

ENERGY STATEMENT

FOR

NEW RESIDENTIAL BUILDING

AT

18-20 LANCASTER GROVE, BELSIZE PARK, NW3 4PB

LONDON BOROUGH OF CAMDEN

CONSULTANT:

SLENDER WINTER PARTNERSHIP LTD THE OLD SCHOOL LONDON ROAD WESTERHAM KENT TN16 1DN ARCHITECT:

ADAM ARCHITECTURE OLD HYDE HOUSE 75 HYDE STREET WINCHESTER HAMPSHIRE SO23 7DW

DOCUMENT ISSUE RECORD

ISSUE	PREPARED BY			CHECKED BY	1	
	PREPARED	DATE	SIGNATURE	CHECKED	DATE	SIGNATURE
01	D.Vardill	13.03.14	Thetill	P. Dunk	13.03.14	PDD.
02	D. Vardill	18.03.14		P.Dunk	18.03.14	PDD.
03	D. Vardill	15.04.14		P. Dunk	15.04.14	

01 Issue to CSH Assessor

02 Minor changes following client meeting on 19th March 2014

03 Minor change following comments from Project Manager 14th March 2014

CONTENTS

1.	E	EXEC	UTIVE	SUMMARY	4
1.	I	INTR	ODUC	TION	6
2.	E	васк	GROU	JND TO THE NEW RESIDENTIAL PREMISES	6
3.	ſ	METH	HODO	LOGY ADOPTED IN THE STRATEGY	6
4.	E	BASE	CASE	ENERGY DEMAND AND CARBON EMISSIONS	7
5.	E	ENER	GY EF	FICIENT MEASURES APPLIED TO THE PROPOSED DWELLING	8
	5.1		DESIC	GN	8
	5.2		THER	MAL ELEMENTS	8
	5.3	•	HEAT	ING	9
	5.4	•	DOM	ESTIC HOT WATER SERVICES	9
	5.5	•	сом	FORT COOLING	9
	5.6		ARTI	FICIAL LIGHTING	9
	5.7		SUST	AINABLE CONSIDERATIONS	9
	5.8	•	ON-S	ITE RENEWABLE ENERGY ASSESSMENT	.10
	5	5.8.1		Ground source heat pumps	.10
	ŗ	5.8.2		Air Source Heat Pumps	.11
	ŗ	5.8.3		Solar Water Heating	.12
	ŗ	5.8.4		Photovoltaics	.13
	ŗ	5.8.5		Wind turbines	.14
	5	5.8.6		Combined Heat and Power (CHP)	.15
	5	5.8.7		Biomass boilers	.16
	ŗ	5.8.8		Summary of Renewable Energy Feasibility	.17
6.	1	ACHI	EVAB	LE EMISSIONS REDUCTION	.18
7.	(CONG	CLUSI	ONS	.19
AP	PEN	NDIX	Α		.20
SA	ΡW	Vorks	sheet	For the Proposed New Dwelling	.20
AP	PEN	NDIX	C		.41
Со	de	for S	ustair	able Homes Report	.41

1. EXECUTIVE SUMMARY

This document outlines the energy savings and energy efficiency measures including use of renewable technologies that are to be employed as part of the proposed new residential premises at 18-20 Lancaster Grove in order to meet Code for Sustainable Homes Level 4 which requires a betterment of 25% over current Building Regulation Part L requirements.

The proposed heating, domestic hot water, comfort cooling systems and efficient lighting in conjunction with various low and zero-carbon renewable energy systems have been considered and adopted or dismissed as detailed herein. An assessment was carried out to compare the energy consumption and subsequent CO_2 emissions of the new residential building against those of the existing residence. This proposed building has been specifically assessed in terms of predicted carbon emissions.

The key low carbon technology deemed as the most viable option for the proposed dwelling is the use of Ground Source Heat Pump (GSHP) system connected to a subterranean vertical closed loop to provide the heating and preheat to domestic hot water.

The SAP calculations have been prepared to determine the energy consumption and CO_2 emission with the new and existing building; these are provided below in Table 1.

	ENERGY CONSUMPTION (KWh/year)				
	HEATING ENERGY	DHW ENERGY	LIGHTING AND ELECTRICAL ANCILLARIES	CO₂ (Kg/year)	
Proposed new Building	11,135	2,050	6,450	10,224	

Table 1: Predicted Annual Energy Consumptions and CO₂ production

This approach has predicted to achieve 10.2 tonnes CO_2 per annum.

Table 2 shows that the results of the SAP calculations proposed building's Dwelling Emission Rate (DER) is considerably lower than both that of the Building Regulations minimum required Target Emissions Rate (TER) and the 25% improvement required for Code for Sustainable Homes Level 4.

ASSESSMENT	CO ₂ (Kg/m ² /year)
New Building TER	20.46
TER +25% Improvement	15.35
New Building DER	14.93

Table 2: Predicted Annual CO₂ Emissions against Limits

This proposed redevelopment at 18-20 Lancaster Grove therefore is expected to reduce its carbon emissions by **27%** over current Part L Building Regulations required minimum standards.

1. INTRODUCTION

This Energy Statement describes the methodology used in assessing the proposed re-development and the assessment of the predicted energy target and renewable proposals to support the planning application for the new residential premises at 18-20 Lancaster Grove.

It is proposed that existing building located at 18-20 Lancaster Grove, Camden be demolished and reconstructed with the addition of a Basement level, resulting in a usable floor area of 712m².

2. BACKGROUND TO THE NEW RESIDENTIAL PREMISES

It is the intention of our client to re develop the site at 18-20 Lancaster Grove by the demolition of the existing buildings and construction of the single new building to current Building Regulations and achieve Code for Sustainable Homes Level 4, with the addition of subterranean basement level equating to a total SAP assessed area of 712m².

The proposed development over four floors consists of following SAP assessed areas:

Floor	Floor Area / (m ²)
Basement Floor (subterranean)	204
Ground Floor	205
First Floor	201
Second Floor	102

Table 3:	the proposed	Building Area
----------	--------------	----------------------

3. METHODOLOGY ADOPTED IN THE STRATEGY

The Energy consumption and carbon emissions for the proposed dwelling have been estimated using FSAP methodology (FSAP 2009 version: 1.5.0.63). The floor areas and building layout used in this analysis have been obtained from the Architect's drawing files.

ASSESSMENT TYPE	HEATED BUILDING AREA (m ²)	COOLED BUILDING AREA (m ²)	
Proposed Building	712	500 ¹	

Table 4: Heated and Cooled building Areas

¹ Cooling area is estimated at approximately 70% of the TFA and will be cooled by the ground source heat pump. This is not accounted for within the SAP 2009 software under the cooling section due to limitations of data entry.

4. BASE CASE ENERGY DEMAND AND CARBON EMISSIONS

The baseline energy demand for a notional building has been established within FSAP and use for the building regulation compliance checks;

The energy consumption benchmarks used in the assessment shows in the table below:

Benchmark data / (kWh per annum)							
Building Type	Heating	Hot Water	Cooling	Electricity (lighting and power)			
Notional Building	56,614	4,191	0	2,161			

Table 5: Benchmark Data

From the Notional calculations the total estimated CO₂ level is estimated as 13,748.52 kg/year

The Carbon emissions factors used in the assessment shows in the table below:

Fuel	Carbon Factors /(Kg/kWh)
Natural Gas	0.198
Electricity	0.517
Electricity Displaced	0.529

Table 6: Carbon Factors

5. ENERGY EFFICIENT MEASURES APPLIED TO THE PROPOSED DWELLING

The energy consumption of the building will be reduced further by incorporation of energy efficiency measures in the design of the mechanical and electrical engineering systems.

The following energy efficiency measures proposed for the new dwelling are described in more detail below:

5.1. DESIGN

The energy performance of the building is affected by the design, its construction and its use. Whilst occupant behaviour is beyond the remit of this statement, improved design and construction methods can significantly reduce the carbon emissions of a building and assist the occupant to reduce consumption. Sustainable design is not just incorporating renewable technologies but should be designed at the outset to provide suitable environmental conditions for the occupant's whilst also consuming as little energy as practically achievable.

5.2. THERMAL ELEMENTS

The proposed new building's fabric elements as advised by the Architect, shall be in compliance with the Approved Building Regulations Part L1A 2010.

Element	Design U-Values (W/m ² K)
External Walls	0.21
Roof	0.2
Floor	0.25
Windows & Doors	1.6

Table 7: Design U-Values

A design air permeability rate has been set at $3m^3/m^2/hr$ at 50Pa.

5.3. HEATING

The residential premises will utilise a ground source heat pump (GSHP) system (with a COP of up to 4.6 - 460% efficient) located in the basement plant room, serving the full space heating load utilising underfloor heating and radiator solutions. It will also serve the preheat to the domestic hot water demand.

Subject to how the space heating will be provided this will be sized to cover load, a provisional allowance for underfloor background heating in the region of 15kW has been allowed. The areas within the building shall be suitably zoned for space heating provision.

5.4. DOMESTIC HOT WATER SERVICES

The hot water generation shall be supplied by the same GSHP system that serves the building heating systems with boost and back-up from a gas fired condensing boiler. Provisionally 300 litres of hot water storage has been allowed for.

5.5. COMFORT COOLING

It has been requested by the Client that a system of comfort cooling may be considered to the principal occupied rooms within the house. This shall be provided via Fan Coil Units with heat rejection via the vertical thermal piles of the GSHP system.

5.6. ARTIFICIAL LIGHTING

The provision of natural daylight is considered an important factor in the design in order to minimise the use of artificial light within the building. Floors from ground level upward have access to natural light with high specification glazing being specified to maximise day lighting levels and minimise associated heat loss. High efficiency LED lamps will be considered in conjunction with the client's preferences and facilities for automatic switching and dimming systems shall also be incorporated where possible. This will however be subject to the client's and interior designer's agreement.

5.7. SUSTAINABLE CONSIDERATIONS

The 18-20 Lancaster Grove development incorporates a rainwater harvesting scheme to minimise mains water consumption. Rainwater shall be collected at roof level and sufficient volume stored for garden irrigations and car cleaning.

5.8. ON-SITE RENEWABLE ENERGY ASSESSMENT

A number of technologies were apprised in terms of technical, physical and financial feasibility, as potential low carbon system for use on the project.

5.8.1. Ground source heat pumps


```
illustrative images only
```

Heat pumps use refrigerant gases and an electrical compressor to take heat from a source and deliver it to an output. In this way they can be used to supply heat to a building. The ground acts as a huge solar collector and thermal store, which dampens fluctuations in ground temperature. The fluctuations reduce with depth and stabilise at the annual mean by about 12m below the surface; for the UK this is in the range 9–12°C.

Ground source heat pumps make use of this heat stored in the ground and raise it to a more useful temperature of around 40-50°C. It should be noted that at these temperatures, the heat produced is only useful for low temperature applications such as under floor heating installations; otherwise, a degree of top-up by conventional means is required when used for generating domestic hot water for example.

The viability of such a system and therefore costs rely almost entirely on the sub-structure buildup, the adjacency and restrictions on sub-structural service distributions and transport systems and the structural interface required to achieve thermal piles below the building.

From the survey it shows the site has the potential for ground source geothermal heat extraction below the garden of the proposed development.

It is proposed to install a total of 6 thermal pile/bore hole to be used in conjunction with heat pump systems to provide heating and cooling within the building.

5.8.2. Air Source Heat Pumps

Illustrative images only

Air source heat pumps operate using the same reverse refrigeration cycle as ground source heat pumps; however the initial heat energy is extracted from the external air rather than the ground. These heat pumps can be reversed to provide cooling to an area although this reduces the coefficient of performance of the pumps.

The heat pump connects multiple inside units with a single outside unit. The latter resembles an air conditioning condenser unit and care must be taken to locate the unit where any noise generation is not obtrusive and the location should ensure the unit is not visually obtrusive.

Since there is already adequate thermal load provided by the ground-source heat pump, and since air-source cannot provide as high efficiencies as ground source, there is no need to make use of air-source technology in addition to the ground-source heat pump already specified.

5.8.3. Solar Water Heating

Illustrative images only

Solar collectors, which are at the heart of most solar systems, absorb the sun's energy and provide heat for hot water, heating and other applications.

There is useable space at second floor roof level to accommodate the panels; however the building domestic hot water demand is already met with the use of the GSHP system and the space could instead be used for solar photovoltaic panels.

Solar hot water heating therefore will not be progressed further.

5.8.4. Photovoltaics

Illustrative images only

Photovoltaic panels (PV) provide clean silent electricity and generate green power during most daylight conditions although they are most efficient when exposed to direct sunlight or are orientated to face plus or minus 30 degrees of due south.

PV panels typically have an electrical warranty of 20 - 25 years and are eligible for the Government's Feed in Tariff (FITS) incentive scheme for the 25 years after the installation.

There is space to accommodate panels at roof level, however the site is shaded by mature trees both at the road side and to the sides. As a 27% CO₂ reduction is achievable with the GSHP alone PV technology is not recommended at this time.

5.8.5. Wind turbines

Illustrative images only

Wind power can be used to generate electricity either in parallel with mains supplies or as standalone solutions using battery back-up.

In order to generate worthwhile quantities of electricity, average wind speeds of between 5-6 m/s are necessary (the UK government is currently advising 5.5-6.0m/s as the threshold). However Government wind speed database predicts local wind speed at 18-20 Lancaster Grove to be 4.6 m/s at 10 m above ground level and 4.9 m/s at 25 m above ground level thus rendering the option unviable.

5.8.6. Combined Heat and Power (CHP)

Illustrative images only

Combined heat and power (CHP) also called co-generation is a de-centralised method of producing electricity from a fuel and 'capturing' the heat generated for space heating and hot water usage.

The production and transportation of electricity via the National Grid is very inefficient with over 65% of the energy produced at the power station being lost to the atmosphere and through transportation.

The system would generate electricity for use within the building with any surplus being sold back to the grid. The heat would be distributed via a communal heating and hot water infrastructure within the building. For a CHP plant to be efficient it needs operate for as much of the time as possible (usually deemed to be in excess of 14 hours per day). Therefore the size of the unit is usually based upon the hot water load of the building with additional boilers meeting the space heating demand.

In order to optimize a CHP system, whether it is fuelled by biomass or other means the proposed building needs to have a continuous heat demand throughout the year which unfortunately the proposed building does not have, therefore this option is unfeasible.

5.8.7. Biomass boilers

Illustrative images only

Energy from biomass is produced by burning organic matter. Organic matter is harvested and processed to create bio-energy which can take the form of liquid or solid fuels.

Although biomass is carbon-based (and hence generates carbon emissions), the carbon that is released during combustion is equal to that carbon that was absorbed during growth and so the fuel is classed as carbon neutral (the fuel generally requires treatment and transport, with associated carbon emissions however, but these effects will be ignored here).

