PRICE&MYERS

Flood Risk Assessment 254 Kilburn High Road, London

April 2014

STRUCTURES \land GEOMETRICS \diamondsuit SUSTAINABILITY \bigcirc INFRASTRUCTURE

30 Newman Street London W1T1LT T 020 7631 5128 F 020 7462 1390 E mail@pricemyers.com www.pricemyers.com

PRICE&MYERS

Flood Risk Assessment

254 Kilburn High Road

Contents

- 1 Introduction
- 2 Site Description and Location
- 3 Development Proposals
- 4 Flood Risk Assessment
 - 4.1 Flood Risk from Watercourses
 - 4.2 Flood Risk from Groundwater
 - 4.3 Flood Risk from Overland Flows and Sewers
- 5 Run-off Assessment
- 6 Surface Water and Flood Risk BREEAM Assessment Criteria
- 7 Conclusions & Recommendations

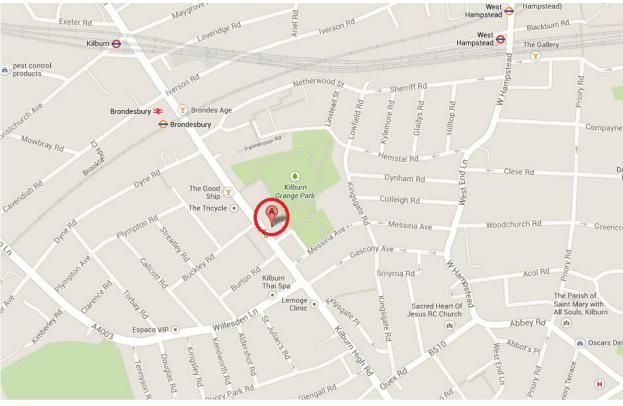
Abbreviations

- AOD Above Ordnance Datum
- BREEAM Building Research Establishment Environmental Assessment Methodology
- CfSH Code for Sustainable Homes
- EA Environment Agency
- FRA Flood Risk Assessment
- PPS 25 Planning Policy Statement 25; Development & Flood Risk
- SFRA Strategic Flood Risk Assessment
- NPPF National Planning Policy Framework
- Prepared by: Cynthia Conger-Thompson MEng (Hons)
- Checked by: Dimitris Linardatos BEng (Hons) MSc CEng MICE

Date: May 2014

1 Introduction

Price and Myers have been commissioned by Artich Group Ltd to undertake a Flood Risk Assessment (FRA) for the proposed redevelopment of the 254 Kilburn High Road, located within the London Borough of Camden. The flood risk classification of this site is based on the observations and the recommendations stated. This report is intended for the use of the developer of the site in support of their planning application for the site only.


This FRA has been carried out in accordance with:

- National Planning Policy Framework (NPPF),
- Planning Policy Statement (PPS) Statement 25 Technical Guidance,
- Advice and guidance from the Environment Agency (EA) and CIRIA documents,
- Information and recommendations within the North London Strategic Flood Risk Assessment (SFRA).

The NPPF states that an appropriate FRA will be required for all development proposals of 1 Ha or greater in Flood Zone 1, or for any development within Flood Zones 2 or 3. The site is within Flood Zone 1 and is less than 1 Ha; although a FRA is not required in this case it is required for compliance with the Code for Sustainable Homes (CSH) and Building Research Establishment Environmental Assessment Methodology (BREEAM) purposes.

2 Site Description and Location

The site is located on Kilburn High Road in Kilburn. The site coordinates are at grid ref. OS 524992/184221 and the postcode is NW6 2BS. The site is situated to the west of Kilburn Grange Park within an urban area of London and has a vehicular entrance from Kilburn High Road. The entire site covers an approximate area of 0.203 Ha.

O Site Location

Figure 1 - Site Location Map

Site Boundary

Figure 2 - Existing Development

3 Development Proposal

The proposed works comprise the demolition of the current buildings and redevelopment of the site to provide a mixed use scheme to offer a four/five storey building with small commercial space at ground level and 62 residential units above. The proposals will have minor effect to the external areas and access to the proposed development will remain at Kilburn High Road.

