty                | Address      | Ground                | d floor m             | aisonette  | e existin | g                       |      |
| Address :                | 82            | Guilford        | Street, L             | ondon,            | WC1N 1                 | IDF          |                       |                       |            |           |                         |      |
| 1. Overall dwelling of   | dimension     | IS:             |                       |                   |                        |              |                       |                       |            |           |                         |      |
|                          |               |                 |                       |                   | Area                   | a(m²)        |                       | Ave He                | eight(m)   | 1         | Volume(m <sup>3</sup> ) | )    |
| Basement                 |               |                 |                       |                   | 4                      | 5.71         | (1a) x                | 2                     | 2.4        | (2a) =    | 109.7                   | (3a) |
| Ground floor             |               |                 |                       |                   | 4                      | 0.51         | (1b) x                | 3                     | .46        | (2b) =    | 140.16                  | (3b) |
| Total floor area TFA     | = (1a)+(1     | b)+(1c)+(       | 1d)+(1e               | )+(1r             | ו) נו                  | 36.22        | (4)                   |                       |            |           |                         |      |
| Dwelling volume          |               |                 |                       |                   |                        |              | (3a)+(3b)             | )+(3c)+(3d            | l)+(3e)+   | .(3n) =   | 249.87                  | (5)  |
| 2. Ventilation rate:     |               |                 |                       |                   |                        |              |                       |                       |            |           |                         |      |
|                          |               | main<br>heating | So<br>h               | econdai<br>eating | у                      | other        |                       | total                 |            |           | m <sup>3</sup> per hou  | •    |
| Number of chimneys       | Γ             | 0               | +                     | 0                 | +                      | 0            | ] = [                 | 0                     | X 4        | 40 =      | 0                       | (6a) |
| Number of open flues     | s [           | 0               | <u></u> + [           | 0                 | <u> </u> + [           | 0            | _<br>] = [            | 0                     | x          | 20 =      | 0                       | (6b) |
| Number of intermitter    | nt fans       |                 |                       |                   |                        |              | - <u> </u>            | 4                     | x ′        | 10 =      | 40                      | (7a) |
| Number of passive v      | ents          |                 |                       |                   |                        |              | Г                     | 0                     | <b>x</b> ′ | 10 =      | 0                       | (7b) |
| Number of flueless g     | as fires      |                 |                       |                   |                        |              | Г                     | 0                     | × 4        | 40 =      | 0                       | (7c) |
|                          |               |                 |                       |                   |                        |              | L                     |                       |            |           |                         |      |
|                          |               |                 |                       |                   |                        |              |                       |                       |            | Air ch    | anges per ho            | ur   |
| Infiltration due to chir | nneys, flu    | ies and fa      | ans = <mark>(6</mark> | a)+(6b)+(7        | 'a)+(7b)+(             | 7c) =        | Γ                     | 40                    |            | ÷ (5) =   | 0.16                    | (8)  |
| If a pressurisation test | has been ca   | rried out or    | is intende            | ed, procee        | d to (17),             | otherwise o  | continue fr           | om (9) to (           | (16)       |           |                         |      |
| Number of storeys        | in the dw     | elling (ns      | 5)                    |                   |                        |              |                       |                       | [(0)       | 11-0.4    | 0                       | (9)  |
| Structural infiltratio   | n: 0 25 fo    | r steel or      | timber f              | frame or          | 0 35 fo                | r masoni     | v constr              | uction                | [(9)       | -1jx0.1 = | 0                       | (10) |
| if both types of wall a  | are present,  | use the val     | lue corres            | ponding to        | the great              | ter wall are | a (after              | uotion                |            |           | 0                       |      |
| deducting areas of c     | penings); if  | equal user      | 0.35                  |                   |                        |              |                       |                       |            |           |                         | _    |
| If suspended wood        | len floor,    | enter 0.2       | (unseal               | ed) or 0.         | 1 (seale               | ed), else    | enter 0               |                       |            |           | 0                       | (12) |
| If no draught lobby      | , enter 0.0   | 05, else e      | enter 0               |                   |                        |              |                       |                       |            |           | 0                       | (13) |
| Percentage of Wind       | dows and      | aoors ar        | augnt st              | rippea            |                        | 0.25 [0.2    | $(\sqrt{14}) \cdot 1$ | 001 -                 |            |           | 0                       | (14) |
|                          |               |                 |                       |                   |                        | (8) + (10)   | + (11) + (1           | 00] –<br>12) + (13) - | + (15) -   |           | 0                       | (15) |
| Air permeability va      | lue a50       | avarassa        | d in cub              | ic motro          | s nor ha               |              |                       | etre of e             |            | area      | 0                       | (10) |
| If based on air perme    | ability va    | lue then        | (18) = [(1            | 7) ÷ 20]+(8       | 3 per no<br>3), otherw | ise (18) = ( | (16)                  |                       | invelope   | alea      | 0.66                    | (17) |
| Air permeability value a | pplies if a p | ressurisatio    | on test has           | s been dor        | e or a de              | gree air pe  | rmeability            | is being us           | sed        |           | 0.00                    |      |
| Number of sides on v     | vhich she     | Itered          |                       |                   | ·                      |              |                       | Ū                     |            |           | 3                       | (19) |
| Shelter factor           |               |                 |                       |                   |                        | (20) = 1 -   | [0.075 x (1           | 9)] =                 |            |           | 0.78                    | (20) |
| Infiltration rate incorp | orating sl    | nelter fac      | tor                   |                   |                        | (21) = (18   | ) x (20) =            |                       |            |           | 0.51                    | (21) |
| Infiltration rate modifi | ed for mo     | onthly win      | d speed               | 1                 |                        |              |                       | 1                     |            |           | 1                       |      |
| Jan Feb                  | Mar           | Apr             | May                   | Jun               | Jul                    | Aug          | Sep                   | Oct                   | Nov        | Dec       |                         |      |
| Monthly average win      | d speed f     | rom Tabl        | e 7                   |                   |                        |              |                       |                       |            |           | 1                       |      |
| (22)m= 5.4 5.1           | 5.1           | 4.5             | 4.1                   | 3.9               | 3.7                    | 3.7          | 4.2                   | 4.5                   | 4.8        | 5.1       |                         |      |

| Wind Fac                                                                                                  | ctor (2                                    | 2a)m =                                         | (22)m ÷                                   | 4                                 |             |                                                                    |                                                                                      |                                                                                                        |                                             |                                                        |                 |           |        |                                                                               |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------|-----------------------------------|-------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|-----------------|-----------|--------|-------------------------------------------------------------------------------|
| (22a)m=                                                                                                   | 1.35                                       | 1.27                                           | 1.27                                      | 1.12                              | 1.02        | 0.98                                                               | 0.92                                                                                 | 0.92                                                                                                   | 1.05                                        | 1.12                                                   | 1.2             | 1.27      |        |                                                                               |
| Adjusted                                                                                                  | l infiltra                                 | ation rat                                      | e (allowi                                 | ing for sh                        | nelter ar   | nd wind s                                                          | speed) =                                                                             | = (21a) x                                                                                              | (22a)m                                      |                                                        |                 |           |        |                                                                               |
|                                                                                                           | 0.69                                       | 0.65                                           | 0.65                                      | 0.58                              | 0.52        | 0.5                                                                | 0.47                                                                                 | 0.47                                                                                                   | 0.54                                        | 0.58                                                   | 0.61            | 0.65      |        |                                                                               |
| Calculate                                                                                                 | e effec                                    | tive air                                       | change                                    | rate for t                        | he appli    | cable ca                                                           | ise                                                                                  | •                                                                                                      |                                             |                                                        | <u>.</u>        | •         | [      |                                                                               |
| If mecr                                                                                                   | nanica                                     | I ventila                                      |                                           | andix NL (0                       | 26) (22)    | а) <b>Г</b> ари (и                                                 | acuation (                                                                           |                                                                                                        | nuice (22k                                  | ()<br>()<br>()<br>()<br>()                             |                 |           | 0      | (23a)                                                                         |
| If balance                                                                                                | od with                                    | boot room                                      |                                           | $\frac{1}{1000}$                  | (23) = (23) | a) x FIIIV (e                                                      | equation (                                                                           | m Table $4b$                                                                                           | 1 wise (23L                                 | )) = (23a)                                             |                 |           | 0      | (23b)                                                                         |
| a) If ha                                                                                                  | alance                                     | d mech:                                        | anical ve                                 | ntilation                         | with he     | at recov                                                           | erv (MV                                                                              | HR) (24a                                                                                               | ) –<br>a)m – (2                             | 2h)m + (                                               | 23h) <b>y</b> [ | 1 – (23c) | 0<br>  | (23c)                                                                         |
| (24a)m=                                                                                                   | 0                                          | 0                                              |                                           | 0                                 | 0           | 0                                                                  |                                                                                      |                                                                                                        | 0                                           |                                                        |                 | 0         | . 100] | (24a)                                                                         |
| b) If ba                                                                                                  | alance                                     | d mecha                                        | anical ve                                 | ntilation                         | without     | I<br>heat red                                                      | L<br>Coverv (                                                                        | <br>MV) (24b                                                                                           | m = (2)                                     | 1<br>2b)m + (                                          | 1<br>23b)       |           |        |                                                                               |
| (24b)m=                                                                                                   | 0                                          | 0                                              | 0                                         | 0                                 | 0           | 0                                                                  | 0                                                                                    | 0                                                                                                      | 0                                           | 0                                                      | 0               | 0         |        | (24b)                                                                         |
| c) If wh                                                                                                  | hole ho                                    | ouse ex                                        | tract ver                                 | ntilation of                      | or positiv  | /e input v                                                         | ventilati                                                                            | on from c                                                                                              | outside                                     | !                                                      | I               | 1         |        |                                                                               |
| if (                                                                                                      | (22b)m                                     | < 0.5 ×                                        | : (23b), t                                | then (24                          | c) = (23t   | b); other                                                          | wise (24                                                                             | lc) = (22b                                                                                             | o) m + 0                                    | .5 × (23b                                              | <b>)</b> )      |           | _      |                                                                               |
| (24c)m=                                                                                                   | 0                                          | 0                                              | 0                                         | 0                                 | 0           | 0                                                                  | 0                                                                                    | 0                                                                                                      | 0                                           | 0                                                      | 0               | 0         |        | (24c)                                                                         |
| d) If na                                                                                                  | atural v                                   | ventilatio                                     | on or wh                                  | ole hous                          | e positi    | ve input                                                           | ventilati                                                                            | on from I                                                                                              | oft                                         |                                                        |                 |           |        |                                                                               |
| if (                                                                                                      | (22b)m                                     | 1 = 1, th                                      | en (24d)                                  | m = (22                           | o)m othe    | erwise (2                                                          | 24d)m =                                                                              | 0.5 + [(2                                                                                              | 2b)m² x                                     | 0.5]                                                   |                 |           | l      |                                                                               |
| (24d)m=                                                                                                   | 0.74                                       | 0.71                                           | 0.71                                      | 0.67                              | 0.64        | 0.62                                                               | 0.61                                                                                 | 0.61                                                                                                   | 0.64                                        | 0.67                                                   | 0.69            | 0.71      |        | (240)                                                                         |
| Effectiv                                                                                                  | ve air (                                   | change                                         | rate - er                                 | nter (24a                         | ) or (24    | o) or (24                                                          | c) or (24                                                                            | 1d) in boy                                                                                             | (25)                                        | 0.07                                                   | 0.00            | 0.74      | I      | (25)                                                                          |
| (25)m=                                                                                                    | 0.74                                       | 0.71                                           | 0.71                                      | 0.67                              | 0.64        | 0.62                                                               | 0.61                                                                                 | 0.61                                                                                                   | 0.64                                        | 0.67                                                   | 0.69            | 0.71      |        | (23)                                                                          |
| 3. Heat                                                                                                   | losses                                     | and he                                         | at loss                                   | paramete                          | er:         |                                                                    |                                                                                      |                                                                                                        |                                             |                                                        |                 |           |        |                                                                               |
| ELEME                                                                                                     | ENT                                        | Gros                                           | SS<br>(m²)                                | Openin                            | gs<br>2     | Net Ar                                                             | ea<br>n²                                                                             | U-valı<br>W/m2                                                                                         | le<br>K                                     | A X U                                                  | K)              | k-value   | e<br>≺ | A X k<br>k.I/K                                                                |
| Doors Ty                                                                                                  | /pe 1                                      | urou                                           | ()                                        |                                   |             | 1.89                                                               | <br>x                                                                                | 1.6                                                                                                    | =                                           | 3.024                                                  |                 |           | ·      | (26)                                                                          |
| Doors Ty                                                                                                  | /pe 2                                      |                                                |                                           |                                   |             | 1.89                                                               | x                                                                                    | 1.6                                                                                                    |                                             | 3.024                                                  |                 |           |        | (26)                                                                          |
| Windows                                                                                                   | з Туре                                     | 1                                              |                                           |                                   |             | 1.29                                                               | x1                                                                                   | I/[1/( 1.6 )+                                                                                          | 0.04] =                                     | 1.94                                                   |                 |           |        | (27)                                                                          |
| Windows                                                                                                   | з Туре                                     | 2                                              |                                           |                                   |             | 2.39                                                               | x1                                                                                   | I/[1/( 1.6 )+                                                                                          | 0.04] =                                     | 3.59                                                   | =               |           |        | (27)                                                                          |
| Windows                                                                                                   | з Туре                                     | 3                                              |                                           |                                   |             | 3.82                                                               | x1                                                                                   | I/[1/( 1.6 )+                                                                                          | 0.04] =                                     | 5.74                                                   | =               |           |        | (27)                                                                          |
| Windows                                                                                                   | з Туре                                     | 4                                              |                                           |                                   |             | 2.32                                                               | x1                                                                                   | I/[1/( 1.6 )+                                                                                          | 0.04] =                                     | 3.49                                                   |                 |           |        | (27)                                                                          |
| Windows                                                                                                   | з Туре                                     | 5                                              |                                           |                                   |             | 1.61                                                               |                                                                                      | I/[1/( 1.6 )+                                                                                          | 0.04] =                                     | 2.42                                                   |                 |           |        | (27)                                                                          |
| Windows                                                                                                   | з Туре                                     | 6                                              |                                           |                                   |             | 0.61                                                               | x1                                                                                   | I/[1/( 1.6 )+                                                                                          | 0.04] =                                     | 0.92                                                   |                 |           |        | (27)                                                                          |
| Rooflight                                                                                                 |                                            |                                                |                                           |                                   |             |                                                                    |                                                                                      |                                                                                                        |                                             |                                                        |                 |           |        |                                                                               |
|                                                                                                           | ts                                         |                                                |                                           |                                   |             | 0.41                                                               | x1                                                                                   | I/[1/(1.2) +                                                                                           | 0.04] =                                     | 0.492                                                  |                 |           |        | (27b)                                                                         |
| Floor                                                                                                     | ts                                         |                                                |                                           |                                   |             | 0.41                                                               | x1                                                                                   | 0.22                                                                                                   | 0.04] =                                     | 0.492                                                  |                 |           |        | (27b)                                                                         |
| Floor<br>Walls Tyj                                                                                        | ts<br>pe1                                  | 72.1                                           | 6                                         | 7.22                              | 2           | 0.41<br>45.71<br>64.94                                             | x1<br>1 x<br>4 x                                                                     | 0.22                                                                                                   | 0.04] =                                     | 0.492<br>10.06<br>18.18                                |                 |           |        | (27b)<br>(28)<br>(29)                                                         |
| Floor<br>Walls Ty <sub>l</sub><br>Walls Ty <sub>l</sub>                                                   | ts<br>pe1<br>pe2                           | 72.1                                           | 6                                         | 7.22                              |             | 0.41<br>45.71<br>64.94<br>25.22                                    | x1<br>1 x<br>4 x<br>2 x                                                              | 0.22<br>0.28<br>0.28                                                                                   | 0.04] =                                     | 0.492<br>10.06<br>18.18<br>7.06                        |                 |           |        | (27b)<br>(28)<br>(29)<br>(29)                                                 |
| Floor<br>Walls Ty <sub>l</sub><br>Walls Ty <sub>l</sub><br>Walls Ty                                       | ts<br>rpe1<br>rpe2<br>rpe3                 | 72.1                                           | 6<br>5<br>7                               | 7.22 8.43 3.78                    |             | 0.41<br>45.71<br>64.94<br>25.22<br>38.39                           | x1<br>1 x<br>4 x<br>2 x<br>2 x                                                       | 0.22<br>0.28<br>0.28<br>0.28                                                                           | 0.04] = = = = = = = =                       | 0.492<br>10.06<br>18.18<br>7.06<br>8.59                |                 |           |        | (27b)<br>(28)<br>(29)<br>(29)<br>(29)                                         |
| Floor<br>Walls Ty <sub>l</sub><br>Walls Ty <sub>l</sub><br>Walls Ty <sub>l</sub><br>Walls Ty <sub>l</sub> | ts<br>rpe1<br>rpe2<br>rpe3<br>rpe4         | 72.1<br>33.6<br>42.1<br>6.20                   | 6<br>55<br>7                              | 7.22<br>8.43<br>3.78<br>0         |             | 0.41<br>45.71<br>64.94<br>25.22<br>38.39<br>6.26                   | x1<br>x1<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x<br>x                 | 0.22         0.28         0.28         0.22                                                            | 0.04] = = = = = = = = = = = = = = = = = = = | 0.492<br>10.06<br>18.18<br>7.06<br>8.59<br>1.4         |                 |           |        | (27b)<br>(28)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)                         |
| Floor<br>Walls Ty <br>Walls Ty <br>Walls Ty <br>Walls Ty <br>Roof                                         | ts<br>pe1<br>pe2<br>pe3<br>pe4             | 72.1<br>33.6<br>42.1<br>6.20                   | 6<br>5<br>7<br>6<br>4                     | 7.22<br>8.43<br>3.78<br>0         |             | 0.41<br>45.71<br>64.94<br>25.22<br>38.39<br>6.26<br>4.02           | x1<br>1 x<br>4 x<br>2 | /[1/(1.2) +         0.22         0.28         0.28         0.22         0.22         0.22         0.22 | 0.04] = = = = = = = = = = = = = = = = = = = | 0.492<br>10.06<br>18.18<br>7.06<br>8.59<br>1.4<br>0.72 |                 |           |        | (27b)<br>(28)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(30)         |
| Floor<br>Walls Ty <br>Walls Ty <br>Walls Ty <br>Walls Ty <br>Roof<br>Total are                            | ts<br>pe1<br>pe2<br>pe3<br>pe4<br>ea of el | 72.1<br>33.6<br>42.1<br>6.20<br>4.84<br>ements | 6<br>5<br>7<br>6<br>4<br>, m <sup>2</sup> | 7.22<br>8.43<br>3.78<br>0<br>0.82 |             | 0.41<br>45.71<br>64.94<br>25.22<br>38.39<br>6.26<br>4.02<br>204.78 | x1<br>1 x<br>4 x<br>2 x<br>39 x<br>39                                                | /[1/(1.2) +         0.22         0.28         0.28         0.22         0.22         0.22         0.22 | 0.04] = = = = = = = = = = = = =             | 0.492<br>10.06<br>18.18<br>7.06<br>8.59<br>1.4<br>0.72 |                 |           |        | (27b)<br>(28)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(29)<br>(30)<br>(31) |

\* for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2 \*\* include the areas on both sides of internal walls and partitions

Fabric heat loss,  $W/K = S (A \times U)$ 

| (26) | .(30) + | (32) = |
|------|---------|--------|
|------|---------|--------|

76.53 (33)

| Heat c              | apacity                   | Cm = S(                               | Axk)                        |                            |                        |                           |                        |              | ((28)                 | .(30) + (32 | 2) + (32a).            | (32e) =   | 8478.6729 | (34)     |
|---------------------|---------------------------|---------------------------------------|-----------------------------|----------------------------|------------------------|---------------------------|------------------------|--------------|-----------------------|-------------|------------------------|-----------|-----------|----------|
| Therm               | al mass                   | parame                                | ter (TMF                    |                            | : TFA) ir              | n kJ/m²K                  |                        |              | Indica                | tive Value  | : Low                  |           | 100       | (35)     |
| For des<br>can be l | ign assess<br>used inste  | ments wh<br>ad of a det               | ere the de<br>tailed calci  | tails of the<br>ulation.   | construct              | ion are no                | t known pr             | ecisely the  | indicative            | values of   | TMP in Ta              | able 1f   |           |          |
| Therm               | al bridge                 | es : S (L                             | x Y) cal                    | culated                    | using Ap               | pendix l                  | K                      |              |                       |             |                        |           | 30.72     | (36)     |
| if details          | s of therma               | l bridging                            | are not kn                  | own (36) =                 | = 0.15 x (3            | 1)                        |                        |              |                       |             |                        |           |           |          |
| Total f             | abric he                  | at loss                               |                             |                            |                        |                           |                        |              | (33) +                | (36) =      |                        |           | 107.25    | (37)     |
| Ventila             | ation hea                 | t loss ca                             | alculated                   | monthl                     | y                      | i                         | i                      |              | (38)m                 | = 0.33 × (  | 25)m x (5)             |           |           |          |
|                     | Jan                       | Feb                                   | Mar                         | Apr                        | May                    | Jun                       | Jul                    | Aug          | Sep                   | Oct         | Nov                    | Dec       |           |          |
| (38)m=              | 60.89                     | 58.77                                 | 58.77                       | 54.88                      | 52.56                  | 51.48                     | 50.46                  | 50.46        | 53.12                 | 54.88       | 56.77                  | 58.77     |           | (38)     |
| Heat t              | ransfer o                 | oefficier                             | nt, W/K                     | -                          |                        |                           |                        |              | (39)m                 | = (37) + (3 | 38)m                   |           |           |          |
| (39)m=              | 168.14                    | 166.02                                | 166.02                      | 162.13                     | 159.81                 | 158.73                    | 157.71                 | 157.71       | 160.37                | 162.13      | 164.01                 | 166.02    |           |          |
|                     |                           |                                       |                             |                            |                        |                           |                        |              | (10)                  | Average =   | Sum(39)1               | 12 /12=   | 162.4     | (39)     |
| Heat lo             | oss para                  | meter (F                              | 1LP), W/                    | m²K                        | 4.05                   | 4.04                      | 4.00                   | 4.00         | (40)m                 | = (39)m ÷   | · (4)                  | 4.00      |           |          |
| (40)m=              | 1.95                      | 1.93                                  | 1.93                        | 1.88                       | 1.85                   | 1.84                      | 1.83                   | 1.83         | 1.86                  | 1.88        | 1.9                    | 1.93      | 4.00      |          |
| Numb                | er of day                 | rs in mor                             | nth (Tab                    | le 1a)                     |                        |                           |                        |              | /                     | Average =   | Sum(40)₁.              | 12 / 1 Z= | 1.88      | (40)     |
|                     | Jan                       | Feb                                   | Mar                         | Apr                        | May                    | Jun                       | Jul                    | Aug          | Sep                   | Oct         | Nov                    | Dec       |           |          |
| (41)m=              | 31                        | 28                                    | 31                          | 30                         | 31                     | 30                        | 31                     | 31           | 30                    | 31          | 30                     | 31        |           | (41)     |
|                     |                           |                                       |                             |                            | 1                      | 1                         |                        |              |                       |             | 1                      |           |           |          |
| 1 \//               | ator boat                 | ing onor                              | av requi                    | iromont.                   |                        |                           |                        |              |                       |             |                        | k\M/b/v   | aar:      |          |
| - <b>t</b> . vvc    |                           | ing ener                              | gyrequ                      | nement.                    |                        |                           |                        |              |                       |             |                        | KVVII/yt  | -ai.      |          |
| Assum<br>if TF      | ned occu<br>A > 13.9      | ipancy, I<br>9, N = 1                 | N<br>+ 1.76 x               | [1 - exp                   | (-0.0003               | 849 x (TF                 | FA -13.9               | )2)] + 0.(   | )013 x ( <sup>-</sup> | ΓFA -13.    | 2.<br>.9)              | 57        |           | (42)     |
| Π IF<br>Δηριμα      | A £ 13.3                  | $\theta$ , $N = 1$<br>$\theta$ hot wa | ater usar                   | ne in litre                | es ner da              | ve hV ve                  | erane -                | (25 x NI)    | + 36                  |             | 05                     | 05        | l         | (13)     |
| Reduce              | the annua                 | l average                             | hot water                   | usage by                   | 5% if the c            | welling is                | designed i             | to achieve   | a water us            | se target o | f 95                   | .25       |           | (40)     |
| not mor             | e that 125                | litres per p                          | person per                  | <sup>r</sup> day (all w    | ater use, l            | hot and co                | ld)                    |              |                       |             |                        |           |           |          |
|                     | Jan                       | Feb                                   | Mar                         | Apr                        | May                    | Jun                       | Jul                    | Aug          | Sep                   | Oct         | Nov                    | Dec       |           |          |
| Hot wat             | er usage il               | n litres per                          | day for ea                  | ach month                  | Vd,m = fa              | ctor from                 | Table 1c x             | (43)         |                       |             |                        |           | _         |          |
| (44)m=              | 104.77                    | 100.96                                | 97.15                       | 93.34                      | 89.53                  | 85.72                     | 85.72                  | 89.53        | 93.34                 | 97.15       | 100.96                 | 104.77    |           |          |
| _                   |                           |                                       |                             |                            |                        |                           | _                      | T (0000      | -                     | Total = Su  | m(44) <sub>112</sub> = | =         | 1142.95   | (44)     |
| Energy              | content of                | hot water                             | used - cal                  | culated mo                 | onthly = 4.<br>1       | 190 x Vd,r<br>1           | m x nm x L<br>I        | 01m/3600     | kwn/mor               | ith (see Ta | ables 1b, 1<br>I       | c, 1d)    | I         |          |
| (45)m=              | 155.74                    | 136.21                                | 140.56                      | 122.54                     | 117.58                 | 101.47                    | 94.02                  | 107.89       | 109.18                | 127.24      | 138.89                 | 150.83    |           | <b>-</b> |
| lf instan           | taneous w                 | ater heatiı                           | na at point                 | of use (no                 | o hot wate             | r storage).               | enter 0 in             | boxes (46    | -<br>) to (61)        | Fotal = Su  | m(45) <sub>112</sub> = | -         | 1502.18   | (45)     |
| (46)m -             | 23.36                     | 20.43                                 | 21.08                       | 18.38                      | 17.64                  | 15.22                     | 1/1                    | 16.18        | 16.38                 | 10.00       | 20.83                  | 22.62     |           | (46)     |
| Water               | storage                   | 20.43                                 | 21.00                       | 10.50                      | 17.04                  | 15.22                     | 14.1                   | 10.18        | 10.50                 | 19.09       | 20.03                  | 22.02     |           | (40)     |
| a) If m             | anufactu                  | ırer's de                             | clared lo                   | oss facto                  | or is knov             | wn (kWh                   | /day):                 |              |                       |             |                        | 0         |           | (47)     |
| Tempe               | erature f                 | actor fro                             | m Table                     | 2b                         |                        |                           |                        |              |                       |             |                        | 0         |           | (48)     |
| Energ               | y lost fro                | m water                               | storage                     | , kWh/ye                   | ear                    |                           |                        | (47) x (48)  | =                     |             |                        | 0         |           | (49)     |
| lf man              | ,<br>ufacture             | r's decla                             | red cylir                   | nder loss                  | s factor is            | s not kno                 | own:                   |              |                       |             |                        | •         |           | ( - )    |
| Cylind              | er volum                  | e (litres)                            | ) includir                  | ng any s                   | olar stor              | age with                  | nin same               | •            |                       |             | 1:                     | 50        |           | (50)     |
| lf cor<br>Othe      | nmunity he<br>rwise if no | eating and stored ho                  | ' no tank in<br>t water (th | n dwelling,<br>is includes | enter 110<br>instantan | litres in bo<br>eous comi | ox (50)<br>bi boilers) | enter '0' in | box (50)              |             |                        |           |           |          |
| Hot wa              | ater stora                | age loss                              | factor fr                   | om Tabl                    | le 2 (kW               | h/litre/da                | ay)                    |              |                       |             | 0.                     | 02        |           | (51)     |
| Volum               | e factor                  | from Tal                              | ble 2a                      |                            |                        |                           |                        |              |                       |             | 0.                     | 93        |           | (52)     |
| Tempe               | erature f                 | actor fro                             | m Table                     | 2b                         |                        |                           |                        |              |                       |             | 0                      | .6        |           | (53)     |
|                     |                           |                                       |                             |                            |                        |                           |                        |              |                       |             |                        |           |           |          |

