

57 Fernie: Fields High Wycombe Bucks HP12 4SN

Tel: 01494 531756 Fax: 01494 531366 Mobile: 07976 £29 289

C/08/193

STRUCTURAL CALCULATIONS

FOR

PROPOSED OPENING

AT

THE NATIONAL HOSPITAL

ALBANY WING

THIRD FLOOR

INDEX

- 1.00 DESIGN DATA
- 2.00 LOADINGS
- 3.00 NEW SUPPORT BEAM

1.00 DESIGN DATA

Steelwork to be grade 43.

Brickwork to be 20N/mm3 in 1.1.6. mortar unless noted otherwise.

NOTES

- 1. All steelwork to be shot blasted and painted.
- 2. All steels supporting existing walls to be wedged up at 1.0Mc/c to predeflect new beam prior to pinning up with 1-3 dry-pack incorporating 'Combex 100' expanding agent.
- 3. All beam ends to be built in solid each end.
- 4. Existing walls and floor over to be properly pinned propped and supported during construction.

2.0 LOADINGS

ROOF (PITCHED)			
Tiles		0.65	KN/m2
Battens Felt & Insulation	=	0.05	=
Rafters	=	0.10	=
Ceiling	=	0.20	=
	=	1.00	

UPPER FLOORS ALBANY WING

Screed	=	1.80	KN/m2
Infill	=	6.00	=
Ceiling	=	0.20	=
Superimposed.	=	8.00 5.00	n-ton-

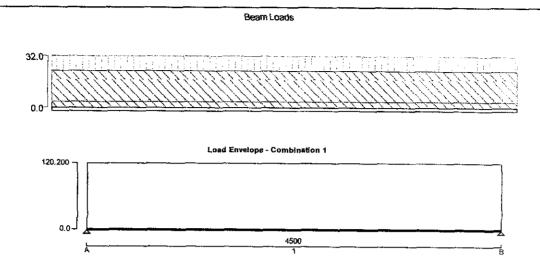
WALLS (ELEVATION AREA)

105mm Brick	,	=	2.50	KN/m2
215mm Brick		=		=

CSC TED Robert Austin Associa	Project	Project NAT HOS ALBANY				Job Ref. C/08/193	
57 Fernie Fields High Wycombe	Section	Section BEAM 1			Sheet no./rev. 3/ 1		
HP12 4SN	Calc. by	Date 30/11/2008	Chk'd by	Date	App'd by	Da e	

pan length & p	partial factors fo	r loading				
Span	Factor	rs for moments &	forces	ļ Fa	actors for deflection	on
(mm)	γfd	Υń	γfw	γda	γdi	γdw
4500	1.40	1.60	0.00	1.00	1.00	1.00

Ref.	Category	Description
1	"Dead"	"ROOF"
2	"Imposed"	"ROOF"
3	"Dead"	"WALL"
4	"Dead"	"FLOORS"
5	"Imposed"	"FLOORS"


Loading data (ı	unfactored)					
Ref.	Category	Туре	Load kN/m	Position mm	Load kN/m	Position mm
1	"Dead"	UDL	5.0	0	-	4500
2	"Imposed"	UDL	4.0	0	-	4500
3	"Dead"	UDL	18.0	0	-	4500
4	"Dead"	UDL	32.0	0	-	4500
5	"Imposed"	UDL	23.0	0	-	4500

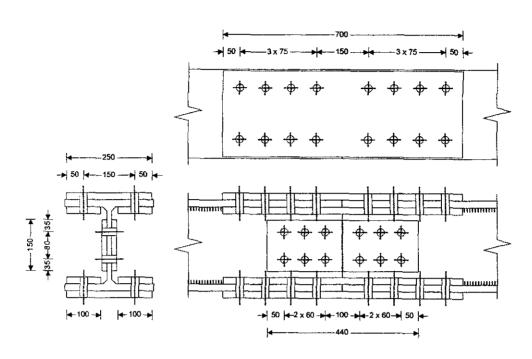
Analysis result	s - entire span					
Ra	R₀	Fvy		VI _x	Deflect	tion: δEl _x
kN (fac)	kN (fac)	kN (fac)	kNm (fac)	Sense	kNm³	Direction
270.5	270.5	270.5	304.3	"Sagging"	437.83	"Down"

