APPENDIX 'B'

Laboratory Test Data and Gas Monitoring Data

Ref: 09/15403

PLASTICITY INDEX & MOISTURE CONTENT DETERMINATIONS

LOCATION 1 Elm Row, Hampstead, London, NW3 1AA

BH/TP No.	Depth m	Natural Moisture %	Liquid Limit %	Plastic Limit %	Plasticity Index %	Passing 425 μm %	Class
BH1	3.50	25	54	19	35	100	СН

Ref: 09/15403

SULPHATE & pH DETERMINATIONS

LOCATION 1 Elm Row, Hampstead, London, NW3 1AA

BH/TI No.	P DEPTH BELOW	SOIL SULPHATES AS SO ₄ TOTAL WATER SO	WATER SULPHATES AS SO ₄	рН	CLASS	SOIL - 2mm
	GL m	% g/l	g/I			%
BH1	1.50	<0.01		7.7	DS-1	100
BH2	2.50	0.01		6.0	DS-1	100
TP1	0.75	0.01		8.1	DS-1	27

Classification - Tables C1 and C2 : BRE Special Digest 1 : 2005

sĄs

Site Analytical Services Ltd.

Ref: 09/15403

DETERMINATION OF MIX PROPORTIONS

Insoluble Residue	45.09 %	
Soluble Silica as SiO ₂	1.01 %	
Total Calcium Oxide as CaO	28.18 %	
Calcium Carbonate as CaCO ₃	44.55 %	
		CORRECTED TO 100 %
Cement Content By Weight	5.0 %	5.2 %
Fine Aggregate Content By Weight	91.0 %	94.8 %
Cement : Fine Aggregate (Sand) Ratio		
By Weight By Volume	1 : 18.2 1 : 15.8	

NOTE

In calculating the above mix proportions the following assumptions were made: -

Calcium Oxide Content of Cement Soluble Silica Content of Cement Recovery of Insolubles from Aggregate Recovery of Soluble Silica from Cement Soluble Silica Content of Aggregate	64.5 20.2 97 95 0.2	% % % %
Bulk Density of Cement	1450	kg/m³
Bulk Density of Aggregate	1675	kg/m³

Ref: 09/15403

DETERMINATION OF MIX PROPORTIONS

Insoluble Residue	45.09	%	
Soluble Silica as SiO ₂	1.01	%	
Total Calcium Oxide as CaO	28.18	%	
			CORRECTED TO 100 %
Cement Content By Weight	5.0	%	5.8 %
Lime Content By Weight	34.3	%	40.0 %
Sand Content By Weight	46.5	%	54.2 %
Cement : Lime : Sand Ratio			
By Weight By Volume		.9 : 9.3 7.4 : 8.1	

NOTE

In calculating the above mix proportions the following assumptions were made: -

Calcium Oxide Content of Cement	64.5 %
Soluble Silica Content of Cement	20.2 %
Recovery of Insolubles from Aggregate	97 %
Recovery of Soluble Silica from Cement	95 %
Soluble Silica Content of Aggregate	0.2 %
Bulk Density of Cement Bulk Density of Hydrated Lime Bulk Density of Aggregate	1450 kg/m³ 575 kg/m³ 1675 kg/m³

Ref: 09/15403

DETERMINATION OF MIX PROPORTIONS

Insoluble Residue	45.09 %	
Soluble Silica as SiO₂	1.01 %	
Total Calcium Oxide as CaO	28.18 %	
		CORRECTED TO 100 %
Lime Content By Weight	38.8 %	45.5 %
Sand Content By Weight	46.5 %	54.5 %
Lime : Sand Ratio		
By Weight By Volume	1 : 1.2 1 : 0.4	

NOTE

In calculating the above mix proportions the following assumptions were made: -

Calcium Oxide Content of Cement Soluble Silica Content of Cement Recovery of Insolubles from Aggregate Recovery of Soluble Silica from Cement Soluble Silica Content of Aggregate	64.5 20.2 97 95 0.2	% % % %
Bulk Density of Hydrated Lime Bulk Density of Aggregate		kg/m³ kg/m³