| Energy     | y lost fro  | m water       | storage                  | e, kWh/y     | ear        |             |             | ((50) x (51          | l) x (52) x   | (53) =        | 1               | .6          |               | (54)  |
|------------|-------------|---------------|--------------------------|--------------|------------|-------------|-------------|----------------------|---------------|---------------|-----------------|-------------|---------------|-------|
| Enter (    | (49) or (   | 54) in (5     | 5)                       |              |            |             |             | ((50)                | ==) (11)      |               | 1               | .6          |               | (55)  |
| water      | storage     | loss cal      | culated T                | for each     | month      |             |             | ((56)m = (           | 55) × (41)    | m<br>I        | 1               |             | l .           |       |
| (56)m=     | 49.48       | 44.69         | 49.48                    | 47.88        | 49.48      | 47.88       | 49.48       | 49.48                | 47.88         | 49.48         | 47.88           | 49.48       |               | (56)  |
| If cylinde | er contain: | s dedicate    | d solar sto              | orage, (57)  | m = (56)m  | x [(50) – ( | H11)] ÷ (5  | 0), else (5          | 7)m = (56)    | m where (     | H11) is fro     | m Append    | ix H          |       |
| (57)m=     | 49.48       | 44.69         | 49.48                    | 47.88        | 49.48      | 47.88       | 49.48       | 49.48                | 47.88         | 49.48         | 47.88           | 49.48       |               | (57)  |
| Primar     | y circuit   | loss (ar      | nnual) fro               | om Table     | e 3        |             |             |                      |               |               | 6               | 10          |               | (58)  |
| Primar     | y circuit   | loss cal      | culated                  | for each     | month (    | 59)m = (    | (58) ÷ 36   | 65 × (41)            | m             |               |                 |             |               |       |
| (mo        | dified by   | factor f      | rom Tab                  | le H5 if t   | here is s  | solar wat   | ter heatii  | ng and a             | cylinde       | r thermo      | stat)           |             |               |       |
| (59)m=     | 51.81       | 46.79         | 51.81                    | 50.14        | 51.81      | 50.14       | 51.81       | 51.81                | 50.14         | 51.81         | 50.14           | 51.81       |               | (59)  |
| Combi      | loss ca     | lculated      | for each                 | month        | (61)m =    | (60) ÷ 30   | 65 × (41)   | )m                   |               |               |                 |             |               |       |
| (61)m=     | 0           | 0             | 0                        | 0            | 0          | 0           | 0           | 0                    | 0             | 0             | 0               | 0           |               | (61)  |
| Total h    | neat req    | uired for     | water h                  | eating ca    | alculated  | l for eac   | h month     | (62)m =              | 0.85 × (      | (45)m +       | (46)m +         | (57)m +     | (59)m + (61)m |       |
| (62)m=     | 257.03      | 227.7         | 241.85                   | 220.56       | 218.87     | 199.48      | 195.31      | 209.18               | 207.2         | 228.53        | 236.91          | 252.11      |               | (62)  |
| Solar Dł   | -IW input   | calculated    | using App                | endix G o    | r Appendix | H (negati   | ve quantity | /) (enter '0         | ' if no sola  | r contribut   | ion to wate     | er heating) |               |       |
| (add a     | dditiona    | l lines if    | FGHRS                    | and/or \     | NWHRS      | applies     | , see Ap    | pendix (             | G)            |               |                 |             |               |       |
| (63)m=     | 0           | 0             | 0                        | 0            | 0          | 0           | 0           | 0                    | 0             | 0             | 0               | 0           |               | (63)  |
| Output     | t from w    | ater hea      | ter                      |              |            |             | -           | -                    | -             | -             |                 | -           |               |       |
| (64)m=     | 257.03      | 227.7         | 241.85                   | 220.56       | 218.87     | 199.48      | 195.31      | 209.18               | 207.2         | 228.53        | 236.91          | 252.11      |               |       |
|            |             |               |                          |              |            |             |             | Outp                 | out from wa   | ater heate    | r (annual)₁     | 12          | 2694.72       | (64)  |
| Heat g     | ains fro    | m water       | heating                  | , kWh/m      | onth 0.2   | 5 x [0.85   | 5 × (45)m   | n + (61)n            | n] + 0.8 :    | x [(46)m      | + (57)m         | ı + (59)m   | 1]            |       |
| (65)m=     | 132.81      | 118.48        | 127.76                   | 119.16       | 120.12     | 112.15      | 112.29      | 116.9                | 114.72        | 123.33        | 124.6           | 131.18      |               | (65)  |
| inclu      | ide (57)    | m in calo     | culation                 | of (65)m     | only if c  | ylinder i   | s in the o  | dwelling             | or hot w      | ater is fr    | om com          | munity h    | eating        |       |
| 5. Int     | ternal ga   | ains (see     | e Table 5                | 5 and 5a     | ):         |             |             |                      |               |               |                 |             |               |       |
| Metab      | olic gain   | s (Table      | 5) Wat                   | ts           |            |             |             |                      |               |               |                 |             |               |       |
| motab      | Jan         | Feb           | Mar                      | Apr          | May        | Jun         | Jul         | Aug                  | Sep           | Oct           | Nov             | Dec         |               |       |
| (66)m=     | 154.22      | 154.22        | 154.22                   | 154.22       | 154.22     | 154.22      | 154.22      | 154.22               | 154.22        | 154.22        | 154.22          | 154.22      |               | (66)  |
| Lightin    | g gains     | (calcula      | ted in A                 | pendix       | L, equat   | ion L9 o    | r L9a), a   | lso see <sup>·</sup> | Table 5       |               |                 |             |               |       |
| (67)m=     | 64.75       | 57.51         | 46.77                    | 35.41        | 26.47      | 22.35       | 24.15       | 31.39                | 42.13         | 53.49         | 62.43           | 66.55       |               | (67)  |
| Applia     | nces da     | ins (calc     | ulated ir                | n Appene     | dix L. ea  | uation L    | 13 or L1    | a), also             | see Ta        | ble 5         | l               | 1           | I             |       |
| (68)m=     | 346.19      | 349.79        | 340.73                   | 321.46       | 297.13     | 274.27      | 258.99      | 255.4                | 264.45        | 283.73        | 308.05          | 330.92      |               | (68)  |
| Cookir     | L           | (calcula      | L<br>Ited in A           | I<br>ppendix | L equat    | ion I 15    | or I 15a'   | ) also se            | I<br>ee Table | 5             |                 |             |               |       |
| (69)m=     | 52.99       | 52.99         | 52.99                    | 52.99        | 52.99      | 52.99       | 52.99       | 52.99                | 52.99         | 52.99         | 52.99           | 52.99       |               | (69)  |
| Pumps      | L           | l<br>ns dains | I<br>(Table <sup>i</sup> | 1<br>5a)     |            |             | I           | I                    |               |               |                 |             |               |       |
| (70)m=     |             | 10 10         | 10                       | 10           | 10         | 10          | 10          | 10                   | 10            | 10            | 10              | 10          |               | (70)  |
|            |             |               | n (nega                  | tive valu    | es) (Tab   | L 5)        | _           | _                    | _             |               |                 | _           |               |       |
| (71)m-     | -102 81     | -102 81       | -102 81                  | -102 81      | -102 81    | -102 81     | -102 81     | -102 81              | -102 81       | -102 81       | -102.81         | -102 81     | l             | (71)  |
| Wotor      | hooting     |               |                          | 102.01       | 102.01     | 102.01      | 102.01      | 102.01               | 102.01        | 102.01        | 102.01          | 102.01      |               | (***) |
| (72)m-     | 178 51      | yanis (1      | able 5)                  | 165.5        | 161.46     | 155 77      | 150.03      | 157 13               | 150.33        | 165 77        | 173.05          | 176 31      |               | (72)  |
|            | nterne"     |               | <u> </u>                 | 100.0        | 101.40     |             | m + (67)~   | 1.07.10<br>1 ± (68)m | (60)m + (     | (70)m + $(7)$ | $(1)m \pm (72)$ |             |               | ()    |
| (72)m-     |             |               | 672.62                   | 626 77       | 500.46     | 566 79      | 5/9/7       | 559.24               | 580.24        | 617 20        | 657.02          | 629 10      |               | (73)  |
| (13)III=   | lar gaing   | 080           | 073.03                   | 030.77       | 335.40     | 500.76      | J+0.47      | 550.51               | 300.31        | 017.39        | 037.93          | 000.10      |               | (10)  |
| 0.00       | iai gains   | <i>.</i>      |                          |              |            |             |             |                      |               |               |                 |             |               |       |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:   | Access Factor<br>Table 6d |   | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |     | Gains<br>(W) |               |
|----------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|-----|--------------|---------------|
| Southeast 0.9x | 0.54                      | x | 1.29       | × | 37.39            | × | 0.76           | × | 0.7            | =   | 24.94        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 37.39            | x | 0.76           | x | 0.7            | =   | 44.85        | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 63.74            | x | 0.76           | x | 0.7            | =   | 42.52        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | × | 63.74            | × | 0.76           | × | 0.7            | =   | 76.46        | <b>–</b> (77) |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 84.22            | x | 0.76           | x | 0.7            | ] = | 56.18        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | × | 84.22            | × | 0.76           | × | 0.7            | ] = | 101.03       | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 103.49           | × | 0.76           | x | 0.7            | =   | 69.03        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 103.49           | x | 0.76           | x | 0.7            | =   | 124.15       | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 113.34           | x | 0.76           | x | 0.7            | =   | 75.6         | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 113.34           | × | 0.76           | x | 0.7            | =   | 135.97       | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 115.04           | x | 0.76           | x | 0.7            | =   | 76.74        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 115.04           | × | 0.76           | x | 0.7            | =   | 138.02       | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 112.79           | × | 0.76           | x | 0.7            | =   | 75.24        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 112.79           | x | 0.76           | x | 0.7            | =   | 135.31       | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 105.34           | × | 0.76           | x | 0.7            | =   | 70.27        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 105.34           | x | 0.76           | x | 0.7            | =   | 126.38       | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 92.9             | x | 0.76           | x | 0.7            | =   | 61.97        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 92.9             | x | 0.76           | x | 0.7            | =   | 111.45       | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 72.36            | x | 0.76           | x | 0.7            | =   | 48.27        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 72.36            | x | 0.76           | x | 0.7            | =   | 86.81        | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | × | 44.83            | x | 0.76           | × | 0.7            | =   | 29.9         | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 44.83            | x | 0.76           | x | 0.7            | =   | 53.78        | (77)          |
| Southeast 0.9x | 0.54                      | x | 1.29       | x | 31.95            | x | 0.76           | x | 0.7            | =   | 21.31        | (77)          |
| Southeast 0.9x | 0.54                      | x | 2.32       | x | 31.95            | x | 0.76           | x | 0.7            | =   | 38.33        | (77)          |
| Northwest 0.9x | 0.54                      | x | 2.39       | x | 11.51            | x | 0.63           | x | 0.7            | =   | 5.9          | (81)          |
| Northwest 0.9x | 0.54                      | x | 3.82       | x | 11.51            | x | 0.63           | x | 0.7            | =   | 9.42         | (81)          |
| Northwest 0.9x | 0.54                      | x | 1.61       | × | 11.51            | x | 0.63           | x | 0.7            | ] = | 3.97         | (81)          |
| Northwest 0.9x | 0.54                      | x | 0.61       | x | 11.51            | × | 0.63           | x | 0.7            | =   | 1.5          | (81)          |
| Northwest 0.9x | 0.54                      | x | 2.39       | × | 23.55            | × | 0.63           | × | 0.7            | =   | 12.07        | (81)          |
| Northwest 0.9x | 0.54                      | x | 3.82       | x | 23.55            | x | 0.63           | x | 0.7            | ] = | 19.28        | (81)          |
| Northwest 0.9x | 0.54                      | x | 1.61       | x | 23.55            | x | 0.63           | x | 0.7            | ] = | 8.13         | (81)          |
| Northwest 0.9x | 0.54                      | x | 0.61       | × | 23.55            | x | 0.63           | × | 0.7            | ] = | 3.08         | (81)          |
| Northwest 0.9x | 0.54                      | x | 2.39       | x | 41.13            | x | 0.63           | x | 0.7            | =   | 21.07        | (81)          |
| Northwest 0.9x | 0.54                      | x | 3.82       | × | 41.13            | x | 0.63           | x | 0.7            | ] = | 33.67        | (81)          |
| Northwest 0.9x | 0.54                      | x | 1.61       | x | 41.13            | x | 0.63           | x | 0.7            | =   | 14.19        | (81)          |
| Northwest 0.9x | 0.54                      | x | 0.61       | x | 41.13            | x | 0.63           | x | 0.7            | =   | 5.38         | (81)          |
| Northwest 0.9x | 0.54                      | x | 2.39       | × | 67.8             | x | 0.63           | x | 0.7            | ] = | 34.73        | (81)          |
| Northwest 0.9x | 0.54                      | x | 3.82       | × | 67.8             | × | 0.63           | × | 0.7            | ] = | 55.51        | (81)          |
| Northwest 0.9x | 0.54                      | x | 1.61       | x | 67.8             | x | 0.63           | x | 0.7            | ] = | 23.39        | (81)          |

| Northwest 0.9x  | 0.54 | x   | 0.61 | x | 67.8  | x        | 0.63 | x | 0.7 | =          | 8.86  | (81)      |
|-----------------|------|-----|------|---|-------|----------|------|---|-----|------------|-------|-----------|
| Northwest 0.9x  | 0.54 | ] x | 2.39 | x | 89.77 | x        | 0.63 | x | 0.7 | <b>j</b> = | 45.98 | ]<br>(81) |
| Northwest 0.9x  | 0.54 | x   | 3.82 | x | 89.77 | x        | 0.63 | x | 0.7 | =          | 73.49 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 1.61 | x | 89.77 | x        | 0.63 | x | 0.7 | =          | 30.98 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 0.61 | x | 89.77 | x        | 0.63 | x | 0.7 | =          | 11.74 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 2.39 | x | 97.5  | x        | 0.63 | x | 0.7 | =          | 49.94 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 3.82 | × | 97.5  | x        | 0.63 | x | 0.7 | ] =        | 79.83 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 1.61 | x | 97.5  | x        | 0.63 | x | 0.7 | =          | 33.64 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 0.61 | x | 97.5  | x        | 0.63 | x | 0.7 | =          | 12.75 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 2.39 | x | 92.98 | x        | 0.63 | x | 0.7 | =          | 47.63 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 3.82 | x | 92.98 | x        | 0.63 | x | 0.7 | =          | 76.12 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 1.61 | x | 92.98 | x        | 0.63 | x | 0.7 | =          | 32.08 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 0.61 | x | 92.98 | x        | 0.63 | x | 0.7 | =          | 12.16 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 2.39 | x | 75.42 | x        | 0.63 | x | 0.7 | =          | 38.63 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 3.82 | x | 75.42 | x        | 0.63 | x | 0.7 | =          | 61.75 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 1.61 | x | 75.42 | x        | 0.63 | x | 0.7 | =          | 26.02 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 0.61 | x | 75.42 | x        | 0.63 | x | 0.7 | =          | 9.86  | (81)      |
| Northwest 0.9x  | 0.54 | x   | 2.39 | x | 51.24 | x        | 0.63 | x | 0.7 | =          | 26.25 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 3.82 | x | 51.24 | x        | 0.63 | x | 0.7 | =          | 41.96 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 1.61 | x | 51.24 | x        | 0.63 | x | 0.7 | =          | 17.68 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 0.61 | x | 51.24 | x        | 0.63 | x | 0.7 | =          | 6.7   | (81)      |
| Northwest 0.9x  | 0.54 | x   | 2.39 | x | 29.6  | x        | 0.63 | x | 0.7 | =          | 15.16 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 3.82 | x | 29.6  | x        | 0.63 | x | 0.7 | =          | 24.23 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 1.61 | x | 29.6  | x        | 0.63 | x | 0.7 | =          | 10.21 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 0.61 | x | 29.6  | x        | 0.63 | x | 0.7 | =          | 3.87  | (81)      |
| Northwest 0.9x  | 0.54 | x   | 2.39 | x | 14.52 | x        | 0.63 | x | 0.7 | =          | 7.44  | (81)      |
| Northwest 0.9x  | 0.54 | x   | 3.82 | x | 14.52 | x        | 0.63 | x | 0.7 | ] =        | 11.89 | (81)      |
| Northwest 0.9x  | 0.54 | x   | 1.61 | x | 14.52 | x        | 0.63 | x | 0.7 | =          | 5.01  | (81)      |
| Northwest 0.9x  | 0.54 | x   | 0.61 | x | 14.52 | x        | 0.63 | x | 0.7 | =          | 1.9   | (81)      |
| Northwest 0.9x  | 0.54 | x   | 2.39 | x | 9.36  | x        | 0.63 | x | 0.7 | ] =        | 4.79  | (81)      |
| Northwest 0.9x  | 0.54 | x   | 3.82 | x | 9.36  | x        | 0.63 | x | 0.7 | =          | 7.66  | (81)      |
| Northwest 0.9x  | 0.54 | x   | 1.61 | x | 9.36  | x        | 0.63 | x | 0.7 | ] =        | 3.23  | (81)      |
| Northwest 0.9x  | 0.54 | x   | 0.61 | x | 9.36  | x        | 0.63 | x | 0.7 | =          | 1.22  | (81)      |
| Rooflights 0.9x | 1    | x   | 0.41 | x | 26    | x        | 0.63 | x | 0.8 | =          | 9.67  | (82)      |
| Rooflights 0.9x | 1    | x   | 0.41 | x | 54    | x        | 0.63 | x | 0.8 | =          | 20.09 | (82)      |
| Rooflights 0.9x | 1    | x   | 0.41 | x | 94    | x        | 0.63 | x | 0.8 | =          | 34.96 | (82)      |
| Rooflights 0.9x | 1    | x   | 0.41 | x | 150   | x        | 0.63 | x | 0.8 | =          | 55.79 | (82)      |
| Rooflights 0.9x | 1    | x   | 0.41 | × | 190   | x        | 0.63 | x | 0.8 | =          | 70.67 | (82)      |
| Rooflights 0.9x | 1    | x   | 0.41 | × | 201   | <b>x</b> | 0.63 | x | 0.8 | =          | 74.76 | (82)      |
| Rooflights 0.9x | 1    | x   | 0.41 | × | 194   | x        | 0.63 | × | 0.8 | ] =        | 72.16 | (82)      |
| Rooflights 0.9x | 1    | x   | 0.41 | × | 164   | x        | 0.63 | x | 0.8 | =          | 61    | (82)      |

| Rooflig  | nts 0.9x   | 1            | ×                 | 0.4                           | 1             | x                 |          | 116       | x                                        | 0.63          | x        | 0.8          | =            | 43.15  | (82)  |
|----------|------------|--------------|-------------------|-------------------------------|---------------|-------------------|----------|-----------|------------------------------------------|---------------|----------|--------------|--------------|--------|-------|
| Rooflig  | nts 0.9x   | 1            | ×                 | 0.4                           | 11            | x                 |          | 68        | x [                                      | 0.63          | ×        | 0.8          | =            | 25.29  | (82)  |
| Rooflig  | nts 0.9x   | 1            | x                 | 0.4                           | 11            | x                 |          | 33        | x [                                      | 0.63          | ×        | 0.8          | =            | 12.27  | (82)  |
| Rooflig  | nts 0.9x   | 1            | x                 | 0.4                           | 11            | x                 |          | 21        | ,<br>                                    | 0.63          | ×        | 0.8          | =            | 7.81   | (82)  |
|          | L          |              |                   |                               |               |                   |          |           |                                          |               |          |              |              |        |       |
| Solar o  | ains in    | watts, ca    | alculate          | d for eac                     | h month       | n                 |          |           | (83)m = S                                | um(74)m .     | (82)m    |              |              |        |       |
| (83)m=   | 100.26     | 181.62       | 266.48            | 371.48                        | 444.43        | 4                 | 65.68    | 450.7     | 393.91                                   | 309.15        | 213.8    | 5 122.2      | 84.37        | 1      | (83)  |
| Total g  | ains – i   | nternal a    | ind sola          | r (84)m =                     | = (73)m       | + (               | 83)m     | , watts   |                                          | <u>!</u>      |          |              | 1            | 1      |       |
| (84)m=   | 804.11     | 879.62       | 940.11            | 1008.24                       | 1043.89       | 10                | 032.46   | 999.17    | 952.22                                   | 889.46        | 831.24   | 780.13       | 772.55       |        | (84)  |
| 7. Me    | an inter   | nal temp     | erature           | (heating                      | seasor        | 1)                |          | •         | •                                        |               |          |              |              |        |       |
| Temp     | erature    | durina h     | eating            | periods in                    | n the livi    | ina               | area f   | from Tal  | ole 9. Th                                | 1 (°C)        |          |              |              | 21     | (85)  |
| Utilisa  | ation fac  | tor for a    | ains for          | living are                    | ea h1 m       | ອ<br>າ (s         | ee Ta    | ble 9a)   |                                          | ( )           |          |              |              |        |       |
| Otinoc   | Jan        | Feb          | Mar               |                               | Mav           | T                 | Jun      |           | Aug                                      | Sen           | Oct      | Nov          | Dec          | 1      |       |
| (86)m-   | 0.93       | 0.92         | 0.89              | 0.85                          | 0.78          |                   | 0.66     | 0.52      | 0.53                                     | 0.73          | 0.85     | 0.92         | 0.94         |        | (86)  |
| (00)11-  | 0.00       | 0.02         | 0.00              | 0.00                          | 0.70          |                   | 0.00     | 0.02      | 0.00                                     | 0.75          | 0.00     | 0.02         | 0.04         | ]      | (00)  |
| Mean     | interna    | l temper     | ature in          | living ar                     | ea T1 (f      |                   | w ste    | ps 3 to 7 | 7 in Tabl                                | e 9c)         |          | 1            | r            | 1      | ()    |
| (87)m=   | 17.73      | 17.99        | 18.53             | 19.13                         | 19.87         | 2                 | 20.44    | 20.78     | 20.77                                    | 20.29         | 19.44    | 18.41        | 17.82        |        | (87)  |
| Temp     | erature    | during h     | eating p          | periods in                    | n rest of     | dw                | elling   | from Ta   | able 9, T                                | h2 (°C)       |          |              |              |        |       |
| =m(88)   | 19.37      | 19.39        | 19.39             | 19.42                         | 19.44         | 1                 | 9.45     | 19.46     | 19.46                                    | 19.43         | 19.42    | 19.41        | 19.39        |        | (88)  |
| Utilisa  | ation fac  | tor for a    | ains for          | rest of d                     | wellina.      | h2                | .m (se   | e Table   | 9a)                                      | -             | -        |              | -            | •      |       |
| (89)m=   | 0.92       | 0.91         | 0.87              | 0.82                          | 0.72          | T                 | 0.57     | 0.36      | 0.38                                     | 0.64          | 0.82     | 0.9          | 0.92         | ]      | (89)  |
| Maan     | interne    |              |                   | 1                             | مد مارینما    |                   | TO /6    |           |                                          | I<br>Zin Tahl |          |              | I            | 1      |       |
|          | 16 52      |              |                   |                               |               | ing<br>T          | 12 (10   |           | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 |               |          | 17.00        | 16.62        | 1      | (90)  |
| (90)11=  | 10.05      | 10.79        | 17.52             | 17.92                         | 10.03         |                   | 9.14     | 19.59     | 19.30                                    | 19.01         | 10.23    | 17.22        | (1) -        |        |       |
|          |            |              |                   |                               |               |                   |          |           |                                          |               |          | ing area ÷ ( | <del>-</del> | 0.22   | (91)  |
| Mean     | interna    | l temper     | ature (fo         | or the wh                     | ole dwe       | llin              | g) = fl  | LA x T1   | + (1 – fL                                | A) × T2       |          |              |              | •      |       |
| (92)m=   | 16.79      | 17.05        | 17.58             | 18.18                         | 18.9          | 1                 | 9.42     | 19.69     | 19.68                                    | 19.29         | 18.49    | 17.48        | 16.89        |        | (92)  |
| Apply    | adjustn    | nent to tl   | he meai           | n interna                     | l tempe       | ratu              | ire fro  | m Table   | 4e, whe                                  | ere appro     | opriate  |              |              | 1      |       |
| (93)m=   | 16.79      | 17.05        | 17.58             | 18.18                         | 18.9          |                   | 9.42     | 19.69     | 19.68                                    | 19.29         | 18.49    | 17.48        | 16.89        |        | (93)  |
| 8. Spa   | ace hea    | ting requ    | uiremen           | t                             |               |                   |          |           |                                          |               |          |              |              |        |       |
| Set T    | i to the i | mean int     | ernal te          | mperatu                       | re obtai      | ned               | l at ste | ep 11 of  | Table 9                                  | b, so tha     | at Ti,m= | =(76)m an    | d re-calo    | culate |       |
| the ut   | lisation   |              | or gains          |                               |               | $\mathbf{T}$      | l        | 1.1       | A                                        | 0             |          | Navi         |              | 1      |       |
| Litilion | Jan        | Feb          | iviar             | Apr                           | мау           |                   | Jun      | Jui       | Aug                                      | Sep           | Oct      | INOV         | Dec          |        |       |
| (04)m-   |            |              |                   | 1.                            | 0.7           |                   | 0.56     | 0.20      | 0.4                                      | 0.62          | 0.70     | 0.97         | 0.0          | 1      | (94)  |
|          |            | 0.00<br>hmCm | $\frac{0.04}{10}$ | $\frac{0.79}{100 \times (9)}$ | ()m           |                   | 0.50     | 0.39      | 0.4                                      | 0.03          | 0.79     | 0.87         | 0.9          | ]      | (04)  |
| (95)m-   | 720 93     | 771.88       | VV = (9)          | 4)111 X (04<br>798 45         | 720 10        | 5                 | 82.28    | 388 24    | 383.63                                   | 560.68        | 654.8    | 681.01       | 693.95       | 1      | (95)  |
| Month    |            |              | rnal ton          |                               | $\int from T$ | -<br>J            | 02.20    | 500.24    | 000.00                                   | 000.00        | 004.00   | 001.01       | 000.00       | ]      | (00)  |
| (96)m-   | 11y aven   |              | 6.8               | 87                            | 11 7          |                   | 14.6     | 16.9      | 16.9                                     | 14.3          | 10.8     | 7            | 49           | 1      | (96)  |
| Heat     | loss rate  | for me       | o.o               |                               |               | L m               | ν W/ -   | -[(30)m   | v [(93)m                                 | (96)m         | 1        |              | 4.0          | ]      | (00)  |
| (97)m=   | 2065 77    | 2001 01      | 1789.98           | 1537 17                       | 1150.97       | 7                 | 65 29    | 439.82    | 438 69                                   | 800 1         | 1247.5   | 9 1718.38    | 1990 44      | 1      | (97)  |
| Snace    | heatin     |              | ement fr          | I each n                      | nonth k       | <u>L</u> '<br>W/h |          | h = 0.02  | 1                                        | )m _ (05      | j)ml v ( | 41)m         | 1.000.44     | 1      | x = 7 |
| (98)m=   | 1000.56    | 825.98       | 742.56            | 531.88                        | 313.8         |                   | 0        | 0         |                                          |               | 441.0    | 746.91       | 964.59       | 1      |       |
| (* */*** |            |              |                   |                               |               | _                 | -        |           | Tota                                     | al per vear   | (kWh/ve  | ar) = Sum(9) | 8)1 50 12 =  | 5567.3 | (98)  |
| 0        | . h        | - السمع م    |                   |                               | hing          |                   |          |           |                                          |               |          |              | - j ·        |        |       |
| Space    | e neatin   | g require    | ementir           | i KVVN/M                      | -year         |                   |          |           |                                          |               |          |              |              | 64.57  | (99)  |

