FAO: NIGEL TENWICK



noise.co.uk Report No2257

# **PPG24 Noise Survey:**

# Britannia St, London WC1

For: Durkan

## TABLE OF CONTENTS

۹

۹.

| 1.0 OBJECT                | 1 |
|---------------------------|---|
| 2.0 SCOPE                 | 1 |
| 3.0 SURVEY                | 1 |
| 4.0 MEASUREMENTS          | 1 |
| 5.0 MEASUREMENT EQUIPMENT | 2 |
| 6.0 SURVEY FINDINGS       | 2 |
| 7.0 ACOUSTIC FINDINGS     | 2 |
| 8.0 DISCUSSION OF RESULTS | 3 |
| 9.0 CONCLUSION            | 5 |
| 10.0 RECOMMENDATIONS      | 6 |

### 1.0 Object

The object of this report is to present the findings of a noise survey carried out at the proposed development site at Britannia St, London WC1 on Wednesday & Thursday 29<sup>th</sup> and 30<sup>th</sup> November 2006.

#### 2.0 Scope

The scope of this report is as follows:

- 1) Presentation of survey findings
- 2) Presentation of acoustic findings and comparison with PPG24.
- 3) Recommendations.

### 3.0 Survey

The measurement exercise was carried out to collect noise data over a 24 hour time period which spanned Wednesday & Thursday 29<sup>th</sup> and 30<sup>th</sup> November 2006.

This enabled full information to be collected to cover the 24-hour period. The monitoring position were free field positions approximately 1.7m from the ground on top of the wall overlooking the railway cutting running along the side of site.

Position No1: Boundary position overlooking railway cutting.

The sound pressure levels were free field levels which are detailed in Table 1 in the Appendix. The monitoring positions are detailed in the Site Plan in the Appendix. The microphone positions had direct line of sight with the adjacent noise source. The closest positions to the boundary was selected to represent the worst case conditions.

The weather conditions were as follows:

- Wind light
- Roads Dry.
- Average Temp daytime cool 10C deg+

#### 4.0 Measurements

During the survey recordings were made which were subsequently analysed into hourly periods.

The following measurements are reported:

LAeq, 1hr, LAmax, 1min (Rail Noise)

11/12/2006

MEADOW VIEW, NEWNHAM GROUNDS, KINGS NEWNHAM LANE, BRETFORD, WARKS CV23 0JU TEL: 02476-545397 FAX 02476-545010 DIRECTOR: W.A.WHITFIELD BA, MSC, MIOA EMAIL: <u>BILL@NOISE.CO.UK</u> WEB: WWW.NOISE.CO.UK The measurements and their interpretation shall be in accordance with BS 7445: Parts 1, 2, and 3.

All sound pressure levels are in dB re 20 micro pascals.

#### 5.0 Measurement Equipment

The measurements were made using the following equipment:

- 1) 1 off CEL 480 Precision Sound Level Meter
- 2) CEL 284/2 Calibrator.

The equipment was calibrated before and after the surveys. The calibration was as follows:

| METER  | 480 - 1 |
|--------|---------|
| BEFORE | 114.0DB |
| AFTER  | 114.0DB |

There was no adverse deviation.

The equipment has valid traceable calibration.

#### 6.0 Survey Findings

The site is located on Britannia St, London and is currently being used as a car park. The site is relatively flat and is bounded on its western edge by a railway that runs in a cutting, to the North by Britannia St and to the South by Wicklow St. The eastern side of site is bounded by existing buildings. A rail tunnel runs under the site following a parallel line with the rail cutting and featuring a circular ventilation shaft approx 2 - 3m in diameter which protrudes from the middle of the car parking area and is positions directly above the Apex of the rail tunnel. The rail tunnel is clearly shown as a hatched area in the site plan in the Appendix.

From our observations, the site is mainly affected by rail noise from the trains that run in the cutting running along side site although there are contributions from the road traffic passing along Britannia St and Wicklow St. Subjectively there were few other noise sources in the area.

### 7.0 Acoustic Findings

The fixed monitoring position was chosen to obtain representative readings of the potential noise sources affecting site. The monitoring positions were sited aon the boundary to the rail frontage, the proposed building façade is set back approximately 12m from this position and because of this a correction is needed to the free field measurements taken on the boundary to allow for a distance correction. In this case it is estimated that the distance approximates to a doubling of distance to the source and the correction for this (Assuming the rail line is a line source) is summarised below:

Correction = 10 Log<sub>10</sub> (d1/d2):

Where d1 = distance from the source for the monitoring position and d2 is the distance from the source for the proposed building façade.

For a doubling of distance this is:

 $10 \text{ Log}_{10}(0.5) = 3 \text{dB};$ 

## 8.0 Discussion of Results

#### **Rail Noise**

Table 1 show the free field noise levels recorded over the 24-hour period for the monitoring position together with the resultant prediction for the position of the building façade after the correction for distance has been adopted.

Position No1:

The readings peak at 68dB LAeq,1hr free field during the day. The peak night time reading was 67dB LAeq.

The daytime 16 hour free field level is calculated as 67.0dB.

The night-time 8 hour free field level is calculated as 62.0dB

Acoustic findings are compared against the PPG 24 document.

#### **Rail Noise**

Because the railway is the dominant noise source on site the criteria for rail traffic in the PPG 24 document is selected. This is detailed in the Table below.

The planning Policy Guidance document divides the noise to be analysed into four categories A, B, C, and D with a further division between nightime (2300-0700hrs) and daytime (0700-2300hrs) periods.

| PPG 24 NOISE LEVELS O    | ORRESPONDE              | NG TO HEE NO | 481 I XPOSUR | ŧ   |  |
|--------------------------|-------------------------|--------------|--------------|-----|--|
| <b>CATEGORH SFOR NEW</b> | DWEEPSESE               | VEQL DB      |              |     |  |
| NOISE SOURCE             | NOISE EXPOSURE CATEGORY |              |              |     |  |
| Rail Traffic             | Α                       | В            | С            | D   |  |
|                          |                         |              |              |     |  |
|                          |                         |              |              |     |  |
| 0700-2300                | <55                     | 55 - 66      | 66 - 74      | >74 |  |
|                          |                         |              |              |     |  |
| 2300-0700                | <45                     | 45 - 59      | 59 - 66      | >66 |  |
|                          |                         |              |              |     |  |

Assessment Position No1: calculated facade of proposed property.

The site is categorised as NEC C for night time & NEC C for day time for both monitoring positions.

The guidance states:

**NEC C:** "Planning permission should not normally be granted. Where it is considered that permission should be given, for example because there are no alternative quieter sites available, conditions should be imposed to ensure a commensurate level of protection against noise."

NOTE: This is not unusual for development sites in urban areas and City centres

#### Internal Noise:

Treating the property for the worst case condition and referring to the recommended BS8233: 1999 internal design criterion (Table 5, p19) which are as follows:

| Area         | Internal dB(A)                               |
|--------------|----------------------------------------------|
| Bedrooms     | 30dB "Good" ; 35dB "reasonable" ; 45dB LAmax |
| Living Areas | 30dB "Good" ; 40dB "reasonable               |

#### Internal Criteria

The specification for glazing will determine the internal environment in the dwellings. The intention is to base the design of the dwellings on the criterion stated in the table above. Note: "*worst case*" hourly noise level conditions are assumed below.

#### Rail Noise - Night Time Noise

Because the railway operates during the night time period a check on the LAmax levels was carried out during the night time period: PPG24 states:

"Night time noise levels (2300 – 0700): sites where individual noise events regularly exceed 82dB LAmax (S time weighting) several times in any hour should be treated as being in NEC C, regardless of the LAeq, 8hr (except where the LAeq, 8hr already puts the site in NEC D)."

In this case Nightime events >82dB LAmax<sup>1</sup> = 14 over 8 hrs (See Table 4 & Graph , SPLMAX Graph in the Appendix). No recategorisation necessary.

<sup>&</sup>lt;sup>1</sup> Note that the LAmax readings were taken on fast response not slow as depicted in the PPG24 document. This is because the sound level meter used does not have the dual function to allow simultaneous slow and fast response recordings. LAmax fast is a worst case condition. There will in reality be fewer events >82dB than this because fast response will give higher readings than a slow response meter.

#### Night Time - Glazed Option:

Usually the LAmax events of frequent passing trains will dictate the specification of the glazing for the bedrooms on the facades facing the rail line.

If we assume that the glazing design is based on 87dB LAmax level (See Table 4 & Graph in the Appendix) which covers all night time events the performance of the glazing can be calculated using the information contained in the Pilkington Glass "Technical Bulletin (1997)"

The simple BS8233 glazing selection procedure is detailed in Table 2.

#### Position No2: Approx facade position on railway frontage

Night time Noise - Bedrooms: LAmax

87 - 45 = 42dB(A)

The Glazing Specification is 6.150.4 Secondary Glazing = 42dB R RAIL<sup>2</sup>

This glazing selection satisfies the 45dB LAmax criteria for the worst case conditions when referenced to bedrooms with "windows closed".

#### **Daytime Noise Living Areas**

68 - 35 = 33dB(A)

The Glazing Specification is 10.12.6 Double Glazing = 35dB R RAL<sup>3</sup>

This glazing selection tends towards the "Good" 30dB(A) criteria for the worst case conditions when referenced to living rooms with "windows closed".

#### 9.0 Conclusion

The sound pressure level survey recorded 24 hours of data which details both the LAeq levels and LAmax sound pressure levels along the railway boundary. One monitoring position was selected which had clear line of sight of the rail source. Because monitoring was taken on the boundary to site (it being impracticable in the working car park to take a monitoring position at the proposed façade elevation) a correction was applied for the difference in distance from the boundary to the proposed façade location on the site. This correction is 3dB and is detailed in the data tables 1, 3 & 4 in the Appendix.

The predicted sound pressure levels at the proposed facade position show the site can be classed as NEC C for daytime and NEC C night-time. The site is developable providing attention is paid to the noise affecting site. To ensure internal criterion are met noise

<sup>&</sup>lt;sup>2</sup> Glazing Performance related to traffic noise spectra. Table 2 p3 Pilkington "Glass & Noise Control" -

Technical Bulletin May 1997. See Appendix: NOTE R RAIL = R TRA + 3dB

<sup>&</sup>lt;sup>3</sup> Glazing Performance related to traffic noise spectra. Table 2 p3 Pilkington "Glass & Noise Control" -Technical Bulletin May 1997. See Appendix: NOTE R RAIL I= R TRA + 3dB

mitigation should be considered. In this case a suitable glazing option should be used. The preferred options are detailed in the Recommendations below.