Ref: 09/15403

GAS MONITORING

LOCATION	1 Elm Row, Hampstead, London, NW3 1AA
MONITORING DATE	19 th March 2009

BOREHOLE REF:		BH1	BH2
Methane	(%)	0.00	0.00
Carbon Dioxide	(%)	0.9	0.7
Oxygen	(%)	18.6	19.8
Hydrogen Sulphide	(p.p.m.)	0.0	0.0
Carbon Monoxide	(p.p.m.)	0.0	0.0
Atmospheric Pressure	(mb)	1011	1011
Water Level	(m.bgl)	Dry	Dry
Oxygen in Air	(%)	20.9	20.9
Flow	(I/hour)	0.1	0.0

N.B. Methane Lower Explosive Limit - 5% Gas in Air

 $S \bigwedge_{i} S$ Site Analytical Services Ltd.

LOCATION 1 Elm Row, Hampstead, London, NW3 1AA

Ref: 09/15403

GAS MONITORING

MONITORING DATE 31 st	March 2009			
BOREHOLE REF:		BH1	BH2	
Methane	(%)	0.00	0.00	
Carbon Dioxide	(%)	0.7	0.2	
Oxygen	(%)	21.1	21.4	
Hydrogen Sulphide	(p.p.m.)	0.0	0.0	
Carbon Monoxide	(p.p.m.)	0.0	0.0	
Atmospheric Pressure	(mb)	1006	1006	
Water Level	(m.bgl)	Dry	Dry	
Oxygen in Air	(%)	21.1	21.1	
Flow	(l/hour)	0.2	0.2	

N.B. Methane Lower Explosive Limit - 5% Gas in Air

SANDBERG

Sandberg LLP 5 Carpenter's Place Clapham High Street London SW4 7TD

Tel: Fax: email

web

020 7565 7000 020 7565 7101 clapham@sandberg.co.uk

www.sandberg.co.uk

40042/F

Date of Receipt

10/03/09

Date of Test 12/03/09

BRICK TEST RESULTS COMPRESSIVE STRENGTH

BS 3921:1985, APPENDIX D1

Sandberg Sample Reference	F71983	
Client Sample Reference	1 Elm Road, Hampstead	
Type of Brick	Used, Red, Clay, Solid	
Mean strength of mortar used to fill frogs at test, days, N/mm²	NA	

Sandberg Specimen Reference	Client Specimen Reference	Surface Area mm²	Maximum Failing Load kN	Compressive Strength ² N/mm ²
4840	NA	18957	166	8.8
4841	NA	19474	249	12.8
4842	NA	14008	51	3.6
4843	NA	11875	92	7.7

BS 3921:1985 has been withdrawn and replaced by parts of BS EN 771 and BS EN 772 series. However for the purposes of testing reclaimed bricks we have continued to use BS 3921 methods. To the nearest 0.1N/mm²

Client	Site Analytical Services Limited Unit 14 & 15 River Road Business Park River Road Barking Essex	Signed	For Sandberg LLP
	IG11 0EA	Name	Doug Hunt
	For the attention of Mr Jim Warren	Position	Chief Technician
Reference	Order No. 7162/JSW	Date	13 March 2009

Materials, samples and test specimens are retained for a period of 2 months from the issue of the this test certificate

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Aubrey Davidson Site Analytical Services Ltd Units 14 -15 River Road Business Park 33 River Road Barking Essex IG11 0EA

t: 0208 5948134 f: 0208 5948072

e: aubreyd@siteanalytical.co.uk

i2 Analytical Ltd. Building 19, BRE, Garston, Watford. WD25 9XX

t: 01923 67 00 20 f: 01923 67 00 30 e: info@i2analytical.com

Analytical Report Number: 09-18595

Project / Site name:

1 ELM Row

Samples received on:

11/03/2009

Your job number:

09/15403

Samples instructed on:

10/03/2009

Your order number:

7163

Analysis completed by:

17/03/2009

Report Issue Number:

Report issued on:

17/03/2009

Samples Analysed:

4 soil samples

Signed:

Dr Claire Stone **UK Quality Manager**

For & on behalf of i2 Analytical Ltd.

