Soiltechnics Limited Cedar Barn, White Lodge, Walgrave Northampton NN6 9PY

LABORATORY TEST REPORT

Results of analysis of 9 sample received 24 March 2010

Report Date 01 April 2010

FAO Andy Keeler

STG1672B - Coram Community Campus

					87297 AE80724 TP02b
					^{0.9m} LEACHATE
1800	Benzo[a]pyrene	50328	µg -1	N	<0.1
	Dibenzo[a,h]anthracene	53703	µg I-1	N	<0.1
	Indeno[1,2,3-cd]pyrene	193395	µg l-1	N	<0.1
	Benzo[g,h,i]perylene	191242	µg l-1	Ν	<0.1
	Total (of 16) PAHs	· · · · · · · · · · · · · · · · · · ·	µg I-1	Ν	<2
1920	Phenois (total)		mg I-1	N	< 0.03

All tests undertaken between 26-Mar-2010 and 31-Mar-2010

Soiltechnics Limited Cedar Barn, White Lodge, Walgrave Northampton NN6 9PY

LABORATORY TEST REPORT

Report Date 01 April 2010

FAO Andy Keeler

Results of analysis of 9 samples received 24 March 2010

STG1672B - Coram Community Campus

₋ogin Batch No							87	297			
Chemtest LIMS ID				AE80716	AE80717	AE80718	AE80719	AE80720	AE80721	AE80722	AE80723
Sample ID				BH02	BH04	WAC	TP02b	TP11	TP08	BH02	TP08
Sample No						Composite					
Depth				4m	9m	001	0.9m	0.5m - 1m	0.5m SOIL	0.05m - 0.5m SOIL	1.6m SOIL
Matrix				SOIL	SOIL	SOIL	SOIL	SOIL	SUL	SOIL	3012
6OP↓ Determinand↓	CAS No↓	Units↓	*		A AA	0.40					
2175 Sulfur (total TRL report 447)		%	N	0.02	0.89	0.10	× 0 E	< 0.5	< 0.5	< 0.5	< 0.5
2300 Cyanide (complex)	57125	mg kg-1	M	• • • • • • • • • • • • • • • •			< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5	< 0.5
Cyanide (free)	57125	mg kg-1	M						< 0.5 < 0.5	< 0.5	< 0.5
Cyanide (total)	57125	mg kg-1	M				< 0.5	< 0.5		1.1	< 0.5 22
2625 Organic matter	ی جزیر شنب میں در	%	M				15	6.9	5.7	I.I.	44
2220 Chloride (extractable)	16887006	g I-1	М	0.018	0.026	0.017			a An an		
Nitrate (extractable)	14797558	g l-1	N	<0.01	<0.01	<0.01					
2120 Boron (hot water soluble)	7440428	mg kg-1	М			·	1.1	1.4	0.8	0.8	1.6
Sulfate (2:1 water soluble) as SO4	14808798	g -1	M	0.03	0.16	0.10			;	- 	
2420 Magnesium (soluble)	7439954	g I-1	N	<0.01	<0.01	<0.01			·		
2490 Chromium (hexavalent)	18540299	mg kg-1	N				<0.5	<0.5	<0.5	<0.5	<0.5
2430 Sulfate (total) by BS1377 (HCI extract)	14808798	%	N	0.04	0.79	0.10					
2450 Arsenic	7440382	mg kg-1	М				19	23	19	14	24
Beryllium	7440417	mg kg-1	М				1.2	1.5	1.3	1.5	1.4
Cadmium	7440439	mg kg-1	М	;			0.15	0.30	<0.10	0.13	<0.10
Chromium	7440473	mg kg-1	M				21	24	30	40	18
Copper	7440508	mg kg-1	M				120	80	60	28	190
Mercury	7439976	mg kg-1	М				3.0	1.7	1.1	0.11	3.1
Nickel	7440020	mg kg-1	М				27	28	31	55	28
Lead	7439921	mg kg-1	М	p			380	730	310	25	850
Selenium	7782492	mg kg-1	М	∯anna ann an an ann an ann an an an an a			<0.20	<0.20	<0.20	<0.20	<0.20
Vanadium	7440622	mg kg-1	М	• • • • • • • • • • • • • • • • • • •			46	44	51	69	57
Zinc	7440666	mg kg-1	Μ	4	÷		140	200	97	70	150
2800 Naphthalene	91203	mg kg-1	М				0.5	0.4	0.5	0.4	0.4
Acenaphthylene	208968	mg kg-1	N		n	-4	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	83329	mg kg-1	М				<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	86737	mg kg-1	М		· · · · · · · · · · · · · · · · · · ·	4	<0.1	0.1	<0.1	<0.1	<0.1
Phenanthrene	85018	mg kg-1	М		÷	· · · · · · · · · · · · · · · · · · ·	1.2	3	0.6	0.5	1.3
Anthracene	120127	mg kg-1	M	1		• • •	<0.1	0.4	<0.1	<0.1	<0.1
Fluoranthene	206440	mg kg-1	M				0.5	5.9	0.5	0.1	<0.1
Pyrene	129000	mg kg-1	M				0.4	5.1	0.3	0.1	<0.1
yrene All tests undertaken between 26-Mar-2010 and 31-M		פיי פייי						····· · · · · ·	Column page	•	

* Accreditation status

1

This report should be interpreted in conjunction with the notes on the accompanying cover page

ī

Report page 3 of 4

Report sample ID range AE80716 to AE80724

3

Soiltechnics Limited Cedar Barn, White Lodge, Walgrave Northampton NN6 9PY

FAO Andy Keeler

LABORATORY TEST REPORT

Report Date

01 April 2010

Results of analysis of 9 samples received 24 March 2010

STG1672B - Coram Community Campus

								87	297			
					AE80716	AE80717	AE80718	AE80719	AE80720	AE80721	AE80722	AE80723
				-	BH02	BH04	WAC	TP02b	TP11	TP08	BH02	TP08
							Composite		• • • • • • • • • • • • • • • • • • • •			
					4m	9m		0.9m	0.5m - 1m	0.5m	0.05m - 0.5m	1.6m
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
2800	Benzo[a]anthracene	56553	mg kg-1	м				0.1	2.9	0.1	<0.1	<0.1
	Chrysene	218019	mg kg-1	M		a na ana ang ang ang ang ang ang ang ang		0.2	2.6	0.1	<0.1	<0.1
	Benzo[b]fluoranthene	205992	mg kg-1	M				0.1	4.6	0.1	<0.1	<0.1
	Benzo[k]fluoranthene	207089	mg kg-1	N				<0.1	1.1	<0.1	<0.1	<0.1
	Benzo[a]pyrene	50328	mg kg-1	M				<0.1	3.2	<0.1	<0.1	<0.1
	Dibenzo[a,h]anthracene	53703	mg kg-1	N				<0.1	<0.1	<0.1	<0.1	<0.1
	Indeno[1,2,3-cd]pyrene	193395	mg kg-1	M				<0.1	0.9	<0.1	<0.1	<0.1
	Benzo[g,h,i]perylene	191242	mg kg-1	M				<0.1	1.2	<0.1	<0.1	<0.1
	Total (of 16) PAHs		mg kg-1	N				3,	31	2.2	<2	<2
2920	Phenols (total)	• • • • •	mg kg-1	N				<0.3	<0.3	<0.3	<0.3	<0.3
2010	рН		-	Μ	8.1	8.4	8.2	7.3	8.6	7.9	8.0	7.4

All tests undertaken between 26-Mar-2010 and 31-Mar-2010

Analysis of test data in relation to concentrations of inorganic chemical contaminants