Unfactored su	pport reactions		
Support A	Dead load -123.7 kN	Live load -60.7 kN	Wind load 0.0 kN
Support B	Dead load -123.7 kN	Live load -60.7 kN	Wind load 0.0 kN

r i n sedinem	resuits							
Seg.	Xs	Хe	Llt	M _L T	M _{mLT2}	M _{mLT3}	M _{mL*4}	
	mm	mm	mm	kNm (fac)	kNm (fac)	kNm (fac)	kNm (*ac)	
1	0	4500	4500	304.3	228.2	304.3	228.2	-

CSC TEDDS Robert Austin Associates	Project NAT HOS ALBANY			Job Ref. C/08/1:∋3		
57 Femie Fields High Wycombe	Section BEAM 1			Sheet no./rev	Sheet no./rev. 3/ 2	
HP12 4SN	Calc. by	Date 30/11/2008	Chk'd by	Date	App'd by	Date

Member design checks for a simply-supported single-span beam to BS 5950 (with LTB)


D	
Summary of results	
L	

Material	Grade = "S275"	p _y = 265 N/mm ²	
Section	"UC 254x254x107"	Classification	"Plastic"

Check	Load	Capacity	Notes	Result
Deflection	$\delta_{y_{max}} = 12.2 \text{ mm}$	$\delta_{lim} = 12.5 \text{ mm}$	Span / 360 or 13.0 mm	Fass
Shear	F _{vy} = 270.5 kN	P _{vy} = 542.8 kN	Low shear	Pass
Moment	M _x = 304.3 kNm	M _{cx} = 393.4 kNm	Low shear	Pass
LTB	M _{LT} = 304.3 kNm	M _b / m _{LT}	L _{E_LT} = 4.5 m	Pass
		= 385.6 kNm	m _{LT} = 0.93	

Robert Austin Associates 57 Femie Fields High Wycombe HP12 4SN	Project NAT HOS ALBANY			Job Ref. C/08/1 33	
	Section SPLICE BEAM 1			Sheet no./rev.	3/3
	Calc. by RA	Date 30/11/2008	Chik'd by	Date	App'd by

BOLTED COVER PLATE SPLICE CONNECTION - BS5950-1:2000

Connection loads

Design moment

M = 230 kNm

Axial force in the member (compression +ve)

N = 0 kN

Shear force in the member

V = 140 kN

Steel beam details

Beam section classification

UC 254x254x107

Grade of steel section

S275

Section bearing strength

 $p_{bs_s} = 460 \text{ N/mm}^2$

General connection details

Grade of steel plate

S275

Plate bearing strength

 $p_{bs_p} = 460 \text{ N/mm}^2$

Bolt classification

M20 (Torqued General Grade HSFG)

Hole diameter

D_h = **22** mm

Bolt slip factor

 $\mu = 0.50$

Hole type factor

 $K_s = 1.0$

Flange plate details - plates bolted to both sides of each flange

Thickness of flange plates

t_{fp} ≈ 20 mm

Width of outer flange plates

b_{fp} = 250 mm

Width of inner flange plates

b_{tp_i} = 100 mm

l_{fo} ≈ 700 mm

Length of flange plates

Flange bolting details
Rows of flange bolts on each side of joint

n_{fb_r} = 4

Bolts per row

n_{եՆ_P} = 2

Total number of flange bolts each side of joint

 $n_{fb} = n_{fb_r} \times n_{fb_p} = 8$

Spacing between rows of bolts

 $S_f = 75 \text{ mm}$

CSC TEDDS Robert Austin Associates	Project NAT HOS ALBANY			Job Ref.	Job Ref. C/08/1:33	
57 Femie Fields High Wycombe	Section SPLICE BEAM 1			Sheet no./rev.	Sheet no./rev.	
HP12 4SN	Calc. by RA	Date 30/11/2008	Chk'd by	Date	App'd by	Ditte

Spacing between rows of bolts across joint	S _{fc} = 150 mm
Spacing at end of flange plates	$S_{fe} = 50 \text{ mm}$
Lateral spacing between central bolts	$S_{fic} = 150 \text{ mm}$
Lateral spacing at edge of flange plates	$S_{fle} = 50 \text{ mm}$