## 10.0 Recommendations

Minimum - Glazed Option: (worst case): Proposed Development : Approx facade position .

Bedrooms: 6.150.4 Secondary glazing or a glazing option with a minimum performance specification of 42dB  $R_{RAIL}$  (Based on Worst Case Condition & "Good" criterion being achieved)

Living Areas: 10.12.6 double glazing or a glazing option with a minimum performance specification of 35dB  $R_{RAIL}$  (Based on Worst Case Condition& "Good" criterion being achieved)

Note: To ensure internal design criterion are met all windows must remain closed.

We recommend that Greenwood acoustic passive vents or similar are selected so as not to compromise the acoustic performance of the fenestration in the properties.

Greenwood Airvac Contact: Mike Beck Greenwood Mob 07801-039584.

W.A.Whitfield BA, MSc, MIOA

Noise & Vibration Consultant.



## Table 1

.

Development Site: Britannla St, London WC1 - Site Noise Survey - Position No1 Survey Date: 29th - 30th November 2006 All readings sound pressure levels

ł

|                | Measured            | Distance Correction |                    |
|----------------|---------------------|---------------------|--------------------|
| Hour End       | Levels dB LAeq      | dB                  | Free Field dB LAeq |
| 17:00:00       | 69.6                | 3                   | 66.6               |
| 18:00:00       | 70.5                | 3                   | 67.5               |
| 19:00:00       | 69.8                | 3                   | 66.8               |
| 20:00:00       | 70.7                | 3                   | 67.7               |
| 21:00:00       | 68.5                | 3                   | 65.5               |
| 22:00:00       | 67.8                | 3                   | 64.8               |
| 23:00:00       | 69.7                | 3                   | 66.7               |
| 00:00:00       | 69.6                | 3                   | 66.6               |
| 01:00:00       | 65.3                | 3                   | 62.3               |
| 02:00:00       | 52.0                | 3                   | 49.0               |
| 03:00:00       | 51.1                | 3                   | 48.1               |
| 04:00:00       | 52.3                | 3                   | 49.3               |
| 05:00:00       | 53.9                | 3                   | 50.9               |
| 06:00:00       | 64.8                | 3                   | 61.8               |
| 07:00:00       | 69.8                | 3                   | 66.8               |
| 08:00:00       | 70.5                | 3                   | 67.5               |
| 09:00:00       | 70.7                | 3                   | 67.7               |
| 10:00:00       | 70.0                | 3                   | 67.0               |
| 11:00:00       | 70.5                | 3                   | 67.5               |
| 12:00:00       | 69.3                | 3                   | 66.3               |
| 13:00:00       | 69.5                | 3                   | 66.5               |
| 14:00:00       | 69.3                | 3                   | 66.3               |
| 15:00:00       | 69.2                | 3                   | 66.2               |
| 16:00:00       | 69.2                | 3                   | 66.2               |
| Max Night Time | Hourly dB LAeq      |                     | 67                 |
| Max Day Time H | lourly dB LAeq      |                     | 68                 |
| Min Night Time | lourly dB LAeq      |                     | 48                 |
| PPG 24 Rail No | ise NEC Calculation |                     |                    |
|                |                     |                     | NEC                |
| Daytime        | 67                  |                     | C                  |
| Niaht time     | 62                  |                     | С                  |

## Table 2a - Internal Noise Criteria & Glazing Options Development Site: Britannia St, London WC1 - Site Noise Survey - Position No1

\_

40

42 48

37

39 45

#### Assumptions

Secondary Glazing 6.100.4 Secondary

6,150,4 Secondary 10,200,6 Secondary

Survey Date: 29th - 30th November 2006

|                                                                                             |                                              |                           |                                                            | Typ<br>Wo      | e in Noise Levels<br>rst Case Noise Le | Here<br>evels |
|---------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------|------------------------------------------------------------|----------------|----------------------------------------|---------------|
| Assume Rail noise dominant                                                                  |                                              |                           |                                                            | Night<br>L Acc | Night<br>I Amax                        | Day<br>LAeo   |
| BS8233: 1999<br>Bedroom Criteria LAeq, T - 30dBA "G<br>Living Rooms Criteria LAeg, T - 30dF | 600d" - 35dBA "Reaso<br>3A "Good" - 40dBA "R | nable" 45di<br>easonable" |                                                            | 67             | 87                                     | 68            |
| $R_{AR} = R_{TRA} + 2$ Pilkington Glass & No                                                | oise Control "Technica                       | al Bulletin": (           | uide p16 Barrier Performance dB(<br>From barrier Calc Shee | A) 0<br>t      | O                                      | 0             |
| Double Glazing                                                                              | R <sub>TRA</sub>                             | R <sub>RAIL</sub>         | if Applicable                                              |                |                                        |               |
| 4.12.4                                                                                      | 25                                           | 28                        |                                                            |                |                                        |               |
| 6.12.6                                                                                      | 26                                           | 29                        |                                                            |                |                                        |               |
| 6.12.6.4pvb                                                                                 | 27                                           | 30                        |                                                            |                |                                        |               |
| 10.12.4                                                                                     | 29                                           | 32                        |                                                            |                |                                        |               |
| 10.12.6                                                                                     | 32                                           | 35                        |                                                            |                |                                        |               |
| 10.12.6.4pvb                                                                                | 34                                           | 37                        |                                                            |                |                                        |               |

.

-

المعتقر المعتقر الم

| Internal Criteria: Calculation for Acoustic Glazing         |                   | <b>Calculation</b>   |                 |
|-------------------------------------------------------------|-------------------|----------------------|-----------------|
| Noise Level at Property dB(A)                               | 67                | 87                   | 68<br>35        |
| Desired Internal Level<br>Required Glazing Performance Reas | 30                | 43                   | 33              |
| Gisting Selection                                           | 10.12.6.4pvb      | 6.150.4<br>Secondary | 10.12.6         |
| Achieves Internal Criteria                                  | Yes               | No                   | Yes             |
|                                                             | Predicted Interna | ui Leveis with G     | lazing Selected |

|                          | 5                 | Selected Minimum   |            |             |          |
|--------------------------|-------------------|--------------------|------------|-------------|----------|
|                          | G                 | lazing Performance |            |             |          |
| Specification of Glazing |                   | dB RRAL            | Night LAeq | Night LAmax | Day LAeq |
| Bedrooms                 | 6.150.4 Secondary | 42                 | 25         | 47          |          |
| Living Rooms             | 10.12.6           | 35                 |            |             | 33       |

note: windows must remain closed to ensure compliance with internal design criteria

----



.

.

,

<u>Table 3: Night Time Train Events</u> Development Site: Britannia St, London WC1 - Site Noise Survey - Position No1