Adopted Model Receptor:	:	Commercial/industrial Existing and proposed site user and construction operatives																
Test procedu	re		Summ	nary of t	est data			Initial comparison	Outlier te	st				Normality test UC			UCL	
Contaminant	Guideline source	Guideline value	No. of tests	Min.	Мах.	Mean	of tests ve eline value	Initital screening	i outlier ?	ther of lers	ition of ier	pth	Concentration	Shapiro-Wilk Normality test	Probability plot test	Data normally distributed?	95% UCL of mean	Contaminant
	Guic sour	mg/kg		mg/kg	mg/kg	mg/kg	No. of t above guidelir		Pass test?	Numbe	Location	Dep	mg/kg				mg/kg	
Arsenic	SGV	640	5	14.0	24.0	19.8	0	Mean value below guideline	y	0				normal	not normal	n	27.5	Arsenic
Beryllium	GAC	420	5	1.2	1.5	1.4	0	Mean value below guideline	Y	0				normal	normal	у	1.5	Beryllium
Boron	GAC	192000	5	0.8	1.6	1.1	0	Mean value below guideline	У	0				normal	not normal	n	1.8	Boron
Cadmium	SGV	230	5	0.1	0.3	0.2	0	Mean value below guideline	n	0				not normal	not normal	n	0.3	Cadmium
Chromium	GAC	30400	5	18.0	40.0	26.6	0	Mean value below guideline	y	0				normal	normal	y	34.9	Chromium
Copper	GAC	71700	5	28.0	190.0	95.6	0	Mean value below guideline	У	0				normal	normal	У	155.1	Copper
Cyanide (total)	NGV	-	5	0.5	0.5	0.5		No guideline value										Cyanide (total)
Lead	SGV*	750	5	25.0	850.0	459.0	1	Mean value below guideline	Ŷ					normal	normal	n		Lead
Mercury#	SGV	3600	5	0.1	3.1	1.8	0	Mean value below guideline	Ŷ	0				normal	normal	y	3.0	Mercury#
Nickel	SGV	1800	5	27.0	55.0	33.8	0	Mean value below guideline	n	0				not normal	not normai	n	57.1	Nickel
Selenium	SGV	13000	5	0.2	0.2	0.2	0	Mean value below guideline	y	0				not normal	not normal	n	0.2	Selenium
Vanadium	GAC	3160	5	44.0	69.0	53.4	0	Mean value below guideline	y	0				normal	normal	y	63.0	Vanadium
Zinc	GAC	665000	5	70.0	200.0	131.4	0	Mean value below guideline	У	0				normal	normal	У	179.3	Zinc

- SGV* Soil Guideline Value as published by the Environment Agency
- SGV Soil Guideline Value as published by the Environment Agency 2009
- GAC Generic Assessment Criterion as published by LQM and CIEH
- SSV Soil Screening Value as derived by Soiltechnics
- NGV No Guideline Value

[]

11

- BPG5 Guideline from BPG Note 5 as published by Forest Research
- # Assumed to be elemental mercury as initial screening value

Title	Table number	Appendix	
Analysis of test data in relation to concentration inorganic chemical contaminants.	ns of 1	н	-
North SERVERSIN		Au	012010

** ** ** ** ** ** ** ** **

11

F 1

Coram Community Campus London WC1N

soiltechnics

insi menerat and gootscripted consolums

Analysis of test data in relation to concentrations of inorganic chemical contaminants

Adopted Model:	Commercial/industrial		
Receptor:	Vegetation		

Test procedure		Summary of test data						Initial comparison	Outlier test					Normality test			UCL		
Contaminant	Guideline source	Guideline value mg/kg	No. of tests	Min. mg/kg	Max. mg/kg	Mean mg/kg	No. of tests above guideline value	Initital screening	Pass outlier test?	Number of outliers	Location of outlier	Depth	Concentration mg/kg	Shapiro-Wilk Normality test	Probability plot test		95% UCL of mean mg/kg	Contaminant	
1																			
Arsenic	SSV	640	5	14.0	24.0	19.8	0	Mean value below guideline	٧	0				normal	not normal	n	27.5	Arsenic	
Beryllium	SSV	420	5	1.2	1.5	1.4	0	Mean value below guideline	У	0				normal	normal	v	1.5	Beryllium	
Boron	SSV	192000	5	0.8	1.6	1.1	0	Mean value below guideline	Ŷ	0				normal	not normal	n	1.8	Boron	
Cadmium	SSV	230	5	0.1	0.3	0.2	0	Mean value below guideline	n	0				not normal	not normal	n	0.3	Cadmium	
Chromium	SSV	30400	5	18.0	40.0	26.6	0	Mean value below guideline	Ŷ	0		**********		normal	normal	y	34.9	Chromium	
Copper	BPG5	130	5	28.0	190.0	95.6	1	Mean value below guideline	У	0				normal	normal	y		Copper	
Cyanide (total)	NGV	-	5	0.5	0.5	0.5		No guideline value									100000000000000000000000000000000000000	Cyanide (total)	
Lead	SGV*	750	5	25.0	850.0	459.0	1	Mean value below guideline	у					normal	normal	n		Lead	
Mercury#	SSV	3600	5	0.1	3.1	1.8	0	Mean value below guideline	y	0				normal	normal	y	3.0	Mercury#	
Nickel	SSV	1800	5	27.0	55.0	33.8	0	Mean value below guideline	n	0				not normal	not normal	n	57.1	Nickel	
Selenium	SSV	13000	5	0.2	0.2	0.2	Û	Mean value below guideline	y	0				not normal	not normal	n	0.2	Selenium	
/anadium	SSV	3160	5	44.0	69.0	53.4	0	Mean value below guideline	у	0				normal	normal	у	63.0	Vanadium	
Zinc	BPG5	300	5	70.0	200.0	131.4	0	Mean value below guideline	v	0				normal	normal	v	179.3	Zinc	

- SGV* Soil Guideline Value as published by the Environment Agency
- SGV Soil Guideline Value as published by the Environment Agency 2009
- GAC Generic Assessment Criterion as published by LQM and CIEH
- SSV Soil Screening Value as derived by Soiltechnics
- NGV No Guideline Value
- BPG5 Guideline from BPG Note 5 as published by Forest Research
- # Assumed to be elemental mercury as initial screening value

Title	Table number	Appendix	
Analysis of test data in relation to concentrations of inorganic chemical contaminants.	2	н	
Grand Contraction (1987)			Contain.

Coram Community Campus London WC1N

soiltechnics environmental and geotechnical consultants

Analysis of test data in relation to concentrations of organic chemical contaminants

Adopted model: Receptor:		rcial/industri and propose		er, consti	ruction o	peratives a	nd vegetatio	on										
Test procedure			Summ	nary of	test dat	а	Initial Screening Oulier test				Normality test					UCL		
Contaminant	Guideline source	Guideline value mg/kg	No. of tests	Min. mg/kg	Max. mg/kg	Mean mg/kg	No. of tests above guideline	Initital screening	Pass outlier test?	Number of outliers	Location of outlier	Depth	Concentration	Shapiro-Wilk Normality test	Probability plot test	Data normally distributed?	95% UCL of mean mg/kg	Contaminant
Acenaphthene	GAC	85000	5	0.1	0.1	0.1	0	Mean value below guideline	y	0				not normal	not normal	n	0.1	Acenaphthene
Acenaphthylene	GAC	84000	5	0.1	0.1	0.1	0	Mean value below guideline	y	0				not normal	not normal	n	0.1	Acenaphthylene
Anthracene	GAC	530000	. 5	0.1	0.4	0.2	0	Mean value below guideline	n	0				not normal	not normal	n	0.4	Anthracene
Benzo(a)anthracene	GAC	90	5	0.1	2.9	0.7	0	Mean value below guideline	n	0				not normal	not normal	n	3.1	Benzo(a)anthracene
Benzo(a)pyrene	GAC	14	5	0.1	3.2	0.7	0	Mean value below guideline	n	0				not normal	not normal	n	3.4	Benzo(a)pyrene
Benzo(b)fluoranthene	GAC	100	5	0.1	4.6	1.0	0	Mean value below guideline	n	O				not normal	not normal	n	4.9	Benzo(b)fluoranthene
Benzo(g,h,i)perylene	GAC	650	5	0.1	1.2	0.3	0	Mean value below guideline	n	0				not normal	not normal	n	1.3	Benzo(g,h,i)perylene
Benzo(k)fluoranthene	GAC	140	5	0.1	1.1	0.3	0	Mean value below guideline	n	0				not normal	not normal	n	1.2	Benzo(k)fluoranthene
Chrysene	GAC	140	5	0.1	2.6	0.6	0	Mean value below guideline	n	0				not normal	not normal	n	2.8	Chrysene
Dibenzo(a,h)anthracene	GAC	13	5	0.1	0.1	0.1	0	Mean value below guideline	y	0				not normal	not normal	n	0.1	Dibenzo(a,h)anthracene
Fluoranthene	GAC	23000	5	0.1	5.9	1.4	0	Mean value below guideline	n	0				not normal	not normal	n	6.3	Fluoranthene
Fluorene	GAC	64000	5	0.1	0.1	0.1	0	Mean value below guideline	Ŷ	0				not normal	not normal	n	0.1	Fluorene
Indeno(1,2,3-cd)pyrene	GAC	60	5	0.1	0.9	0.3	0	Mean value below guideline	n	0				not normal	not normal	n	1.0	Indeno(1,2,3-cd)pyrene
Naphthalene	GAC	200	5	0.4	0.5	0.4	0	Mean value below guideline	У	0				not normal	not normal	n	0.5	Naphthalene
Phenanthrene	GAC	22000	5	0.5	3.0	1.3	0	Mean value below guideline	n	0				normal	not normal	n	3.3	Phenanthrene
Phenois	SGV	3200	5	0.3	0.3	0.3	0	Mean value below guideline	y	0				not normal	not normal	n	0.3	Phenois
Pyrene	GAC	54000	5	0.1	5.1	1.2	0	Mean value below guideline	n	0				not normal	not normal	n	5.5	Pyrene