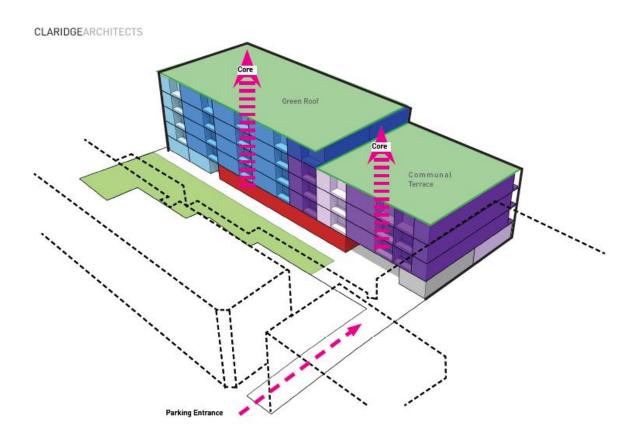
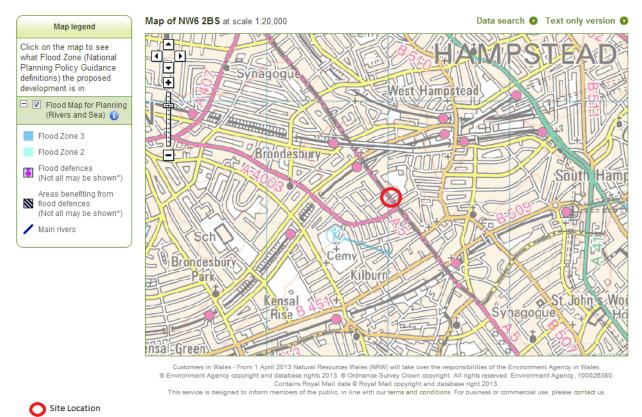



Figure 3 - Proposed Development

4 Flood Risk Assessment

4.1 Flood Risk from Watercourses (Fluvial/Tidal)

There is no risk of flooding from rivers and sea as identified on the Environment Agency (EA) indicative flood outline map. The map shows that the site lies within Flood Zone 1.

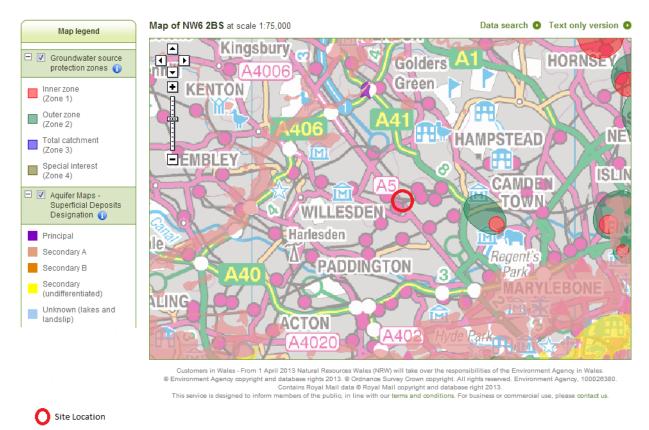


Figure 4 - Environment Agency indicative floodplain map

4.2 Flood Risk from Groundwater

The EA's groundwater source protection zones confirm that the site is outside the source protection zone and is not underlain by an Aquifer. Therefore, the proposed development will not affect the local hydrology.

254 KILBURN HIGH ROAD, LONDON

Figure 5 - Environment Agency Groundwater Source Protection Zones Map

A geotechnical site investigation was not available at the time of this study was undertaken. However, the British Geological Survey map for the site location confirms that this area is entirely underlain by London Clay Formation. This confirms that the flood risk from ground water is low as the London Clay is impermeable, preventing the groundwater from rising near the ground surface in this area.