|           |          | SPLMAX F -    |          |              |                       |
|-----------|----------|---------------|----------|--------------|-----------------------|
| Data      | Time     | Predicted at  | Distance | SPI MAX F    | Trains (LAmax >70dBA) |
| 29-Nov-06 | 23:00:00 | 77.8          | 3        | 80.8         | 1                     |
| 29-Nov-06 | 23:01:00 | 81.1          | 3        | 84.1         | 1                     |
| 29-Nov-06 | 23:02:00 | 52.6          | 3        | 55.6         | . 0                   |
| 29-Nov-06 | 23:03:00 | 81.3          | 3        | 84.3         | 1                     |
| 29-NOV-06 | 23:04:00 | 00.4<br>74.8  | 3        | 77.8         | 1                     |
| 29-Nov-06 | 23:06:00 | 58.5          | ž        | 61.5         | 0                     |
| 29-Nov-06 | 23:07:00 | 77.6          | 3        | 80.6         | 1                     |
| 29-Nov-06 | 23:08:00 | 75.5          | 3        | 78.5         | 1                     |
| 29-Nov-06 | 23:09:00 | 60.6<br>58.8  | 3        | 63,6         | 0                     |
| 29-Nov-06 | 23:10:00 | 82.5          | 3        | 85.5         | 1                     |
| 29-Nov-06 | 23:12:00 | 73.0          | 3        | 76.0         | 1                     |
| 29-Nov-06 | 23:13:00 | 79.0          | 3        | 82.0         | 1                     |
| 29-Nov-06 | 23:14:00 | 53.1          | 3        | 56.1<br>63.4 | 0                     |
| 29-Nov-06 | 23:16:00 | 79.9          | 3        | 82.9         | 1                     |
| 29-Nov-06 | 23:17:00 | 83.7          | 3        | 86.7         | 1                     |
| 29-Nov-06 | 23:18:00 | 70.8          | 3        | 73.8         | 1                     |
| 29-Nov-06 | 23:19:00 | 81.4          | 3        | 84.4         | 1                     |
| 29-NOV-00 | 23:20:00 | 73.0          | 3        | 76.0         | 1                     |
| 29-Nov-06 | 23:22:00 | 62.1          | 3        | 65.1         | 0                     |
| 29-Nov-06 | 23:23:00 | 79.5          | 3        | 82.5         | 1                     |
| 29-Nov-06 | 23:24:00 | 56.7          | 3        | 59.7         | 0                     |
| 29-NOV-06 | 23:25:00 | 57.4          | 3        | 60.4         | õ                     |
| 29-Nov-06 | 23:27:00 | 56.0          | 3        | 59.0         | 0                     |
| 29-Nov-06 | 23:28:00 | 84.4          | 3        | 87.4         | 1                     |
| 29-Nov-06 | 23:29:00 | 56.3          | 3        | 59.3         | 0                     |
| 29-Nov-06 | 23:30:00 | /3.4          | 3        | 76.4<br>80.5 | 1                     |
| 29-Nov-06 | 23:32:00 | 79.5          | 3        | 82.5         | 1                     |
| 29-Nov-06 | 23:33:00 | 62.0          | 3        | 65.0         | 0                     |
| 29-Nov-06 | 23:34:00 | 54.2          | 3        | 57.2         | 0                     |
| 29-Nov-06 | 23:35:00 | 57.1<br>567   | 3        | 59.7         | ŏ                     |
| 29-Nov-06 | 23:37:00 | 55.6          | 3        | 58.6         | Ō                     |
| 29-Nov-06 | 23:38:00 | 62.6          | 3        | 65.6         | 0                     |
| 29-Nov-06 | 23:39:00 | 84.9          | 3        | 87.9         | 1                     |
| 29-Nov-06 | 23:40:00 | 63.3<br>54.6  | 3        | 57.6         | ő                     |
| 29-Nov-06 | 23:42:00 | 78.7          | 3        | 81.7         | 1                     |
| 29-Nov-06 | 23:43:00 | 76.6          | 3        | 79.6         | 1                     |
| 29-Nov-06 | 23:44:00 | 57.2          | 3        | 60.2<br>67 9 | 0                     |
| 29-Nov-06 | 23:45:00 | 75.8          | 3        | 78.8         | 1                     |
| 29-Nov-06 | 23:47:00 | 58.2          | 3        | 61.2         | 0                     |
| 29-Nov-06 | 23:48:00 | 80.2          | 3        | 83.2         | 1                     |
| 29-Nov-06 | 23:49:00 | 70.5          | 3        | /3.5<br>76 3 | 1                     |
| 29-Nov-06 | 23:50:00 | 74.2          | 3        | 77.2         | 1                     |
| 29-Nov-06 | 23:52:00 | 62.7          | 3        | 65.7         | 0                     |
| 29-Nov-06 | 23:53:00 | 79.1          | 3        | 82.1         | 1                     |
| 29-Nov-06 | 23:54:00 | 73.3          | 3        | 76.3<br>59.7 | 1                     |
| 29-Nov-06 | 23:56:00 | 53.5          | 3        | 56.5         | 0                     |
| 29-Nov-06 | 23:57:00 | 79.9          | 3        | 82.9         | 1                     |
| 29-Nov-06 | 23:58:00 | 53.7          | 3        | 56.7         | 0                     |
| 29-Nov-06 | 23:59:00 | 85.8          | 3        | 66.0<br>90.0 | 1                     |
| 30-Nov-06 | 00:01:00 | 75.6          | 3        | 78.6         | 1                     |
| 30-Nov-06 | 00:02:00 | 77.6          | 3        | 80.6         | 1                     |
| 30-Nov-06 | 00:03:00 | 75.7          | 3        | 78.7         | 1                     |
| 30-Nov-06 | 00:04:00 | / 0.0<br>56.8 | 3        | 78.6<br>59.8 | ,<br>o                |
| 30-Nov-06 | 00:06:00 | 53.5          | 3        | 56.5         | Ō                     |
| 30-Nov-06 | 00:07:00 | 53.9          | 3        | 56.9         | 0                     |
| 30-Nov-06 | 00:08:00 | 77.5          | 3        | 80.5         | 1                     |
| 30-Nov-06 | 00:09:00 | 03.9<br>76.4  | 3        | 79.4         | 1                     |
| 30-Nov-06 | 00:11:00 | 78.4          | 3        | 81.4         | 1                     |
| 30-Nov-06 | 00:12:00 | 80.1          | 3        | 83.1         | 1                     |
| 30-Nov-06 | 00:13:00 | 82.5<br>55 5  | 3        | 85.5         | 1                     |
| 30-NOV-06 | 00:14:00 | 30.5<br>53.6  | 3        | 56.5         | 0                     |
| 30-Nov-06 | 00:16:00 | 77.7          | š        | 80.7         | 1                     |
| 30-Nov-06 | 00:17:00 | 55.6          | 3        | 58.6         | 0                     |
| 30-Nov-06 | 00:18:00 | 53.2          | 3        | 56.2         | 0                     |
| 30-Nov-06 | 00:19:00 | 81.9          | 3        | 84.9         | 1                     |
| 30-Nov-06 | 00:20:00 | 53.9          | 3        | 56.9         | ő                     |
|           |          |               | -        |              |                       |

1 -

.

<u>Table 3: Night Time Train Events</u> Development Site: Britannia St, London WC1 - Site Noise Survey - Position No1

|           |          | SPLMAX F -     | Distance   |              |                       |
|-----------|----------|----------------|------------|--------------|-----------------------|
| Date      | Time     | nearest facade | Correction | SPLMAX F     | Trains (LAmax >70dBA) |
| 30-Nov-06 | 00:22:00 | 54.3           | 3          | 57.3         | 0                     |
| 30-Nov-06 | 00:23:00 | 53.2           | 3 .        | 56.2         | 0                     |
| 30-Nov-06 | 00:24:00 | 57.1           | 3          | 60.1         | 0                     |
| 30-Nov-06 | 00:25:00 | 74.3           | 3          | 77.3         | 1                     |
| 30-Nov-06 | 00:26:00 | /0.9<br>77 8   | 3          | 79.9         | 1                     |
| 30-Nov-06 | 00:28:00 | 79.1           | 3          | 82.1         | 1                     |
| 30-Nov-06 | 00:29:00 | 76.8           | 3          | 79.8         | 1                     |
| 30-Nov-06 | 00:30:00 | 60.7           | 3          | 63.7         | 0                     |
| 30-Nov-06 | 00:31:00 | 57.6           | 3          | 60.6         | 0                     |
| 30-Nov-06 | 00:32:00 | 81.8           | 3          | 84.8         | 1                     |
| 30-Nov-06 | 00:33:00 | 60.7<br>53.3   | 3          | 56.3         | ŏ                     |
| 30-Nov-06 | 00:35:00 | 56.8           | 3          | 59.8         | Ō                     |
| 30-Nov-06 | 00:36:00 | 55.0           | 3          | 58.0         | 0                     |
| 30-Nov-06 | 00:37:00 | 57.5           | 3          | 60.5         | 0                     |
| 30-Nov-06 | 00:38:00 | 54.0           | 3          | 57.0         | 0                     |
| 30-Nov-06 | 00:39:00 | 78.8           | 3          | 81.8         | 1                     |
| 30-Nov-06 | 00:40:00 | 61.3<br>57.2   | 3          | 60.2         | ň                     |
| 30-NOV-06 | 00:41:00 | 57.Z<br>65.6   | 3          | 68.6         | ŏ                     |
| 30-Nov-06 | 00:43:00 | 52.5           | 3          | 55.5         | 0                     |
| 30-Nov-06 | 00:44:00 | 55.5           | 3          | 58.5         | 0                     |
| 30-Nov-06 | 00:45:00 | 55.5           | 3          | 58.5         | 0                     |
| 30-Nov-06 | 00:46:00 | 55.3           | 3          | 58.3         | 0                     |
| 30-Nov-06 | 00:47:00 | 55.3           | 3          | 58.3         | 1                     |
| 30-Nov-06 | 00:40:00 | /9.3<br>63.4   | 3          | 66.4         | Ó                     |
| 30-Nov-06 | 00:50:00 | 54.7           | 3          | 57.7         | Ū                     |
| 30-Nov-06 | 00:51:00 | 56.4           | 3          | 59.4         | 0                     |
| 30-Nov-06 | 00:52:00 | 55.9           | 3          | 58.9         | 0                     |
| 30-Nov-06 | 00:53:00 | 57.1           | 3          | 60.1         | 8                     |
| 30-Nov-06 | 00:54:00 | 51.9           | 3          | 54.9         | 0                     |
| 30-Nov-06 | 00:55:00 | 787            | 3          | 81.7         | 1                     |
| 30-Nov-06 | 00:57:00 | 75.6           | 3          | 78.6         | 1                     |
| 30-Nov-06 | 00:58:00 | 52.0           | 3          | 55.0         | 0                     |
| 30-Nov-06 | 00:59:00 | 56.3           | 3          | 59.3         | 0                     |
| 30-Nov-06 | 01:00:00 | 54.7           | 3          | 57.7         | 0                     |
| 30-Nov-06 | 01:01:00 | 54.1           | 3          | 57.1         | 0                     |
| 30-Nov-06 | 01:02:00 | 54.3           | 3          | 57.3         | 8                     |
| 30-Nov-06 | 01:04:00 | 50.4           | 3          | 53.4         | ő                     |
| 30-Nov-06 | 01:05:00 | 60.6           | 3          | 63.6         | 0                     |
| 30-Nov-06 | 01:06:00 | 50.9           | 3          | 53.9         | 0                     |
| 30-Nov-06 | 01:07:00 | 60.9           | 3          | 63.9         | 0                     |
| 30-Nov-06 | 01:08:00 | 59.5           | 3          | 62.5         | 0                     |
| 30-Nov-06 | 01:09:00 | 51.8           | 3          | 04.0<br>55.5 | 0                     |
| 30-Nov-06 | 01.10.00 | 59.0           | 3          | 62.0         | ů<br>0                |
| 30-Nov-06 | 01:12:00 | 53.4           | 3          | 56.4         | 0                     |
| 30-Nov-06 | 01:13:00 | 52.3           | 3          | 55.3         | 0                     |
| 30-Nov-06 | 01:14:00 | 52.9           | 3          | 55.9         | 0                     |
| 30-Nov-06 | 01:15:00 | 52.8           | 3          | 55.8         | 0                     |
| 30-Nov-06 | 01:16:00 | 51.0           | 3          | 54.0<br>57.0 | 0                     |
| 30-Nov-06 | 01:17:00 | 56.1           | 3          | 59.1         | - Ö                   |
| 30-Nov-06 | 01:19:00 | 54.3           | 3          | 57.3         | 0                     |
| 30-Nov-06 | 01:20:00 | 55.6           | 3          | 58.6         | O                     |
| 30-Nov-06 | 01:21:00 | 53.8           | 3          | 56.8         | 0                     |
| 30-Nov-06 | 01:22:00 | 59.7           | 3          | 62.7         | U                     |
| 30-Nov-06 | 01:23:00 | 543            | 3          | 57.3         | 0                     |
| 30-Nov-06 | 01:24:00 | 54.5           | 3          | 57.5         | ő                     |
| 30-Nov-06 | 01:26:00 | 54.2           | 3          | 57.2         | Ō                     |
| 30-Nov-06 | 01:27:00 | 54.7           | 3          | 57.7         | 0                     |
| 30-Nov-06 | 01:28:00 | 53.7           | 3          | 56.7         | 0                     |
| 30-Nov-06 | 01:29:00 | 53.8           | 3          | 56.8         | U                     |
| 30-NOV-06 | 01:30:00 | 57 2           | 3          | 50.0<br>60.2 | 0                     |
| 30-Nov-06 | 01:32:00 | 62.5           | 3          | 65.5         | ŏ                     |
| 30-Nov-06 | 01:33:00 | 54.6           | 3          | 57.6         | Ō                     |
| 30-Nov-06 | 01:34:00 | 49.8           | 3          | 52.8         | 0                     |
| 30-Nov-06 | 01:35:00 | 58.5           | 3          | 61.5         | 0                     |
| 30-Nov-06 | 01:36:00 | 51.6           | 3          | 54.6         | 0                     |
| 30-Nov-06 | 01:37:00 | 51.2           | 3          | 54.2         | 0                     |
| 30-NOV-06 | 01:36:00 | 49.2<br>80.4   | 3          | 52.2<br>73 A | 0                     |
| 30-Nov-08 | 01:40:00 | 497            | 3          | 52.7         | . 0                   |
| 30-Nov-06 | 01:41:00 | 52.4           | 3          | 55.4         | ō                     |
| 30-Nov-06 | 01:42:00 | 53.8           | 3          | 56.8         | 0                     |
| 30-Nov-06 | 01:43:00 | 54.0           | 3          | 57.0         | 0                     |

i

•

.