<u>Notes</u>

1

SGV Soil Guideline Value as published by the Environment Agency GAC Generic Assessment Criterion as published by LQM and CIEH SSV Soil Screening Value as derived by Soiltechnics

NGV

No Guideline Value

Title	Table number	Appendix
Analysis of test data in relation to concentrations of organic chemical contaminants.	3	н

1 1 1 1 1 1 1 1 1 1 1 1

rasen or 100 balleteeth

11

[]

11

11

Coram Community Campus London WC1N

soiltechnics environmental and geotechnical consultants

Summary of leachate test results

Receptor Groundwater Water type Freshwater Fish type Salmonid Water hardness >250

(measured at a concentration of 326mg/l located at River Thames confluence with Regents Canal)^{\$}

Contaminant	Guideline value	Guideline	Location	TP02b
-	(µg/l)	source	Depth (m)	0.9
Inorganics (µg/l)	a, b 1 18, 86 (1994 - 1984 - 1984 - 1994 - 1997 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014	11 T ALENT, YANYA MANYA MANYA MANJARANYA MANJARANA ALA ALA		
Arsenic	50	EQS (f)	Γ	<1.0
Boron	2000	EQS (f)		<20
Cadmium	5	EQS (f)		<0.080
Chromium	50	EQS (f)		3
Copper	28	EQS (f)		<1.0
Lead	20	EQS (f)	.] [<1.0
Mercury	1	EQS (f)] [<0.50
Nickel	200	EQS (f)]	1
Selenium ¹	10	UKDWS		<1.0
Vanadium ²	60	EQS (f)	1	1
Zinc	125	EQS (f)		<1.0
Free Cyanide ¹	50	UKDWS] [<50
Nitrate as N	50000	UKDWS		12000
Sulphate as SO4	400000	EQS(f)	1	9100
PAH (µg/l)		al and a materia and and particular spectra and a second		and the second second second second
Benzo(a)pyrene ^{1,4}	0.01	UKDWS		<0.1
Naphthalene ²	10	EQS (f)		<0.1
Sum of 4 PAH ¹	0.1	UKDWS		<0.1*

mg/l

Notes

1 EQS values not available

2 UKDWS not available

S Lower detectable limit above UKDWS. Concentrations below detectable limits are not considered further.
 Taken as lower detection limit

Taken as lower detection limit of a single compound

\$ Hardness data presented by the Environment Agency

UKDWS UK Drinking Water Standard Guideline taken from "The Water Supply (Water Quality) Regulations 2000" EQS (f) Environmental Quaity Standard for freshwater published by the Environment Agency EQS (s) Environmental Quality Standard for saltwater published by the Environment Agency

Title	Table number	Appendix
Comparison of measured concentrations with guideline values for water receptors.	4	н

Report ref: STG1672B-GO1

April 2010

soiltechnics

environmental and geotechnical consultants

Record of in-situ gas and water level monitoring results

Peak steady Peak steady Winimum Average (%V/V) (% Let) (i/m) Ch4 CO2 Ch4 CO2 (i/Ek) (steady) C	Date/Time	Location	Atmospheric pressure (mB)	erature (°C)	Metha (%v∕\	ane, CH ₄ v) Chg	Carbon CO ₂ (%v	Dioxide, ı/v) Chg	Oxygen, (D₂ (%v/v)	Balance	Lower Explosive Limit	Gas Flow (q)		w rate	Steady ha gas flow Qhg	rate	NHBC Guideline	NHBC Guideline	acteristic gas situation	Potentially Explosive	Water Level (m)
		-	Atı pre	Temp	Peak	Steady	Peak	Steady	Minimum	Average	(%v/v)	(% LEL)	(l/Hr)	CH₄	CO₂	CH₄	CO2	(Peak)	(Steady)	Char	£ –	Wa
	07/04/2010 07:45	BH03	1009		0.0	0.0	0.2	0.1	21.0	21.0	78.9	0.0	0.0	0.00	0.00	0.00	0.00	GREEN	GREEN	ONE	NO	2.23
												·····										

													constant of the international devices of the second s		
0.0	0.0	0.2	0.1	21.0	21.0	78.9	0.0	0.10	0.00	0.00	0.00	0.00	101101121, 18 (19 (10 (1) (1) (1) (1)	ONE	Worst case scenario
		and a second sec		and the second			INTERNAL DIST. IT WAS DON'T DEPARTMENT OF						Entering of the second s		
0.0	0.0	0.2	0.1	21.0	21.0	78.9	0.0	0.10	0.00	0.00	0.00	0.00	GREEN GREEN	ONE	Average site scenario

Additonal considerations:

Notes:

Gas Screening Value (GSV) derived by mulitlying the peak gas concentration (%) by the peak flow rate (i/h).

The gas analyser is capable of measuring flow to an accuracy of 0.11/h. Below this value the analyser records zero flow. Adopting a precautionary approach we have used a flow rate of 0.11/h when the analyser records zero with this flow rate used to determine the gas screening value.

Títle	Revision	Appendix	
Record of in-situ gas monitoring results.	FINAL	I	
Report: \$1616728-601		April 2019)