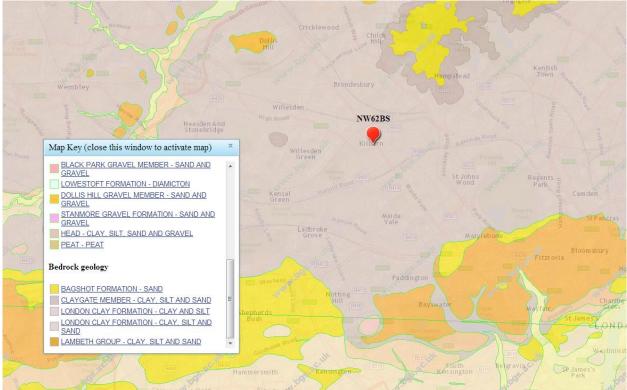



Figure 6 - British Geological Survey Map of the Site

O Site Location

Figure 7 - Flooding Incidents (Extract from SFRA)

The North London SFRA also confirms the information stated above. Figure 7 shows the reported flood incidents of the area. The map shows that the London Fire Brigade Flood Calls were contacted in the past for a flood incident near the site; however, it is not stated whether the flooding was related to a pluvial inundation.

Furthermore, no basements or lower ground level structures are proposed which are vulnerable to groundwater flooding. Therefore, the risk of flooding from groundwater is considered "low".

4.3 Flood Risk from Overland Flows and Sewers

Historical records show that the site entrance is located in an area that has flooded in the past.

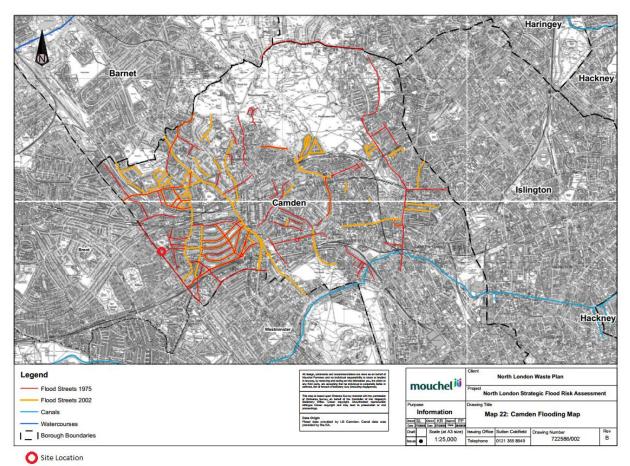
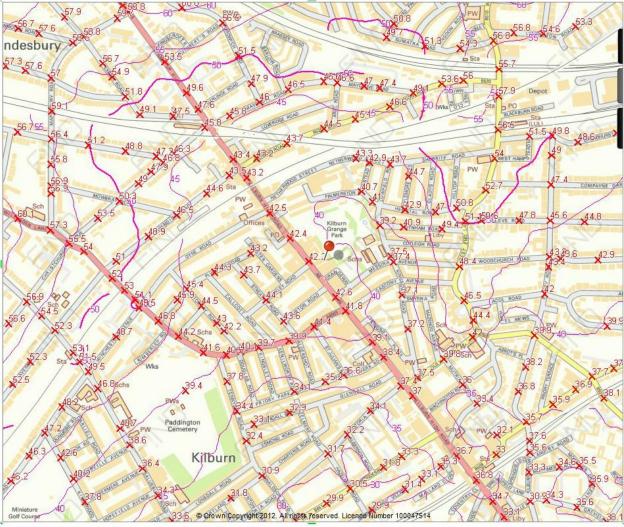



Figure 8 - Historical Flood Records (Extract from SFRA)

The proposal does not include a lower floor level that is defined by the NPPF as 'highly vulnerable'. As the ground floor will be mainly used for commercial and storage purposes and the consecutive floors will be residential, there will be no flood risk to the property.

Topographical survey (see Figure 9) for the area suggests that Kilburn High Road falls to the south-east. This indicates that surface water will flow to the south-east without ponding the local area. Furthermore, the levels at the site entrance can be raised to ensure that no overland flows from the main road will enter the site.

Site Location

Figure 9 - Contours and Spot Heights (Source: FINDmaps, 2014)

5 Run-off Assessment

Existing Run-off

The impermeable areas currently cover approximately 0.203 Ha. It is thought that these areas currently drain to the public sewers. The existing run-off rate for the 1 in 100 year storm event was estimated based on the modified rational method:

 $Q_{100} = 2.78 \times A \times i$ (where "A" is the catchment area in Ha and "i" is the rainfall intensity in mm/hr. as estimated from WinDes Software).

 $Q_{100} = 2.78 \times 0.203 \times 105.122 = 59.32$ l/sec.

5.2 Proposed Run-off

The proposed development will not increase the footprint of the existing hard standing areas and subsequently the run-off rates will mimic existing conditions.