This technology analysis assumes that a gas fired boiler would also be installed to allow a high optimization of the biomass boiler therefore a 13kW load would require approximately 6 tonnes/year of wood pellets and an estimated fuel store in the region of 8m³. This would give rise to a number of deliveries of fuel a year which would be an unacceptable option and shall not be considered further.

5.8.8. Summary of Renewable Energy Feasibility

Technology	Feasible For This Site	Reason
Photovoltaics	No	Not Proposed due to Shading
Solar Water	No	Dismissed since load already supplied by GSHP.
Ground source heat pumps	Yes	Boreholes could be accommodated within the footprint of the site.
Air Source heat pumps	Νο	Enough space to accommodate Air source heat pump out door unit (condenser), however not necessary as GSHP can accommodate heating load more efficiently.
Wind Generators	No	Insufficient wind speeds at site.
СНР	No	There is not a consistent heat load throughout the year with which to justify the use of CHP plant.
Biomass Boilers	No	Regular fuel deliveries would be unacceptable and require unavailable fuel storage space.

6. ACHIEVABLE EMISSIONS REDUCTION

The figures below demonstrate the proposed energy consumption and CO_2 emissions resulting from the passive and active energy efficiency measures.

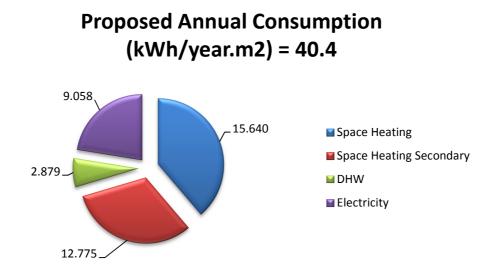
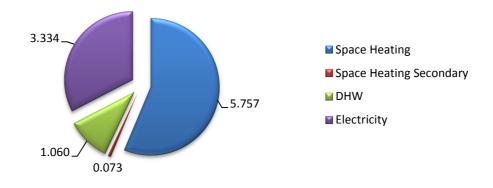



Figure 5 shows the estimated carbon dioxide emissions broken down by type of use.

Annual Carbon Produced = 10.2 (Tonnes)

By utilising energy efficiency measures and supplying a majority of the development's energy requirements with low carbon technologies a total level of emissions of **10.2 tonnes** CO_2 per annum is predicted by SAP 9.9 software (FSAP 2009; Version 1.5.0.63). This equates to a saving of **3.5 tonnes** CO_2 per annum over the base case existing building.

7. CONCLUSIONS

This report demonstrates how a variety of technologies that may or may not be incorporated into the design of the proposed new building in order to reduce the Carbon emissions to **10.2 tonnes CO₂** per annum from the notional case of **13.7 tonnes CO₂**, representing an annual CO₂ saving of **27%**.

Type of Assessment	Energy Requirement (KWh p.a.)	Carbon Emission Rate (KgCO ₂)
Notional building Value	62,966	13,749
Proposed Refurbish Building Value	28,731	10,224
Saving over base case	34,235	9,124
Approximate % Reduction over Notional Building Regulation Pass Level	54%	27%

ASSESSMENT	CO ₂ (Kg/m ² /year)
New Building TER	20.46
TER +25% Improvement	15.35
New Building DER	14.93

APPENDIX A

SAP Worksheet For the Proposed New Dwelling

		User	Details:						
Assessor Name: Software Name:	Stroma FSAP 2009		Stroma Softwar			,	Versio	n: 1.5.0.63	
		Propert	y Address: 1	8-20 L	ancaster (Grove			
Address :	18, Lancaster Grove,	LONDON, N	W3 4PB						
1. Overall dwelling dime	ensions:								
- .		Ar	ea(m²)		Ave Heig			Volume(m	<u> </u>
Basement			204 (1	a) x	3.05		2a) =	622.2	(3a
Ground floor			205 (1	b) x	2.9	(2b) =	594.5	(3b
First floor			201 (1	c) x	2.8	(2c) =	562.8	(30
Second floor			102 (1	d) x	2.3	(2d) =	234.6	(3d
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1e)+	·(1n)	712 (4)					
Solume				3a)+(3b))+(3c)+(3d)+((3e)+(3	n) =	2014.1	(5)
							-	2014.1	
2. Ventilation rate:	main Sec	ondary	other		total			m ³ per hou	ır
Number of chimneys		ating		= [1	□ x 40	=		(6a
			0	Ľ				40	=
Number of open flues	0 +	• •	0	= [0	x 20		0	(6b
Number of intermittent fa	ins			L	0	x 10	=	0	(7a
Number of passive vents					0	x 10	=	0	(7b
Number of flueless gas f	ires			Ē	0	x 40	-	0	(70
							Air ch	anges per h	our
Infiltration due to chimne	ys, flues and fans = (6a)	+(6b)+(7a)+(7b)	+(7c) =		40) + (5) =	0.02	(8)
	been carried out or is intended,			ntinue fro	om (9) to (16)			
Number of storeys in t	he dwelling (ns)							0	(9)
Additional infiltration						[(9)-1]	x0.1 =	0	(10
	.25 for steel or timber fra		,		uction			0	(11
deducting areas of openi	resent, use the value correspo ngs); if equal user 0.35	naing to the gre	ater wall area (atter					
If suspended wooden	floor, enter 0.2 (unsealed	i) or 0.1 (sea	aled), else er	nter 0				0	(12
If no draught lobby, er	ter 0.05, else enter 0							0	(13
Percentage of window	s and doors draught strip	ped						0	(14
Window infiltration			0.25 - [0.2 x		-			0	(15
Infiltration rate			(8) + (10) + (0	(16
, , ,	q50, expressed in cubic				etre of env	elope a	rea	3	(17
	lity value, then (18) = [(17)				la hala	,		0.17	(18
Air permeability value applie Number of sides on whic	es if a pressurisation test has b h sheltered	en done or a d	egree air perm	eability i	is being used	1		0	(19
Shelter factor			(20) = 1 - [0.	075 x (1	9)] =			0	(19
nfiltration rate incorpora	ting shelter factor		(21) = (18) x	(20) =				0.17	- (21
nfiltration rate modified	0								
							Dec	1	

SAP WorkSheet: New dwelling design stage

Stroma FSAP 2009 Version: 1.5.0.63 (SAP 9.90) - http://www.stroma.com

Page 1 of 12

SAP WorkSheet: New dwelling design stage

Monthly average	ge wind speed	from Tabl	e 7									
(22)m= 5.4	5.1 5.1	4.5	4.1	3.9	3.7	3.7	4.2	4.5	4.8	5.1]	
Wind Factor (2	2a)m = (22)m	÷ 4										
(22a)m= 1.35	1.27 1.27	1.12	1.02	0.98	0.92	0.92	1.05	1.12	1.2	1.27	1	
											1	
Adjusted infiltra		-		· · ·	,	. ,					1	
0.23 Calculate effec	0.22 0.22 tive air change	0.19 e rate for t	0.17 he appli	0.17 cable case	0.16	0.16	0.18	0.19	0.2	0.22	J	
If mechanica	•										0.5	(23a)
If exhaust air he	at pump using Ap	pendix N, (2	3b) = (23a	a) × Fmv (eq	uation (N	15)), other	rwise (23b) = (23a)			0.5	(23b)
If balanced with	heat recovery: eff	iciency in %	allowing f	for in-use fac	tor (from	Table 4h) =				0	(23c)
	d mechanical	-	-			7.	<u>, ,</u>	, <u>,</u>	· · ·	1 1) ÷ 100]	
24a)m= 0	0 0	0	0	0	0	0	0	0	0	0]	(24a)
·	d mechanical	-					<u> </u>	· · ·	<u>,</u>		1	
24b)m= 0	0 0	0	0	0	0	0	0	0	0	0	J	(24b)
,	ouse extract ve 1 < 0.5 × (23b)		•					5 x (23)				
24c)m= 0.5	0.5 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1	(24c)
	ventilation or w		-						0.0			
	n = 1, then (24)							0.5]				
24d)m= 0	0 0	0	0	0	0	0	0	0	0	0]	(24d)
Effective air	change rate - e	enter (24a) or (24b	o) or (24c)	or (24	d) in box	k (25)					
25)m= 0.5	0.5 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(25)
3. Heat losses	s and heat loss	paramet	er:				-		25			
ELEMENT	Gross area (m²)	Openin m		Net Area A ,m²		U-valı W/m2		A X U (W/	K)	k-value kJ/m²·		A X k kJ/K
Doors				2	×	2	=	4				(26)
Vindows Type	1			4	x1/	[1/(1.6)+	0.04] =	6.02				(27)
Vindows Type	2			2.5	x1/	[1/(1.6)+	0.04] =	3.76				(27)
Vindows Type	3			1.3	x1/	[1/(1.6)+	0.04] =	1.95				(27)
Vindows Type	4			2	x1/	[1/(1.6)+	0.04] =	3.01				(27)
Vindows Type	5			0.6	x1/	[1/(1.6)+	0.04] =	0.9				(27)
	6			2.2	x1/	[1/(1.6)+	0.04] =	3.31				(27)
Vindows Type							0.041					(27)
				1.1	x1/	[1/(1.6)+	0.04] =	1.65				
Vindows Type	7			1.1 3.7	=	(1/(1.6)+ ([1/(1.6)+		1.65 5.56				(27)
Windows Type Windows Type	7 8				x1/		0.04] =					(27) (27)
Vindows Type Vindows Type Vindows Type	7 8 9			3.7	x1/	[1/(1.6)+	0.04] = 0.04] =	5.56				100000
Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	7 8 9 10			3.7	x1/ x1/ x1/	[1/(1.6)+ [1/(1.6)+	0.04] = 0.04] = 0.04] =	5.56 5.11				(27)
Windows Type Windows Type Windows Type Windows Type	7 8 9 10 11			3.7 3.4 1.4	x1/ x1/ x1/ x1/ x1/	[[1/(1.6)+ [[1/(1.6)+ [[1/(1.6)+	0.04] = 0.04] = 0.04] = 0.04] =	5.56 5.11 2.11				(27) (27)

Stroma FSAP 2009 Version: 1.5.0.63 (SAP 9.90) - http://www.stroma.com

Page 2 of 12

Windows Type 14				2.5	x1	/[1/(1.6)+	0.04] =	3.76				(27)
Windows Type 15				2		/[1/(1.6)+	0.04] =	3.01	Ξ.			(27)
Floor Type 1				205	×	0.25	=	51.25	Ξ r			(28)
Floor Type 2				12	×	0.25		3	ה ד		i —	(28)
Walls Type1	02	93.4		208.6	3 x	0.21	=	43.81	i F		i —	(29)
Walls Type2	48	0	=	148	×	0.21	= =	31.08	i F			(29)
Roof Type1	08	0	=	108	×	0.2	=	21.6	i F		i —	(30)
Roof Type2	61	0	=	161	×	0.2	-	32.2	i F		i —	(30)
Total area of elemen	ts, m²			936	=							(31)
* for windows and roof wi	ndows, use e	ffective wi	ndow U-va	alue calcul	ated using	formula 1/	/[(1/U-val	ue)+0.04] a	s given in	paragraph	3.2	
** include the areas on bo			ls and part	titions		(00) (00)	. (22) -				10.004-20010	7
Fabric heat loss, W/		0)				(26)(30)		(20) - (22)		(00-) -	324.38	(33)
Heat capacity Cm =			TEAN	1.1/21/				(30) + (32		(32e) =	73860.9999	(34)
Thermal mass paran For design assessments						ncienty the		ative Value:		able 1f	250	(35)
can be used instead of a			construct	ion are not	Kilowii pr	ecisely the	mulcalive	e values of	11/11/11/16	1010 11		
Thermal bridges : S	(L x Y) cale	culated u	using Ap	pendix k	ĸ					1	140.4	(36)
if details of thermal bridgi		own (36) =	0.15 x (3	1)		_				_		_
Total fabric heat loss								+ (36) =			464.78	(37)
Ventilation heat loss	-							n = 0.33 × (2				
Jan Fel (38)m= 332.33 332.3		Apr 332.33	May 332.33	Jun 332,33	Jul 332.33	Aug 332.33	Sep 332.33	Oct 332.33	Nov 332.33	Dec 332.33		(38)
		332.33	332.33	332.33	332.33	332.35				332.33		(50)
Heat transfer coeffic					-			n = (37) + (3				
(39)m= 797.11 797.1	1 797.11	797.11	797.11	797.11	797.11	797.11	797.11	797.11	797.11	797.11	797.11	(39)
Heat loss parameter	(HLP), W/	m²K						Average = n = (39)m +		.42712-	191.11	(33)
(40)m= 1.12 1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12		
							3	Average =	Sum(40)1		1.12	(40)
Number of days in m												
Jan Fet		Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m= 31 28	31	30	31	30	31	31	30	31	30	31		(41)
4. Water heating er	ergy requi	rement:								kWh/ye	ear:	
Assumed occupancy if TFA > 13.9, N = if TFA £ 13.9, N =	1 + 1.76 x	[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (TFA -13.		67		(42)
Annual average hot Reduce the annual average								se target of		1.3		(43)
not more that 125 litres pe	er person per	day (all w	ater use, l	hot and col	ld)							
Jan Fet	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water usage in litres p	er day for ea	ch month	Vd,m = fa	ctor from 1	Table 1c x	(43)						
(44)m= 133.43 128.5	8 123.73	118.88	114.03	109.17	109.17	114.03	118.88	123.73	128.58	133.43		_
Energy content of hot wat	er used - cald	culated mo	onthly = 4.	190 x Vd,n	n x nm x D)Tm / 3600	kWh/mo	Total = Sur nth (see Ta			1455.65	(44)
(45)m= 198.35 173.4	8 179.02	156.07	149.75	129.23	119.75	137.41	139.05	162.05	176.89	192.09		
							0	Total = Sur	m(45)1_12 =		1913.15	(45)
Stroma FSAP 2009 Versi	on: 1.5.0.63 (SAP 9.90)	- http://w	ww.stroma	.com						Page	3 of 12