<u>Table 3: Nicht Time Train Events</u> Development Site: Britannia St, London WC1 - Site Noise Survey - Position No1

|                     |          | SPLMAX F -     |          |              |                       |
|---------------------|----------|----------------|----------|--------------|-----------------------|
| 0-1-                | Time     | Predicted at   | Distance |              | Trains (LAmer >70dBA) |
| Jate 1<br>30-Nov-06 | 01:44:00 | 10arest laçade | 3        | 56.4         | 0                     |
| 30-Nov-06           | 01:45:00 | 52.0           | 3        | 55.0         | 0                     |
| 30-Nov-06           | 01:46:00 | 51.4           | 3        | 54.4         | 0                     |
| 30-Nov-06           | 01:47:00 | 53.2           | 3        | 56.2<br>54.2 | 0                     |
| 30-Nov-06           | 01:46:00 | 51.2           | 3        | 63.6         | ů<br>O                |
| 30-Nov-06           | 01:50:00 | 51.1           | 3        | 54.1         | 0                     |
| 30-Nov-06           | 01:51:00 | 54.1           | 3        | 57.1         | 0                     |
| 30-Nov-06           | 01:52:00 | 51.0           | 3        | 54.0         | 0                     |
| 30-NOV-06           | 01:53:00 | 53.9           | 3        | 56.9         | ŏ                     |
| 30-Nov-06           | 01:55:00 | 54.4           | 3        | 57.4         | 0                     |
| 30-Nov-06           | 01:56:00 | 53.0           | 3        | 56.0         | 0                     |
| 30-Nov-06           | 01:57:00 | 53.6           | 3        | 56.6<br>EE 4 | U                     |
| 30-Nov-06           | 01:58:00 | 52.4           | 3        | 55.8         | ů                     |
| 30-Nov-06           | 02:00:00 | 52.4           | 3        | 55.4         | 0                     |
| 30-Nov-06           | 02:01:00 | 55.1           | 3        | 58.1         | 0                     |
| 30-Nov-06           | 02:02:00 | 52.3           | 3        | 55.3         | 0                     |
| 30-Nov-06           | 02:03:00 | 53.3           | 3        | 56.3         | 0                     |
| 30-Nov-06           | 02:05:00 | 55.9           | 3        | 58.9         | Ō                     |
| 30-Nov-06           | 02:06:00 | 58.5           | 3        | 61.5         | 0                     |
| 30-Nov-06           | 02:07:00 | 54.3           | 3        | 57.3         | 0                     |
| 30-Nov-06           | 02:08:00 | 66.4           | 3        | 69.4<br>57 0 | U                     |
| 30-Nov-06           | 02:09:00 | 04.Z<br>55.4   | 3        | 58.4         | 0                     |
| 30-Nov-06           | 02:11:00 | 56.2           | 3        | 59.2         | ō                     |
| 30-Nov-06           | 02:12:00 | 55.3           | 3        | 58.3         | 0                     |
| 30-Nov-06           | 02:13:00 | 64.2           | 3        | 67.2         | 0                     |
| 30-Nov-06           | 02:14:00 | 47.8           | 3        | 50.8         | 0                     |
| 30-Nov-06           | 02:16:00 | 50.8           | 3        | 53.8         | 0                     |
| 30-Nov-06           | 02:17:00 | 49,9           | 3        | 52.9         | 0                     |
| 30-Nov-06           | 02:18:00 | 50.8           | 3        | 53.8         | 0                     |
| 30-Nov-06           | 02:19:00 | 56.4           | 3        | 54.4<br>54.8 | 0                     |
| 30-Nov-06           | 02:20:00 | 53.6           | 3        | 56.6         | ŏ                     |
| 30-Nov-06           | 02:22:00 | 53.5           | 3        | 56.5         | 0                     |
| 30-Nov-06           | 02:23:00 | 53.2           | 3        | 56.2         | 0                     |
| 30-Nov-06           | 02:24:00 | 49.9           | 3        | 52.9         | 0                     |
| 30-NOV-06           | 02:25:00 | 55.2           | 3        | 09.7<br>58.2 | 0                     |
| 30-Nov-06           | 02:27:00 | 51.8           | 3        | 54.8         | Ō                     |
| 30-Nov-06           | 02:28:00 | 49.5           | 3        | 52.5         | 0                     |
| 30-Nov-06           | 02:29:00 | 66.7           | 3        | 69.7         | 0                     |
| 30-Nov-06           | 02:30:00 | 58.3           | 3        | 51.3<br>53.9 | 0                     |
| 30-Nov-06           | 02:32:00 | 49.8           | 3        | 52.8         | ŏ                     |
| 30-Nov-06           | 02:33:00 | 50.2           | 3        | 53.2         | 0                     |
| 30-Nov-06           | 02:34:00 | 46.3           | 3        | 49.3         | 0                     |
| 30-Nov-06           | 02:35:00 | 49.8           | 3        | 52.8<br>55.5 | 0                     |
| 30-Nov-06           | 02:37:00 | 56.3           | 3        | 59.3         | Ō                     |
| 30-Nov-06           | 02:38:00 | 54.0           | 3        | 57.0         | 0                     |
| 30-Nov-06           | 02:39:00 | 54.2           | 3        | 57.2         | o<br>o                |
| 30-Nov-06           | 02:40:00 | 53.2<br>58.0   | 3        | 56.2<br>61.0 | 0                     |
| 30-Nov-06           | 02:41:00 | 52.8           | 3        | 55.8         | ō                     |
| 30-Nov-06           | 02:43:00 | 47.7           | 3        | 50.7         | 0                     |
| 30-Nov-06           | 02:44:00 | 59.5           | 3        | 62.5         | 0                     |
| 30-Nov-06           | 02:45:00 | 52.7           | 3        | 55.7<br>66.1 | 0                     |
| 30-Nov-06           | 02:47:00 | 52.1           | 3        | 55.1         | ō                     |
| 30-Nov-06           | 02:48:00 | 55.2           | 3        | 58.2         | 0                     |
| 30-Nov-06           | 02:49:00 | 53.1           | 3        | 56.1         | 0                     |
| 30-Nov-06           | 02:50:00 | 50.7<br>47.5   | 3        | 53.7         | 0                     |
| 30-Nov-06           | 02:52:00 | 47.3           | 3        | 50.3         | o                     |
| 30-Nov-06           | 02:53:00 | 50.7           | 3        | 53.7         | 0                     |
| 30-Nov-06           | 02:54:00 | 52.3           | 3        | 55.3<br>50.7 | 0                     |
| 30-NOV-06           | 02:55:00 | 4/./<br>50.3   | 3        | 53.3         | n                     |
| 30-Nov-06           | 02:57:00 | 53.8           | 3        | 56.8         | ŏ                     |
| 30-Nov-06           | 02:58:00 | 55.6           | 3        | 58.6         | 0                     |
| 30-Nov-06           | 02:59:00 | 57.5           | 3        | 60.5         | 0                     |
| 30-Nov-06           | 03:00:00 | 57.9           | 3        | 60.9         | 0                     |
| 30-Nov-06           | 03:02:00 | 58 8           | 3        | 598          | 0                     |
| 30-Nov-06           | 03:03:00 | 50.7           | 3        | 53.7         | ō                     |
| 30-Nov-06           | 03:04:00 | 51.0           | 3        | 54.0         | 0                     |
| 30-Nov-06           | 03:05:00 | 51.9           | 3        | 54.9         | 0                     |

•

•

<u>Table 3: Night Time Train Events</u> Development Site: Britannia St, London WC1 - Site Noise Survey - Position No1 SPLMAX F -