| 9a. En         | iergy re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | quiremer        | nts – Ind           | ividual h   | eating sy | /stems i        | ncluding             | micro-C     | CHP)       |                         |                                |          |                            |        |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|-------------|-----------|-----------------|----------------------|-------------|------------|-------------------------|--------------------------------|----------|----------------------------|--------|
| Spac           | e heati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ng:             |                     |             |           |                 |                      |             |            |                         |                                |          |                            | ٦      |
| Fract          | ion of s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pace hea        | at from s           | econdar     | y/supple  | mentary         | system               | (222)       | (22.1)     |                         |                                |          | 0                          | (201)  |
| Fract          | ion of s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pace hea        | at from n           | nain syst   | em(s)     |                 |                      | (202) = 1 - | - (201) =  |                         |                                |          | 1                          | (202)  |
| Fract          | ion of to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | otal heati      | ng from             | main sys    | stem 1    |                 |                      | (204) = (20 | 02) × [1 – | (203)] =                |                                |          | 1                          | (204)  |
| Efficie        | ency of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | main spa        | ace heat            | ting syste  | em 1      |                 |                      |             |            |                         |                                |          | 78.9                       | (206)  |
| Efficie        | ency of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | seconda         | ry/suppl            | ementar     | y heating | g system        | ז, %                 |             |            |                         |                                |          | 0                          | (208)  |
|                | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Feb             | Mar                 | Apr         | May       | Jun             | Jul                  | Aug         | Sep        | Oct                     | Nov                            | Dec      | kWh/yea                    | ar     |
| Spac           | e heatir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ng require      | ement (o            |             | d above)  |                 |                      |             |            | 444.00                  |                                | 004 50   |                            |        |
| (2.4.4)        | 1000.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 825.98          | 742.56              | 531.88      | 313.8     | 0               | 0                    | 0           | 0          | 441.02                  | 746.91                         | 964.59   |                            |        |
| (211)n         | $n = \{[(98)] \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ 1269 \\ $ | 3)m x (20       | $[04)] + (2^{-1})$  | $10)m \} x$ | 100 ÷ (2  | 06)             | 0                    | 0           | 0          | 559.06                  | 046.65                         | 1000 55  |                            | (211)  |
|                | 1200.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1040.07         | 941.14              | 074.12      | 391.12    | 0               | 0                    | Tota        | l (kWh/vea | ar) = Sum(2)            | 211)                           | =        | 7056 15                    | 7(211) |
| Snac           | e heatir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | na fuel (s      | econdar             | ·v) k\//h/  | month     |                 |                      |             |            |                         | /15,101                        | 2        | 7000.10                    |        |
| = {[(98        | s)m x (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01)] + (2       | 14) m } :           | x 100 ÷ (   | 208)      |                 |                      |             |            |                         |                                |          |                            |        |
| (215)m=        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0               | 0                   | 0           | 0         | 0               | 0                    | 0           | 0          | 0                       | 0                              | 0        |                            |        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | •                   | -           |           |                 |                      | Tota        | l (kWh/yea | ar) =Sum(2              | 2 <b>15)</b> <sub>15,101</sub> | 2=       | 0                          | (215)  |
| Water          | heatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g               |                     |             |           |                 |                      |             |            |                         |                                |          |                            | _      |
| Output         | t from w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /ater hea       | ter (calc           | ulated a    | bove)     | 100.48          | 105.01               | 200.49      | 207.2      | 000 50                  | 226.04                         | 252.44   |                            |        |
| Efficie        | 257.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vater hea       | 241.60              | 220.56      | 210.07    | 199.46          | 195.31               | 209.16      | 207.2      | 228.03                  | 236.91                         | 292.11   | 69.9                       | 7(216) |
| (217)m=        | 76.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 76.47           | 76.15               | 75.64       | 74.41     | 68.8            | 68.8                 | 68.8        | 68.8       | 75.14                   | 76.21                          | 76.57    | 00.0                       | (217)  |
| Fuel fo        | or water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | heating.        | kWh/m               | onth        |           | 00.0            | 00.0                 | 00.0        | 00.0       | 10.11                   | 10.21                          | 10.01    |                            | ( )    |
| (219)m         | <u>n = (64</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>)m x 100</u> | ) ÷ (217            | )m          |           |                 |                      |             |            |                         |                                |          |                            |        |
| (219)m=        | 335.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 297.74          | 317.58              | 291.57      | 294.13    | 289.95          | 283.88               | 304.04      | 301.16     | 304.15                  | 310.88                         | 329.26   |                            | -      |
|                | • · · •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                     |             |           |                 |                      | lota        | I = Sum(2) | 19a) <sub>112</sub> =   |                                |          | 3659.88                    | (219)  |
| Annua<br>Space | heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s<br>n fuel use | ed main             | system      | 1         |                 |                      |             |            | K                       | Wh/yea                         | r        | 7056.15                    | 1      |
| Water          | Space heating:         O         (201)           Fraction of space heat from main system (s)         (202) = 1 - (201) =         1         (202)           Fraction of space heat from main system 1         (204) = (202) × (1 - (203)] =         1         (204)           Efficiency of main space heating system 1         (204) = (202) × (1 - (203)] =         1         (204)           Efficiency of secondary/supplementary heating system, %         0         (208)         0         0         0         (201)           Space heating requirement (calculated above)         1         (204)         (201)         (201)         (201)         (201)           1000.56         525.89         742.56         531.88         133.8         0         0         0         441.02         746.91         964.59         (211)           1000.56         525.89         742.56         531.88         133.8         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                     |             |           |                 |                      |             |            |                         |                                |          |                            |        |
|                | ineating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | u                   |             |           |                 |                      |             |            |                         |                                |          | 3039.00                    |        |
| Electri        | city for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pumps, f        | ans and             | electric    | keep-no   | t               |                      |             |            |                         |                                |          |                            |        |
| centra         | al heati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ng pump         | :                   |             |           |                 |                      |             |            |                         |                                | 130      |                            | (230c) |
| boiler         | r with a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fan-assis       | sted flue           |             |           |                 |                      |             |            |                         |                                | 45       |                            | (230e) |
| Total e        | electricit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ty for the      | above,              | kWh/yea     | r         |                 |                      | sum         | of (230a). | (230g) =                |                                |          | 175                        | (231)  |
| Electri        | city for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lighting        |                     |             |           |                 |                      |             |            |                         |                                |          | 457.41                     | (232)  |
| 10a. I         | Fuel co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sts - indi      | vidual he           | eating sy   | stems:    |                 |                      |             |            |                         |                                |          |                            | -      |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                     |             |           | <b>Fu</b><br>kW | <b>el</b><br>/h/year |             |            | <b>Fuel P</b><br>(Table | <b>rice</b><br>12)             |          | <b>Fuel Cost</b><br>£/year |        |
| Space          | heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g - main :      | system <sup>2</sup> | 1           |           | (21             | 1) x                 |             |            | 3.                      | 1                              | x 0.01 = | 218.7405                   | (240)  |
| Space          | heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g - main :      | system 2            | 2           |           | (21:            | 3) x                 |             |            | 0                       |                                | x 0.01 = | 0                          | (241)  |
| Space          | heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g - secon       | dary                |             |           | (21             | 5) x                 |             |            | 0                       |                                | x 0.01 = | 0                          | (242)  |
| Water          | heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g cost (ot      | her fuel)           |             |           | (219            | 9)                   |             |            | 3.                      | 1                              | x 0.01 = | 113.46                     | (247)  |

| Pumps, fans and electric keep-hot                                        | (231)                                | 11.46 × 0.01 =                                 | 20.06 (249)    |
|--------------------------------------------------------------------------|--------------------------------------|------------------------------------------------|----------------|
| (if off-peak tariff, list each of (230a) to (230g<br>Energy for lighting | ) separately as applicable and (232) | apply fuel price according to $11.46$ × 0.01 = | Table 12a      |
| Additional standing charges (Table 12)                                   |                                      | 11.40                                          | (251)          |
| Additional standing charges (Table 12)                                   |                                      |                                                | 106 (231)      |
| Appendix Q items: repeat lines (253) and (24                             | 54) as needed                        |                                                | 540.0700 (255) |
| 11a SAP rating - individual heating system                               | )(247) + (230)(234) =                |                                                | 510.6706 (200) |
| Energy cost deflator (Table 12)                                          |                                      |                                                | 0.17           |
| Energy cost denator (FCE) [(25                                           | 5) x (256)] ÷ [(4) + 45.0] =         |                                                | 0.47 (256)     |
| SAP rating (Section 12)                                                  |                                      |                                                | 74.484 (258)   |
| 12a. CO2 emissions – Individual heating sy                               | stems including micro-CHP            |                                                | 74.404         |
|                                                                          | <b>F</b>                             | <b>E</b> mission (actor                        | Emissions      |
|                                                                          | kWh/year                             | kg CO2/kWh                                     | kg CO2/year    |
| Space heating (main system 1)                                            | (211) x                              | 0.198 =                                        | 1397.12 (261)  |
| Space heating (secondary)                                                | (215) x                              | 0 =                                            | 0 (263)        |
| Water heating                                                            | (219) x                              | 0.198 =                                        | 724.66 (264)   |
| Space and water heating                                                  | (261) + (262) + (263) + (264         | 4) =                                           | 2121.77 (265)  |
| Electricity for pumps, fans and electric keep                            | -hot (231) x                         | 0.517 =                                        | 90.48 (267)    |
| Electricity for lighting                                                 | (232) x                              | 0.517 =                                        | 236.48 (268)   |
| Total CO2, kg/year                                                       |                                      | sum of (265)(271) =                            | 2448.73 (272)  |
| CO2 emissions per m <sup>2</sup>                                         |                                      | (272) ÷ (4) =                                  | 28.4 (273)     |
| El rating (section 14)                                                   |                                      |                                                | 75 (274)       |
| 13a. Primary Energy                                                      |                                      |                                                |                |
|                                                                          | Energy                               | Primary                                        | P. Enerav      |
|                                                                          | kWh/year                             | factor                                         | kWh/year       |
| Space heating (main system 1)                                            | (211) x                              | 1.02 =                                         | 7197.27 (261)  |
| Space heating (secondary)                                                | (215) x                              | 0 =                                            | 0 (263)        |
| Energy for water heating                                                 | (219) x                              | 1.02 =                                         | 3733.07 (264)  |
| Space and water heating                                                  | (261) + (262) + (263) + (264)        | 4) =                                           | 10930.34 (265) |
| Electricity for pumps, fans and electric keep                            | -hot (231) x                         | 2.92 =                                         | 511 (267)      |
| Electricity for lighting                                                 | (232) x                              | 0 =                                            | 1335.63 (268)  |
| 'Total Primary Energy                                                    |                                      | sum of (265)(271) =                            | 12776.97 (272) |
| Primary energy kWh/m²/year                                               |                                      | (272) ÷ (4) =                                  | 148.19 (273)   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                | User D     | etails:                  |              |             |          |             |                         |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------|------------|--------------------------|--------------|-------------|----------|-------------|-------------------------|------|
| Assessor Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test User                                              |                                |            | Stroma                   | a Num        | ber:        |          | STRO        | 000000                  |      |
| Software Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stroma FSAP 200                                        | 9                              |            | Softwa                   | are Ver      | sion:       |          | Versio      | n: 1.5.0.74             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | Pr                             | operty A   | Address:                 | First flo    | or flat     |          |             |                         |      |
| Address :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                |            |                          |              |             |          |             |                         |      |
| 1. Overall dwelling dimer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsions:                                                |                                |            |                          |              |             |          |             |                         |      |
| Cround floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                                | Area       | a(m²)                    | (1 - )       | Ave He      | ight(m)  |             | Volume(m <sup>3</sup> ) |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · //· · // · · // · · //                               |                                | 4          | 3.02                     | (1a) X       | 3.          | 67       | (2a) =      | 157.88                  | (38) |
| Total floor area TFA = (1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ı)+(1b)+(1c)+(1d)+(1e                                  | )+(1n)                         | ) 43       | 3.02                     | (4)          |             |          |             |                         | _    |
| Dwelling volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                |            |                          | (3a)+(3b)    | )+(3c)+(3d  | )+(3e)+  | .(3n) =     | 157.88                  | (5)  |
| 2. Ventilation rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        | _                              |            |                          |              |             |          |             | <u> </u>                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | main Se<br>heating h                                   | econdary<br>eating             | y          | other                    |              | total       |          |             | m <sup>3</sup> per hour |      |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 +                                                    | 0                              | +          | 0                        | ] = [        | 0           | x 4      | 40 =        | 0                       | (6a) |
| Number of open flues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 +                                                    | 0                              | ] + [      | 0                        | ] = [        | 0           | x 2      | 20 =        | 0                       | (6b) |
| Number of intermittent far                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ns                                                     |                                |            |                          | -<br>_       | 2           | x ^      | 10 =        | 20                      | (7a) |
| Number of passive vents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |                                |            |                          | Γ            | 0           | x ^      | 10 =        | 0                       | (7b) |
| Number of flueless gas fir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | es                                                     |                                |            |                          |              | 0           | x 4      | 40 =        | 0                       | (7c) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                |            |                          | L            |             |          |             |                         | 1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                |            |                          |              |             |          | Air ch      | anges per hou           | ır   |
| Infiltration due to chimney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s, flues and fans = $(63)$                             | a)+(6b)+(7a                    | a)+(7b)+(7 | 7c) =                    |              | 20          |          | ÷ (5) =     | 0.13                    | (8)  |
| If a pressurisation test has be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | en carried out or is intende                           | d, proceed                     | to (17), c | otherwise c              | continue fro | om (9) to ( | 16)      | i           |                         |      |
| Number of storeys in th<br>Additional infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e dweiling (ns)                                        |                                |            |                          |              |             | [(0)]    | 11v0 1 -    | 0                       | (9)  |
| Structural infiltration: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25 for steel or timber f                               | rame or                        | 0 35 for   | masonr                   | v constr     | uction      | [(9)-    | - 1jx0. i = | 0                       | (10) |
| if both types of wall are pre<br>deducting areas of opening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | esent, use the value corres<br>gs); if equal user 0.35 | conding to                     | the greate | er wall area             | a (after     | Gottori     |          |             | 0                       | ]()  |
| If suspended wooden fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oor, enter 0.2 (unseal                                 | ed) or 0.′                     | 1 (seale   | d), else                 | enter 0      |             |          |             | 0                       | (12) |
| If no draught lobby, ente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | er 0.05, else enter 0                                  |                                |            |                          |              |             |          |             | 0                       | (13) |
| Percentage of windows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and doors draught st                                   | ripped                         |            |                          |              |             |          |             | 0                       | (14) |
| Window infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                |            | 0.25 - [0.2              | x (14) ÷ 1   | = [00       |          |             | 0                       | (15) |
| Infiltration rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 11 1                                                |                                |            | (8) + (10) -             | + (11) + (1  | 2) + (13) + | - (15) = |             | 0                       | (16) |
| Air permeability value, o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150, expressed in cub                                  | IC metres<br>7) $\div$ 201+(8) | s per no   | ur per so<br>so (18) – ( | quare m      | etre of e   | nvelope  | area        | 10                      | (17) |
| Air permeability value applies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $r_{i}$ if a pressurisation test has                   | been done                      | e or a deo | iree air pei             | rmeability   | is heina us | sed      |             | 0.63                    | (18) |
| Number of sides on which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sheltered                                              |                                | o a a ag   | , ee all per             | mousing      | io boing ac | ,ou      |             | 0                       | (19) |
| Shelter factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                |            | (20) = 1 - [             | 0.075 x (1   | 9)] =       |          |             | 1                       | (20) |
| Infiltration rate incorporati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ng shelter factor                                      |                                |            | (21) = (18)              | x (20) =     |             |          |             | 0.63                    | (21) |
| Infiltration rate modified for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | or monthly wind speed                                  |                                |            |                          |              |             |          |             |                         | _    |
| Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mar Apr May                                            | Jun                            | Jul        | Aug                      | Sep          | Oct         | Nov      | Dec         |                         |      |
| Monthly average wind spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ed from Table 7                                        |                                |            |                          |              |             |          |             |                         |      |
| (22)m= 5.4 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.1 4.5 4.1                                            | 3.9                            | 3.7        | 3.7                      | 4.2          | 4.5         | 4.8      | 5.1         |                         |      |
| Wind Factor $(22a)m = (22a)m $ | 2)m ÷ 4                                                |                                |            |                          |              |             |          |             |                         |      |
| (22a)m= 1.35 1.27 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .27 1.12 1.02                                          | 0.98                           | 0.92       | 0.92                     | 1.05         | 1.12        | 1.2      | 1.27        |                         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | II                                                     |                                |            |                          |              |             |          | I           | I                       |      |

| Adjust                 | ed infiltra              | ation rat               | e (allowi                  | ng for sl                  | nelter an               | d wind s               | speed) =             | : (21a) x              | (22a)m                    |             |               |                       | _      |       |       |
|------------------------|--------------------------|-------------------------|----------------------------|----------------------------|-------------------------|------------------------|----------------------|------------------------|---------------------------|-------------|---------------|-----------------------|--------|-------|-------|
|                        | 0.85                     | 0.8                     | 0.8                        | 0.7                        | 0.64                    | 0.61                   | 0.58                 | 0.58                   | 0.66                      | 0.7         | 0.75          | 0.8                   |        |       |       |
| Calcul                 | ate etter                | ctive air               | change i<br>tion:          | rate for t                 | he appli                | cable ca               | se                   |                        |                           |             |               |                       |        |       |       |
| lf ovh                 |                          |                         | using Anne                 | andix N (2                 | (23a) – (23a            | a) × Emv (e            | acuation (I          | N5)) other             | nwise (23h                | ) – (23a)   |               |                       |        | U     |       |
| If bal                 | anced with               |                         | werv: effici               |                            | allowing f              | for in-use f           | actor (from          | n Table 4b             | ) –                       | ) – (200)   |               |                       |        | 0     |       |
|                        |                          | d moob                  |                            |                            |                         |                        |                      |                        | ) = (2)                   | 2b)m i (f   | 00h) v [      | 1 (22a)               | . 1001 | 0     | (23c) |
| a) II<br>(24a)m-       |                          |                         |                            | 0                          |                         |                        |                      |                        | $\frac{1}{1}$             |             |               | $\frac{1-(230)}{1-0}$ | ]<br>] |       | (24a) |
| (2-10)11-              |                          | d moch                  |                            | ntilation                  | without                 | boot roc               |                      | 1 °                    | $\int_{-\infty}^{\infty}$ |             | 22h)          | Ů                     | J      |       | ( )   |
| (24b)m-                |                          |                         |                            | 0                          |                         |                        |                      | 10)(240                |                           |             | 230)          | 0                     | 1      |       | (24b) |
| (2-10)III-             |                          |                         | tract ven                  | tilation                   |                         |                        | Ventilatio           | n from c               |                           | Ŭ           |               |                       | J      |       | (,    |
| 0) 11                  | if (22b)n                | n < 0.5 ×               | (23b), t                   | hen (24                    | c) = (23b               | b); other              | wise (24             | c) = (22k              | b) m + 0.                 | 5 × (23b    | )             |                       |        |       |       |
| (24c)m=                | 0                        | 0                       | 0                          | 0                          | 0                       | 0                      | 0                    | 0                      | 0                         | 0           | 0             | 0                     |        |       | (24c) |
| d) If                  | natural<br>if (22b)n     | ventilation = 1, th     | on or whe                  | ole hous<br>m = (221       | se positiv<br>o)m othe  | ve input<br>erwise (2  | ventilati<br>24d)m = | on from l<br>0.5 + [(2 | oft<br>2b)m² x            | 0.5]        |               | -                     | -      |       |       |
| (24d)m=                | 0.86                     | 0.82                    | 0.82                       | 0.75                       | 0.71                    | 0.69                   | 0.67                 | 0.67                   | 0.72                      | 0.75        | 0.78          | 0.82                  |        |       | (24d) |
| Effe                   | ctive air                | change                  | rate - en                  | iter (24a                  | ) or (24t               | ) or (24               | c) or (24            | ld) in boy             | (25)                      |             |               |                       | 1      |       |       |
| (25)m=                 | 0.86                     | 0.82                    | 0.82                       | 0.75                       | 0.71                    | 0.69                   | 0.67                 | 0.67                   | 0.72                      | 0.75        | 0.78          | 0.82                  |        |       | (25)  |
| 3 He                   | at losse                 | s and he                | eat loss r                 | aramet                     | ≏r·                     | •                      |                      | •                      | •                         |             |               | •                     | •      |       |       |
|                        |                          | Gros                    | ss.                        | Openin                     | as                      | Net Ar                 | ea                   | U-valı                 | Ie                        | ΑΧΠ         |               | k-value               | 2      | Δ)    | K k   |
|                        |                          | area                    | (m²)                       | m                          | 90<br>1 <sup>2</sup>    | A ,r                   | n²                   | W/m2                   | K                         | (W/I        | <b>&lt;</b> ) | kJ/m²·l               | K      | kJ/   | Ϋ́Κ   |
| Windo                  | ws Type                  | e 1                     |                            |                            |                         | 1.93                   | x1                   | /[1/( 2.4 )+           | 0.04] =                   | 4.23        |               |                       |        |       | (27)  |
| Windo                  | ws Type                  | 2                       |                            |                            |                         | 1.65                   | x1                   | /[1/( 1.2 )+           | 0.04] =                   | 1.89        |               |                       |        |       | (27)  |
| Windo                  | ws Type                  | 93                      |                            |                            |                         | 1.74                   | x1                   | /[1/( 1.2 )+           | 0.04] =                   | 1.99        |               |                       |        |       | (27)  |
| Walls <sup>-</sup>     | Type1                    | 79.4                    | 16                         | 7.25                       | ;                       | 72.21                  | I X                  | 0.17                   | =                         | 12.28       |               |                       |        |       | (29)  |
| Walls <sup>-</sup>     | Type2                    | 10.9                    | 96                         | 0                          |                         | 10.96                  | 6 X                  | 0.24                   | =                         | 2.59        |               |                       |        |       | (29)  |
| Walls <sup>-</sup>     | Туре3                    | 12.3                    | 32                         | 0                          |                         | 12.32                  | <u>2</u> x           | 0.39                   | =                         | 4.8         |               |                       |        |       | (29)  |
| Total a                | area of e                | lements                 | , m²                       |                            |                         | 102.74                 | 42                   |                        |                           |             |               |                       |        |       | (31)  |
| * for win<br>** incluc | dows and<br>le the area  | roof wind<br>as on both | ows, use e<br>sides of in  | ffective wi<br>ternal wal  | ndow U-va<br>Is and par | alue calcul<br>titions | ated using           | g formula 1            | /[(1/U-valu               | ıe)+0.04] a | is given in   | paragraph             | n 3.2  |       |       |
| Fabric                 | heat los                 | s, W/K                  | = S (A x                   | U)                         |                         |                        |                      | (26)(30)               | ) + (32) =                |             |               |                       | 3      | 32    | (33)  |
| Heat c                 | apacity                  | Cm = S(                 | (Axk)                      |                            |                         |                        |                      |                        | ((28)                     | .(30) + (32 | 2) + (32a)    | (32e) =               | 1056   | 3.619 | (34)  |
| Therm                  | al mass                  | parame                  | ter (TMF                   | <b>?</b> = Cm <del>.</del> | <del>:</del> TFA) ir    | n kJ/m²K               | ,                    |                        | Indica                    | tive Value: | Low           |                       | 1      | 00    | (35)  |
| For desi<br>can be ι   | ign assess<br>used inste | sments wh<br>ad of a de | ere the de<br>tailed calcu | tails of the<br>ılation.   | construct               | ion are noi            | t known pi           | recisely the           | e indicative              | values of   | TMP in T      | able 1f               |        |       |       |
| Therm                  | al bridge                | es : S (L               | x Y) cale                  | culated                    | using Ap                | pendix l               | K                    |                        |                           |             |               |                       | 15     | .41   | (36)  |
| if details             | of therma                | al bridging             | are not kn                 | own (36) =                 | = 0.15 x (3             | 1)                     |                      |                        |                           |             |               |                       |        |       | _     |
| Total f                | abric he                 | at loss                 |                            |                            |                         |                        |                      |                        | (33) +                    | (36) =      |               |                       | 47     | .41   | (37)  |
| Ventila                | ation hea                | at loss ca              | alculated                  | monthl                     | y<br>I                  | l .                    | <b>I</b>             |                        | (38)m                     | = 0.33 × (  | 25)m x (5     | )                     | 1      |       |       |
| (20)                   | Jan                      | Feb                     | Mar                        | Apr                        | May                     | Jun                    | Jul                  | Aug                    | Sep                       | Oct         | Nov           | Dec                   |        |       | (39)  |
| (38)m=                 | 44./                     | 42.68                   | 42.68                      | 39                         | 30.8                    | 35.78                  | 34.8                 | 34.8                   | 37.33                     | 39          | 40.78         | 42.68                 | J      |       | (30)  |
| Heat ti                | ransfer o                | coefficie               | nt, W/K                    | -                          | -                       |                        |                      | <u> </u>               | (39)m                     | = (37) + (3 | 38)m          |                       | 1      |       |       |
| (39)m=                 | 92.11                    | 90.09                   | 90.09                      | 86.41                      | 84.21                   | 83.19                  | 82.21                | 82.21                  | 84.74                     | 86.41       | 88.19         | 90.09                 |        |       |       |
|                        |                          |                         |                            |                            |                         |                        |                      |                        |                           | +verage =   | 5um(39)       | 12/12=                | 86     | .00   | (39)  |

