

Total floor area (1a)+(2a)+(3a)+(4a)+(4b)+(4d)+(4f)+(4h) =

This Design submission has been carried out by an Authorised SAP Assessor. It has been prepared from plans and specifications and may not reflect the property as constructed.

Assessor Name	MRS JOANNE CHURCHILL		Assessor Number	1591
Client				
Date Last Modified	27/04/2010			
Address	Unit 15 Makepeace Mansion	ns Unit 15-LB Holly I	Lodge Estate, Camden, (Greater London,
	ng worksheet report is for i nce by Building Control	nternal purposes on	ly and should not be a	ccepted as
1. Overall dwelling dime	nsions			
		Area (m ²)	Average storey height (m)	Volume (m ³)
Ground Floor		42.99 (1a) ×	2.60 =	111.77 (1)

42.99

(5)

Dwelling volume	(1)+(2)+(3)+(4)+(4c)+(4e)+(4g)+(4i) = 111.77 (6)
2. Ventilation rate	
	m ³ per hour
Number of chimneys 0	$\times 40 = 0 $ (7)
Number of open flues 0	$\times 20 = 0 $ (8)
Number of intermittent fans or passive vents 0	$\times 10 = 0 \tag{9}$
Number of flueless gas fires 0	$\times 40 = 0 $ (9a)
	Air changes per hour
Infiltration due to chimneys, flues and fans $= (7)+(8)+(9)+(9a) =$	0
If a pressurisation test has been carried out, proceed to box ((19)
Number of storeys in the dwelling	1 (11)
Additional infiltration	$[(11) - 1] \times 0.1 = N/A $ (12)
Structural infiltration: 0.25 for steel or timber frame or 0.35	5 for masonry construction N/A (13)
If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sea	<i>iled</i>), else enter 0 N/A (14)
If no draught lobby, enter 0.05, else enter 0	N/A (15)
Percentage of windows and doors draught stripped	N/A (16)
Enter 100 in box (16) for new dwellings which are to comp	ly with Building Regulations
Window infiltration	$0.25 - [0.2 \times (16) \div 100] = $ N/A (17)
Infiltration rate	(10)+(12)+(13)+(14)+(15)+(17) = N/A (18)
If based on air permeability value, then $[q_{50} \div 20] + (10)$ in box ((19), otherwise $(19) = (18)$ 0.50 (19)

Air permeability value applies if a pressurisation test has been done or the design air permeability is being used

Date Last Modified 27/04/2010

Assessor Name MRS JOANNE CHURCHILL

Assessor Number 1591

Number of sides on which sheltered (Enter 2 in box (20) for new dwellings where location is not shown)	2	(20)
Shelter factor $1 - [0.075 \times ($	(20)] = 0.85	(21)
Adjusted infiltration rate (19) ×		(21)
Calculate effective air change rate for the applicable case	0.50	
If balanced whole house mechanical ventilation system air throughput (a	(ach) = 0.30	(22:
If balanced with heat recovery efficiency in % allowing for in-use fa		(22)
a) If balanced whole house mechanical ventilation with heat recovery $(22) + (22a) \times [1 - (22b)/1]$		(22)
b) If balanced whole house mechanical ventilation without heat recovery $(22) + (22a) \times (1 - (22b)) \times (22) + (22b) \times $	-	(23)
c) If whole house extract ventilation or positive input ventilation from outside		- `
if $(22) < 0.25$, then $(23b) = 0.5$; otherwise $(23b) = 0.25 + (22)$	N/A	(23
d) If natural ventilation or whole house positive input ventilation from loft if $(22) \ge 1$, then $(24) = (22)$; otherwise $(24) = 0.5 + [(22)^2 \times 0.5]$	N/A	(24
Effective air change rate - enter (23) or (23a) or (23b) or (24) in box (25)	0.45	(25)
. Heat losses and heat loss parameter		7)
ELEMENTArea (m^2) U - valueWindows *9.30×1.77	AXU (W/K 16.42	<) (27)
Walls 31.55 × 0.31 =	10.42	(29)
Walls 20.77 × 0.25 =		(29)
Roof 42.99 × 0.30 =	12.90	(30)
Total area of elements ΣA , m ² 104.61 (32)		
* for windows and rooflights, use effective window U-value calculated as given in paragraph 3.2		
Fabric heat loss, W/K $(26)+(27)+(27a)+(27b)+(28)+(29)+(30)+(30a)+(31) =$	44.39	(33)
Thermal bridges - Σ (lx Ψ) calculated using Appendix K <i>if details of thermal bridging are not known calculate</i> $y \times (32)$ [see Appendix K] and enter in box (34)	15.69	(34)
Total fabric heat loss (33)+(3	34) = 60.08	(35)
Ventilation heat loss $(25) \times 0.33 \times$		(36)
Heat loss coefficient, W/K (35)+(3	36) = 76.51	(37)
Heat loss parameter (HLP), W/m ² K (37) ÷ ((5) = 1.78	(38
I. Water heating energy requirement	kWh/year	
Energy content of hot water used from Table 1 column (b)	1336.55	(39
Distribution loss from Table 1 column (c) If instantaneous water heating at point of use, enter "0" in boxes (40) to (45) For community heating use Table 1 (c) whether or not hot water tank is present	235.86	(40

