Energy Strategy FOR Mixed Use Redevelopment

At

101 Camley Street, London, NW1 0PF

For

Gateway Evolution Limited

27th June 2014

SLENDER WINTER PARTNERSHIP LTD THE OLD SCHOOL LONDON ROAD WESTERHAM, KENT TN16 1DN

Energy Strategy

FOR

Mixed Use Redevelopment

AT

101 CAMLEY STREET

LONDON BOROUGH OF CAMDEN

CONSULTANT:

SLENDER WINTER PARTNERSHIP LTD THE OLD SCHOOL LONDON ROAD WESTERHAM, KENT TN16 1DN

ARCHITECT:

KSR ARCHITECTS LLP 14 GREENLAND STREET LONDON NW1 0ND

Issue: 02

DOCUMENT ISSUE RECORD

ISSUE	PREPARED BY				CHECKED BY	
	PREPARED	DATE	SIGNATURE	CHECKED	DATE	SIGNATURE
01	D.Vardill	26.06.14	Walit	P.Bushell	26.06.14	
02	D.Vardill	27.06.14	Tholith	P.Bushell	27.06.14	

Issue: 02

<u>CON</u> 1.	EXE	<u>s</u> CUTIVE SUMMARY	5
1	.1.	SITE BACKGROUND	
2.		RGY STRATEGY	
		thodology	
		eline Energy Demand Assessment	
2	.1.	Energy Hierarchy Step 1 - 'Be Lean' - Reduce Energy Demand	
	.2.	Energy Hierarchy Step 2 - 'Be Clean' - Supply Energy Efficiently	
2	.3.	Energy Hierarchy Step 3 - 'Be Green' - Renewable Energy	
2	.4.	Summarised Results following the 3 Steps	
2	.5.	Summary Graph and Tables	9
2	.6.	Carbon Dioxide Emissions savings from each stage of the Energy Hierarchy	10
3.	OVE	ERVIEW	11
3	.1.	Objective	11
3	.2.	General Methodology	11
4.	BAS	ELINE ENERGY ASSESSMENT	12
4	.1.	Objective	12
4	.2.	Scope	12
5.	BE L	EAN	13
5	.1.	Objective	13
5	.2.	Scope	13
5	.3.	Methodology	13
5	.4.	Key Assumptions - Building Services Strategy for the 'Be Lean' Assessment	14
	THE	RMAL ELEMENTS	14
	HEA	TING	14
	DO	MESTIC HOT WATER SERVICES	14
	CON	MFORT COOLING	14
	ART	IFICIAL LIGHTING	14
	SUS	TAINABLE CONSIDERATIONS	15
6.	BE C	CLEAN	16
6	.1.	Objective	16
6	.2.	Scope	16
6	.3.	Review	16
7.	BE C	GREEN - INCORPORATION OF RENEWABLE TECHNOLOGIES	18

consult	ing en	gineers	101 Camley Street, London
7.1.	Obj	ective	
7.2.	Met	thodology	
7.3.	Sco	pe	
7.4.	ON-	SITE RENEWABLE ENERGY ASSESSMENT	
7.4	l.1.	Ground source heat pumps	
7.4	1.2.	Air Source Heat Pumps	20
7.4	1.3.	Solar Water Heating	21
7.4	1.4.	Photovoltaics	22
7.4	1.5.	Wind turbines	23
7.4	1.6.	Combined Heat and Power (CHP)	24
7.4	1.7.	Biomass boilers	25
7.4	1.8.	Summary of Renewable Energy Feasibility	
8. CO	NCLU	SIONS	28
APPEND	DIX A		
Energy	Strate	gy - Calculations and Assumptions	
APPEND	DIX B		35
TER and	DER	Results Summary Table	
APPEND	DIX C		
CfSH Da	ata FEE	E, ENE1, ENE2 and ENE7	
APPEND	DIX E		58
Typical	Code	for Sustainable Homes Report For a Mid Floor Apartment	58
APPEND	DIX F		59
Building	g Core	s Compliance Sheets	59
APPEND	DIX G		63
Busines	s Unit	- Typical BRUKL Data Output	63
APPEND	IX Н		69
KINGS CI	ROSS E	NERGY CENTRE CORRESPONDENCE	69

1. EXECUTIVE SUMMARY

This Energy Statement outlines the energy savings and energy efficiency measures at 101 Camley Street, London including the use of renewable technologies to provide a site wide energy strategy in accordance with the Mayor's Energy Hierarchy:

- 1. Be lean: use less energy
- 2. Be clean: supply energy efficiently
- 3. Be green: use renewable energy

The methodology detailed herein is In accordance with the Greater London Authority guidance which states that applications received by the Mayor before the 6 July 2014 may demonstrate compliance with the 40% reduction target beyond 2010 Building Regulations.

This document demonstrates that the London Borough of Camden Planning policies relevant to sustainable energy have been addressed in a structured and comprehensive manner by the proposals in the Planning Application. The Energy Assessment should be read in conjunction with the Architect's Design and Access Statement.

1.1. SITE BACKGROUND

This Energy Statement describes the methodology used in assessing the proposed development and the assessment of the predicted energy target and renewable proposals to support the planning application for the proposed mixed use redevelopment (employment and residential) at 101 Camley Street, London.

The site is currently being used as a warehouse and delivery depot by DPD, but the company are relocating to larger premises in the Kentish Town Industrial Estate.

It is proposed that existing building located at 101 Camley Street, London, be demolished and the new development be constructed resulting in a total of 121 dwellings including 30 affordable homes along with the commercial employment units comprising a total of 2,220m² Gross External Area (GEA). The Site is located at the junction of Camley Street and Granary Street in the London Borough of Camden.

It is the intention of the Client for the proposed building to achieve both a compliance with Part L 2010 Building Regulations and a Code for Sustainable Homes Level 4 certification for the 16,397m² Gross Internal Area (GIA) of residential dwellings. The employment units are to target BREEAM 'Excellent' but currently achieve 'Very Good'.

The proposed residential zones are distributed over 11 floors which consist of following areas:

Floor	Floor Area / (m²)
Ground	988.5
Level 1	1,490.2
Level 2	1,490.2
Level 3	1,490.2
Level 4	1,490.2
Level 5	1,354.2
Level 6	1288.8
Level 7	1075.8
Level 8	1075.8
Level 9	608.4
Level 10	608.4
Level 11	330.8

Table 1: The Proposed Building Area

Issue: 02

2. ENERGY STRATEGY

Methodology

A thorough review has been undertaken of the energy technology options for the site to ensure the most appropriate energy strategy is implemented. This energy strategy has been developed in accordance with requirements of the London Plan and specifically the GLA Energy Team's Guidance Note 'Guidance on Planning Energy Assessments October 2010.

Accordingly, the Mayor's Energy Hierarchy (Use Less Energy - 'Be Lean', Supply Energy Efficiently -'Be Clean' and Use Renewable Energy - 'Be Green') has been applied to energy considerations for the site, starting with a robust 'baseline' energy demand assessment. A final energy strategy consisting of the introduction of a combined heat and power (CHP) and ground source heat pump (GSHP) has been evaluated as the most appropriate to serve the energy demand profile of the site whilst ensuring optimal energy efficiency and CO₂ emission reductions.

Baseline Energy Demand Assessment

The 101 Camley Street development is assessed under Building Regulations Part L 2010 as requested by the London Borough of Camden. The results in the report are assessed based on a thermal model using Designbuilder V3 with Energy Plus.

In establishing the energy profile of the building, consideration has been given to the various ways in which the building in use will consume energy, and means of making reasonable estimates or calculations of the likely energy use. Appropriate non-regulated loads (small power, equipment, external and common areas lighting, cooking and appliances etc.) have also been established and incorporated in the assessment.

2.1. Energy Hierarchy Step 1 - 'Be Lean' - Reduce Energy Demand

A range of measures have been adopted in the building fabric and services design to reduce the energy demand of the scheme, relative to what would be permissible solely to satisfy the Building Regulations.

- Improved building fabric, better than the limiting standards of the Building Regulations
- Ventilation systems with low specific fan powers, including EC motors on the fan coil units
- High efficiency boilers
- Low energy lighting and, where appropriate, automatic lighting control systems
- Measures to reduce the space cooling demand

These energy efficiency measures result in the building's carbon emissions being **12.5%** better than the Building Regulations 2010 target emissions rate.

Issue: 02

2.2. Energy Hierarchy Step 2 - 'Be Clean' - Supply Energy Efficiently

No existing or proposed district heating and/or cooling networks have been identified in the immediate area. The proposed building services strategy offers the scope to connect to a district heating main in the future without substantial changes to the systems.

The site is located a short distance from the Kings Cross Energy centre on the opposite side of the Canal and main rail lines.

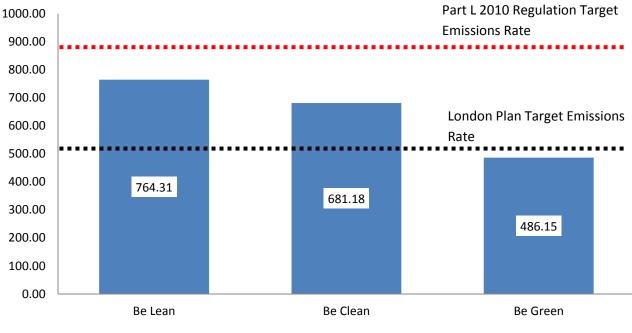
Enquiries were made at an early stage to Kings Cross energy centre for a supply to meet the proposed loads of the Development. Following discussions with their Technical team they advised that they did not consider it to be a feasible option due to the location of the development which is adjacent to the canal and network rail property and the required loads.

The development lends itself to CHP and GSHP as a consistent heat load for domestic hot water exists year round. The majority of the electricity that will be generated will be used on site for general residential power usage. Calculations using FSAP 2009 and SBEM that by providing a gas fired CHP meeting 25% of the total annual heat demand will result in a **10.88%** reduction in regulated carbon emissions.

2.3. Energy Hierarchy Step 3 - 'Be Green' - Renewable Energy

The use of renewable energy technologies has been considered. The provision of CHP to meet 25% of the heat demand is to be combined with a Ground Source Heat Pump (GSHP) meeting 25% of the heat demand and also an array of photovoltaic collectors. The resultant of this final step is a further reduction of **28.63%** reduction in regulated carbon emissions

2.4. Summarised Results following the 3 Steps


It is estimated that the project as a whole (both residential and commercial units) will achieve **44.35%** reduction in carbon dioxide emissions from a Part L 2010 compliant baseline. This is to be complemented with on-site renewable technologies producing over the required **20%** total predicted energy use.

8

Issue: 02

Carbon dioxide emissions (Tonnes CO2 per annum) Regulated

	Carbon dioxide emiss	ions	
	(Tonnes CO2 per annum)		
	Regulated	Unregulated ¹	
Baseline: Part L 2010 of the Building Regulations Compliant Development	873.52	393.08	
After energy demand reduction	764.31	343.94	
After CHP	681.18	343.94	
After renewable energy	486.15	343.94	

¹ Unregulated Energy has been accounted for and is estimated as 40% for commercial spaces and 50% for residential spaces of the total regulated energy. As both space types are nearly equal in energy demand an average of 45% unregulated energy for the Target and 35% has been used after the demand reduction step.

	Regulated Carbon dioxide savings	
	(Tonnes CO2 per annum)	(%)
Savings from energy demand reduction	109.21	12.50%
Savings from CHP	83.13	10.88%
Savings from renewable energy	195.04	28.63%
Total Cumulative Savings	387.37	44.35%
Total Target Savings	349.41	40%
Annual Surplus	ZERO	

Table 2: Regulated carbon dioxide savings from each stage of the Energy Hierarchy

2.6. Carbon Dioxide Emissions savings from each stage of the Energy Hierarchy

The proposed CHP and Ground Source Heat pump strategy for the development shows CO_2 savings from 'be clean' measures of 109,210 kg CO_2 /year (12.5% of regulated emissions), 'be Lean' measures of 83,130 kg CO_2 /year (10.88% of regulated emissions) and 'be Green' measures of 195,040 kg CO_2 /year (28.63% of regulated emissions).

This is a total saving of $387,370 \text{ kgCO}_2/\text{year}$ (44.35% of regulated emissions), exceeding the London Plan target for a new build development.

A thorough consideration has been made of the energy technology options for the site to ensure the most appropriate energy strategy is implemented. This report provides an assessment of the issues under consideration, and has demonstrated that the London Borough of Camden's energy policies are generally met or exceeded.

3. OVERVIEW

3.1. Objective

The purpose of this energy strategy is to demonstrate that energy consumption and climate change mitigation measures have been fully considered and appropriately selected and specified as part of the building's design.

In accordance with the guidance note 'Guidance on Planning Energy Assessments' after establishing the baseline energy demand and profile for the site, the strategy for the project follows the Mayor's Energy Hierarchy (Use Less Energy - 'Be Lean', Supply Energy Efficiently - 'Be Clean' and Use Renewable Energy - 'Be Green') in appraising appropriate measures to reduce carbon emissions and other climate impacts from the development.

The following sections provide more details on each of the steps of the Energy Strategy following the London Plan's Energy Hierarchy.²

3.2. General Methodology

The Guidance Note provides further detail on addressing the London Plan's energy hierarchy through the provision of an energy assessment to accompany strategic planning applications. Importantly, the Guidance Note acknowledges its requirements should be adapted for different scales of development.

The Guidance Note has been used to structure the appraisal and reporting of energy strategies for this Energy Statement.

 $^{^2\,}$ All analysis in this document adopts the Building Regulations Part L 2010 CO_2 fuel factors.

4. BASELINE ENERGY ASSESSMENT

4.1. Objective

Before energy efficiency measures are investigated, it is important to establish the baseline energy consumption of the scheme, for comparison and evaluation of energy proposals.

4.2. Scope

For energy assessments being undertaken under the London Plan, the appropriate baseline case against which to assess potential carbon savings is a new development designed to conform to the current Building Regulations Part L (2010³); effectively the 'do minimum' case. This baseline case represents a typical building arrangement; where electricity for the development is imported from the grid and space and heating water are provided by standard mains gas-fired boilers.

All energy uses, and not just the conventional building services loads (lighting, heating, cooling and ventilation) and energy loads associated with the function of the site should be considered in the establishment of the energy profile, and especially in the selection of a building services strategy and any renewable energy technology.

The following 'regulated' energy uses are considered in the baseline energy analysis:

- Space Heating/Cooling
- Water Heating
- Ventilation
- Fans, Pumps and Controls
- Lighting (internal)

The regulated energy uses can be established using the robust and well-established calculation methodology of Part L of the Building Regulations Part L 2010 (SAP, SBEM and DSM via the NCM)⁴.

 $^{^3}$ 2010 regulations to be adhered to as per the GLA guidance for applications made prior to 06 July 2014

⁴ Standard Assessment Procedure (SAP), Simplified Building Energy Model (SBEM), Dynamic Simulation Modelling (DSM), National Calculation Method (NCM)

5. BE LEAN

5.1. Objective

The first step in pursuing energy efficient and low-carbon design under the energy Hierarchy is to minimise the development's energy demand. This is achieved both by passive measures and the introduction of more energy efficient plant and services. Any measures implemented at this stage will reduce the extent of measures or size of plant needed to address the subsequent 'be clean' and 'be green' stages.

5.2. Scope

The building services strategy has been developed in response to the following drivers for the project:

maximising the potential of the building to satisfy market expectations (balancing of scope of works with value to create the optimal specification) achieving environmental comfort condition and occupant wellbeing and avoiding unnecessary costs of construction

5.3. Methodology

In establishing the proposed energy strategy and servicing strategy for the development, the requirement to minimise energy consumption through improved building fabric and building services measures has been considered a priority.

As part of this assessment the London Plan's 'Cooling Hierarchy' has been considered in the design process, to reduce where possible the extent and installed capacity of cooling plant.

- Passive strategies and measures that have been considered include:
- Improving building (thermal and air leakage) performance.
- Use of thermal mass.
- Use of natural daylighting

5.4. Key Assumptions - Building Services Strategy for the 'Be Lean' Assessment

THERMAL ELEMENTS

The proposed new building's fabric elements shall be in compliance with the Approved Building Regulations Part L1A 2013.

The proposed 'U' values for 101 Camley Street are as below:

Element	Design U-Values (W/m²K)
External Walls	0.20
Roof	0.16
Floor	0.2
Windows & Doors	1.4

Table 7: Design U-Values

A design air permeability rate has been set at $5 \text{ m}^3/\text{m}^2/\text{hr}$ at 50Pa.

HEATING

The residential premises will primarily utilise a communal heating system that combines a lead CHP unit and ground source heat pump (GSHP) system with sequenced high efficiency gas fired boilers that are to be centrally located. This system will serve all dwellings with space heating utilising underfloor or radiant emitters. It will also serve the domestic hot water demand and part of the electricity usage.

DOMESTIC HOT WATER SERVICES

The hot water generation shall be supplied by the same CHP system that serves the building heating systems. Provisionally heat exchangers within the dwellings will transfer the main system heat to provide localised DHW without the need for storage.

COMFORT COOLING

Comfort cooling is not to be considered.

ARTIFICIAL LIGHTING

The provision of natural daylight is considered an important factor in the design in order to minimise the use of artificial light within the building. Floors from ground level upward have access to natural light with high specification glazing being specified to maximise day lighting levels and minimise associated heat loss. High efficiency lamps will be considered in conjunction with the client's preferences and facilities for automatic switching and dimming systems shall also be incorporated where possible.

SUSTAINABLE CONSIDERATIONS

The 101 Camley Street, London development incorporates rainwater harvesting to minimise mains water consumption. Rainwater shall be collected at the various roof levels and sufficient volume stored for garden irrigations.

	Carbon dioxide emissions after 'Be Lean' Demand Reduction		
	(Tonnes CO2 per anr	ium)	
	Regulated	Unregulated ⁵	
Baseline: Part L 2010 of the Building Regulations Compliant Development	873.52	393.08	
After energy demand reduction	764.31	343.94	

The 'Be Lean' demand reduction results in a **10.88%** reduction in regulated carbon emissions.

⁵ Unregulated Energy has been accounted for and is estimated as 40% for commercial spaces and 50% for residential spaces of the total regulated energy. As both space types are nearly equal in energy demand an average of 45% unregulated energy for the Target and 35% has been used after the demand reduction step.

6. BE CLEAN

6.1. Objective

The next step in the Energy Hierarchy, 'be clean', is to investigate the options for the efficient supply of energy to the development. This stage follows the incorporation of all practicable energy efficiency measures.

6.2. Scope

Potential approaches include connecting the scheme to existing CHP-led district energy networks, or if no existing schemes exist investigating whether such networks are planned in the area and designing systems with the flexibility to connect to these in the future. Opportunities to provide a communal heating system across buildings/uses within a multiple building scheme should also be pursued.

With or without a communal system, the feasibility of CHP (combined heat and power), including the provision of cooling using the CHP waste heat should be reviewed.

6.3. Review

The site is located a short distance from the Kings Cross Energy centre on the opposite side of the Canal and main rail lines.

Enquiries were made at an early stage to Kings Cross energy centre for a supply to meet the proposed loads of the Development. Following discussions with their Technical team they advised that they did not consider it to be a feasible option due to the location of the development which is adjacent to the canal and network rail property and the required loads.

The development lends itself to CHP as a consistent heat load year round (ensuring the plant runs at its optimal efficiency) exists. The domestic hot water demand of the building provides a good base load for the operation of the CHP, with the majority of the electricity that will be generated will be used on site for general power usage.