SAP WorkSheet: New dwelling design stage

SAP WorkSheet: New dwelling design stage

If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)	
(46)m= 29.75 26.02 26.85 23.41 22.46 19.38 17.96 20.61 20.86 24.31 26.53 28.81 (4	6)
Water storage loss:	
a) If manufacturer's declared loss factor is known (kWh/day): 0 (4	
Temperature factor from Table 2b 0 (4	
Energy lost from water storage, kWh/year (47) × (48) = 0 (4 If manufacturer's declared cylinder loss factor is not known:	9)
Cylinder volume (litres) including any solar storage within same 300 (5	0)
If community heating and no tank in dwelling, enter 110 litres in box (50)	
Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in box (50)	
Hot water storage loss factor from Table 2 (kWh/litre/day) 0.01 (5	1)
Volume factor from Table 2a 0.74 (5	
Temperature factor from Table 2b 0.54 (5	3)
Energy lost from water storage, kWh/year ((50) x (51) x (52) x (53) = 1.62 (5	<u></u>
Enter (49) or (54) in (55) 1.62 (5	5)
Water storage loss calculated for each month ((56)m = (55) × (41)m	19
(56)m= 50.3 45.43 50.3 48.68 50.3 50.3 50.3 48.68 50.3 50.3 48.68 50.3 (50) If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) – (H11)] + (50), else (57)m = (56)m where (H11) is from Appendix H	6)
(57)m= 50.3 45.43 50.3 48.68 50.3 48.68 50.3 50.3 48.68 50.3 (5	(7)
Primary circuit loss (annual) from Table 3 360 (5	8)
Primary circuit loss calculated for each month (59)m = (58) + 365 × (41)m	
(modified by factor from Table H5 if there is solar water heating and a cylinder thermostat) (59)m= 30.58 27.62 30.58 29.59 30.58 (5)	9)
	•,
Combi loss calculated for each month (61)m = (60) ÷ 365 × (41)m	
(61)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1)
Total heat required for water heating calculated for each month $(62)m = 0.85 \times (45)m + (46)m + (57)m + (59)m + (61)m$	2)
(62)m= 279.23 246.53 259.89 234.34 230.63 177.9 170.05 187.71 187.73 242.93 255.16 272.97 (6	2)
Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)	
(add additional lines in FORKS and/or WWRKS applies, see Appendix O) (6) </td <td>3)</td>	3)
Output from water heater	
(64)m= 279.23 246.53 259.89 234.34 230.63 0 0 0 0 242.93 255.16 272.97	
Output from water heater (annual) 2021.67 (6	4)
Output immersion	
Output immersion (64)m= 0 0 0 0 0 177.9 170.05 187.71 187.73 0 0 0	
	4)
(64)m= 0 0 0 0 0 177.9 170.05 187.71 187.73 0 0 0	4)
(64)m= 0 0 0 0 177.9 170.05 187.71 187.73 0 0 0 Output from immersion (annual)	
(64)m= 0 0 0 177.9 170.05 187.71 187.73 0 0 0 Output from immersion (annual) Output from immersion (annual) 723.3916 (6 Heat gains from water heating, kWh/month 0.25 x [0.85 × (45)m + (61)m] + 0.8 x [(46)m + (57)m + (59)m]	
(64)m= 0 0 0 177.9 170.05 187.71 187.73 0 0 0 0 Output from immersion (annual)	
(64)m= 0 0 0 0 177.9 170.05 187.71 187.73 0<	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
(64)m= 0 0 0 177.9 170.05 187.71 187.73 0 0 0 0 Output from immersion (annual) 723.3916 (6 Heat gains from water heating, kWh/month 0.25 x [0.85 × (45)m + (61)m] + 0.8 x [(46)m + (57)m + (59)m] (65)m= 130.65 116.12 124.22 114.51 114.49 81.91 80.06 85.93 85.18 118.58 121.43 128.57 (6 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts	5)

Stroma FSAP 2009 Version: 1.5.0.63 (SAP 9.90) - http://www.stroma.com

Page 4 of 12

SAP WorkSheet: New dwelling design stage

Lightin	g gains	(calculat	ted in Ap	opendix I	L, equati	ion L9 oi	r L9a), a	lso see .	Table 5				
(67)m=	198.91	176.67	143.68	108.77	81.31	68.64	74.17	96.41	129.4	164.31	191.77	204.44	(67)
Applia	nces gai	ns (calc	ulated in	Append	lix L, eq	uation L	13 or L1	3a), also	see Tal	ble 5			
68)m=	1107.4	1118.89	1089.94	1028.29	950.47	877.33	828.47	816.98	845.93	907.58	985.4	1058.54	(68)
Cookin	g gains	(calcula	ted in A	ppendix	L, equat	ion L15	or L15a)), also se	e Table	5			
(69)m=	60.67	60.67	60.67	60.67	60.67	60.67	60.67	60.67	60.67	60.67	60.67	60.67	(69)
Pumps	and far	ns gains	(Table 5	5a)									
(70)m=	10	10	10	10	10	10	10	10	10	10	10	10	(70)
osses	s e.g. ev	aporatio	n (nega	tive valu	es) (Tab	le 5)							
71)m=	-146.7	-146.7	-146.7	-146.7	-146.7	-146.7	-146.7	-146.7	-146.7	-146.7	-146.7	-146.7	(71)
Nater	heating	gains (T	able 5)										
(72)m=	175.61	172.8	166.97	159.04	153.89	113.76	107.6	115.5	118.3	159.39	168.65	172.81	(72)
Total i	nternal	gains =				(66)	m + (67)m	n + (68)m +	(69)m + (70)m + (7	1)m + (72)	m	
73)m=	1625.94	1612.39	1544.6	1440.12	1329.69	1203.76	1154.27	1172.91	1237.66	1375.3	1489.85	1579.81	(73)
6. So	ar gains												

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orienta	tion: Access Facto	or	Area		Flux		9_		FF	Ċ.	Gains	
	Table 6d		m²		Table 6a		Table 6b		Table 6c		(W)	
North	0.9x 0.77	×	4	x	10.73	x	0.72	×	0.7	=	59.94	(74)
North	0.9x 0.77	×	2.5	x	10.73	×	0.72	×	0.7	=	37.46	(74)
North	0.9x 0.77	×	1.3	×	10.73	×	0.72	×	0.7	=	19.48	(74)
North	0.9x 0.77	x	2	x	10.73	x	0.72	×	0.7	=	7.49	(74)
North	0.9x 0.77	x	0.6	x	10.73	x	0.72	×	0.7	=	2.25	(74)
North	0.9x 0.77	×	4	×	20.36	×	0.72	×	0.7	=	113.77	(74)
North	0.9x 0.77	×	2.5	x	20.36	×	0.72	×	0.7	=	71.11	(74)
North	0.9x 0.77	×	1.3	x	20.36	x	0.72	×	0.7	=	36.98	(74)
North	0.9x 0.77	×	2	×	20.36	×	0.72	×	0.7	=	14.22	(74)
North	0.9x 0.77	×	0.6	×	20.36	×	0.72	×	0.7	=	4.27	(74)
North	0.9x 0.77	x	4	x	33.31	×	0.72	×	0.7	=	186.14	(74)
North	0.9x 0.77	×	2.5	x	33.31	x	0.72	×	0.7	=	116.34	(74)
North	0.9x 0.77	×	1.3	x	33.31	x	0.72	×	0.7	=	60.5	(74)
North	0.9x 0.77	×	2	×	33.31	x	0.72	×	0.7	=	23.27	(74)
North	0.9x 0.77	×	0.6	x	33.31	x	0.72	×	0.7	=	6.98	(74)
North	0.9x 0.77	×	4	x	54.64	x	0.72	×	0.7] =	305.35	(74)
North	0.9x 0.77	×	2.5	x	54.64	x	0.72	×	0.7	=	190.84	(74)
North	0.9x 0.77	×	1.3	×	54.64	x	0.72	×	0.7	=	99.24	(74)
North	0.9x 0.77	×	2	x	54.64	×	0.72	×	0.7	=	38.17	(74)
North	0.9x 0.77	×	0.6	x	54.64	x	0.72	x	0.7	=	11.45	(74)
North	0.9x 0.77	×	4	x	75.22	x	0.72	x	0.7	=	420.33	(74)
North	0.9x 0.77	×	2.5	x	75.22	×	0.72	×	0.7	=	262.71	(74)

Stroma FSAP 2009 Version: 1.5.0.63 (SAP 9.90) - http://www.stroma.com

Page 5 of 12

North	0.9x	0.77	×	1.3	x	75.22	x	0.72	x	0.7	=	136.61	(74)
North	0.9x	0.77	×	2	x	75.22	x	0.72	x	0.7	=	52.54	(74)
North	0.9x	0.77	×	0.6	×	75.22	×	0.72	x	0.7	=	15.76	(74)
North	0.9x	0.77	×	4	×	84.09	×	0.72	x	0.7	=	469.92	(74)
North	0.9x	0.77	×	2.5	x	84.09	x	0.72	x	0.7	=	293.7	(74)
North	0.9x	0.77	×	1.3	x	84.09	x	0.72	x	0.7	=	152.72	(74)
North	0.9x	0.77	×	2	x	84.09	x	0.72	x	0.7	=	58.74	(74)
North	0.9x	0.77	×	0.6	×	84.09	×	0.72	x	0.7	=	17.62	(74)
North	0.9x	0.77	×	4	×	79.12	×	0.72	x	0.7	=	442.15	(74)
North	0.9x	0.77	×	2.5	x	79.12	x	0.72	x	0.7	=	276.34	(74)
North	0.9x	0.77	×	1.3	×	79.12	×	0.72	x	0.7	=	143.7	(74)
North	0.9x	0.77	×	2	×	79.12	×	0.72	x	0.7	=	55.27	(74)
North	0.9x	0.77	×	0.6	×	79.12	×	0.72	x	0.7	=	16.58	(74)
North	0.9x	0.77	×	4	×	61.56	×	0.72	x	0.7	=	344.05	(74)
North	0.9x	0.77	×	2.5	×	61.56	×	0.72	x	0.7	=	215.03	(74)
North	0.9x	0.77	×	1.3	×	61.56	×	0.72	×	0.7	=	111.82	(74)
North	0.9x	0.77	×	2	x	61.56	x	0.72	x	0.7	=	43.01	(74)
North	0.9x	0.77	×	0.6	×	61.56	×	0.72	×	0.7	-	12.9	(74)
North	0.9x	0.77	×	4	×	41.09	×	0.72	×	0.7	-	229.6	(74)
North	0.9x	0.77	×	2.5	×	41.09	*	0.72	×	0.7	=	143.5	(74)
North	0.9x	0.77	×	1.3	x	41.09	×	0.72	×	0.7	=	74.62	(74)
North	0.9x	0.77	×	2	×	41.09	×	0.72	×	0.7	=	28.7	(74)
North	0.9x	0.77	×	0.6	×	41.09	×	0.72	×	0.7	=	8.61	(74)
North	0.9x	0.77	×	4	×	24.81	×	0.72	×	0.7	=	138.67	(74)
North	0.9x	0.77	×	2.5	×	24.81	×	0.72	×	0.7	=	86.67	(74)
North	0.9x	0.77	×	1.3	×	24.81	×	0.72	×	0.7	=	45.07	(74)
North	0.9x	0.77	×	2	×	24.81	×	0.72	×	0.7	=	17.33	(74)
North	0.9x	0.77	×	0.6	×	24.81	×	0.72	×	0.7	=	5.2	(74)
North	0.9x	0.77	×	4	×	13.22	x	0.72	×	0.7	=	73.87	(74)
North	0.9x	0.77	×	2.5	×	13.22	×	0.72	x	0.7	=	46.17	(74)
North	0.9x	0.77	×	1.3	x	13.22	×	0.72	×	0.7	=	24.01	(74)
North	0.9x	0.77	×	2	×	13.22	×	0.72	×	0.7	=	9.23	(74)
North	0.9x	0.77	×	0.6	×	13.22	×	0.72	x	0.7	=	2.77	(74)
North	0.9x	0.77	×	4	×	8.94	×	0.72	×	0.7	=	49.98	(74)
North	0.9x	0.77	×	2.5	×	8.94	×	0.72	×	0.7	=	31.24	(74)
North	0.9x	0.77	x	1.3	x	8.94	×	0.72	x	0.7	=	16.25	(74)
North North	0.9x	0.77	x	2	x	8.94	×	0.72	x	0.7	=	6.25	(74)
	0.9x	0.77	x	0.6	x	8.94	×	0.72	x	0.7	=	1.87	(74)
East East	0.9x	1	×	2.5	x	19.87	×	0.72	x	0.7	=	17.35	(76)
	0.9x	1	×	2	x	19.87	×	0.72	x	0.7	=	13.88	(76)
East	0.9x	1	×	2.5	x	38.52	×	0.72	x	0.7	=	33.63	(76)

Stroma FSAP 2009 Version: 1.5.0.63 (SAP 9.90) - http://www.stroma.com

Page 6 of 12

East	0.9x	1	x	2	×	38.52	x	0.72	x	0.7	=	26.91	(76)
East	0.9x	1	x	2.5	×	61.57	x	0.72	x	0.7	=	53.76	(76)
East	0.9x	1	×	2	×	61.57	x	0.72	×	0.7	=	43.01	(76)
East	0.9x	1	x	2.5	×	91.41	×	0.72	×	0.7	=	79.82	(76)
East	0.9x	1	x	2	×	91.41	x	0.72	×	0.7	=	63.85	(76)
East	0.9x	1	x	2.5	×	111.22	x	0.72	×	0.7	=	97.11	(76)
East	0.9x	1	×	2	×	111.22	x	0.72	×	0.7	=	77.69	(76)
East	0.9x	1	x	2.5	×	116.05	x	0.72	×	0.7	=	101.33	(76)
East	0.9x	1	x	2	×	116.05	x	0.72	x	0.7	=	81.07	(76)
East	0.9x	1	x	2.5	×	112.64	×	0.72	×	0.7	=	98.36	(76)
East	0.9x	1	×	2	×	112.64	x	0.72	×	0.7	=	78.69	(76)
East	0.9x	1	x	2.5	×	98.03	×	0.72	×	0.7	=	85.6	(76)
East	0.9x	1	x	2	×	98.03	×	0.72	×	0.7	=	68.48	(76)
East	0.9x	1	x	2.5	×	73.6	×	0.72	×	0.7	=	64.27	(76)
East	0.9x	1	×	2	×	73.6	×	0.72	×	0.7	=	51.42	(76)
East	0.9x	1	x	2.5	×	46.91	×	0.72	×	0.7	=	40.96	(76)
East	0.9x	1	x	2	×	46.91	×	0.72	×	0.7	=	32.77	(76)
East	0.9x	1	x	2.5	×	24.71	×	0.72	×	0.7	-	21.57	(76)
East	0.9x	1	×	2	×	24.71	×	0.72	×	0.7	-	17.26	(76)
East	0.9x	1	×	2.5	×	16.39	*	0.72	×	0.7	=	14.31	(76)
East	0.9x	1	x	2	x	16.39	×	0.72	×	0.7	=	11.45	(76)
South	0.9x	0.77	x	2.2	×	47.32	×	0.72	×	0.7	=	145.45	(78)
South	0.9x	0.77	×	1.1	×	47.32	×	0.72	×	0.7	=	36.36	(78)
South	0.9x	0.77	x	3.7	×	47.32	×	0.72	×	0.7	=	428.09	(78)
South	0.9x	0.77	x	3.4	×	47.32	×	0.72	×	0.7	=	56.2	(78)
South	0.9x	0.77	x	1.4	×	47.32	×	0.72	×	0.7	=	46.28	(78)
South	0.9x	0.77	×	2.2	×	77.18	×	0.72	×	0.7	=	237.23	(78)
South	0.9x	0.77	x	1.1	×	77.18	×	0.72	×	0.7	=	59.31	(78)
South	0.9x	0.77	x	3.7	×	77.18	x	0.72	×	0.7	=	698.21	(78)
South	0.9x	0.77	x	3.4	×	77.18	x	0.72	×	0.7	=	91.66	(78)
South	0.9x	0.77	×	1.4	×	77.18	×	0.72	×	0.7	=	75.48	(78)
South	0.9x	0.77	×	2.2	×	94.25	×	0.72	×	0.7	=	289.67	(78)
South	0.9x	0.77	x	1.1	×	94.25	×	0.72	×	0.7	=	72.42	(78)
South	0.9x	0.77	x	3.7	×	94.25	x	0.72	×	0.7	=	852.56	(78)
South	0.9x	0.77	x	3.4	×	94.25	x	0.72	×	0.7	=	111.92	(78)
South	0.9x	0.77	x	1.4	×	94.25	×	0.72	×	0.7	=	92.17	(78)
South South	0.9x	0.77	x	2.2	x	105.11	×	0.72	x	0.7	=	323.08	(78)
	0.9x	0.77	x	1.1	x	105.11	×	0.72	x	0.7	=	80.77	(78)
South	0.9x	0.77	x	3.7	x	105.11	×	0.72	x	0.7	=	950.88	(78)
South	0.9x	0.77	x	3.4	×	105.11	×	0.72	x	0.7	=	124.83	(78)
South	0.9x	0.77	x	1.4	x	105.11	×	0.72	x	0.7	=	102.8	(78)