Water storage loss:

Assessor Name

NHER Rating Worksheet : Design - Draft

27/04/2010

Date Last Modified MRS JOANNE CHURCHILL

1591 Assessor Number

This draft NHER rating worksheet report is for internal purposes only and should not be accepted as evidence of compliance by Building Control (41) a) If manufacturer's declared loss factor is known (kWh/day): N/A Temperature factor from Table 2b N/A (41a) Energy lost from water storage, kWh/year N/A (42) $(41) \times (41a) \times 365 =$ b) If manufacturer's declared cylinder loss factor is not known: Cylinder volume (litres) including any solar storage within same cylinder N/A (43) If community heating and no tank in dwelling, enter 110 litres in box (43) Otherwise, if no stored hot water (this includes instantaneous combi boilers), enter '0' in box (43) 0.00 (44)Hot water storage loss factor from Table 2 (kWh/litre/day) If community heating and no tank in dwelling, use cylinder loss from Table 2 for 50 mm factory insulation in box (44) 0.00 Volume factor from Table 2a (44a) Temperature factor from Table 2b 0.00 (44b) Energy lost from water storage, kWh/year $(43) \times (44) \times (44a) \times (44b) \times 365 =$ 0.00 (45)Enter (42) or (45) in box (46) 0.00 (46)If cylinder contains dedicated solar storage, box $(47) = (46) \times [(43) - (H11)] / (43)$, else (47) = (46)0.00 (47)Primary circuit loss from Table 3 0.00 (48)Combi loss from Table 3a (enter "0" if no combi boiler) 443.16 (49)Solar DHW input calculated using Appendix H (enter "0" if no solar collector) (50)0.00 (39)+(40)+(47)+(48)+(49)-(50) =Output from water heater, kWh/year 2015.58 (51)Heat gains from water heating 633.62 (52) $0.25 \times [(39)+(49)]+0.8 \times [(40)+(47)+(48)] =$ include (47) in calculation of (52) only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains Watts Lights, appliances, cooking and metabolic (Table 5) 392.59 (53)30.44 Reduction of internal gains due to low energy lighting (calculated in Appendix L) (53a) 0.00 Additional gains from Table 5a (53b) Water heating $(52) \div 8.76 =$ 72.33 (54)(53) + (53b) + (54) - (53a) =434.48 Total internal gains (55)6. Solar gains Access Flux FF Gains Area g factor m² Table 6a Table 6b Table 6c (W) Table 6d x 0.9 x (59)East 0.77 1.56 × 48.48 0.72 × 0.70 = 26.42 × South x 0.9 x = (62)0.77 7.74 х 72.72 0.72 0.70 196.62 × X