Calculations using the Designbuilder and SAP software it shows that by providing a gas fired CHP meeting 25% of the total annual heat demand will result in a **10.88%** reduction in regulated carbon emissions. The heat demand that is not met by the CHP unit will be satisfied by a high efficiency gas fired condensing boiler.

The full load running hours will be approximately 4200 per year⁶

The heating system serving the residential spaces will be extended to serve commercial units and communal spaces, providing all zones with the opportunity to benefit from carbon efficient heat.

Issue: 02

⁶ Running hour may be adjusted during detailed design stages

Carbon dioxide emissions after 'Be Clean' CHP

	(Tonnes CO2 per annu	(Tonnes CO2 per annum)		
	Regulated	Unregulated ⁷		
Baseline: Part L 2010 of the Building Regulations Compliant Development	873.52	393.08		
After energy demand reduction	764.31	343.94		
After CHP	681.18	343.94		

⁷ Unregulated Energy has been accounted for and is estimated as 40% for commercial spaces and 50% for residential spaces of the total regulated energy. As both space types are nearly equal in energy demand an average of 45% unregulated energy for the Target and 35% has been used after the demand reduction step.

7. BE GREEN - INCORPORATION OF RENEWABLE TECHNOLOGIES

7.1. Objective

The third and final stage of the energy hierarchy is to 'be green'. The potential of a range of renewable energy systems to serve the energy requirements of the site, and thereby offset CO_2 emissions, is reviewed in this section of the document.

7.2. Methodology

This assessment has been undertaken using the methods laid out in the London Energy Partnership's 'integrating renewable energy into new developments: Toolkit for planners, developers and consultants' - the 'Renewables Toolkit'

7.3. Scope

The following renewable energy technologies have been considered for application at the site as they are identified in the London Plan as being potentially technically feasible for projects in London.

- Ground Source Heat Pump
- Air Source Heat Pump
- Solar Water Heating
- Photovoltaics
- Wind Turbines
- Combined Heat and Power
- Biomass

7.4. ON-SITE RENEWABLE ENERGY ASSESSMENT

A number of technologies were appraised in terms of technical, physical and financial feasibility, as potential low carbon system for use on the project.

7.4.1. Ground source heat pumps

illustrative images only

Heat pumps use refrigerant gases and an electrical compressor to take heat from a source and deliver it to an output. In this way they can be used to supply heat to a building. The ground acts as a huge solar collector and thermal store, which dampens fluctuations in ground temperature. The fluctuations reduce with depth and stabilise at the annual mean by about 12m below the surface; for the UK this is in the range 9–12°C.

Ground source heat pumps make use of this heat stored in the ground and raise it to a more useful temperature of around 40-50°C. It should be noted that at these temperatures, the heat produced is only useful for low temperature applications such as under floor heating installations; otherwise, a degree of top-up by conventional means is required when used for generating domestic hot water for example.

The viability of such a system and therefore costs rely almost entirely on the sub-structure build-up, the adjacency and restrictions on sub-structural service distributions and transport systems and the structural interface required to achieve thermal piles below the building.

From the evaluation it shows that the site may have the potential for ground source geothermal heat extraction below the new basement levels of the proposed development.

Issue: 02

7.4.2. Air Source Heat Pumps

Illustrative images only

Air source heat pumps operate using the same reverse refrigeration cycle as ground source heat pumps; however the initial heat energy is extracted from the external air rather than the ground. These heat pumps can be reversed to provide cooling to an area although this reduces the coefficient of performance of the pumps.

The heat pump connects multiple inside units with a single outside unit. The latter resembles an air conditioning condenser unit and care must be taken to locate the unit where any noise generation is not obtrusive and the location should ensure the unit is not visually obtrusive.

Air source heat pumps are not considered to be well suited for a multi residential building such as this and with the use of communal heating via CHP this technology is not considered to be viable.

7.4.3. Solar Water Heating

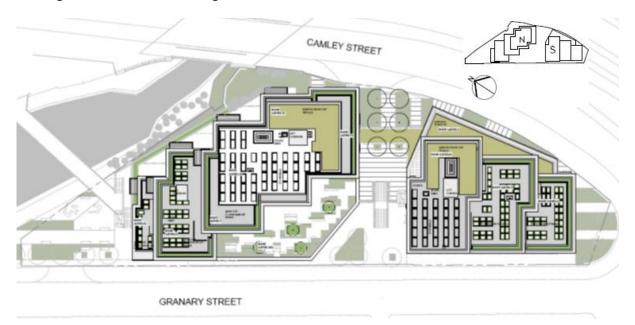
Illustrative images only

Solar collectors, which are at the heart of most solar systems, absorb the sun's energy and provide heat for hot water, heating and other applications.

There is useable space at 11th & 8th floor roof level to accommodate the panels; however the building domestic hot water demand is already met with the use of the CHP system and the space could instead be used for solar photovoltaic panels.

Solar hot water heating therefore will not be progressed further.

7.4.4. Photovoltaics



Illustrative images only

Photovoltaic panels (PV) provide clean silent electricity and generate green power during most daylight conditions although they are most efficient when exposed to direct sunlight or are orientated to face plus or minus 30 degrees of due south.

PV panels typically have an electrical warranty of 20 - 25 years and are eligible for the Government's Feed in Tariff (FITS) incentive scheme for the 25 years after the installation.

There is space to accommodate panels at 11th & 8th floor roof level as shown on the image below, an array of panels is proposed and will add to the electricity produced by the CHP unit and again minimize grid supplied power reliance. In total this equates to a PV installation of approximately 25kW peak. It is assumed that this system will be southeast facing and mounted at a 30 degrees inclination.

7.4.5. Wind turbines

101 Camley Street, London

Illustrative images only

Wind power can be used to generate electricity either in parallel with mains supplies or as standalone solutions using battery back-up.

In order to generate worthwhile quantities of electricity, average wind speeds of between 5-6 m/s are necessary (the UK government is currently advising 5.5-6.0m/s as the threshold). However Government wind speed database predicts local wind speed at 101 Camley Street, London to be 4.6 m/s at 10 m above ground level and 4.9 m/s at 25 m above ground level thus rendering the option unviable.

7.4.6. Combined Heat and Power (CHP)

Illustrative images only

Combined heat and power (CHP) also called co-generation is a de-centralised method of producing electricity from a fuel and 'capturing' the heat generated for space heating and hot water usage.

The production and transportation of electricity via the National Grid is very inefficient with over 65% of the energy produced at the power station being lost to the atmosphere and through transportation.

The system would generate electricity for use within the building with any surplus being sold back to the grid. The heat would be distributed via a communal heating and hot water infrastructure within the building. For a CHP plant to be efficient it needs operate for as much of the time as possible (usually deemed to be in excess of 14 hours per day). Therefore the size of the unit is usually based upon the hot water load of the building with additional boilers meeting the space heating demand.

In order to optimize a CHP system, whether it is fuelled by biomass or other means the proposed building needs to have a continuous heat demand throughout the year and in this development it is considered to be well suited.

Therefore a CHP unit is proposed that will be combined as a lead unit within a sequence of high efficiency gas fired boilers that form the communal heating plant for the site.

Illustrative images only

Energy from biomass is produced by burning organic matter. Organic matter is harvested and processed to create bio-energy which can take the form of liquid or solid fuels.

Although biomass is carbon-based (and hence generates carbon emissions), the carbon that is released during combustion is equal to that carbon that was absorbed during growth and so the fuel is classed as carbon neutral (the fuel generally requires treatment and transport, with associated carbon emissions however, but these effects will be ignored here).

Deliveries of fuel each couple of weeks would also be considered unacceptable, therefore this shall not be considered further.

7.4.8. Summary of Renewable Energy Feasibility

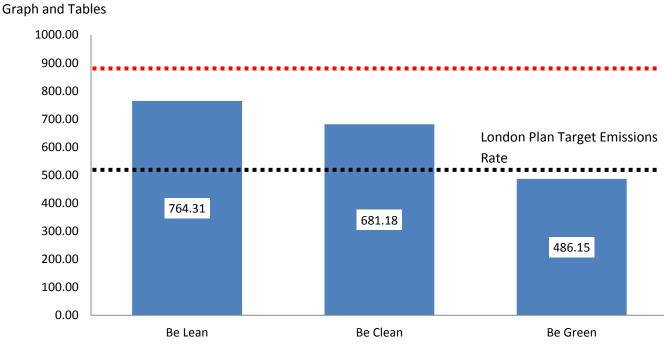
Technology	Feasible For This Site	Reason
Photovoltaics	YES	Proposed at roof level to reduce site reliance on grid supplied electricity. Approx 25kW peak array.
Solar Water	No	Dismissed since load already supplied by CHP.
Ground source heat pumps	YES	Ground Loops or Bore holes may be accommodated
Air Source heat pumps	No	Enough space to accommodate Air source heat pump out door unit (condenser), however not necessary as CHP can accommodate heating load more efficiently.
Wind Generators	No	Insufficient wind speeds and turbulence at site.
СНР	YES	There is estimated to be a consistent heat load throughout the year with which to justify the use of CHP plant.
Biomass Boilers	No	Regular fuel deliveries would be unacceptable and require unavailable fuel storage space.

Issue: 02

Carbon dioxide emissions after 'Be Green' Renewables

(Tonnes CO2 per annum)

	Regulated	Unregulated ⁸
Baseline: Part L 2010 of the Building Regulations Compliant Development	873.52	393.08
After energy demand reduction	764.31	343.94
After CHP	681.18	343.94
After renewable energy	486.15	343.94


From the 'Be Green' step the result is a **28.63%** reduction in regulated carbon emissions.

⁸ Unregulated Energy has been accounted for and is estimated as 40% for commercial spaces and 50% for residential spaces of the total regulated energy. As both space types are nearly equal in energy demand an average of 45% unregulated energy for the Target and 35% has been used after the demand reduction step.

8. CONCLUSIONS

This report demonstrates how the London plan methodology has been followed and that the three key steps have been taken allowing a reduction of 44.35% over the targeted Part L 2010 Building Regulations CO_2 emissions rate.

Carbon dioxide emissions (Tonnes CO2 per annum) Regulated

Table 1: Carbon Dioxide Emissions after each stage of the Energy Hierarchy

Carbon dioxide emissions

28

140626-2601-1- EN Statement-DV

(Tonnes CO2 per annum)

	Regulated	Unregulated ⁹
Baseline: Part L 2010 of the Building Regulations Compliant Development	873.52	393.08
After energy demand reduction	764.31	343.94
After CHP	681.18	343.94
After renewable energy	486.15	343.94

Table 2: Regulated carbon dioxide savings from each stage of the Energy Hierarchy

	Regulated Carbon dioxide savings	
	(Tonnes CO2 per annum)	(%)
Savings from energy demand reduction	109.21	12.50%
Savings from CHP	83.13	10.88%
Savings from renewable energy	195.04	28.63%
Total Cumulative Savings	387.37	44.35%
Total Target Savings	349.41	40%
Annual Surplus	ZERO	

⁹ Unregulated Energy has been accounted for and is estimated as 40% for commercial spaces and 50% for residential spaces of the total regulated energy. As both space types are nearly equal in energy demand an average of 45% unregulated energy for the Target and 35% has been used after the demand reduction step.

APPENDIX A

Energy Strategy - Calculations and Assumptions

Issue: 02

The proposed heating, domestic hot water systems and efficient lighting in conjunction with various low and zero-carbon renewable energy systems have been considered and adopted or dismissed as detailed herein. This proposed building has been specifically assessed in terms of predicted carbon emissions using approved FSAP Software.

The key low carbon technologies deemed as the most viable option for the proposed dwelling is the joint use of a Combined Heat and Power (CHP) with a Ground Source Heat Pump (GSHP). Loads are to be distributed as follows;

- CHP unit sized for '25% total demand' serving heating, domestic hot water and producing electricity therefore reducing grid electricity reliance.
- The GSHP sized for '25% total load' heating, domestic hot water.¹⁰

To further minimise the entire site reliance on grid supplied electricity a suitably sized array of photovoltaic cells will also be installed at roof level serving both the commercial and residential units.

¹⁰ The remaining 50% load will be handled by a high efficiency gas fired boiler.

The SAP calculations have been completed for each dwelling layout variation and the average results prepared to determine the energy consumption and CO₂ emission with the new building.

Tables 1 to 3 shows that the results of the Average SAP calculations proposed Dwelling Emission Rate (DER) is considerably lower than both that of the Building Regulations minimum required Target Emissions Rate (TER) and the 40% improvement required.

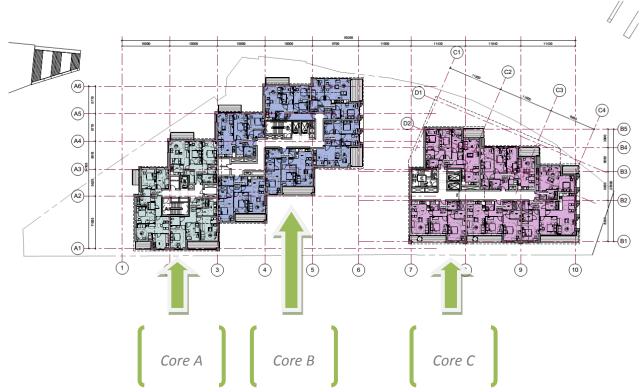
Core A	
ASSESSMENT	CO ₂ (Kg/m ² /year)
Average Dwelling TER	16.47
TER +40% Improvement	9.88
Average Dwelling DER	9.28

Table 1: Predicted Annual CO₂ Emissions against Limits (average for Core A)

Core B	
ASSESSMENT	CO₂ (Kg/m²/year)
Average Dwelling TER	17.15
TER +40% Improvement	10.29
Average Dwelling DER	9.40

Table 2: Predicted Annual CO₂ Emissions against Limits (average for Core B)

Core C	
ASSESSMENT	CO₂ (Kg/m²/year)
Average Dwelling TER	15.94
TER +40% Improvement	9.56
Average Dwelling DER	8.53


Table 3: Predicted Annual CO₂ Emissions against Limits (average for Core C)

Issue: 02

This proposed redevelopment at 101 Camley Street, London is therefore expected to reduce its carbon (CO₂) emissions by **43.70% (Core A)**, **45.03% (Core B)** and **46.58% (Core C)** in accordance with planning policy guidance over Part L 2010 Building Regulations required minimum standards.¹¹.

The CO₂ compliance has been sub divided into each individual Blocks that correspond to the construction cores of the residential building. This has allowed a more detailed review and a full assessment of all flat layouts.

The non-residential units that are located below the residential cores A, B and C have been analysed using the government approved software Simplified Building Energy Model (SBEM) and as required by planning policy guidance with the same methodology applied as for the residential elements the commercial units also achieve over a 40% reduction in CO_2 emission from the 2010 Part L baseline. Below is the criterion 1 table that shows the reduction estimated within the SBEM¹²:

Criterion 1: The calculated CO₂ emission rate for the building should not exceed the target

1.1	CO2 emission rate from the notional building, kgCO2/m2.annum	36.2
1.2	Target CO ₂ emission rate (TER), kgCO ₂ /m ² .annum	36.2
1.3	Building CO ₂ emission rate (BER), kgCO ₂ /m ² .annum	19.7
1.4	Are emissions from the building less than or equal to the target?	BER =< TER
1.5	Are as built details the same as used in the BER calculations?	Separate submission

Issue: 02

¹¹ It should also be noted that with weighted averages considering all flats that are not within this sample set the reduction is increased further.

¹² Also see Appendix F for the full BRUKL data output.

The baseline energy demand for a notional residential building has been established within FSAP and used for the building regulation compliance checks;

The energy consumption benchmarks used in the assessment shows in the table below:

Benchmark data / (kWh per annum)					
Building Type	Heating	Hot Water	Cooling	Electricity (power)	Electricity (lighting)
Average Dwelling	4598	3610	0	175	570

Table 6: Benchmark Data

From the Notional calculations the total estimated CO₂ level is estimated as 9323.59 kgCO₂/year

The Carbon emissions factors used in the assessment shows in the table below:

Fuel	Carbon Factors /(Kg/kWh)
Natural Gas	0.198
Electricity	0.517
Electricity Displaced	0.529

Table 6a: Carbon Factors

APPENDIX B

TER and DER Results Summary Table

Issue: 02

Dwelling	<u>SAP</u>	<u>EI</u>	<u>DER</u>	<u>TER</u>	Percent Improvement	<u>FEE</u>
UNIT A001_3B6P	B 85 (85.24)	92.5	10.38	19.2	45.94	50.54
UNIT A002_2B4P	B 86 (85.78)	92.68	9.59	18.15	47.16	46.06
UNIT A003_2B3P	B 84 (83.88)	91.22	11.90	19.28	38.28	61.79
UNIT A101_4B5P	B 88 (87.78)	93.89	7.59	14.97	49.30	32.07
UNIT A102_3B5P	B 86 (86.04)	92.38	9.54	15.25	37.44	47.82
UNIT A103_2B4P	B 86 (85.97)	92.84	9.55	15.22	37.25	42.85
UNIT A104_2B4P	B 88 (87.61)	94.27	7.43	15.09	50.76	29.56
UNIT A501_2B4P	B 86 (86.08)	92.64	9.48	15.8	40.00	47.76
UNIT A502_3B5P	B 87 (87.24)	93.41	8.08	15.3	47.19	36.56
Core A Averages		92.87	9.28	16.47	43.70	43.89

Dwelling	<u>SAP</u>	<u>EI</u>	DER	<u>TER</u>	Percent Improvement	FEE
UNIT B001_2B4P	B 84 (84.21)	91.35	11.50	18.31	37.19	60.82
UNIT B002_2B4P	B 85 (84.55)	91.67	11.18	18.09	38.20	57.78
UNIT B003_S	B 83 (83.12)	92.54	13.19	24.16	45.41	69.53
UNIT B1-B32_1B2P	B 86 (86.27)	94.1	8.64	17.93	51.81	37.35
UNIT B102_2B4P	B 88 (87.85)	94.27	7.27	14.65	50.38	28.65
UNIT B103_2B3P	B 87 (87.22)	94	8.18	14.98	45.39	35.51
UNIT B105_S	B 85 (84.97)	94.16	10.39	20.84	50.14	49.98
UNIT B106_1B2P	B 86 (86.36)	94.31	8.48	18.33	53.74	35.32
UNIT B107_1B2P	B 87 (87.03)	94.65	7.96	15.87	49.84	32.11
UNIT B605_2B3P	B 86 (86.12)	93.51	9.25	16.47	43.84	42.96
UNIT B607_3B5P	B 87 (86.85)	92.95	8.60	15.06	42.90	37.81
UNIT B801_3B5P	B 87 (86.86)	93.11	8.74	14.85	41.14	40.94
UNIT B802_3B5P	B 87 (87.17)	93.39	8.15	15.53	47.52	37.43
UNIT B1101_4B6P	B 85 (85.22)	88.96	10.12	15.09	32.94	65.38
Core B Averages		93.07	9.40	17.15	45.03	45.11

Dwelling	<u>SAP</u>	<u>EI</u>	DER	<u>TER</u>	Percent Improvement	FEE
UNIT C101_3B5P	B 87 (87.11)	93.06	8.52	14.5	41.24	41.15
UNIT C102_2B4P	B 88 (87.57)	93.91	7.75	15.54	50.13	32.44
UNIT C103_3B5P	B 88 (88.08)	94.14	7.41	13.89	46.65	31.33
UNIT C104_2B4P	B 88 (88.18)	94.4	7.07	14.41	50.94	26.26
UNIT C105_1B2P	B 86 (85.79)	94.01	9.35	18.48	49.40	49.05
UNIT C106_2B4P	B 88 (87.51)	93.9	7.63	15.17	49.70	33.3
UNIT C403_3B5P	B 87 (87.33)	93.49	8.15	15.24	46.52	37.4
UNIT C404_2B4P	B 87 (87.34)	93.7	7.82	15.41	49.25	34.03
UNIT C701_3B5P	B 87 (86.61)	92.63	8.89	15.4	42.27	45.29
UNIT C702_2B4P	B 87 (86.8)	93.27	8.41	16.63	49.43	38.68
UNIT C801_3B5P	B 85 (84.52)	90.81	11.00	17.71	37.89	60.21
UNIT C802 2B4P	B 85 (85.06)	91.76	10.31	18.92	45.51	52.67
Core C Averages		93.26	8.53	15.94	46.58	40.15

APPENDIX C

CfSH Data FEE, ENE1, ENE2 and ENE7.