Stroma FSAP 2009 Version: 1.5.0.63 (SAP 9.90) - http://www.stroma.com

Page 7 of 12

Couth	100.000		1		1		1				i - 3		
South	0.9x	0.77	×	2.2	×	108.55	×	0.72	×	0.7	=	333.64	(78)
South	0.9x	0.77	×	1.1	×	108.55	×	0.72	×	0.7	=	83.41	(78)
South	0.9x	0.77	×	3.7	×	108.55	×	0.72	x	0.7	=	981.96	(78)
South	0.9x	0.77	×	3.4	×	108.55	×	0.72	×	0.7	=	128.91	(78)
South	0.9x	0.77	x	1.4	×	108.55	x	0.72	x	0.7	=	106.16	(78)
South	0.9x	0.77	x	2.2	x	108.9	×	0.72	x	0.7	=	334.71	(78)
South	0.9x	0.77	×	1.1	x	108.9	x	0.72	x	0.7] =	83.68	(78)
South	0.9x	0.77	×	3.7	x	108.9	x	0.72	x	0.7] =	985.11	(78)
South	0.9x	0.77	x	3.4	x	108.9	x	0.72	x	0.7] =	129.32	(78)
South	0.9x	0.77	x	1.4	x	108.9	x	0.72	x	0.7] =	106.5	(78)
South	0.9x	0.77	×	2.2	x	107.14	x	0.72	×	0.7	=	329.3	(78)
South	0.9x	0.77	×	1.1	x	107.14	x	0.72	x	0.7] =	82.32	(78)
South	0.9x	0.77	×	3.7	x	107.14	x	0.72	x	0.7] =	969.18	(78)
South	0.9x	0.77	×	3.4	x	107.14	x	0.72	x	0.7	=	127.23	(78)
South	0.9x	0.77	×	1.4	x	107.14	×	0.72	×	0.7	=	104.78	(78)
South	0.9x	0.77	×	2.2	x	103.88	×	0.72	x	0.7	=	319.29	(78)
South	0.9x	0.77	x	1.1	x	103.88	x	0.72	x	0.7	=	79.82	(78)
South	0.9x	0.77	x	3.7	×	103.88	×	0.72	x	0.7	=	939.74	(78)
South	0.9x	0.77	x	3.4	×	103.88	x	0.72	x	0.7	-	123.36	(78)
South	0.9x	0.77	x	1.4	×	103.88	x	0.72	x	0.7	=	101.59	(78)
South	0.9x	0.77	x	2.2	x	99.99	×	0.72	×	0.7	=	307.33	(78)
South	0.9x	0.77	x	1.1	×	99.99	×	0.72	×	0.7	=	76.83	(78)
South	0.9x	0.77	×	3.7	x	99.99	×	0.72	x	0.7	=	904.53	(78)
South	0.9x	0.77	×	3.4	×	99.99	×	0.72	×	0.7	=	118.74	(78)
South	0.9x	0.77	×	1.4	×	99.99	×	0.72	x	0.7	=	97.79	(78)
South	0.9x	0.77	×	2.2	x	85.29	x	0.72	x	0.7	=	262.15	(78)
South	0.9x	0.77	×	1.1	×	85.29	x	0.72	x	0.7	=	65.54	(78)
South	0.9x	0.77	×	3.7	x	85.29	x	0.72	x	0.7	=	771.56	(78)
South	0.9x	0.77	x	3.4	x	85.29	x	0.72	x	0.7	=	101.29	(78)
South	0.9x	0.77	x	1.4	x	85.29	x	0.72	x	0.7	=	83.41	(78)
South	0.9x	0.77	×	2.2	x	56.07	x	0.72	x	0.7	=	172.33	(78)
South	0.9x	0.77	×	1.1	x	56.07	×	0.72	x	0.7	=	43.08	(78)
South	0.9x	0.77	×	3.7	x	56.07	x	0.72	x	0.7	=	507.21	(78)
South	0.9x	0.77	×	3.4	x	56.07	x	0.72	x	0.7	=	66.58	(78)
South	0.9x	0.77	x	1.4	x	56.07	x	0.72	x	0.7	=	54.83	(78)
South	0.9x	0.77	x	2.2	x	40.89	x	0.72	x	0.7	=	125.68	(78)
South	0.9x	0.77	x	1.1	x	40.89	x	0.72	x	0.7] =	31.42	(78)
South	0.9x	0.77	x	3.7	x	40.89	x	0.72	x	0.7	=	369.9	(78)
South	0.9x	0.77	x	3.4) ×	40.89	x	0.72	×	0.7	=	48.56	(78)
South	0.9x	0.77	x	1.4	x	40.89	x	0.72	x	0.7] =	39.99	(78)
West	0.9x	0.77	x	2.5	x	19.87) ×	0.72	x	0.7] =	34.7	(80)

Stroma FSAP 2009 Version: 1.5.0.63 (SAP 9.90) - http://www.stroma.com

Page 8 of 12

	gen egen a					_									
West	0.9x	0.77		x	2) ,		19.87	×	0.72	×	0.7	_ =	27.76	(80
West	0.9x	0.77		x	1] ,		19.87	×	0.72	x	0.7	=	6.94	(80
West	0.9x	0.77		x	2.5)	(;	38.52	x	0.72	×	0.7	=	67.27	(80
West	0.9x	0.77		x	2] ,	• 🖂 :	38.52	×	0.72	x	0.7	. =	53.81	(80
West	0.9x	0.77		x	1] ,	· 🗌 :	38.52	x	0.72	x	0.7	=	13.45	(80
West	0.9x	0.77		x	2.5] ,		61.57	x	0.72	x	0.7	=	107.52	(80
West	0.9x	0.77		x	2] ,		61.57	x	0.72	×	0.7	=	86.01	(80
West	0.9x	0.77		x	1] ,		61.57	x	0.72	×	0.7	=	21.5	(80
West	0.9x	0.77		x	2.5] ,	د <u>و</u>	91.41	x	0.72	×	0.7	=	159.63	(80
West	0.9x	0.77		x	2] ,	· 📃 !	91.41	x	0.72	x	0.7	-	127.71	(80
West	0.9x	0.77		x	1] ,	!	91.41	x	0.72	x	0.7	=	31.93	(80
West	0.9x	0.77		x	2.5] ,	۲ <mark>ا</mark>	11.22	x	0.72	×	0.7	-	194.23	(80
West	0.9x	0.77		x	2] ,	د <u>ا</u>	11.22	x	0.72	x	0.7	=	155.38	(80
West	0.9x	0.77		x	1] ,	(1	11.22	x	0.72	x	0.7	-	38.85	(80
West	0.9x	0.77		x	2.5] ,	(1	16.05	x	0.72	×	0.7	=	202.67	(80
West	0.9x	0.77		x	2] ,	(1	16.05	x	0.72	x	0.7	-	162.13	(80
West	0.9x	0.77		x	1	,	1 ا	16.05	x	0.72	x	0.7	=	40.53	(80
West	0.9x	0.77		x	2.5)	1	12.64	×	0.72	×	0.7	=	196.71	(80
West	0.9x	0.77		x	2],	1	12.64	x	0.72	x	0.7		157.37	(80
West	0.9x	0.77		x	1),	1	12.64] ×	0.72	×	0.7	=	39.34	(80
West	0.9x	0.77		x	2.5],		98.03) x	0.72	x	0.7	=	171.2	(80
West	0.9x	0.77	1	x	2] ,	•	98.03	×	0.72	×	0.7	=	136.96	(80
West	0.9x	0.77		×	1],		98.03	x	0.72	x	0.7	=	34.24	(80
West	0.9x	0.77		x	2.5			73.6	x	0.72	×	0.7	-	128.54	(80
West	0.9x	0.77		x	2),	(73.6	x	0.72	x	0.7	=	102.83	(80
West	0.9x	0.77		x	1] ,	•	73.6	x	0.72	x	0.7	=	25.71	(80
West	0.9x	0.77		x	2.5] ,		46.91	x	0.72	×	0.7	=	81.92	(80
West	0.9x	0.77		x	2	٦,	(46.91	x	0.72	x	0.7	=	65.54	(80
West	0.9x	0.77		x	1	j,		46.91	x	0.72	x	0.7	=	16.38	(80
West	0.9x	0.77		x	2.5	j,		24.71	×	0.72	×	0.7	=	43.15	(80
West	0.9x	0.77		x	2	ī,		24.71] ×	0.72	×	0.7	=	34.52	(80
West	0.9x	0.77		x	1	j,		24.71	x	0.72	×	0.7	-	8.63	(80
West	0.9x	0.77		x	2.5	j,		16.39] ×	0.72	×	0.7	-	28.63	(80
West	0.9x	0.77		x	2	j,		16.39] ×	0.72	x	0.7	=	22.9	(80
West	0.9x	0.77		x	1	ī,		16.39	ĺ×	0.72	×	0.7	-	5.73	(80
						1			1		- 10 K				_
Solar g	ains in	watts, ca	alcula	ated	for each mor	nth			(83)m	= Sum(74)m	(82)m				
(83)m=	939.66	1597.31	2123	.76	2690.33 3085.	29	3219.75	3117.31	278	7.1 2363.02	1814.4	6 1125.22	804.16]	(8)
Total g	ains – i	nternal a	and s	olar	(84)m = (73)	m +	(83)m	, watts				,		1	
(84)m=	2565.6	3209.69	3668	.36	4130.45 4414.	98	4423.51	4271.58	3960	0.01 3600.68	3189.7	6 2615.07	2383.98	3	(8-

Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m														
(83)m=	939.66	1597.31	2123.76	2690.33	3085.29	3219.75	3117.31	2787.1	2363.02	1814.46	1125.22	804.16		(83)
Total g	ains – ir	nternal a	nd solar	(84)m =	(73)m ·	+ (83)m	, watts							
(84)m=	2565.6	3209.69	3668.36	4130.45	4414.98	4423.51	4271.58	3960.01	3600.68	3189.76	2615.07	2383.98		(84)
7. Me	an inter	nal temp	erature	(heating	season)								
Temp	erature	during h	eating p	eriods ir	the livir	ng area t	from Tab	ole 9, Th	1 (°C)			[21	(85)
Utilisa	ation fac	tor for g	ains for I	iving are	ea, h1,m	(see Ta	ble 9a)							_
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		