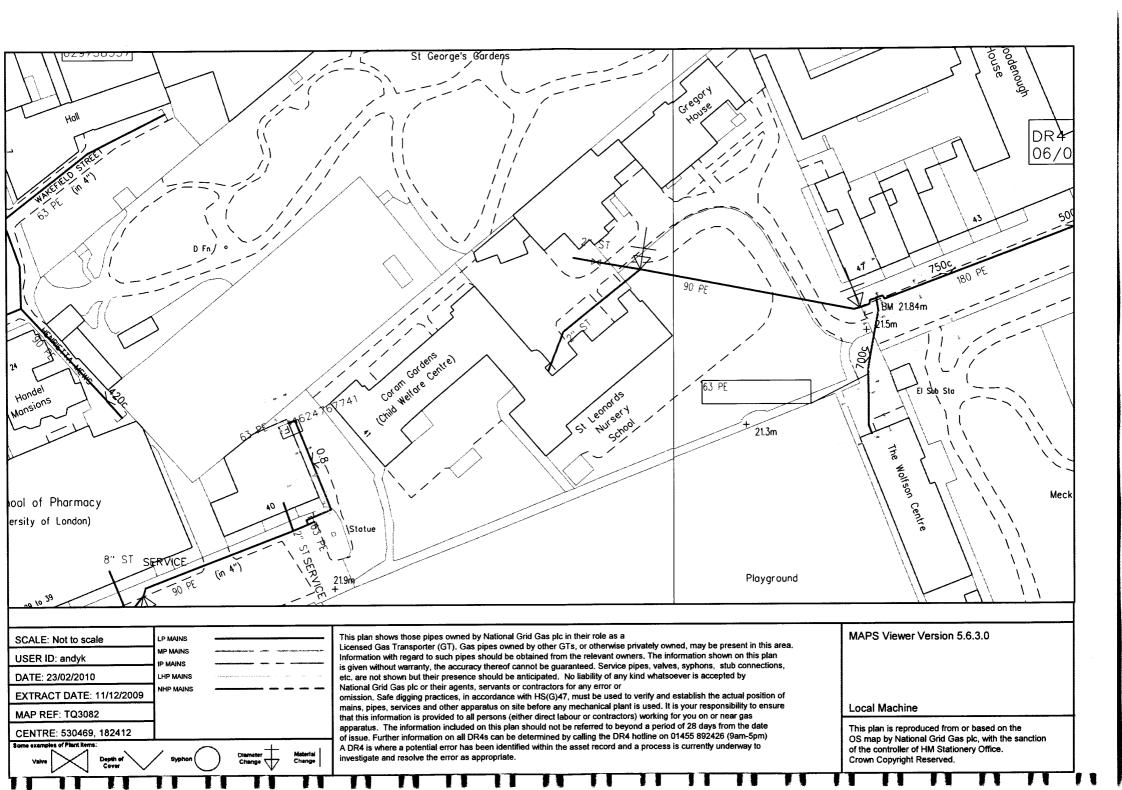
i i oposed di	evelopment at Coram		5				
Mecklenburg Square, London							
Cove	r system material supply info	ormation schedule					
Type of capping materi	al (Please tick appropriate box -	only one form per soil)					
Topsoil (General purpose grade	e)	Subsoil					
Upper Layer		Lower Layer					
Capping supplier detail	S (Name and contact details)		1				
Haulier details (Name an	d contact details)						
Haulier details (Name an	d contact details)						
Haulier details (Name an	d contact details)						
	d contact details) erial (Address or national grid ref	ference)					
		Ference)					
		Ference)					
		ference)					
Location of source mate		ference)					
		ference) Topsoil quality (Only if topsoil)					

99**0**

- 2000. - 2000

anna Marti

*** ***


nation Satisfi

-

-

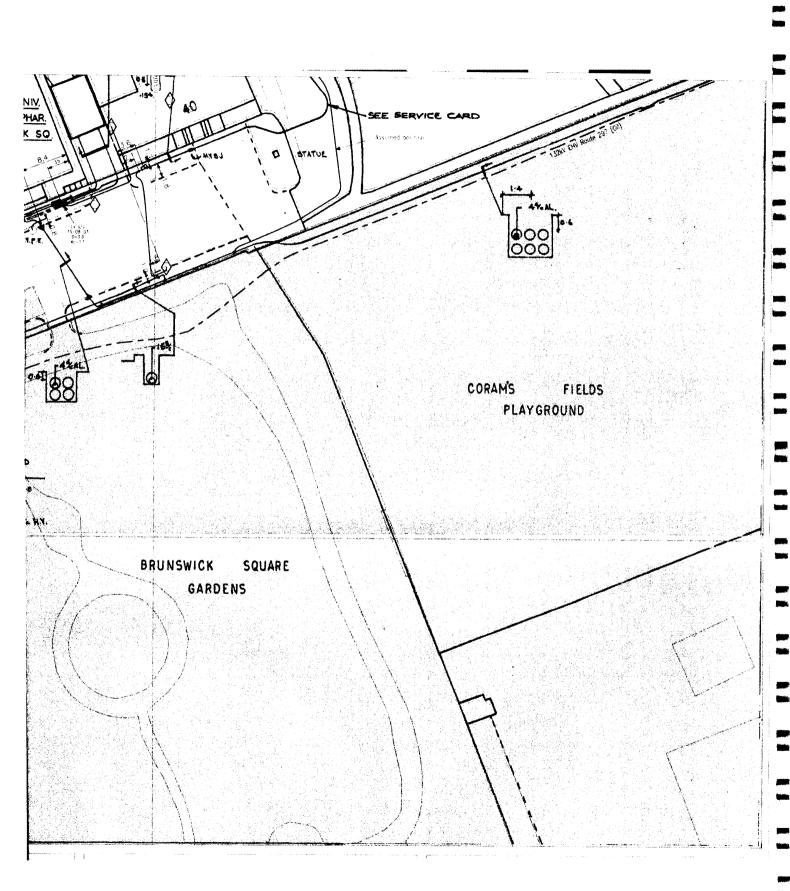
una Seri

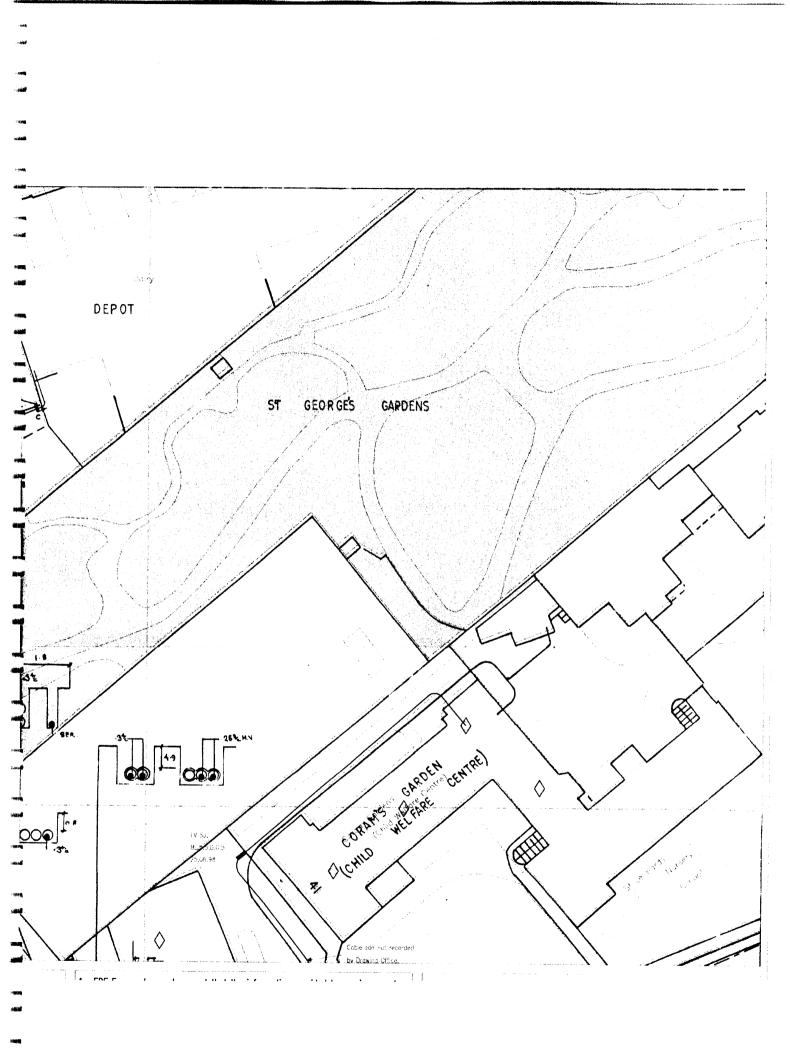
Date 2 March 2010 Our Ref 20878-ND-2-020210 Your Ref To Andy Keeler Soil Technics