Dwelling	FEE	ENE1 Credits	ENE2 Credits	ENE7 CO2 Standard
UNIT A001_3B6P	50.54	4.90	0.00	38.70
UNIT A002_2B4P	46.06	5.00	3.60	36.80
UNIT A003_2B3P	61.79	4.20	0.00	40.80
UNIT A101_4B5P	32.07	5.20	9.00	32.10
UNIT A102_3B5P	47.82	4.10	3.10	35.00
UNIT A103_2B4P	42.85	4.10	5.10	35.80
UNIT A104_2B4P	29.56	5.30	9.00	33.50
UNIT A501_2B4P	47.76	4.40	3.10	35.60
UNIT A502_3B5P	36.56	5.00	7.60	32.80
Core A Averages	43.89	4.69	4.50	35.68

Dwelling	FEE	ENE1 Credits	ENE2 Credits	ENE7 CO2 Standard
UNIT B001_2B4P	60.82	4.10	0.00	39.80
UNIT B002_2B4P	57.78	4.20	0.00	39.30
UNIT B003_S	69.53	4.90	0.00	49.10
UNIT B1-B32_1B2P	37.35	5.40	7.40	38.20
UNIT B102_2B4P	28.65	5.30	9.00	32.60
UNIT B103_2B3P	35.51	4.90	7.90	34.70
UNIT B105_S	49.98	5.30	0.00	44.90
UNIT B106_1B2P	35.32	5.60	7.90	38.30
UNIT B107_1B2P	32.11	5.20	9.00	36.70
UNIT B605_2B3P	42.96	4.70	5.00	37.70
UNIT B607_3B5P	37.81	4.60	7.30	32.50
UNIT B801_3B5P	40.94	4.50	6.00	33.90
UNIT B802_3B5P	37.43	5.00	7.40	33.00
UNIT B1101_4B6P	65.38	3.70	0.00	26.20
Core B Averages	45.11	4.81	4.78	36.92

Dwelling	FEE	ENE1 Credits	ENE2 Credits	ENE7 CO2 Standard
UNIT C101_3B5P	41.15	4.50	5.90	32.60
UNIT C102_2B4P	32.44	5.30	8.90	32.90
UNIT C103_3B5P	31.33	5.00	9.00	31.70
UNIT C104_2B4P	26.26	5.30	9.00	31.70
UNIT C105_1B2P	49.05	5.20	0.00	40.20
UNIT C106_2B4P	33.30	5.20	8.60	32.90
UNIT C403_3B5P	37.40	5.00	7.40	32.80
UNIT C404_2B4P	34.03	5.20	8.30	33.00
UNIT C701_3B5P	45.29	4.60	3.90	33.30
UNIT C702_2B4P	38.68	5.20	7.10	34.00
UNIT C801_3B5P	60.21	4.20	0.00	36.60
UNIT C802 2B4P	52.67	4.90	0.00	37.00
Core C Averages	40.15	4.97	5.68	34.06

APPENDIX D

Typical SAP and DER Worksheet For Mid Floor Apartment

SAP WorkSheet: New dwelling design stage

				User D	etails:						
Assessor Name: Software Name:	Stroma FS	AP 2009	Pr		Stroma Softwa	re Ver		4P	Versio	n: 1.5.0.73	
Address :				openty /	huuress.	UNITO	MUM_2D	41-			
1. Overall dwelling dime	nsions:										
				Area	ı(m²)		Ave He	ight(m)		Volume(m ³)	
Ground floor						(1a) x		.8	(2a) =	228.2	(3a)
Total floor area TFA = (1a	a)+(1b)+(1c)+	(1d)+(1e)+	(1n) 8	1.5	(4)					
Dwelling volume						(3a)+(3b))+(3c)+(3d)+(3e)+	(3n) =	228.2	(5)
2. Ventilation rate:											
	main heating		ondar	у	other		total			m ³ per hour	
Number of chimneys	0	_ +	0] • [0] - [0	×4	- 0	0	(6a)
Number of open flues	0] • [0] • [0] • [0	× 2	0 =	0	(6b)
Number of intermittent far	ns					Ē	0	×1	0 =	0	(7a)
Number of passive vents						Г	0	x 1	0 =	0	(7ь)
Number of flueless gas fi	res					Ē	0	x 4	Air ch	0 anges per hou	(7c)
Infiltration due to chimney	/s, flues and fa	ans = (6a)+	(6b)+(7	a)+(7b)+(7	(c) =	Г	0	_ .	+ (5) =	o o	"](8)
If a pressurisation test has b	een carried out or	is intended,	proceed	to (17), o	therwise c	ontinue fro	om (9) to (1
Number of storeys in the	ne dwelling (na	;)								0	(9)
Additional infiltration								[(9)-	1]x0.1 =	0	(10)
Structural infiltration: 0.							uction			0	(11)
if both types of wall are pr deducting areas of openin			iding to	the greate	er wall area	after					
If suspended wooden f) or 0.	1 (seale	d), else	enter 0				0	(12)
If no draught lobby, ent	er 0.05, else e	enter 0							Ì	0	(13)
Percentage of windows	and doors dr	aught strip	ped							0	(14)
Window infiltration					0.25 - (0.2	x (14) + 1	00] =			0	(15)
Infiltration rate							2) + (13) +			0	(16)
Air permeability value,							etre of e	nvelope	area	5	(17)
If based on air permeabili Air permeability value applies	2						in Aning water			0.25	(18)
Number of sides on which		in test has be	en oon	e or a deg	ree air per	теасику	is being us	60		2] (19)
Shelter factor					(20) = 1 - [0.075 x (1	9)] =			0.85	(20)
Infiltration rate incorporati	ing shelter fac	tor			(21) = (18)	x (20) =				0.21	(21)
Infiltration rate modified for	or monthly win	d speed									
Jan Feb	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp	eed from Tabl	e 7									
	5.1 4.5		3.9	3.7	3.7	4.2	4.5	4.8	5.1]	
Wind Factor (22a)m = (22	2)m + 4										
	1.27 1.12	1.02	0.98	0.92	0.92	1.05	1.12	1.2	1.27		

Stroma FSAP 2009 Version: 1.5.0.73 (SAP 9.90) - http://www.stroma.com

SAP WorkSheet: New dwelling design stage

Adjusted infiltration rate (allowing for shelter and wind speed) = (21a) x (22a)m
0.29 0.27 0.27 0.24 0.22 0.21 0.2 0.2 0.22 0.24 0.26 0.27
Calculate effective air change rate for the applicable case
If mechanical ventilation: 0.5 (23a)
If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a) 0.5 (23b)
If balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) = 76.5 (23c)
a) If balanced mechanical ventilation with heat recovery (MVHR) (24a)m = (22b)m + (23b) × [1 - (23c) + 100]
(24a)m= 0.4 0.39 0.39 0.36 0.34 0.32 0.31 0.31 0.34 0.36 0.37 0.39 (24a)
b) If balanced mechanical ventilation without heat recovery (MV) (24b)m = (22b)m + (23b)
(24b)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (24b)
c) If whole house extract ventilation or positive input ventilation from outside
if (22b)m < 0.5 × (23b), then (24c) = (23b); otherwise (24c) = (22b) m + 0.5 × (23b)
(24c)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (24c)
d) If natural ventilation or whole house positive input ventilation from loft
if (22b)m = 1, then (24d)m = (22b)m otherwise (24d)m = 0.5 + [(22b)m ² x 0.5]
(24d)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (24d)
Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in box (25)
(25)m= 0.4 0.39 0.39 0.36 0.34 0.32 0.31 0.31 0.34 0.36 0.37 0.39 (25)
3. Heat losses and heat loss parameter:
ELEMENT Gross area (m²) Openings m² Net Area A,m² U-value W/m2K A X U k-value kJ/m²-K A X k
Windows Type 1 [11.66 x1/(1/(1.4.)+ 0.04] = [15.46] (27)
Windows Type 2 21,12 x1/[1/(1.4.)+ 0.04] = 28 (27)
Walls Type2 25.2 11.66 13.54 × 0.2 = 2.71 (29)
Walls Type3 4.2 0 4.2 × 0.2 = 0.84 (29)
Total area of elements, m ² 60.2 (31)
Party wall 50.4 × 0 = 0 (32)
Party floor 81.5 (32a)
Party ceiling 81.5 (32b)
* for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2
** include the areas on both sides of internal walls and partitions
Fabric heat loss, W/K = S (A x U) (26)(30) + (32) = 48.94 (33)
Heat capacity Cm = S(A x k) ((28)(30) + (32) + (32a)(32e) = 7096.88 (34)
Thermal mass parameter (TMP = Cm + TFA) in kJ/m ² K Indicative Value: Medium 250 (35)
For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.
Thermal bridges : S (L x Y) calculated using Appendix K 9.03 (36)
if details of thermal bridging are not known (36) = 0.15 x (31)
Total fabric heat loss (33) + (36) = 57.97 (37)
Ventilation heat loss calculated monthly (38)m = 0.33 × (25)m × (5)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
(38)m= 30.45 29.25 29.25 26.85 25.25 24.45 23.65 23.65 25.65 26.85 28.05 29.25 (38)
Heat transfer coefficient, W/K (39)m = (37) + (38)m
(39)m= 88.42 87.22 87.22 84.82 83.22 82.42 81.62 81.62 83.62 84.82 86.02 87.22
Stroma FSAP 2009 Version: 1.5.0.73 (SAP 9.90) - http://www.stroma.com Average = Sum(39),_12 /12= 84.88 age 2 (19)

SAP WorkSheet: New dwelling design stage

Heat lo	oss para	meter (H	ILP), W	/m²K					(40)m	= (39)m +	(4)			
(40)m=	1.08	1.07	1.07	1.04	1.02	1.01	1	1	1.03	1.04	1.06	1.07		
Numbe	er of day	s in mor	nth (Tab	le 1a)					,	Average =	Sum(40).	/12=	1.04	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Water heating energy requirement: kWh/year:														
	ed occu A > 13 9			[1 - exp	(-0 0003	49 x (TF	A -13 9)2)] + 0.0	0013 x (1	TFA -13		49		(42)
	A£ 13.9				(0.0000			/_/] • •			,			
								(25 x N)				.35		(43)
		-		usage by : r day (all w		-	-	to achieve	a water us	e target o	ŕ			
not more	- mat 125	ares per p	erson per	oay (an w	aler use, r	ior and co							1	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage in	1 litres per	day for ea	sch month	Vd,m = ta	clor from 1	able 1c x	(43)						
(44)m=	102.69	98.96	95.22	91.49	87.75	84.02	84.02	87.75	91.49	95.22	98.96	102.69		_
Energy o	content of	hot water	used - cal	culated mo	anthly = 4.	190 x Vd,r	n x nm x D	Tm / 3600			m(44)= ibles 1b, 1		1120.25	(44)
(45)m=	152.65	133.51	137.77	120.11	115.25	99.45	92.16	105.75	107.01	124.71	136.13	147.83		
										Total = Su	m(45)		1472.34	(45)
lf instant	taneous w	ater heatir	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46,				· · ·		
(46)m=	22.9	20.03	20.67	18.02	17.29	14.92	13.82	15.86	16.05	18.71	20.42	22.18		(46)
	storage		alarad k	an facto	r in kenne		lamer.				<u> </u>		1	
				oss facto	r is know	wn (Kwn	ruay):					0		(47)
			m Table									0		(48)
			-	, kWh/ye		a not kno		(47) x (48)) =			D		(49)
				nder loss ng any s								10		(50)
-			-	dwelling,		-								(30)
	-	-		-				enter '0' in	bax (50)					
Hot wa	ater stora	age loss	factor fr	om Tabl	e 2 (kW	h/litre/da	iy)				0.	02		(51)
Volume	e factor	from Tal	ble 2a								1	03		(52)
Tempe	arature fa	actor fro	m Table	2b							—	.6		(53)
Energy	/ lost fro	m water	storage	, kWh/ye	ar			((50) x (51) x (52) x ((53) =		03		(54)
	49) or (5			,,				(() (,-,-,-	,	<u> </u>	03		(55)
Water	storage	loss cal	culated f	for each	month			((56)m = (55) × (41)r	m			ļ	
(56)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(56)
			d solar sto			x [(50) - (H11)] + (5	0), else (5		m where (ix H	
(57)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(57)
Primar	v circuit	loss (an	nual) fre	m Table	3						30	30		(58)
	-					59)m = (58) + 36	65 × (41)	m					
	-							ng and a		r thermo	stat)			
(59)m=	30.58	27.62	30.58	29.59	30.58	29.59	30.58	30.58	29.59	30.58	29.59	30.58		(59)
Combi	loss cal	culated	for each	month (61)m =	(60) + 36	65 × (41)m						
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Stroma F	FSAP 200	9 Version:	1.5.0.73 ((SAP 9.90)	- http://ww	ww.stroma	.com						Page	3 of 9

SAP WorkSheet: New dwelling design stage

Total heat	required for	water h	eating ca	alculated	i fo	r each month	(62)	m = 0.85 ×	(45)m	+ (46)m +	(57)m +	(59)m + (61)m	
(62)m= 215	.24 190.04	200.36	180.68	177.84	16	60.02 154.75	168	.34 167.58	187.	3 196.71	210.42]	(62)
Solar DHW in	put calculated	using App	endix G o	Appendix	H (negative quantity	/) (ent	er '0' if no sola	ar contri	bution to wate	er heating))	
(add additid	onal lines if	FGHRS	and/or \	WWHRS	ар	plies, see Ap	pend	fix G)				_	
(63)m= 0	0	0	0	0		0 0	0	0	0	0	0]	(63)
Output from	n water hea	iter										-	
(64)m= 215	.24 190.04	200.36	180.68	177.84	16	80.02 154.75	168	.34 167.58	187.	3 196.71	210.42]	
								Output from w	ater he	ater (annual)	_12	2209.28	(64)
Heat gains	from water	heating	, kWh/m	onth 0.2	5 x	[0.85 × (45)m	1 + ((61)m] + 0.8	x [(46)m + (57)m	ı + (59)n	n]	_
(65)m= 100	.83 89.62	95.88	88.39	88.39	8	1.52 80.71	85.	23 84.04	91.5	4 93.72	99.23]	(65)
include (57)m in cal	culation	of (65)m	only if c	ylir	der is in the d	llewt	ing or hot w	vater is	from com	munity I	heating	
include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a):													
Metabolic o	- · ·												
Ja		Mar	Apr	May		Jun Jul	A	ug Sep	00	t Nov	Dec	1	
(66)m= 149	_	149.44	149.44	149.44	-	49.44 149.44	149		149.4	_	149.44	1	(66)
Lighting ga	ins (calcula	ted in A	opendix	equat	ion	L9 or L9a), a	lso s	ee Table 5	-			1	
(67)m= 49	<u> </u>	35.83	27.12	20.28	<u> </u>	7.12 18.5	24.		40.9	7 47.82	50.98	1	(67)
					-	on L13 or L1			-			,	
(68)m= 332		326.92	308.43	285.09	-	3.15 248.49	245	_	272.3	2 295.57	317.5	1	(68)
	_				-					2 255.57	317.5	1	(00)
	<u> </u>	_	52.43		<u> </u>	L15 or L15a)		_	_	50.40	50.40	1	(80)
(69)m= 52.		52.43		52.43	0	2.43 52.43	52.	43 52.43	52.4	3 52.43	52.43	1	(69)
Pumps and	-	P			_		_					1	(70)
(70)m= 0		0	0	0		0 0	0	0	0	0	0		(70)
Losses e.g	· ·	<u>, , , , , , , , , , , , , , , , , , , </u>		<i>,</i> ,	-	,						1	
(71)m= -99.	63 -99.63	-99.63	-99.63	-99.63	-4	99.63 -99.63	-99	.63 -99.63	-99.6	3 -99.63	-99.63]	(71)
Water heat	<u> </u>	Table 5)			_							-	
(72)m= 135	.52 133.36	128.87	122.77	118.81	11	13.23 108.49	114	.56 116.72	123.0	4 130.17	133.37	J	(72)
Total inter	nal gains =	:			_	(66)m + (67)m	1 + (68	3)m + (69)m +	(70)m 4	(71)m + (72))m	_	
(73)m= 619	.53 615.27	593.87	560.57	526.42	49	95.74 477.73	485	5.9 504.97	538.4	8 575.8	604.1		(73)
6. Solar g													
-		-		Table 6a	and	associated equa	tions	to convert to the	he appli		ion.		
Orientation	: Access F Table 6d		Area m ²			Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
		<u> </u>							_		_		_
Southeast 0.		×	11.	66	x	37.39	×	0.72	_ ×	0.8	_ •	174.01	(77)
Southeast 0.	9x 0.77	×	11.	66	x	63.74	x	0.72	×	0.8	-	296.64	(77)
Southeast 0.		x	11.	66	x	84.22	×	0.72	×	0.8	-	391.97	(77)
Southeast 0.		×	11.	66	x	103.49	×	0.72	×	0.8	-	481.67	(77)
Southeast 0.	9x 0.77	x	11.	66	x	113.34	×	0.72	×	0.8	-	527.5	(77)
Southeast 0.	9x 0.77	x	11.	66	x	115.04	×	0.72	×	0.8	-	535.45	(77)
Southeast 0.	9x 0.77	×	11.	66	x	112.79	×	0.72	×	0.8		524.96	(77)
Southeast 0.	9x 0.77	×	11.	66	×	105.34	×	0.72	×	0.8		490.29	(77)