Stroma FSAP 2009 Version: 1.5.0.63 (SAP 9.90) - http://www.stroma.com

(86)m= 1	1	1	0.99	0.97	0.89	0.71	0.75	0.95	1	1	1		(86)
Mean interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	7 in Table	e 9c)					
(87)m= 19.6	19.73	19.98	20.24	20.59	20.85	20.97	20.96	20.75	20.34	19.87	19.61		(87)
Temperature	during h	neating n	oriods in	rest of	dwelling	from Ta		h2 (°C)					
(88)m= 19.99	19.99	19.99	19.99	19.99	19.99	19.99	19.99	19.99	19.99	19.99	19.99		(88)
	tar for a	aina far	reat of d	uallina	2 - 2 - 2 - 2	. Tabla	00)						
Utilisation fac	1 1	ains ior i	0.99	0.95	0.82	0.56	9a) 0.6	0.92	0.99	1	1		(89)
								202.0	1				(/
Mean interna	<u> </u>				<u> </u>		i –		,	10.10	10.11		(90)
(90)m= 18.09	18.29	18.66	19.03	19.52	19.86	19.97	19.97	19.75	19.18	18.48 g area + (4	18.11	0.05	_
										yaica i (i	/- I	0.05	(91)
Mean interna	· · ·		-		07		<u>`</u>	, ,					1.2.2.2.2
(92)m= 18.16	18.36	18.72	19.09	19.57	19.91	20.02	20.02	19.8	19.23	18.55	18.19		(92)
Apply adjustr	-		-			-				10.55	10.10		(02)
(93)m= 18.16	18.36	18.72	19.09	19.57	19.91	20.02	20.02	19.8	19.23	18.55	18.19		(93)
8. Space hea		0.000		o obtoin	ad at at		Table O	a a tha	• Ti(76)	d	ulata	
Set Ti to the the utilisation					ed at ste	epiior	Table 9	o, so tha	t 11,m=(/o)m an	d re-caic	uiate	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	-	
Utilisation fac	ctor for g												
(94)m= 1	1	1	0.99	0.94	0.82	0.57	0.6	0.91	0.99	1	1		(94)
Useful gains,	hmGm	, W = (94	4)m x (84	4)m									
(95)m= 2564.43	3204.94	3651.32	4071.52	4171.76	3617.79	2421.39	2395.34	3265.85	3152.95	2612.15	2383.1		(95)
Monthly aver	age exte	rnal tem	perature	from Ta	able 8								
(96)m= 4.5	5	6.8	8.7	11.7	14.6	16.9	16.9	14.3	10.8	7	4.9		(96)
Heat loss rat	e for me	an intern	al tempe	erature,	Lm , W =	=[(39)m	x [(93)m	– (96)m]				
(97)m= 10887.76			8283		4231.21		2485.06				10589.87		(97)
Space heatin	-						24 x [(97)m – (95		-			
(98)m= 6192.55	5001.66	4351.91	3032.27	1565.23	0	0	0	0	2656.35	4747.79	6105.83		_
							Tota	l per year	(kWh/year	') = Sum(9	8)15,912 =	33653.6	(98)
Space heatin	ng require	ement in	kWh/m ²	/year								47.27	(99)
9a. Energy red	quiremer	nts – Indi	ividual h	eating sy	/stems i	ncluding	micro-C	HP)					
Space heating													
opace neath	nace hes	at from s									ា	0.1	(201)
Fraction of sp		at nom se	econdar	/supple	mentary	system							(20.)
					mentary	system	(202) = 1 -	- (201) =				0.9	(202)
Fraction of sp	pace hea	at from m	nain syst	em(s)	mentary	system			(203)] =			0.9	-
Fraction of sp Fraction of sp Fraction of to	pace hea otal heati	at from m	nain syst main sys	em(s) stem 1	mentary	system	(202) = 1 -		(203)] =				(202)
Fraction of sp Fraction of sp Fraction of to Efficiency of	pace hea otal heati main spa	at from m ng from i ace heati	nain syst main sys ing syste	em(s) stem 1 em 1			(202) = 1 -		(203)] =			0.9	(202)
Fraction of sp Fraction of sp Fraction of to Efficiency of Efficiency of	pace hea otal heati main spa seconda	at from m ng from n ace heati ny/supple	nain syst main sys ing syste ementar	em(s) stem 1 em 1 y heating	g system	n, %	(202) = 1 · (204) = (21	02) × [1 –		Nev	Doc	0.9 272 37	(202) (204) (206) (208)
Fraction of sy Fraction of sy Fraction of to Efficiency of Efficiency of Jan	pace hea otal heati main spa seconda Feb	at from m ng from n ace heati ry/supple Mar	nain syst main sys ing syste ementar Apr	em(s) stem 1 em 1 y heating May	g system Jun		(202) = 1 -		(203)] = Oct	Nov	Dec	0.9 272	(202) (204) (206) (208)
Fraction of sy Fraction of sy Fraction of to Efficiency of Efficiency of Jan Space heatin	pace heati main spa seconda Feb	at from m ng from n ace heati ny/supple Mar ement (c	nain syst main sys ing syste ementar Apr alculate	em(s) stem 1 em 1 y heating May d above	g system Jun	n, %	(202) = 1 - (204) = (2) Aug	02) × [1 –	Oct			0.9 272 37	(202) (204) (206) (208)
Fraction of sy Fraction of to Efficiency of Efficiency of Jan Space heatin 6192.55	pace hea otal heati main spa seconda Feb ng require 5001.66	at from m ng from n ace heati ny/supple Mar ement (c 4351.91	nain systemain systemain systemain systematic systemater systemater systemati	em(s) stem 1 em 1 y heating May d above 1565.23	g system Jun 0	n, % Jul	(202) = 1 · (204) = (21	02) × [1 – 1				0.9 272 37	(202) (204) (206) (208) ear
Fraction of sy Fraction of to Efficiency of Efficiency of Jan Space heatin 6192.55 (211)m = {[(98	pace hea main spa seconda Feb ng require 5001.66	at from m ng from n ace heati ny/supple Mar ement (c 4351.91 (4)] + (21	nain syst main syst ementar Apr alculate 3032.27 0)m } x	em(s) stem 1 em 1 y heating May d above 1565.23 100 ÷ (2	g system Jun) 0 06)	n, % Jul 0	(202) = 1 · (204) = (2) Aug	02) × [1 – 1 Sep 0	Oct 2656.35	4747.79	6105.83	0.9 272 37	(202) (204) (206) (208)
Fraction of sy Fraction of to Efficiency of Efficiency of Jan Space heatin 6192.55 (211)m = {[(98	pace hea main spa seconda Feb ng require 5001.66	at from m ng from n ace heati ny/supple Mar ement (c 4351.91	nain syst main syst ementar Apr alculate 3032.27 0)m } x	em(s) stem 1 em 1 y heating May d above 1565.23 100 ÷ (2	g system Jun 0	n, % Jul	(202) = 1 · (204) = (2) Aug 0	02) × [1 - 1 Sep 0	Oct 2656.35 878.94	4747.79 1570.96	6105.83 2020.31	0.9 272 37 kWh/y	(202) (204) (206) (208) ear (211)
Fraction of sy Fraction of to Efficiency of Efficiency of Jan Space heatin 6192.55 (211)m = {[(98	pace hea main spa seconda Feb ng require 5001.66	at from m ng from n ace heati ny/supple Mar ement (c 4351.91 (4)] + (21	nain syst main syst ementar Apr alculate 3032.27 0)m } x	em(s) stem 1 em 1 y heating May d above 1565.23 100 ÷ (2	g system Jun) 0 06)	n, % Jul 0	(202) = 1 · (204) = (2) Aug 0	02) × [1 – 1 Sep 0	Oct 2656.35 878.94	4747.79 1570.96	6105.83 2020.31	0.9 272 37	(202) (204) (206) (208) ear

SAP WorkSheet: New dwelling design stage

SAP WorkSheet: New dwelling design stage

Space heating fuel (secondary), kWh/month								
= {[(98)m x (201)] + (214) m } x 100 ÷ (208)							1	
(215)m= 1673.66 1351.8 1176.19 819.53 423.04	0 0	0	0	717.93	1283.19			-
		Total	(kWh/yea	ar) =Sum(2	215)5,105	-	9095.57	(215)
Water heating Output from water heater (calculated above)								
279.23 246.53 259.89 234.34 230.63	0 0	0	0	242.93	255.16	272.97		
Efficiency of water heater							152.38	(216)
(217)m= 152.38 152.38 152.38 152.38 152.38 1	152.38 152.38	152.38	152.38	152.38	152.38	152.38		(217)
Fuel for water heating, kWh/month								
(219)m = (64)m x 100 ÷ (217)m (219)m= 183.24 161.78 170.55 153.78 151.35	0 0	0	0	159.42	167.45	179.14		
		Total	= Sum(2	19a) ₁₁₂ =			1326.72	(219)
Water heating requirement (immersion)								
0 0 0 0 0	177.9 170.05	187.71	187.73	0	0	0		_
Efficiency of water heater (Immersion)							100	(216)
(217)m= 0 0 0 0 0	100 100	100	100	0	0	0		(217)
Fuel for water heating (Immersion), kWh/month (219)m = [(64)m + (218) m] x 100 ÷ (217)m								
	177.9 170.05	187.71	187.73	0	0	0		
		Total	= Sum(2	19a) _{1_12} =			723.39	(219)
Annual totals				k	Wh/year		kWh/year	ר
Space heating fuel used, main system 1								
							11135.38	4
Space heating fuel used, secondary							9095.57	
Space heating fuel used, secondary Water heating fuel used								
							9095.57	
Water heating fuel used							9095.57 1326.72	
Water heating fuel used Water heating fuel used (Immersion)	sitive input from	m outside				4914.4	9095.57 1326.72	 (230a)
Water heating fuel used Water heating fuel used (Immersion) Electricity for pumps, fans and electric keep-hot	sitive input fro	m outside				4914.4	9095.57 1326.72	(230a) (230c)
Water heating fuel used Water heating fuel used (Immersion) Electricity for pumps, fans and electric keep-hot mechanical ventilation - balanced, extract or pos	sitive input from			(230g) =			9095.57 1326.72	
Water heating fuel used Water heating fuel used (Immersion) Electricity for pumps, fans and electric keep-hot mechanical ventilation - balanced, extract or pos central heating pump: Total electricity for the above, kWh/year	sitive input fro			(230g) =			9095.57 1326.72 723.39	(230c)
Water heating fuel used Water heating fuel used (Immersion) Electricity for pumps, fans and electric keep-hot mechanical ventilation - balanced, extract or pos central heating pump: Total electricity for the above, kWh/year Electricity for lighting	sitive input from			(230g) =			9095.57 1326.72 723.39 5044.4	(230c) (231)
Water heating fuel used Water heating fuel used (Immersion) Electricity for pumps, fans and electric keep-hot mechanical ventilation - balanced, extract or pos central heating pump: Total electricity for the above, kWh/year							9095.57 1326.72 723.39 5044.4 1405.11	(230c) (231)
Water heating fuel used Water heating fuel used (Immersion) Electricity for pumps, fans and electric keep-hot mechanical ventilation - balanced, extract or pos central heating pump: Total electricity for the above, kWh/year Electricity for lighting	Fuel	sum o		Fuel P	rice		9095.57 1326.72 723.39 5044.4 1405.11	(230c) (231)
Water heating fuel used Water heating fuel used (Immersion) Electricity for pumps, fans and electric keep-hot mechanical ventilation - balanced, extract or pos central heating pump: Total electricity for the above, kWh/year Electricity for lighting 10a. Fuel costs - individual heating systems:	Fuel kWh/year	sum o		Fuel P (Table	rice 12)	130	9095.57 1326.72 723.39 5044.4 1405.11 Fuel Cost £/year	(230c)](231)](232)
Water heating fuel used Water heating fuel used (Immersion) Electricity for pumps, fans and electric keep-hot mechanical ventilation - balanced, extract or pos central heating pump: Total electricity for the above, kWh/year Electricity for lighting 10a. Fuel costs - individual heating systems: Space heating - main system 1	Fuel kWh/year (211) x	sum o		Fuel P (Table	rice 12)	130 x 0.01 =	9095.57 1326.72 723.39 5044.4 1405.11 Fuel Cost £/year 1276.1148	(230c)](231)](232)](240)
Water heating fuel used Water heating fuel used (Immersion) Electricity for pumps, fans and electric keep-hot mechanical ventilation - balanced, extract or pos central heating pump: Total electricity for the above, kWh/year Electricity for lighting 10a. Fuel costs - individual heating systems: Space heating - main system 1 Space heating - main system 2	Fuel kWh/year (211) x (213) x	sum o		Fuel P (Table	12)	130 x 0.01 = x 0.01 =	9095.57 1326.72 723.39 5044.4 1405.11 Fuel Cost £/year 1276.1148 0	(230c) (231) (232) (240) (241)
Water heating fuel used Water heating fuel used (Immersion) Electricity for pumps, fans and electric keep-hot mechanical ventilation - balanced, extract or pos central heating pump: Total electricity for the above, kWh/year Electricity for lighting 10a. Fuel costs - individual heating systems: Space heating - main system 1	Fuel kWh/year (211) x (213) x (215) x	sum o		Fuel P (Table	46	130 x 0.01 = x 0.01 = x 0.01 =	9095.57 1326.72 723.39 5044.4 1405.11 Fuel Cost £/year 1276.1148	(230c)](231)](232)](240)
Water heating fuel used Water heating fuel used (Immersion) Electricity for pumps, fans and electric keep-hot mechanical ventilation - balanced, extract or pos central heating pump: Total electricity for the above, kWh/year Electricity for lighting 10a. Fuel costs - individual heating systems: Space heating - main system 1 Space heating - main system 2	Fuel kWh/year (211) x (213) x	sum o		Fuel P (Table	rice 12) 46	130 x 0.01 = x 0.01 =	9095.57 1326.72 723.39 5044.4 1405.11 Fuel Cost £/year 1276.1148 0	(230c) (231) (232) (240) (241)
Water heating fuel used Water heating fuel used (Immersion) Electricity for pumps, fans and electric keep-hot mechanical ventilation - balanced, extract or pos central heating pump: Total electricity for the above, kWh/year Electricity for lighting 10a. Fuel costs - individual heating systems: Space heating - main system 1 Space heating - main system 2 Space heating - secondary	Fuel kWh/year (211) x (213) x (215) x	sum o		Fuel P (Table	rice 12) 46	130 x 0.01 = x 0.01 = x 0.01 =	9095.57 1326.72 723.39 5044.4 1405.11 Fuel Cost £/year 1276.1148 0 311.0684	(230c) (231) (232) (240) (240) (242)
Water heating fuel used Water heating fuel used (Immersion) Electricity for pumps, fans and electric keep-hot mechanical ventilation - balanced, extract or pos central heating pump: Total electricity for the above, kWh/year Electricity for lighting 10a. Fuel costs - individual heating systems: Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel)	Fuel kWh/year (211) x (213) x (215) x (219)	sum o		Fuel P (Table 11/ 0 3.4	rice 12) 46	130 x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	9095.57 1326.72 723.39 5044.4 1405.11 Fuel Cost £/year 1276.1148 0 311.0684 152.04	(230c) (231) (232) (240) (241) (242) (247)

Stroma FSAP 2009 Version: 1.5.0.63 (SAP 9.90) - http://www.stroma.com

Page 11 of 12

SAP WorkSheet: New dwelling design stage

(if off-peak tariff, list each of (230a) to (230g) separate Energy for lighting	arately as applicable and (232)	apply fuel price according to 11.46 × 0.01 =	Table 12a 161.03 (250)
Additional standing charges (Table 12)			0 (251)
Appendix Q items: repeat lines (253) and (254) as	s needed		
	7) + (250)(254) =		2561.2408 (255)
11a. SAP rating - individual heating systems			
Energy cost deflator (Table 12)			0.47 (256)
Energy cost factor (ECF) [(255) x (2	56)] + [(4) + 45.0] =		1.5902 (257)
SAP rating (Section 12)			77.8167 (258)
12a. CO2 emissions - Individual heating system	is including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.517 =	5756.99 (261)
Space heating (secondary)	(215) x	0.008 =	72.76 (263)
Water heating	(219) x	0.517 =	685.92 (264)
Water heating (Immersion)	(219) x	0.517 =	373.99 (264)
Space and water heating	(261) + (262) + (263) + (264))=	6889.67 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.517 =	2607.96 (267)
Electricity for lighting	(232) X	0.517 =	726.44 (268)
Total CO2, kg/year		sum of (265)(271) =	10224.07 (272)
CO2 emissions per m ²		(272) + (4) =	14.36 (273)
El rating (section 14)			82 (274)
13a. Primary Energy			
	Energy	Primary	P. Energy
	kWh/year	factor	kWh/year
Space heating (main system 1)	(211) x	2.92 =	32515.32 (261)
Space heating (secondary)	(215) x	1.05 =	9550.35 (263)
Energy for water heating	(219) x	2.92 =	3874.03 (264)
Energy for water heating (Immersion)	(219) x	2.92 =	2112.3 (264)
Space and water heating	(261) + (262) + (263) + (264)) =	48051.99 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	2.92 =	14729.66 (267)
Electricity for lighting	(232) x	0 =	4102.93 (268)
'Total Primary Energy		sum of (265)(271) =	66884.58 (272)
Primary energy kWh/m²/year		(272) + (4) =	93.94 (273)