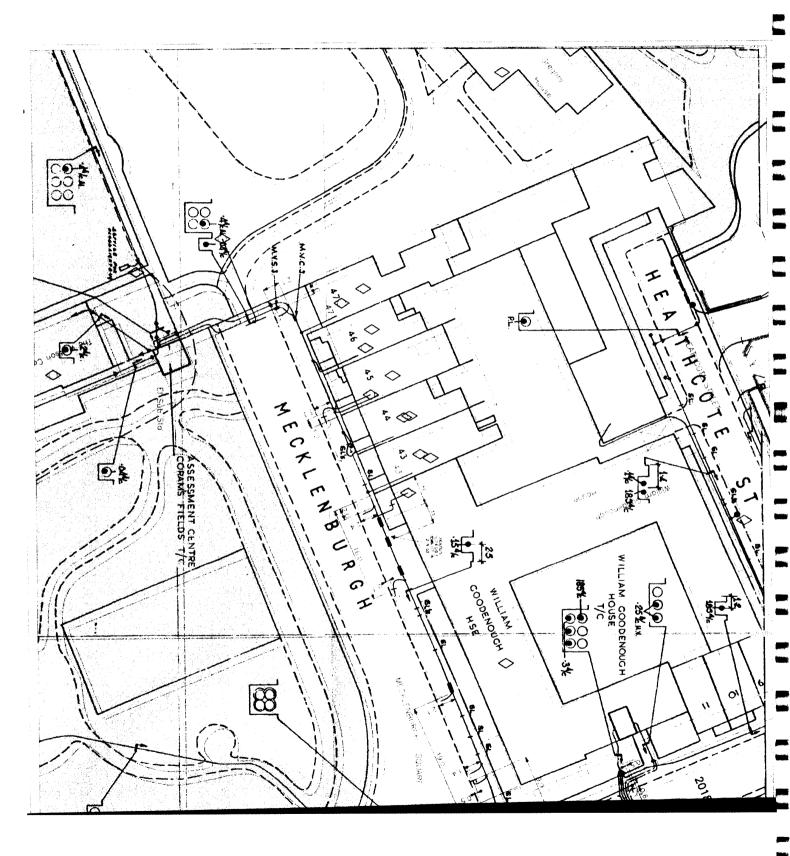
London Underground Limited

Hello Andy,

andy.keeler@soiltechnics.net


49 Macklenburg Square, London, WC1N 2NY


Thank you for your communication of 23 February 2010.


I can confirm that London Underground has no assets in the vicinity of your search.

Should you have any further enquiries, please do not hesitate to contact me.

Nathan Darroch Information Manager LUL Infrastructure Protection E-mail: nathan.darroch@tube.tfl.gov.uk Tel: 0207 126 2774

-

Asset Location Search

Neil Smith Milton Keynes Surveys Limited Datum House 41 Burners Lane South MILTON KEYNES MK11 3HA

Search address supplied

530455, 182461

Your reference

Our reference ALS/ALS Standard/2010_1692237

N/A

Search date

21 January 2010

Credit card payments are available. Please phone 01189 251509

Thames Water Utilities Ltd

Property Insight PO Box 3189 Slough SL1 4WW

DX 151280 Slough 13

T 0118 925 1504

F 0118 923 6655/57 E searches@thameswater.co.uk www.twpropertyinsight.co.uk

Registered in England and Wales No. 2366661, Registered office Clearwater Court, Vastern Road Reading RG1 8DB

Search address supplied: 530455, 182461,

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

This search provides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0118 925 1504, or use the address below:

Thames Water Utilities Ltd Property Insight PO Box 3189 Slough SL1 4WW

Tel: 0118 925 1504 Fax: 0118 923 6657

Thames Water Utilities Ltd

Property Insight PO Box 3189 Slough SL1 4WW

DX 151280 Slough 13

T 0118 925 1504 F 0118 923 6655/57 E searches@thameswater.co.uk www.twpropertyinsight.co.uk

Registered in England and Wales No. 2366661, Registered office Clearwater Court, Vastern Road Reading RG1 8DB

Email: searches@thameswater.co.uk Web: www.twpropertyinsight.co.uk

Waste Water Services

Please provide a copy extract from the public sewer map.

The following 500x500 metre square area(s) have been printed, centred on the coordinates below, as they fall within Thames' sewerage area:

530750, 182250 530750, 182750 530250, 182250 530750, 182250 530250, 182750 530750, 182750

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Sewers indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended that these details are checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Thames Water Utilities Ltd

Property Insight PO Box 3189 Slough SL1 4WW

DX 151280 Slough 13

T 0118 925 1504 F 0118 923 6655/57

E searches@thameswater.co.uk

I www.twpropertyinsight.co.uk

Registered in England and Wales No. 2366661, Registered office Clearwater Court, Vastern Road Reading RG1 8DB

The following 500x500 metre square area(s), centred on the coordinates below, have been printed as they fall within Thames' water area:

530750, 182250 530750, 182750 530250, 182250 530750, 182250 530250, 182750 530750, 182750

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0845 920 0800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

An invoice is enclosed. Please send remittance to Thames Water Utilities Ltd., PO Box 223, Swindon, SN38 2TW.

Thames Water Utilities Ltd

Property Insight PO Box 3189 Slough SL1 4WW

DX 151280 Slough 13

T 0118 925 1504 F 0118 923 6655/57 E searches@thameswater.co.uk www.twpropertyinsight.co.uk -

Registered in England and Wales No. 2366661, Registered office Clearwater Court, Vastern Road Reading RG1 8DB

Page 4 of 10

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

> Developer Services (Waste Water) Thames Water Clear Water Court Vastern Road Reading RG1 8DB

 Tel:
 0845 850 2777

 Fax:
 0118 923 6613

 Email:
 developer.services@thameswater.co.uk

Should you require any further information regarding budget estimates, diversions or stopping up notices then please contact:

DevCon Team Asset Investment Thames Water Maple Lodge STW Denham Way Rickmansworth Hertfordshire WD3 9SQ

 Tel:
 01923 898 072

 Fax:
 01923 898 106

 Email:
 devcon.team@thameswater.co.uk

Thames Water Utilities Ltd

Property Insight PO Box 3189 Slough SL1 4WW

DX 151280 Slough 13

T 0118 925 1504 F 0118 923 6655/57 E searches@thameswater.co.uk I www.twpropertyinsight.co.uk

Registered in England and Wales No. 2366661, Registered office Clearwater Court, Vastern Road Reading RG1 8DB

Page 5 of 10

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact our Kew Service Desk by writing to:

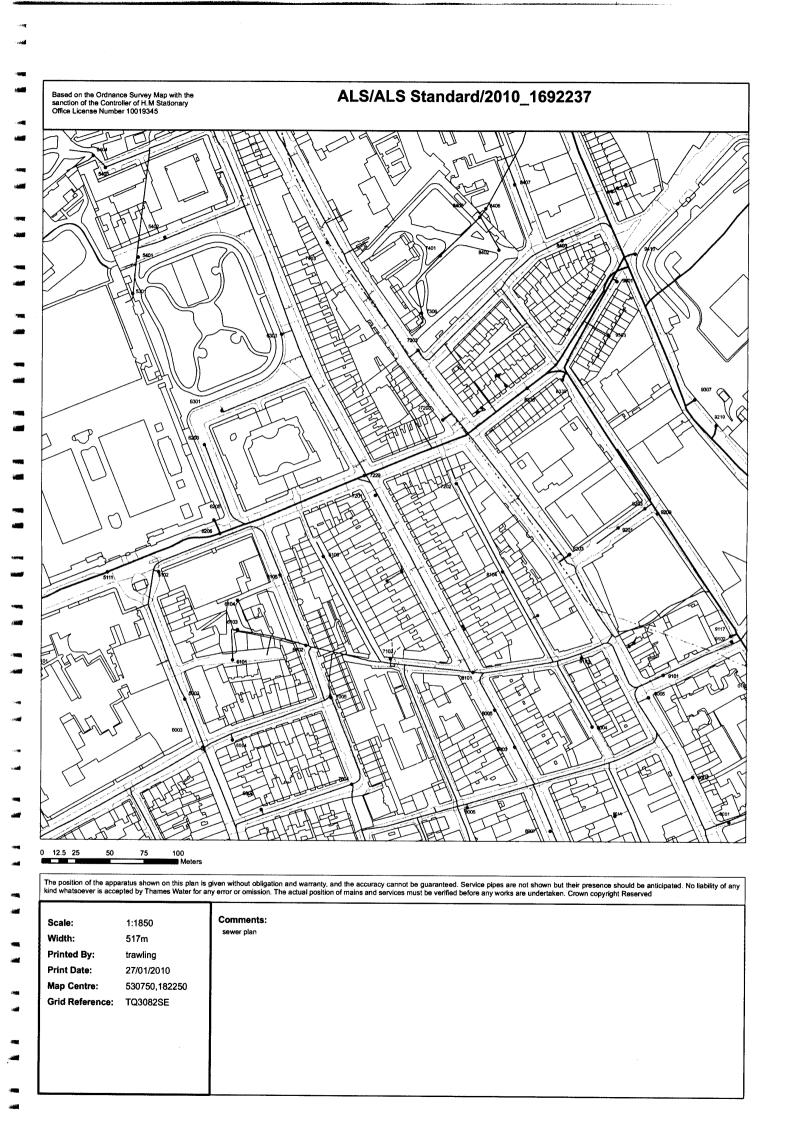
Clean Water Design Thames Water Utilities 1 Kew Bridge Road Brentford Middlesex TW8 0EF