In accordance with the London Plan, EA guidelines, Building Regulations and Water Authorities advice the preferred means of surface water drainage for any new development is into a suitable soakaway or infiltration drainage system. Sustainable Drainage Systems (SUDS) can reduce the impact of urbanisation on watercourse flows, ensure the protection and enhancement of water quality and encourage recharge of groundwater in a manner that mimics natural conditions. If drainage to an infiltration system proved to be an unsuitable option for the site then drainage to public sewers will be assessed. Drainage to the public sewers can be considered only when all other options proved unsuitable.

However, published information confirms that the ground strata (London Clay) is unsuitable for the use of infiltration techniques. Furthermore, the development proposals indicate that only a very small area of the site will not be occupied by buildings providing no sufficient area for infiltration techniques, considering that infiltration systems must be constructed atleast 5m away from structures.

Alternatively, attenuation techniques can be employed. Various opportunities to reduce the run-off rates from the site must be assessed during the detailed design stage. The site layout and topography shows that attenuation systems such as storage tanks and permeable paving can be accommodated on site.

The surface water drainage system must be designed for the 1 in 100 year storm event, also making allowances for climate change. Hence the surface water run-off rate will be increased by 30% due to climate change, $Q_{100+30} = 77.12$ l/sec.

6 Surface Water and Flood Risk BREEAM Assessment Criteria

The assessment criterion is split into three parts for which credits may be awarded.

6.1 Flood Risk

As stated in section 4 of this report. The EA's indicative flood map shows that the site lies in Flood Zone 1, an area with less than 0.1% annual probability of flooding by rivers and/or the sea. Therefore the proposed development can achieve two credits.

6.2 Surface Water Run-off

Section 5 analyses the surface water run-off of the proposed site. The surface water run-off rates were calculated.

BREEAM states that "where impermeable areas drainage to the watercourse (natural or municipal) has decreased or remains unchanged post-development, the peak and volume rate of run-off requirements for surface water run-off credits will be met by default." Therefore the development can achieve additional two credits.

6.3 Minimising watercourse pollution

Whilst the proposed development poses low risk of contamination to watercourses, surface water from all areas must pass through SUDS in order to meet BREEAM's requirements. The single credit which is available cannot be achieved as infiltration techniques cannot be used on site.

7 Conclusions & Recommendations

- In accordance with NPPF this site falls within Flood Zone 1, areas with little or no potential risk of flooding (annual probability less than 0.1% for fluvial flooding) which are already developed. Proposed Developments in these areas have no restrictions provided that the surface water drainage will not increase the flood risk on site and the surrounding areas.
- Information from the EA and SFRA shows that the site is at low risk of flooding from watercourses, ground water and overland flows.
- Surface water from the site will drain to the public sewers and the proposed works will not increase the run-off rate.
- The surface water drainage by means of attenuation will be designed for the 1 in 100 year plus 30% storm event.
- The proposed development meets BREEAM's requirements and has the potential to achieve four credits for flood risk and surface water run-off.
- Therefore, the proposed redevelopment has an acceptable flood risk within the terms and requirements of NPPF.