Signed:

David Ashworth

UK Technical Manager

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Lab Sample Number				124142	124143	124144	124145	
Sample Reference	-			BH1	BH1	8H2	BH2	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth				0.25	0.75	0.25	0.50	
				None Supplied	None Supplied	None Supplied	None Supplied	
Date Sampled Time Taken		,		None Supplied	None Supplied	None Supplied	None Supplied	
line laken			-	NOTE SUPPLIED	None Supplied	HOIRE SUPPLIED	NOIR Supplicu	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
foisture Content	%	N/A	NONE	15	13	8.5	7.2	
otal mass of sample recieved	kg	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	
ibrous Material (Screen)	P/A	N/A	NONE	Absent	Absent	Absent	Absent	
General Inorganics								
Н	alt Units	N/A	MCERTS	8.4	8.3	9.0	8.9	
Total Cyanide	ma/ka	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Complex Cyanide	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	
Free Cyanide	mg/kg	i	NONE	< 1	<1	< 1	< 1	
Total Sulphate as SO ₄	mg/kg	100	MCERTS	320	130	240	130	
Water Soluble Sulphate as SO ₄ (2:1)	9/1	0.005	NONE	0.024	0.019	0.11	0.066	—— —
Sulphide	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	
Total Organic Carbon (TOC)	111Q/KQ	0.1	MCERTS	1.4	0.8	0.8	0.7	
IVIAI OIGAIIIC CAIDON (10C)		V-1	PACKIS		. V.O	ı V.O	y./	
Total Phenois								
	A	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	
Total Phenols (monohydric)	mq/kg		MUCKIS	₹ 2.0	1 <u>5 2.0</u>	1 <u>5 4.0</u>	<u> </u>	
Speciated PAHs		0.11	I			T	1	r
taphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0,05	< 0.05	
Icenaphthylene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	<u> </u>
cenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	ļ
luorene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	ļ
Phenanthrene	mg/kg	0.3	MCERTS	< 0.30	< 0.30	< 0.30	< 0.30	.
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	
fluoranthene	mg/kg	0.2	MCERTS	0.32	< 0.20	< 0.20	< 0.20	
Pyrene	mg/kg	0.2	MCERTS	0.29	< 0.20	< 0.20	< 0.20	
Benzo(a)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	
Chrysene	mg/kg	0.3	MCERTS	< 0.30	< 0.30	< 0.30	< 0.30	
Benzo(b)fluoranthene	mg/kg	0.5	MCERTS	< 0.50	< 0.50	< 0.50	< 0.50	
Benzo(k)fluoranthene	ma/ka	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	
Benzo(a)pyrene	mq/kg	0.3	MCERTS	< 0.30	< 0.30	< 0.30	< 0.30	
indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	
Benzo(ghi)perylene	mg/kg	0.5	MCERTS	< 0.50	< 0.50	< 0.50	< 0.50	
Total PAH								
Speciated Total EPA-16 PAHs	mq/kg	1.6	MCERTS	< 1.6	< 1.6	< 1.6	< 1.6	
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	ma/ka	2	MCERTS	16	9.7	6.8	13	
Boron (water soluble)	mg/kg	0.2	MCERTS	0.9	0.8	0.6	0.6	
Cadmium (agua regia extractable)	mg/kg	0.6	MCERTS	< 0.6	< 0.6	< 0.6	< 0.6	
Dromium (hexavalent)	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	1
Dromium (aqua regia extractable)	mg/kg	5	MCERTS	23	14	7.3	5.8	
Copper (aqua regia extractable)	ma/kg	2	MCERTS	57	16	7.8	28	
.ead (aqua regia extractable)	mg/kg	3	MCERTS	570	70	24	17	1
Mercury (aqua regia extractable)	mg/kg	0.8	MCERTS	1.0	< 0.8	< 0.8	< 0.8	
Vickel (aqua regia extractable)	ma/ka	3	MCERTS	10	3.8	< 3.0	< 3.0	
Selenium (aqua regia extractable)		3	MCERTS	< 3.0 ·	< 3.0		< 3.0	
	mg/kg	2	MCERTS	87	< 3.0 20	< 3.0 10		
Zinc (aqua regia extractable)	mg/kg	1 4	I INCEKTS			T 10	14	