Web plate details - plates bolted to both sides of the web

Thickness of web plates	t _{wp} = 15 mm
Width of web plates	$b_{wp} = 440 \text{ mm}$
Length of web plates	l _{wp} = 150 mm

Web bolting details

Rows of web bolts	n _{wb_r} = 2
Bolts per row each side of joint	n _{wb_p} ≠ 3

Total number of web bolts each side of joint
$$n_{wb} = n_{wb_r} \times n_{wb_p} = 6$$
Spacing between rows of bolts $S_w = 80 \text{ mm}$
Spacing at end of web plates $S_{we} = 35 \text{ mm}$
Lateral spacing between bolts $S_{wf} = 60 \text{ mm}$
Lateral spacing between central bolts $S_{wf} = 100 \text{ mm}$
Lateral spacing at edge of web plates $S_{wf} = 50 \text{ mm}$

Step 1 - Distribution of forces in member flanges

Forces in member tension flange	$T = [M / (D_b - T_b)] - N / 2 = 934 kN$
Forces in member compression flange	$C = [M / (D_b - T_b)] + N / 2 = 934 kN$
Force in the flange	$F_f = max(T, C) = 934 \text{ kN}$

Step 2 - Calculate distribution of forces in member flanges

Check area of flange

Design strength of section	$p_{ys} = 265 \text{ N/mm}^2$
Minimum required effective flange area	$F_1 / p_{ys} = 3525 \text{ mm}^2$
Effective net area coefficient	$K_{e} = 1.2$

Effective flange area $A_{ef} = min(K_e \times [B_b + (n_{fb_P} \times D_h)] \times T_b, \ B_b \times T_b) = \textbf{5284} \ mm^2$

PASS - Effective flange area is adequate

Check area of flange plates

Design strength of plates	$p_{yp} = 265 \text{ N/mm}^2$
Minimum required effective flange plate area	$F_t / p_{yp} = 3525 \text{ mm}^2$
Effective flange plate area	$A_{ep} = min(K_e \times [b_{fp} + 2 \times (b_{fp_i} - (n_{fb_p} \times D_h))] \times t_{fp_i} (b_{fp} + 2 \times b_{ft_j}) \times t_{fp})$

 $A_{ep} = 8688 \text{ mm}^2$ PASS - Effective flange plate area is: adequate

Step 3 - Design of flange holts

- 10 F C Doorgii oi Harige bolts	
Slip resistance of the bolt per interface	$S_{fb} = 1.1 \times K_s \times \mu \times P_p = 79.2 \text{ kN}$
Bearing capacity of the bolt in the flange	$P_{bg_s} = 1.5 \times d \times T_b \times p_{bs_s} = 282.9 \text{ kN}$
Bearing capacity of the bolt in the plate	$P_{bg_p} = 3 \times d \times tr_p \times p_{bs_p} = 552.0 \text{ kN}$
Average flange bolt end distance	$S_{fe_ave} = S_{fe} + (n_{fb_r} - 1) \times S_f / 2 = 162 \text{ mm}$
Bearing capacity limit of the bolt in the plate	$P_{\text{bg_p_lim}} = S_{\text{fe_ave}} \times t_{\text{fp}} \times p_{\text{bs_p}} = 1495.0 \text{ kN}$
Bolt capacity	$P_s = min(2 \times S_{fb}, P_{bg_s}, P_{bg_p}, P_{bg_p_lim}) = 158.4 kM$
Manager and Charles and Charles	all

Number of bolts required $n_{fb_req} = F_f / P_s = 5.9$

Number of bolts provided n_{fb} = 8

PASS - Flange plate bolting is adequate

Robert Austin Associates 57 Femie Fields High Wycombe HP12 4SN	Project	NAT HO	S ALBANY		Job Ref.	/08/1 33
	Section SPLICE BEAM 1		Sheet no./rev. 3/ 5			
	Calc. by RA	Date 30/11/2008	Chk'd by	Date	Арр'с бу	Dinte

Step 4 - Design of web plates and bolts

Check web plate in shear

Shear force in web plates

Gross shear area

Net shear area (allowing for bolt holes)