 Tel:
 0845 850 2777

 Fax:
 0208 213 8833

 Email:
 developer.services@thameswater.co.uk

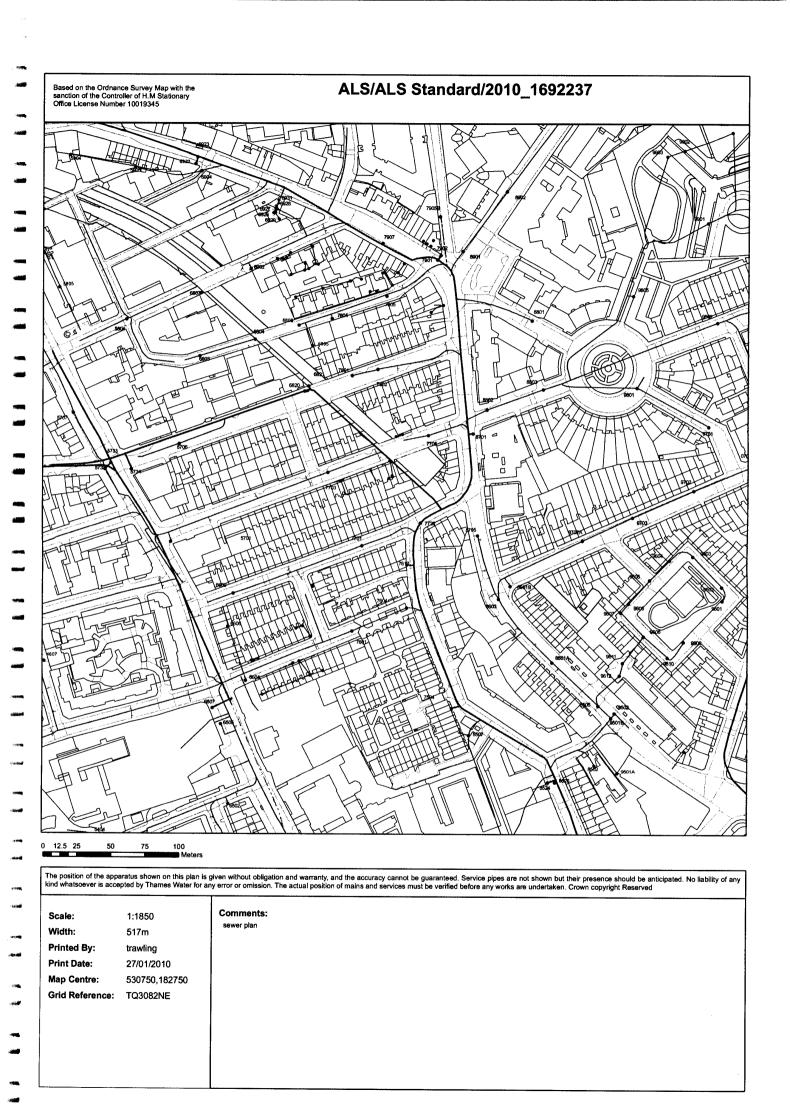
Thames Water Utilities Ltd


لین

Property Insight PO Box 3189 Slough SL1 4WW

DX 151280 Slough 13

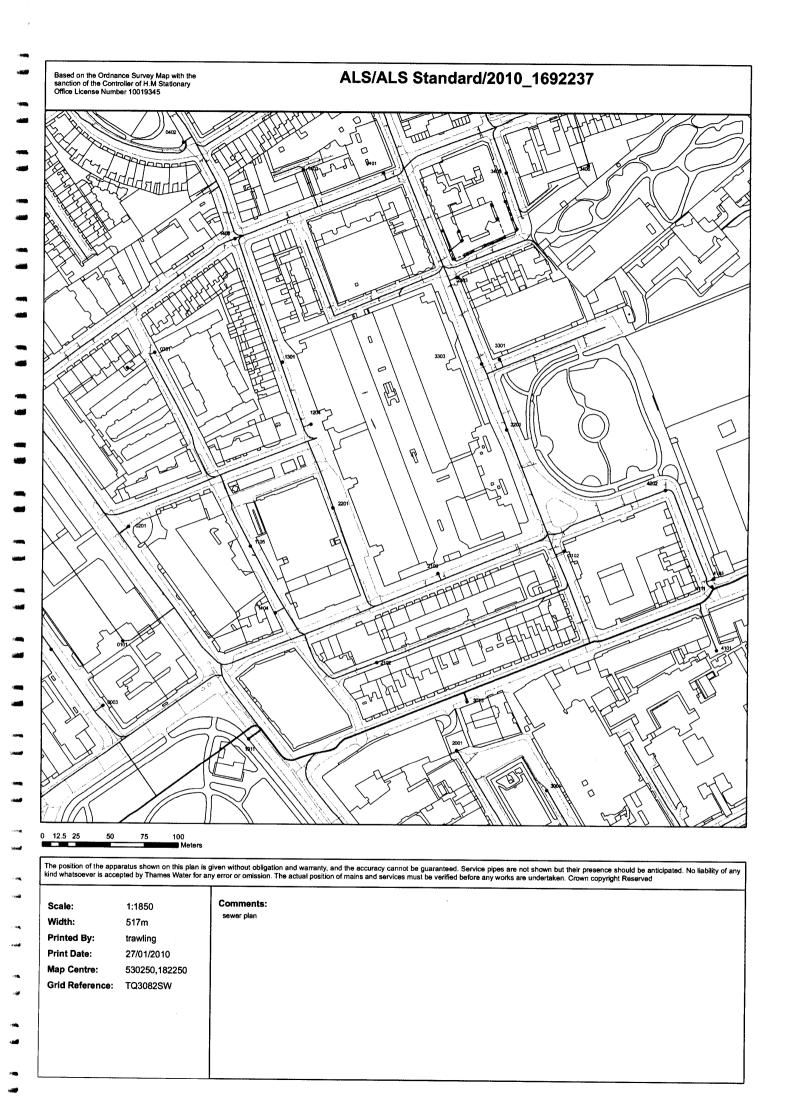
T 0118 925 1504 F 0118 923 6655/57 E searches@thameswater.co.uk www.twpropertyinsight.co.uk


Registered in England and Wales No. 2366661, Registered office Clearwater Court, Vastern Road Reading RG1 8DB

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

EFERENCE	COVER LEVEL	INVERT LEVEL
)1A		
06	15.24	11.72
06		
407	17.94	13.41
3GG		
3IA		
303		
301		
4BI		
4BA		
413	19.15	13.24
203	17.81	14.65
209	17.68	
404	19.98	17.2
111	20.71	17.02
401	21.34	
402	21.39	
003		
117		
307	16.52	12.98
006		
004	20.05	16.3
101	20.43	14.38
103		
1CA		
1FJ		
104	19.12	16.56
201	21.05	
229	21.17	16.49
3IH		
1338	20.36	16.07
339	20.37	10.6
3FC		
6002	22.62	
6003	21.81	
002	21.2	17.44
101	19.31	17.29
103	20.41	
105	20.7	16.08
206	21.14	16.77
203	21.51	17.11
3303		

REFERENCE	COVER LEVEL	INVERT LEVEL
8405	19.85	
8402	18.98	
7401	19.92	18.09
8403	18.69	
83HJ		
94BG		
948F		
94BB		
9201	18.02	14.97
91CF		
91CD		
9005		
9101	17.7	12.69
5403	19.65	15.99
5301		
5102	20.71	
9001	20.62	
9102	15.39	
9210	15.85	13.26
8907	22.36	17.08
8003	21.83	16.33
8005	21.12	15.36
7102		
81BJ		
8195		
71GA		
8203	18.25	
7202	20.25	19.49
7203	20.55	
8311		
83FE		
83FD		
7303		
7004	22.37	18.51
6004	21.87	
7005	20.95	
6102	20.49	15.73
6104	20.16	16.5
6106	20.63	17.22
6205		
6301	21.51	17.85
7403		