| Heat lo                     | oss para                                       | ameter (H                                              | HLP), W                             | /m²K                                    |                                          |                                       |                            |                                                                                             | (40)m                 | = (39)m ÷                 | · (4)                                 |             |         |      |
|-----------------------------|------------------------------------------------|--------------------------------------------------------|-------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------|----------------------------|---------------------------------------------------------------------------------------------|-----------------------|---------------------------|---------------------------------------|-------------|---------|------|
| (40)m=                      | 2.14                                           | 2.09                                                   | 2.09                                | 2.01                                    | 1.96                                     | 1.93                                  | 1.91                       | 1.91                                                                                        | 1.97                  | 2.01                      | 2.05                                  | 2.09        |         |      |
| Numbe                       | er of day                                      | vs in mo                                               | nth (Tab                            | le 1a)                                  | •                                        |                                       | •                          | •                                                                                           |                       | Average =                 | Sum(40)1.                             | 12 /12=     | 2.01    | (40) |
| - tainio                    | Jan                                            | Feb                                                    | Mar                                 | Apr                                     | May                                      | Jun                                   | Jul                        | Aug                                                                                         | Sep                   | Oct                       | Nov                                   | Dec         |         |      |
| (41)m=                      | 31                                             | 28                                                     | 31                                  | 30                                      | 31                                       | 30                                    | 31                         | 31                                                                                          | 30                    | 31                        | 30                                    | 31          |         | (41) |
|                             |                                                |                                                        |                                     |                                         |                                          |                                       |                            |                                                                                             |                       |                           |                                       |             |         |      |
| 4. Wa                       | ater hea                                       | ting ene                                               | rgy requ                            | irement:                                |                                          |                                       |                            |                                                                                             |                       |                           |                                       | kWh/ye      | ear:    |      |
| Assum                       | ied occu<br>A > 13.                            | upancy,  <br>9, N = 1                                  | N<br>+ 1.76 x                       | (1 - exp                                | o(-0.0003                                | 349 x (TF                             | FA -13.9                   | )2)] + 0.(                                                                                  | )013 x ( <sup>-</sup> | TFA -13                   | 1.<br>.9)                             | 49          |         | (42) |
| Annua<br>Reduce<br>not more | A £ 13.<br>I averag<br>the annua<br>e that 125 | 9, IN = 1<br>ge hot wa<br>al average<br>5 litres per j | ater usag<br>hot water<br>person pe | ge in litre<br>usage by<br>r day (all w | es per da<br>5% if the c<br>vater use, l | ay Vd,av<br>Iwelling is<br>hot and co | erage =<br>designed<br>ld) | (25 x N)<br>to achieve                                                                      | + 36<br>a water us    | se target o               | 73<br>f                               | .22         |         | (43) |
|                             | Jan                                            | Feb                                                    | Mar                                 | Apr                                     | May                                      | Jun                                   | Jul                        | Aug                                                                                         | Sep                   | Oct                       | Nov                                   | Dec         |         |      |
| Hot wate                    | er usage i                                     | in litres per                                          | r day for ea                        | ach month                               | Vd,m = fa                                | ctor from                             | Table 1c x                 | (43)                                                                                        |                       |                           |                                       |             |         |      |
| (44)m=                      | 80.54                                          | 77.61                                                  | 74.68                               | 71.75                                   | 68.82                                    | 65.9                                  | 65.9                       | 68.82                                                                                       | 71.75                 | 74.68                     | 77.61                                 | 80.54       |         | _    |
| Enerav                      | content of                                     | f hot water                                            | used - cal                          | lculated m                              | onthlv = 4.                              | 190 x Vd.ı                            | m x nm x I                 | )<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>) | ) kWh/mor             | Total = Su<br>hth (see Ta | m(44) <sub>112</sub> =<br>ables 1b. 1 | =<br>c. 1d) | 878.61  | (44) |
| (45)m=                      | 119.72                                         | 104.71                                                 | 108.05                              | 94.2                                    | 90.39                                    | 78                                    | 72.28                      | 82.94                                                                                       | 83.93                 | 97.81                     | 106.77                                | 115.95      |         |      |
| ()                          |                                                |                                                        | 100100                              |                                         |                                          |                                       |                            | 02.01                                                                                       |                       | Total = Su                | m(45) <sub>112</sub> =                | =           | 1154.76 | (45) |
| lf instan                   | taneous v                                      | vater heati                                            | ng at point                         | t of use (ne                            | o hot water                              | r storage),                           | enter 0 in                 | boxes (46                                                                                   | ) to (61)             | -                         | -                                     |             |         |      |
| (46)m=                      | 17.96                                          | 15.71                                                  | 16.21                               | 14.13                                   | 13.56                                    | 11.7                                  | 10.84                      | 12.44                                                                                       | 12.59                 | 14.67                     | 16.02                                 | 17.39       |         | (46) |
| a) If m                     | anufact                                        | urer's de                                              | clared lo                           | oss facto                               | or is knov                               | vn (kWh                               | /dav):                     |                                                                                             |                       |                           |                                       | 0           |         | (47) |
| ,<br>Tempe                  | erature f                                      | actor fro                                              | m Table                             | 2b                                      |                                          | ,                                     | 57                         |                                                                                             |                       |                           |                                       | 0           |         | (48) |
| Energy                      | / lost fro                                     | om water                                               | r storage                           | e, kWh/y                                | ear                                      |                                       |                            | (47) x (48)                                                                                 | ) =                   |                           |                                       | 0           |         | (49) |
| If man                      | ufacture                                       | er's decla                                             | ared cylii                          | nder loss                               | s factor is                              | s not kno                             | own:                       |                                                                                             |                       |                           |                                       |             | 1       | (50) |
| lf.con                      | er volun                                       | ne (iltres                                             | ) INCludii<br>I no tank ir          | ng any s<br>a dwelling                  | olar stor                                | litres in bo                          | iin same                   | <b>;</b>                                                                                    |                       |                           |                                       | 0           |         | (50) |
| Othe                        | rwise if no                                    | stored ho                                              | ot water (th                        | is includes                             | instantan                                | eous com                              | bi boilers)                | enter '0' in                                                                                | box (50)              |                           |                                       |             |         |      |
| Hot wa                      | ater stor                                      | age loss                                               | factor fi                           | rom Tab                                 | le 2 (kW                                 | h/litre/da                            | ay)                        |                                                                                             |                       |                           |                                       | 0           |         | (51) |
| Volum                       | e factor                                       | from Ta                                                | ble 2a                              |                                         |                                          |                                       |                            |                                                                                             |                       |                           |                                       | 0           |         | (52) |
| Tempe                       | erature f                                      | actor fro                                              | m Table                             | 2b                                      |                                          |                                       |                            |                                                                                             |                       |                           |                                       | 0           |         | (53) |
| Energy                      | / lost fro                                     | om water                                               | r storage                           | e, kWh/y                                | ear                                      |                                       |                            | ((50) x (51                                                                                 | ) x (52) x            | (53) =                    |                                       | 0           |         | (54) |
| Enter (                     | (49) or (                                      | 54) in (5                                              | 5)                                  |                                         |                                          |                                       |                            |                                                                                             |                       |                           |                                       | 0           |         | (55) |
| Water                       | storage                                        | loss cal                                               | culated                             | for each                                | month                                    |                                       |                            | ((56)m = (                                                                                  | 55) × (41)            | m<br>I                    | 1                                     |             | I       |      |
| (56)m=                      | 0                                              | 0<br>s dodicato                                        | 0<br>d color sto                    | 0                                       | 0 = (56)m                                | 0                                     | 0                          | 0                                                                                           | $0_{7} = (56)$        |                           | 0                                     |             | iv Ll   | (56) |
|                             |                                                |                                                        |                                     |                                         |                                          | x [(30) – (                           | []] ÷ (3                   |                                                                                             | / )iii = (30)         |                           |                                       |             |         | (57) |
| (57)m=                      | 0                                              | 0                                                      | 0                                   | 0                                       | 0                                        | 0                                     | 0                          | 0                                                                                           | 0                     | 0                         | 0                                     | 0           |         | (57) |
| Primar<br>Primar            | y circuit<br>y circuit                         | t loss (ar<br>t loss cal<br>, factor fi                | nnual) fro<br>lculated              | om Table<br>for each                    | e 3<br>month (                           | 59)m = (                              | (58) ÷ 36                  | 65 × (41)                                                                                   | m                     | r thormo                  | (                                     | 0           |         | (58) |
| (1100<br>(59)m=             |                                                |                                                        |                                     |                                         | 0                                        |                                       |                            |                                                                                             |                       |                           | 0                                     | 0           |         | (59) |
| Combi                       |                                                |                                                        | for each                            |                                         | 1                                        | (60) <u>·</u> ?                       | 1<br>35 v (11              | )m                                                                                          | I                     | 1                         | 1                                     | I           | l       |      |
| (61)m=                      | 41.04                                          | 35.72                                                  | 38.06                               | 35.39                                   | 35.07                                    | 32.5                                  | 33.58                      | 35.07                                                                                       | 35.39                 | 38.06                     | 38.27                                 | 41.04       |         | (61) |
| ()=                         |                                                | 1                                                      | 1                                   | 1                                       | 1                                        | L                                     | 1                          | 1 20.07                                                                                     |                       | 1                         | L                                     |             |         | . /  |

| (e2)me         160.77         140.43         140.11         129.58         125.46         110.5         105.86         118.01         119.32         135.87         145.04         156.89         (e2)           Solar JEWI input calculated using Appendix G × Appendix H (negative quarter) (refer V f no solar contribution to water heating)         (dad additional lines if FCHRS and/or WWHS applies, see Appendix G)         (Ga)me         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total h                                                                                                                                                                                                                                                                             | eat req               | uired for            | water         | he           | ating ca   | alculate | d fo     | r eac      | h month     | (62)       | m =     | 0.85 × (      | 45)m      | ı +  | (46)m +       | (57)   | m +    | (59)m + (61)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |     |     |     |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|---------------|--------------|------------|----------|----------|------------|-------------|------------|---------|---------------|-----------|------|---------------|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|-----|-----|------|
| Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0 if no solar contribution to water heating) <ul> <li>(add additional lines if FGHRS and/or WWHRS applies, see Appendix G)</li> <li>(ci)</li> <li>(ci)<td>(62)m=</td><td>160.77</td><td>140.43</td><td>146.11</td><td></td><td>129.59</td><td>125.46</td><td>1</td><td>10.5</td><td>105.86</td><td>118</td><td>.01</td><td>119.32</td><td>135.</td><td>87</td><td>145.04</td><td>156</td><td>6.99</td><td></td><td>(62)</td></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (62)m=                                                                                                                                                                                                                                                                              | 160.77                | 140.43               | 146.11        |              | 129.59     | 125.46   | 1        | 10.5       | 105.86      | 118        | .01     | 119.32        | 135.      | 87   | 145.04        | 156    | 6.99   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (62)          |     |     |     |      |
| (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)       (G3)       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Solar DH                                                                                                                                                                                                                                                                            | -<br>W input          | calculated           | using Ap      | ppe          | ndix G or  | Appendi  | хH       | (negati    | ve quantity | /) (ent    | ter '0' | if no solar   | r contr   | ibut | ion to wate   | er hea | ating) | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |     |     |     |      |
| (e3)m=         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>(add ad</td> <td>dditiona</td> <td>l lines if</td> <td>FGHR</td> <td>Sa</td> <td>and/or V</td> <td>VWHR</td> <td>S ap</td> <td>plies</td> <td>, see Ap</td> <td>pend</td> <td>dix G</td> <td>G)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (add ad                                                                                                                                                                                                                                                                             | dditiona              | l lines if           | FGHR          | Sa           | and/or V   | VWHR     | S ap     | plies      | , see Ap    | pend       | dix G   | G)            |           |      |               |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |     |     |     |      |
| Output from water heater         (64)me         160.77         140.43         146.11         129.59         125.46         110.5         105.86         118.01         119.32         126.87         145.04         156.99         (64)m           Heat gains from water heating. kWh/month 0.25 x [0.85 x (45)m + (61)m] + 0.8 x ((46)m + (57)m + (59)m]         (65)m         50.07         43.75         45.44         40.17         38.82         34.06         32.43         65.3         36.75         42.04         45.07         48.84         (65)m           include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating         50.07         43.87         49.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (63)m=                                                                                                                                                                                                                                                                              | 0                     | 0                    | 0             |              | 0          | 0        |          | 0          | 0           | C          | )       | 0             | 0         |      | 0             | (      | C      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (63)          |     |     |     |      |
| (64)me       160.77       140.43       146.11       129.59       125.46       110.5       105.86       118.01       119.32       135.87       145.04       159.99          0.00put from water heating, kWh/month 0.25 x (0.85 x (45)m + (61)m] + 0.8 x (146)m + (57)m + (59)m]       (64)          50.07       43.75       44.4       40.17       38.82       34.08       32.35       36.75       42.04       45.07       48.81       (65)          50.07       43.75       44.4       40.17       38.82       34.08       32.35       87.75       42.04       45.07       48.81       (65)          6(57)m       incalude (657)m in calculation of (65m only if cylinder is in the dwelling or hot water is from community heating       5       110.5       110.5       110.5       110.5       110.5       110.5       110.5       110.5       140.4       159.932       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32 <td>Output</td> <td>from w</td> <td>ater hea</td> <td>ter</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Output                                                                                                                                                                                                                                                                              | from w                | ater hea             | ter           |              |            |          | -        |            |             |            | -       |               |           |      | -             |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |     |     |     |      |
| Output from water heating, kWh/month 0.25 x (0.85 x (45)m + (61)m] + 0.8 x [(46)m + (57)m + (59)m]           (86)m=         50.07         43.75         45.44         40.17         38.82         34.06         32.43         36.35         36.75         42.04         45.07         46.81         (65)           include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating         5         1         1         A.83         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32         89.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (64)m=                                                                                                                                                                                                                                                                              | 160.77                | 140.43               | 146.11        |              | 129.59     | 125.46   | 1        | 10.5       | 105.86      | 118        | .01     | 119.32        | 135.      | 87   | 145.04        | 156    | 6.99   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |     |     |     |      |
| Heat gains from water heating, kWh/month $0.25 \times [0.85 \times (45)m + (61)m] + 0.8 \times [(46)m + (57)m + (59)m]$<br>(66)m $0.07$ 43.75 45.44 40.17 33.82 34.06 32.43 38.35 36.75 42.04 45.07 48.81 (65)<br>include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating<br><b>5. Internal gains (see Table 5 and 52):</b><br>Metabolic gains (Table 5). Wats<br>(66)m $93.32$ 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32 88.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I                                                                                                                                                                                                                                                                                   |                       |                      |               |              |            |          |          |            |             |            | Outp    | out from wa   | ater he   | ate  | r (annual)    | 12     |        | 1593.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (64)          |     |     |     |      |
| (85)m=       50.07       43.75       45.44       40.17       38.82       34.08       32.43       36.35       36.75       42.04       45.07       48.81       (65)         include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Heat g                                                                                                                                                                                                                                                                              | ains fro              | m water              | heating       | g, I         | kWh/mo     | onth 0.2 | 25 x     | [0.85      | 5 × (45)m   | 1 + (6     | 61)m    | n] + 0.8 x    | < [(46    | 5)m  | + (57)m       | + (5   | 59)m   | 1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |     |     |     |      |
| include (67)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating<br><b>5.</b> Internal gains (see Table 5 and 5a):<br>Metabolic gains (Table 5), Watts<br><u>Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec</u><br>(66)m 89.32 89.32 89.32 89.32 89.32 89.32 89.32 89.32 89.32 89.32 89.32 89.32 89.32 89.32 (66)<br>Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5<br>(67)m $53.68 31.7 25.78 19.52 14.59 12.32 13.31 17.3 23.22 29.49 34.41 36.69 Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m 192.83 194.83 189.79 179.05 166.5 152.77 144.26 142.28 147.3 158.04 171.59 184.32 (68) Cooking gains (calculated in Appendix L, equation L13 or L15a), also see Table 5 (69)m 45.42 45.42 45.42 45.42 45.42 45.42 45.42 45.42 45.42 45.42 45.42 45.42 (69) Pumps and fans gains (Table 5a) (70)m (10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (65)m=                                                                                                                                                                                                                                                                              | 50.07                 | 43.75                | 45.44         | Τ            | 40.17      | 38.82    | 3        | 4.06       | 32.43       | 36.        | 35      | 36.75         | 42.0      | )4   | 45.07         | 48.    | .81    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (65)          |     |     |     |      |
| 5. Internal gains (see Table 5 and 5a):         Metabolic gains (Table 5), Watts         (66)m=       Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec         (66)m=       99.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32       89.32 </td <td>inclu</td> <td>ide (57)</td> <td>m in calo</td> <td>ulatior</td> <td>10</td> <td>f (65)m</td> <td>only if</td> <td>cylii</td> <td>nder i</td> <td>s in the o</td> <td>dwell</td> <td>ling</td> <td>or hot w</td> <td>ater i</td> <td>s fr</td> <td>rom com</td> <td>mun</td> <td>ity h</td> <td>eating</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | inclu                                                                                                                                                                                                                                                                               | ide (57)              | m in calo            | ulatior       | 10           | f (65)m    | only if  | cylii    | nder i     | s in the o  | dwell      | ling    | or hot w      | ater i    | s fr | rom com       | mun    | ity h  | eating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |     |     |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5. Int                                                                                                                                                                                                                                                                              | ernal da              | ains (see            | a Table       | 5            | and 5a     | ):       |          |            |             |            | Ū       |               |           |      |               |        |        | , in the second s |               |     |     |     |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Motob                                                                                                                                                                                                                                                                               |                       | c (Toblo             | 5) \//        | -++ <i>c</i> |            |          |          |            |             |            |         |               |           |      |               |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |     |     |     |      |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Melabl                                                                                                                                                                                                                                                                              | Jan                   | Feb                  | , 5), Wa      |              | Apr        | Mav      | Т        | Jun        | Jul         | A          | ua      | Sep           | 0         | ct   | Nov           | D      | ec     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |     |     |     |      |
| Lighting gains (calculated in Appendix L, equation L 9 or L9a), also see Table 5<br>(67) m= $35.69$ $31.7$ $25.78$ $19.52$ $14.59$ $12.32$ $13.31$ $17.3$ $23.22$ $29.49$ $34.41$ $36.69$ (67)<br>Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5<br>(68) m= $192.83$ $194.83$ $189.79$ $179.05$ $165.5$ $152.77$ $144.26$ $142.26$ $147.3$ $158.04$ $171.59$ $184.32$ (68)<br>Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5<br>(69) m= $45.42$ $45.42$ $45.42$ $45.42$ $45.42$ $45.42$ $45.42$ $45.42$ $45.42$ $45.42$ $45.42$ $45.42$ (69)<br>Pumps and fans gains (Table 5a)<br>(70) m= $10$ $10$ $10$ $10$ $10$ $10$ $10$ $10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (66)m=                                                                                                                                                                                                                                                                              | 89.32                 | 89.32                | 89.32         | ╈            | 89.32      | 89.32    | ξ        | 9.32       | 89.32       | 89.        | 32      | 89.32         | 89.3      | 32   | 89.32         | 89.    | .32    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (66)          |     |     |     |      |
| $ \begin{array}{c} \mbox{(a)} \end{tabular} tabula$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Liahtin                                                                                                                                                                                                                                                                             | n dains               | (calcula             | L<br>ted in A | -L<br>\ni    | pendix     | equa     | tion     | 190        | riga)a      | l<br>Iso s |         | Lable 5       |           |      |               |        |        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |     |     |     |      |
| Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5<br>(68)me 192.83 194.83 198.979 179.05 165.5 152.77 144.26 142.26 147.3 158.04 171.59 184.32 (68)<br>Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5<br>(69)me 45.42 45.42 45.42 45.42 45.42 45.42 45.42 45.42 45.42 45.42 45.42 45.42 (69)<br>Pumps and fans gains (Table 5a)<br>(70)me 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (67)m=                                                                                                                                                                                                                                                                              | 35.69                 | 31.7                 | 25.78         |              | 19.52      | 14.59    |          | 2.32       | 13.31       | 17         | .3      | 23.22         | 29.4      | 19   | 34.41         | 36.    | .69    | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (67)          |     |     |     |      |
| $ \begin{array}{c} \text{(a)} \text{(b)} \text$ | Annliar                                                                                                                                                                                                                                                                             |                       | ine (calc            | hatelu        | <br>in       | Annend     |          |          | tion       | 13 or 1 1   | 3a)        | معاد    |               |           | -    | -             |        |        | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |     |     |     |      |
| $\begin{array}{c} \mbox{(c)} \mbox{(c)} & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (68)m-                                                                                                                                                                                                                                                                              | 102.83                | 104.83               | 180 70        |              | 179 05     | 165 5    |          | 52 77      | 144.26      | 5a),       | 26      | 147 3         | 158       | 04   | 171 59        | 18/    | 132    | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (68)          |     |     |     |      |
| Cooking gains (calculated in Appendix L, equation L15 of L15a), also see Table 5<br>(69) $= 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.42 + 45.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                     | 102.00                | (22/21/2             |               | <u>^</u>     |            | 100.0    | <u> </u> |            |             |            |         |               | - 100.    |      | 171.00        | 104    | 1.52   | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (00)          |     |     |     |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COOKIN                                                                                                                                                                                                                                                                              |                       |                      |               | чр<br>Т      |            | L, equa  |          | 1 L 15     |             | ), ais     |         |               | 5<br>45 / | 10   | 45.40         | 45     | 40     | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (60)          |     |     |     |      |
| Pumps and fans gains (1 able 5a)         (70)m=       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <th <="" colspan="4" td=""><td>(69)m=</td><td>45.42</td><td>40.42</td><td>45.42</td><td>Ţ</td><td>40.42</td><td>40.42</td><td></td><td>-0.4Z</td><td>40.42</td><td>45.</td><td>42</td><td>40.42</td><td>45.4</td><td>+2</td><td>45.42</td><td>45.</td><td>.42</td><td>l l</td><td>(03)</td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <td>(69)m=</td> <td>45.42</td> <td>40.42</td> <td>45.42</td> <td>Ţ</td> <td>40.42</td> <td>40.42</td> <td></td> <td>-0.4Z</td> <td>40.42</td> <td>45.</td> <td>42</td> <td>40.42</td> <td>45.4</td> <td>+2</td> <td>45.42</td> <td>45.</td> <td>.42</td> <td>l l</td> <td>(03)</td> |                       |                      |               | (69)m=       | 45.42      | 40.42    | 45.42    | Ţ          | 40.42       | 40.42      |         | -0.4Z         | 40.42     | 45.  | 42            | 40.42  | 45.4   | +2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45.42         | 45. | .42 | l l | (03) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pumps                                                                                                                                                                                                                                                                               | s and fai             | ns gains             |               | 5            | a)         | 10       | 1        | 40         | 10          |            |         | 40            | 4.0       |      | 10            |        | 0      | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ( <b>70</b> ) |     |     |     |      |
| Losses e.g. evaporation (negative values) (Table 5)<br>(71) m= $\frac{-59.55}{-59.55} \frac{-59.55}{-59.55} \frac{-59.55}{-59.5} \frac{-59.55}{-59.5} \frac{-59.55}{-59.5} \frac{-59.55}{-59.5} -59.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (70)m=                                                                                                                                                                                                                                                                              | 10                    | 10                   | 10            |              | 10         | 10       |          | 10         | 10          | 1          | 0       | 10            | 10        | )    | 10            | 1      | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (70)          |     |     |     |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Losses                                                                                                                                                                                                                                                                              | s e.g. ev             | aporatio             | on (neg       | ati          | ve valu    | es) (Tal | ble      | 5)         |             | i —        |         |               |           |      | i             |        |        | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |     |     |     |      |
| Water heating gains (Table 5)       (72)m= $67.3$ $65.1$ $61.08$ $55.79$ $52.18$ $47.3$ $43.59$ $48.85$ $51.05$ $56.5$ $62.6$ $65.61$ (72)         Total internal gains =       ( $66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m$ (73)m= $381.02$ $376.83$ $361.85$ $339.56$ $317.47$ $297.59$ $286.35$ $293.61$ $306.76$ $329.22$ $357.99$ $371.81$ (73)         6. Solar gains         Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.         Orientation: Access Factor Area m <sup>2</sup> Flux g $g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (71)m=                                                                                                                                                                                                                                                                              | -59.55                | -59.55               | -59.55        |              | -59.55     | -59.55   |          | 59.55      | -59.55      | -59        | .55     | -59.55        | -59.      | 55   | -59.55        | -59    | .55    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (71)          |     |     |     |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water                                                                                                                                                                                                                                                                               | heating               | gains (T             | able 5        | )            |            |          | _        |            |             |            |         |               |           |      |               |        |        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |     |     |     |      |
| Total internal gains = $(66)m + (67)m + (68)m + (70)m + (71)m + (72)m$ (73)m=       381.02       376.83       361.85       339.56       317.47       297.59       286.35       293.61       306.76       329.22       353.79       371.81       (73)         6. Solar gains         Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.       Orientation: Access Factor       Area       Flux       g_       FF       Gains         Orientation:       Access Factor       Area       Flux       g_       FF       Gains       (W)         Southeast $0.9x$ $0.77$ x $1.93$ x $37.39$ x $0.76$ x $0.7$ = $90.7$ $(77)$ Southeast $0.9x$ $0.77$ x $1.93$ x $84.22$ x $0.76$ x $0.7$ = $119.85$ $(77)$ Southeast $0.9x$ $0.77$ x $1.93$ x $103.49$ $x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (72)m=                                                                                                                                                                                                                                                                              | 67.3                  | 65.1                 | 61.08         |              | 55.79      | 52.18    |          | 47.3       | 43.59       | 48.        | 85      | 51.05         | 56.       | 5    | 62.6          | 65.    | .61    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (72)          |     |     |     |      |
| (73)m=       381.02       376.83       361.85       339.56       317.47       297.59       286.35       293.61       306.76       329.22       353.79       371.81       (73)         6. Solar gains:       Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.       Area       Flux       g_       FF       Gains         Orientation:       Access Factor Table 6d       Area       Flux       g_       Table 6b       Table 6c       (W)         Southeast 0.9x       0.77       x       1.93       x       37.39       x       0.76       x       0.7       =       53.21       (77)         Southeast 0.9x       0.77       x       1.93       x       37.39       x       0.76       x       0.7       =       53.21       (77)         Southeast 0.9x       0.77       x       1.93       x       63.74       x       0.76       x       0.7       =       119.85       (77)         Southeast 0.9x       0.77       x       1.93       x       103.49       x       0.76       x       0.7       =       147.27       (77)         Southeast 0.9x       0.77       x       1.93       x </td <td>Total i</td> <td>nternal</td> <td>gains =</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(66)</td> <td>m + (67)m</td> <td>n + (68</td> <td>3)m +</td> <td>- (69)m + (</td> <td>70)m</td> <td>+ (7</td> <td>'1)m + (72)</td> <td>m</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total i                                                                                                                                                                                                                                                                             | nternal               | gains =              |               |              |            |          |          | (66)       | m + (67)m   | n + (68    | 3)m +   | - (69)m + (   | 70)m      | + (7 | '1)m + (72)   | m      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |     |     |     |      |
| 6. Solar gains:Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.Orientation:Access Factor<br>Table 6dArea<br>m²Flux<br>Table 6a $g_{-}$<br>Table 6bFF<br>Table 6cGains<br>(W)Southeast 0.9x0.77×1.93×37.39×0.76×0.77=53.21(77)Southeast 0.9x0.77×1.93×63.74×0.76×0.77=90.7(77)Southeast 0.9x0.77×1.93×84.22×0.76×0.77=119.85(77)Southeast 0.9x0.77×1.93×103.49×0.76×0.77=147.27(77)Southeast 0.9x0.77×1.93×113.34×0.76×0.77=161.29(77)Southeast 0.9x0.77×1.93×115.04×0.76×0.77=163.72(77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (73)m=                                                                                                                                                                                                                                                                              | 381.02                | 376.83               | 361.85        | ;            | 339.56     | 317.47   | 2        | 97.59      | 286.35      | 293        | .61     | 306.76        | 329.      | 22   | 353.79        | 371    | .81    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (73)          |     |     |     |      |
| Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.Orientation:Access Factor<br>Table 6dArea<br>m²Flux<br>Table 6a $g_{-}$<br>Table 6bFF<br>Table 6bGains<br>(W)Southeast 0.9x0.77x1.93x37.39x0.76x0.7=53.21(77)Southeast 0.9x0.77x1.93x63.74x0.76x0.7=90.7(77)Southeast 0.9x0.77x1.93x84.22x0.76x0.7=119.85(77)Southeast 0.9x0.77x1.93x103.49x0.76x0.7=147.27(77)Southeast 0.9x0.77x1.93x113.34x0.76x0.7=161.29(77)Southeast 0.9x0.77x1.93x115.04x0.76x0.7=163.72(77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6. Sol                                                                                                                                                                                                                                                                              | lar gains             | 8:                   |               |              |            |          |          |            |             |            |         |               |           |      |               |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |     |     |     |      |
| Orientation:Access Factor<br>Table 6dArea<br>m²Flux<br>Table 6a $g_{-}$<br>Table 6bFF<br>Table 6cGains<br>(W)Southeast $_{0.9x}$ $0.77$ x $1.93$ x $37.39$ x $0.76$ x $0.7$ = $53.21$ $(77)$ Southeast $_{0.9x}$ $0.77$ x $1.93$ x $63.74$ x $0.76$ x $0.7$ = $90.7$ $(77)$ Southeast $_{0.9x}$ $0.77$ x $1.93$ x $63.74$ x $0.76$ x $0.7$ = $90.7$ $(77)$ Southeast $_{0.9x}$ $0.77$ x $1.93$ x $84.22$ x $0.76$ x $0.7$ = $119.85$ $(77)$ Southeast $_{0.9x}$ $0.77$ x $1.93$ x $103.49$ x $0.76$ x $0.7$ = $147.27$ $(77)$ Southeast $_{0.9x}$ $0.77$ x $1.93$ x $113.34$ x $0.76$ x $0.7$ = $161.29$ $(77)$ Southeast $_{0.9x}$ $0.77$ x $1.93$ x $115.04$ x $0.76$ x $0.7$ = $163.72$ $(77)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Solar g                                                                                                                                                                                                                                                                             | ains are o            | alculated            | using so      | lar          | flux from  | Table 6a | and      | assoc      | iated equa  | tions      | to co   | nvert to th   | e appl    | icat | ole orientat  | ion.   |        | <b>.</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |     |     |     |      |
| Southeast $0.9x$ $0.77$ x $1.93$ x $37.39$ x $0.76$ x $0.7$ = $53.21$ $(77)$ Southeast $0.9x$ $0.77$ x $1.93$ x $63.74$ x $0.76$ x $0.7$ = $90.7$ $(77)$ Southeast $0.9x$ $0.77$ x $1.93$ x $84.22$ x $0.76$ x $0.7$ = $119.85$ $(77)$ Southeast $0.9x$ $0.77$ x $1.93$ x $103.49$ x $0.76$ x $0.7$ = $147.27$ $(77)$ Southeast $0.9x$ $0.77$ x $1.93$ x $113.34$ x $0.76$ x $0.7$ = $161.29$ $(77)$ Southeast $0.9x$ $0.77$ x $1.93$ x $115.04$ x $0.76$ x $0.7$ = $163.72$ $(77)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Orienta                                                                                                                                                                                                                                                                             | ation: A              | Access F<br>Fable 6d | actor         |              | Area<br>m² |          |          | Flu<br>Tal | x<br>ble 6a |            | Т       | g_<br>able 6b |           | Т    | FF<br>able 6c |        |        | Gains<br>(W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |     |     |     |      |
| Southeast $0.9x$ $0.77$ x $1.93$ x $63.74$ x $0.76$ x $0.7$ = $90.7$ $(77)$ Southeast $0.9x$ $0.77$ x $1.93$ x $84.22$ x $0.76$ x $0.7$ = $119.85$ $(77)$ Southeast $0.9x$ $0.77$ x $1.93$ x $103.49$ x $0.76$ x $0.7$ = $147.27$ $(77)$ Southeast $0.9x$ $0.77$ x $1.93$ x $113.34$ x $0.76$ x $0.7$ = $161.29$ $(77)$ Southeast $0.9x$ $0.77$ x $1.93$ x $115.04$ x $0.76$ x $0.7$ = $163.72$ $(77)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Southea                                                                                                                                                                                                                                                                             | ast <mark>0.9x</mark> | 0.77                 |               | x            | 1.9        | 3        | x        | 3          | 37.39       | x          |         | 0.76          | X         | Γ    | 0.7           |        | =      | 53.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (77)          |     |     |     |      |
| Southeast $0.9x$ $0.77$ x $1.93$ x $84.22$ x $0.76$ x $0.7$ = $119.85$ $(77)$ Southeast $0.9x$ $0.77$ x $1.93$ x $103.49$ x $0.76$ x $0.7$ = $147.27$ $(77)$ Southeast $0.9x$ $0.77$ x $1.93$ x $113.34$ x $0.76$ x $0.7$ = $161.29$ $(77)$ Southeast $0.9x$ $0.77$ x $1.93$ x $115.04$ x $0.76$ x $0.7$ = $163.72$ $(77)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Southea                                                                                                                                                                                                                                                                             | ast <mark>0.9x</mark> | 0.77                 |               | x            | 1.9        | 3        | x        | 6          | 63.74       | x          |         | 0.76          | ×         | Γ    | 0.7           |        | =      | 90.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (77)          |     |     |     |      |
| Southeast $0.9x$ $0.77$ x $1.93$ x $103.49$ x $0.76$ x $0.7$ = $147.27$ $(77)$ Southeast $0.9x$ $0.77$ x $1.93$ x $113.34$ x $0.76$ x $0.7$ = $161.29$ $(77)$ Southeast $0.9x$ $0.77$ x $1.93$ x $115.04$ x $0.76$ x $0.7$ = $163.72$ $(77)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Southea                                                                                                                                                                                                                                                                             | ast <mark>0.9x</mark> | 0.77                 |               | x            | 1.9        | 3        | x        | 8          | 34.22       | ×          |         | 0.76          | ۲<br>× آ  | Ē    | 0.7           |        | =      | 119.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (77)          |     |     |     |      |
| Southeast $0.9x$ $0.77$ x $1.93$ x $113.34$ x $0.76$ x $0.7$ = $161.29$ $(77)$ Southeast $0.9x$ $0.77$ x $1.93$ x $115.04$ x $0.76$ x $0.7$ = $163.72$ $(77)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Southea                                                                                                                                                                                                                                                                             | ast <mark>0.9x</mark> | 0.77                 |               | x            | 1.9        | 3        | x        | 1          | 03.49       | x          |         | 0.76          | ۲ ×       | F    | 0.7           |        | =      | 147.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (77)          |     |     |     |      |
| Southeast $0.9x$ 0.77 x 1.93 x 115.04 x 0.76 x 0.7 = 163.72 (77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Southea                                                                                                                                                                                                                                                                             | ast <mark>0.9x</mark> | 0.77                 |               | x            | 1.9        | 3        | x        | 1          | 13.34       | ×          |         | 0.76          | ۲×        | F    | 0.7           | ╡      | =      | 161.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (77)          |     |     |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Southea                                                                                                                                                                                                                                                                             | ast <mark>0.9x</mark> | 0.77                 |               | x            | 1.9        | 3        | x        | 1          | 15.04       | ×          |         | 0.76          | ۲, ۲      | F    | 0.7           |        | =      | 163.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>](77)    |     |     |     |      |
| Southeast 0.9x 0.77 x 1.93 x 112.79 x 0.76 x 0.7 = 160.51 (77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Southea                                                                                                                                                                                                                                                                             | ast <mark>0.9x</mark> | 0.77                 |               | x            | 1.9        | 3        | x        | 1          | 12.79       | ×          |         | 0.76          | ۲, ۲      | F    | 0.7           | =      | =      | 160.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>(77)     |     |     |     |      |
| Southeast 0.9x 0.77 x 1.93 x 105.34 x 0.76 x 0.7 = 149.91 (77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Southea                                                                                                                                                                                                                                                                             | ast <mark>0.9x</mark> | 0.77                 |               | x            | 1.9        | 3        | x        | 1          | 05.34       | ×          |         | 0.76          | ۲ ×       | F    | 0.7           | =      | =      | 149.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (77)          |     |     |     |      |