|           |          | Predicted at   | Distance   |               |                       |
|-----------|----------|----------------|------------|---------------|-----------------------|
| Date      | Time     | nearest facade | Correction | SPLMAX F      | Trains (LAmax >70dBA) |
| 30-Nov-06 | 03:06:00 | 51.3           | 3          | 54.3          | 0                     |
| 30-Nov-06 | 03:07:00 | 51.8           | 3          | 54.8          | 0                     |
| 30-Nov-06 | 03:08:00 | 52.9           | 3          | 55.9          | 0                     |
| 30-Nov-06 | 03:09:00 | 56.9           | 3          | 59.9          | 0                     |
| 30-Nov-06 | 03:10:00 | 52.6           | 3          | 55.6          | 0                     |
| 30-Nov-06 | 03:11:00 | 52.5           | 3          | 55.5          | 0                     |
| 30-Nov-06 | 03:12:00 | 58.2           | 3          | 54.0          | 0                     |
| 30-NOV-00 | 03-14-00 | 54.7           | 3          | 57 7          | <u>o</u>              |
| 30-Nov-06 | 03:14:00 | 51.9           | 3          | 54.9          | ō                     |
| 30-Nov-06 | 03:16:00 | 52.2           | 3          | 55.2          | 0                     |
| 30-Nov-06 | 03:17:00 | 50.2           | 3          | 53.2          | 0                     |
| 30-Nov-06 | 03:18:00 | 51.4           | 3          | 54.4          | 0                     |
| 30-Nov-06 | 03:19:00 | 59.7           | 3          | 62.7          | 0                     |
| 30-Nov-06 | 03:20:00 | 64.7           | 3          | 67.7          | 0                     |
| 30-Nov-06 | 03:21:00 | 52.1           | 3          | 55.1          | U                     |
| 30-Nov-06 | 03:22:00 | 52.3           | 3          | 55.3          | 0                     |
| 30-NOV-06 | 03:23:00 | 52.0           | 3          | 55.9          | ŏ                     |
| 30-Nov-06 | 03-25-00 | 68.5           | 3          | 71.5          | ō                     |
| 30-Nov-06 | 03 26:00 | 58.4           | š          | 61.4          | Ō                     |
| 30-Nov-06 | 03:27:00 | 50.4           | 3          | 53.4          | 0                     |
| 30-Nov-06 | 03:28:00 | 49.6           | 3          | 52.6          | 0                     |
| 30-Nov-06 | 03:29:00 | 56.8           | 3          | 59.8          | 0                     |
| 30-Nov-06 | 03:30:00 | 53.9           | 3          | 56.9          | 0                     |
| 30-Nov-06 | 03:31:00 | 50.5           | 3          | 53.5          | 0                     |
| 30-Nov-06 | 03:32:00 | 52.9           | 3          | 55.9          | 0                     |
| 30-Nov-06 | 03:33:00 | 53.0           | 3          | 30.U<br>49.5  | 0                     |
| 30-Nov-06 | 03:34:00 | 40.0           | 3          | 53.7          | ů                     |
| 30-Nov-06 | 03:36:00 | 56.8           | 3          | 59.8          | ů.                    |
| 30-Nov-06 | 03:37:00 | 52.9           | 3          | 55.9          | 0                     |
| 30-Nov-06 | 03:38:00 | 51.9           | 3          | 54.9          | 0                     |
| 30-Nov-06 | 03:39:00 | 54,5           | 3          | 57.5          | 0                     |
| 30-Nov-06 | 03:40:00 | 56.4           | 3          | 59.4          | 0                     |
| 30-Nov-06 | 03:41:00 | 50.8           | 3          | 53.8          | 0                     |
| 30-Nov-06 | 03:42:00 | 55.0           | 3          | 58.0          | U                     |
| 30-Nov-06 | 03:43:00 | 53.7           | 3          | 56.7          | 0                     |
| 30-Nov-06 | 03:44:00 | 55.0           | 3          | 58.0          | ő                     |
| 30-Nov-06 | 03:45:00 | 55.6           | 3          | 58.6          | ŏ                     |
| 30-Nov-06 | 03:47:00 | 52.2           | 3          | 55.2          | ō                     |
| 30-Nov-06 | 03:48:00 | 52.2           | 3          | 55.2          | 0                     |
| 30-Nov-06 | 03:49:00 | 59.7           | 3          | 62.7          | 0                     |
| 30-Nov-06 | 03:50:00 | 52.5           | 3          | 55.5          | 0                     |
| 30-Nov-06 | 03:51:00 | 52.2           | 3          | 55.2          | 0                     |
| 30-Nov-06 | 03:52:00 | 48.4           | 3          | 51.4          | d                     |
| 30-Nov-06 | 03:53:00 | 53.6           | 3          | 56.6          | 0                     |
| 30-Nov-06 | 03:54:00 | 61.1<br>71.9   | 3          | 74.9          | 1                     |
| 30-Nov-06 | 03:55:00 | 49.2           | 3          | 52.2          | ò                     |
| 30-Nov-06 | 03:57:00 | 53.3           | š          | 56.3          | 0                     |
| 30-Nov-06 | 03:58:00 | 48.0           | 3          | 51.0          | 0                     |
| 30-Nov-06 | 03:59:00 | 52.4           | 3          | 55.4          | 0                     |
| 30-Nov-06 | 04:00:00 | 55.6           | 3          | 58.6          | 0                     |
| 30-Nov-06 | 04:01:00 | 53.0           | 3          | 56.0          | 0                     |
| 30-Nov-06 | 04:02:00 | 53.8           | 3          | 56.8          | 0                     |
| 30-Nov-06 | 04:03:00 | 52.0           | 3          | 55.0          | 0                     |
| 30-N0V-06 | 04:04:00 | 53.0           | 3          | 56.5          | ő                     |
| 30-Nov-06 | 04:06:00 | 54.5           | 3          | 57.5          | ő                     |
| 30-Nov-06 | 04:07:00 | 54.2           | 3          | 57.2          | 0                     |
| 30-Nov-06 | 04:08:00 | 56.4           | 3          | 59.4          | 0                     |
| 30-Nov-06 | 04:09:00 | 62.8           | 3          | 65.8          | 0                     |
| 30-Nov-06 | 04:10:00 | 62.7           | 3          | 65.7          | 0                     |
| 30-Nov-06 | 04:11:00 | 49.7           | 3          | 52.7          | 0                     |
| 30-Nov-06 | 04:12:00 | 55.9           | 3          | 38.9<br>50.7  | 0                     |
| 30-NOV-06 | 04:13:00 | 50.7           | 3          | 58.6          | 0                     |
| 30-Nov-06 | 04:15:00 | 54 3           | 3          | 57.3          | ő                     |
| 30-Nov-06 | 04:16:00 | 53.3           | ž          | 56.3          | õ                     |
| 30-Nov-06 | 04.17.00 | 57.1           | 3          | 60.1          | 0                     |
| 30-Nov-06 | 04:18:00 | 54.0           | 3          | 57.0          | 0                     |
| 30-Nov-06 | 04:19:00 | 56.3           | 3          | 59.3          | 0                     |
| 30-Nov-06 | 04:20:00 | 52.8           | 3          | 55.8          | 0                     |
| 30-Nov-06 | 04:21:00 | 56.6           | 3          | 59.6          | 0                     |
| 30-Nov-06 | 04:22:00 | 56.8           | 3          | 59.8          | U O                   |
| 30-Nov-06 | 04:23:00 | 54.6<br>55 5   | 3          | 5/.15<br>59.5 | 0                     |
| 30-NOV-U6 | 04:24:00 | 55.0<br>65.6   | 3          | 30.3<br>58.6  | 0<br>A                |
| 30-Nov-08 | 04:28:00 | 50.6           | 3          | 53.6          | <b>0</b>              |
| 30-Nov-06 | 04:27:00 | 53.9           | 3          | 56.9          | ō                     |
|           |          |                | -          |               |                       |

1

.

•

Table 3: Noht Time Train Events Development Site: Britannia St, London WC1 - Site Noise Survey - Position No1

|           |          | SPLMAX F -       |            |              |                       |
|-----------|----------|------------------|------------|--------------|-----------------------|
|           |          | Predicted at     | Distance   |              | T-1 (1 A.J            |
| Date      | Time     | nearest façade   | Correction | SPLMAX F     | Trains (LAmex >7008A) |
| 30-Nov-06 | 04:28:00 | 51.3             | 3          | 54.3<br>55.8 | 0                     |
| 30-Nov-06 | 04:29:00 | 58 B             | 3          | 61.8         | ō                     |
| 30-Nov-06 | 04:31:00 | 53.8             | 3          | 56.8         | 0                     |
| 30-Nov-06 | 04:32:00 | 62.1             | 3          | 65.1         | 0                     |
| 30-Nov-06 | 04:33:00 | 64.4             | 3          | 67.4         | 0                     |
| 30-Nov-06 | 04:34:00 | 52.6             | 3          | 55.6         | U                     |
| 30-Nov-06 | 04:35:00 | 54.3             | 3          | 57.3         | 0                     |
| 30-Nov-06 | 04:30:00 | 52.4             | 3          | 55.4         | õ                     |
| 30-Nov-06 | 04:38:00 | 57.0             | 3          | 60.0         | 0                     |
| 30-Nov-06 | 04:39:00 | 54.2             | 3          | 57.2         | 0                     |
| 30-Nov-06 | 04:40:00 | 53.3             | 3          | 56.3         | 0                     |
| 30-Nov-06 | 04:41:00 | 54.6             | 3          | 57.6         | U                     |
| 30-Nov-06 | 04:42:00 | 59.3             | 3          | 62.3         | 0                     |
| 30-Nov-06 | 04:43:00 | 50.7             | 3          | 55.9         | ō                     |
| 30-Nov-06 | 04:45:00 | 57.7             | š          | 60.7         | Ō                     |
| 30-Nov-06 | 04:46:00 | 58.9             | 3          | 61.9         | 0                     |
| 30-Nov-06 | 04:47:00 | 55.0             | 3          | 58.0         | 0                     |
| 30-Nov-06 | 04:48:00 | 53.6             | 3          | 56.6         | 0                     |
| 30-Nov-06 | 04:49:00 | 48.8             | 3          | 51.8         | U                     |
| 30-Nov-06 | 04:50:00 | 54.8             | 3          | 57.8         | 0                     |
| 30-NOV-06 | 04:51:00 | 04.3<br>55.7     | 3          | 587          | õ                     |
| 30-Nov-06 | 04:53:00 | 55.3             | 3          | 58.3         | Ō                     |
| 30-Nov-06 | 04:54:00 | 57.3             | 3          | 60.3         | 0                     |
| 30-Nov-06 | 04:55:00 | 75.1             | 3          | 78.1         | 1                     |
| 30-Nov-06 | 04:56:00 | 52.6             | 3          | 55.6         | 0                     |
| 30-Nov-06 | 04:57:00 | 53.7             | 3          | 56.7         | 0                     |
| 30-Nov-06 | 04:58:00 | 58.8             | 3          | 51.8<br>54.5 | 0                     |
| 30-NOV-06 | 05:00:00 | 51.5<br>60.1     | 3          | 63 1         | ŏ                     |
| 30-Nov-06 | 05:00:00 | 57.5             | 3          | 60.5         | Ō                     |
| 30-Nov-06 | 05:02:00 | 59.9             | 3          | 62.9         | 0                     |
| 30-Nov-06 | 05:03:00 | 77.6             | 3          | 80.6         | 1                     |
| 30-Nov-06 | 05:04:00 | 52. <del>5</del> | 3          | 55.5         | 0                     |
| 30-Nov-06 | 05:05:00 | 56.1             | 3          | 59.1         | 0                     |
| 30-Nov-06 | 05:06:00 | 77.5             | 3          | 80.5<br>60.1 | 0                     |
| 30-NOV-06 | 05:07:00 | 519              | 3          | 54.9         | ő                     |
| 30-Nov-06 | 05:09:00 | 52.2             | 3          | 55.2         | 0                     |
| 30-Nov-06 | 05:10:00 | 55.1             | 3          | 58.1         | 0                     |
| 30-Nov-06 | 05:11:00 | 54.5             | 3          | 57.5         | 0                     |
| 30-Nov-06 | 05:12:00 | 50.5             | 3          | 53.5         | U                     |
| 30-Nov-06 | 05:13:00 | 54.3<br>59.6     | 3          | 5/.3<br>61.6 | 0                     |
| 30-Nov-06 | 05:14:00 | 72 1             | 3          | 75.1         | 1                     |
| 30-Nov-06 | 05:16:00 | 77.0             | 3          | 80.0         | 1                     |
| 30-Nov-06 | 05:17:00 | 55.4             | 3          | 58.4         | 0                     |
| 30-Nov-06 | 05:18:00 | 56.7             | 3          | 59.7         | 0                     |
| 30-Nov-06 | 05:19:00 | 55.7             | 3          | 58.7         | 0                     |
| 30-Nov-06 | 05:20:00 | 77.3             | 3          | 60.3<br>57.8 | ,                     |
| 30-Nov-06 | 05.21.00 | 39.0<br>49.4     | 3          | 52.4         | ő                     |
| 30-Nov-06 | 05:23:00 | 56.3             | 3          | 59.3         | ō                     |
| 30-Nov-06 | 05:24:00 | 56.0             | 3          | 59.0         | 0                     |
| 30-Nov-06 | 05:25:00 | 75.3             | 3          | 78.3         | 1                     |
| 30-Nov-06 | 05:26:00 | 56.7             | 3          | 59.7         | 0                     |
| 30-Nov-06 | 05:27:00 | 77.4             | 3          | 60.4         | 0                     |
| 30-Nov-06 | 05:28:00 | 757              | 3          | 78.7         | 1                     |
| 30-Nov-06 | 05:30:00 | 77.2             | 3          | 80.2         | 1                     |
| 30-Nov-06 | 05:31:00 | 53.1             | 3          | 56.1         | 0                     |
| 30-Nov-06 | 05:32:00 | 79.4             | 3          | 82.4         |                       |
| 30-Nov-06 | 05:33:00 | 77.7             | 3          | 80.7         | 1                     |
| 30-Nov-06 | 05.34.00 | 61.5             | 3          | 64.5         | ő                     |
| 30-Nov-06 | 05:36:00 | 78.8             | 3          | 81.8         | 1                     |
| 30-Nov-06 | 05:37:00 | 57.2             | 3          | 60.2         | 0                     |
| 30-Nov-06 | 05:38:00 | 74.4             | 3          | 77.4         | 1                     |
| 30-Nov-06 | 05:39:00 | 74.0             | 3          | 77.0         | 1                     |
| 30-Nov-06 | 05:40:00 | 77.5             | 3          | 80.5         | 1                     |
| 30-Nov-06 | 05:41:00 | 59.U<br>72 7     | 3          | 02.U<br>70.7 | 1                     |
| 30-NOV-00 | 05.42:00 | 59.5             | 3          | 62.5         | Ó                     |
| 30-Nov-06 | 05:44:00 | 76.8             | 3          | 79.8         | -<br>1                |
| 30-Nov-06 | 05:45:00 | 51.1             | 3          | 54.1         | 0                     |
| 30-Nov-06 | 05:46:00 | 54.5             | 3          | 57.5         | 0                     |
| 30-Nov-06 | 05:47:00 | 57.0             | 3          | 60.0         | 0                     |
| 30-Nov-06 | 05:48:00 | 57.8             | 3          | 60.8         | 0                     |
| 30-NOV-06 | 05:49:00 | /6.6             | 3          | 19.0         | I                     |