Stroma FSAP 2009 Version: 1.5.0.63 (SAP 9.90) - http://www.stroma.com

Page 12 of 12

APPENDIX B

TER Worksheet For the Notional Dwelling

		User Details:		
Assessor Name: Software Name:	Stroma FSAP 2009	Stroma N Software	annoon	ersion: 1.5.0.63
		Property Address: 18	-20 Lancaster Grove	
Address :	18, Lancaster Grove, LO	NDON, NW3 4PB		
1. Overall dwelling dim	ensions:			
Basement		Area(m²)	Ave Height(m)	Volume(m ³)
		204 (1a)		a) = 622.2 (3a)
Ground floor		205 (1b)	x 2.9 (2t	b) = 594.5 (3b)
First floor		201 (1c)	x 2.8 (20	c) = 562.8 (3c)
Second floor		102 (1d)	x 2.3 (2d	i) = 234.6 (3d)
Total floor area TFA = (1	la)+(1b)+(1c)+(1d)+(1e)+	.(1n) 712 (4)		
Dwelling volume		(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 2014.1 (5)
2. Ventilation rate:				
	main Secon heating heatir	ng	total	m ³ per hour
Number of chimneys	0 + 1	+	= <u>0</u> × 40 =	
Number of open flues	0 + 0	+ 0	= 0 × 20 =	= 0 (6b)
Number of intermittent fa	ans		3 × 10 =	= <u>30</u> (7a)
Number of passive vents	5		0 × 10 =	0 (7ь)
Number of flueless gas f	fires		0 × 40 =	= 0 (7c)
				Air changes per hour
Infiltration due to chimne	eys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) =	30 + (5))= 0.01 (8)
If a pressurisation test has	been carried out or is intended, pro	ceed to (17), otherwise contin	nue from (9) to (16)	
Number of storeys in t	the dwelling (ns)			0 (9)
Additional infiltration			[(9)-1]x(0.1 = 0 (10)
	0.25 for steel or timber frame			0 (11)
if both types of wall are p deducting areas of open	present, use the value correspondin ings); if equal user 0.35	ng to the greater wall area (af	ter	
	floor, enter 0.2 (unsealed) o	or 0.1 (sealed), else ente	er 0	0 (12)
If no draught lobby, er	nter 0.05, else enter 0			0 (13)
Percentage of window	s and doors draught strippe	d		0 (14)
Window infiltration		0.25 - [0.2 x (1	4) + 100] =	0 (15)
Infiltration rate		(8) + (10) + (11	1) + (12) + (13) + (15) =	0 (16)
	, q50, expressed in cubic me		re metre of envelope are	ea 10 (17)
	ility value, then (18) = [(17) + 20			0.51 (18)
	es if a pressurisation test has been	done or a degree air permea	bility is being used	
Number of sides on white Shelter factor	ch sheitered	(20) = 1 - [0.07	(5 x (19)) =	2 (19)
Infiltration rate incorpora	ting shelter factor	(21) = (18) x (2		0.85 (20)
Infiltration rate modified	ũ.	(2.) - (10) x (2		0.44 (21)
Jan Feb	Mar Apr May Ju	in Jul Aug S	Sep Oct Nov	Dec
Jan 160	mai ripi may ou			

TER WorkSheet: New dwelling design stage

Stroma FSAP 2009 Version: 1.5.0.63 (SAP 9.90) - http://www.stroma.com

Page 1 of 7

TER WorkSheet: New dwelling design stage

Month	y averag	ge wind	speed fr	om Tabl	e 7									
(22)m=	5.4	5.1	5.1	4.5	4.1	3.9	3.7	3.7	4.2	4.5	4.8	5.1		
Wind F	actor (2	2a)m =	(22)m +	4										
(22a)m=	1.35	1.27	1.27	1.12	1.02	0.98	0.92	0.92	1.05	1.12	1.2	1.27		
Adjust	ed infiltra	ation rat	e (allowi	ng for st	nelter an	d wind s	speed) =	(21a) x	(22a)m					
	0.59	0.56	0.56	0.49	0.45	0.43	0.4	0.4	0.46	0.49	0.53	0.56		
				rate for t	he appli	cable ca	se							
	echanica											ļ	0	(23a)
						a) × Fmv (e				b) = (23a)		ļ	0	(23b)
If bal	anced with	heat reco	wery: effic	iency in %	allowing	for in-use f	actor (from	n Table 4h	ı) =			[0	(23c)
a) If	balance	d mecha	anical ve	ntilation	with he	at recove	ery (MV	HR) (24a	a)m = (2	2b)m + (23b) × [1 - (23c)	+ 100]	
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If	balance	d mecha	anical ve	ntilation	without	heat rec	covery (MV) (24b	o)m = (2	2b)m + (23b)			
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If	whole he	ouse ex	tract ven	tilation o	or positiv	ve input v	ventilati	on from a	outside					
	if (22b)m	< 0.5 ×	(23b), t	hen (24	c) = (23b); other	wise (24	c) = (22)	b) m + 0).5 × (23b)	_		
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilatio	on or wh	ole hous	e positi	ve input	ventilati	on from	loft					
	if (22b)m	1 = 1, the	en (24d)	m = (22)	b)m othe	erwise (2	4d)m =	0.5 + [(2	2b)m² x	: 0.5]				
(24d)m=	0.67	0.66	0.66	0.62	0.6	0.59	0.58	0.58	0.61	0.62	0.64	0.66		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24)	b) or (24	c) or (24	ld) in bo	x (25)					
(25)m=	0.67	0.66	0.66	0.62	0.6	0.59	0.58	0.58	0.61	0.62	0.64	0.66		(25)
2 140		-	at loss	-			-							_
	at losses	Gros				Net Ar		U-val		AXU		k-value		AXk
ELEN	IENI	area		Openin		A,r		W/m2		(W/	K)	kJ/m ² ·k		kJ/K
Doors						1.85	_	2		3.7	Ϋ́			(26)
Windo	ws					176.1	_	1/[1/(2)+	0.041 =	326.2	=			(27)
Floor 1						205		0.25	- T	51.25	Η,			(28)
Floor 1	Type 2					12	x	0.25	۳.	3	=		īĒ	(28)
Walls		450		178		272	×	0.35	۳.	95.2	5		īĒ	(29)
Roof	Type1	108		0	_	108	×	0.16	- ٦	17.28	T i	8	5 E	(30)
Roof	Туре2	161		0	_	161	×	0.16	=-	25.76	<u> </u>		j E	(30)
Total a	irea of el	ements	, m²			936								(31)
	dows and the area						ated using	g formula 1	M(1/U-val	ue)+0.04] a	as given in	paragraph	3.2	
	heat los							(26)(30) + (32) =			ſ	522.3	9 (33)
Heat C	apacity (Cm = S(Axk)						((28)	(30) + (33	2) + (328)	(320) =	26291	(34)
				P = Cm +	TFA) ir	n kJ/m²K				(30) + (3. ative Value		(320) =	2629	(34)

can be used instead of a detailed calculation.

Stroma FSAP 2009 Version: 1.5.0.63 (SAP 9.90) - http://www.stroma.com

Page 2 of 7

Thermal bridg	es : S (L	x Y) cale	culated (using Ap	pendix H	<						102.96	(36)
if details of therm	al bridging	are not kn	own (36) =	0.15 x (3	1)							3	
Total fabric he	eat loss							(33) +	(36) =			625.35	(37)
Ventilation he	at loss ca	alculated	monthly	/				(38)m	= 0.33 × (25)m x (5)			
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m= 448.34	435.81	435.81	412.89	399.21	392.84	386.79	386.79	402.51	412.89	423.99	435.81		(38)
Heat transfer	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m= 1073.69	1061.16	1061.16	1038.24	1024.56	1018.19	1012.15	1012.15	1027.86	1038.24	1049.34	1061.16		
									Average =	Sum(39),	n /12=	1039.83	(39)
Heat loss par	ameter (H	HLP), W/	m²K					(40)m	= (39)m +	(4)			_
(40)m= 1.51	1.49	1.49	1.46	1.44	1.43	1.42	1.42	1.44	1.46	1.47	1.49	3	- 27
	22		00.000					1	Average =	Sum(40).	.u /12=	1.46	(40)
Number of da	ys in mo	nth (Tabl	e 1a)										
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m= 31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Water hea	iting ener	rgy requi	rement:) 							kWh/ye	ar:	
Assumed occ if TFA > 13			[1 - evo	(-0.0003	49 x (TF	A -13 0	211+00	0013 x (TEA -13		67		(42)
if TFA £ 13			[1- exp	(-0.0005		A-13.8	12/1 . 0.0	015	11 1-13.				
Annual avera	ge hot wa	ater usag	e in litre	s per da	y Vd,av	erage =	(25 x N)	+ 36		12	7.69		(43)
Reduce the annu not more that 12						-	o achieve	a water us	se target o	e —			
not more that 12	silves per j	person per	day (av w	ater use, r	ipe and co	a)							
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water usage	in litres per	day for ea	ch month	Vd,m = fa	ctor from 1	able 1c x	(43)						
(44)m= 140.46	135.35	130.24	125.13	120.03	114.92	114.92	120.03	125.13	130.24	135.35	140.46		_
							T 1000			m(44)		1532.26	(44)
Energy content o					_								
(45)m= 208.79	182.61	188.44	164.28	157.64	136.03	126.05	144.64	146.37	170.58	186.2	202.2		_
If instantaneous	water heati	na at point	of use (or	hot water	storagel	onter () in	house (46		Total = Su	m(45)⊷¤ =		2013.84	(45)
(46)m= 31.32 Water storage	27.39	28.27	24.64	23.65	20.4	18.91	21.7	21.96	25.59	27.93	30.33		(46)
a) If manufact		clared lo	es facto	r is know	un (kWh	(day):				<u> </u>	0		(47)
Temperature				1 15 11101	an (karn	ady).					-		(48)
				0.000							0		
Energy lost fr If manufacture		-			e not kny		(47) x (48)	=			0		(49)
Cylinder volur										1	50		(50)
If community I					-								
Othenwise if n	-		-				enter '0' in	bax (50)					
Hot water sto	rane loss	factor fr	om Tabl	e 2 (kW	h/litre/da	(v)				0	02		(51)
Volume factor	-		omrabi	e z lam	une croc	.,,							(52)
Temperature			2b								93 54		(52)
							(150) - 15 -	1	1521				
Energy lost fr Enter (49) or		-	, KVVIIJYE	sal			((50) x (51) x (52) X (= (60)		44		(54)
Enter (49) 01	(34) 11 (3	5)								L1.	44		(55)