| Southea  | ast <mark>0.9x</mark> | 0.77      | ;        | •        | 1.9                    | 3       | x             | 9      | 92.9      | x      |                   | 0.76    | x      | 0.7      | -          | - [           | 132.2  | (77) |
|----------|-----------------------|-----------|----------|----------|------------------------|---------|---------------|--------|-----------|--------|-------------------|---------|--------|----------|------------|---------------|--------|------|
| Southea  | ast <mark>0.9x</mark> | 0.77      | ;        | (        | 1.9                    | 3       | x             | 7      | 2.36      | x      |                   | 0.76    | ×      | 0.7      | <b>—</b> . | - [           | 102.98 | (77) |
| Southea  | ast <mark>0.9x</mark> | 0.77      | ;        | (        | 1.9                    | 3       | x             | 4      | 4.83      | x      |                   | 0.76    | ×      | 0.7      | <b>—</b> . | - [           | 63.79  | (77) |
| Southea  | ast <mark>0.9x</mark> | 0.77      | ;        | •        | 1.9                    | 3       | x             | 3      | 31.95     | x      |                   | 0.76    | ×      | 0.7      | -          | - [           | 45.47  | (77) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | ;        | <b>(</b> | 1.6                    | 5       | x             | 1      | 1.51      | x      |                   | 0.63    | ×      | 0.7      | -          | - [           | 5.8    | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | 3        | <b>(</b> | 1.7                    | 4       | x             | 1      | 1.51      | x      |                   | 0.63    | ×      | 0.7      |            | - [           | 6.12   | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | ;        | •        | 1.6                    | 5       | x             | 2      | 23.55     | x      |                   | 0.63    | ×      | 0.7      | -          | - [           | 11.88  | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | ;        | •        | 1.7                    | 4       | x             | 2      | 23.55     | x      |                   | 0.63    | ×      | 0.7      | -          | - [           | 12.53  | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | 2        | •        | 1.6                    | 5       | x             | 4      | 1.13      | x      |                   | 0.63    | x      | 0.7      |            | - [           | 20.74  | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | ;        | •        | 1.7                    | 4       | x             | 4      | 1.13      | x      |                   | 0.63    | ×      | 0.7      | -          | - [           | 21.87  | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | ;        | •        | 1.6                    | 5       | x             |        | 67.8      | x      |                   | 0.63    | x      | 0.7      |            | - [           | 34.19  | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | ;        | •        | 1.7                    | 4       | x             |        | 67.8      | x      |                   | 0.63    | ×      | 0.7      |            | - [           | 36.05  | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | ;        | •        | 1.6                    | 5       | x             | 8      | 89.77     | x      |                   | 0.63    | ×      | 0.7      | -          | - [           | 45.27  | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | ;        | •        | 1.7                    | 4       | x             | 8      | 39.77     | x      |                   | 0.63    | ×      | 0.7      | -          | - [           | 47.73  | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | 2        | •        | 1.6                    | 5       | x             |        | 97.5      | x      |                   | 0.63    | ×      | 0.7      | :          | = [           | 49.17  | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | ;        | •        | 1.7                    | 4       | x             |        | 97.5      | x      |                   | 0.63    | ×      | 0.7      | -          | - [           | 51.85  | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | ;        | •        | 1.6                    | 5       | x             | 9      | 2.98      | x      |                   | 0.63    | ×      | 0.7      | -          | - [           | 46.89  | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | 3        | •        | 1.7                    | 4       | x             | g      | 2.98      | x      |                   | 0.63    | ×      | 0.7      | -          | - [           | 49.44  | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | ;        | •        | 1.6                    | 5       | x             | 7      | 75.42     | x      |                   | 0.63    | ×      | 0.7      | -          | - [           | 38.03  | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | ;        | •        | 1.7                    | 4       | x             | 7      | 75.42     | x      |                   | 0.63    | ×      | 0.7      | -          | - [           | 40.1   | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | 2        | •        | 1.6                    | 5       | x             | 5      | 51.24     | x      |                   | 0.63    | ×      | 0.7      | :          | - [           | 25.84  | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | ,        | <b>(</b> | 1.7                    | 4       | x             | 5      | 51.24     | x      |                   | 0.63    | ×      | 0.7      | -          | - [           | 27.25  | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | 3        | •        | 1.6                    | 5       | x             | :      | 29.6      | x      |                   | 0.63    | ×      | 0.7      | =          | = [           | 14.93  | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | 2        | •        | 1.7                    | 4       | x             | :      | 29.6      | x      |                   | 0.63    | ×      | 0.7      | :          | - [           | 15.74  | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | 2        | •        | 1.6                    | 5       | x             | 1      | 4.52      | x      |                   | 0.63    | ×      | 0.7      | -          | - [           | 7.32   | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | 2        | •        | 1.7                    | 4       | x             | 1      | 4.52      | x      |                   | 0.63    | x      | 0.7      | -          | = [           | 7.72   | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | 2        | <b>(</b> | 1.6                    | 5       | x             |        | 9.36      | x      |                   | 0.63    | ×      | 0.7      | -          | - [           | 4.72   | (81) |
| Northwe  | est <mark>0.9x</mark> | 0.77      | 2        | <b>(</b> | 1.7                    | 4       | x             |        | 9.36      | x      |                   | 0.63    | x      | 0.7      | -          | = [           | 4.98   | (81) |
|          |                       |           |          |          |                        |         |               |        |           |        |                   |         |        |          |            |               |        |      |
| Solar g  | ains in               | watts, ca | alculate | d        | for each               | n mont  | h<br>L        |        |           | (83)m  | 1 = SI            | um(74)m | .(82)m |          |            | _             |        | (00) |
| (83)m=   | 65.13                 | 115.1     | 162.46   |          | $\frac{217.51}{(94)m}$ | 254.29  | $\frac{1}{2}$ | 64.73  | 256.84    | 228    | .04               | 185.29  | 133.6  | 4 78.84  | 55.17      | <b>^</b>      |        | (83) |
| (84)m-   | ans – n               |           |          | T        | (04)III =              | 571 76  | + (           | 62 22  | , waits   | 521    | 65                | 402.06  | 162.9  | 6 422.62 | 426.0      | 。             |        | (84) |
| (04)111= | 440.15                | 491.95    | 524.5    | 1        | 557.07                 | 571.70  | 13            | 02.32  | 545.19    | 521    | .05               | 492.00  | 402.0  | 432.03   | 420.9      | 0             |        | (04) |
| 7. Me    | an inter              | nal temp  | perature | ) (      | heating                | seaso   | n)            |        | (         | - 1- 0 | The               | 4 (90)  |        |          |            | Г             |        |      |
| I emp    | erature               | auring r  | eating   | pe       | erioas in              |         | 'ing          | area   | from Tar  | ole 9  | , in <sup>.</sup> | 1 (°C)  |        |          |            |               | 21     | (85) |
| Utilisa  | ation fac             | tor for g | ains for | T        | ving are               | a, h1,r | n (s<br>. T   |        | ible 9a)  |        |                   | Con     | 0.00   | Nev      |            |               |        |      |
| (86)m-   | Jan                   |           |          | ╉        | Apr                    | 0.76    |               |        | Jui       |        | ug<br>1           | 5ep     |        |          |            | C             |        | (86) |
|          | 0.93                  | 0.91      | 0.00     | 1        | 0.04                   |         |               | 0.04   |           |        |                   | 0.71    | 0.04   | 0.91     | 0.93       |               |        | (00) |
| Mean     | interna               | l temper  | ature ir | n li     | ving are               | ea T1 ( | follo         | w ste  | ps 3 to 7 | 7 in T |                   | e 9c)   | 40.45  | 40.04    | 4          | $\overline{}$ |        | (07) |
| (87)m=   | 17.6                  | 17.9      | 18.45    |          | 19.1                   | 19.87   |               | 20.44  | 20.78     | 20.    | (1                | 20.29   | 19.42  | 18.34    | 17.72      | <u> </u>      |        | (07) |
| Temp     | erature               | during h  | eating   | pe       | eriods in              | rest o  | f dw          | elling | from Ta   | able 9 | 9, Tł             | n2 (°C) |        |          |            | _             |        | 1    |
| (88)m=   | 19.25                 | 19.28     | 19.28    | 1        | 19.33                  | 19.37   | 1             | 9.38   | 19.4      | 19     | .4                | 19.36   | 19.33  | 19.31    | 19.28      | 3             |        | (88) |

| Utilisa | ation fac  | tor for g  | ains for   | rest of d    | welling,                                   | h2,m (se   | e Table              | 9a)         |            |                |                         |             |         |       |
|---------|------------|------------|------------|--------------|--------------------------------------------|------------|----------------------|-------------|------------|----------------|-------------------------|-------------|---------|-------|
| (89)m=  | 0.91       | 0.89       | 0.86       | 0.8          | 0.7                                        | 0.54       | 0.34                 | 0.35        | 0.61       | 0.8            | 0.89                    | 0.91        |         | (89)  |
| Mean    | n interna  | l temper   | ature in   | the rest     | of dwelli                                  | ing T2 (f  | ollow ste            | eps 3 to 7  | 7 in Tabl  | e 9c)          |                         |             |         |       |
| (90)m=  | 16.32      | 16.64      | 17.18      | 17.83        | 18.57                                      | 19.08      | 19.33                | 19.33       | 18.95      | 18.16          | 17.1                    | 16.46       |         | (90)  |
|         |            |            |            | -            |                                            |            |                      |             | f          | iLA = Livin    | g area ÷ (4             | 4) =        | 0.46    | (91)  |
| Mear    | n interna  | l temper   | ature (fo  | or the wh    | ole dwe                                    | llina) = f | LA x T1              | + (1 – fL   | A) × T2    |                |                         |             |         | _     |
| (92)m=  | 16.91      | 17.22      | 17.77      | 18.42        | 19.17                                      | 19.71      | 20                   | 20          | ,<br>19.57 | 18.74          | 17.67                   | 17.04       |         | (92)  |
| Apply   | / adjustr  | nent to t  | he mear    | n interna    | l temper                                   | ature fro  | m Table              | 4e, whe     | ere appro  | opriate        |                         |             |         |       |
| (93)m=  | 16.91      | 17.22      | 17.77      | 18.42        | 19.17                                      | 19.71      | 20                   | 20          | 19.57      | 18.74          | 17.67                   | 17.04       |         | (93)  |
| 8. Sp   | ace hea    | ting req   | uiremen    | t            |                                            |            |                      |             |            |                |                         |             |         |       |
| Set T   | i to the i | mean int   | ternal te  | mperatu      | re obtair                                  | ned at st  | ep 11 of             | Table 9     | o, so tha  | t Ti,m=(       | 76)m an                 | d re-calc   | ulate   |       |
| the ut  | tilisation | factor fo  | or gains   | using Ta     | able 9a                                    |            |                      |             |            | -              |                         | _           |         |       |
|         | Jan        | Feb        | Mar        | Apr          | May                                        | Jun        | Jul                  | Aug         | Sep        | Oct            | Nov                     | Dec         |         |       |
| Utilisa | ation fac  | tor for g  | ains, hr   | 1:<br>1 o 70 | 0.00                                       | 0.57       | 0.44                 | 0.40        | 0.00       | 0.70           | 0.00                    |             |         | (04)  |
| (94)m=  | 0.89       | 0.87       | 0.83       | 0.78         | 0.69                                       | 0.57       | 0.41                 | 0.42        | 0.63       | 0.78           | 0.86                    | 0.89        |         | (94)  |
| Useru   | JI gains,  | nmGm       | , VV = (9) | 4)m x (8-    | 4)m                                        | 219.61     | 001.00               | 249.59      | 200 72     | 250.49         | 272.47                  | 270.64      |         | (05)  |
| (95)m=  | 395.71     | 420.00     | 435.40     | 435.06       | 395.40                                     | able 9     | 221.02               | 216.56      | 308.73     | 339.46         | 373.17                  | 379.01      |         | (33)  |
|         | niy aver   |            |            |              |                                            |            | 16.0                 | 16.0        | 14.2       | 10.9           | 7                       | 4.0         |         | (96)  |
| Heat    | loss rate  | for me     | an interr  |              |                                            | lm W -     | -[(30)m              | v [(93)m    | - (96)m    | 1              | 1                       | 4.9         |         | (00)  |
| (97)m=  | 1143 39    | 1101.3     | 988 14     | 839.67       | 629.18                                     | 425.31     | 255 23               | 254 61      | 446.55     | 686.33         | 941 29                  | 1093 77     |         | (97)  |
| Snac    | e heatin   | a requir   | ement fo   | r each n     | $\int \frac{d^2 - d^2}{d^2 - d^2} d^2 d^2$ | Wh/mon     | $\frac{1}{1} = 0.02$ | 24 x [(97)  | )m – (95   | )ml x (4       | 1)m                     | 1000.11     |         | ()    |
| (98)m=  | 556.28     | 453.9      | 411.19     | 291.3        | 173.89                                     |            |                      |             |            | 243.18         | 409.05                  | 531.34      |         |       |
|         |            | Į          | ļ          | I            | Į                                          | I          |                      | I<br>Tota   | l per vear | l<br>(kWh/veai | .) = Sum(9              | 8)1.59.12 = | 3070.13 | (98)  |
| Snoo    | o hootin   | a roquir   | omont in   | k\//b/m      | Woor                                       |            |                      |             |            | (              | ,(-                     | - ,         | 74.07   |       |
| Spac    | eneaun     | g require  | ementin    |              | year                                       |            |                      |             |            |                |                         | l           | /1.3/   | (99)  |
| 9a. En  | ergy rec   | quiremer   | nts – Ind  | ividual h    | eating s                                   | ystems i   | ncluding             | ı micro-C   | CHP)       |                |                         |             |         |       |
| Spac    | e heatii   | <b>1g:</b> | t from a   | ooondor      | v/ounnio                                   | montor     | watam                |             |            |                |                         | 1           |         |       |
|         | . ,        |            |            |              | y/supple                                   | ementary   | system               | (000) 4     | (204)      |                |                         |             | 0       |       |
| Fract   | ion of sp  | bace hea   | at from n  | nain syst    | em(s)                                      |            |                      | (202) = 1 - | - (201) =  |                |                         |             | 1       | (202) |
| Fract   | ion of to  | tal heati  | ng from    | main sys     | stem 1                                     |            |                      | (204) = (2  | 02) × [1 – | (203)] =       |                         |             | 1       | (204) |
| Efficie | ency of    | main spa   | ace heat   | ting syste   | em 1                                       |            |                      |             |            |                |                         |             | 92.6    | (206) |
| Efficie | ency of s  | seconda    | ry/suppl   | ementar      | y heatin                                   | g systen   | n, %                 |             |            |                |                         |             | 0       | (208) |
|         | Jan        | Feb        | Mar        | Apr          | May                                        | Jun        | Jul                  | Aug         | Sep        | Oct            | Nov                     | Dec         | kWh/ye  | ar    |
| Spac    | e heatin   | g require  | ement (c   | alculate     | d above                                    | )          |                      | <u> </u>    | · ·        |                |                         |             | ,       |       |
|         | 556.28     | 453.9      | 411.19     | 291.3        | 173.89                                     | 0          | 0                    | 0           | 0          | 243.18         | 409.05                  | 531.34      |         |       |
| (211)n  | n = {[(98  | )m x (20   | )4)] + (2′ | 10)m } x     | 100 ÷ (2                                   | 206)       | •                    |             |            |                |                         |             |         | (211) |
| ( )     | 600.73     | 490.17     | 444.05     | 314.58       | 187.79                                     | 0          | 0                    | 0           | 0          | 262.61         | 441.74                  | 573.8       |         |       |
|         |            | ļ          | ļ          | 1            | ļ                                          | I          |                      | Tota        | l (kWh/yea | ar) =Sum(2     | 211) <sub>15,1012</sub> |             | 3315.47 | (211) |
| Spac    | e heatin   | a fuel (s  | econdar    | v). kWh/     | month                                      |            |                      |             |            |                |                         | l           |         |       |
| = {[(98 | s)m x (20  | )1)] + (2  | 14) m } ;  | x 100 ÷ (    | 208)                                       |            |                      |             |            |                |                         |             |         |       |
| (215)m= | 0          | 0          | 0          | 0            | 0                                          | 0          | 0                    | 0           | 0          | 0              | 0                       | 0           |         |       |
|         |            |            | •          | •            |                                            | •          | •                    | Tota        | l (kWh/yea | ar) =Sum(2     | 215) <sub>15,1012</sub> | =           | 0       | (215) |
|         |            |            |            |              |                                            |            |                      |             |            |                |                         |             |         |       |