Lab Sample Number				124142	124143	124144	124145	
Sample Reference				BH1	BH1	BH2	BH2	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth				0.25	0.75	0.25	0.50	
Date Sampled				None Supplied	None Supplied	None Supplied	None Supplied	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
p & m-xylene	µg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Petroleum Hydrocarbons			LAMA					
Petroleum Hydrocarbons TPH7 - Aliphatic > C5 - C6	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Petroleum Hydrocarbons TPH7 - Aliphatic >C5 - C6 TPH7 - Aliphatic >C6 - C8	mg/kg mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	·
Petroleum Hydrocarbons TPH7 - Aliphatic > C5 - C6 TPH7 - Aliphatic > C6 - C8 TPH7 - Aliphatic > C8 - C10	mg/kg mg/kg mg/kg	0.1 0.1	NONE	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	
Petroleum Hydrocarbons TPH7 - Aliphatic > C5 - C6 TPH7 - Aliphatic > C6 - C8 TPH7 - Aliphatic > C8 - C10 TPH7 - Aliphatic > C10 - C12	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 1	NONE NONE	< 0.1 < 0.1 < 1.0	< 0.1 < 0.1 < 1.0	< 0.1 < 0.1 < 1.0	< 0.1 < 0.1 < 1.0	
Petroleum Hydrocarbons TPH7 - Aliphatic > C5 - C6 TPH7 - Aliphatic > C6 - C8 TPH7 - Aliphatic > C8 - C10 TPH7 - Aliphatic > C10 - C12 TPH7 - Aliphatic > C12 - C16	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 1 2	NONE NONE NONE	< 0.1 < 0.1 < 1.0 < 10	< 0.1 < 0.1 < 1.0 < 10	< 0.1 < 0.1 < 1.0 < 10	< 0.1 < 0.1 < 1.0 < 10	
Petroleum Hydrocarbons TPH7 - Aliphatic > C5 - C6 TPH7 - Aliphatic > C6 - C8 TPH7 - Aliphatic > C8 - C10 TPH7 - Aliphatic > C10 - C12 TPH7 - Aliphatic > C12 - C16 TPH7 - Aliphatic > C16 - C21	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 1 2	NONE NONE NONE NONE	< 0.1 < 0.1 < 1.0 < 10 < 10	< 0.1 < 0.1 < 1.0 < 10 < 10	< 0.1 < 0.1 < 1.0 < 10 < 10	< 0.1 < 0.1 < 1.0 < 10 < 10	
Petroleum Hydrocarbons TPH7 - Aliphatic > C5 - C6 TPH7 - Aliphatic > C6 - C8 TPH7 - Aliphatic > C8 - C10 TPH7 - Aliphatic > C10 - C12 TPH7 - Aliphatic > C12 - C16 TPH7 - Aliphatic > C16 - C21 TPH7 - Aliphatic > C16 - C21 TPH7 - Aliphatic > C16 - C21	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 1 2 10	NONE NONE NONE NONE NONE	< 0.1 < 0.1 < 1.0 < 10 < 10 < 10	< 0.1 < 0.1 < 1.0 < 10 < 10 < 10	< 0.1 < 0.1 < 1.0 < 10 < 10 < 10	< 0.1 < 0.1 < 1.0 < 10 < 10 < 10	
Petroleum Hydrocarbons TPH7 - Aliphatic > C5 - C6 TPH7 - Aliphatic > C6 - C8 TPH7 - Aliphatic > C8 - C10 TPH7 - Aliphatic > C10 - C12 TPH7 - Aliphatic > C12 - C16 TPH7 - Aliphatic > C16 - C21	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 1 2	NONE NONE NONE NONE	< 0.1 < 0.1 < 1.0 < 10 < 10	< 0.1 < 0.1 < 1.0 < 10 < 10	< 0.1 < 0.1 < 1.0 < 10 < 10	< 0.1 < 0.1 < 1.0 < 10 < 10	
Petroleum Hydrocarbons TPH7 - Aliphatic > C5 - C6 TPH7 - Aliphatic > C6 - C8 TPH7 - Aliphatic > C8 - C10 TPH7 - Aliphatic > C10 - C12 TPH7 - Aliphatic > C10 - C12 TPH7 - Aliphatic > C12 - C16 TPH7 - Aliphatic > C16 - C21 TPH7 - Aliphatic > C21 - C34 TPH7 - Aliphatic C21 - C34 TPH7 - Aliphatic C5 - C34	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 1 2 10 10	NONE NONE NONE NONE NONE	< 0.1 < 0.1 < 1.0 < 10 < 10 < 10	< 0.1 < 0.1 < 1.0 < 10 < 10 < 10 < 10	< 0.1 < 0.1 < 1.0 < 10 < 10 < 10 < 10	< 0.1 < 0.1 < 1.0 < 10 < 10 < 10 < 10	
Petroleum Hydrocarbons TPH7 - Aliphatic > C5 - C6 TPH7 - Aliphatic > C6 - C8 TPH7 - Aliphatic > C8 - C10 TPH7 - Aliphatic > C10 - C12 TPH7 - Aliphatic > C12 - C16 TPH7 - Aliphatic > C16 - C21 TPH7 - Aliphatic > C16 - C21 TPH7 - Aliphatic > C16 - C21	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 1 2 10	NONE NONE NONE NONE NONE NONE	< 0.1 < 0.1 < 1.0 < 10 < 10 < 10 < 10	< 0.1 < 0.1 < 1.0 < 10 < 10 < 10	< 0.1 < 0.1 < 1.0 < 10 < 10 < 10	< 0.1 < 0.1 < 1.0 < 10 < 10 < 10 < 10 < 10	