Stroma FSAP 2009 Version: 1.5.0.73 (SAP 9.90) - http://www.stroma.com

Page 4 of 9

101 Camley Street, London

		_				_		_				_
Southeast 0.9x	0.77] x	11.66	x	92.9	×	0.72	×	0.8	-	432.37	(77)
Southeast 0.9x	0.77] x	11.66) x	72.36	×	0.72	×	0.8	_ •	336.8	(77)
Southeast 0.9x	0.77] x	11.66) x	44.83	×	0.72	×	0.8		208.63	(77)
Southeast 0.9x	0.77] x	11.66) x	31.95	×	0.72	×	0.8		148.7	(77)
Southwesto.9x	0.77) ×	21.12	x	37.39]	0.72	×	0.8		315.19	(79)
Southwesto.9x	0.77) x	21.12	x	63.74]	0.72	x	0.8		537.32	(79)
Southwesto.9x	0.77) x	21.12	x	84.22]	0.72	x	0.8		709.98	(79)
Southwesto.9x	0.77	x	21.12	x	103.49]	0.72	×	0.8		872.46	(79)
Southwesto.9x	0.77	x	21.12	x	113.34]	0.72	x	0.8	-	955.48	(79)
Southwest0.9x	0.77	x	21.12	x	115.04]	0.72	×	0.8	-	969.87	(79)
Southwest0.9x	0.77	x	21.12	x	112.79]	0.72	×	0.8	-	950.88	(79)
Southwest0.9x	0.77	x	21.12	x	105.34]	0.72	×	0.8	-	888.07	(79)
Southwesto.9x	0.77) x	21.12	x	92.9]	0.72	x	0.8	-	783.16	(79)
Southwest0.9x	0.77) ×	21.12	x	72.36]	0.72	×	0.8	-	610.05	(79)
Southwesto.9x	0.77) ×	21.12	x	44.83]	0.72	×	0.8		377.9	(79)
Southwest0.9x	0.77	x	21.12	x	31.95]	0.72	×	0.8	-	269.35	(79)
Solar gains in	watts, calcul	ated	for each mon	th		(83)m	= Sum(74)m	.(82)m			_	
(83)m= 489.21	833.96 110	1.94	1354.12 1482.9	8 15	05.32 1475.84	1378	.36 1215.54	946.8	5 586.53	418.05		(83)
Total gains – i	nternal and s	solar	(84)m = (73)n	n + (i	83)m , watts							
(84)m= 1108.74	1449.23 169	5.81	1914.7 2009.	4 20	01.06 1953.56	1864	26 1720.51	1485.3	3 1162.33	1022.15		(84)
								_				
7. Mean inter	mal temperat	ure (heating seaso	(nd								
					area from Tal	ble 9.	Th1 (°C)				21	(85)
Temperature	during heati	ng pe	eriods in the li	ving	area from Tal ee Table 9a)	ble 9,	Th1 (°C)				21	(85)
Temperature	during heati tor for gains	ng pe	eriods in the li ving area, h1,	ving m (s				Oct	Nov	Dec	21	(85)
Temperature Utilisation fac	during heati tor for gains	ng pe for li 1ar	eriods in the li ving area, h1,	ving m (s y	ee Table 9a)	ble 9, A	ug Sep	Oct 0.57	Nov 0.86	Dec 0.94	21	(85)
Temperature Utilisation fac (86)m= 0.93	during heating tor for gains Feb M 0.83 0.1	ng pe for li 1ar 89	ariods in the li ving area, h1, Apr Ma 0.54 0.38	ving m (s	ee Table 9a) Jun Jul 0.26 0.17	A/ 0.1	ug Sep 8 0.33				21	
Temperature Utilisation fac (86)m= 0.93 Mean interna	during heati tor for gains Feb M 0.83 0.0	ng pe for li 1ar 89 e in li	ariods in the li ving area, h1, Apr Ma 0.54 0.38 ving area T1	ving m (s	ee Table 9a) Jun Jul 0.26 0.17 w steps 3 to 7	A/ 0.1	ug Sep 8 0.33 able 9c)	0.57	0.86	0.94	21	(86)
Temperature Utilisation fac (86)m= 0.93 Mean interna (87)m= 20.5	during heating tor for gains Feb M 0.83 0.0 I temperature 20.77 20	ng pe for li far 89 e in li 92	Apr Ma 0.54 0.38 0.98 21 0.98 21	ving m (s y (follo	ee Table 9a) Jun Jul 0.26 0.17 w steps 3 to 21 21	A/ 0.1 7 in T 2	ug Sep 8 0.33 able 9c) 21		0.86		21	
Temperature Utilisation fac (86)m= 0.93 Mean interna (87)m= 20.5 Temperature	during heati tor for gains Feb N 0.83 0.0 I temperature 20.77 20 during heati	ng pe for li far 89 e in li 92 ng pe	Apr Mar 0.54 0.38 0.98 21 0.98 21 0.98 1	ving m (s y (follo	ee Table 9a) Jun Jul 0.26 0.17 w steps 3 to 7 21 21 relling from Ta	A 0.1 7 in T 2 able 9	ug Sep 8 0.33 able 9c) 21 0, Th2 (°C)	0.57	0.86 20.76	0.94	21	(86) (87)
Temperature Utilisation fac (86)m= Jan 0.93 Mean interna (87)m= 20.5 Temperature (88)m= 20.02	during heati tor for gains Feb N 0.83 0.1 I temperature 20.77 20 during heati 20.03 20	ng pe for li far 89 e in li 92 ng pe 03	Apr Mar 0.54 0.38 ving area T1 20.98 21 ariods in rest of 20.05 20.07	ving m (s y (follo of dw	Table 9a) Jun Jul 0.26 0.17 w steps 3 to 7 21 21 velling from Ta 0.08 20.08	A 0.1 7 in T 2 able 9 20,	ug Sep 8 0.33 able 9c) 21 0, Th2 (°C)	0.57	0.86 20.76	0.94	21	(86)
Temperature Utilisation fac (86)m= Jan 0.93 Mean interna (87)m= 20.5 Temperature (88)m= 20.02 Utilisation fac	during heating tor for gains Feb N 0.83 0.1 I temperature 20.77 20 during heating 20.03 20 ctor for gains	ng pe for li far e in li 92 ng pe 03 for re	Apr Ma 0.54 0.38 ving area T1 20.98 21 21 ariods in rest of 20.05 20.07 est of dwelling 20.07	ving m (s y (follo of dw y 2 g, h2	Table 9a) Jun Jul 0.26 0.17 w steps 3 to 7 21 21 velling from Ta 0.08 20.08 .m (see Table	A/ 0.1 7 in T 2 able 9 20/ 9a)	ug Sep 8 0.33 able 9c) 21 0, Th2 (°C) 08 20.06	0.57 20.98 20.05	0.86 20.76 20.04	0.94 20.48 20.03	21]]	(86) (87) (88)
Temperature Utilisation fac (86)m= Jan 0.93 Mean interna (87)m= 20.5 Temperature (88)m= 20.02	during heatin tor for gains Feb N 0.83 0.0 I temperature 20.77 20 during heatin 20.03 20 ctor for gains	ng pe for li far 89 e in li 92 ng pe 03	Apr Mar 0.54 0.38 ving area T1 20.98 21 ariods in rest of 20.05 20.07	ving m (s y (follo of dw y 2 g, h2	Table 9a) Jun Jul 0.26 0.17 w steps 3 to 7 21 21 velling from Ta 0.08 20.08	A 0.1 7 in T 2 able 9 20,	ug Sep 8 0.33 able 9c) 21 0, Th2 (°C) 08 20.06	0.57	0.86 20.76	0.94	21]]	(86) (87)
Temperature Utilisation fac (86)m= 0.93 Mean interna (87)m= 20.5 Temperature (88)m= 20.02 Utilisation fac (89)m= 0.92	during heating tor for gains Feb N 0.83 0.1 Itemperature 20.77 20.77 20. during heating 20.03 ctor for gains 0.4 0.8 0.4	ng pe for li far 89 e in li 92 ng pe 03 for re 85	Apr Ma 0.54 0.38 ving area T1 20.98 21 ariods in rest of 20.05 20.07 ast of dwelling 0.5 0.35	y (follo	Table 9a) Jun Jul 0.26 0.17 w steps 3 to 7 21 21 velling from Ta 0.08 20.08 .m (see Table	A 0.1 7 in T 2 able § 20, 9a) 0.1	ug Sep 8 0.33 able 9c) 21 0, Th2 (°C) 18 20.06 4 0.28	0.57 20.98 20.05	0.86 20.76 20.04	0.94 20.48 20.03	21]]	(86) (87) (88)
Temperature Utilisation fac (86)m= 0.93 Mean interna (87)m= 20.5 Temperature (88)m= 20.02 Utilisation fac (89)m= 0.92	during heating tor for gains Feb N 0.83 0.1 Itemperature 20.77 20 during heating 20.03 20 ctor for gains 0.8 0.1 itemperature 0.03 20 ctor for gains 0.8 0.1 itemperature 0.8 0.1	ng pe for li far 89 e in li 92 ng pe 03 for re 85	Apr Ma 0.54 0.38 ving area T1 20.98 21 ariods in rest of 20.05 20.07 ast of dwelling 0.5 0.35	ving m (s y (follo) (follo) (follo) (follo) (follo) (follo) (follo)) (follo)) (follo)) (follo))) (follo))))) (follo)))))))) (follo))))))))))))))))))	ee Table 9a) Jun Jul 0.26 0.17 w steps 3 to 7 21 21 velling from Ta vo.08 20.08 rm (see Table 0.23 0.13	A 0.1 7 in T 2 able § 20, 9a) 0.1	ug Sep 8 0.33 able 9c) 21 0, Th2 (°C) 18 20.06 4 0.28 to 7 in Table	0.57 20.98 20.05	0.86 20.76 20.04 0.83	0.94 20.48 20.03	21]]]	(86) (87) (88)
Temperature Utilisation fac (86)m= 0.93 Mean interna (87)m= 20.5 Temperature (88)m= 20.02 Utilisation fac (89)m= 0.92 Mean interna	during heating tor for gains Feb N 0.83 0.1 Itemperature 20.77 20 during heating 20.03 20 ctor for gains 0.8 0.1 itemperature 0.03 20 ctor for gains 0.8 0.1 itemperature 0.8 0.1	ng pe for li lar 89 e in li 92 03 for re 85 e in t	Apr Ma 0.54 0.38 ving area T1 20.98 21 ariods in rest of 20.05 20.07 est of dwelling 0.35 0.5 0.35	ving m (s y (follo) (follo) (follo) (follo) (follo) (follo) (follo)) (follo)) (follo)) (follo))) (follo))))) (follo)))))))) (follo))))))))))))))))))	ee Table 9a) Jun Jul 0.26 0.17 w steps 3 to 7 21 21 relling from Ta 20.08 m (see Table 0.23 0.13 T2 (follow ste	A 0.1 7 in T 2 20 9a) 0.1 20,2 20,2 20,2 20,2 20,2 20,2 20,2 20,2 20,2 20,	ug Sep 8 0.33 able 9c) 21 0, Th2 (°C) 18 20.06 4 0.28 to 7 in Table 18 20.06	0.57 20.98 20.05 0.52 9 9c) 20.03	0.86 20.76 20.04 0.83	0.94 20.48 20.03 0.93 19.39		(86) (87) (88) (89)
Temperature Utilisation fac (86)m= 0.93 Mean interna (87)m= 20.5 Temperature (88)m= 20.02 Utilisation fac (89)m= 0.92 Mean interna (90)m= 19.4	during heating tor for gains Feb N 0.83 0.4 1 temperature 20.77 20 during heating 20.03 20.03 20 tor for gains 0.8 0.8 0.1 I temperature 19.76	ng pe for li far 69 92 ng pe 03 for re 85 e in ti 94	Apr Ma 0.54 0.38 ving area T1 20.98 20.98 21 ariods in rest of 20.05 20.07 est of dwelling 0.5 0.5 0.35 he rest of dwelling 20.03 20.07	(follc (follc)	Table 9a) Jun Jul 0.26 0.17 w steps 3 to 21 21 21 21 welling from Ta 20.08 m (see Table 0.23 0.23 0.13 T2 (follow stee 20.08 20.08	A 0.1 7 in T 20 9a) 0.1 eps 3 20.	ug Sep 8 0.33 able 9c) 21 0, Th2 (°C) 18 20.06 4 0.28 to 7 in Table 18 20.06 10 10 10 10 10 10 10 10 10 10	0.57 20.98 20.05 0.52 9 9c) 20.03	0.86 20.76 20.04 0.83 19.77	0.94 20.48 20.03 0.93 19.39]]]]	(86) (87) (88) (89)
Temperature Utilisation fac (86)m= 0.93 Mean interna (87)m= 20.5 Temperature (88)m= 20.02 Utilisation fac (89)m= 0.92 Mean interna (90)m= 19.4	during heating tor for gains Feb N 0.83 0.4 1 temperature 20.77 20 during heating 20.03 20.03 20 tor for gains 0.8 0.8 0.1 I temperature 19.76	ng pe for li far 69 e in li 92 ng pe 03 for n 65 e in t 94 e (for	Apr Ma 0.54 0.38 ving area T1 20.98 20.98 21 ariods in rest of 20.05 20.07 est of dwelling 0.5 0.5 0.35 he rest of dwelling 20.03 20.07	ving m (s y (follo (follo) y , h2) y, h2) y , h2) (follo)) (follo)) (fo	ee Table 9a) Jun Jul 0.26 0.17 w steps 3 to 7 21 21 relling from Ta 20.08 m (see Table 0.23 0.13 T2 (follow ste	A 0.1 7 in T 20 9a) 0.1 eps 3 20.	ug Sep B 0.33 able 9c) 21 21 0, Th2 (°C) 18 20.06 4 0.28 to 7 in Table 18 20.06 10 10 10 10 10 10 10 10 10 10	0.57 20.98 20.05 0.52 9 9c) 20.03	0.86 20.76 20.04 0.83 19.77 ing area + (4	0.94 20.48 20.03 0.93 19.39]]]]	(86) (87) (88) (89)
Temperature Utilisation fac (86)m= Utilisation fac (86)m= 0.93 Mean interna (87)m= 20.5 Temperature (88)m= 20.02 Utilisation fac (89)m= 0.92 Mean interna (90)m= 19.4 Mean interna (92)m= 19.81	during heating tor for gains Feb N 0.83 0.1 Itemperature 20.77 20 during heating 20.03 20 ctor for gains 0.8 0.1 itemperature 20.03 20 ctor for gains 0.8 0.1 itemperature 19.76 19 itemperature 20.13 20	ng pe for li far 69 e in li 92 for n 85 e in ti 94 .3	ariods in the living area, h1, Apr Mar 0.54 0.38 ving area T1 20.98 21 ariods in rest of 20.05 20.07 est of dwelling 0.5 0.35 he rest of dwelling 20.03 20.07 the whole dwelling 20.03 20.07	ving m (s y (follo of dw g, h2 y elling vellin	ee Table 9a) Jun Jul 0.26 0.17 w steps 3 to 7 21 21 21 velling from Ta 20.08 m (see Table 0.23 0.13 T2 (follow state vo.08 20.08 g) = fLA × T1	A 0.1 7 in T 2 20, 9a) 0.1 20, + (1 20,	ug Sep 8 0.33 able 9c) 21 21 0, Th2 (°C) 08 20.06 4 0.28 to 7 in Table 08 20.06 ft - fLA) × T2 12 20.41	0.57 20.98 20.05 0.52 9 9c) 20.03 A = Lix	0.86 20.76 20.04 0.83 19.77 ing area + (4 20.13	0.94 20.48 20.03 0.93 19.39]]]]	(86) (87) (88) (89) (90) (91)
Temperature Utilisation fac (86)m= Utilisation fac (86)m= 0.93 Mean interna (87)m= 20.5 Temperature (88)m= 20.02 Utilisation fac (89)m= 0.92 Mean interna (90)m= 19.4 Mean interna (92)m= 19.81	during heating tor for gains Feb N 0.83 0.1 Itemperature 20.77 20 during heating 20.03 20 ctor for gains 0.8 0.1 itemperature 19.76 19 itemperature 20.13 20 ctor for gains 0.8 0.1 itemperature 19.76 19 itemperature 20.13 20	ng pe for li far 69 e in li 92 for n 85 e in ti 94 .3	ariods in the living area, h1, Apr Mar 0.54 0.38 ving area T1 20.98 21 ariods in rest of 20.05 20.07 est of dwelling 0.5 0.35 he rest of dwelling 20.03 20.07 the whole dwelling 20.03 20.07	ving m (s y (follo of dw y 2 y h2 y h2 y h2 y h2 velling velling	ee Table 9a) Jun Jul 0.26 0.17 w steps 3 to 7 21 21 21 21 welling from Ta 0.08 20.08 m (see Table 0.23 0.13 T2 (follow ster 0.08 20.08 g) = fLA × T1 0.42 20.42	A 0.1 7 in T 2 20, 9a) 0.1 20, + (1 20,	ug Sep 8 0.33 able 9c) 21 21 0, Th2 (°C) 08 20.06 4 0.28 to 7 in Table 08 20.06 ft - fLA) × T2 12 20.41 where appro	0.57 20.98 20.05 0.52 9 9c) 20.03 A = Lix	0.86 20.76 20.04 0.83 19.77 ing area + (4 20.13	0.94 20.48 20.03 0.93 19.39]]]]	(86) (87) (88) (89) (90) (91)
Temperature Utilisation fac (86)m= 0.93 Mean interna (87)m= 20.5 Temperature (88)m= 20.02 Utilisation fac (89)m= 0.92 Mean interna (90)m= 19.4 Mean interna (92)m= 19.4	during heating tor for gains Feb N 0.83 0.1 1 temperature 20.77 20 during heating 20.77 20.03 20 ctor for gains 0.8 0.8 0.1 1 temperature 19.76 19. 1 temperature 20.13 20 20.13 20	ng pe for li tar 59 e in li 92 ng pe 03 for n 85 e in ti 94 e (for 1.3 nean 1.3	ariods in the living area, h1, Apr Mar 0.54 0.38 ving area T1 20.98 21 ariods in rest of 20.05 20.07 est of dwelling 0.5 0.35 he rest of dwelling 20.03 20.07 the whole dw 20.03 20.07 the under the store of dwelling 0.5 0.35 he rest of dwelling 20.03 20.07 the under the store of dwelling 20.03 20.07	ving m (s y (follo of dw y 2 y h2 y h2 y h2 y h2 velling velling	ee Table 9a) Jun Jul Jun Jul 0.26 0.17 w steps 3 to 7 21 21 velling from Ta 0.08 20.08 m (see Table 0.23 0.13 T2 (follow state 0.08 20.08 g) = fLA × T1 0.42 20.42 re from Table	A 0.1 7 in T 2 20. 9a) 0.1 20. 9a) (.1 20. 4 20. 4 20. 20. 4 20. 20. 20. 20. 20. 20. 20. 20.	ug Sep 8 0.33 able 9c) 21 21 0, Th2 (°C) 08 20.06 4 0.28 to 7 in Table 08 20.06 ft - fLA) × T2 12 20.41 where appro	0.57 20.98 20.05 0.52 9 9c) 20.03 A = Lix 20.38 priate	0.86 20.76 20.04 0.83 19.77 ing area + (4 20.13	0.94 20.48 20.03 0.93 19.39) =]]]]	(86) (87) (88) (89) (90)](91) (92)
Temperature Utilisation fac (86)m= 0.93 Mean interna (87)m= 20.5 Temperature (88)m= 20.02 Utilisation fac (89)m= 0.92 Mean interna (90)m= 19.4 Mean interna (92)m= 19.4 Mean interna (92)m= 19.81 Apply adjustr (93)m= 19.81	during heating tor for gains Feb N 0.83 0.1 1 temperature 20.77 20 during heating 20.03 20 ctor for gains 0.8 0.1 1 temperature 20.03 20 ctor for gains 0.8 0.1 1 temperature 19.76 19 al temperature 20.13 20 nent to the m 20.13 20 ting requirement 20.13 20	ng pe for li lar 69 e in li 92 for m 85 for m 85 e in ti 94 .3 nean 1.3 nent	Apr Ma 0.54 0.38 ving area T1 20.98 21 ariods in rest of 20.07 ariods in rest of 20.07 ast of dwelling 0.5 0.5 0.35 he rest of dwelling 20.03 20.07 ariods in rest of dwelling 0.5 0.35 he rest of dwelling 20.03 20.07 ariods in rest of dwelling 20.38 20.41 ariots in rest of dwelling 20.38 20.41	ving m (s y (follo of dw 7 2 9 9 9 9 9 9 9 1 9 9 1 9 9 9 9 9 9 9 9	ee Table 9a) Jun Jul Jun Jul 0.26 0.17 w steps 3 to 7 21 21 velling from Ta 0.08 20.08 m (see Table 0.23 0.13 T2 (follow state 0.08 20.08 g) = fLA × T1 0.42 20.42 re from Table	A 0.1 7 in T 2 20. 9a) 0.1 eps 3 20. + (1 20. 4e, 20. 20. 20. 20. 20. 20. 20. 20.	ug Sep 8 0.33 able 9c) 21 0, Th2 (°C) 18 20.06 4 0.28 4 0.28 4 0.28 to 7 in Table 18 20.06 10 11 Table 18 20.06 10 11 Table 12 20.41 12 20.41	0.57 20.96 20.05 9 9c) 20.03 A = Lik 20.38 priate 20.38	0.86 20.76 20.04 0.83 19.77 ing area + (4 20.13	0.94 20.48 20.03 0.93 19.39)= 19.79		(86) (87) (88) (89) (90)](91) (92)
Temperature Utilisation fac (86)m= 0.93 Mean interna (87)m= 20.5 Temperature (88)m= 20.02 Utilisation fac (89)m= 0.92 Mean interna (90)m= 19.4 Mean interna (90)m= 19.4 Mean interna (92)m= 19.81 Apply adjustr (93)m= 19.81 8. Space hea Set Ti to the	during heating tor for gains Feb N 0.83 0.1 Itemperature 20.77 20 during heating 20.03 20 during heating 20.03 20 ctor for gains 0.8 0.1 11 19.76 19 12 19.76 19 14 temperature 20.13 20 15 temperature 20.13 20 16 temperature 20.13 20 17 20.13 20 20 16 temperature 20.13 20	ng pe for li lar 69 e in li 92 for m 85 for m 85 e in t 94 .3 nean 1.3 nean 1.3	Apr Ma 0.54 0.38 ving area T1 20.98 21 ariods in rest of 20.07 ariods in rest of 20.07 ast of dwelling 0.5 0.5 0.35 he rest of dwelling 20.03 20.07 ariods in rest of dwelling 0.5 0.35 he rest of dwelling 20.03 20.07 ariods in rest of dwelling 20.38 20.41 ariots in rest of dwelling 20.38 20.41	ving m (s y (follo of dw 7 2 a), h2 2 a), h2 2 a), h2 2 a), h2 2 a), h2 a) (follo (follo a) (follo (folo (follo (follo (follo) (ee Table 9a) Jun Jul Jun Jul 0.26 0.17 w steps 3 to 7 21 21 velling from Ta vo.08 20.08 m (see Table 0.23 0.13 T2 (follow ste 0.08 20.08 g) = fLA × T1 vo.42 20.42	A 0.1 7 in T 2 20. 9a) 0.1 eps 3 20. + (1 20. 4e, 20. 20. 20. 20. 20. 20. 20. 20.	ug Sep 8 0.33 able 9c) 21 0, Th2 (°C) 18 20.06 4 0.28 4 0.28 4 0.28 to 7 in Table 18 20.06 10 11 Table 18 20.06 10 11 Table 12 20.41 12 20.41	0.57 20.96 20.05 9 9c) 20.03 A = Lik 20.38 priate 20.38	0.86 20.76 20.04 0.83 19.77 ing area + (4 20.13	0.94 20.48 20.03 0.93 19.39)= 19.79		(86) (87) (88) (89) (90)](91) (92)
Temperature Utilisation fac (86)m= 0.93 Mean interna (87)m= 20.5 Temperature (88)m= 20.02 Utilisation fac (89)m= 0.92 Mean interna (90)m= 19.4 Mean interna (90)m= 19.4 Mean interna (92)m= 19.81 Apply adjustr (93)m= 19.81 8. Space hea Set Ti to the	during heating tor for gains Feb N 0.83 0.1 1 temperature 20.77 20.07 20 during heating 20.03 20.03 20 ctor for gains 0.8 0.8 0.4 1 temperature 19.76 19.76 19 I temperature 20.13 20.13 20 nent to the m 20.13 10 requirem mean internal factor for ga factor for ga	ng pe for li lar 69 e in li 92 for m 85 for m 85 e in t 94 .3 nean 1.3 nean 1.3	Apr Mar 0.54 0.38 ving area T1 20.98 21 ariods in rest of 20.05 20.05 20.07 est of dwelling 0.5 0.5 0.35 he rest of dwelling 20.03 20.07 ethe whole dwelling 20.03 20.07 ethe whole dwelling 20.03 20.07 ethe whole dwelling 20.38 20.41 internal temp 20.38 20.41	ving m (s y (follo of dw 7 2 3, h2 3 1 9 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 2 2 1 2	ee Table 9a) Jun Jul Jun Jul 0.26 0.17 w steps 3 to 7 21 21 valing from Ta vo.08 20.08 m (see Table 0.23 0.13 T2 (follow ste 0.08 20.08 g) = fLA × T1 vo.42 20.42	A 0.1 7 in T 2 20. 9a) 0.1 20. 9a) 0.1 20. 4e, 20. 4e, 20. Tabl	ug Sep 8 0.33 able 9c) 21 0, Th2 (°C) 18 20.06 4 0.28 4 0.28 4 0.28 to 7 in Table 18 20.06 10 11 Table 18 20.06 10 11 Table 12 20.41 12 20.41	0.57 20.96 20.05 9 9c) 20.03 A = Lik 20.38 priate 20.38	0.86 20.76 20.04 0.83 19.77 ing area + (4 20.13 20.13	0.94 20.48 20.03 0.93 19.39)= 19.79		(86) (87) (88) (89) (90)](91) (92)