TER WorkSheet: New dwelling design stage

Stroma FSAP 2009 Version: 1.5.0.63 (SAP 9.90) - http://www.stroma.com

Page 3 of 7

TER WorkSheet: New dwelling design stage

Water storage	e loss cal	culated f	for each	month			((56)m = (55) × (41)	m				
(56)m= 44.53	40.22	44.53	43.09	44.53	43.09	44.53	44.53	43.09	44.53	43.09	44.53	P8	(56)
If cylinder contain	ns dedicate	d solar sto	rage, (57)r	m = (56)m	x [(50) - (H11)] + (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m= 44.53	40.22	44.53	43.09	44.53	43.09	44.53	44.53	43.09	44.53	43.09	44.53		(57)
Primary circui	it loss (an	nnual) fro	m Table	3						6	10		(58)
Primary circui	it loss cal	culated t	for each	month (59)m = ((58) + 36	5 × (41)	m					
(modified b	y factor fr	rom Tabi	le H5 if t	here is s	olar wat	er heatin	ng and a	cylinde	r thermo	stat)			
(59)m= 51.81	46.79	51.81	50.14	51.81	50.14	51.81	51.81	50.14	51.81	50.14	51.81		(59)
Combi loss ca	alculated	for each	month ((61)m =	(60) + 36	65 × (41)	m						
(61)m= 0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total heat rec	uired for	water he	eating ca	alculated	for eacl	h month	(62)m =	0.85 ×	(45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m= 305.13	269.62	284.77	257.51	253.97	229.26	222.39	240.98	239.6	266.92	279.43	298.54		(62)
Solar DHW input	calculated	using App	endix G or	Appendix	H (negati	ve quantity) (enter '0	if no sola	r contribut	on to wate	r heating)		
(add additiona	al lines if	FGHRS	and/or V	WWHRS	applies,	, see Ap	pendix (S)					
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from v	vater hea	ter	3			8 2			89 - S				
(64)m= 305.13	269.62	284.77	257.51	253.97	229.26	222.39	240.98	239.6	266.92	279.43	298.54		
							Outp	ut from w	ater heater	(annual)	-0	3148.12	(64)
Heat gains fro	m water	heating,	kWh/me	onth 0.2	5 x [0.85	× (45)m	1 + (61)n	n] + 0.8	x [(46)m	+ (57)m	+ (59)m	1	
(65)m= 146.49	130.33	139.72	129.21	129.48	119.81	118.98	125.16	123.25	133.79	136.5	144.3		(65)
include (57)m in calc	culation (of (65)m	only if c	ylinder is	s in the o	twelling	or hot w	ater is fr	om com	munity h	eating	
5. Internal g	ains (see	a Ta <mark>ble (</mark>	and 5a			-							
Metabolic gai													
	ns (Table	5) Wat	ts										
Jan	ns (Table Feb	5), Wat Mar	and the second se	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
and a second second	Feb		ts Apr 183.38	May 183.38	Jun 183.38	Jul 183.38	Aug 183.38	Sep 183.38	Oct 183.38	Nov 183.38	Dec 183.38		(66)
Jan (66)m= 183.38	Feb 183.38	Mar 183.38	Apr 183.38	183.38	183.38	183.38	183.38	183.38					(66)
Jan	Feb 183.38 s (calcula	Mar 183.38	Apr 183.38	183.38	183.38	183.38	183.38	183.38					(66)
Jan (66)m= 183.38 Lighting gains (67)m= 112.45	Feb 183.38 (calcula 99.88	Mar 183.38 ted in Ap 81.22	Apr 183.38 opendix 61.49	183.38 ., equati 45.97	183.38 ion L9 o 38.81	183.38 r L9a), a 41.93	183.38 Iso see 54.5	183.38 Table 5 73.16	183.38 92.89	183.38	183.38		
(66)m= 183.38 Lighting gains	Feb 183.38 s (calcula 99.88 ains (calc	Mar 183.38 ted in Ap 81.22	Apr 183.38 opendix 61.49	183.38 ., equati 45.97	183.38 ion L9 o 38.81	183.38 r L9a), a 41.93	183.38 Iso see 54.5	183.38 Table 5 73.16	183.38 92.89	183.38	183.38		
Jan (66)m= 183.38 Lighting gains (67)m= 112.45 Appliances ga (68)m= 741.96	Feb 183.38 (calcula 99.88 ains (calc 749.66	Mar 183.38 ted in Ap 81.22 culated in 730.26	Apr 183.38 opendix 1 61.49 Append 688.95	183.38 L, equati 45.97 dix L, eq 636.81	183.38 ion L9 o 38.81 uation L 587.81	183.38 r L9a), a 41.93 13 or L1 555.07	183.38 Iso see 54.5 3a), also 547.37	183.38 Table 5 73.16 see Ta 566.78	183.38 92.89 ble 5 608.08	183.38 108.41	183.38 115.57		(67)
Jan (66)m= 183.38 Lighting gains (67)m= 112.45 Appliances ga (68)m= 741.96 Cooking gains	Feb 183.38 (calcula) 99.88 ains (calc 749.66 s (calcula)	Mar 183.38 ted in Ap 81.22 culated in 730.26 ated in Ap	Apr 183.38 opendix 1 61.49 Append 688.95 opendix	183.38 L, equati 45.97 dix L, equ 636.81 L, equat	183.38 ion L9 of 38.81 uation L 587.81 ion L15	183.38 r L9a), a 41.93 13 or L1 555.07 or L15a)	183.38 Iso see 54.5 3a), also 547.37 , also se	183.38 Table 5 73.16 see Ta 566.78 e Table	183.38 92.89 ble 5 608.08 5	183.38 108.41 660.22	183.38 115.57 709.22		(67)
Jan (66)m= 183.38 Lighting gains (67)m= (67)m= 112.45 Appliances ga (68)m= (68)m= 741.96 Cooking gains (69)m= (69)m= 41.34	Feb 183.38 (calcula 99.88 ains (calc 749.66 s (calcula 41.34	Mar 183.38 ted in Ap 81.22 sulated in 730.26 ated in Ap 41.34	Apr 183.38 opendix l 61.49 Append 688.95 opendix 41.34	183.38 L, equati 45.97 dix L, eq 636.81	183.38 ion L9 o 38.81 uation L 587.81	183.38 r L9a), a 41.93 13 or L1 555.07	183.38 Iso see 54.5 3a), also 547.37	183.38 Table 5 73.16 see Ta 566.78	183.38 92.89 ble 5 608.08	183.38 108.41	183.38 115.57		(67) (68)
Jan (66)m= 183.38 Lighting gains (67)m= 112.45 Appliances ga (68)m= 741.96 Cooking gains	Feb 183.38 (calcula 99.88 ains (calc 749.66 s (calcula 41.34	Mar 183.38 ted in Ap 81.22 sulated in 730.26 ated in Ap 41.34	Apr 183.38 opendix l 61.49 Append 688.95 opendix 41.34	183.38 L, equati 45.97 dix L, equ 636.81 L, equat	183.38 ion L9 of 38.81 uation L 587.81 ion L15	183.38 r L9a), a 41.93 13 or L1 555.07 or L15a)	183.38 Iso see 54.5 3a), also 547.37 , also se	183.38 Table 5 73.16 see Ta 566.78 e Table	183.38 92.89 ble 5 608.08 5	183.38 108.41 660.22	183.38 115.57 709.22		(67) (68)
Jan (66)m= 183.38 Lighting gains 112.45 Appliances ga (68)m= 741.96 Cooking gains (69)m= 41.34 Pumps and fa (70)m= 10	Feb 183.38 s (calcula 99.88 ains (calc 749.66 s (calcula 41.34 ans gains 10	Mar 183.38 ted in Ap 81.22 ulated in 730.26 ted in Ap 41.34 (Table 5 10	Apr 183.38 opendix l 61.49 Append 688.95 opendix 41.34 5a) 10	183.38 L, equati 45.97 fix L, equ 636.81 L, equat 41.34	183.38 ion L9 or 38.81 uation L 587.81 ion L15 41.34	183.38 r L9a), a 41.93 13 or L13 555.07 or L15a) 41.34	183.38 Iso see 54.5 3a), also 547.37 , also se 41.34	183.38 Table 5 73.16 see Ta 566.78 ee Table 41.34	183.38 92.89 ble 5 608.08 5 41.34	183.38 108.41 660.22 41.34	183.38 115.57 709.22 41.34		(67) (68) (69)
Jan (66)m= 183.38 Lighting gains 112.45 Appliances gains (68)m= 741.96 Cooking gains (69)m= 41.34 Pumps and fa (70)m= 10 Losses e.g. e	Feb 183.38 s (calcula 99.88 ains (calc 749.66 s (calcula 41.34 ans gains 10 vaporatio	Mar 183.38 ted in Ap 81.22 ulated in 730.26 ted in Ap 41.34 (Table 5 10	Apr 183.38 opendix l 61.49 Append 688.95 opendix 41.34 5a) 10	183.38 L, equati 45.97 fix L, equ 636.81 L, equat 41.34	183.38 ion L9 or 38.81 uation L 587.81 ion L15 41.34	183.38 r L9a), a 41.93 13 or L13 555.07 or L15a) 41.34	183.38 Iso see 54.5 3a), also 547.37 , also se 41.34	183.38 Table 5 73.16 see Ta 566.78 ee Table 41.34	183.38 92.89 ble 5 608.08 5 41.34	183.38 108.41 660.22 41.34	183.38 115.57 709.22 41.34		(67) (68) (69)
Jan (66)m= 183.38 Lighting gains (67)m= (67)m= 112.45 Appliances gains (68)m= (68)m= 741.96 Cooking gains (69)m= (69)m= 41.34 Pumps and fa (70)m= (70)m= 10 Losses e.g. e (71)m=	Feb 183.38 s (calcula 99.88 ains (calc 749.66 s (calcula 41.34 ans gains 10 vaporatio -146.7	Mar 183.38 ted in Ap 81.22 ulated in 730.26 ated in Ap 41.34 (Table 5 10 on (negal -146.7	Apr 183.38 ppendix l 61.49 Append 688.95 ppendix 41.34 5a) 10 tive value	183.38 L, equati 45.97 dix L, eq 636.81 L, equat 41.34 10 es) (Tab	183.38 ion L9 or 38.81 uation L 587.81 ion L15 41.34 10 le 5)	183.38 r L9a), a 41.93 13 or L1: 555.07 or L15a) 41.34	183.38 Iso see 54.5 3a), also 547.37 , also se 41.34	183.38 Table 5 73.16 see Tai 566.78 ee Table 41.34	183.38 92.89 ble 5 608.08 5 41.34 10	183.38 108.41 660.22 41.34 10	183.38 115.57 709.22 41.34 10		(67) (68) (69) (70)
Jan (66)m= 183.38 Lighting gains (67)m= (67)m= 112.45 Appliances gains (68)m= (68)m= 741.96 Cooking gains (69)m= (69)m= 41.34 Pumps and fa (70)m= Losses e.g. e (71)m= (71)m= -146.7 Water heating (71)m=	Feb 183.38 s (calcula 99.88 ains (calc 749.66 s (calcula 41.34 ans gains 10 vaporatio -146.7	Mar 183.38 ted in Ap 81.22 ulated in 730.26 ated in Ap 41.34 (Table 5 10 on (negal -146.7	Apr 183.38 ppendix l 61.49 Append 688.95 ppendix 41.34 5a) 10 tive value	183.38 L, equati 45.97 dix L, eq 636.81 L, equat 41.34 10 es) (Tab	183.38 ion L9 or 38.81 uation L 587.81 ion L15 41.34 10 le 5)	183.38 r L9a), a 41.93 13 or L1: 555.07 or L15a) 41.34	183.38 Iso see 54.5 3a), also 547.37 , also se 41.34	183.38 Table 5 73.16 see Table 41.34 10 •146.7	183.38 92.89 ble 5 608.08 5 41.34 10 -146.7	183.38 108.41 660.22 41.34 10	183.38 115.57 709.22 41.34 10		(67) (68) (69) (70)
Jan (66)m= 183.38 Lighting gains (67)m= (67)m= 112.45 Appliances ga (68)m= (68)m= 741.96 Cooking gains (69)m= (69)m= 41.34 Pumps and fa (70)m= (70)m= 10 Losses e.g. e (71)m= (71)m= -146.7 Water heating (72)m= (72)m= 196.9	Feb 183.38 s (calcula 99.88 ains (calc 749.66 s (calcula 41.34 ans gains 10 vaporatio -146.7 g gains (T 193.94	Mar 183.38 ted in Ap 81.22 ulated in 730.26 ted in Ap 41.34 (Table 5 10 on (negal •146.7 Table 5) 187.8	Apr 183.38 opendix l 61.49 Appendix 688.95 opendix 41.34 ion 10 ive value -146.7	183.38 L, equati 45.97 dix L, eq 636.81 L, equat 41.34 10 es) (Tab -146.7	183.38 ion L9 or 38.81 uation L 587.81 ion L15 41.34 10 le 5) •146.7	183.38 r L9a), a 41.93 13 or L1: 555.07 or L15a) 41.34 10 •146.7 159.92	183.38 Iso see 54.5 3a), also 547.37 also se 41.34 10 •146.7 168.23	183.38 Table 5 73.16 see Table 41.34 10 •146.7 171.18	183.38 92.89 ble 5 608.08 5 41.34 10 •146.7 179.82	183.38 108.41 660.22 41.34 10 -146.7 189.58	183.38 115.57 709.22 41.34 10 •146.7 193.95		(67) (68) (69) (70) (71)
Jan (66)m= Lighting gains (67)m= 112.45 Appliances gains (68)m= 741.96 Cooking gains (69)m= 41.34 Pumps and fa (70)m= 10 Losses e.g. e (71)m= -146.7 Water heating (72)m= 196.9 Total interna	Feb 183.38 s (calcula 99.88 ains (calc 749.66 s (calcula 41.34 ans gains 10 vaporatio -146.7 g gains (T 193.94 I gains =	Mar 183.38 ted in Ap 81.22 ulated in Ap 730.26 ated in Ap 41.34 (Table 5 10 on (negal -146.7 Table 5) 187.8	Apr 183.38 opendix l 61.49 Appendix 688.95 opendix 41.34 5a) 10 tive value -146.7 179.46	183.38 L, equati 45.97 dix L, equat 636.81 L, equat 41.34 10 es) (Tab •146.7	183.38 ion L9 or 38.81 uation L 587.81 ion L15 41.34 10 le 5) •146.7 166.41 (66)	183.38 r L9a), a 41.93 13 or L1: 555.07 or L15a) 41.34 10 •146.7 159.92 m + (67)m	183.38 Iso see 54.5 3a), also 547.37 , also se 41.34 10 •146.7 168.23 + (68)m +	183.38 Table 5 73.16 9 see Tai 566.78 9 Table 41.34 10 •146.7 171.18 (69)m +	183.38 92.89 ble 5 608.08 5 41.34 10 •146.7 179.82 (70)m + (7	183.38 108.41 660.22 41.34 10 •146.7 189.58 1)m + (72)	183.38 115.57 709.22 41.34 10 •146.7 193.95 m		(67) (68) (69) (70) (71) (72)
Jan (66)m= 183.38 Lighting gains 112.45 Appliances ga 112.45 (68)m= 741.96 Cooking gains 41.34 Pumps and fa 10 Losses e.g. e (7)m= (7)m= -146.7 Water heating 196.9 Total interna	Feb 183.38 s (calcula) 99.88 ains (calc 749.66 s (calcula) 41.34 ans gains 10 vaporation -146.7 gains (T 193.94 193.94 1131.49	Mar 183.38 ted in Ap 81.22 ulated in 730.26 ted in Ap 41.34 (Table 5 10 on (negal •146.7 Table 5) 187.8	Apr 183.38 opendix l 61.49 Appendix 688.95 opendix 41.34 ion 10 ive value -146.7	183.38 L, equati 45.97 dix L, eq 636.81 L, equat 41.34 10 es) (Tab -146.7	183.38 ion L9 or 38.81 uation L 587.81 ion L15 41.34 10 le 5) •146.7	183.38 r L9a), a 41.93 13 or L1: 555.07 or L15a) 41.34 10 •146.7 159.92	183.38 Iso see 54.5 3a), also 547.37 also se 41.34 10 •146.7 168.23	183.38 Table 5 73.16 see Table 41.34 10 •146.7 171.18	183.38 92.89 ble 5 608.08 5 41.34 10 •146.7 179.82	183.38 108.41 660.22 41.34 10 -146.7 189.58	183.38 115.57 709.22 41.34 10 •146.7 193.95		(67) (68) (69) (70) (71)

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Stroma FSAP 2009 Version: 1.5.0.63 (SAP 9.90) - http://www.stroma.com