Petroleum Hydrocarbons TPH7 - Aliphatic > C5 - C6 TPH7 - Aliphatic > C6 - C8 TPH7 - Aliphatic > C8 - C10 TPH7 - Aliphatic > C10 - C12 TPH7 - Aliphatic > C12 - C16 TPH7 - Aliphatic > C16 - C21 TPH7 - Aliphatic > C21 - C34 TPH7 - Aliphatic > C3 - C34 TPH7 - Aliphatic > C5 - C34) TPH7 - Aromatic > C5 - C7	mg/kg	0.1 0.1 1 2 10 10	NONE NONE NONE NONE NONE NONE NONE NONE	<0.1 <0.1 <1.0 <10 <10 <10 <10 <10 <10 <0.10	<0.1 <0.1 <0.1 <1.0 <10 <10 <10 <10 <10 <0.10	<0.1 <0.1 <0.1 <1.0 <10 <10 <10 <10 <10 <0.10 <0.10 <0.10	<0.1 <0.1 <1.0 <1.0 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	
Petroleum Hydrocarbons TPH7 - Aliphatic > C5 - C6 TPH7 - Aliphatic > C6 - C8 TPH7 - Aliphatic > C10 - C12 TPH7 - Aliphatic > C10 - C12 TPH7 - Aliphatic > C16 - C21 TPH7 - Aliphatic > C16 - C21 TPH7 - Aliphatic > C16 - C21 TPH7 - Aliphatic > C21 - C34 TPH7 - Aliphatic C5 - C34 TPH7 - Aromatic > C5 - C7 TPH7 - Aromatic > C5 - C7	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 1 2 10 10 10	NONE NONE NONE NONE NONE NONE NONE NONE	<0.1 <0.1 <1.0 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	<0.1 <0.1 <1.0 <1.0 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	<0.1 <0.1 <1.0 <1.0 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	< 0.1 < 0.1 < 1.0 < 10 < 10 < 10 < 10 < 10	
Petroleum Hydrocarbons TPH7 - Aliphatic > C5 - C6 TPH7 - Aliphatic > C6 - C8 TPH7 - Aliphatic > C10 - C12 TPH7 - Aliphatic > C10 - C12 TPH7 - Aliphatic > C12 - C16 TPH7 - Aliphatic > C16 - C21 TPH7 - Aliphatic > C16 - C21 TPH7 - Aliphatic > C21 - C34 TPH7 - Aliphatic > C5 - C34 TPH7 - Aromatic > C5 - C7 TPH7 - Aromatic > C7 - C8 TPH7 - Aromatic > C8 - C10	mg/kg	0.1 0.1 1 2 10 10 10 0.1 0.1	NONE NONE NONE NONE NONE NONE NONE NONE	<0.1 <0.1 <1.0 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	<0.1 <0.1 <0.1 <1.0 <10 <10 <10 <10 <10 <10 <10 <10 <0.1 <0.1	<0.1 <0.1 <0.1 <1.0 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	<0.1 <0.1 <0.1 <1.0 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	
Petroleum Hydrocarbons TPH7 - Aliphatic > C5 - C6 TPH7 - Aliphatic > C6 - C8 TPH7 - Aliphatic > C8 - C10 TPH7 - Aliphatic > C10 - C12 TPH7 - Aliphatic > C10 - C12 TPH7 - Aliphatic > C12 - C16 TPH7 - Aliphatic > C16 - C21 TPH7 - Aliphatic > C21 - C34 TPH7 - Aliphatic (C5 - C34) TPH7 - Aromatic > C5 - C7 TPH7 - Aromatic > C7 - C8 TPH7 - Aromatic > C10	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 1 2 10 10 10 10 0.1 0.1 0.1	NONE NONE NONE NONE NONE NONE NONE NONE	<0.1 <0.1 <1.0 <10 <10 <10 <10 <10 <0.1 <10 <10 <10 <10 <10 <10	<0.1 <0.1 <1.0 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	< 0.1 < 0.1 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	<0.1 <0.1 <1.0 <10 <10 <10 <10 <10 <10 <0.1 <10 <10 <10 <10 <10	
Petroleum Hydrocarbons TPH7 - Aliphatic > C5 - C6 TPH7 - Aliphatic > C6 - C8 TPH7 - Aliphatic > C8 - C10 TPH7 - Aliphatic > C10 - C12 TPH7 - Aliphatic > C10 - C12 TPH7 - Aliphatic > C16 - C21 TPH7 - Aliphatic > C16 - C21 TPH7 - Aliphatic > C21 - C34 TPH7 - Aliphatic C5 - C34 TPH7 - Aromatic > C5 - C7 TPH7 - Aromatic > C7 - C8 TPH7 - Aromatic > C8 - C10 TPH7 - Aromatic > C10 - C12 TPH7 - Aromatic > C10 - C12 TPH7 - Aromatic > C12 - C16	mg/kg	0.1 0.1 1 2 10 10 10 10 0.1 0.1 0.1 2	NONE NONE NONE NONE NONE NONE NONE NONE	<0.1 <0.1 <1.0 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	<0.1 <0.1 <1.0 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	<0.1 <0.1 <1.0 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	< 0.1 < 0.1 < 1.0 < 10 < 10	