Date Last Modified 27/04/2010

Assessor Name M

MRS JOANNE CHURCHILL

Assessor Number 1591

This draft NHER rating worksheet report is for internal purp evidence of compliance by Building Control	ooses only and should not be accepted as
Total solar gains:	$[(56) + \dots + (64)] = 223.03$ (65)
Note: for new dwellings where overshading is not known, the solar access fact	or is '0.77'
Total gains, W	(55) + (65) = 657.52 (66
Gain/loss ratio (GLR)	$(66) \div (37) = 8.59$ (67)
Utilisation factor (Table 7, using GLR in box (67))	0.88 (68
Useful gains, W	(66) × (68) = 576.55 (65
Gains Zone 1, G1	345.93 (NH
Gains Zone 2, G2	230.62 (NH
7. Mean internal temperature	
	° C
Living area fraction (0 to 1.0)	living room area \div (5) = 0.55 (75)
Interzone heat coefficient	101.14 (NH
Mean external temperature	3.54 (NH
	Zone1 Zone2
Specific loss	42.07 34.44 (NH
Demand temperature	21.00 20.24 (NH
Mean internal temperature	19.18 18.55 (NH
	19.16
8. Degree days	
	Zone1 Zone2
Base temperature	11.53 10.03 (NH
Degree-days	1010.72 769.52 (NH
9. Space heating requirements	
	Zone1 Zone2
Space heating requirement (useful), kWh/year	1643.67 161.54 (NH
Total space heating requirement (useful), kWh/year	1805.21 (8)

For range cooker boilers where efficiency is obtained from the Boiler Efficiency Database or manufacturer's declared value, multiply the result in box (81) by (1 - Φ_{case}/Φ_{water}) where Φ_{case} is the heat emission from the case of the range cooker at fullload (in kW); and Φ_{water} is the heat transferred to water at full load (in kW). Φ_{case} and Φ_{water} are obtained from the database record for the range cooker boiler or manufacturer's declared value.

9a. Energy requirements - individual heating systems, including micro-CHP

Note: when space and water heating is provided by community heating use the alternative worksheet 9b

Space heating:

Assessor Name

NHER Rating Worksheet : Design - Draft

Date Last Modified 27/04/2010 MRS JOANNE CHURCHILL

1591 **Assessor Number**

This draft NHER rating worksheet report is for ir evidence of compliance by Building Control	nternal pur	pose	s only and s	should not be a	ccepted as		
Fraction of heat from secondary/supplementary system (use va	lue from Tabl	e 11, 1	Table 12a or Ap	pendix F)	0.00	(82)	
ficiency of main heating system, % 85.20 (8							
(SEDBUK or from Table 4a or 4b, adjusted where appropriate by the amount shown in the 'efficiency adjustment' column of Table 4c)							
Efficiency of secondary/supplementary heating system, % (use	value from Ta	able 4a	a or Appendix E	E)	0.00	(84)	
Space heating fuel (main) requirement, kWh/year			[1- (82)] >	× (81) ×100 ÷ (83)	= 2118.80	(85)	
Space heating fuel (secondary), kWh/year			(82) >	× (81) ×100 ÷ (84)	= N/A	(85a)	
Water heating:							
Efficiency of water heater, % (SEDBUK or from Table 4a or 4b, adjusted where appropriat	e by the amou	nt sho	wn in the 'effici	ency adjustment' co	85.20 lumn of Table 4c	<mark>(86)</mark> :)	
Energy required for water heating, kWh/year				(51) × 100 ÷ (86)	= 2365.70	(86a)	
Electricity for pumps and fans:				kWh/year			
each central heating pump, (Table 4f)				130.00 (8	7a)		
each boiler with a fan-assisted flue (Table 4f)				45.00 (8	57b)		
warm air heating system fans (Table 4f)				0.00 (8	57c)		
mechanical ventilation -balanced, extract or positive input from	n outside (Tab	le 4f)		54.98 (8	7d)		
maintaining keep-hot facility for gas combi boiler (Table 4f)				0.00 (8	57e)		
pump for solar water heating (Table 4f)		C		0.00 (8	57f)		
Total electricity for the above equipment, kWh/year					229.98	(87)	
Electricity for pumps,fans lights and appliances:					2038.13	(NHER	
Cooking:							
Cooking fuel requirement (Electricity), kWh/year					303.42	(NHER	
Cooking fuel requirement (Other fuel), kWh/year					533.06	(NHER	
10a. Fuel costs - individual heating systems							
	Fuel kWh/year		Fuel price (Table 12)		Fuel cost £/year		
Space heating - main system	(85)	×	1.87	×0.01 =	39.56	(88)	
Space heating - secondary	(85a)	×	N/A	× 0.01 =	0.00	(89)	
Water heating							
Water heating cost (electric, off-peak tariff)							
On-peak fraction (Table 13, or Appendix F for electric CP	SUs)			0.00 (9	0)		
Off-peak fraction		1.0 -	(90) =	1.00 (9	0a)		
On-peak cost	(86a) × (90)	×	Fuel price N/A	× 0.01 =	0.00	(91)	
This draft NHER rating worksheet report is for in	nternal pur	pose	es only and	should not be a	ccepted as		