.

•

<u>Table 3: Night Time Train Events</u> Development Site: Britannis St, London WC1 - Site Noise Survey - Position No1

|              |                                       | SPLMAX F -                | -        |                 |                       |
|--------------|---------------------------------------|---------------------------|----------|-----------------|-----------------------|
| <b>n</b> _4_ | Time                                  | Predicted at              | Distance | SPI MAY E       | Trains (LAmax >70dBA) |
| Date         | 1 me .                                | nearest taçade            | Coneción | 3FLMAAF<br>77.8 | 1                     |
| 30-Nov-00    | 05-51-00                              | 60.2                      | 3        | 63.2            | Ó                     |
| 30-Nov-06    | 05:52:00                              | 76.0                      | 3        | 79.0            | 1                     |
| 30-Nov-06    | 05:53:00                              | 80.0                      | 3        | 83.0            | 1                     |
| 30-Nov-06    | 05:54:00                              | 53.7                      | 3        | 56.7            | 0                     |
| 30-Nov-06    | 05:55:00                              | 61.2                      | 3        | 64.2            | 0                     |
| 30-Nov-06    | 05:56:00                              | 62.2                      | 3        | 65.2            | 1                     |
| 30-Nov-06    | 05:57:00                              | 75.2                      | 3        | /9.Z            | i<br>0                |
| 30-NOV-06    | 05:58:00                              | 55.0                      | 3        | 70.1            | ō                     |
| 30-Nov-06    | 06:00:00                              | 79.7                      | 3        | 82.7            | 1                     |
| 30-Nov-06    | 06:01:00                              | 74.7                      | 3        | 77.7            | 1                     |
| 30-Nov-06    | 06:02:00                              | 76.2                      | 3        | 79.2            | 1                     |
| 30-Nov-06    | 06:03:00                              | 75.4                      | 3        | 78.4            | 1                     |
| 30-Nov-06    | 06:04:00                              | 64.6                      | 3        | 67.6            | U                     |
| 30-Nov-06    | 06:05:00                              | 76.4                      | 3        | /9.4<br>60.0    | ,                     |
| 30-Nov-06    | 05:05:00                              | 57.0                      | 3        | 63.6            | ŏ                     |
| 30-Nov-06    | 00:07:00                              | 54.2                      | 3        | 57.2            | ō                     |
| 30-Nov-06    | 06:09:00                              | 74.5                      | 3        | 77.5            | 1                     |
| 30-Nov-06    | 06:10:00                              | 77.5                      | 3        | 80.5            | 1                     |
| 30-Nov-06    | 06:11:00                              | 53.6                      | 3        | 56.6            | 0                     |
| 30-Nov-06    | 06:12:00                              | 85.5                      | 3        | 88.5            | 1                     |
| 30-Nov-06    | 06:13:00                              | 59.2                      | 3        | 62.2            | 0                     |
| 30-Nov-06    | 06:14:00                              | 75.2                      | 3        | 78.2            | 1                     |
| 30-Nov-06    | 06:15:00                              | 5/.5                      | 3        | 50.0            | 0                     |
| 30-N0V-06    | 06.10.00                              | 56.5<br>77 1              | š        | 80.1            | 1                     |
| 30-Nov-06    | 06:18:00                              | 57.0                      | 3        | 60.0            | 0                     |
| 30-Nov-06    | 06:19:00                              | 80.0                      | 3        | 83.0            | 1                     |
| 30-Nov-06    | 06:20:00                              | 77.7                      | 3        | 80.7            | 1                     |
| 30-Nov-06    | 06.21.00                              | 81.3                      | 3        | 84.3            | 1                     |
| 30-Nov-06    | 06:22:00                              | 82.7                      | 3        | 85.7            | 1                     |
| 30-Nov-06    | 06:23:00                              | 79.7                      | 3        | 82.7            | 1                     |
| 30-Nov-06    | 06:25:00                              | 79.0                      | 3        | 82.0            | 1                     |
| 30-Nov-06    | 06:26:00                              | 75.4                      | 3        | 78.4            | 1                     |
| 30-Nov-06    | 06:27:00                              | 76.1                      | 3        | 79.1            | 1                     |
| 30-Nov-06    | 06:28:00                              | 57.9                      | 3        | 60.9            | 0                     |
| 30-Nov-06    | 06:29:00                              | 80.1                      | 3        | 83.1            | 1                     |
| 30-Nov-06    | 06:30:00                              | 59.8                      | 3        | 62.8<br>79.0    | 1                     |
| 30-Nov-06    | 06:31:00                              | 75.9                      | 3        | 64.9            | o                     |
| 30-Nov-06    | 06:33:00                              | 79.5                      | 3        | 82.5            | 1                     |
| 30-Nov-06    | 06:34:00                              | 82.5                      | 3        | 85.5            | 1                     |
| 30-Nov-06    | 06:35:00                              | 75.6                      | 3        | 78.6            | 1                     |
| 30-Nov-06    | 06:36:00                              | 73.9                      | 3        | 76.9            |                       |
| 30-Nov-06    | 06:37:00                              | 85.9                      | 3        | 88.9            | 1                     |
| 30-Nov-06    | 06:38:00                              | 80.8                      | 3        | 63.6<br>65 8    | ,<br>,                |
| 30-NOV-06    | 06:39:00                              | 74 9                      | 3        | 77.9            | 1                     |
| 30-Nov-06    | 06:41:00                              | 77.7                      | 3        | 80.7            | 1                     |
| 30-Nov-06    | 06:42:00                              | 75.1                      | 3        | 78.1            | 1                     |
| 30-Nov-06    | 06:43:00                              | 57.6                      | 3        | 60.6            | 0                     |
| 30-Nov-06    | 06.44.00                              | 82.1                      | 3        | 85.1            | 1                     |
| 30-Nov-06    | 06.45.00                              | 75.2                      | 3        | 78.2            | 1                     |
| 30-Nov-06    | 06:46:00                              | 50.7                      | 3        | 78.3            | 1                     |
| 30-Nov-06    | 06:48:00                              | 58.2                      | 3        | 61.2            | ò                     |
| 30-Nov-06    | 06:49:00                              | 78.6                      | 3        | 81.6            | 1                     |
| 30-Nov-06    | 06:50:00                              | 81.2                      | 3        | 84.2            | 1                     |
| 30-Nov-06    | 06:51:00                              | 85.0                      | 3        | 88.0            | 1                     |
| 30-Nov-06    | 06:52:00                              | 62.9                      | 3        | 65.9            | 0                     |
| 30-Nov-06    | 06:53:00                              | 77.0                      | 3        | 80.0<br>60.3    | 1                     |
| 30-Nov-06    | 00:54:00                              | 0/,3<br>80.2              | 3        | 83.3            | 1                     |
| 30-Nov-06    | 06:56:00                              | 60.4                      | 3        | 63.4            | ò                     |
| 30-Nov-06    | 06:57:00                              | 76.0                      | 3        | 79.0            | 1                     |
| 30-Nov-06    | 06:58:00                              | 81.9                      | 3        | 84.9            | 1                     |
| 30-Nov-06    | 06:59:00                              | 83.1                      | 3        | 86.1            | 1                     |
| 30-Nov-06    | 07:00:00                              | 79.4                      | 3        | 82.4            | 1                     |
| Maximum LA   | viti <b>ax Level</b><br>Joht Time Tre | 8/.U<br>ains (2300 - 0700 | hrs)     | 90.U            | 120                   |
| Launateu N   |                                       | an 12 12 JUU - U / UU     |          |                 | 127                   |