Lab Sample Number	Sample Reference	Sample Number	Depth	Sample Description
124142	BH1	None Supplied	0.25	Brown Clay and gravel with stones.
124143	BH1	None Supplied	0.75	Brown clay and gravel with stones.
124144	BH2	None Supplied	0.25	Brown sand with stones.
124145	BH2	None Supplied	0.50	Brown sand with stones.

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
(Poland) Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	in-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
(Poland) Free cyanide (Low level) in soil	Determination of free cyanide by distillation followed by colorimetry.	in-house method	1.067-PL	w	NONE
(Poland) Hexavalent chromium in soil	Determination of hexavalent chronium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	in-house method	L068-PL	D	NONE
(Poland) Metals in soil by ICP-OES	Determination of metals in soil by aqua-regla digestion followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil***	L038-PL	D	MCERTS
(Poland) Monohydric phenols in soil	Determination of phenois in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	LOGG-PL	W	MCERTS
(Poland) pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests***	LOOS-PL	w	MCERTS
(Poland) Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	in-house method based on USEPA 8270	LC64-PL	D	MCERTS
(Poland) Sulphate, water soluble, in soli	Determination of water soluble sulphate by extraction with water followed by ICP-OES.	in-house method	L038-PL	D	NONE
(Poland) Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	in-house method	L010-PL	0	NONE
(Poland) Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	LO67-PL	w	MCERTS
(Poland) Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (11) suiphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests"	L023-PL	0	MCERTS