Page 4 of 7

Orienta	ation:	Access Factor Table 6d		Area m²		Flux Table 6a		g_ Table 6	ŝb	Т	FF able 6c		Gains (W)	
East	0.9x	1	x	176.15	x	19.87	×	0.72		×	0.7	=	1222.64	(76)
East	0.9x	1	x	176.15	Ī×	38.52	×	0.72		×Ī	0.7	-	2369.83	(76)
East	0.9x	1	x	176.15	×	61.57	×	0.72		×	0.7	-	3787.76	(76)
East	0.9x	1	x	176.15] × [91.41	×	0.72		×	0.7	-	5623.92	(76)
East	0.9x		x	176.15	ĺ.	111.22	×	0.72		×Ī	0.7		6842.71	(76)
East	0.9x	1	x	176.15] ×	116.05	×	0.72		× [0.7		7140.02	(76)
East	0.9x	1	x	176.15	Ī×	112.64	×	0.72		×Ī	0.7	-	6930.2	(76)
East	0.9x	1	x	176.15	Ī×	98.03	×	0.72		×Ī	0.7		6031.5	(76)
East	0.9x	1	x	176.15	ĺ×	73.6	×	0.72		×Ī	0.7	- ٦	4528.42	(76)
East	0.9x	1	x	176.15	ĺ.	46.91	×	0.72		×Ī	0.7	- ٦	2886.01	(76)
East	0.9x	1	x	176.15	ĺ.	24.71	- ×	0.72		×Ī	0.7	- ٦	1520.07	(76)
East	0.9x	1	x	176.15	i.	16.39	× ٦	0.72	=	×Ī	0.7	- ٦	1008.56	(76)
(83)m=	1222.6	watts, calcula 4 2369.83 3787. internal and so	76	5623.92 6842.3	71 7		2 60	m = Sum(74) 31.5 4528.		12)m 186.01	1520.07	1008.56	Î.	(83)
(84)m=	2361.9	6 3501.32 4875.	05	6641.83 7787.	54 8	021.05 7775.	14 688	9.62 5427.	54 38	54.81	2566.29	2115.32		(84)
7. Mei	an inte	amal temperatu	ne (heating seas	n)									
1000		e during heatin		1000000	10000	area from T	able 9	. Th1 (°C))				21	(85)
		ctor for gains f			-									
[Jan	Feb Ma	-	Apr Ma		Jun Jul		Aug Se		Oct	Nov	Dec		
=m(38)	1	1 0.99	,	0.97 0.88	-	0.72 0.52		.57 0.89	-	0.99	1	1		(86)
Mann	intern	al temperature	in li	ving area T1	/falls	un etene 2 t	. 7	Table ()a)						
(87)m=	19.1	19.33 19.7	-	20.21 20.6	<u>`</u>	20.9 20.9	-	.97 20.7	4 2	0.15	19.49	19.14	1	(87)
					_				_		10.10	12.14	12	
(88)m=	19.69	e during heatin	<u> </u>	19.72 19.74	_	19.74 19.75	_	9, 112 (*0	ć.	9.72	19.71	19.7	8	(88)
			_		_				° ['	9.72	19.71	19.7	2	(00)
		ctor for gains f	_								1		2	
=m(e8)	1	1 0.99	•	0.95 0.83		0.61 0.37	0.	.41 0.82		0.98	1	1	2	(89)
Mean	intern	al temperature	in t	he rest of dwe	elling	T2 (follow	steps	3 to 7 in Ta	able 9	e)				
=m(0e)	17.96	18.2 18.0	5	19.08 19.53	2	19.7 19.75	5 19	.74 19.5	9 1	9.04	18.37	18.01		(90)
									fLA	= Livi	ng area + (4	•) =	0.05	(91)
Mean	intern	al temperature	(for	the whole dv	vellin	ig) = fLA × 1	1 + (1	– fLA) × 1	Γ2					
(92)m=	18.01	18.25 18.6	5	19.14 19.57	7	19.76 19.8	1 1	9.8 19.6	5 1	9.09	18.42	18.06		(92)
Apply	adjus	tment to the me	an	internal temp	eratu	ure from Tab	ole 4e,	where ap	propr	iate	0			
=m(69)	18.01	18.25 18.6	5	19.14 19.5	1	19.76 19.8	1 1	9.8 19.6	5 1	9.09	18.42	18.06		(93)
8. Spa	ace he	ating requirem	ent										12 1	
	ilisatio	mean internal n factor for gain	ns u	sing Table 9a			_		_	_			culate	
	Jan	Feb Ma	_	Apr Ma	у	Jun Jul	A	Aug Se	P	Oct	Nov	Dec		
Utilisa	ation fa	ctor for gains,	hm:		_			- 20			<u> </u>			

TER WorkSheet: New dwelling design stage

Stroma FSAP 2009 Version: 1.5.0.63 (SAP 9.90) - http://www.stroma.com

0.95

0.82

0.61 0.37 0.42

0.81

0.98

1

1

Issue: 03

0.99

(94)

1

1

Page 5 of 7

(94)

TER WorkSheet: New dwelling design stage

Usefu	ul gains,	hmGm	, W = (94	4)m x (84	4)m									
6)m=	2360.74	3492.59	4813.64	6280.15	6402.4	4914.59	2911.8	2893.6	4412.07	3779.31	2562.88	2114.55		(96
Month	hly avera	age exte	mal tem	perature	from Ta	able 8		· · · · · · ·	- 11 - 11					
6)m=	4.5	5	6.8	8.7	11.7	14.6	16.9	16.9	14.3	10.8	7	4.9		(96
leat	loss rate	e for me	an intern	al tempe	erature, I	Lm,W=	=[(39)m :	x [(93)m	– (96)m]				
7)m=	14508.98	14059.62	12577.19	10837.41	8063.49	5253.08	2941.15	2938.95	5494.98	8610.07	11985.99	13969.77		(97
Space					-	Wh/mon	th = 0.02	24 x [(97)m – (95					
8)m=	9038.29	7101.04	5776.08	3281.23	1235.85	0	0	0	0	3594.08	6784.64	8820.29		_
								Tota	l per year	(kWh/year	r) = Sum(9	8)	45631.5	(96
Space	e heatin	g requir	ement in	kWh/m ³	lyear								64.09	(99
a. En	ergy req	uiremer	nts – Indi	ividual h	eating s	ystems i	ncluding	micro-C	HP)					
Spac	e heatir	ig:												
racti	ion of sp	ace hea	at from se	econdar	y/supple	mentary	system						0.1	(20
racti	ion of sp	ace hea	at from m	nain syst	em(s)			(202) = 1	- (201) =			i	0.9	(20
racti	ion of to	tal heati	ng from	main sys	stern 1			(204) = (2	02) × (1 =	(203)] =			0.9	(20
Efficie	ency of r	nain spa	ace heat	ina svste	em 1								78.9	1(2)
	-		ry/supple			n system	1 %						100	1(2)
									0	0.1		-		
-	Jan	Feb	Mar ement (c	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
pau	-		5776.08	-	-	0	0	0	0	3594.08	6784.64	8820.29		
	_			11111111111		-	, , , , , , , , , , , , , , , , , , ,			5054.00	0704.04	002025		
11)m		-	4)] + (21 6588.69		-	06)	0	0	0	4099.72	7790.49	10061.16	2	(2
1	10305.04	6100.00	0000.09	3/42.00	1405.71						(11)		52051.14	
			·							.,	- LANGE O		52051.14	(*
- · · ·		-	econdar 14) m } >											
	903.83	710.1	577.61	328.12	123.58	0	0	0	0	359.41	678.46	882.03	6	
								-	-		215)		4563.15	7(2
ator	heating								1000				1000.10	
		Sec. and	ter (calc	ulated al	have)									
aspas	305.13	269.62	284.77	257.51	253.97	229.26	222.39	240.98	239.6	266.92	279.43	298.54		
ficier	ncy of w	ater hea	ter										68.8	(2
17)m=	78.48	78.43	78.3	77.98	76.8	68.8	68.8	68.8	68.8	78.03	78.4	78.48		(2
uel fa	or water	heating.	kWh/mo	onth									5	
19)m	n = (64)	m x 100) + (217)	m		-							6	
19)m=	388.78	343.76	363.68	330.22	330.67	333.22	323.24	350.26	348.26	342.08	356.43	380.39		_
								Tota	I = Sum(2	19a) _{Lu} =			4191	(2
	al totals									k	Wh/year		kWh/yea	5
pace	neating	TUE! USE	ed, main	system	1								52051.14	
pace	heating	fuel use	ed, seco	ndary									4563.15	
ater	heating	fuel use	d										4191	٦

Stroma FSAP 2009 Version: 1.5.0.63 (SAP 9.90) - http://www.stroma.com

Page 6 of 7

central heating pump:			130]	(230c)
boiler with a fan-assisted flue			45	j	(230e)
Total electricity for the above, kWh/year		sum of (230a)(230g) =		175	(231)
Electricity for lighting				1985.88	(232)
12a. CO2 emissions – Individual heating systems	including micro-	CHP			
	Energy kWh/year	Emission fac kg CO2/kWh	tor	Emissions kg CO2/yea	r
Space heating (main system 1)	(211) x	0.194	=	10097.92	(261)
Space heating (secondary)	(215) x	0.422	=	1925.65	(263)
Water heating	(219) x	0.194	-	813.05	(264)
Space and water heating	(261) + (262) + (26	(3) + (264) =		12836.62	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.422	-	73.85	(267)
Electricity for lighting	(232) x	0.422	-	838.04	(268)
Total CO2, kg/year		sum of (265)(271) =		13748.52	(272)
		\F		20.46](273)

TER WorkSheet: New dwelling design stage

Stroma FSAP 2009 Version: 1.5.0.63 (SAP 9.90) - http://www.stroma.com

Page 7 of 7

APPENDIX C

Code for Sustainable Homes Report

Code for Sustainable Homes Report

Assessor Name: Property Address:	Assessor Number:			
Topeny Address.	18, Lancaster Grove LONDON NW3 4PB			
Buiding regulation ass	sessment			
	lations are taken from the Code for Sustainable Homes Ted	20.4 14.9	3	
Ene 1 Assessment - D	welling Emission Rate			
otal Energy Type CO2	Emissions for Codes Levels 1 - 5	%	kg/m²/year	
DER from SAP 2009 DER	Worksheet		14.93	(ZC)
ER			20.46	
Residual CO2 emissions of	offset from biofuel CHP		0	(ZCS
CO2 emissions offset from	m additional allowable electricty generation		0	(ZC7
otal CO2 emissions offs	et from SAP Section 16 allowances		0	
DER accounting for SAP	Section 16 allowances		14.93	
% improvement DER/TE	R	27		
otal Energy Type CO2	Emissions for Codes Levels 6		kg/m²/year	
DER accounting for SAP			14.93	(ZC1
CO2 emissions from appl			6.15	(ZC2
CO2 emissions from cool	king, equation (L16)		0.29	(ZC3
Net CO2 emissions			21.4	(ZC8
Credits awarded for End Code Level = 4 Ene 2 - Fabric energy I	Efficiency			
	•			
redits awarded for En	•			
redits awarded for En Ene 7 - Low or Zero Ca	e 2 = 3.8 arbon (LZC) Technologies	l er	kalm²hana	
credits awarded for En Ene 7 - Low or Zero Ca Reduction in CO2 Emis	e 2 = 3.8 arbon (LZC) Technologies sions	%	kg/m²/year	
credits awarded for En Ene 7 - Low or Zero Ca Reduction in CO2 Emis Standard Case CO2 emis	e 2 = 3.8 arbon (LZC) Technologies sions	%	25.52	
Credits awarded for End Ene 7 - Low or Zero Ca Reduction in CO2 Emis Standard Case CO2 emis Standard DER	e 2 = 3.8 arbon (LZC) Technologies sions	%	25.52 19.08	
Credits awarded for Ene Ene 7 - Low or Zero Ca Reduction in CO2 Emiss Standard Case CO2 emiss Standard DER Actual Case CO2 emission	e 2 = 3.8 arbon (LZC) Technologies sions	%	25.52 19.08 23.87	
Credits awarded for Em Ene 7 - Low or Zero Ca Reduction in CO2 Emission Standard Case CO2 emission Standard DER Actual Case CO2 emission Actual DER	e 2 = 3.8 arbon (LZC) Technologies sions isions		25.52 19.08	
Credits awarded for Ene Ene 7 - Low or Zero Ca Reduction in CO2 Emission Standard Case CO2 emission Standard DER Actual Case CO2 emission Actual DER Reduction in CO2 emission	e 2 = 3.8 arbon (LZC) Technologies sions usions ms	6.47	25.52 19.08 23.87	
Credits awarded for Em Ene 7 - Low or Zero Ca Reduction in CO2 Emission Standard Case CO2 emission Standard DER Actual Case CO2 emission Actual DER Reduction in CO2 emission Credits awarded for Emission Actual gibble to contribute to addition	e 2 = 3.8 arbon (LZC) Technologies sions sions ns ons e 7 = 0 eving the requirements of this issue must produce energy from renewable sources and meet all of	6.47 ther ancillary requirements as of	25.52 19.08 23.87 17.43	
Credits awarded for Em Ene 7 - Low or Zero Ca Reduction in CO2 Emission Standard Case CO2 emission Standard DER Actual Case CO2 emission Actual DER Reduction in CO2 emission Credits awarded for Emission Credits awarded	e 2 = 3.8 arbon (LZC) Technologies sions sions ons ons e 7 = 0 reving the requirements of this issue must produce energy from renewable sources and meet all of of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and	6.47 ther ancillary requirements as of	25.52 19.08 23.87 17.43	
Credits awarded for Em Ene 7 - Low or Zero Ca Reduction in CO2 Emission Standard Case CO2 emission Standard DER Actual Case CO2 emission Actual DER Reduction in CO2 emission Credits awarded for Em Credits awarded for Emission Credits awarded for Em	e 2 = 3.8 arbon (LZC) Technologies sions sions ons ons e 7 = 0 reving the requirements of this issue must produce energy from renewable sources and meet all of of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and	6.47 ther ancillary requirements as of subsequently repealing Direct	25.52 19.08 23.87 17.43	
Credits awarded for Em Ene 7 - Low or Zero Ca Reduction in CO2 Emission Standard Case CO2 emission Standard DER Actual Case CO2 emission Actual DER Reduction in CO2 emission Actual DER Reduction in CO2 emission Credits awarded for Emission Credits	e 2 = 3.8 arbon (LZC) Technologies sions sions sions ons ons ons ons ons ons ons ons ons	6.47 ther ancillary requirements as of subsequently repealing Direct	25.52 19.08 23.87 17.43	
Reduction in CO2 Emis Standard Case CO2 emis Standard DER Actual Case CO2 emissio Actual DER Reduction in CO2 emissio Credits awarded for Em echnologies eligible to contribute to achi unopean Perliament and of the Cound of the following requirements must also be i Where overed by the Microgeneration	e 2 = 3.8 arbon (LZC) Technologies sions sions sions ons e 7 = 0 eving the requirements of this issue must produce energy from renewable sources and meet all of of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and met: ernal renewables there must be a direct supply of energy produced to the dwelling under assessm i Certification Scheme (MCS), technologies under 50kWe or 300kWth must be certified. mmes above 50kWe must be certified under the OrPQA standard.	6.47 ther ancillary requirements as of subsequently repealing Direct	25.52 19.08 23.87 17.43	
Credits awarded for Eme Ene 7 - Low or Zero Ca Reduction in CO2 Emission Standard Case CO2 emission Standard DER Actual Case CO2 emission Actual Case CO2 emission Actual DER Reduction in CO2 emiss	e 2 = 3.8 arbon (LZC) Technologies sions sions sions asions asion	6.47 ther ancillary requirements as a d subsequently repealing Direct ent.	25.52 19.08 23.87 17.43 Iefined by Directive 2009/7	
Credits awarded for Em Ene 7 - Low or Zero Ca Reduction in CO2 Emission Standard Case CO2 emission Standard DER Actual Case CO2 emission Actual Case CO2 emission Actual DER Reduction in CO2 emissi	e 2 = 3.8 arbon (LZC) Technologies sions sions sions asions asion	6.47 ther ancillary requirements as a d subsequently repealing Direct ent.	25.52 19.08 23.87 17.43 Iefined by Directive 2009/7	
Credits awarded for Em Ene 7 - Low or Zero Ca Reduction in CO2 Emission Standard Case CO2 emission Standard DER Actual Case CO2 emission Actual Case CO2 emission Actual DER Reduction in CO2 emissi	e 2 = 3.8 arbon (LZC) Technologies sions sions sions sions arbon (LZC) Technologies arbon (LZC)	6.47 ther ancillary requirements as a d subsequently repealing Direct ent.	25.52 19.08 23.87 17.43 Iefined by Directive 2009/7	3/30/EC.

42