SAP WorkSheet: New dwelling design stage

Stroma FSAP 2009 Version: 1.5.0.73 (SAP 9.90) - http://www.stroma.com

Page 5 of 9

SAP WorkSheet: New dwelling design stage

Utilisation factor for gains, hm:													
(94)m= 0.91 0.8 0.66 0.51 0.36 0.24 0.15 0.15	i 0.3 0.5	54 0.83	0.92		(94)								
Useful gains, hmGm , W = (94)m x (84)m													
(95)m= 1010.51 1159.44 1120.09 977.38 723.09 479.22 287.39 287.3	39 510.29 798	8.51 966.01	944.29		(95)								
Monthly average external temperature from Table 8													
(96)m= 4.5 5 6.8 8.7 11.7 14.6 16.9 16.9		0.8 7	4.9		(96)								
Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93	Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m- (96)m] (97)m= 1353.69 1319.76 1177.33 990.77 724.73 479.35 287.4 287.4 510.73 812.56 1129.55 1299.08 (97)												
			1299.08		(97)								
Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m= 255.32 107.74 42.59 9.64 1.22 0 0 0 10.45 117.75 263.96													
	otal per year (kWh			808.67	(98)								
Space heating requirement in kWh/m²/year		,,		9.92](99)								
				3.52	_(,								
9b. Energy requirements – Community heating scheme	and deal has a sec												
This part is used for space heating, space cooling or water heating pr Fraction of space heat from secondary/supplementary heating (Table			neme.	0	(301)								
Fraction of space heat from community system 1 – (301) =	,			1	(302)								
The community scheme may obtain heat from several sources. The procedure allows	for CHD and up to i	four other heat	eources: 6										
includes boilers, heat pumps, geothermal and waste heat from power stations. See Ap		iour other near	sources, n	ic idaet									
Fraction of heat from Community CHP				0.25	(303a)								
Fraction of community heat from heat source 2				0.25	(303b)								
Fraction of community heat from heat source 3				0.5	(303c)								
Fraction of total space heat from Community CHP		(302) × (303	a) =	0.25	(304a)								
Fraction of total space heat from community heat source 2		(302) × (303	b) =	0.25	(304b)								
Fraction of total space heat from community heat source 3		(302) × (303	c) =	0.5	(304c)								
Factor for control and charging method (Table 4c(3)) for community h	eating system			1	(305)								
Distribution loss factor (Table 12c) for community heating system			i	1.05	(306)								
Space heating				kWh/year									
Annual space heating requirement				808.67	7								
Space heat from Community CHP	(98) x (304a) x	x (305) x (306) :	• i	212.28	(307a)								
Space heat from heat source 2	(98) x (304b) x	x (305) x (306) :	• 1	212.28	(307b)								
Space heat from heat source 3	(98)x (304c) x	(305) x (306) =	, j	424.55	(307c)								
Efficiency of secondary/supplementary heating system in % (from Ta	ble 4a or Apper	ndix E)	ĺ	0	(308								
Space heating requirement from secondary/supplementary system	(98) x (301) x	100 + (308) =	ĺ	0	(309)								
Water heating					_								
Annual water heating requirement				2209.28									
If DHW from community scheme: Water heat from Community CHP	(64) x (303a) x	x (305) x (306) :	. 1	579.94	(310a)								
Water heat from heat source 2	(64) x (303b) x	x (305) x (306) :	.	579.94	(310b)								
Water heat from heat source 3	(64) x (303c) x	x (305) x (306) :		1159.87	(310c)								

Stroma FSAP 2009 Version: 1.5.0.73 (SAP 9.90) - http://www.stroma.com

Page 6 of 9

SAP WorkSheet: New dwelling design stage

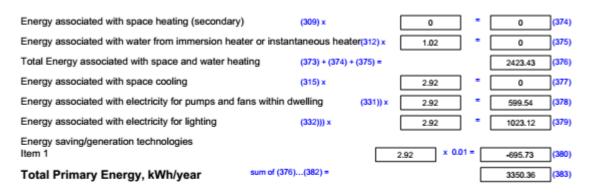
Electricity used for heat distribution	0.01 × [(307a)(307e) + (310a)(310e)] =	31.69	(313)
Cooling System Energy Efficiency Ratio		0	(314)
Space cooling (if there is a fixed cooling system, if not enter 0)	= (107) + (314) =	0	(315)
Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input from outs	side	205.32	(330a)
warm air heating system fans		0	(330b)
pump for solar water heating		0	(330g)
Total electricity for the above, kWh/year	=(330a) + (330b) + (330g) =	205.32	(331)
Energy for lighting (calculated in Appendix L)		350.38	(332)
Electricity generated by PVs (Appendix M) (negative quantity)		-238.26	(333)
Electricity generated by wind turbine (Appendix M) (negative quanti	ty)	0	(334)
10b. Fuel costs – Community heating scheme			

	Fuel kWh/year	Fuel Price (Table 12)	Fuel Cost £/year
Space heating from CHP	(307a) x	2.65 × 0.01	5.63 (340a)
Space heating from heat source 2	(307b) x	2.65 × 0.01	5.63 (340b)
Space heating from heat source 3	(307c) ×	3.78 × 0.01	16.05 (340c)
Water heating from CHP	(310a) x	2.65 × 0.01	15.37 (342a)
Water heating from heat source 2	(310b) ×	2.65 × 0.01	15.37 (342b)
Water heating from heat source 3	(310c) ×	3.78 × 0.01	43.84 (342c)
		Fuel Price	
Pumps and fans	(331)	11.46 × 0.01	23.33 (543)
Energy for lighting	(332)	11.46 × 0.01	40.15 (350)
Additional standing charges (Table	12)		106 (351)
Energy saving/generation technolo Item 1	gies	11.46 × 0.01	
	= (340a)(342e) + (345)(354) =	11.46 × 0.01	~27.51 (000)
Total energy cost			244.26 (355)
11b. SAP rating - Community hea	ung scheme		
Energy cost deflator (Table 12)			0.47 (356)
Energy cost factor (ECF)	[(355) × (356)] + [(4) + 45.0] =		0.91 (357)
SAP rating (section12)			87.34 (358)
12b. CO2 Emissions – Community	heating scheme		
Electrical efficiency of CHP unit			26.67 (361)
Heat efficiency of CHP unit			53.33 (362)
	Energy kWh/ye		r Emissions kg CO2/year
Space heating from CHP)	(307a) × 100 + (362) = 398.0	2 × 0.2	78.81 (363)

Stroma FSAP 2009 Version: 1.5.0.73 (SAP 9.90) - http://www.stroma.com

Page 7 of 9

SAP WorkSheet: New dwelling design stage


less credit emissions for electricity -(307a) × (361) + (362) =	106.14 ×	0.53	-56.15	(364)
Water heated by CHP (310a)	× 100 + (362) =	1087.38 ×	0.2	215.3	(365)
less credit emissions for electricity -(310a) × (361) + (362) =	289.97 ×	0.53	-153.39	(366)
Efficiency of heat source 2 (%)	If there is CHP using	two fuels repeat (363) to	(366) for the second	fuel 300	(367b)
Efficiency of heat source 3 (%)				97	(367c)
Efficiency of heat source 4 (%)				0	(367d)
Efficiency of heat source 5 (%)				0	(367e)
CO2 associated with heat source 2	[(307b)+((310b)] x 100 + (367b) x	0.04	9.51	(368)
CO2 associated with heat source 3	[(307c)+(310c)] x 100 + (367c) x	0.2	323.42	(369)
Electrical energy for heat distribution		((313) x	0.52	16.38	(372)
Total CO2 associated with community sys	tems	(363)(366) + (368)(37	2)	433.88	(373)
CO2 associated with space heating (seco	ndary)	(309) x	0	• 0	(374)
CO2 associated with water from immersio	n heater or instantane	ous heater (312) x	0.2	• 0	(375)
Total CO2 associated with space and wat	er heating	(373) + (374) + (375) =		433.88	(376)
CO2 associated with electricity for pumps	and fans within dwelling	ng (331)) x	0.52	106.15	(378)
CO2 associated with electricity for lighting		(332))) x	0.52	181.15	(379)
Energy saving/generation technologies (3 Item 1	33) to (334) as applica	ible	0.53 × 0.01	-126.04	(380)
Total CO2, kg/year	um of (376)(382) -			595.14	(383)
Dwelling CO2 Emission Rate	383) + (4) =			7.3	(384)
El rating (section 14)				93.7	(385)
13b. Primary Energy – Community heating	g scheme				_
Electrical efficiency of CHP unit				26.67	(361)
Heat efficiency of CHP unit				53.33	(362)
		Energy	Primary factor	P.Energy	
		kWh/year	Tactor	kWh/year	_
	× 100 + (362) =	398.02 ×	1.02	405.98	(363)
, , ,) × (361) + (362) =	106.14 ×	2.92	-309.92	(364)
	× 100 + (362) =	1087.38 ×	1.02	1109.13	(365)
less credit emissions for electricity -(310a		289.97 ×	2.92	-846.71	(366)
Efficiency of heat source 2 (%)	If there is CHP using) two fuels repeat (363) to	(366) for the second	fuel 300	(367b)
Efficiency of heat source 3 (%)				97	(367c)
Energy associated with heat source 2	[(307b)+((310b)] x 100 + (367b) x	1.16	306.32	(368)
Energy associated with heat source 3	[(307c)+((310c)] × 100 + (367c) ×	1.02	1666.1	(369)
Electrical energy for heat distribution	1	(313) x		92.53	(372)
Total Energy associated with community a	ystems	(363)(366) + (368)(37	2)	2423.43	(373)
if it is negative set (373) to zero (unless	specified otherwise, s	ee C7 in Appendix (C)	2423.43	(373)

Stroma FSAP 2009 Version: 1.5.0.73 (SAP 9.90) - http://www.stroma.com

Page 8 of 9

SAP WorkSheet: New dwelling design stage

DRAFT

Stroma FSAP 2009 Version: 1.5.0.73 (SAP 9.90) - http://www.stroma.com

Page 9 of 9

DER WorkSheet: New dwelling design stage

User Details:										
Assessor Name: Software Name:	Stroma FSAP	2000		Stroma Softwa	are Ver	sion:	40	Versio	n: 1.5.0.73	
Address		F	roperty /	Address:	UNITO	404_2B	412			
Address : 1. Overall dwelling dim	ancione:									
1. Overall dwelling dim	ensions.		Area	a(m²)			ight(m)		Volume(m ³)	
Ground floor					(1a) x		.8	(2a) =	228.2	(3a)
Total floor area TFA = (1	la)+(1b)+(1c)+(1d)	+(1e)+(1r	n) 8	31.5	(4)					
Dwelling volume					(3a)+(3b))+(3c)+(3d)+(3e)+	.(3n) =	228.2	(5)
2. Ventilation rate:										
	main heating	Seconda heating	ry	other		total			m ³ per hour	
Number of chimneys		0	•	0] • [0	×4	i0 =	0	(6a)
Number of open flues	0	0] • [0] • [0	×2	20 =	0	(6b)
Number of intermittent fa	ans					0	×1	10 =	0	(7a)
Number of passive vents	5				Ē	0	×1	10 =	0	(7ь)
Number of flueless gas	fires				Ē	0	×4	40 =	0	(7c)
Infiltration due to chimne	nue fluor and face	- (6a)+(6b)+C	()))(()))))))				_		anges per hou	
If a pressurisation test has					continue fre	0		+ (5) =	0	(8)
Number of storeys in t		and a process					,		0	(9)
Additional infiltration							[(9)-	-1]x0.1 =	0	(10)
Structural infiltration: 0	0.25 for steel or tim	ber frame or	0.35 for	masonr	y constr	uction		ĺ	0	(11)
if both types of wall are p deducting areas of open			the greate	er wall area	a (after					
If suspended wooden			.1 (seale	d), else	enter 0				0	(12)
If no draught lobby, er		,		,,					0	(13)
Percentage of window	s and doors draug	ht stripped							0	(14)
Window infiltration				0.25 • (0.2	x (14) + 1	00] =			0	(15)
Infiltration rate				(8) + (10) -	+ (11) + (1	2) + (13) +	+ (15) =	i	0	(16)
Air permeability value	, q50, expressed in	cubic metre	s per ho	ur per so	quare m	etre of e	nvelope	area	5	(17)
If based on air permeab									0.25	(18)
Air permeability value appli Number of sides on whit	-	t has been dor	ne or a deg	ree air per	meability i	is being us	sed			
Shelter factor	ch sheitered			(20) = 1 - [0.075 x (1	9)1 =			2	(19)
Infiltration rate incorpora	ting shelter factor			(21) = (18)		-14			0.85	(21)
Infiltration rate modified	-	hood							0.21	J(21)
Jan Feb		lay Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	
Monthly average wind s		7							I	
(22)m= 5.4 5.1	5.1 4.5 4	1 3.9	3.7	3.7	4.2	4.5	4.8	5.1	1	
Wind Factor (22a)m = (2									I	
(22a)m= 1.35 1.27		0.98	0.92	0.92	1.05	1.12	1.2	1.27	1	
									I	

Stroma FSAP 2009 Version: 1.5.0.73 (SAP 9.90) - http://www.stroma.com

Page 1 of 8

DER WorkSheet: New dwelling design stage

Adjusted infiltra	ition rate	(allowi	ng for sh	elter an	d wind s	peed) =	(21a) x	(22a)m					
0.29	0.27	0.27	0.24	0.22	0.21	0.2	0.2	0.22	0.24	0.26	0.27		
Calculate effect		-	ate for t	he appli	cable ca	se							
If mechanical			matica MI /2	261 - (220) v Emu (a	auction ()	UEV other	uine (22%)) = (22a)			0.5	(23a)
If exhaust air he								-) = (23a)			0.5	(23b)
If balanced with		-	-	-		-						76.5	(23c)
a) If balanced						<u> </u>			<u> </u>	, .	<u> </u>	+ 100]	
(24a)m= 0.4	0.39	0.39	0.36	0.34	0.32	0.31	0.31	0.34	0.36	0.37	0.39	l	(24a)
b) If balanced								<u> </u>	2b)m + (/	23b)		1	
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If whole ho													
if (22b)m			<u>,</u>	<u> </u>		<u>,</u>	<i>,</i> ,	,	<u>`</u>	ŕ		1	
(24c)m= 0	0	0	0	0	0	0	0	0	0	0	0	l	(24c)
d) If natural v if (22b)m									0.5]				
(24d)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24d)
Effective air o	change r	ate - en	ter (24a) or (24b) or (24	c) or (24	d) in box	(25)					
(25)m= 0.4	0.39	0.39	0.36	0.34	0.32	0.31	0.31	0.34	0.36	0.37	0.39		(25)
3. Heat losses													
ELEMENT	Gross area (Openin		Net An		U-valu W/m2		A X U (W/	()	k-value kJ/m ² -ł	-	AXk kJ/K
Windows Type		ľ			11.66	_	(1/(1.4)+	0.04] =	15.46				(27)
Windows Type	2				21.12	x1	/[1/(1.4)+	0.04] =	28	Ħ			(27)
Walls Type1	30.8	51	21.12		9.68	Ξ.	0.2	- T	1.94	Ħr			(29)
Walls Type2	25.2	= '	11.60	= `	13.54		0.2		2.71	片片		= =	(29)
Walls Type3		\dashv	-	4		<u>-</u>		=		╡╏		\dashv	=
Total area of el	4.2	2	0		4.2	╡^	0.2		0.84				(29)
Party wall	emento,				60.2 50.4	╡.	0	_	0				(31)
Party floor					81.5	\exists		(╡┝	(32a)
Party ceiling					81.5	=				ſ		╡┝	(32b)
* for windows and r	oof windo	ws, use e	ffective wi	ndow U-va		ated using	formula 1,	((1/U-valu	e)+0.04] a	L Is given in	paragraph	3.2	
** include the areas		-		s and part	itions								
Fabric heat loss			U)				(26)(30)	+ (32) =				48.94	(33)
Heat capacity C	Cm = S(A	Axk)						((28)	(30) + (32	2) + (32a).	(32e) =	7096.88	(34)
Thermal mass p	paramet	er (TMF	? = Cm +	• TFA) in	ı kJ/m²K			Indica	tive Value	: Medium		250	(35)
For design assess can be used instea				constructi	on are not	known pr	ecisely the	indicative	values of	TMP in Ta	able 1f		
Thermal bridge	s:S(L)	x Y) cal	culated u	using Ap	pendix ł	<						9.03	(36)
if details of thermal	bridging a	re not kn	own (36) =	0.15 x (3	ŋ								
Total fabric hea	at loss							(33) +	(36) =			57.97	(37)
Ventilation heat	t loss cal	lculated	monthly	/				(38)m	= 0.33 × (25)m x (5))		
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m= 30.45	29.25	29.25	26.85	25.25	24.45	23.65	23.65	25.65	26.85	28.05	29.25		(38)
Heat transfer co	oefficient	t, W/K						(39)m	= (37) + (3	38)m			
(39)m= 88.42	87.22	87.22	84.82	83.22	82.42	81.62	81.62	83.62	84.82	86.02	87.22		
Stroma FSAP 2009	Version:	1.5.0.73 (SAP 9.90)	- http://ww	ww.stroma	.com			Average =	Sum(39),	_u/12=	84.8pa	ge 2 g 🔁

DER WorkSheet: New dwelling design stage

Heat lo	oss para	meter (H	ILP), W/	/m²K					(40)m	= (39)m +	(4)			
(40)m=	1.08	1.07	1.07	1.04	1.02	1.01	1	1	1.03	1.04	1.06	1.07		
Numbe	er of dav	s in mor	nth (Tab	le 1a)					,	Average =	Sum(40).	/12=	1.04	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
(erijan-	3.	20	31		31	30	31	31	30	31	30	31		(,
4. Wa	iter heat	ing ener	gy requi	irement:								kWh/ye	ar:	
Accum	ed occu	nancy I	u.											(47)
				[1 - exp	(-0.0003	49 x (TF	A -13.9)2)] + 0.0	0013 x (1	TFA -13.		49		(42)
	A£ 13.9							, ,,			,			
								(25 x N)				.35		(43)
		-				-	-	to achieve	a water us	se target o	ŕ			
not more	mat 125	atres per p	erson per	oay (an w	ater use, h	tot and col								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage in	litres per	day for ea	sch month	Vd,m = fa	ctor from T	Table 1c x	(43)						
(44)m=	102.69	98.96	95.22	91.49	87.75	84.02	84.02	87.75	91.49	95.22	98.96	102.69		
									1	Total = Su	m(44)		1120.25	(44)
Energy o	content of	hot water	used - cal	culated mo	onthly = 4 .	190 x Vd,n	n x nm x D	Tm / 3600) kWh/mon	th (see Ta	ibles 1b, 1	c, 1d)		_
(45)m=	152.65	133.51	137.77	120.11	115.25	99.45	92.16	105.75	107.01	124.71	136.13	147.83		
	_	_			_				-	Total = Su	m(45)		1472.34	(45)
lf instant	aneous w	ater heatir	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46,						
(46)m=	22.9	20.03	20.67	18.02	17.29	14.92	13.82	15.86	16.05	18.71	20.42	22.18		(46)
	storage			1010-2			10100		10.00			22.10		
	-		clared lo	oss facto	r is know	vn (kWh	(day):					0		(47)
			m Table									- <u> </u>		(48)
				, kWh/ye	har			(47) - (49)						
			-		anti factor is	s not kno		(47) x (48)	-			0		(49)
					olar stor			,			1	10		(50)
-					enter 110	-								
	-	-		-				enter '0' in	box (50)					
					e 2 (kW									
		-		oni rabi	0 2 (611	111111111111111111					<u> </u>	02		(51)
	e factor i		m Table	25							—	03		(52)
											0	.6		(53)
			-	, kWh/ye	ear			((50) x (51) x (52) x ((53) =	1.	03		(54)
Enter (49) or (5	54) in (5	5)								1.	03		(55)
Water	storage	loss cale	culated f	for each	month			((56)m = (55) × (41)r	m				
(56)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(56)
If cylinde	er contains	dedicated	d solar sto	rage, (57)	m = (56)m	x [(50) - (H11)] + (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	жH	
(57)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(57)
Primar	v circuit	loss (an	nual) fro	m Table	3						30	30		(58)
						59)m = ((58) + 36	65 × (41)	m					
							,	ng and a		r thermo	stat)			
(59)m=	30.58	27.62	30.58	29.59	30.58	29.59	30.58	30.58	29.59	30.58	29.59	30.58		(59)
Combi	loss cal	culated	for each	month ((61)m =	(60) + 36	65 × (41)m						
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Stroma F	FSAP 200	9 Version:	1.5.0.73 (SAP 9.90) - http://ww	vw.stroma	.com						Page	3 of 8

DER WorkSheet: New dwelling design stage

Total heat required for water h	eating calculated fo	or each month (62)m	= 0.85 × (45)m +	(46)m + (57)m +	(59)m + (61)m
(62)m= 215.24 190.04 200.36		60.02 154.75 168.3		196.71 210.42	(62)
Solar DHW input calculated using App	endix G or Appendix H	(negative quantity) (enter	'0' if no solar contribut	ion to water heating)]
(add additional lines if FGHRS	and/or WWHRS a	pplies, see Appendix	G)	_	
(63)m= 0 0 0	0 0	0 0 0	0 0	0 0	(63)
Output from water heater					,
(64)m= 215.24 190.04 200.36	180.68 177.84 1	60.02 154.75 168.3	167.58 187.3	196.71 210.42]
· · · · · · · · · · · · · · · · · · ·		0	tput from water heate	r (annual)	2209.28 (64)
Heat gains from water heating	, kWh/month 0.25 x	(0.85 × (45)m + (61)m] + 0.8 x [(46)m	+ (57)m + (59)m	1]
(65)m= 100.83 89.62 95.88	88.39 88.39 8	81.52 80.71 85.23	84.04 91.54	93.72 99.23	(65)
include (57)m in calculation	of (65)m only if cyli	nder is in the dwellin	g or hot water is fr	om community h	, leating
5. Internal gains (see Table §	5 and 5a):				
Metabolic gains (Table 5), Wat	tts				
Jan Feb Mar	Apr May	Jun Jul Aug	Sep Oct	Nov Dec]
(66)m= 124.54 124.54 124.54	124.54 124.54 1	24.54 124.54 124.54	124.54 124.54	124.54 124.54	(66)
Lighting gains (calculated in A	ppendix L, equation	n L9 or L9a), also see	Table 5		-
(67)m= 19.84 17.62 14.33	10.85 8.11	6.85 7.4 9.62	12.91 16.39	19.13 20.39	(67)
Appliances gains (calculated in	n Appendix L, equa	tion L13 or L13a), al	so see Table 5		
(68)m= 222.55 224.86 219.04	206.65 191.01 1	76.31 166.49 164.18	170 182.39	198.03 212.73	(68)
Cooking gains (calculated in A	ppendix L, equation	n L15 or L15a), also	see Table 5		
(69)m= 35.45 35.45 35.45	35.45 35.45 3	35.45 35.45 35.45	35.45 35.45	35.45 35.45	(69)
Pumps and fans gains (Table	5a)				
(70)m= 0 0 0	0 0	0 0 0	0 0	0 0	(70)
Losses e.g. evaporation (nega	tive values) (Table	5)			
(71)m= -99.63 -99.63 -99.63	-99.63 -99.63 -	99.63 -99.63 -99.63	-99.63 -99.63	•99.63 •99.63	(71)
Water heating gains (Table 5)					
(72)m= 135.52 133.36 128.87	122.77 118.81 1	13.23 108.49 114.5	116.72 123.04	130.17 133.37	(72)
Total internal gains =		(66)m + (67)m + (68)n	n + (69)m + (70)m + (7	1)m + (72)m	
(73)m= 438.27 436.2 422.6	400.63 378.29 3	56.75 342.74 348.72	359.99 382.18	407.69 426.85	(73)
6. Solar gains:					
Solar gains are calculated using sola				FF	Caina
Orientation: Access Factor Table 6d	Area m²	Flux Table 6a	9_ Table 6b T	able 6c	Gains (W)
Southeast 0.9x 0.77 x	11.66 ×	37.39 ×	0.72 ×	0.8 =	174.01 (77)
Southeast 0.9x 0.77 x		63.74 ×	0.72 ×	0.8 =	296.64 (77)
Southeast 0.9x 0.77 x		84.22 ×	0.72 ×	0.8 =	391.97 (77)
Southeast 0.9x 0.77 x		103.49 ×	0.72 ×	0.8 =	481.67 (77)
Southeast 0.9x 0.77 x		113.34 ×	0.72 ×	0.8 =	527.5 (77)
Southeast 0.9x 0.77 x		115.04 ×	0.72 ×	0.8 =	535.45 (77)
Southeast 0.9x 0.77 x		112.79 ×	0.72 ×	0.8 =	524.96 (77)
Southeast 0.9x 0.77 x		105.34 ×	0.72 ×	0.8 =	490.29 (77)