#### Water heating

| Output                                                          | from w                                        | ater hea            | ter (calc               | ulated a  | oove)    |                   |                          | _          |                                |                         |                        |                      | -                          |                |
|-----------------------------------------------------------------|-----------------------------------------------|---------------------|-------------------------|-----------|----------|-------------------|--------------------------|------------|--------------------------------|-------------------------|------------------------|----------------------|----------------------------|----------------|
|                                                                 | 160.77                                        | 140.43              | 146.11                  | 129.59    | 125.46   | 110.5             | 105.86                   | 5 118.01   | 119.32                         | 135.87                  | 145.04                 | 156.99               |                            | _              |
| Efficier                                                        | ncy of w                                      | ater hea            | iter                    |           |          |                   |                          |            |                                |                         |                        |                      | 79.5                       | (216)          |
| (217)m=                                                         | 87.12                                         | 86.99               | 86.71                   | 86.23     | 85.07    | 79.5              | 79.5                     | 79.5       | 79.5                           | 85.7                    | 86.72                  | 87.08                |                            | (217)          |
| Fuel fo                                                         | or water $(64)$                               | heating,<br>m x 100 | kWh/mo<br>(217) ∸ (217) | onth<br>m |          |                   |                          |            |                                |                         |                        |                      |                            |                |
| (219)m=                                                         | 184.54                                        | 161.44              | 168.5                   | 150.29    | 147.48   | 138.99            | 133.15                   | 5 148.44   | 150.08                         | 158.55                  | 167.26                 | 180.29               | ]                          |                |
|                                                                 |                                               |                     |                         |           |          |                   |                          | Tota       | al = Sum(2                     | 19a) <sub>112</sub> =   | _                      |                      | 1889.01                    | (219)          |
| Annual totals kWh/year                                          |                                               |                     |                         |           |          |                   |                          |            |                                |                         | kWh/year               | -                    |                            |                |
| Space                                                           | heating                                       | fuel use            | ed, main                | system    | 1        |                   |                          |            |                                |                         |                        |                      | 3315.47                    | ]              |
| Water                                                           | heating                                       | fuel use            | d                       |           |          |                   |                          |            |                                |                         |                        |                      | 1889.01                    |                |
| Electric                                                        | city for p                                    | oumps, f            | ans and                 | electric  | keep-ho  | t                 |                          |            |                                |                         |                        |                      |                            |                |
| centra                                                          | al heatin                                     | g pump              | :                       |           |          |                   |                          |            |                                |                         |                        | 130                  |                            | (230c)         |
| boiler with a fan-assisted flue                                 |                                               |                     |                         |           |          |                   |                          |            |                                |                         | 45                     | ]                    | (230e)                     |                |
| Total electricity for the above, kWh/year sum of (230a)(230g) = |                                               |                     |                         |           |          |                   |                          |            | 175                            | (231)                   |                        |                      |                            |                |
| Electric                                                        | city for li                                   | ghting              |                         |           |          |                   |                          |            |                                |                         |                        |                      | 252.15                     | (232)          |
| 10a. I                                                          | -<br>uel cos                                  | ts - indiv          | vidual he               | ating sy  | stems:   |                   |                          |            |                                |                         |                        |                      |                            | _              |
|                                                                 |                                               |                     |                         |           |          | Fu<br>kW          | <b>el</b><br>/h/yea      | r          |                                | <b>Fuel P</b><br>(Table | <b>Price</b><br>12)    |                      | <b>Fuel Cost</b><br>£/year |                |
| Space                                                           | heating                                       | - main s            | system 1                |           |          | (21               | 1) x                     |            |                                | 3.                      | 1                      | x 0.01 =             | 102.7797                   | (240)          |
| Space                                                           | heating                                       | - main s            | system 2                | 2         |          | (21:              | 3) x                     |            |                                | 0                       | )                      | x 0.01 =             | 0                          | (241)          |
| Space                                                           | heating                                       | - secon             | dary                    |           |          | (21               | 5) x                     |            |                                | 0                       | )                      | x 0.01 =             | 0                          | (242)          |
| Water                                                           | heating                                       | cost (otl           | her fuel)               |           |          | (219              | 9)                       |            |                                | 3.                      | 1                      | x 0.01 =             | 58.56                      | (247)          |
| Pumps, fans and electric keep-hot                               |                                               |                     |                         |           |          | (23               | 1)                       |            |                                | 11.                     | 46                     | x 0.01 =             | 20.06                      | (249)          |
| (if off-p<br>Energy                                             | eak tari<br>/ for ligh                        | ff, list ea<br>ting | ach of (2               | 30a) to ( | 230g) se | eparately<br>(232 | / as ap<br><sup>2)</sup> | plicable a | and apply                      | y fuel pri              | <u>ce acco</u> i<br>46 | rding to<br>x 0.01 = | Table 12a<br>28.9          | (250)          |
| Additio                                                         | nal star                                      | iding cha           | arges (T                | able 12)  |          |                   |                          |            |                                |                         |                        |                      | 106                        | (251)          |
| Annon                                                           | div O ita                                     | ma: ran             | oot linoo               | (252) 0   | ad (251) | 00 000            | dod                      |            |                                |                         |                        |                      |                            | -              |
| Total                                                           | energ                                         | y cost              | eatimes                 | (200) al  | (245)(   | 247) + (25        | 50)(254                  | 4) =       |                                |                         |                        |                      | 316.2903                   | (255)          |
| 11a. S                                                          | SAP rati                                      | ng - indi           | vidual he               | eating sy | vstems   |                   |                          |            |                                |                         |                        |                      |                            | -              |
| Enera                                                           | / cost de                                     | eflator (T          | able 12                 |           |          |                   |                          |            |                                |                         |                        |                      | 0.47                       | <b>1</b> (256) |
| Energy                                                          | / cost fa                                     | ctor (EC            | :F)                     |           | [(255) x | (256)] ÷ [(       | (4) + 45.0               | D] =       |                                |                         |                        |                      | 1 6889                     | (257)          |
| SAP ra                                                          | ating (S                                      | ection 1            | 2)                      |           |          |                   |                          |            |                                |                         |                        |                      | 76.4399                    | (258)          |
| 12a. (                                                          | CO2 em                                        | issions -           | – Individ               | ual heati | ng syste | ms inclu          | uding n                  | nicro-CHF  | C                              |                         |                        |                      |                            | -4             |
|                                                                 | Energy Emission factor<br>kWh/year kg CO2/kWh |                     |                         |           |          |                   |                          |            | <b>Emissions</b><br>kg CO2/yea | ır                      |                        |                      |                            |                |
| Space                                                           | heating                                       | (main s             | ystem 1)                | )         |          | (21               | 1) x                     |            |                                | 0.1                     | 98                     | =                    | 656.46                     | (261)          |

| Space heating (secondary)                                                                                                                                                                                                   | (215) x                                                                                                                       | 0                                                                         | =           | 0                                                                                       | (263)                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Water heating                                                                                                                                                                                                               | (219) x                                                                                                                       | 0.198                                                                     | =           | 374.02                                                                                  | (264)                                                       |
| Space and water heating                                                                                                                                                                                                     | (261) + (262) + (263) + (264) =                                                                                               | =                                                                         |             | 1030.49                                                                                 | (265)                                                       |
| Electricity for pumps, fans and electric keep-hot                                                                                                                                                                           | (231) x                                                                                                                       | 0.517                                                                     | =           | 90.48                                                                                   | (267)                                                       |
| Electricity for lighting                                                                                                                                                                                                    | (232) x                                                                                                                       | 0.517                                                                     | =           | 130.36                                                                                  | (268)                                                       |
| Total CO2, kg/year                                                                                                                                                                                                          | SL                                                                                                                            | ım of (265)(271) =                                                        |             | 1251.32                                                                                 | (272)                                                       |
| CO2 emissions per m <sup>2</sup>                                                                                                                                                                                            | (2                                                                                                                            | 72) ÷ (4) =                                                               |             | 29.09                                                                                   | (273)                                                       |
| El rating (section 14)                                                                                                                                                                                                      |                                                                                                                               |                                                                           |             | 81                                                                                      | (274)                                                       |
| 13a. Primary Energy                                                                                                                                                                                                         |                                                                                                                               |                                                                           |             |                                                                                         |                                                             |
|                                                                                                                                                                                                                             |                                                                                                                               |                                                                           |             |                                                                                         |                                                             |
|                                                                                                                                                                                                                             | <b>Energy</b><br>kWh/year                                                                                                     | <b>Primary</b><br>factor                                                  |             | <b>P. Energy</b><br>kWh/year                                                            |                                                             |
| Space heating (main system 1)                                                                                                                                                                                               | Energy<br>kWh/year<br>(211) x                                                                                                 | Primary<br>factor                                                         | =           | P. Energy<br>kWh/year<br>3381.78                                                        | (261)                                                       |
| Space heating (main system 1)<br>Space heating (secondary)                                                                                                                                                                  | Energy<br>kWh/year<br>(211) x<br>(215) x                                                                                      | Primary<br>factor<br>1.02<br>0                                            | =           | P. Energy<br>kWh/year<br>3381.78                                                        | (261)                                                       |
| Space heating (main system 1)<br>Space heating (secondary)<br>Energy for water heating                                                                                                                                      | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x                                                                           | Primary<br>factor<br>1.02<br>0<br>1.02                                    | =<br>=      | P. Energy<br>kWh/year<br>3381.78<br>0<br>1926.79                                        | )(261)<br>)(263)<br>)(264)                                  |
| Space heating (main system 1)<br>Space heating (secondary)<br>Energy for water heating<br>Space and water heating                                                                                                           | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x<br>(219) x<br>(261) + (262) + (263) + (264) =                             | Primary<br>factor<br>1.02<br>0<br>1.02                                    | =<br>=      | P. Energy<br>kWh/year<br>3381.78<br>0<br>1926.79<br>5308.57                             | )(261)<br>(263)<br>(264)<br>(265)                           |
| Space heating (main system 1)<br>Space heating (secondary)<br>Energy for water heating<br>Space and water heating<br>Electricity for pumps, fans and electric keep-hot                                                      | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264) =<br>(231) x                             | Primary<br>factor<br>1.02<br>0<br>1.02                                    | =<br>=<br>= | P. Energy<br>kWh/year<br>3381.78<br>0<br>1926.79<br>5308.57<br>511                      | (261)<br>(263)<br>(264)<br>(265)<br>(267)                   |
| Space heating (main system 1)<br>Space heating (secondary)<br>Energy for water heating<br>Space and water heating<br>Electricity for pumps, fans and electric keep-hot<br>Electricity for lighting                          | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x<br>(219) x<br>(261) + (262) + (263) + (264) =<br>(231) x<br>(232) x       | Primary<br>factor<br>1.02<br>0<br>1.02<br>2.92<br>0                       | -           | P. Energy<br>kWh/year<br>3381.78<br>0<br>1926.79<br>5308.57<br>511<br>736.27            | (261)<br>(263)<br>(264)<br>(265)<br>(267)<br>(268)          |
| Space heating (main system 1)<br>Space heating (secondary)<br>Energy for water heating<br>Space and water heating<br>Electricity for pumps, fans and electric keep-hot<br>Electricity for lighting<br>'Total Primary Energy | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264) =<br>(231) x<br>(232) x<br>Su | Primary<br>factor<br>1.02<br>0<br>1.02<br>2.92<br>0<br>um of (265)(271) = | -           | P. Energy<br>kWh/year<br>3381.78<br>0<br>1926.79<br>5308.57<br>511<br>736.27<br>6555.85 | (261)<br>(263)<br>(264)<br>(265)<br>(267)<br>(268)<br>(272) |

| User Details:                                                                                                                                                                                      |                                                         |                                                 |                  |              |             |                       |                         |                                   |      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|------------------|--------------|-------------|-----------------------|-------------------------|-----------------------------------|------|--|
| Assessor Name:<br>Software Name:                                                                                                                                                                   | Test User<br>Stroma FSAP 2009                           | Stroma Number: STRC<br>Software Version: Versio |                  |              |             |                       | )000000<br>on: 1.5.0.74 |                                   |      |  |
|                                                                                                                                                                                                    |                                                         | Proper                                          | ty Address       | First flo    | or existi   | ng                    |                         |                                   |      |  |
| Address :                                                                                                                                                                                          |                                                         |                                                 |                  |              |             |                       |                         |                                   |      |  |
| 1. Overall dwelling dimer                                                                                                                                                                          | nsions:                                                 |                                                 |                  |              |             |                       |                         |                                   |      |  |
| Ground floor                                                                                                                                                                                       |                                                         | A                                               | rea(m²)<br>43.02 | (1a) x       | Ave He      | i <b>ght(m)</b><br>67 | (2a) =                  | Volume(m <sup>3</sup> )<br>157.88 | (3a) |  |
| Total floor area TFA = (1a                                                                                                                                                                         | )+(1b)+(1c)+(1d)+(1e)                                   | +(1n)                                           | 43.02            | (4)          |             |                       |                         |                                   |      |  |
| Dwelling volume                                                                                                                                                                                    |                                                         |                                                 |                  | (3a)+(3b)    | +(3c)+(3d   | )+(3e)+               | .(3n) =                 | 157.88                            | (5)  |  |
| 2. Ventilation rate:                                                                                                                                                                               |                                                         | _                                               |                  |              | _           |                       |                         |                                   |      |  |
|                                                                                                                                                                                                    | main Se<br>heating he                                   | econdary<br>eating                              | other            |              | total       |                       |                         | m <sup>3</sup> per hour           | •    |  |
| Number of chimneys                                                                                                                                                                                 |                                                         | 0 +                                             | 0                | ] = [        | 0           | x 4                   | 40 =                    | 0                                 | (6a) |  |
| Number of open flues                                                                                                                                                                               | 0 +                                                     | 0 +                                             | 0                | ] = [        | 0           | x2                    | 20 =                    | 0                                 | (6b) |  |
| Number of intermittent fan                                                                                                                                                                         | s                                                       |                                                 |                  |              | 2           | x ^                   | 10 =                    | 20                                | (7a) |  |
| Number of passive vents                                                                                                                                                                            |                                                         |                                                 |                  |              | 0           | x ^                   | 10 =                    | 0                                 | (7b) |  |
| Number of flueless gas fire                                                                                                                                                                        | es                                                      |                                                 |                  | Г            | 0           | x 4                   | 40 =                    | 0                                 | (7c) |  |
|                                                                                                                                                                                                    |                                                         |                                                 |                  | L            |             |                       |                         |                                   | _]   |  |
|                                                                                                                                                                                                    |                                                         |                                                 |                  |              |             |                       | Air ch                  | anges per ho                      | ur   |  |
| Infiltration due to chimney                                                                                                                                                                        | s, flues and fans = $(6a)$                              | )+(6b)+(7a)+(7t                                 | o)+(7c) =        |              | 20          |                       | ÷ (5) =                 | 0.13                              | (8)  |  |
| It a pressurisation test has be<br>Number of storeys in the                                                                                                                                        | en carried out or is intended<br>a dwalling (ns)        | a, proceed to (1                                | 7), otnerwise (  | continue fro | om (9) to ( | 16)                   |                         | 0                                 |      |  |
| Additional infiltration                                                                                                                                                                            | o awoning (no)                                          |                                                 |                  |              |             | [(9)-                 | -1]x0.1 =               | 0                                 | (10) |  |
| Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction                                                                                                           |                                                         |                                                 |                  |              |             |                       |                         |                                   | (11) |  |
| if both types of wall are pre<br>deducting areas of opening                                                                                                                                        | esent, use the value corresp<br>gs); if equal user 0.35 | oonding to the g                                | reater wall are  | a (after     |             |                       |                         |                                   | _    |  |
| If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0                                                                                                                      |                                                         |                                                 |                  |              |             |                       |                         | 0                                 | (12) |  |
| If no draught lobby, ente                                                                                                                                                                          | er 0.05, else enter 0                                   |                                                 |                  |              |             |                       |                         | 0                                 | (13) |  |
| Percentage of windows and doors draught stripped                                                                                                                                                   |                                                         |                                                 |                  |              |             |                       |                         | 0                                 | (14) |  |
| Window infiltration                                                                                                                                                                                | (8) + (10)                                              | x (14) ÷ 1                                      | 0                | (15)         |             |                       |                         |                                   |      |  |
| Inflitration rate $(8) + (10) + (11) + (12) + (13) + (15) =$                                                                                                                                       |                                                         |                                                 |                  |              |             |                       |                         | 0                                 | (16) |  |
| An permeability value, goo, expressed in cubic metres per nour per square metre or envelope area<br>If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ otherwise $(18) = (16)$ |                                                         |                                                 |                  |              |             |                       |                         | 10                                | (17) |  |
| Air permeability value applies                                                                                                                                                                     | if a pressurisation test has                            | been done or a                                  | degree air pe    | rmeability i | is being us | sed                   |                         | 0.03                              |      |  |
| Number of sides on which                                                                                                                                                                           | sheltered                                               |                                                 | 0,               |              | 0           |                       |                         | 0                                 | (19) |  |
| Shelter factor                                                                                                                                                                                     | (20) = 1 -                                              | [0.075 x (1                                     | 1                | (20)         |             |                       |                         |                                   |      |  |
| Infiltration rate incorporation                                                                                                                                                                    | (21) = (18                                              | ) x (20) =                                      | 0.63             | (21)         |             |                       |                         |                                   |      |  |
| Infiltration rate modified fo                                                                                                                                                                      | r monthly wind speed                                    |                                                 |                  |              |             |                       |                         |                                   |      |  |
| Jan Feb M                                                                                                                                                                                          | Mar Apr May                                             | Jun Ju                                          | I Aug            | Sep          | Oct         | Nov                   | Dec                     |                                   |      |  |
| Monthly average wind spe                                                                                                                                                                           | ed from Table 7                                         |                                                 |                  |              |             |                       |                         |                                   |      |  |
| (22)m= 5.4 5.1 5                                                                                                                                                                                   | 5.1 4.5 4.1                                             | 3.9 3.7                                         | 3.7              | 4.2          | 4.5         | 4.8                   | 5.1                     |                                   |      |  |
| Wind Factor (22a)m = (22                                                                                                                                                                           | )m ÷ 4                                                  |                                                 |                  |              |             |                       |                         |                                   |      |  |
| (22a)m= 1.35 1.27 1                                                                                                                                                                                | .27 1.12 1.02                                           | 0.98 0.9                                        | 2 0.92           | 1.05         | 1.12        | 1.2                   | 1.27                    |                                   |      |  |
|                                                                                                                                                                                                    |                                                         |                                                 |                  |              |             |                       |                         |                                   |      |  |
| Adjust                 | ed infiltra             | ation rat               | e (allowi                 | ng for sh                 | nelter an                | d wind s               | speed) =         | : (21a) x      | (22a)m                    |               |             |                     | _      |       |       |
|------------------------|-------------------------|-------------------------|---------------------------|---------------------------|--------------------------|------------------------|------------------|----------------|---------------------------|---------------|-------------|---------------------|--------|-------|-------|
|                        | 0.85                    | 0.8                     | 0.8                       | 0.7                       | 0.64                     | 0.61                   | 0.58             | 0.58           | 0.66                      | 0.7           | 0.75        | 0.8                 |        |       |       |
| Calcul                 | ate ettec               | ctive air               | change i<br>tion:         | rate for t                | he appli                 | cable ca               | se               |                |                           |               |             |                     |        |       |       |
| lf exh                 | aust air he             |                         | using Appe                | ndix N (2                 | <sup>1</sup> 3h) - (23a  | a) x Emv (e            | equation (I      | N5)) othe      | rwise (23h                | ) – (23a)     |             |                     |        | 0     |       |
| lf bal                 | anced with              | heat reco               | werv: effici              | iency in %                | allowing f               | for in-use f           | actor (fron      | n Table 4b     | ) –                       | ) = (20u)     |             |                     |        | 0     |       |
| a) If                  | halance                 | d mach                  | anical ve                 |                           | with he                  | at recove              |                  |                | y = (2)                   | 2b)m ± (      | 23P) ^ [    | 1 _ (23c)           | · 1001 | 0     | (230) |
| (24a)m=                |                         |                         |                           | 0                         |                          |                        |                  |                |                           |               |             | $\frac{1-(200)}{0}$ | <br>   |       | (24a) |
| (,)                    | halance                 | d mech                  | anical ve                 | ntilation                 | without                  | heat rec               |                  | 1<br>MV/) (24h | $\int_{-\infty}^{\infty}$ | $\frac{1}{2}$ | 23h)        | ů                   | J      |       | . ,   |
| (24b)m=                | 0                       |                         |                           | 0                         |                          |                        |                  |                | 0                         |               | 0           | 0                   | 1      |       | (24b) |
| c) If                  | whole h                 |                         | tract ven                 | tilation                  | n nositiv                |                        | Ventilatio       | n from c       |                           |               |             |                     | J      |       |       |
| 0) 11                  | if (22b)n               | י < 0.5 א<br>ו < 0.5 א  | (23b), t                  | hen (24                   | c) = (23b                | b); other              | vise (24         | c) = (22k      | o) m + 0.                 | .5 × (23b     | ))          |                     |        |       |       |
| (24c)m=                | 0                       | 0                       | 0                         | 0                         | 0                        | 0                      | 0                | 0              | 0                         | 0             | 0           | 0                   |        |       | (24c) |
| d) If                  | natural                 | ventilatio              | on or wh                  | ole hous                  | se positiv               | ve input               | ventilatio       | on from l      | oft                       |               |             |                     | 1      |       |       |
|                        | if (22b)n               | n = 1, th               | en (24d)                  | m = (22l                  | b)m othe                 | erwise (2              | 24d)m =          | 0.5 + [(2      | 2b)m² x                   | 0.5]          |             |                     |        |       |       |
| (24d)m=                | 0.86                    | 0.82                    | 0.82                      | 0.75                      | 0.71                     | 0.69                   | 0.67             | 0.67           | 0.72                      | 0.75          | 0.78        | 0.82                | J      |       | (24d) |
| Effe                   | ctive air               | change                  | rate - en                 | ter (24a                  | ) or (24b                | o) or (24              | c) or (24        | ld) in boy     | (25)                      |               |             |                     |        |       |       |
| (25)m=                 | 0.86                    | 0.82                    | 0.82                      | 0.75                      | 0.71                     | 0.69                   | 0.67             | 0.67           | 0.72                      | 0.75          | 0.78        | 0.82                |        |       | (25)  |
| 3. He                  | at losse                | s and he                | eat loss p                | paramet                   | er:                      |                        |                  |                |                           |               |             |                     |        |       |       |
| ELEN                   | IENT                    | Gros                    | SS                        | Openin                    | igs                      | Net Ar                 | ea               | U-valu         | Je                        | AXU           |             | k-value             | e      | A )   | Xk    |
|                        |                         | area                    | (m²)                      | rr                        | <sup>2</sup>             | A ,r                   | m²               | W/m2           | K,                        | (W/I          | K)          | kJ/m²∙l             | K      | kJ/   | /K    |
| Windo                  | ws Type                 | e 1                     |                           |                           |                          | 1.93                   | x1               | /[1/( 1.6 )+   | 0.04] =                   | 2.9           |             |                     |        |       | (27)  |
| Windo                  | ws Type                 | 2                       |                           |                           |                          | 1.65                   | x1               | /[1/( 1.6 )+   | 0.04] =                   | 2.48          |             |                     |        |       | (27)  |
| Windo                  | ws Type                 | 93                      |                           |                           |                          | 1.74                   | x1               | /[1/( 1.6 )+   | 0.04] =                   | 2.62          |             |                     |        |       | (27)  |
| Walls -                | Type1                   | 79.4                    | ł6                        | 7.25                      | 5                        | 72.21                  | I X              | 0.28           | =                         | 20.22         |             |                     |        |       | (29)  |
| Walls                  | Type2                   | 10.9                    | 96                        | 0                         |                          | 10.96                  | 3 <mark>х</mark> | 0.22           | =                         | 2.45          |             |                     |        |       | (29)  |
| Walls 7                | Туре3                   | 12.3                    | 32                        | 0                         |                          | 12.32                  | <u>2</u> X       | 0.22           | =                         | 2.76          |             |                     |        |       | (29)  |
| Total a                | rea of e                | lements                 | , m²                      |                           |                          | 102.74                 | 42               |                |                           |               |             |                     |        |       | (31)  |
| * for win<br>** inclua | dows and<br>le the area | roof wind<br>as on both | ows, use e<br>sides of in | ffective wi<br>ternal wal | indow U-va<br>Is and par | alue calcul<br>titions | lated using      | g formula 1    | /[(1/U-valu               | ıe)+0.04] a   | as given in | paragraph           | n 3.2  |       |       |
| Fabric                 | heat los                | s, W/K                  | = S (A x                  | U)                        |                          |                        |                  | (26)(30)       | + (32) =                  |               |             |                     | 3      | 6.33  | (33)  |
| Heat c                 | apacity                 | Cm = S(                 | (Axk)                     |                           |                          |                        |                  |                | ((28)                     | .(30) + (32   | 2) + (32a)  | (32e) =             | 105    | 6.619 | (34)  |
| Therm                  | al mass                 | parame                  | ter (TMF                  | P = Cm -                  | ÷ TFA) ir                | n kJ/m²K               |                  |                | Indica                    | tive Value    | : Low       |                     |        | 100   | (35)  |
| For desi               | ign assess              | ments wh                | ere the de                | tails of the              | construct                | ion are no             | t known pi       | recisely the   | e indicative              | values of     | TMP in T    | able 1f             |        |       |       |
| Thorm                  | al bridae               | ad or a de              | talled calct              | ulation.<br>culated i     | usina Ar                 | nondiv l               | K                |                |                           |               |             |                     |        |       |       |
| if details             | of therma               | bridaina                | are not kn                | own (36) =                | = 0 15 x (3              |                        | IX .             |                |                           |               |             |                     | 1      | 5.41  | (30)  |
| Total f                | abric he                | at loss                 | are not nit               | 0007-                     | - 0.70 x (0              | "                      |                  |                | (33) +                    | (36) =        |             |                     | 5      | 1.74  | (37)  |
| Ventila                | tion hea                | at loss ca              | alculated                 | monthl                    | у                        |                        |                  |                | (38)m                     | = 0.33 × (    | 25)m x (5   | )                   |        |       |       |
|                        | Jan                     | Feb                     | Mar                       | Apr                       | May                      | Jun                    | Jul              | Aug            | Sep                       | Oct           | Nov         | Dec                 |        |       |       |
| (38)m=                 | 44.7                    | 42.68                   | 42.68                     | 39                        | 36.8                     | 35.78                  | 34.8             | 34.8           | 37.33                     | 39            | 40.78       | 42.68               |        |       | (38)  |
| Heat tr                | ansfer o                | coefficie               | nt, W/K                   |                           |                          |                        |                  |                | (39)m                     | = (37) + (3   | 38)m        |                     | -      |       |       |
| (39)m=                 | 96.44                   | 94.42                   | 94.42                     | 90.74                     | 88.54                    | 87.52                  | 86.54            | 86.54          | 89.07                     | 90.74         | 92.52       | 94.42               |        |       |       |
|                        |                         |                         |                           |                           | •                        |                        |                  | •              |                           | Average =     | Sum(39)     | 12 /12=             | 9      | 0.99  | (39)  |