Estimated Night Time Trains (2300 - 0700hrs)



## Table 4: Night Time LAmax Train Events

•

.

| TANA TITAN               |               |                  |                                  |                       |
|--------------------------|---------------|------------------|----------------------------------|-----------------------|
| <b>Development Site:</b> | Britannia St, | London WC1 -     | Site Noise Survey - Position No1 |                       |
| Date                     | Time          | SPLMAX F         |                                  | Trains (LAmax >82dBA) |
| 30-Nov-06                | 00:00:00      | 87.0             |                                  | 1                     |
| 30-Nov-06                | 06:37:00      | 85.9             |                                  | 1                     |
| 29-Nov-06                | 23:59:00      | 85.8             |                                  | 1                     |
| 30-Nov-06                | 06:12:00      | 85.5             |                                  | 1                     |
| 30-Nov-06                | 06:51:00      | 85.0             |                                  | 1                     |
| 29-Nov-06                | 23:39:00      | 84.9             |                                  | 1                     |
| 29-Nov-06                | 23:28:00      | 84.4             |                                  | 1                     |
| 29-Nov-06                | 23:17:00      | 83.7             |                                  | 1                     |
| 30-Nov-06                | 06:59:00      | 83.1             |                                  | 1                     |
| 30-Nov-06                | 06:22:00      | 82.7             |                                  | 1                     |
| 30-Nov-06                | 00:13:00      | 82.5             |                                  | 1                     |
| 30-Nov-06                | 06:34:00      | 82.5             |                                  | 1                     |
| 29-Nov-06                | 23:11:00      | 82.5             |                                  | 1                     |
| 30-Nov-06                | 06:44:00      | 82.1             |                                  | 1                     |
| 30-Nov-06                | 00:19:00      | 81. <del>9</del> |                                  | 0                     |
| 30-Nov-06                | 06:58:00      | 81.9             |                                  | 0                     |
| 30-Nov-06                | 00:32:00      | 81.8             |                                  | 0                     |
| 29-Nov-06                | 23:19:00      | 81.4             |                                  | 0                     |
|                          |               |                  |                                  |                       |

Design range LACLT **AB** 

75

75

55

55 55

55

50

45

40

40

35

30

25

40

35

Design range LANT dB

Latenachie 80

Good

70 65

65

50

50

45 45

40

35

35

35

30 25

20

30

30

are unoccupied

40--58 45-50

eighting) should not normally

| Table 5 — Indoor ambient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ncise levels in spaces when the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Criterion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Typical situations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -<br>    |
| Ressonable industrial working conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Heavy engineering<br>Light engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·<br>·   |
| Reasonable speech or telephone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Department store<br>Cafeteria, canteen, kitchen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wash-room, toilet<br>Corridor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Ressonable conditions for study and work<br>requiring concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Library, cellular office, museum<br>Staff room                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| Reasonable listening conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Meeting room, executive office<br>Classroom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • •      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Church, lecture theatre, cinema<br>Concert hall, theatre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Ressonable resting/sleeping conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recording studio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bedrooms*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ۰.       |
| * For a reasonable standard in bedruoms at night ind<br>exceed 45 dB L <sub>Amer</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | itvidual noise events (measured with F time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| * For a reasonable standard in bedrooms at night int<br>exceed 45 dB L <sub>iner</sub> .<br>Table 6 — Indoor ambient a<br>and j<br>Criterion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tividual noise events (measured with F time<br>noise levels in spaces when the<br>privacy is also important<br>Typical situations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3        |
| * For a reasonable standard in bedrooms at night int<br>exceed 45 dB L <sub>tener</sub><br>Table 6 — Indoor ambient a<br>and ;<br>Criterion<br>Reasonable acoustic privacy in shared spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | avidual noise events (measured with F time<br>noise levels in spaces when the<br>privacy is also important<br>Typical situations<br>ces Restaurant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3        |
| * For a reasonable standard in bedrooms at night, ind<br>exceed 45 dB L <sub>temp</sub> .<br>Table 6 — Indoor ambient 1<br>and ;<br>Criterion<br>Reasonable acoustic privacy in shared spa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tividual noise events (measured with F time<br>noise levels in spaces when the<br>privacy is also important<br>Typical situations<br>ces Restaurant<br>Open plan office<br>Night club, public house<br>Ball room, banquet hall<br>Perspice men                                                                                                                                                                                                                                                                                                                                                                                                          | <b>3</b> |
| * For a reasonable standard in bedrooms at night int<br>exceed 45 dB L <sub>iner</sub> .<br>Table 6 — Indoor anabient 1<br>and 2<br>Criterion<br>Reasonable acoustic privacy in shared spa<br>I.S.1.4 Other precontions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tvidual noise events (measured with F direct<br>noise levels in spaces when the<br>privacy is also important<br>Typical situations<br>ces Restaurant<br>Open plan office<br>Night club, public house<br>Ball room, banquet hall<br>Reception room<br>It is good practice to i                                                                                                                                                                                                                                                                                                                                                                           |          |
| <ul> <li>For a reasonable standard in bedrooms at eight, independent of the second distribution of</li></ul>                                                                                                                                                        | acise levels in spaces when the privacy is also important         Typical situations         ces       Restaurant         Open plan office         Night club, public house         Ball room, banquet hall         Reception room         It is good practice to i         pipework from the but         re a         the pump. This may b         fixings on pipe runs. N         and floors, air gaps sh                                                                                                                                                                                                                                             |          |
| * For a reasonable standard in bedrooms at eight ind<br>exceed 45 dB L <sub>inex</sub><br>Table 6 — Indoor ambient 1<br>and<br>Criterion<br>Reasonable acoustic privacy in shared spa-<br>Reasonable acoustic privacy in shared s | tividual noise events (measured with F direct<br>noise levels in spaces when the<br>privacy is also important<br>Typical situations<br>ces Restaurant<br>Open plan office<br>Night club, public house<br>Ball room, banquet hall<br>Reception room<br>It is good practice to i<br>pipework from the builty<br>re a the pump. This may builty<br>re a fixings on pipe runs. It<br>and floors, air gaps sh<br>structure-borne noise<br>and achieved by packing ti                                                                                                                                                                                         |          |
| For a reasonable standard in bedrooms at eight ind<br>encoded 45 dB L <sub>tener</sub><br>Table 6 — Indoor ambient 1<br>and<br>Criterion<br>Reasonable acoustic privacy in shared spa-<br>Reasonable acoustic privacy in shared sparse<br>in flats, sound absorbent materials should be<br>to the ceiling surfaces of internal corridors<br>sharwells to reduce propagation of noise th<br>building.<br>NOTE (capes can show provide metal absorption.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tividual noise events (measured with F due<br>noise levels in spaces when the<br>privacy is also important<br>Typical situations<br>ces Restaurant<br>Open plan office<br>Night club, public house<br>Ball room, banquet hall<br>Reception room<br>It is good practice to i<br>pipework from the bui<br>the pump. This may b<br>fixings on pipe runs. It<br>and floors, air gaps sh<br>structure-borne noise<br>achieved by packing to<br>sealing the faces with<br>Regulations guidance<br>into account [24]. [25]                                                                                                                                     |          |
| * For a reasonable standard in bedrooms at eight ind<br>second 45 dB L <sub>inex</sub><br>Table 6 — Indoor ambient 1<br>and<br>Criterion<br>Reasonable acoustic privacy in shared spa-<br>Reasonable acoustic privacy in shared spa-<br>7.6.1.4 Other precontions<br>It is recommended that any partition separa<br>WC from a noise sensitive room should hav<br>weighted standardized level difference (D <sub>n7</sub><br>least 35 dB.<br>In flats, sound absorbent materials should b<br>to the ceiling surfaces of internal corridors<br>stairwells to reduce propagation of noise th<br>building.<br>NOTE (appers can size provide useful absorption.<br>Resilient floor coverings, such as carpet with<br>underlay, can be used to minimize noise fro<br>footsteps on stair treads, corridors and land<br>Noise will be prefored at the same floor law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tividual noise events (measured with F due<br>noise levels in spaces when the<br>privacy is also important<br>Typical situations<br>ces Restaurant<br>Open plan office<br>Night club, public house<br>Ball room, banquet hall<br>Reception room<br>It is good practice to i<br>pipework from the builty<br>re a the pump. This may b<br>ryw) of at fixings on pipe runs. I<br>and floors, air gaps sh<br>airborne noise transmi<br>structure-borne noise<br>and achieved by packing th<br>sealing the faces with<br>Regulations guidance<br>into account [24], [25],<br>th similar equipment sho<br>where structure-borne<br>ings. Care should be taken |          |

#### are unoccupied

40-45 35-40 35-40 olate vibration in the heating ding structure, at least near achieved by using resilient fixings on pipe runs. Where pipes penetrate walls weighted standardized level difference  $(D_{nT,w})$  of at and floors, air gaps should be sealed to reduce

airborne noise transmission in such a way that structure-borne noise is not transmitted: this may be achieved by packing the gap with mineral wool, and sealing the faces with non-hardening mastic. Building Regulations guidance for fire safety should be taken into account [24], [25], [26]. Ventilation fans and similar equipment should have resilient mountings where structure-home noise could be a problem.

Care should be taken to position lifts to minimize noise disturbance from the operation of the control gear. Lift doors should operate quietly, and acoustic signals to herald lift arrival should not be audible within dwellings.

NOTE For additional guidance are 1103

#### Tables 1-3 Sound Insulation Data for a Variety of Glazings (Ne contribution from wall)

In addition to the full thirdoctaveband sound insulation spectra, corresponding octaveband equivalent values are given in adjacent columns. Pilkington AUDIOSCREEN is a special acoustic laminate.

| Table 1 - Single Glazin |
|-------------------------|
| TERME I - SINGLE GRAZIN |

|      | the second se |
|------|-----------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                 |
|      |                                                                                                                 |
|      |                                                                                                                 |
|      |                                                                                                                 |
| 1.1  | 3                                                                                                               |
| ·    | 2                                                                                                               |
|      | 1                                                                                                               |
|      |                                                                                                                 |
| .    | -                                                                                                               |
|      | ୍ୟ                                                                                                              |
|      | 6                                                                                                               |
| 1.00 | . 80                                                                                                            |
|      | 56                                                                                                              |
|      |                                                                                                                 |
| ]    |                                                                                                                 |
|      | 1                                                                                                               |
| 11   | . 20                                                                                                            |
| 1    |                                                                                                                 |
| · •  | . u                                                                                                             |
|      | Ĩ.                                                                                                              |
|      | -                                                                                                               |
|      | R (dR)                                                                                                          |
|      | 100 J                                                                                                           |
|      | ~ 1001                                                                                                          |
|      | к <sub>п.3</sub> (dl                                                                                            |
|      |                                                                                                                 |
|      |                                                                                                                 |

|                                                                                                                                   |                                                                                                          | Kaund Institutes (AT) in (Tau Thisings (and)                                                                                                                                                                                                                               |                                                                                                                                                                                                          |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                        |                                                                                                                            |                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                    |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Thirdectorehand<br>Custre Programsy                                                                                               |                                                                                                          |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                            | ( <b></b> )                                                                                                                            | Pilkin                                                                                                                     | nine AUBIOSCREEN                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                                                                                                    |  |  |  |
| (111)                                                                                                                             |                                                                                                          | •                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                       | 19                                                                                                 | GA PVB                                                                                                                                                                                                                                                                                                                                                     | 7                                                                                                                                      | 1.1 <b>9</b>                                                                                                               | 11                                                                                                                                                                                                                                                 | IJ                                                                                                                                     | - 17                                                                                                                                               |  |  |  |
| 100<br>125<br>60<br>200<br>315<br>400<br>630<br>800<br>630<br>800<br>1250<br>1600<br>1250<br>1600<br>2000<br>2500<br>3150<br>3150 | 17<br>23 20<br>21<br>21 22<br>24<br>29 28<br>30<br>32<br>34 33<br>34<br>33<br>36 34<br>31<br>25<br>31 28 | 18           22         20           22         24           26         24           29         31           33         34           36         35           36         35           36         29           30         34           36         37           36         37 | 24         26         26           28         27         29           32         34         34           36         35         333           38         36         41           43         44         44 | 25<br>29<br>31<br>32<br>32<br>33<br>36<br>38<br>37<br>40<br>44<br>47<br>46<br>50<br>52<br>55<br>54 | 18         22         20           22         26         24         26           29         31         31         31           36         36         36         36           36         36         33         31           31         31         33         36           36         36         33         31           37         39         38         38 | 23<br>26<br>25<br>25<br>36<br>37<br>37<br>37<br>38<br>36<br>36<br>36<br>36<br>36<br>38<br>40<br>40<br>40<br>40<br>40<br>38<br>36<br>38 | 25<br>27<br>28<br>29<br>29<br>30<br>32<br>34<br>34<br>36<br>37<br>38<br>38<br>39<br>41<br>41<br>40<br>34<br>37<br>41<br>40 | 26           29         27           29         31           32         34           36         36           38         39           39         39           30         38           37         40           40         40           42         44 | 27<br>30 29<br>30<br>31<br>33 32<br>33<br>35<br>37<br>37<br>38<br>40<br>40<br>40<br>40<br>41<br>40<br>38<br>40<br>44<br>45<br>51<br>48 | 26<br>28<br>32<br>31<br>33<br>33<br>34<br>37<br>39<br>39<br>39<br>41<br>42<br>44<br>43<br>45<br>46<br>44<br>41<br>38<br>42<br>46<br>45<br>46<br>45 |  |  |  |
| R <sub>m</sub> (dB)<br>R <sub>m</sub> (dB)<br>R <sub>ma</sub> (dBA)                                                               | 27<br>30<br>25                                                                                           | 29<br>32<br>28                                                                                                                                                                                                                                                             | 33<br>36<br>32                                                                                                                                                                                           | 37<br>40<br>35                                                                                     | 30<br>33<br>29                                                                                                                                                                                                                                                                                                                                             | 32<br>36<br>31                                                                                                                         | 34<br>37<br>33                                                                                                             | 35<br>38<br>34                                                                                                                                                                                                                                     | . 36<br>39<br>36                                                                                                                       | 34<br>41<br>36                                                                                                                                     |  |  |  |

#### Table 2 - Pilkington Insulating Units

| -                                                                                                                          | Seand Inspiritue (All) for Clines Thickness (mm)                                                                                                                                                                           |                                                                                                                                                 |                                                                                                                      |                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                                              |                                                                                                                                                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                            |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Centre Frequency                                                                                                           | . :                                                                                                                                                                                                                        |                                                                                                                                                 |                                                                                                                      | 1.12                                                                                                                                                          |                                                                                                                                                                      | us di bis                                                                                                                                    | a tot                                                                                                                                                                                                                                                          | Phington                                                                                                                                   | AUDIOECE                                                                                                                                                                                                                   |                                                                                                                                                          | 19. A.                                                                                                                                                                                                                                                                                                           |
| (Hir)                                                                                                                      | 4/13/4                                                                                                                                                                                                                     | 6/12/6                                                                                                                                          | 6/13/6.4 eva                                                                                                         | 10/12/4                                                                                                                                                       | 10/12/6                                                                                                                                                              | 10/12/6.4 pvp                                                                                                                                | 6/12/7                                                                                                                                                                                                                                                         | 6129                                                                                                                                       | 6/13/11                                                                                                                                                                                                                    | 6/13/13                                                                                                                                                  | 13/12/13                                                                                                                                                                                                                                                                                                         |
| 100<br>125<br>160<br>200<br>250<br>315<br>400<br>500<br>630<br>800<br>1000<br>1250<br>1600<br>2500<br>3150<br>3150<br>4000 | 25<br>24<br>23<br>21<br>21<br>20<br>19<br>25<br>25<br>25<br>33<br>36<br>35<br>34<br>40<br>41<br>38<br>35<br>31<br>34<br>35<br>34<br>35<br>34<br>35<br>35<br>34<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35<br>35 | 17<br>26<br>20<br>22<br>18<br>18,19<br>24<br>27<br>29<br>29<br>33<br>37<br>39<br>39<br>39<br>39<br>39<br>39<br>34<br>36<br>37<br>42<br>47<br>45 | 19<br>24 21<br>19<br>19 20<br>24<br>28<br>32 31<br>34<br>38<br>40<br>39<br>35 37<br>39<br>35 37<br>39<br>44<br>49 47 | 33         25           26         31           33         36           39         41           41         43           45         43           44         44 | 27<br>27<br>26<br>24<br>29<br>29<br>27<br>31<br>33<br>34<br>33<br>34<br>34<br>37<br>39<br>41<br>40<br>41<br>40<br>41<br>40<br>43<br>40<br>43<br>40<br>43<br>47<br>46 | 27<br>28<br>27<br>26<br>30<br>29<br>32<br>34<br>36<br>36<br>40<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41 | 26         28         26           23         26         25         28           30         34         33         36           41         43         43         45           45         45         45         55           57         57         57         57 | 24<br>27 26<br>25<br>24<br>28 27<br>30<br>33<br>37 36<br>40<br>43<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>55<br>153 | 25<br>28<br>27<br>26<br>24<br>28<br>27<br>31<br>38<br>37<br>41<br>45<br>45<br>45<br>46<br>44<br>45<br>45<br>46<br>44<br>45<br>45<br>45<br>46<br>44<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45 | 27<br>28 26<br>24<br>30 23<br>32<br>30 23<br>32<br>36<br>40 38<br>43<br>45<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>52<br>57<br>57<br>57<br>56 | 29         27         28           27         28         29           33         37         36           37         36         39           42         45         45           49         52         52           52         52         52           50         51         52           55         60         63 |
| R <sub>m</sub> (dB)<br>R <sub>n</sub> (dB)<br>R <sub>165</sub> (dBA)                                                       | 29<br>31<br>25                                                                                                                                                                                                             | 30<br>33<br>26                                                                                                                                  | 3]<br>34<br>27                                                                                                       | 34<br>36<br>19                                                                                                                                                | 34<br>38<br>32                                                                                                                                                       | 36<br>40<br>34                                                                                                                               | 36<br>31<br>31                                                                                                                                                                                                                                                 | 37<br>48<br>32                                                                                                                             | -37<br>-40<br>-33                                                                                                                                                                                                          | 38<br>41<br>33                                                                                                                                           | 44<br>47<br>39                                                                                                                                                                                                                                                                                                   |

#### Table 3 - Double Windows (Secondary Sashes)

| Thirdsctareband | Sound Insulation (#B) for Glass Thickness (mm) |             |                 |  |  |  |  |  |  |  |
|-----------------|------------------------------------------------|-------------|-----------------|--|--|--|--|--|--|--|
| (Hz)            | 6/100/4                                        | 673564      | 20/20016        |  |  |  |  |  |  |  |
| 100             | 35                                             | 27          | 32              |  |  |  |  |  |  |  |
| 125             | 27                                             | 30          | 39              |  |  |  |  |  |  |  |
| 200             | 33<br>33 34                                    | 34<br>34 35 | 45 46           |  |  |  |  |  |  |  |
| 315             | 37                                             | 39<br>17    | 46              |  |  |  |  |  |  |  |
| 500             | 46 44                                          | 46 45       | 45 46           |  |  |  |  |  |  |  |
| 630<br>\$00     | 50<br>54                                       | 50<br>54    | 45 [<br>- 44    |  |  |  |  |  |  |  |
| 1900            | 57'56<br>59                                    | 57 56       | 45 46 SO        |  |  |  |  |  |  |  |
| 1600            | 58                                             | 56          | 53              |  |  |  |  |  |  |  |
| 2500            | 52 55                                          | 49          | 56 50<br>\$8    |  |  |  |  |  |  |  |
| 3150            | 48<br>57 52                                    | 47<br>51 50 | 64<br>64 65     |  |  |  |  |  |  |  |
| R_ (dB)         | #                                              | #           | 47              |  |  |  |  |  |  |  |
|                 | 46                                             | 47<br>19:   | <b>89</b><br>15 |  |  |  |  |  |  |  |



5