APPENDIX A – Preliminary Calculations

Price & Myers 30 Newman Street		224	0.8			Page	e 1	
				ui~h	Pood			4
London		254	Kilburr	і цтди	RUdû		í (R	ROM /
W1T 1LT								
Date 11/04/14			igned By	CCT			L C T	
File SURFACE WATE	R ATT.	. Che	cked By					
Micro Drainage		Sou	rce Cont	crol W	.12.4			
Summa	ry of l	Result	s for 10)0 yea	r Retu	rn Peric	d (+30%)
		Half	Drain Ti	me : 18	0 minut	es.		
Storm	Max	Max	Max		Max	Max	Max	Status
Event	Level (m)	(m)	(1/s)		(1/s)	Σ Outflow (l/s)	(m ³)	
15 min Summer	0.525	0.525		0.0	3.7	3.7	49.9	ОК
30 min Summer		0.658		0.0	4.1	4.1		0 K
60 min Summer		0.761		0.0	4.5	4.5		Flood Risk
		0.808		0.0	4.6	4.6		Flood Risk
180 min Summer	0.806	0.806		0.0	4.6	4.6	76.5	Flood Risk
240 min Summer	0.793	0.793		0.0	4.5	4.5	75.4	Flood Risk
360 min Summer	0.760	0.760		0.0	4.5	4.5	72.2	Flood Risk
480 min Summer	0.723	0.723		0.0	4.3	4.3	68.7	Flood Risk
	0.687	0.687		0.0	4.2	4.2		O K
720 min Summer		0.651		0.0	4.1	4.1		O K
960 min Summer		0.588		0.0	3.9	3.9		0 K
		0.486		0.0	3.6	3.6		0 K
		0.375		0.0	3.1	3.1		ОК
		0.297		0.0	2.8	2.8		ОК
		0.195		0.0	2.3	2.3		ОК
		0.120		0.0	2.1	2.1		ОК
7200 min Summer 8640 min Summer		0.097 0.085		0.0	1.9 1.6	1.9		ОК
			torm vent	Rain (mm/h		e-Peak ins)		
		15 m [.]	in Summer	136.6	59	16		
			in Summer	88.3		31		
			in Summer			60		
			in Summer	32.2		116		
			in Summer			144		
		240 m:	in Summer	18.62	21	176		
		360 m:	in Summer	13.43	18	244		
		480 m:	in Summer	10.63	33	312		
			in Summer	8.8		380		
			in Summer	7.64		448		
			in Summer	6.04		578		
			in Summer	4.3		836		
			in Summer	3.10		1212		
			in Summer	2.4		1584		
			in Summer	1.7		2296		
			in Summer in Summer	1.3 ⁻ 1.1		2952 3672		
			in Summer	1.14		4408		
		5070 III.		0.90		00 F F		
		<u>A1000</u>	-2010 Mi	ana P		o T+∂		

) Newman Street	2240)8							
London			Kilburn	. High	Road				
T 1LT							<u>r CS</u> r	\bigcirc	
ate 11/04/14		Des	lgned By	CCT			ວຣາຕິເ	DECO	
le SURFACE WATER	ΑΤΤ.		2 1			<u>e</u>		<u>ller</u>	
.cro Drainage			ce Cont	rol W	12 4				
CIO DIAINAYE		5001		.101 W.	12.1				
Summar	y of	Result	<u>s for 10</u>) <u>0 yea</u> 1	Retu	rn Period	(+30%)	-	
Storm	Max	Max	Max Max Max			Max	Max	Status	
Event	Level	-	Infiltra				Volume		
	(m)	(m)	(1/s)		(l/s)	(1/s)	(m³)		
10080 min Summer	0.076	0.076		0.0	1.4	1.4	7.3	ОК	
15 min Winter		0.589		0.0	3.9	3.9	56.0	ОК	
30 min Winter	0.740	0.740		0.0	4.4	4.4	70.3	Flood Risk	
60 min Winter	0.861	0.861		0.0	4.7	4.7	81.8	Flood Risk	
120 min Winter	0.924	0.924		0.0	4.9	4.9	87.8	Flood Risk	
180 min Winter	0.916	0.916		0.0	4.9	4.9	87.0	Flood Risk	
240 min Winter		0.900		0.0	4.8	4.8		Flood Risk	
360 min Winter		0.853		0.0	4.7	4.7	81.0	Flood Risk	
480 min Winter		0.800		0.0	4.6	4.6		Flood Risk	
600 min Winter		0.747		0.0	4.4	4.4	71.0	Flood Risk	
720 min Winter		0.697		0.0	4.3	4.3	66.3	ОК	
960 min Winter 1440 min Winter		0.608 0.469		0.0 0.0	4.0 3.5	4.0 3.5	57.8 44.5	ОК	
2160 min Winter				0.0	2.9	2.9	44.J 31.2	0 K	
2880 min Winter		0.238		0.0	2.5	2.5	22.6	ОК	
4320 min Winter		0.112		0.0	2.0	2.0	10.6	0 K	
5760 min Winter		0.086		0.0	1.6	1.6	8.2	0 K	
7200 min Winter		0.074		0.0	1.4	1.4	7.0	ОК	
8640 min Winter	0.066	0.066		0.0	1.2	1.2	6.3	ОК	
		St	orm	Rain		e-Peak			
		Ev	ent	(mm/h:	r) (m	ins)			
		10080 m	n Summer	0.8	64	5136			
		15 m:	ln Winter	136.6	59	16			
			ln Winter			30			
			ln Winter			60			
			n Winter			116			
			.n Winter .n Winter			164			
			.n Winter .n Winter			186 262			
			n Winter			338			
			.n Winter			410			
			n Winter			482			
			n Winter			618			
		1440 m:	ln Winter	4.3	39	880			
		2160 m:	ln Winter	3.1	8	1256			
			ln Winter			1640			
			n Winter			2252			
			ln Winter			2936			
			ln Winter			3672			
		0040 MI	ln Winter	0.9	50	4392			
			2010 Mi						