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Poland) Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests***	L038-PL	0	MCERTS
STEX and MT8E in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L017-UK	w	MCERTS
Complex cyanide in soil	Determination of complex cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L067- PL	w	NONE
Fibrous Material in soil screening	Visual screening of samples for fibrous material.	In-house method based on HSG 248	LOSO-PL	w	NONE
Moisture Content	Moisture content, determined gravlmetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests"	LO19-UK	w	NONE
TPH7 (Soil)	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	in-house method	L064-UK	0	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX 'C'

CLEA Software Version 1.04 - Assessment Settings and Health Criteria Values

15402 with xls

CLEA Softwal	CLEA Software Version 1.04
Report generated	25-Mar-09
Report title	1 Elm Row
Created by	Aubrey Davidson at Site Analytical Services Limited

CLEA Software Version 1.04

w
ā
~
4
_

l		
	25-Mar-09	
	Report generated	

_
ġ
ب
₩.
_
Ξ
.≌
Version
ç
œ
>
n
۳
ā
≨
2
↹
メ
Software
Ճ
щ

1 Arsenic consisted consisted conditioned conditioned NR			Assessment Criterion (mg kg ')	Rati	Ratio of ADE to HCV	<u> </u>	Saturation Limit (mo kg ⁻¹)	20%	50% rule?
0.10 0.33 1.00 0.30 0.30 1.00 0.30 0.30			notaletri	je O	inhalation	combined		Oral	Inha
0.38 0.62 1.00 0.10 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0	-	Arsenic		0.67	0.33	8.	S.	<u>L</u>	2
0.10 0.90 1.00 1.00 1.00 1.00 1.00 1.00	N	Cadmium	The second secon	0.38	0.62	9.1	ď		2
1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00	က	Chromium		0.10	0.90	90	2		2
NR NR 1.00 0.00 1.00 NR NR 1.00 NR NR 1.00 NR NR NR 1.00 NR NR NR 1.00 NR NR NR NR 1.00 0.01 0.09 1.00 0.01 0.09	4	Mercury		1.00	0.00	8	×		2
NR NR 1.00 NR NR 1.00 NR NR 1.00 NR NR 1.00 NR NR NR 1.00 NR NR NR 1.00 NR	S	Nickel		8	8.0	8	£		2
NR 1.00 NR 1.00 NR 1.00 O.04 1.00 O.01 0.99 1.00	ဖ	Selenium		0.1	¥	Ä	X.	Yes	2
0.06 0.94 1.00 0.01 0.99 1.00 0.01 0.99 1.00 0.01 0.99 1.00 0.01 0.99 1.00 0.01 0.99 1.00 0.01 0.99 1.00 0.01 0.99 1.00 0.01 0.01	7	Phenol		9.1	ž	ž	1.07E+05 (sol)	;	2
0.01 0.99 1.00	œ	Ethylbenzene		90.0	9.	9.	1.63E+03 (vap)		2
	O)	Toluene		0.01	66.0	8.	2.30E+03 (vap)	2	2
11 13 15 16 17 19	우			è.			:		<u> </u>
13 14 15 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	Ξ		manufacture of the state of the						
15 16 17 17 19	2		7 T			- 6 2	•		
14 15 16 16 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	5		and the second s				•		,
16 17 18 18	4						-		<u>.</u>
18 19 20 20 20 20 20 20 20 20 20 20 20 20 20	15	:							
18 18 20 20 20 20 20 20 20 20 20 20 20 20 20	16								
29 62	17								
	8								
	6								
	8								

15402 with.xls

CLEA Software Version 1.04	Version 1.04			Page 1 of 5
Report generated	25/03/2009			
Report title	1 Elm Row			
Created by	Aubrey Davidson at Site A	Aubrey Davidson at Site Analytical Services Limited		
BASIC SETTINGS				
Land Use	Residential with homegrown produce	vn produce		
Building Receptor Soil	Smail terraced house Female (res) Sandy loam	Start age class 1	End age class 6	Exposure Duration 6 years
Exposure Pathways	Conşum Soil atta	Direct soil and dust ingestion V Consumption of homegrown produce V Soil attached to homegrown produce	Dermal contact with indoor dust	Inhalation of indoor dust Inhalation of soil dust Inhalation of indoor vapour Inhalation of outdoor vapour