| Heat lo                     | oss para                       | ameter (I                               | HLP), W                             | /m²K                                    |                                          |                                       |                            |                        | (40)m                 | = (39)m ÷   | (4)                      |                    |         |      |
|-----------------------------|--------------------------------|-----------------------------------------|-------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------|----------------------------|------------------------|-----------------------|-------------|--------------------------|--------------------|---------|------|
| (40)m=                      | 2.24                           | 2.19                                    | 2.19                                | 2.11                                    | 2.06                                     | 2.03                                  | 2.01                       | 2.01                   | 2.07                  | 2.11        | 2.15                     | 2.19               |         |      |
| Numbe                       | er of dav                      | vs in mo                                | nth (Tab                            | le 1a)                                  |                                          |                                       |                            | -                      |                       | Average =   | Sum(40)₁.                | <sub>12</sub> /12= | 2.12    | (40) |
|                             | Jan                            | Feb                                     | Mar                                 | Apr                                     | May                                      | Jun                                   | Jul                        | Aug                    | Sep                   | Oct         | Nov                      | Dec                |         |      |
| (41)m=                      | 31                             | 28                                      | 31                                  | 30                                      | 31                                       | 30                                    | 31                         | 31                     | 30                    | 31          | 30                       | 31                 |         | (41) |
|                             |                                |                                         |                                     |                                         |                                          |                                       | •                          | •                      |                       | •           |                          |                    |         |      |
| 4. Wa                       | ater hea                       | ting ene                                | rgy requ                            | irement:                                |                                          |                                       |                            |                        |                       |             |                          | kWh/ye             | ear:    |      |
| Assum<br>if TF<br>if TF     | ied occu<br>A > 13.<br>A £ 13. | upancy,<br>9, N = 1<br>9 N = 1          | N<br>+ 1.76 x                       | (1 - exp                                | 0(-0.0003                                | 849 x (TF                             | FA -13.9                   | )2)] + 0.(             | 0013 x ( <sup>-</sup> | TFA -13.    | 1.<br>9)                 | 49                 |         | (42) |
| Annua<br>Reduce<br>not more | l averag<br>the annua          | ge hot wa<br>al average<br>5 litres per | ater usag<br>hot water<br>person pe | ge in litre<br>usage by<br>r day (all w | es per da<br>5% if the d<br>vater use, l | ay Vd,av<br>Iwelling is<br>not and co | erage =<br>designed<br>ld) | (25 x N)<br>to achieve | + 36<br>a water us    | se target o | 73<br>f                  | .22                |         | (43) |
|                             | Jan                            | Feb                                     | Mar                                 | Apr                                     | Mav                                      | Jun                                   | Jul                        | Αυα                    | Sep                   | Oct         | Nov                      | Dec                |         |      |
| Hot wate                    | er usage i                     | in litres pe                            | r day for ea                        | ach month                               | Vd,m = fa                                | ctor from                             | Table 1c x                 | (43)                   |                       |             |                          |                    | I       |      |
| (44)m=                      | 80.54                          | 77.61                                   | 74.68                               | 71.75                                   | 68.82                                    | 65.9                                  | 65.9                       | 68.82                  | 71.75                 | 74.68       | 77.61                    | 80.54              |         |      |
| _                           |                                |                                         |                                     |                                         |                                          |                                       |                            |                        |                       | Total = Su  | m(44) <sub>112</sub> =   |                    | 878.61  | (44) |
| Energy                      | content of                     | hot water                               | used - ca                           | Iculated m                              | $\frac{1}{2}$                            | 190 x Vd,r                            | m x nm x L                 | JTm / 3600             | ) kWh/mor             | nth (see Ta | ables 1b, 1              | c, 1d)             | l       |      |
| (45)m=                      | 119.72                         | 104.71                                  | 108.05                              | 94.2                                    | 90.39                                    | 78                                    | 72.28                      | 82.94                  | 83.93                 | 97.81       | 106.77                   | 115.95             | 1154 76 | (45) |
| lf instan                   | taneous v                      | vater heati                             | ing at poin                         | t of use (no                            | o hot water                              | · storage),                           | enter 0 in                 | boxes (46              | ) to (61)             | 10181 = 50  | III(43) <sub>112</sub> = | -                  | 1154.70 |      |
| (46)m=                      | 17.96                          | 15.71                                   | 16.21                               | 14.13                                   | 13.56                                    | 11.7                                  | 10.84                      | 12.44                  | 12.59                 | 14.67       | 16.02                    | 17.39              |         | (46) |
| Water                       | storage                        | loss:                                   | -                                   |                                         |                                          |                                       | (de).                      | -                      |                       | -           |                          |                    | I       |      |
| a) II ma                    | anulacii<br>vroturo f          | urer s de                               | m Tabla                             |                                         | or is know                               | vn (kvvn                              | /day):                     |                        |                       |             |                          | 0                  |         | (47) |
| Energy                      | / lost fro                     | acior nu<br>m water                     | r storage                           | ; 20<br>a k\Mh/vi                       | oar                                      |                                       |                            | (47) x (48             | ) –                   |             |                          | 0                  |         | (40) |
| If man                      | ufacture                       | er's decla                              | ared cyli                           | nder loss                               | s factor is                              | s not kno                             | own:                       | (+7) × (+0)            | , –                   |             |                          | 0                  |         | (49) |
| Cylind                      | er volun                       | ne (litres                              | ) includi                           | ng any s                                | olar stor                                | age with                              | nin same                   | ;                      |                       |             | 1:                       | 50                 |         | (50) |
| If con                      | nmunity h                      | eating and                              | l no tank ir                        | n dwelling,                             | enter 110                                | litres in bo                          | ox (50)                    | antor 101 in           | hay (EQ)              |             |                          |                    |         |      |
|                             | tor ctor                       |                                         | factor f                            | rom Tab                                 |                                          | b/litro/dc                            |                            | enter 0 m              | DOX (50)              |             |                          |                    | l       | (54) |
| Volum                       | e factor                       | from To                                 |                                     |                                         |                                          | n/nue/ua                              | ay)                        |                        |                       |             | 0.                       | 02                 |         | (51) |
| Tempe                       | erature f                      | actor fro                               | om Table                            | 2b                                      |                                          |                                       |                            |                        |                       |             | 0.                       | 93<br>.6           |         | (52) |
| Energy                      | / lost fro                     | om watei                                | r storage                           | e, kWh/y                                | ear                                      |                                       |                            | ((50) x (51            | l) x (52) x           | (53) =      | 1                        | .6                 |         | (54) |
| Enter (                     | 49) or (                       | 54) in (5                               | 5)                                  |                                         |                                          |                                       |                            |                        |                       |             | 1                        | .6                 |         | (55) |
| Water                       | storage                        | loss cal                                | culated                             | for each                                | month                                    |                                       |                            | ((56)m = (             | 55) × (41)            | m           |                          |                    |         |      |
| (56)m=                      | 49.48                          | 44.69                                   | 49.48                               | 47.88                                   | 49.48                                    | 47.88                                 | 49.48                      | 49.48                  | 47.88                 | 49.48       | 47.88                    | 49.48              |         | (56) |
| If cylinde                  | er contain                     | s dedicate                              | d solar sto                         | orage, (57)                             | m = (56)m                                | x [(50) – (                           | [H11)] ÷ (5                | 50), else (5           | 7)m = (56)            | m where (   | H11) is fro              | m Append           | ix H    |      |
| (57)m=                      | 49.48                          | 44.69                                   | 49.48                               | 47.88                                   | 49.48                                    | 47.88                                 | 49.48                      | 49.48                  | 47.88                 | 49.48       | 47.88                    | 49.48              |         | (57) |
| Primar                      | y circuit                      | t loss (ar                              | nnual) fro                          | om Table                                | e 3                                      |                                       |                            |                        |                       |             | 6                        | 10                 |         | (58) |
| Primar                      | y circuit                      | t loss cal                              | Iculated                            | for each                                | month (                                  | 59)m = (                              | (58) ÷ 36                  | 65 × (41)              | m                     |             |                          |                    |         |      |
| (moo                        |                                | / tactor f                              | rom Tab                             | 10 H5 If 1                              |                                          | 50 14                                 | er heati                   | ng and a               |                       |             | stat)                    | 51 91              |         | (59) |
| (33)11=                     |                                | 1 -0.79                                 | <u> </u>                            | J4                                      |                                          | (00)                                  |                            | 1 31.01                | 50.14                 | 51.01       | 50.14                    | 51.01              |         | (00) |
| Combi                       | loss ca                        | iculated                                | tor each                            | month                                   | (61)m =                                  | (60) ÷ 30                             | 65 × (41                   | )m                     |                       |             | 0                        | 0                  |         | (61) |
| (o))m=                      | U                              | 0                                       | 0                                   | 0                                       | 0                                        | U                                     | U                          | U                      | U                     | U           | U                        | U                  |         | (01) |

Stroma FSAP 2009 Version: 1.5.0.74 (SAP 9.90) - http://www.stroma.com

| Total h  | eat requ              | uired for            | water h        | nea     | ating ca   | alculate | d fo     | r eac                | h month        | (62)     | m =       | 0.85 × (      | 45)m    | ו +   | (46)m +       | (57)   | m +    | (59)m + (61)m |               |
|----------|-----------------------|----------------------|----------------|---------|------------|----------|----------|----------------------|----------------|----------|-----------|---------------|---------|-------|---------------|--------|--------|---------------|---------------|
| (62)m=   | 221.01                | 196.19               | 209.34         |         | 192.22     | 191.67   | 1        | 76.02                | 173.56         | 184      | .22       | 181.95        | 199     | .1    | 204.79        | 217    | .23    |               | (62)          |
| Solar Di | -IW input of          | calculated           | using Ap       | per     | ndix G or  | Appendi  | хH       | (negati <sup>,</sup> | ve quantity    | /) (en   | ter '0'   | if no solar   | r contr | ibut  | ion to wate   | er hea | iting) |               |               |
| (add a   | dditiona              | l lines if           | FGHR           | S a     | and/or V   | VWHR     | S ap     | oplies               | , see Ap       | pend     | dix G     | G)            |         |       |               |        |        |               |               |
| (63)m=   | 0                     | 0                    | 0              |         | 0          | 0        |          | 0                    | 0              | C        | )         | 0             | 0       |       | 0             | C      | )      |               | (63)          |
| Output   | from w                | ater hea             | ter            |         |            |          | -        |                      |                |          | -         |               |         |       | -             |        |        |               |               |
| (64)m=   | 221.01                | 196.19               | 209.34         |         | 192.22     | 191.67   | 1        | 76.02                | 173.56         | 184      | .22       | 181.95        | 199     | .1    | 204.79        | 217    | .23    |               |               |
|          |                       |                      |                |         |            |          |          |                      |                |          | Outp      | ut from wa    | ater he | eate  | r (annual)    | 12     |        | 2347.3        | (64)          |
| Heat g   | ains fro              | m water              | heating        | j, k    | kWh/mo     | onth 0.2 | 25 x     | [0.85                | <b>x</b> (45)m | n + (6   | 61)m      | n] + 0.8 x    | k [(46  | 6)m   | + (57)m       | + (5   | 59)m   | n]            |               |
| (65)m=   | 120.84                | 108                  | 116.95         | Τ       | 109.74     | 111.08   | 1        | 04.35                | 105.06         | 108      | 3.6       | 106.32        | 113.    | 55    | 113.91        | 119    | .58    |               | (65)          |
| inclu    | ide (57)              | m in calc            | ulation        | of      | f (65)m    | only if  | cylii    | nder i               | s in the c     | dwell    | ling      | or hot wa     | ater i  | s fi  | rom com       | mun    | ity h  | leating       |               |
| 5. Int   | ternal da             | ains (see            | Table          | 5 a     | and 5a     | ):       | •        |                      |                |          | -         |               |         |       |               |        |        | -             |               |
| Motab    | olic gain             | s (Tablo             | 5) Wa          | otte    |            |          |          |                      |                |          |           |               |         |       |               |        |        |               |               |
| Metab    | Jan                   | Feb                  | Mar            |         | Apr        | Mav      | Τ        | Jun                  | Jul            | A        | ua        | Sep           | 0       | ct    | Nov           | D      | ec     |               |               |
| (66)m=   | 89.32                 | 89.32                | 89.32          | ╈       | 89.32      | 89.32    | ξ        | 9.32                 | 89.32          | 89.      | 32        | 89.32         | 89.3    | 32    | 89.32         | 89.    | 32     |               | (66)          |
| Liahtin  | a gains               | (calculat            | L<br>ted in A  |         | oendix l   | equa     | tion     | 190                  | rl9a)a         | lso s    |           | Table 5       |         |       |               |        |        |               |               |
| (67)m=   | 35.69                 | 31.7                 | 25.78          | T       | 19.52      | 14.59    |          | 2.32                 | 13.31          | 17       | .3        | 23.22         | 29.4    | 19    | 34.41         | 36.    | 69     |               | (67)          |
| Annlia   |                       | ins (calc            | ulated i       | in /    | Annenc     |          | 1        | tion                 | 13 or 1 1      | (<br>(2) | ا<br>معاد | see Tal       | hle 5   |       |               |        |        |               |               |
| (68)m=   | 192 83                | 194.83               | 189 79         | T       | 179.05     | 165.5    |          | 52 77                | 144 26         | 142      | 26        | 147.3         | 158     | 04    | 171 59        | 184    | .32    | l             | (68)          |
| Cookir   |                       |                      |                |         | nondiv     |          | '        | 1 1 5                | or 1 150       |          |           |               | 5       | 04    | 171.00        | 104    | .02    |               | ()            |
| (60)m-   |                       |                      |                | -<br>T  |            | L, equa  |          |                      | 01 L 15a)      | , ais    | 10 SE     |               | 5       | 12    | 45.42         | 45     | 12     |               | (69)          |
| (09)III= | 40.42                 | 43.42                | (Table         |         | 43.42      | 43.42    |          | 5.42                 | 40.42          | 45.      | 42        | 43.42         | 40.4    | +2    | 43.42         | 45.    | 42     |               | (00)          |
| Pumps    |                       | ns gains             |                | 58<br>T | a)<br>10   | 10       | <b>—</b> | 10                   | 10             | 4        |           | 10            | 40      |       | 10            | 4      | 0      | I             | (70)          |
| (70)m=   | 10                    | 10                   | 10             |         | 10         | 10       | <u> </u> | -                    | 10             |          | 0         | 10            |         | ,     | 10            |        | 0      |               | (70)          |
| Losses   | s e.g. ev             | aporatio             | n (nega        | ativ    | ve valu    | es) (Tal |          | 5)                   | 50.55          |          | 1         |               |         |       | 50.55         |        |        | I             | (74)          |
| (71)m=   | -59.55                | -59.55               | -59.55         |         | -59.55     | -59.55   |          | 59.55                | -59.55         | -59      | .55       | -59.55        | -59.    | 55    | -59.55        | -59    | .55    |               | (71)          |
| Water    | heating               | gains (T             | able 5)        | ·       |            |          | -        |                      |                |          |           |               |         |       | r –           |        |        | 1             |               |
| (72)m=   | 162.41                | 160.72               | 157.2          |         | 152.41     | 149.3    | 1        | 44.93                | 141.21         | 145      | .97       | 147.67        | 152.    | 62    | 158.21        | 160    | .72    |               | (72)          |
| Total i  | nternal               | gains =              |                |         |            |          | _        | (66)                 | m + (67)m      | 1 + (68  | 3)m +     | · (69)m + (   | 70)m    | + (7  | '1)m + (72)   | m      |        | L             |               |
| (73)m=   | 476.13                | 472.45               | 457.96         |         | 436.18     | 414.59   | 3        | 95.21                | 383.98         | 390      | .73       | 403.39        | 425.    | 34    | 449.41        | 466    | .93    |               | (73)          |
| 6. So    | lar gains             | 8:                   |                |         |            |          |          |                      |                |          |           |               |         |       |               |        |        |               |               |
| Solar g  | ains are o            | alculated            | using sol<br>- | ar f    | flux from  | Table 6a | and      | assoc                | iated equa     | tions    | to co     | nvert to th   | e appl  | licat | ole orientat  | ion.   |        |               |               |
| Orienta  | ation: A              | Access F<br>Table 6d | actor          |         | Area<br>m² |          |          | Flu<br>Tal           | x<br>ole 6a    |          | Т         | g_<br>able 6b |         | Т     | FF<br>able 6c |        |        | Gains<br>(W)  |               |
| Southe   | ast <mark>0.9x</mark> | 0.77                 | ;              | < [     | 1.9        | 3        | x        | 3                    | 57.39          | x        |           | 0.76          | x       | Γ     | 0.7           |        | =      | 53.21         | (77)          |
| Southe   | ast <mark>0.9x</mark> | 0.77                 | ,              | ۰Ī      | 1.9        | 3        | x        | 6                    | 3.74           | x        |           | 0.76          | ×       | Γ     | 0.7           |        | =      | 90.7          | (77)          |
| Southe   | ast <mark>0.9x</mark> | 0.77                 | ;              | ، آ     | 1.9        | 3        | x        | 8                    | 4.22           | x        |           | 0.76          | _ x     | Γ     | 0.7           |        | =      | 119.85        | (77)          |
| Southe   | ast <mark>0.9x</mark> | 0.77                 | ;              | ۲       | 1.9        | 3        | x        | 1                    | 03.49          | x        |           | 0.76          | ۲ ×     | Ē     | 0.7           | =      | =      | 147.27        | (77)          |
| Southe   | ast <mark>0.9x</mark> | 0.77                 | ;              | ۰ľ      | 1.9        | 3        | x        | 1                    | 13.34          | x        |           | 0.76          | ۲ ×     | Γ     | 0.7           | ╡      | =      | 161.29        | (77)          |
| Southe   | ast <mark>0.9x</mark> | 0.77                 | ;              | ۰ľ      | 1.9        | 3        | x        | 1                    | 15.04          | x        |           | 0.76          | ۲ ×     | Ē     | 0.7           | ╡      | =      | 163.72        | -<br> (77)    |
| Southe   | ast <mark>0.9x</mark> | 0.77                 | ;              | ۰ľ      | 1.9        | 3        | x        | 1                    | 12.79          | x        |           | 0.76          | ۲ ×     | F     | 0.7           | ╡      | =      | 160.51        | -<br> (77)    |
| Southo   | act o ou [            | 0.77                 | <u> </u>       | ςΓ      | 1 0        | 3        | x        | 1                    | 05.34          | x        |           | 0.76          | ۲ ×     | Ē     | 0.7           |        | =      | 149.91        | <b>1</b> (77) |