evidence of compliance by Building Control

Date Last Modified 27/04/2010

Assessor Name MRS JOANNE CHURCHILL

Assessor Number 1591

This draft NHER rating worksheet report is for internal purposes only and should not be accepted as evidence of compliance by Building Control Off-peak cost N/A $\times 0.01 =$ 0.00 (91a) $(86a) \times (90a) \times$ 1.87 44.17 (91b) Water heating cost (other fuel) (86a) $\times 0.01 =$ Pump,fan,lights and appliances energy cost On-peak fraction 1.00 Off-peak fraction 0.00 **Fuel price** 2038.13 1.00 On-peak cost × × 7.96 × 0.01 = 162.32 (NHER) 2038.13 0.00 Off-peak cost -1.000.00 (NHER) $\times 0.01 =$ × X Cooking Cooking cost (Electricity) 303.42 7.96 24.16 (NHER) $\times 0.01 =$ × Cooking cost (Other fuel) 533.06 1.87 $\times 0.01 =$ 9.95 (NHER) Additional standing charges 76.24 (94)Renewable and energy-saving technologies (Appendices M and N) PV Energy produced or saved, kWh/year N/A (95) Cost of energy produced or saved, £/year N/A × 0.01 = N/A (95a) (95)× Wind Energy produced or saved, kWh/year 95b1) N/A Cost of energy produced or saved, £/year (95b1) N/A × 0.01 = N/A (95b) × Micro CHP Energy produced or saved, kWh/year N/A (95c1 Cost of energy produced or saved, £/year N/A $\times 0.01 =$ N/A (95c) (95c1) × Energy consumed by the technology, kWh/year N/A 96) Cost of energy consumed, £/year N/A ×0.01 = N/A (96a) (96)X Special features (Appendix Q) Energy produced or saved, kWh/year N/A (s1) N/A N/A Cost of energy produced or saved, £/year (s1) $\times 0.01 =$ (s1a) × Energy consumed by the technology, kWh/year N/A (s2) N/A Cost of energy consumed, £/year $\times 0.01 =$ N/A (s2a) (s2)× (88)+(89)+(91)+(91a)+(91b)+(92)+(93)+(94)-(95a)-(95b)-(95c)+(96a)-(s1a)+(s2a)356.40 (97) Total energy cost = 11a. NHER rating - individual heating systems 10.50 NHER rating 12a. Total CO2 for individual heating systems (including micro-CHP) and community heating without CHP