Stroma FSAP 2009 Version: 1.5.0.73 (SAP 9.90) - http://www.stroma.com

Page 4 of 8

101 Camley Street, London

Southeast 0.9x	0.77] ×	11.66] ×	92.9] × [0.72	×	0.8		432.37	(77)
Southeast 0.9x	0.77] ×	11.66] x	72.36] × [0.72	x	0.8		336.8	(77)
Southeast 0.9x	0.77] ×	11.66] x	44.83] × [0.72	x	0.8		208.63	(77)
Southeast 0.9x	0.77] x	11.66] x	31.95) x [0.72	x	0.8		148.7	(77)
Southwesto.9x	0.77) ×	21.12	x [37.39] [0.72	x	0.8		315.19	(79)
Southwesto.9x	0.77) ×	21.12	x [63.74] [0.72	x	0.8		537.32	(79)
Southwesto.9x	0.77	x [21.12	x [84.22] [0.72	x	0.8		709.98	(79)
Southwesto.9x	0.77) ×	21.12	x [103.49] [0.72	x	0.8		872.46	(79)
Southwesto.9x	0.77	x	21.12	x	113.34] [0.72	x	0.8		955.48	(79)
Southwesto.9x	0.77] x	21.12	x	115.04] [0.72	x	0.8		969.87	(79)
Southwesto.9x	0.77] x	21.12	x	112.79] [0.72	x	0.8		950.88	(79)
Southwesto.9x	0.77] x	21.12	x	105.34] [0.72	x	0.8		888.07	(79)
Southwesto.9x	0.77) x	21.12	x	92.9] [0.72	x	0.8	-	783.16	(79)
Southwesto.9x	0.77) x	21.12	x	72.36] [0.72	x	0.8	-	610.05	(79)
Southwesto.9x	0.77) x	21.12	x	44.83] [0.72	x	0.8	-	377.9	(79)
Southwesto.9x	0.77) x	21.12	x	31.95] [0.72	x	0.8	-	269.35	(79)
Solar gains in	watts, calcul	ated	for each mon	th		(83)m	= Sum(74)m	(8 2)m			_	
(83)m= 489.21	833.96 110	1.94	1354.12 1482.5	8 15	05.32 1475.84	1378	36 1215.54	946.85	5 586.53	418.05		(83)
Total gains -	internal and s	solar	(84)m = (73)r	n + (83)m , watts						-	
(84)m= 927.48	1270.16 152	4.54	1754.75 1861.3	27 18	62.07 1818.57	1727	08 1575.53	1329.0	2 994.22	844.9		(84)
7. Mean inte	rnal temperal	ture (heating seas	m)							-	
			hea <mark>ting seas</mark> ariods in the li		area from Tal	ble 9	Tb1 (°C)				21	(85)
Temperature	during heati	ng pe	eriods in the li	ving	area from Tal	ble 9,	Th1 (°C)				21	(85)
Temperature Utilisation fa	during heati ctor for gains	ng pe for li	eriods in the li ving area, h1	ving m (s	ee Table 9a)			Oct	Nov	Dec	21	(85)
Temperature Utilisation fa	e during heati ctor for gains Feb M	ng pe for li 1ar	ariods in the li ving area, h1 Apr Ma	ving m (s y	ee Table 9a) Jun Jul	Aı	ig Sep	Oct		Dec	21	
Temperature Utilisation fa Jan (86)m= 0.96	e during heati ctor for gains Feb M 0.88 0.	ng pe for li 1ar 74	ariods in the living area, h1 Apr Ma 0.58 0.41	ving m (s y	ee Table 9a) Jun Jul 0.28 0.18	Au 0.1	ig Sep 9 0.35	Oct 0.63	Nov 0.91	Dec 0.97	21	(85)
Temperature Utilisation fa Jan (86)m= 0.96 Mean interna	e during heati ctor for gains Feb M 0.88 0. al temperatur	ng pe for li 1ar 74 e in li	eriods in the li ving area, h1 Apr Ma 0.58 0.41 iving area T1	ving m (s y	ee Table 9a) Jun Jul 0.28 0.18 w steps 3 to 7	Au 0.1 7 in T	ng Sep 9 0.35 able 9c)	0.63	0.91	0.97	21	(86)
Temperature Utilisation fa (86)m= 0.96 Mean interna (87)m= 20.34	during heati ctor for gains Feb N 0.88 0. al temperatur 20.67 20	ng pe for li far 74 e in li .88	Apr Ma 0.58 0.41 20.97 21	ving m (s y (follo	ee Table 9a) Jun Jul 0.28 0.18 w steps 3 to 7 21 21	Au 0.1 7 in T	ag Sep 9 0.35 able 9c) 21		0.91		21	
Temperature Utilisation fa (86)m= 0.96 Mean interna (87)m= 20.34 Temperature	during heati ctor for gains Feb M 0.88 0. al temperature 20.67 20.67 20	ng pe for li 1ar 74 e in li .88 ng pe	Apr Ma 0.58 0.41 20.97 21 20.97 21 20.97 21	ving m (s y (follo	ee Table 9a) Jun Jul 0.28 0.18 w steps 3 to 7 21 21 relling from Ta	Au 0.1 7 in T 21 able 9	g Sep 9 0.35 able 9c) 21 , Th2 (°C)	0.63 20.96	0.91	0.97	21 	(86) (87)
Temperature Utilisation fa (86)m= 0.96 Mean interna (87)m= 20.34	during heati ctor for gains Feb M 0.88 0. al temperature 20.67 20.67 20	ng pe for li far 74 e in li .88	Apr Ma 0.58 0.41 20.97 21	ving m (s y (follo	ee Table 9a) Jun Jul 0.28 0.18 w steps 3 to 7 21 21	Au 0.1 7 in T	g Sep 9 0.35 able 9c) 21 , Th2 (°C)	0.63	0.91	0.97]]	(86)
Temperature Utilisation fa (86)m= Jan 0.96 Mean interna (87)m= 20.34 Temperature (88)m= 20.02	e during heati ctor for gains Feb M 0.88 0. al temperatur 20.67 20 e during heati 20.03 20	ng pe for li 1ar 74 e in li .88 ng pe .03	ariods in the living area, h1, Apr Ma 0.58 0.41 iving area T1 20.97 21 ariods in rest 20.05 20.07	ving m (s y (follo of dw	ee Table 9a) Jun Jul 0.28 0.18 w steps 3 to 7 21 21 relling from Ta	Au 0.1 7 in T 21 able 9 20.0	g Sep 9 0.35 able 9c) 21 , Th2 (°C)	0.63 20.96	0.91	0.97	21 	(86) (87)
Temperature Utilisation fa (86)m= Jan 0.96 Mean interna (87)m= 20.34 Temperature (88)m= 20.02	e during heati ctor for gains Feb M 0.88 0. al temperatur 20.67 20 e during heati 20.03 20	ng pe for li far 74 e in li .88 ng pe .03 for re	ariods in the living area, h1, Apr Ma 0.58 0.41 iving area T1 20.97 21 ariods in rest 20.05 20.07	ving y (follo of dw 7 2 g, h2	Table 9a) Jun Jul 0.28 0.18 w steps 3 to 7 21 21 velling from Ta 0.08 20.08	Au 0.1 7 in T 21 able 9 20.0	g Sep 9 0.35 able 9c) 21 , Th2 (°C) 8 20.06	0.63 20.96	0.91	0.97	21 21]]	(86) (87)
Temperature Utilisation fa (86)m= 0.96 Mean interna (87)m= 20.34 Temperature (88)m= 20.02 Utilisation fa (89)m= 0.95	during heati ctor for gains Feb M 0.88 0. al temperatur 20.67 20 during heati 20.03 20 ctor for gains 0.85 0.	ng pe for li far 74 e in li .88 ng pe .03 for r 71	Apr Ma 0.58 0.41 iving area T1 20.97 21 eriods in rest 20.05 20.05 20.07 est of dwelling 0.54 0.54 0.37	ving m (s y (follo of dw 7 2 g, h2	Table 9a) Jun Jul 0.28 0.18 w steps 3 to 7 21 21 velling from Ta 0.08 20.08 m (see Table	Au 0.1 7 in T 21 able 9 20.0 9a) 0.1	g Sep able 9c) 21 , Th2 (°C) 8 20.06	0.63 20.96 20.05 0.58	0.91 20.65 20.04	0.97 20.32 20.03	21 21]]	(86) (87) (88)
Temperature Utilisation fa (86)m= 0.96 Mean interna (87)m= 20.34 Temperature (88)m= 20.02 Utilisation fa (89)m= 0.95	e during heati ctor for gains Feb M 0.88 0. al temperatur 20.67 20 e during heati 20.03 20 ctor for gains 0.85 0. al temperatur	ng pe for li far 74 e in li .88 ng pe .03 for r 71	Apr Ma 0.58 0.41 iving area T1 20.97 21 eriods in rest 20.05 20.05 20.07 est of dwelling 0.54 0.54 0.37	ving m (s y (follo of dw 7 2 g, h2 billing	ee Table 9a) Jun Jul 0.28 0.18 w steps 3 to 7 21 21 velling from Ta vo.08 20.08 rm (see Table 0.24 0.14	Au 0.1 7 in T 21 able 9 20.0 9a) 0.1	g Sep able 9c) 21 , Th2 (°C) 8 20.06 5 0.31 to 7 in Table	0.63 20.96 20.05 0.58	0.91 20.65 20.04 0.89	0.97 20.32 20.03	21 21]]]	(86) (87) (88)
Temperature Utilisation fa (86)m= 0.96 Mean interna (87)m= 20.34 Temperature (88)m= 20.02 Utilisation fa (89)m= 0.95 Mean interna	e during heati ctor for gains Feb M 0.88 0. al temperatur 20.67 20 e during heati 20.03 20 ctor for gains 0.85 0. al temperatur	ng po for li far 74 e in li .88 ng po .03 for ro 71 e in t	ariods in the living area, h1, Apr Ma 0.58 0.41 iving area T1 20.97 21 ariods in rest of 20.05 20.07 est of dwelling 0.54 0.37 he rest of dwelling 0.54 0.37	ving m (s y (follo of dw 7 2 g, h2 billing	ee Table 9a) Jun Jul 0.28 0.18 w steps 3 to 7 21 21 relling from Ta 0.08 20.08 m (see Table 0.24 0.14 T2 (follow ste	Au 0.1 7 in T 21 able 9 20.0 9a) 0.1 eps 3	g Sep able 9c) 21 , Th2 (°C) 8 20.06 5 0.31 to 7 in Table 8 20.06	0.63 20.96 20.05 0.58 9c) 20.02	0.91 20.65 20.04 0.89 19.63	0.97 20.32 20.03 0.96 19.16]]] 0.37	(86) (87) (88) (89)
Temperature Utilisation fa (86)m= 0.96 Mean interna (87)m= 20.34 Temperature (88)m= 20.02 Utilisation fa (89)m= 0.95 Mean interna (90)m= 19.18	e during heati ctor for gains Feb M 0.88 0. al temperatur 20.67 20 during heati 20.03 20 ctor for gains 0.85 0. al temperatur 19.64 19	ng po for li far 74 e in li .88 ng po .03 for ro 71 e in t 0.9	ariods in the living area, h1 Apr Ma 0.58 0.41 iving area T1 20.97 21 ariods in rest 20.05 20.05 20.07 est of dwelling 0.54 0.37 he rest of dwelling 20.02 20.00	ving m (s y (follo of dw y 2 g, h2 billing 3 2	Table 9a) Jun Jul 0.28 0.18 w steps 3 to 7 21 21 21 velling from Ta 20.08 m (see Table 0.24 0.24 0.14 T2 (follow ster 20.08 20.08	Au 0.1 7 in T. 21 20.0 9a) 0.1 eps 3 20.0	g Sep 9 0.35 able 9c) 21 , Th2 (°C) 8 20.06 5 0.31 to 7 in Table 8 20.06 1 ft	0.63 20.96 20.05 0.58 9c) 20.02	0.91 20.65 20.04 0.89	0.97 20.32 20.03 0.96 19.16		(86) (87) (88) (89) (90)
Temperature Utilisation fa (86)m= 0.96 Mean interna (87)m= 20.34 Temperature (88)m= 20.02 Utilisation fa (89)m= 0.95 Mean interna (90)m= 19.18	e during heati ctor for gains Feb M 0.88 0. al temperatur 20.67 20 during heati 20.03 20 ctor for gains 0.85 0. al temperatur 19.64 19 al temperatur	ng po for li far 74 e in li .88 ng po .03 for r 71 e in t 9.9 e (for	ariods in the living area, h1 Apr Ma 0.58 0.41 iving area T1 20.97 21 ariods in rest 20.05 20.05 20.07 est of dwelling 0.54 0.37 he rest of dwelling 20.02 20.00	ving m (s y (follo of dw 7 2 a), h2 a) a) a) a) a) a) a) a) a) a) a) a) a)	ee Table 9a) Jun Jul 0.28 0.18 w steps 3 to 7 21 21 21 velling from Ta 20.08 m (see Table 0.24 0.24 0.14 T2 (follow ster vo.08 20.08	Au 0.11 7 in T. 21 20.0 9a) 0.11 eps 3 20.0 + (1-	g Sep 9 0.35 able 9c) 21 , Th2 (°C) 8 20.06 5 0.31 to 7 in Table 8 20.06 1 controls able 8 20.06 1 controls able 1 controls	0.63 20.96 20.05 0.58 9C) 20.02 A = Liv	0.91 20.65 20.04 0.89 19.63 ing area + (4)	0.97 20.32 20.03 0.96 19.16		(86) (87) (88) (89) (90) (91)
Temperature Utilisation fa (86)m= Jan (86)m= 0.96 Mean interna (87)m= 20.34 Temperature (88)m= 20.02 Utilisation fa (89)m= 0.95 Mean interna (90)m= 19.18 Mean interna (92)m= 19.61	e during heating ctor for gains Feb M 0.88 0. al temperatur 20.67 20 a during heating 20.03 20 ctor for gains 0.85 0. al temperatur 19.64 19 al temperatur 19.64 19 al temperatur 20.02 20	ng po for li far 774 e in li .88 ng po .03 for n 71 e in t .9 e (for .26	ariods in the living area, h1, Apr Ma 0.58 0.41 iving area T1 20.97 21 ariods in rest 20.05 20.05 ariods in rest of dwelling 0.54 0.37 he rest of dwelling 20.02 20.00 ariods in rest of dwelling 20.37 20.41	ving m (s y (follo of dw 7 2 a) billing 3 2 vellin	ee Table 9a) Jun Jul 0.28 0.18 w steps 3 to 7 21 21 21 21 welling from Ta 0.08 20.08 m (see Table 0.24 0.14 T2 (follow ster 0.08 20.08 g) = fLA × T1 0.42 20.42	Au 0.11 7 in T 21 20.0 9a) 0.1 20.0 9a) 20.0 + (1 - 20.4	g Sep 9 0.35 able 9c) 21 , Th2 (°C) 8 20.06 5 0.31 to 7 in Table 8 20.06 6 - fLA) × T2 2 20.41	0.63 20.96 20.05 0.58 9C) 20.02 A = Liv 20.37	0.91 20.65 20.04 0.89 19.63 ing area + (4) 20.01	0.97 20.32 20.03 0.96 19.16		(86) (87) (88) (89) (90)
Temperature Utilisation fa (86)m= Jan (86)m= 0.96 Mean interna (87)m= 20.34 Temperature (88)m= 20.02 Utilisation fa (89)m= 0.95 Mean interna (90)m= 19.18 Mean interna (92)m= 19.61 Apply adjust	e during heati ctor for gains Feb M 0.88 0. al temperatur 20.67 20 e during heati 20.03 20 ctor for gains 0.85 0. al temperatur 19.64 19 al temperatur 20.02 20 ment to the n	ng po for li far 74 e in li .88 for ro 71 e in t 9 .9 e (for 26 itean	ariods in the living area, h1, Apr Ma 0.58 0.41 iving area T1 20.97 21 ariods in rest 20.05 20.07 ariods in rest 0.54 0.37 he rest of dwelling 20.02 20.00 arthe whole dw 20.02 20.00	ving m (s y (follo of dw 7 2 g, h2 g, h2 s alling 3 2 vellin	ee Table 9a) Jun Jul Jun Jul 0.28 0.18 w steps 3 to 7 21 21 velling from Ta 0.08 20.08 m (see Table 0.24 0.14 T2 (follow state 0.08 20.08 g) = fLA × T1 vol.42 20.42	Au 0.11 7 in T 21 20.0 9a) 0.11 eps 3 20.0 + (1- 20.4 + (1- 20.4	g Sep 9 0.35 able 9c) 21 , Th2 (°C) 8 20.06 5 0.31 to 7 in Table 8 20.06 1 c 7 in Table 8 20.06 1 c 1 c 1 c 2 20.41 c 2 20.41	0.63 20.96 20.05 0.58 9 9C) 20.02 20.02 20.03 7 priate	0.91 20.65 20.04 0.89 19.63 ing area + (4) 20.01	0.97 20.32 20.03 0.96 19.16)=		(86) (87) (88) (89) (90)](91) (92)
Temperature Utilisation fa (86)m= Jan (86)m= 0.96 Mean interna (87)m= 20.34 Temperature (88)m= 20.02 Utilisation fa (89)m= 0.95 Mean interna (90)m= 19.18 Mean interna (92)m= 19.61	e during heating ctor for gains Feb M 0.88 0. al temperature 20.67 20 al temperature 20.03 20 ad toring heating 20.03 20 at temperature 20.03 20 at temperature 19.64 19 at temperature 20.02 20 at temperature 20.02 20 at temperature 20.02 20	ng po for li far 74 e in li .88 ng po .03 for m 71 e in t 0.9 e (for .26 .26	ariods in the living area, h1, Apr Ma 0.58 0.41 iving area T1 20.97 21 ariods in rest 20.05 20.05 ariods in rest of dwelling 0.54 0.37 he rest of dwelling 20.02 20.00 ariods in rest of dwelling 20.37 20.41	ving m (s y (follo of dw 7 2 g, h2 g, h2 s alling 3 2 vellin	ee Table 9a) Jun Jul 0.28 0.18 w steps 3 to 7 21 21 21 velling from Ta 20.08 m (see Table 0.24 0.24 0.14 T2 (follow ster vo.08 20.08 g) = fLA × T1 vo.42 20.42	Au 0.11 7 in T 21 20.0 9a) 0.1 20.0 9a) 20.0 + (1 - 20.4	g Sep 9 0.35 able 9c) 21 , Th2 (°C) 8 20.06 5 0.31 to 7 in Table 8 20.06 fL - fLA) × T2 2 20.41 vhere appro	0.63 20.96 20.05 0.58 9C) 20.02 A = Liv 20.37	0.91 20.65 20.04 0.89 19.63 ing area + (4) 20.01	0.97 20.32 20.03 0.96 19.16		(86) (87) (88) (89) (90) (91)
Temperature Utilisation fa (86)m= Jan (86)m= 0.96 Mean interna (87)m= 20.34 Temperature (88)m= 20.02 Utilisation fa (89)m= 0.95 Mean interna (90)m= 19.18 Mean interna (92)m= 19.61 Apply adjust (93)m= 19.61 8. Space hea	e during heating ctor for gains Feb M 0.88 0. al temperature 20.67 20 e during heating 20.03 20 ctor for gains 0.85 0. al temperature 19.64 19 al temperature 20.02 20.02 20 ment to the m 20.02 20.02 20	ng po for li far 74 e in li .88 ng po .03 for m 71 e in t 9 26 nean 26 nean	ariods in the living area, h1, Apr Ma 0.58 0.41 iving area T1 20.97 21 ariods in rest 20.97 21 ariods in rest 20.05 20.07 aest of dwelling 0.54 0.37 he rest of dwelling 20.02 20.00 arthe whole dw 20.37 20.41 internal temp 20.37 20.41	ving m (s y (follo of dw 7 2 2 g, h2 3 2 welling 3 2 velling 3 2	ee Table 9a) Jun Jul Jun Jul 0.28 0.18 w steps 3 to 7 21 21 valing from Ta volume 20.08 vm (see Table 0.24 0.14 T2 (follow ster 0.08 20.08 g) = fLA × T1 vol.42 20.42	Au 0.1 7 in T. 21 20.0 9a) 0.1 20.0 + (1 - 20.4 + (1 - 20.4 20.4 - 20.4 - - - - - - - - - - - - -	g Sep 9 0.35 able 9c) 21 , Th2 (°C) 8 20.06 5 0.31 to 7 in Table 8 20.06 10 - fLA) × T2 2 20.41 where approp 2 20.41	0.63 20.96 20.05 0.58 9C) 20.02 20.02 20.37 priate 20.37	0.91 20.65 20.04 0.89 19.63 ing area + (4) 20.01	0.97 20.32 20.03 0.96 19.16)= 19.59		(86) (87) (88) (89) (90)](91) (92)
Temperature Utilisation fa (86)m= Jan (86)m= 0.96 Mean interna (87)m= 20.34 Temperature (88)m= 20.02 Utilisation fa (89)m= 0.95 Mean interna (90)m= 19.18 Mean interna (92)m= 19.61 Apply adjust (93)m= 19.61 8. Space here Set Ti to the	e during heating ctor for gains Feb M 0.88 0. al temperature 20.67 20 e during heating 20.03 20 e during heating 20.03 20 ctor for gains 0.85 0. al temperature 19.64 19 al temperature 20.02 20 ment to the m 20.02 20 ating requirer mean internal	ng po for li far 26 in li .88 ng po .03 for m 71 e in t 0.9 e (for .26 nean .26 nean .26	ariods in the living area, h1, Apr Ma 0.58 0.41 iving area T1 20.97 21 ariods in rest of 20.05 20.07 est of dwelling 0.54 0.37 he rest of dwelling 20.02 20.00 the whole dw 20.37 20.41 internal temp 20.37 20.41	ving m (s y (follo of dw 7 2 a), h2 a) a) a) a) a) a) a) a) b) b) b) b) b) c) c) c) c) c) c) c) c) c) c	ee Table 9a) Jun Jul Jun Jul 0.28 0.18 w steps 3 to 7 21 21 velling from Ta 0.08 20.08 m (see Table 0.24 0.14 T2 (follow state 0.08 20.08 g) = fLA × T1 vol.42 20.42	Au 0.1 7 in T. 21 20.0 9a) 0.1 20.0 + (1 - 20.4 + (1 - 20.4 20.4 - 20.4 - - - - - - - - - - - - -	g Sep 9 0.35 able 9c) 21 , Th2 (°C) 8 20.06 5 0.31 to 7 in Table 8 20.06 10 - fLA) × T2 2 20.41 where approp 2 20.41	0.63 20.96 20.05 0.58 9C) 20.02 20.02 20.37 priate 20.37	0.91 20.65 20.04 0.89 19.63 ing area + (4) 20.01	0.97 20.32 20.03 0.96 19.16)= 19.59		(86) (87) (88) (89) (90)](91) (92)
Temperature Utilisation fa (86)m= Jan (86)m= 0.96 Mean interna (87)m= 20.34 Temperature (88)m= 20.02 Utilisation fa (89)m= 0.95 Mean interna (90)m= 19.18 Mean interna (92)m= 19.61 Apply adjust (93)m= 19.61 8. Space here Set Ti to the	e during heating ctor for gains Feb M 0.88 0. al temperature 20.67 20 e during heating 20.03 20 ctor for gains 0.85 0. al temperature 19.64 19 al temperature 20.02 20.02 20 ment to the m 20.02 20 ment to the m 20.02 20 ating requirer mean internant factor for gains	ng po for li far 26 in li .88 ng po .03 for m 71 e in t 0.9 e (for .26 nean .26 nean .26	ariods in the living area, h1, Apr Ma 0.58 0.41 iving area T1 20.97 21 ariods in rest 20.05 20.07 artiods in rest 0.54 0.37 be rest of dwelling 0.54 0.37 he rest of dwelling 20.02 20.00 arthe whole dw 20.37 20.41 internal temp 20.37 20.41	ving m (s y (follo of dw 7 2 of dw	ee Table 9a) Jun Jul Jun Jul 0.28 0.18 w steps 3 to 7 21 21 valing from Ta volume 20.08 vm (see Table 0.24 0.14 T2 (follow ster 0.08 20.08 g) = fLA × T1 vol.42 20.42	Au 0.1 7 in T. 21 20.0 9a) 0.1 20.0 + (1 - 20.4 + (1 - 20.4 20.4 - 20.4 - - - - - - - - - - - - -	g Sep able 9c) 21 , Th2 (°C) 8 20.06 5 0.31 to 7 in Table 8 20.06 fLA) × T2 2 20.41 where approp 2 20.41 able 9c) 1 2 2 20.41 1 2 2 20.41 2 20.41 2 20.41 2 20.41 2 20.41 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.63 20.96 20.05 0.58 9C) 20.02 20.02 20.37 priate 20.37	0.91 20.65 20.04 0.89 19.63 ing area + (4) 20.01 20.01	0.97 20.32 20.03 0.96 19.16)= 19.59		(86) (87) (88) (89) (90)](91) (92)

DER WorkSheet: New dwelling design stage

Stroma FSAP 2009 Version: 1.5.0.73 (SAP 9.90) - http://www.stroma.com

Page 5 of 8

DER WorkSheet: New dwelling design stage

Utilisation factor for gains, hm:					
(94)m= 0.95 0.85 0.72 0.55 0.39 0.26 0.16	0.17 0.32	0.59 0.89	0.96		(94)
Useful gains, hmGm , W = (94)m x (84)m					
(95)m= 881.32 1085.6 1090.8 970.41 722.24 479.16 287.39	287.38 510	789.04 883.54	811.14		(95)
Monthly average external temperature from Table 8					
(96)m= 4.5 5 6.8 8.7 11.7 14.6 16.9	16.9 14.3	10.8 7	4.9		(96)
Heat loss rate for mean internal temperature, Lm , W =[(39)m				1	
(97)m= 1336.13 1310.24 1173.77 989.98 724.64 479.34 287.4		811.47 1118.9	1281.17		(97)
Space heating requirement for each month, kWh/month = 0.02 (98)m= 338.38 150.96 61.72 14.09 1.78 0 0	4 x [(97)m – (95)r	mj x (41)m 16.69 169.46	349.7		
		(Wh/year) = Sum(9		1102.78	(98)
On one has the second result in 1446 (m24 as as	rour per year (r	(meyear) - ounio	- u)		1
Space heating requirement in kWh/m²/year				13.53	(99)
9b. Energy requirements – Community heating scheme					
This part is used for space heating, space cooling or water heat Fraction of space heat from secondary/supplementary heating (neme.	0	(301)
Fraction of space heat from community system 1 – (301) =				1	(302)
	allows for OUD and an	to four other head			(302)
The community scheme may obtain heat from several sources. The procedure a includes boilers, heat pumps, geothermal and waste heat from power stations.		to tour other heat	sources; tr	ne ratter	
Fraction of heat from Community CHP			- 1	0.25	(303a)
Fraction of community heat from heat source 2			i	0.25	(303b)
Fraction of community heat from heat source 3				0.5	(303c)
Fraction of total space heat from Community CHP		(302) × (303	a) =	0.25	(304a)
			· .		4
Fraction of total space heat from community heat source 2		(302) × (303	· .	0.25	(304b)
Fraction of total space heat from community heat source 3		(302) × (303	c) =	0.5	(304c)
Factor for control and charging method (Table 4c(3)) for commu	unity heating syste	m		1	(305)
Distribution loss factor (Table 12c) for community heating system	m			1.05	(306)
Space heating				kWh/year	_
Annual space heating requirement				1102.78	
Space heat from Community CHP	(98) x (304	4a) x (305) x (306) :	-	289.48	(307a)
Space heat from heat source 2	(98) × (304	4b) x (305) x (306) :	• i	289.48	(307b)
Space heat from heat source 3	(98)× (304	c) x (305) x (306) =	, i	578.96	(307c)
Efficiency of secondary/supplementary heating system in % (fro	m Table 4a or Ap	pendix E)	i	0	(308
Space heating requirement from secondary/supplementary syst	tem (98) x (301	1) x 100 + (308) =	i	0	(309)
Water heating			'		_
Annual water heating requirement				2209.28	٦
If DHW from community scheme:					_
Water heat from Community CHP	(64) x (303	3a) x (305) x (306)	•	579.94	(310a)
Water heat from heat source 2	(64) × (303	3b) x (305) x (306)	•	579.94	(310b)
Water heat from heat source 3	(64) × (303	3c) x (305) x (306) :	• i	1159.87	(310c)
					_