Net shear area limit

V = 140 kN

 $A_v = n_{wp} \times I_{wp} \times t_{wp} = 4500 \text{ mm}^2$

 $A_{v_net} = n_{wp} \times (l_{wp} - n_{wb_f} \times D_h) \times t_{wp} = 3180 \text{ m/m}^2$

 $0.85 \times A_v / K_e = 3188 \text{ mm}^2$

Net shear capacity of web plates

Gross shear capacity of web plates

Length of block shear face

Length of block tension face

Block shear coefficient

Block shear capacity of web plates

Shear capacity of web plates

 $p_{v_net} = 0.7 \times K_e \times A_{v_net} \times p_{yp} = 708 \text{ kN}$

 $p_{v_gross} = 0.6 \times A_v \times p_{yp} = 716 \text{ kN}$

 $L_v = S_{we} + (n_{wb_r} - 1) \times S_w = 115 \text{ mm}$ $L_t = S_{we} + (n_{wb_p} - 1) \times S_{wt} = 170 \text{ mm}$

to the comment of the

 $k = if(n_{wb_p} > 1, 2.5, 0.5) = 2.5$

 $p_{v_block} = 0.6 \times p_{yp} \times t_{wp} \times n_{wp} \times [L_v + K_e \times (L_t - k \times D_h)] = 1207 \text{ cN}$

 $p_v = min(p_{v_net}, p_{v_net}, p_{v_net}) = 708 \text{ kN}$

PASS - Effective web plate area is adequate in shear

Check web plate in bending

Second moment of area of web plate

| =

 $I = (t_{wp} \times l_{wp}^3 / 12) - (n_{wb_r} \times t_{wp} \times D_h^3 / 12) - (t_{wp} \times D_h \times K \times S_{w'})$

I = 3136130 mm4

Distance from joint to centroid of bolt group

Moment in web plate

Moment capacity of web plates

 $a = [((n_{wb_p} - 1) \times S_{wl}) + S_{wlc}] / 2 = 110 \text{ mm}$

 $M_{wp} = V \times a = 15.4 \text{ kNm}$

 $M_{cap} = p_{yp} \times n_{wp} \times 1 / (l_{wp} / 2) = 22.2 \text{ kNm}$

PASS - Effective web plate area is adequate in bending

Check web plate bolts

Moment of inertia of bolt group

Force on bolt due to direct shear

Vertical force on bolt due to moment

Horizontal force on bolt due to moment

Resultant bolt load

Angle of the resultant bolt load

Minimum edge distance

Edge distance factor for web plate bearing

Slip resistance of the bolt per interface

Bearing capacity of the bolt in the web

Bearing capacity of the bolt in the plate

Bolt capacity

 $l_{bg} = 24000 \text{ mm}^2$

 $F_v = V / n_{wb} = 23.3 \text{ kN}$

 $F_{mv} = M_{wp} \times x / I_{bg} = 38.5 \text{ kN}$

 $F_{mh} = M_{wp} \times y / I_{bg} = 25.7 \text{ kN}$

 $F_r = \sqrt{((F_v + F_{mv})^2 + F_{mh}^2)} = 66.9 \text{ kN}$

 $\theta = \operatorname{atan}(F_{mh} / (F_v + F_{mv})) \approx 22.5 \operatorname{deg}$

 $e_r = min(S_{we} / cos(\theta), S_{wle} / cos(90 - \theta)) = 38 mm$

 $K_{edge} = min(e_r / (3 \times d), 1) = 0.6$

 $S_{fb} = 1.1 \times K_s \times \mu \times P_p = 79.2 \text{ kN}$

 $P_{bg_s} = 1.5 \times d \times t_b \times p_{bs_s} = 176.6 \text{ kN}$

 $P_{bg_p} = 1.5 \times K_{edge} \times d \times t_{wp} \times n_{wp} \times p_{bs_p} = 261.5 \text{ kN}$

 $P_s = min(n_{wp} \times S_{fb}, P_{bg_s}, P_{bg_p}) = 158.4 \text{ kN}$

PASS - Web plate bolting is adequate

Connection summary

Beam classification

UC 254x254x107

Bolt classification

M20 (Torqued General Grade HSFG)