Assessor Name

MRS JOANNE CHURCHILL

NHER Rating Worksheet : Design - Draft

Date Last Modified 27/04/2010

Assessor Number 1591

Individual heating system:	Energy kWh/year	Emission factor kg CO ₂ /kWh		Emissions kgCO ₂ /year	
Space heating main from box (85)	2118.80	× 0.194	=	411.05	(101
Space heating secondary from box (85a)	N/A	× N/A	=	0.00	(102
Energy for water heating from box (86a)	2365.70	× 0.194	=	458.95	(102
Energy for water heating (51) or $[(87b^*) \times 100 \div (1)$		× N/A	=	0.00	(106
Space and water heating		(103)] or [(105) + (106)] =	869.99	(107
Energy for water heating (Type 1 fraction) × (87*) × 100 \div (104a)	= N/A	× N/A	=	0.00	(106
Energy for water heating (Type 2 fraction) × (87*) × 100 \div (104b)	= N/A	× N/A	=	0.00	(106
Space and water heating	[(105a) + (106a)]	+ (105b) + (106b)] =		869.99	(107
Electricity for pumps, fans, lights and appliances	2038.13	× 0.422	=	860.09	(NHE
Cooking					_
Energy for cooking (Electricity)	303.42	× 0.42	=	128.04	(NHE
Energy for cooking (Other fuel)	533.06	× 0.19	=	103.41	(NHE
Energy produced or saved in dwelling (Appendices M and PV energy produced or saved	d N) 95) or (95*)	× N/A	=	N/A	(110
Wind energy produced or saved (95b1)) or (95b1*)	× N/A	=	N/A	(110
Micro-CHP energy produced or saved (95c1)) or (95c1*)	× N/A	=	N/A	(110
Micro-CHP energy consumed (9	96) or (96*)	× N/A	=	0.00	(11)
Energy produced or saved in dwelling (Appendix Q)	s1) or (s1*)	× N/A	=	0.00	(s1a
Energy consumed by the technology (Appendix Q)	s2) or (s2*)	× N/A	=	0.00	(s2a
Total CO ₂ kg/year (10'	7) + (108) + (109) - (110)	+(111) - (s1a) + (s2a)	=	1960.54	(112
Total CO2 (kg/m2/year)		(112) ÷ (5)	=	45.60	(113
13a. Primary energy, for individual heating systems (ir	ncluding micro-CHP) and	d community heating w	ithout Cl	HP	-
Individual heating system:	Energy kWh/year	Primary energ factor	y	Primary ener (kWh/year)	
Space heating main from box (85)	2118.80	× 1.150	=	2436.61]
Space heating secondary from box (85a)	N/A	× N/A	=	0.00	1
Energy for water heating from box (86a)	2365.70	× 1.150	=	2720.56]
Energy for water heating $(87b^*) \times 100 \div (1)$	(04) = N/A	× N/A	=	0.00	- 1
Space and water heating				5157.17	1
Energy for water heating (Type 1 fraction) × $(87^*) \times 100 \div (104a)$	= N/A	× N/A	=	0.00]

Date Last Modified 27/04/2010

Assessor Name MRS JOANNE CHURCHILL

Assessor Number 1591

This draft NHER rating worksheet report is for internal purposes only and should not be accepted as evidence of compliance by Building Control							
Energy for water nearing	Type 2 fraction) \times 37*) \times 100 \div (104b)	=	N/A	×	N/A	=	0.00
Space and water heating						=	5157.17
Primary energy for pumps, fans, ligh	nts and appliances		2038.13	×	2.80	=	5706.77 (NHER)
Cooking							
Primary energy for cooking (Elect	ricity)		303.42	×	2.80	=	849.57 (NHER)
Primary energy for cooking (Other	fuel)		533.06	×	1.15	=	613.02 (NHER)
Energy produced or saved in dwell	ing (Appendices M and	N)					
PV energy produced or saved			(95) or (95*)	×	N/A	=	N/A
Wind energy produced or saved	I		(95b1) or (95b1*)	×	N/A	=	N/A
Micro-CHP energy produced or saved			(95c1) or (95c1*)	×	N/A	=	N/A
Micro-CHP energy consumed			(96) or (96*)	×	N/A	=	0.00
Energy produced or saved in dwelling (Appendix Q)			(s1) or (s1*)	×	N/A	=	0.00
Energy consumed by the above technology (Appendix Q)			(s2) or (s2*)	×	N/A	=	0.00
Primary energy kWh/year							12326.53
Primary energy kWh/m ² /year 286.73					286.73		
			J				