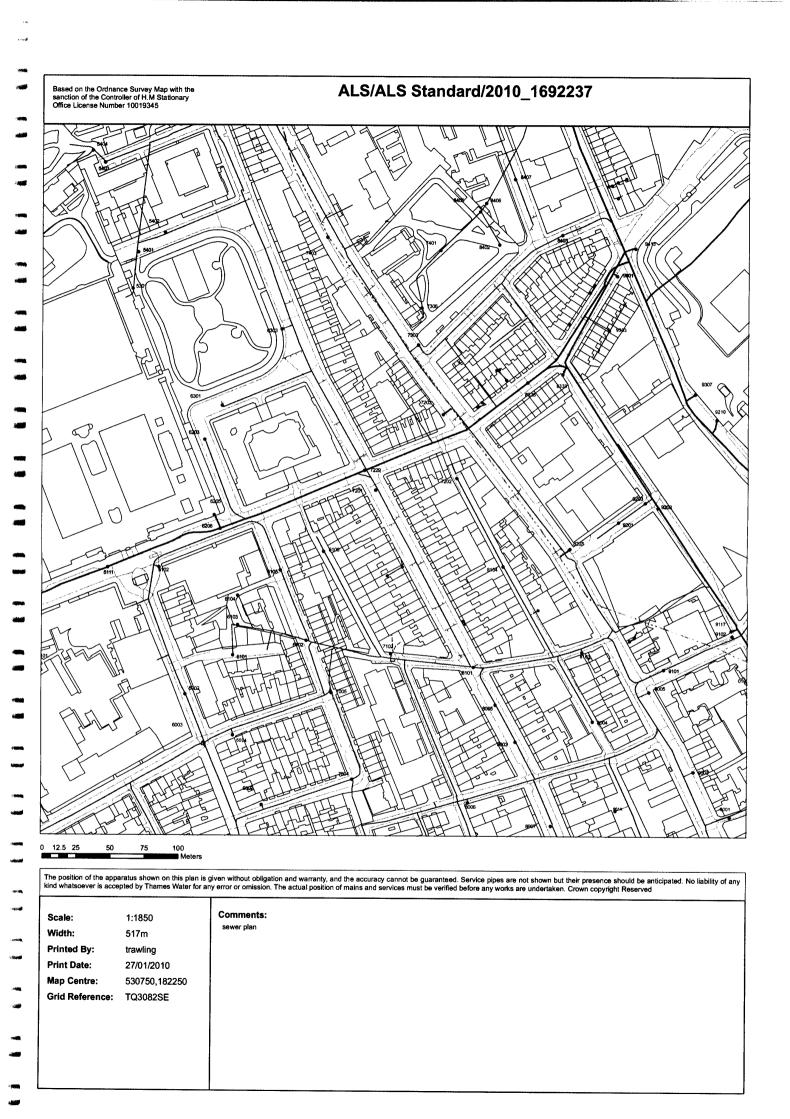

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

REFERENCE	COVER LEVEL	INVERT LEVEL	REFERENCE
9805	27.47	21.84	9901
9903	30.08	24.4	9902
9004	00.04	10.51	9512
9609	23.04	19.51	9601 9603
9602	23.18	19.86	9701
9702 9802	24.37 31.2	27.16	8507
8701	15.2	27.10	8705
8802	16.02	11.32	8603
8902	19.31	15.87	7728
7908	18.01		7909
7705	15.74	11.02	7910
78EI			7911
7901	14.34	10.46	905B
7902			78EC
7504	16.02		8901
601B	14.85		8801
8803	19.65	15.71	8524
601A	14.39	10.61	8525
702A	18.58	13.62	8502
8505	14.53	10.6	501B
9502	14.47	11.45	501A
9612	15.98	13.45	9607
9611	16.56	13.92	9606
9703	20.9	15.83	9801
9608	21.48	16.44	9605
9610	21.78	17.66	9604
6904	14.32	10.95	6922
6923	14.46		
69CA			6902
69CD			
69AE			69BJ
69BF			69BE
69BB			69BA
69AF		10.05	6929
6926	14.1	12.25	<u>6927</u> 6931
6928 78BF			7701
78CC			78CD
7802	16.46	11.33	79AB
7907	14.08	11.00	7805
77DC	14.00		77DF
78CE			77DE
77EH			78FB
77EI			79AH
7612			7604
6611			66IJ
66JA			66FJ
7601	18.15	12.59	66FH
6606			66FI
6609	19.74	15.32	66FD
5701			77FJ
7703	17.67	12.37	5706
6820	17.41	11.39	6821
7801	16.77	11.46	6803
6805	14.57	12.78	6804
6806	14.33	11.19	7804
68CD			6807
68CE	40.05	10.10	78CI
5707	18.95	12.16	5732
5733		1.91	5804
5734			5903
4607			5805
5904			6502
6505			6507
65BG			6604 6604
66GE			66GH

REFERENCE	COVER LEVEL	INVERT LEVEL
9901	30.52	26.34
9902	30.51	24.93
9512		
601	23.04	20.03
603	22.7	19.05
9701	27.09	23.6
3507		
3705	14.36	10.98
3603	14.48	10.98
728	15.04	
909		
/910		
/911		
005B	16.14	11.17
/8EC		
3901	16.2	12.58
3801	19.52	15.78
3524	19.32	15.78
3525	14.08	12.51
3502	14.98	12.51
501B	14.59	10.58
501A		
9607	21.44	17.06
9606	21.39	17.45
9801	25.93	21.34
9605	21.54	17.93
9604	22.03	18.32
5922		
58CC		
6902		
69CC		
69BJ		
69BE		
69BA		
6929	14.22	13.32
6927	14.1	13.25
6931		
7701		
78CD		
79AB		
7805	14.23	
77DF		
77DE		
78FB		
79AH		
7604		11.97
66IJ		
66FJ		
66FH		
66FI		
66FD		
77FJ		
5706	19.02	14.77
	13.02	17.11
6821	14.69	11 57
6803	14.69	11.57
6804	14.5	10.94
7804		
6807		
78CI		
5732		1.94
5804	15.85	11.87
5903	14.41	11.19
5805		
6502		
6507		
6604		
66GH		
66GF		

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved



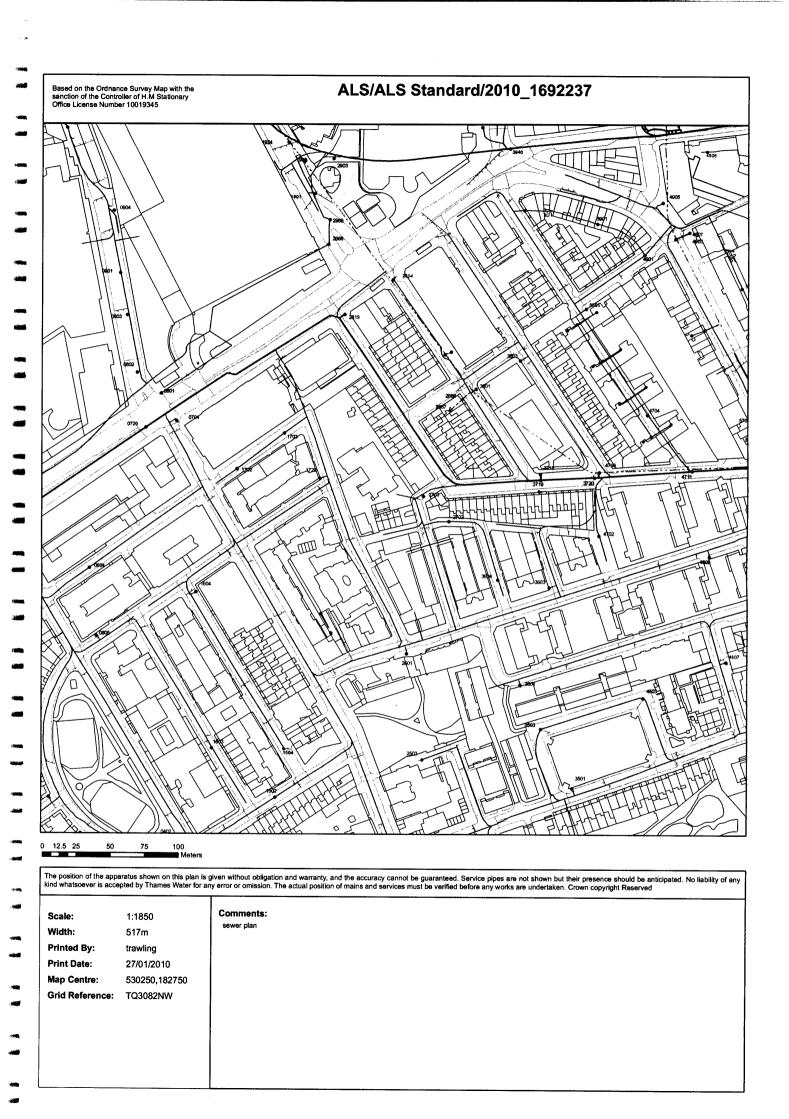
NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