Stroma FSAP 2009 Version: 1.5.0.73 (SAP 9.90) - http://www.stroma.com

Page 6 of 8

DER WorkSheet: New dwelling design stage

Electricity used for heat distribution 0.01 × [(307a)(307e) + (310a)(310e)] =	34.78	(313)
Cooling System Energy Efficiency Ratio	0	(314)
Space cooling (if there is a fixed cooling system, if not enter 0) = (107) + (314) =	0	(315)
Electricity for pumps and fans within dwelling (Table 4f):		- 1
mechanical ventilation - balanced, extract or positive input from outside	205.32	(330a)
warm air heating system fans	0	(3306)
pump for solar water heating	0	(330g)
Total electricity for the above, kWh/year =(330a) + (330b) + (330g) =	205.32	(331)
Energy for lighting (calculated in Appendix L)	350.38	(332)
Electricity generated by PVs (Appendix M) (negative quantity)	-238.26	(333)
Electricity generated by wind turbine (Appendix M) (negative quantity)	0	(334)
12b. CO2 Emissions – Community heating scheme		
Electrical efficiency of CHP unit	26.67	(361)
Heat efficiency of CHP unit	53.33	(362)
Energy Emission factor kWh/year kg CO2/kWh	Emissions kg CO2/year	
Space heating from CHP) (307a) × 100 + (362) = 542.77 × 0.2	107.47](363)
less credit emissions for electricity -(307a) × (361) + (362) = 144.74 × 0.53	-76.57	(364)
Water heated by CHP (310a) × 100 + (362) = 1087.38 × 0.2	215.3	(365)
less credit emissions for electricity -(310a) × (361) + (362) = 289.97. × 0.53	-153.39	(366)
Efficiency of heat source 2 (%) If there is CHP using two fuels repeat (363) to (366) for the second fuel		(367b)
Efficiency of heat source 3 (%)	97	(367c)
Efficiency of heat source 4 (%)	0	(367d)
Efficiency of heat source 5 (%)	0	(367e)
CO2 associated with heat source 2 [(307b)+(310b)] x 100 + (367b) x 0.04 =	10.43	(368)
CO2 associated with heat source 3 [(307c)+(310c)] x 100 + (367c) x 0.2 =	354.94	(369)
Electrical energy for heat distribution ((313) x 0.52 =	17.98	(372)
Total CO2 associated with community systems (363)(366) + (368)(372) =	476.16	(373)
CO2 associated with space heating (secondary) (309) x 0 =	0	(374)
CO2 associated with water from immersion heater or instantaneous heater (312) x 0.2 =	0	(375)
Total CO2 associated with space and water heating (373) + (374) + (375) =	476.16	(376)
CO2 associated with electricity for pumps and fans within dwelling (331)) x 0.52 =	106.15	(378)
CO2 associated with electricity for lighting (332))) × 0.52 =	181.15	(379)
Energy saving/generation technologies (333) to (334) as applicable Item 1 0.53 × 0.01 =	-126.04	(380)
Total CO2, kg/year sum of (376)(382) =	637.42	(383)

Stroma FSAP 2009 Version: 1.5.0.73 (SAP 9.90) - http://www.stroma.com

Page 7 of 8

DER WorkSheet: New dwelling design stage

Dwelling CO2 Emission Rate (383) + (4) = El rating (section 14)

7.82	(384)
93.25	(385)

Stroma FSAP 2009 Version: 1.5.0.73 (SAP 9.90) - http://www.stroma.com

Page 8 of 8

APPENDIX E

Typical Code for Sustainable Homes Report For a Mid Floor Apartment

Code for Sustainable Homes Report

Assessor and House Details

Assessor Name:

TER

Property Address: **Buiding regulation assessment**

Assessor Number:

kg/m²/year

15.41 7.82

DER The following code calculations are taken from the Code for Sustainable Homes Technical Guide (Nov 10) Ene 1 Assessment - Dwelling Emission Rate

Total Energy Type CO2 Emissions for Codes Levels 1 - 5

Total Energy Type CO2 Emissions for Codes Levels 1 - 5			
	%	kg/m²/year	
DER from SAP 2009 DER Worksheet		7.82	(ZC1)
TER		15.41	
Residual CO2 emissions offset from biofuel CHP		0	(ZC5)
CO2 emissions offset from additional allowable electricty generation		0	(ZC7)
Total CO2 emissions offset from SAP Section 16 allowances		0	
DER accounting for SAP Section 16 allowances		7.82	
% improvement DER/TER	49.3		

Total Energy Type CO2 Emissions for Codes Levels 6

			kg/m²/year	
DER accounting for SAP Section	16 allowances		7.82	(ZC1)
CO2 emissions from appliances,	, equation (L14)		16.12	(ZC2)
CO2 emissions from cooking, ed	quation (L16)		2.19	(ZC3)
Net CO2 emissions			26.1	(ZC8)
Result:				
Credits awarded for Ene 1 = 5	.2			
Code Level = 4				

Ene 2 - Fabric energy Efficiency

Fabric energy Efficiency: 34.03

Credits awarded for Ene 2 = 8.3

Ene 7 - Low or Zero Carbon (LZC) Technologies

Reduction in CO2 Emissions

	%	kg/m²/year	
Standard Case CO2 emissions		32.99	
Standard DER		14.68	
Actual Case CO2 emissions		26.13	
Actual DER		7.82	
Reduction in CO2 emissions	20.79		

Credits awarded for Ene 7 = 2

Technologies eligible to contribute to achieving the requirements of this issue must produce energy from renewable sources and meet all other ancillary requirements as defined by Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.

The following requirements must also be met:

· Where not provided by accredited external renewables there must be a direct supply of energy produced to the dwelling under assessment.

· Where covered by the Microgeneration Certification Scheme (MCS), technologies under 50kWe or 300kWth must be certified.

Combined Heat and Power (CHP) schemes above 50kWe must be certified under the CHPQA standard.

· All technologies must be accounted for by SAP.

CHP schemes fuelled by mains gas are eligible to contribute to performance against this issue. Where these schemes are above 50kWe they must be certified under the CHPQA. It is the responsibly of the Accredited OCDEA and Code Assessor to ensure all technologies use in the calculation are appropriate before awarding credits.

Stroma FSAP 2009 Version: 1.5.0.73 (SAP 9.90) - http://www.stroma.com

APPENDIX F

Page 1 of 1

Building Cores Compliance Sheets

User Details						
Assessor Name: Software Name:	Stroma FSAP	Stroma Number: Software Version: Version: 1.5.0.73 tion Details				
	Calcula	uon Detailis				
Dwelling		DER	TER	TFA		
UNIT A001_3B6P		10.38	19.2	67.1		
UNIT A002_2B4P		9.59	18.15	73.4		
UNIT A003_2B3P		11.9	19.28	69.3		
UNIT A101_4B5P		7.59	14.97	86.6		
UNIT A102_3B5P		9.54	15.25	86.4		
UNIT A103_2B4P		9.55	15.22	72.7		
UNIT A104_2B4P		7.43	15.09	73.4		
UNIT A501_2B4P		9.48	15.8	80.7		
UNIT A502_3B5P		8.08	15.3	86.8		

Block Compliance WorkSheet: Block A

Calculation Summary

Total Floor Area	696.40
Average TER	16.35
Average DER	9.21
Compliance	Pass
% Improvement	43.67

Stroma FSAP 2009 Version: 1.5.0.73 (SAP 9.90) - http://www.stroma.com

Page 1 of 1

User Details							
Assessor Name: Software Name:	Stroma FSAP	Software Version	Stroma Number: Software Version: Version: 1.5.0.73				
Calculation Details							
Dwelling		DER	TER	TFA			
UNIT B001_2B4P		11.5	18.31	72.7			
UNIT B002_2B4P		11.18	18.09	72			
UNIT B003_S		13.19	24.16	38.9			
UNIT B1-B32_1B2P		8.64	17.93	54.7			
UNIT B102_2B4P		7.27	14.65	78.4			
UNIT B103_2B3P		8.18	14.98	72			
UNIT B105_S		10.39	20.84	38.9			
UNIT B106_1B2P		8.48	18.33	52.7			
UNIT B107_1B2P		7.96	15.87	56.5			
UNIT B605_2B3P		9.25	16.47	62.6			
UNIT B607_3B5P		8.6	15.06	89.6			
UNIT B801_3B5P		8.74	14.85	86			
UNIT B802_3B5P		8.15	15.53	86			
UNIT B1101_4B6P		10.12	15.09	265.3			

Block Compliance WorkSheet: Block B

Calculation Summary

Total Floor Area	1126.30
Average TER	16.38
Average DER	9.39
Compliance	Pass
% Improvement	42.67

Stroma FSAP 2009 Version: 1.5.0.73 (SAP 9.90) - http://www.stroma.com

Page 1 of 1

User Details						
Assessor Name: Software Name: Stroma FSAP	Stroma Number: Software Version: Version: 1.5.0.73					
Calculat	ion Details					
Dwelling	DER	TER	TFA			
UNIT C101_385P	8.52	14.5	93.9			
UNIT C102_284P	7.75	15.54	81.3			
UNIT C103_385P	7.41	13.89	87			
UNIT C104_2B4P	7.07	14.41	82.5			
UNIT C105_1B2P	9.35	18.48	49.8			
UNIT C106_2B4P	7.63	15.17	80			
UNIT C403_385P	8.15	15.24	87			
UNIT C404_2B4P	7.82	15.41	81.5			
UNIT C701_385P	8.89	15.4	93.9			
UNIT C702_2B4P	8.41	16.63	80.3			
UNIT C801_3B5P	11	17.71	93.9			
UNIT C802 2B4P	10.31	18.92	80.3			

Block Compliance WorkSheet: Block C

Calculation Summary

Total Floor Area	991.40
Average TER	15.84
Average DER	8.52
Compliance	Pass
% Improvement	46.21

Stroma FSAP 2009 Version: 1.5.0.73 (SAP 9.90) - http://www.stroma.com

Page 1 of 1

APPENDIX G Business Unit- Typical BRUKL Data Output

Shell and Core

As designed

BRUKL Output Document

HM Government Compliance with England and Wales Building Regulations Part L 2010

Project name

Lower Ground Floor Units

Date: Thu Jun 19 21:32:45 2014

Administrative information

Building Details Address: London,

Certification tool

Calculation engine: SBEM

Calculation engine version: v4.1.d.0

Interface to calculation engine: DesignBuilder SBEM

Interface to calculation engine version: v3.0.0

BRUKL compliance check version: v4.1.d.0

Certifier details

Address: , ,

Telephone number:

Owner Details

Name:

Name: Darryl Vardill Telephone number:

Address: , ,

Criterion 1: The calculated CO₂ emission rate for the building should not exceed the target

1.1	CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	36.2
1.2	Target CO ₂ emission rate (TER), kgCO ₂ /m ² .annum	36.2
1.3	Building CO ₂ emission rate (BER), kgCO ₂ /m ² .annum	19.7
1.4	Are emissions from the building less than or equal to the target?	BER =< TER
1.5	Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and the building services should achieve reasonable overall standards of energy efficiency

2.a Building fabric

Element	U _{a-Limit}	Ua-Calo	Ui-Calo	Surface where the maximum value occurs*	
Wall**	0.35	0.2	0.2	Lower Ground Floor - Employment use EAST	W
Floor	0.25	0.11	0.11	Lower Ground Floor - Employment use EAST	s
Roof	0.25	0.18	0.18	Lower Ground Floor - Employment use EAST	R
Windows***, roof windows, and rooflights	2.2	1.6	1.6	Lower Ground Floor - Employment use EAST	G
Personnel doors	2.2	-	-	"No heat loss personnel doors"	
Vehicle access & similar large doors	1.5	-	-	"No heat loss vehicle access doors"	
High usage entrance doors 3.5 "No heat loss high usage entrance doors"					
$U_{\rm n-Umit} = \text{Limiting area-weighted average U-values [V]} \\ U_{\rm n-Calc} = \text{Calculated area-weighted average U-values}$			Uscale = C	alculated maximum individual element U-values [W/(m*K)]	
* There might be more than one surface where the n ** Automatic U-value check by the tool does not app *** Display windows and similar glazing are excluded N.B.: Neither roof ventilators (inc. smoke vents) nor 1	y to curtai from the	n walls wh U-value cl	nose limitir heck.	g standard is similar to that for windows. felled or checked against the limiting standards by the tool.	

Air Permeability	Worst acceptable standard	This building
m ³ /(h.m ²) at 50 Pa	10	5

Page 1 of 5

2.b Building services

The building services parameters listed below are expected to be checked by the BCO against guidance. No automatic checking is performed by the tool.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values		
Whole building electric power factor achieved by power factor correction	<0.9	

1- Heatpump CHP PV

Heating	g seasonal efficiency	Cooling nominal efficiency	SFP [W/(l/s)]	HR seasonal efficiency				
3.36			-	-				
Autom	Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES							

1- Project DHW

Heating seasonal efficiency	Hot water storage loss factor [kWh/litre per day]	
0.7	-	

"No zones in project where local mechanical ventilation or exhaust is applicable"

Zone	Assumed shell?
Lower Ground Floor - Employment use EAST	YES

Zone	General lighting [W]	Display lamps efficacy [lm/W]
Lower Ground Floor - Employment us	-63 £30 8⊤	50

Criterion 3: The spaces in the building should have propriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
Lower Ground Floor - Employment us	eNEA(S4T2%)	NO

Criterion 4: The performance of the building, as built, should be consistent with the BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

Page 2 of 5

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters			Building Use	
	Actual	Notional	% Area	Building Type
Area [m ²]	484.9	484.9	100	A1/A2 Retail/Financial and Professional services
External area [m ²]	1167.3	1167.3		A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways
Weather	LON	LON		B1 Offices and Workshop businesses
Infiltration [m ³ /hm ² @ 50Pa]	5	5		B2 to B7 General Industrial and Special Industrial Groups B8 Storage or Distribution
Average conductance [W/K]			C1 Hotels	
Average U-value [W/m ² K]	0.2	0.31		C2 Residential Inst.: Hospitals and Care Homes
Alpha value* [%]	15.12	11.55		C2 Residential Inst.: Residential schools C2 Residential Inst.: Universities and colleges
* Percentage of the building's average heat transfer coefficient which is due to thermal bridging				C2A Secure Residential Inst.
				Residential spaces D1 Non-residential Inst.: Community/Day Centre D1 Non-residential Inst.: Libraries, Museums, and Galleries D1 Non-residential Inst.: Education D1 Non-residential Inst.: Primary Health Care Building

D1 Non-residential Inst.: Crown and County Courts D2 General Assembly and Leisure, Night Clubs and Theatres

Others: Passenger terminals Others: Emergency services Others: Telephone exchanges Others: Miscellaneous 24hr activities Others: Car Parks 24 hrs Others - Stand alone utility block

Energy Consumption by End Use [kWh/m ²]					
	Actual	Notional			
Heating	20.95	7.03			
Cooling	0	0			
Auxiliary	1.91	1.12			
Lighting	32.19	61.09			
Hot water	2.42	2.03			
Equipment*	20.26	19.75			
TOTAL 51.28 71.26					

* Energy used by equipment does not count towards the total for calculating emissions.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	6.2	0
Solar thermal systems	0	0

Energy & CO₂ Emissions Summary Actual Indicative Target Heating + cooling demand [MJ/m²] 221.08 296.27 Total consumption [kWh/m²] 51.28 71.26 Total emissions [kg/m²] 19.7 36.2

Page 3 of 5

HVAC Sys	tems Per	formanc	8						
System Type Heat dem MJ/m2		Cool dem MJ/m2	Heat con kWh/m2		Aux con kWh/m2	Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool gen SEER
[ST] Central heating using water: radiators, [HS] Heat pump (electric): ground or water source, [HFT] Electricity, [CFT]									
Actual	26.8	167.5	2.4	0	1.9	3.16	0	3.36	0
Notional	63.1	233.2	7	0	1.1	2.43	0		

Key to terms	
Heat dem [MJ/m2]	= Heating energy demand
Cool dem [MJ/m2]	= Cooling energy demand
Heat con [kWh/m2]	= Heating energy consumption
Cool con [kWh/m2]	= Cooling energy consumption
Aux con [kWh/m2]	= Auxiliary energy consumption
Heat SSEFF	= Heating system seasonal efficiency (for notional building, value depends on activity glazing class)
Cool SSEER	= Cooling system seasonal energy efficiency ratio
Heat gen SSEFF	= Heating generator seasonal efficiency
Cool gen SSEER	= Cooling generator seasonal energy efficiency ratio
ST	= System type
HS	= Heat source
HFT	= Heating fuel type
CFT	= Cooling fuel type

Page 4 of 5

Key Features

The BCO can give particular attention to items with specifications that are better than typically expected.

Building fabric

Element Ui-Typ		Ui-Min	Surface where the minimum value occurs*		
Wall	0.23 0.2 Lower Ground Floor - Employment use EAST_W_		Lower Ground Floor - Employment use EAST_W_5		
Floor 0.2		0.11	Lower Ground Floor - Employment use EAST_S_3		
Roof	0.15	0.18	Lower Ground Floor - Employment use EAST_R_4		
Windows, roof windows, and rooflights 1.5 1.6 Lower Ground Floor - Emp		Lower Ground Floor - Employment use EAST_G_8			
Personnel doors 1.5		-	"No heat loss personnel doors"		
Vehicle access & similar large doors 1.5		-	"No heat loss vehicle access doors"		
High usage entrance doors 1.5		-	"No heat loss high usage entrance doors"		
U ₁₇₀ = Typical individual element U-values [W/(m ² K)]			Uewa = Minimum individual element U-values [W/(m ² K)]		
* There might be more than one surface where the minimum U-value occurs.					

Air Permeability	Typical value	This building		
m ³ /(h.m ²) at 50 Pa	5	5		

Page 5 of 5

APPENDIX H KINGS CROSS ENERGY CENTRE CORRESPONDENCE

From:	Paul Dakin
Sent:	07 February 2014 12:15
To:	Chris Rowe
Cc:	Paul Bushell; 'Clare Hebbes'; Robert Clarke
Subject:	RE: 140128 2601-6 101 Camley Street Mixed Use Development

Dear Chris

In response to your previous e mail requesting the feasibility of supplying 485kw heat/hot water load from the Kings Cross energy centre to your site, having discussed this with both our technical team and the client I can advise that we do not believe this to be a feasible option. The reasons are as you have stated previously that the location of your site would be difficult to serve due to the crossing of the canal and the network rail and the associated legal/easement requirements that would need to be secured from the relevant parties.

Best Regards

Paul

From: Chris Rowe Sent: 28 January 2014 14:05 To: Paul Dakin Cc: Paul Bushell Subject: 140128 2601-6 101 Camley Street Mixed Use Development

Dear Mr Dakin

I have been given your name via Vital Energy and note you are responsible for the Kings Cross Development CHP Energy Centre

We have been requested as part of our Planning Application (planned not submitted yet) by Camden to enquire about the potential for the KC CHP plant to serve our development also

We have a heating/hot water demand of approx. 485kw and would appreciate your thoughts on the feasibility of supplying such a load to our site; I attach a site plan showing your site and ours and their relationship

Appreciate the issue of the Network Rail line and Canal but as noted above would be pleased to receive your initial comments

Kind Regards, Chris Rowe Director

Slender Winter Partnership Ltd The Old School

London Road Westerham Kent TN16 1DN

T: +44(0)1959 564777 W: www.swoltd.co.uk

Registered in England: 3735841 VAT Registration: 794 1182 14