| Southe  | ast <mark>0.9x</mark> | 0.77          | x              |                     | 1.93     | x         |         | 92.9           | x      |                  | 0.76   | x      | 0.7        | =      | 132.2  | (77)   |
|---------|-----------------------|---------------|----------------|---------------------|----------|-----------|---------|----------------|--------|------------------|--------|--------|------------|--------|--------|--------|
| Southe  | ast <mark>0.9x</mark> | 0.77          | x              |                     | 1.93     | T x       | 7       | 72.36          | x      |                  | 0.76   | x      | 0.7        | =      | 102.98 | 3 (77) |
| Southe  | ast <mark>0.9x</mark> | 0.77          | x              |                     | 1.93     | x         | 4       | 14.83          | x      |                  | 0.76   | x      | 0.7        | =      | 63.79  | (77)   |
| Southe  | ast <mark>0.9x</mark> | 0.77          | x              |                     | 1.93     | T x       | 3       | 31.95          | ] ×    |                  | 0.76   | x      | 0.7        | =      | 45.47  | (77)   |
| Northw  | est 0.9x              | 0.77          | x              |                     | 1.65     | T x       | 1       | 1.51           | ] ×    |                  | 0.63   | ×      | 0.7        | =      | 5.8    | (81)   |
| Northw  | est 0.9x              | 0.77          | x              |                     | 1.74     | x         | 1       | 1.51           | x      |                  | 0.63   | x      | 0.7        | =      | 6.12   | (81)   |
| Northw  | est 0.9x              | 0.77          | x              |                     | 1.65     | ×         | 2       | 23.55          | x      |                  | 0.63   | x      | 0.7        | =      | 11.88  | (81)   |
| Northwe | est <mark>0.9x</mark> | 0.77          | x              |                     | 1.74     | x         | 2       | 23.55          | x      |                  | 0.63   | x      | 0.7        | =      | 12.53  | (81)   |
| Northw  | est <mark>0.9x</mark> | 0.77          | x              |                     | 1.65     | x         | 4       | 1.13           | x      |                  | 0.63   | x      | 0.7        | =      | 20.74  | (81)   |
| Northw  | est <mark>0.9x</mark> | 0.77          | x              |                     | 1.74     | x         | 4       | 11.13          | x      |                  | 0.63   | x      | 0.7        | =      | 21.87  | (81)   |
| Northw  | est <mark>0.9x</mark> | 0.77          | x              |                     | 1.65     | x         |         | 67.8           | x      |                  | 0.63   | x      | 0.7        | =      | 34.19  | (81)   |
| Northw  | est <mark>0.9x</mark> | 0.77          | x              |                     | 1.74     | x         |         | 67.8           | x      |                  | 0.63   | x      | 0.7        | =      | 36.05  | (81)   |
| Northw  | est <mark>0.9x</mark> | 0.77          | x              |                     | 1.65     | x         | 8       | 39.77          | x      |                  | 0.63   | x      | 0.7        | =      | 45.27  | (81)   |
| Northw  | est <mark>0.9x</mark> | 0.77          | x              |                     | 1.74     | x         | 8       | 39.77          | x      |                  | 0.63   | x      | 0.7        | =      | 47.73  | (81)   |
| Northw  | est <mark>0.9x</mark> | 0.77          | x              |                     | 1.65     | x         |         | 97.5           | x      |                  | 0.63   | x      | 0.7        | =      | 49.17  | (81)   |
| Northw  | est <mark>0.9x</mark> | 0.77          | х              |                     | 1.74     | x         |         | 97.5           | x      |                  | 0.63   | x      | 0.7        | =      | 51.85  | (81)   |
| Northw  | est <mark>0.9x</mark> | 0.77          | x              |                     | 1.65     | x         | ę       | 92.98          | x      |                  | 0.63   | x      | 0.7        | =      | 46.89  | (81)   |
| Northw  | est <mark>0.9x</mark> | 0.77          | x              |                     | 1.74     | x         | ę       | 92.98          | x      |                  | 0.63   | x      | 0.7        | =      | 49.44  | (81)   |
| Northw  | est <mark>0.9x</mark> | 0.77          | x              |                     | 1.65     | x         | 7       | 75.42          | x      |                  | 0.63   | x      | 0.7        | =      | 38.03  | (81)   |
| Northw  | est <mark>0.9x</mark> | 0.77          | x              |                     | 1.74     | x         | 7       | 75.42          | x      |                  | 0.63   | x      | 0.7        | =      | 40.1   | (81)   |
| Northwe | est <mark>0.9x</mark> | 0.77          | x              |                     | 1.65     | ×         | 5       | 51.24          | x      |                  | 0.63   | ×      | 0.7        | =      | 25.84  | (81)   |
| Northw  | est <mark>0.9x</mark> | 0.77          | x              |                     | 1.74     | x         | 5       | 51.24          | x      |                  | 0.63   | x      | 0.7        | =      | 27.25  | (81)   |
| Northw  | est <mark>0.9x</mark> | 0.77          | x              |                     | 1.65     | x         |         | 29.6           | x      |                  | 0.63   | x      | 0.7        | =      | 14.93  | (81)   |
| Northwe | est <mark>0.9x</mark> | 0.77          | x              |                     | 1.74     | x         |         | 29.6           | x      |                  | 0.63   | x      | 0.7        | =      | 15.74  | (81)   |
| Northwe | est <mark>0.9x</mark> | 0.77          | x              |                     | 1.65     | x         | 1       | 4.52           | x      |                  | 0.63   | ×      | 0.7        | =      | 7.32   | (81)   |
| Northwe | est <mark>0.9x</mark> | 0.77          | x              |                     | 1.74     | x         | 1       | 4.52           | x      |                  | 0.63   | x      | 0.7        | =      | 7.72   | (81)   |
| Northwe | est <mark>0.9x</mark> | 0.77          | X              |                     | 1.65     | x         |         | 9.36           | x      |                  | 0.63   | x      | 0.7        | =      | 4.72   | (81)   |
| Northwe | est <mark>0.9x</mark> | 0.77          | х              |                     | 1.74     | ×         |         | 9.36           | x      |                  | 0.63   | x      | 0.7        | =      | 4.98   | (81)   |
|         |                       |               |                |                     |          |           |         |                |        |                  |        |        |            |        |        |        |
| Solar g | ains in               | watts, ca     | alculate       | $\frac{1}{2}$ for e | ach moi  | nth       | 264 72  | 256.94         | (83)m  | n = Su           | 195 20 | (82)m  | 1 70.04    | 55 17  | 7      | (83)   |
| Total o | ains – i              | nternal a     | nd sola        | r (84)r             | 1 = (73) | m + 1     | (83)m   | watts          | 220    | .04              | 105.29 | 133.04 | + 70.04    | 55.17  |        | (00)   |
| (84)m=  | 541.26                | 587.55        | 620.42         | 653.6               | 9 668.   | 88 0      | 659.94  | 640.82         | 618    | 8.77             | 588.68 | 558.98 | 3 528.25   | 522.09 | 1      | (84)   |
| 7 Me    | an inter              | nal temr      | perature       | (heat               | na seas  | son)      |         | 1              | 1      | I                | I      |        | -          |        | 4      |        |
| Temp    | erature               | durina h      | eating r       | period              | s in the | livina    | area    | from Tal       | ble 9  | . Th1            | (°C)   |        |            |        | 21     | (85)   |
| Utilisa | ation fac             | tor for a     | ains for       | livina              | area. h1 | .m (s     | see Ta  | ble 9a)        |        | ,                | (-)    |        |            |        |        | `      |
|         | Jan                   | Feb           | Mar            | Ap                  | r Ma     | ay        | Jun     | Jul            | A      | ug               | Sep    | Oct    | Nov        | Dec    | 7      |        |
| (86)m=  | 0.9                   | 0.88          | 0.85           | 0.81                | 0.72     | 2         | 0.6     | 0.46           | 0.4    | 47               | 0.66   | 0.8    | 0.88       | 0.9    | 1      | (86)   |
| Mean    | interna               | l temper      | ature in       | livina              | area T1  | (foll     | ow ste  | bs 3 to 7      | 7 in T | Table            |        |        | -          | •      | -      |        |
| (87)m=  | 17.71                 | 18            | 18.54          | 19.1                | 7 19.9   | 3         | 20.48   | 20.8           | 20.    | .79              | 20.35  | 19.52  | 18.45      | 17.83  | 7      | (87)   |
| Tom     |                       | u<br>durina h | L<br>Leating : |                     | in rest  | <br>of dv | Nolling | I<br>I from To |        | <u> </u><br>а ть | 2 (°C) |        | _ <u>I</u> | 1      | _      |        |
| (88)m=  | 19.88                 | 19.9          | 19.9           | 19.9                | 5 19.9   | 7         | 19.98   | 19.99          | 19.    | .99              | 19.96  | 19.95  | 19.92      | 19.9   | 7      | (88)   |
| · · · · |                       |               |                |                     |          | 1         | -       |                |        |                  | -      |        |            |        |        |        |

| Utilisa | ation fac  | tor for g              | ains for    | rest of d | welling,  | h2,m (se    | e Table   | 9a)         |              |             |                         |                        |         |         |
|---------|------------|------------------------|-------------|-----------|-----------|-------------|-----------|-------------|--------------|-------------|-------------------------|------------------------|---------|---------|
| (89)m=  | 0.89       | 0.87                   | 0.84        | 0.78      | 0.68      | 0.54        | 0.37      | 0.38        | 0.6          | 0.77        | 0.86                    | 0.89                   |         | (89)    |
| Mean    | interna    | l temper               | ature in    | the rest  | of dwelli | ing T2 (f   | ollow ste | eps 3 to 7  | 7 in Tabl    | e 9c)       |                         |                        |         |         |
| (90)m=  | 16.89      | 17.2                   | 17.73       | 18.37     | 19.11     | 19.62       | 19.89     | 19.89       | 19.5         | 18.71       | 17.66                   | 17.03                  |         | (90)    |
|         |            |                        |             |           | •         | •           |           |             | f            | LA = Livin  | g area ÷ (4             | 4) =                   | 0.46    | (91)    |
| Mear    | interna    | l temper               | ature (fo   | or the wh | ole dwe   | llina) = fl | LA × T1   | + (1 – fL   | A) × T2      |             |                         | -                      |         | _       |
| (92)m=  | 17.27      | 17.57                  | 18.11       | 18.74     | 19.49     | 20.02       | 20.31     | 20.31       | ,<br>19.89   | 19.08       | 18.03                   | 17.4                   |         | (92)    |
| Apply   | v adjustn  | nent to t              | he mear     | n interna | l temper  | ature fro   | m Table   | 4e, whe     | ere appro    | opriate     |                         |                        |         |         |
| (93)m=  | 17.27      | 17.57                  | 18.11       | 18.74     | 19.49     | 20.02       | 20.31     | 20.31       | 19.89        | 19.08       | 18.03                   | 17.4                   |         | (93)    |
| 8. Sp   | ace hea    | ting requ              | uirement    | t         | -         | -           |           |             |              |             |                         |                        |         |         |
| Set T   | i to the r | nean int               | ernal te    | mperatu   | re obtair | ned at ste  | ep 11 of  | Table 9t    | o, so tha    | t Ti,m=(    | 76)m an                 | d re-calc              | ulate   |         |
| the ut  | tilisation | factor fo              | or gains    | using Ta  | able 9a   |             |           |             |              |             |                         |                        |         |         |
|         | Jan        | Feb                    | Mar         | Apr       | May       | Jun         | Jul       | Aug         | Sep          | Oct         | Nov                     | Dec                    |         |         |
| Utilisa |            | tor for g              | ains, hm    |           | 0.00      | 0.54        | 0.4       | 0.44        | 0.0          | 0.74        | 0.02                    |                        |         | (04)    |
| (94)m=  | 0.86       | 0.84                   | 0.8         | 0.75      | 0.66      | 0.54        | 0.4       | 0.41        | 0.6          | 0.74        | 0.83                    | 0.86                   |         | (94)    |
| Useru   | li gains,  | nmGm                   | , VV = (94) | 4)m x (84 | 4)m       | 250.44      | 055.07    | 252.95      | 250.00       | 11E 71      | 420.00                  | 450.00                 |         | (05)    |
| (95)m=  | 400.3      | 493.07                 | 496.94      | 492.85    | 444.79    | 359.44      | 200.27    | 252.65      | 352.33       | 415.71      | 439.99                  | 450.29                 |         | (33)    |
| (96)m-  |            |                        |             |           |           |             | 16.9      | 16.9        | 14.3         | 10.8        | 7                       | 49                     |         | (96)    |
| Heat    | loss rate  | for me                 | o.o         |           |           | m W         | -[(30)m   | v [(93)m    | - (96)m      | 10.0        | ,                       | 4.5                    |         | (00)    |
| (97)m=  | 1231.32    | 1186.67                | 1067.62     | 911.27    | 689.35    | 474.46      | 295.45    | 294.84      | 497.79       | J<br>751.49 | 1020.22                 | 1179.92                |         | (97)    |
| Spac    | e heatin   | a require              | ement fo    | r each n  | nonth k   | Nh/mon      | h = 0.02  | 24 x [(97)  | )m – (95     | )ml x (4'   | 1)m                     |                        |         | (- )    |
| (98)m=  | 569.17     | 465.7                  | 423.1       | 301.26    | 181.95    | 0           | 0         | 0           | 0            | 249.82      | 417.76                  | 542.84                 |         |         |
|         |            |                        | l           | ļ         | Į         | Į           |           | Tota        | l per year   | (kWh/year   | ) = Sum(9               | 8) <sub>15.912</sub> = | 3151.61 | (98)    |
| Snac    | o hoatin   | a roquir               | omont in    | k\//b/m2  | Woor      |             |           |             | 1.5.7.5.     |             | , (                     | - ,                    | 70.00   |         |
| Spac    | eneaun     | y require              |             |           | year      |             |           |             |              |             |                         | l                      | 73.26   | (99)    |
| 9a. En  | ergy rec   | luiremer               | nts – Ind   | ividual h | eating s  | ystems i    | ncluding  | micro-C     | HP)          |             |                         |                        |         |         |
| Spac    | e heatir   | ng:                    | t from o    | aaandar   | vlounnio  | montory     | avetam    |             |              |             |                         | Г                      |         |         |
|         | ion or sp  | ace nea                |             | econuar   | y/supple  | mentary     | System    | (202) 1     | (004)        |             |                         | ļ                      | 0       |         |
| Fract   | ion of sp  | ace nea                | at from m   | nain syst | em(s)     |             |           | (202) = 1 - | - (201) =    | ·           |                         | ļ                      | 1       | (202)   |
| Fract   | ion of to  | tal heati              | ng from     | main sys  | stem 1    |             |           | (204) = (20 | 02) × [1 – ( | (203)] =    |                         |                        | 1       | (204)   |
| Efficie | ency of r  | main spa               | ace heat    | ing syste | em 1      |             |           |             |              |             |                         |                        | 78.9    | (206)   |
| Efficie | ency of s  | seconda                | ry/suppl    | ementar   | y heatin  | g system    | ז, %      |             |              |             |                         |                        | 0       | (208)   |
|         | Jan        | Feb                    | Mar         | Apr       | May       | Jun         | Jul       | Aug         | Sep          | Oct         | Nov                     | Dec                    | kWh/ye  | _<br>ar |
| Spac    | e heatin   | g require              | ement (c    | alculate  | d above   | )           |           |             |              |             |                         |                        | ,       |         |
|         | 569.17     | 465.7                  | 423.1       | 301.26    | 181.95    | 0           | 0         | 0           | 0            | 249.82      | 417.76                  | 542.84                 |         |         |
| (211)n  | า = {[(98  | )m x (20               | 4)] + (2´   | 10)m } x  | 100 ÷ (2  | 206)        |           |             |              |             |                         |                        |         | (211)   |
| ( )     | 721.39     | 590.24                 | 536.25      | 381.82    | 230.61    | 0           | 0         | 0           | 0            | 316.63      | 529.49                  | 688.01                 |         |         |
|         |            |                        |             |           |           |             |           | Tota        | l (kWh/yea   | ar) =Sum(2  | 211) <sub>15,1012</sub> | =                      | 3994.43 | (211)   |
| Space   | e heatin   | a fuel (s              | econdar     | v). kWh/  | month     |             |           |             |              |             |                         | L                      |         | ^       |
| = {[(98 | )m x (20   | )1)] + (2 <sup>-</sup> | 14) m } >   | < 100 ÷ ( | 208)      |             |           |             |              |             |                         |                        |         |         |
| (215)m= | 0          | 0                      | 0           |           | ,<br>0    | 0           | 0         | 0           | 0            | 0           | 0                       | 0                      |         |         |
| · ·     |            |                        | -           | ľ         | Ĭ         | l v         | v v       |             | 0            | 0           | 0                       | · ·                    |         |         |

### Water heating

| Output              | from w                  | ater hea            | ter (calc            | ulated a   | oove)    |                   |                        |            |            |                         |                         |                     | -                              |        |
|---------------------|-------------------------|---------------------|----------------------|------------|----------|-------------------|------------------------|------------|------------|-------------------------|-------------------------|---------------------|--------------------------------|--------|
|                     | 221.01                  | 196.19              | 209.34               | 192.22     | 191.67   | 176.02            | 173.56                 | 184.22     | 181.95     | 199.1                   | 204.79                  | 217.23              |                                | -      |
| Efficie             | ncy of w                | ater hea            | iter                 |            |          |                   |                        |            |            |                         |                         |                     | 68.8                           | (216)  |
| (217)m=             | 75.79                   | 75.61               | 75.24                | 74.63      | 73.37    | 68.8              | 68.8                   | 68.8       | 68.8       | 74.08                   | 75.27                   | 75.72               |                                | (217)  |
| Fuel fc<br>(219)m   | or water<br>n = (64)    | heating,<br>m x 100 | kWh/mo<br>(217) – (2 | onth<br>Im |          |                   |                        |            |            |                         |                         |                     |                                |        |
| (219)m=             | 291.61                  | 259.48              | 278.21               | 257.56     | 261.23   | 255.84            | 252.27                 | 267.77     | 264.46     | 268.77                  | 272.09                  | 286.87              |                                |        |
|                     |                         |                     |                      |            |          |                   |                        | Tota       | al = Sum(2 | 19a) <sub>112</sub> =   | -                       |                     | 3216.15                        | (219)  |
| Annua               | al totals               |                     |                      |            |          |                   |                        |            |            | k                       | Wh/year                 | •                   | kWh/year                       | -      |
| Space               | heating                 | fuel use            | ed, main             | system     | 1        |                   |                        |            |            |                         |                         |                     | 3994.43                        | ļ      |
| Water               | heating                 | fuel use            | d                    |            |          |                   |                        |            |            |                         |                         |                     | 3216.15                        |        |
| Electri             | city for p              | oumps, fa           | ans and              | electric   | keep-ho  | t                 |                        |            |            |                         |                         |                     |                                |        |
| centra              | al heatin               | ig pump:            | :                    |            |          |                   |                        |            |            |                         |                         | 130                 |                                | (230c) |
| boiler              | with a f                | an-assis            | sted flue            |            |          |                   |                        |            |            |                         |                         | 45                  | ]                              | (230e) |
| Total e             | electricity             | / for the           | above, l             | kWh/yea    | r        |                   |                        | sum        | of (230a)  | (230g) =                | :                       |                     | 175                            | (231)  |
| Electri             | city for li             | ghting              |                      |            |          |                   |                        |            |            |                         |                         |                     | 252.15                         | (232)  |
| 10a. I              | Fuel cos                | sts - indiv         | vidual he            | eating sy  | stems:   |                   |                        |            |            |                         |                         |                     |                                |        |
|                     |                         |                     |                      |            |          | <b>Fu</b><br>kW   | <b>el</b><br>/h/year   |            |            | <b>Fuel P</b><br>(Table | <b>Price</b><br>12)     |                     | <b>Fuel Cost</b><br>£/year     |        |
| Space               | heating                 | - main s            | system 1             |            |          | (21               | 1) x                   |            |            | 3.                      | 1                       | x 0.01 =            | 123.8274                       | (240)  |
| Space               | heating                 | - main s            | system 2             | 2          |          | (21:              | 3) x                   |            |            | C                       | )                       | x 0.01 =            | 0                              | (241)  |
| Space               | heating                 | - secon             | dary                 |            |          | (21               | 5) x                   |            |            | C                       | )                       | x 0.01 =            | 0                              | (242)  |
| Water               | heating                 | cost (otł           | her fuel)            |            |          | (219              | 9)                     |            |            | 3.                      | 1                       | x 0.01 =            | 99.7                           | (247)  |
| Pumps               | s, fans a               | nd elect            | ric keep             | -hot       |          | (23               | 1)                     |            |            | 11.                     | 46                      | x 0.01 =            | 20.06                          | (249)  |
| (if off-p<br>Energy | beak tari<br>/ for ligh | ff, list ea<br>ting | ach of (2            | 30a) to (  | 230g) se | eparately<br>(232 | / as app<br>2)         | olicable a | ind apply  | y fuel pri<br>11.       | ce accor<br>46          | ding to<br>x 0.01 = | Table 12a<br>                  | (250)  |
| Additic             | onal star               | nding cha           | arges (T             | able 12)   |          |                   |                        |            |            |                         |                         |                     | 106                            | (251)  |
| Appen               | dix Q ite               | ems: rep            | eat lines            | ; (253) ai | nd (254) | as need           | ded                    |            |            |                         |                         |                     |                                |        |
| Total               | energ                   | y cost              |                      | ()         | (245)(   | 247) + (25        | 50)(254                | ) =        |            |                         |                         |                     | 378.4795                       | (255)  |
| 11a. S              | SAP rati                | ng - indi           | vidual h             | eating sy  | vstems   |                   |                        |            |            |                         |                         |                     |                                | -      |
| Energy              | / cost de               | eflator (T          | able 12              | )          |          |                   |                        |            |            |                         |                         |                     | 0.47                           | (256)  |
| Energy              | / cost fa               | ctor (EC            | ;F)                  |            | [(255) x | (256)] ÷ [(       | (4) + 45.0             | ] =        |            |                         |                         |                     | 2.021                          | (257)  |
| SAP ra              | ating (S                | ection 1            | 2)                   |            |          |                   |                        |            |            |                         |                         |                     | 71.8075                        | (258)  |
| 12a. (              | CO2 em                  | issions -           | – Individ            | ual heati  | ng syste | ems inclu         | uding m                | icro-CHF   | C          |                         |                         |                     |                                |        |
|                     |                         |                     |                      |            |          | En<br>kW          | <b>ergy</b><br>/h/year |            |            | <b>Emiss</b><br>kg CO   | <b>ion fac</b><br>2/kWh | tor                 | <b>Emissions</b><br>kg CO2/yea | ır     |
| Space               | heating                 | (main s             | ystem 1              | )          |          | (21               | 1) x                   |            |            | 0.1                     | 98                      | =                   | 790.9                          | (261)  |

| Space heating (secondary)                                                                                                                                                                                                   | (215) x                                                                                                               | 0                                                                              | =           | 0                                                                                      | (263)                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Water heating                                                                                                                                                                                                               | (219) x                                                                                                               | 0.198                                                                          | =           | 636.8                                                                                  | (264)                                                       |
| Space and water heating                                                                                                                                                                                                     | (261) + (262) + (263) + (264)                                                                                         | =                                                                              |             | 1427.7                                                                                 | (265)                                                       |
| Electricity for pumps, fans and electric keep-hot                                                                                                                                                                           | (231) x                                                                                                               | 0.517                                                                          | =           | 90.48                                                                                  | (267)                                                       |
| Electricity for lighting                                                                                                                                                                                                    | (232) x                                                                                                               | 0.517                                                                          | =           | 130.36                                                                                 | (268)                                                       |
| Total CO2, kg/year                                                                                                                                                                                                          | S                                                                                                                     | um of (265)(271) =                                                             |             | 1648.53                                                                                | (272)                                                       |
| CO2 emissions per m <sup>2</sup>                                                                                                                                                                                            | (2                                                                                                                    | 272) ÷ (4) =                                                                   |             | 38.32                                                                                  | (273)                                                       |
| El rating (section 14)                                                                                                                                                                                                      |                                                                                                                       |                                                                                |             | 75                                                                                     | (274)                                                       |
| 13a. Primary Energy                                                                                                                                                                                                         |                                                                                                                       |                                                                                |             |                                                                                        |                                                             |
|                                                                                                                                                                                                                             |                                                                                                                       |                                                                                |             |                                                                                        |                                                             |
|                                                                                                                                                                                                                             | <b>Energy</b><br>kWh/year                                                                                             | <b>Primary</b><br>factor                                                       |             | <b>P. Energy</b><br>kWh/year                                                           |                                                             |
| Space heating (main system 1)                                                                                                                                                                                               | Energy<br>kWh/year<br>(211) x                                                                                         | Primary<br>factor                                                              | =           | P. Energy<br>kWh/year<br>4074.32                                                       | (261)                                                       |
| Space heating (main system 1)<br>Space heating (secondary)                                                                                                                                                                  | Energy<br>kWh/year<br>(211) x<br>(215) x                                                                              | Primary<br>factor<br>1.02<br>0                                                 | =           | P. Energy<br>kWh/year<br>4074.32                                                       | )(261)<br>(263)                                             |
| Space heating (main system 1)<br>Space heating (secondary)<br>Energy for water heating                                                                                                                                      | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x                                                                   | Primary<br>factor<br>1.02<br>0<br>1.02                                         | =<br>=      | P. Energy<br>kWh/year<br>4074.32<br>0<br>3280.48                                       | )(261)<br>)(263)<br>)(264)                                  |
| Space heating (main system 1)<br>Space heating (secondary)<br>Energy for water heating<br>Space and water heating                                                                                                           | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264)                                  | Primary<br>factor<br>1.02<br>0<br>1.02                                         | =<br>=      | P. Energy<br>kWh/year<br>4074.32<br>0<br>3280.48<br>7354.8                             | (261)<br>(263)<br>(264)<br>(265)                            |
| Space heating (main system 1)<br>Space heating (secondary)<br>Energy for water heating<br>Space and water heating<br>Electricity for pumps, fans and electric keep-hot                                                      | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x<br>(219) x<br>(261) + (262) + (263) + (264)<br>(231) x            | Primary<br>factor<br>1.02<br>0<br>1.02<br>=                                    | =<br>=<br>= | P. Energy<br>kWh/year<br>4074.32<br>0<br>3280.48<br>7354.8<br>511                      | (261)<br>(263)<br>(264)<br>(265)<br>(267)                   |
| Space heating (main system 1)<br>Space heating (secondary)<br>Energy for water heating<br>Space and water heating<br>Electricity for pumps, fans and electric keep-hot<br>Electricity for lighting                          | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x<br>(219) x<br>(261) + (262) + (263) + (264)<br>(231) x<br>(232) x | Primary<br>factor<br>1.02<br>0<br>1.02<br>=<br>2.92<br>0                       | -           | P. Energy<br>kWh/year<br>4074.32<br>0<br>3280.48<br>7354.8<br>511<br>736.27            | (261)<br>(263)<br>(264)<br>(265)<br>(267)<br>(268)          |
| Space heating (main system 1)<br>Space heating (secondary)<br>Energy for water heating<br>Space and water heating<br>Electricity for pumps, fans and electric keep-hot<br>Electricity for lighting<br>'Total Primary Energy | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x<br>(219) x<br>(261) + (262) + (263) + (264)<br>(231) x<br>(232) x | Primary<br>factor<br>1.02<br>0<br>1.02<br>=<br>2.92<br>0<br>um of (265)(271) = | -           | P. Energy<br>kWh/year<br>4074.32<br>0<br>3280.48<br>7354.8<br>511<br>736.27<br>8602.07 | (261)<br>(263)<br>(264)<br>(265)<br>(267)<br>(268)<br>(272) |

# **Predicted Energy Assessment**

82 Guilford Street London WC1N 1DF Dwelling type: Date of assessment: Produced by: Total floor area: Ground floor Maisonette 15 July 2014 Stroma Certification 86.22 m<sup>2</sup>

Environmental Impact (CO<sub>2</sub>) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

#### **Energy Efficiency Rating**



The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.



# **Predicted Energy Assessment**

82 Guilford Street London WC1N 1DF

Dwelling type: Date of assessment: Produced by: Total floor area:

Ground floor Maisonette 15 July 2014 Stroma Certification 86.22 m<sup>2</sup>

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

#### **Energy Efficiency Rating**



The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.





Dwelling type: Date of assessment: Produced by: Total floor area: Mid floor Flat 21 July 2014 Stroma Certification 43.02 m<sup>2</sup>

Environmental Impact (CO<sub>2</sub>) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

### **Energy Efficiency Rating**



The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.



Dwelling type: Date of assessment: Produced by: Total floor area: Mid floor Flat 21 July 2014 Stroma Certification 43.02 m<sup>2</sup>

Environmental Impact (CO<sub>2</sub>) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

### **Energy Efficiency Rating**



The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

# **Predicted Energy Assessment**

82 Guilford Street London WC1N 1DF Dwelling type: Date of assessment: Produced by: Total floor area: Top floor Flat 15 July 2014 Stroma Certification 34.6 m<sup>2</sup>

Environmental Impact (CO<sub>2</sub>) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

#### **Energy Efficiency Rating**



The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