REFERENCE	COVER LEVEL	INVERT LEVEL
3406	21.09	19.56
24DE		
24DF		
1405		
24DD		
1403	22.33	19.94
34CJ		
34DH		
34DI		
3301		
34DA		
4111	21.55	
4101	20.94	18.2
2001	24.39	20.93
0003		
2102	22.54	18.75
1104		
1105		
2201	23.28	19.5
03DI		
0301		
3201		16.88
34DC		
3102		

REFERENCE	COVER LEVEL	INVERT LEVEL
2303		
34CI		
24DG		
24DH		
2401		
402		
3303		
34DE		
34DF		
34DG		
202	21.97	17.91
4103		
9101	25.29	21.12
1011		
3013	23.76	
0101	24.55	20.61
2106		
0201		
1204		
1301	23.68	
3405	22.37	18.19
34DB		
3001	24.01	20.12

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

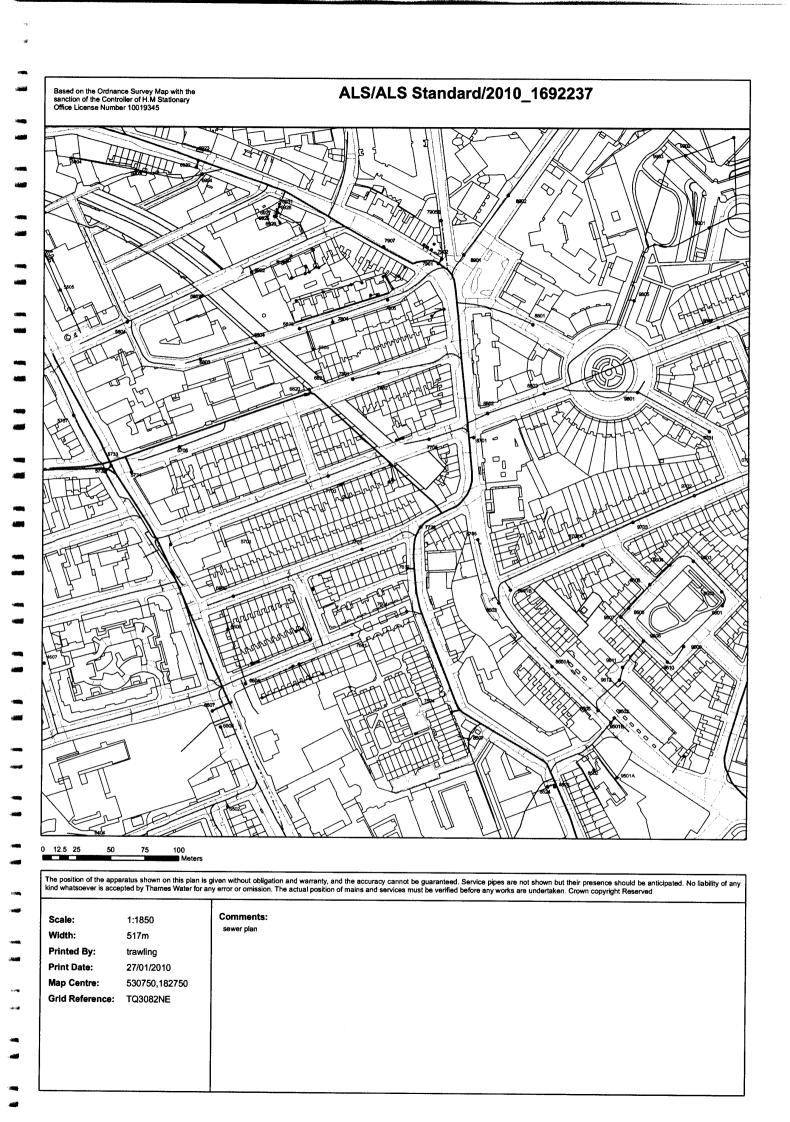

REFERENCE	COVER LEVEL	INVERT LEVEL
901A		
8406	15.24	11.72
7306		
8407	17.94	13.41
33GG		
B3IA		
9303		
9301		
94BI		
94BA		
9413	19.15	13.24
9203	17.81	14.65
9209	17.68	
5404	19.98	17.2
5111	20.71	17.02
5401	21.34	
5402	21.39	
9003		
9117		
9307	16.52	12.98
8006		
8004	20.05	16.3
8101	20.43	14.38
8103		
81CA		
71FJ		
8104	19.12	16.56
7201	21.05	
7229	21.17	16.49
83IH		
8338	20.36	16.07
8339	20.37	10.6
83FC		
6002	22.62	
6003	21.81	
5002	21.2	17.44
6101	19.31	17.29
6103	20.41	
6105	20.7	16.08
6206	21.14	16.77
6203	21.51	17.11
6303	21.01	

REFERENCE	COVER LEVEL	INVERT LEVEL
8405	19.85	
8402	18.98	
7401	19.92	18.09
8403	18.69	
83HJ		
94BG		
94BF		
94BB		
9201	18.02	14.97
91CF		
91CD		
9005		
9101	17.7	12.69
5403	19.65	15.99
5301		
5102	20.71	
9001	20.62	
9102	15.39	
9210	15.85	13.26
8907	22.36	17.08
8003	21.83	16.33
8005	21.12	15.36
7102		
81BJ		
8195		
71GA		
8203	18.25	
7202	20.25	19.49
7203	20.55	
8311		
83FE		
83FD		
7303		
7004	22.37	18.51
6004	21.87	
7005	20.95	
6102	20.49	15.73
6104	20.16	16.5
6106	20.63	17.22
6205		
6301	21.51	17.85
7403		

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved

-

ania Vicini



NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

REFERENCE	COVER LEVEL	INVERT LEVEL
2968		
0904		
1902		
1924		2.37
0803	18.17	14.72
2804	16.99	12.96
0604	21.79	18.47
0802	18.94	
0801	19.23	17.68
1604		
1703	19.21	15.2
16DH		
2601		
2802		
2887		
2888		
38EC		
38EA		
38EB		
4702	20.61	16.35
48BG		
48BF		
47BE		
4503	20.98	17.56
1502	23.79	16.54
1504		
3801		
3604	21.11	18
47BD		
47BC		
4907		
4711	20.17	11.48
4906		
4607		
9502		
3803		
3941		
3718		
3503	21.18	18.3
38ED	21.10	

REFERENCE	COVER LEVEL	INVERT LEVEL
2969	116.6	112.27
1901	16.51	13.99
2903		
0025	17.5	13.66
2819		11.91
0901		
0605		
0720		12.23
0704	19.28	
1702		
1729		
26DE		
2703	20.25	
2702	20.34	16.05
2806		
3501		
3805		
3720	20.18	11.5
3901		
4710	20.18	
48BA		
48AJ		
4901	17.07	12.21
48AH		
2503	21.52	18.39
1503	23.74	18.68
002B		
4704	19.5	11.68
4905	16.1	
4903		2.36
48CG		
48CH		
4606		
5805		
3940	16.26	
3601		
37DF		
3719	17.12	11.56
3603		

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved