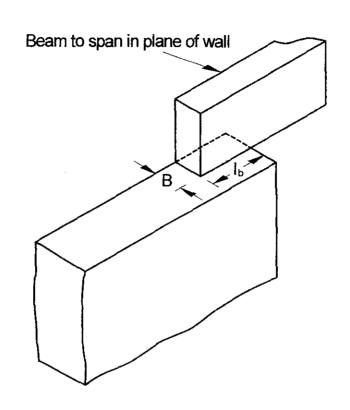
Flange plates

700 mm x 250 mm x 20 mm to the outside of each flange

2 No. 700 mm x 100 mm x 20 mm to the inside of each flange

Flange bolting

16 No. total per flange - 4 No. rows of 2 No. bolts on each side of the joint


Web plates

150 mm x 440 mm x 15 mm on each side of the web

Web bolting

12 No. total - 2 No. rows of 3 No. bolts on each side of the joint

Robert Austin Associates 57 Femie Fields High Wycombe HP12 4SN	Project	NAT HOS	Job Ref. C/08/193		
	Section	PADSTO	Sheet no./rev. 3/ 6		
	Calc. by RA	Oate 30/11/2008	Chk'd by	Date	App'd by

MASONRY BEARING DESIGN TO B\$5628-1:2005

Masonry details

Masonry type

Compressive strength of unit

Mortar designation

Category of masonry units

Category of construction control

Partial safety factor for material strength

Thickness of load bearing leaf

Effective thickness of masonry wall

Height of masonry wall

Effective height of masonry wall

Clay or calcium silicate bricks

 $p_{unit} = 50.0 \text{ N/mm}^2$

i

Category I

Normal

 $y_{m} = 3.1$

t = 220 mm

tef = 220 mm

h = 3000 mm

h_{ef} = 2250 mm

Bearing details

Beam spanning in plane of wall

Width of bearing Length of bearing

B = 220 mm

l_b = 450 mm

Compressive strength from Table 2 BS5628:Part 1 - Clay or calcium silicate bricks

Mortar designation

Mortar = "i"

Brick compressive strength

 p_{unit} = 50.0 N/mm²

Characteristic compressive strength

 $f_k = 11.60 \text{ N/mm}^2$

Loading details

Characteristic dead load

Gk = 124 kN

Robert Austin Associates	Project	NAT HOS	Job Ref. C/08/1 ∋3			
57 Femie Fields High Wycombe	Section	PADSTO	Sheet no./rev. 3/ 7			
HP12 4SN	Calc. by	Date 30/11/2008	Chk'd by	Date	App'd by	Date

Characteristic imposed load

 $Q_k = 61 \text{ kN}$

Design load on bearing

 $F = (G_k \times 1.4) + (Q_k \times 1.6) = 271.2 \text{ kN}$

Masonry bearing type

Bearing type

Type 1

Bearing safety factor

ybear = 1.25

Check design bearing without a spreader

Design bearing stress

 $f_{ca} = F / (B \times I_b) = 2.739 \text{ N/mm}^2$

Allowable bearing stress

 $f_{cp} = \gamma_{bear} \times f_k / \gamma_m = 4.677 \text{ N/mm}^2$

PASS - Allowable bearing stress exceeds design bearing stress

Check design bearing at 0.4 × h below the bearing level

Slenderness ratio

 $h_{ef} / t_{ef} = 10.23$

Eccentricity at top of wall

 $e_x = 0 \text{ mm}$

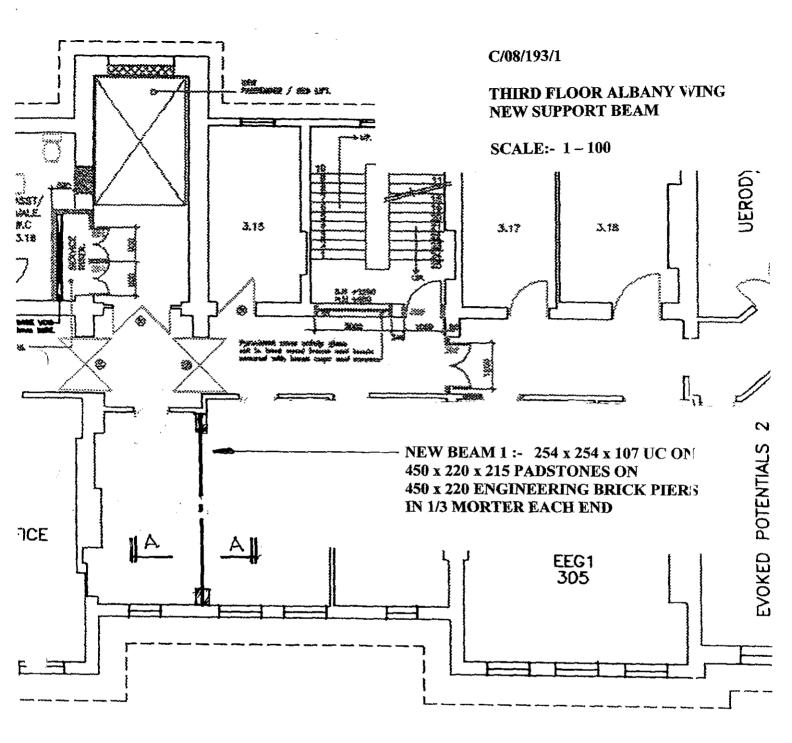
From BS5268:1 Table 7

Capacity reduction factor

 $\beta = 0.99$

Length of bearing distributed at $0.4 \times h$

1d = 1650 mm

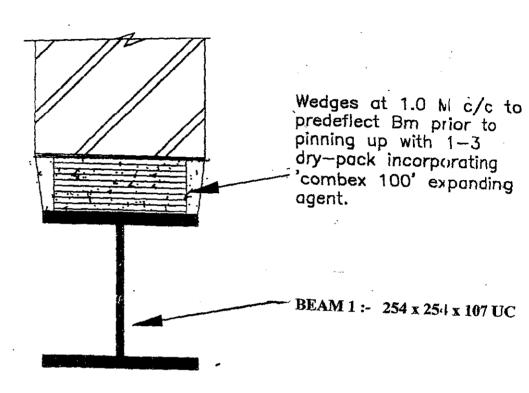

Maximum bearing stress

 $f_{ca} = F / (I_d \times t) = 0.747 \text{ N/mm}^2$

Allowable bearing stress

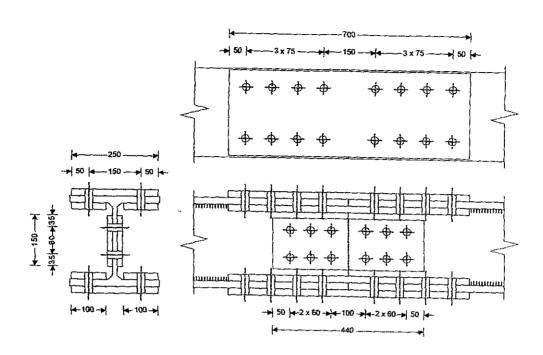
 $f_{cp} = \beta \times f_k / \gamma_m = 3.705 \text{ N/mm}^2$

PASS - Allowable bearing stress at 0.4 x h below bearing level exceeds design bearing stress



ATIONAL HOSPITAL FOR OLOGY AND NEUROSURGERY SERVICES RD FLOOR - ALBANY WING OPOSED FLOOR PLAN.

C/08/193/2


THIRD FLOOR ALBANY WING NEW SUPPORT BEAM

SECTION A - A

Project Job Ref. NAT HOS ALBANY Robert Austin Associates C/08, 193 Section 57 Femie Fields Sheet no./rev. High Wycombe SPLICE BEAM 1 08 HP12 45N Calc. by Date Chk'd by Date App'd by)ate RA 30/11/2008

BOLTED COVER PLATE SPLICE CONNECTION - BS5950-1:2000

SPLICE AT MAXIMUM 1.0M FROM FACE OF PIER EACH END

Connection summary

Beam classification

Bolt classification

UC 254x254x107

Flange plates

M20 (Torqued General Grade HSFG)

700 mm x 250 mm x 20 mm to the outside of each flange

2 No. 700 mm x 100 mm x 20 mm to the inside of each flange

Flange bolting

16 No. total per flange - 4 No. rows of 2 No. bolts on each side of the joint

Web plates

150 mm x 440 mm x 15 mm on each side of the web

Web bolting

12 No. total - 2 No. rows of 3 No. bolts on each side of the joint