Price & Myers						Page 3			
30 Newman Street	22408	3			raye s	Page 3			
London	22408 254 Kilburn High Road								
W1T 1LT				штдп	nuau	🛛 📄 🐧 🍊	GR	0)	
Date 11/04/14		Doci	gned By	CCT					
	7 mm			CCI					
File SURFACE WATER	A.II. • • •		ked By	- 7 5-7	10 4				
Micro Drainage		Sourd	ce Contr	OL W.	12.4				
Summary	of Re	sults	for 100	year	Return	Period	<u>(+30%)</u>		
Storm	Max	Max	Max		Max	Max	Мах	Status	
Event						Σ Outflow			
	(m)	(m)	(1/s))	(l/s)	(1/s)	(m³)		
10080 min Winter	0.061	0.061		0.0	1.0	1.0	5.7	0 K	
		Sto: Eve:		Rain (mm/hr					
	10	080 mir	n Winter	0.86	4	5104			

Price & Myers			Page 4
30 Newman Street	22408		Laye I
London	254 Kilburn Hig	h Road	
W1T 1LT	COR NITRATH UTG	n Noau	I VICTO
Date 11/04/14	Designed By CCT		
File SURFACE WATER ATT			
		10 4	
Micro Drainage	Source Control	W.12.4	
	<u>Rainfall De</u>	tails	
Rainfall Mod Return Period (year		3R)0	Winter Storms Yes Cv (Summer) 0.750
	on England and Wale		Cv (Winter) 0.840
M5-60 (m	m) 20.6	0 Shortest	Storm (mins) 15
Ratio			Storm (mins) 10080
Summer Stor	ms Ye	es Cli	mate Change % +30
	<u>Time / Area I</u>	Diagram	
	Total Area (ha) 0.203	
		ea	
	(mins) (H	la)	
	0-1 0.	203	

©1982-2010 Micro Drainage Ltd

30 Newman Street	224	08						
London	254	Kilburn H	ligh Road	$\sum_{i=1}^{i}$	1 Concoli			
W1T 1LT					للحير			
Date 11/04/14	Des	igned By C	CT) D),	Serie	ROD		
File SURFACE WATER AI	T Che	cked By						
Micro Drainage	Sou	rce Contro	Dl W.12.4					
	Storage is	<u>Model D</u> Online Co		(m) 1.000				
	Cell	ular Stora	ige Struct	lure				
Invert Level (m) 0.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000								
	Берси	m) Area (m²) IIII. AIG	a (m)				
	0.0	100.	0	100.0				
	<u>Hydro</u>	-Brake® Ou	tflow Cor	<u>ntrol</u>				
Design Head (r Design Flow (1/s		Hydro-Brake Diamete			vel (m) 0.0	000		
Depth (m) Flow (1/s) D	epth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)		
0.100 1.9	1.200	5.5	3.000	8.8	7.000	13.4		
0.200 2.3	1.400	6.0	3.500	9.5	7.500	13.9		
0.300 2.8 0.400 3.2	1.600	6.4 6.8	4.000 4.500	10.1 10.7	8.000	14.3		
0.400 3.2	1.800 2.000	7.2	4.500	10.7	8.500 9.000	14.7 15.2		
0.600 3.9	2.200	7.5	5.500	11.9		15.6		
0.800 4.5	2.400	7.8	6.000	12.4				
1.000 5.1	2.600	8.2	6.500	12.9				

Page 5

Price & Myers

©1982-2010 Micro Drainage Ltd