SITE INVESTIGATION REPORT

26-28 Rochester Place London NW1

ISSUE 03 CONCEPT

SITE INVESTIGATION REPORT

Rochester Place London NW1

Prepared for: Breeze Holdings Ltd

Concept: 07/2035 / FR 03

20/11/2007

Unit 8, Warple Mews, Warple Way London W3 0RF Tel: 020 8811 2880 Fax: 020 8811 2881

e-mail: si@conceptconsultants.co.uk www.conceptconsultants.co.uk

	CONT	ROL DOCU	JMENT	
Job Title:		Rochester Pla	ice	
Job Number:		07/2035		
Document Type:		Factual Site In	nvestigation Report	
Document Reference:		G:072035 fsir		
Document Status:		1. Issue 01 2.Issue 02 3. Issue 03		
Date of Issue:		1. 03/10/2007 2. 24/10/2007 3. 20/11/2007		
Prepared By:	Name:		I Penchev	
	Signature):	H.	
Checked By:	Name:		J Roberts	
	Signature) :		
Approved By	Name:		M Dedic	
	Signature) :	ll	

OOROEPT SITE INVESTIGATIONS

Unit 8, Warple Mews, Warple Way, London W3 ORF Tel: 020 8811 2880 Fax: 020 8811 2881 e-mail: si@conceptconsultants.co.uk

Form SI 048 Rev 1/05 8 April 2005

G://0-SI/Excel Templates/Control Document

CONTENTS

- 1. PROJECT PARTICULARS
- 2. SCOPE OF WORK
- 3. FIELDWORK
- 4. LABORATORY TESTING
- 5. SITE LOCATION PLAN
- 6. EXPLORATORY HOLE LOCATION PLAN
- 7. BOREHOLE LOG
- 8. WINDOW SAMPLE LOGS
- 9. GAS & GROUNDWATER MONITORING RESULTS
- 10. LABORATORY TEST RESULTS
- 11. CHEMICAL TEST RESULTS

26-28 Rochester Place

07/2035

1. PROJECT PARTICULARS

Site Address:

26-28 Rochester Place, Camden, London NW1.

Client:

Breeze Holdings Ltd.

Date of Fieldwork:

15/08/2007 - 22/08/2007

2. SCOPE OF WORK:

Site works:

2 No. Cable Percussion Boreholes, to a maximum

depth of 35.00m below ground level.

3 No. Window Sample Boreholes, to a maximum depth

of 5.00m below ground level.

3. FIELDWORK

Cable Percussion Boreholes

2 No. boreholes were sunk to a maximum depth of 35.00m below ground level, using a standard cable percussion rig with 150mm equipment. Concrete and paving obstructions at the surface were removed by hydraulic breaker in order to facilitate drilling works. Hand dug inspection pits were conducted in each borehole to 1.20m depth below ground level, in order to detect any buried services which may have been missed by the Cable Avoidance Tool (CAT) scan and services plans.

All boreholes were excavated using a standard rig with 150mm diameter equipment.

Bulk samples were taken at 0.50m intervals in the Made Ground (MG).

Undisturbed 102mm nominal diameter (U102) samples were taken using a downhole sliding hammer at 2.00 metre intervals within the first 10.00m (where possible), and thereafter at 3.00 metre intervals.

There was no recovery of the undisturbed sample taken at 28m depth in BH102 due to the thread snapping. The borehole was terminated at 31m after attempting recovery for 2 hours due to the remains of the tube preventing further progress to the final required depth of 35m. It was instructed by the Engineer that the depth of BH101 is increased from 15m to 35m with no sampling between 15.00m and 28.00m depth.

Standard penetration tests (SPT) were carried out at 2.00m intervals within the first 10.00 metres, and thereafter at 3.00 metre intervals. The resulting SPT N values are presented on the borehole records (Section 7). Where an SPT using the split shoe sampler was not possible, because of the granular nature of the material, a solid cone was used.

Small, disturbed samples were retrieved from the cutting shoe or material collected within the SPT split spoon sampler.

Chemical samples were taken within the Made Ground, or whenever visual or offactory evidence of contamination was noted.

Window Sample Boreholes

3 No. window sample boreholes were sunk to a maximum depth of 5.00m from ground level, using a Terrier 2000 tube sampling rig. The hole was cased and soil samples recovered within plastic liners. Soil samples recovered from the hole location were logged. Chemical samples were taken every metre within the Made Ground, and at every change in material or whenever visual or offactory evidence of contamination was noted. There were no samples recovered between 3m and 4m in WS103 due to a clay stone in the cutting shoe.

Standpipe Installations

50mm diameter gas and groundwater monitoring standpipes were installed in both boreholes, slotted between 0.50m and 4.00m deep (see borehole logs in Section 7 for details). The installations were completed with lockable flush covers.

Gas and Groundwater Monitoring

Gas and groundwater monitoring was carried out by Concept subsequent to the completion of the site investigation works on three occasions. The results are presented in section 9 of this report.

All locations have been monitored for gas concentrations using a Gasdata LMSxi G3.18 gas monitor. This instrument measures the following gases to the following levels of accuracy:

	Range	Typical Accuracy
Methane	0 – 100%	0.2% @ 5%, 1.0% at 30%
LEL	0 - 100% LEL	4% LEL
Carbon Dioxide	0 – 100%	0.1%@10%, 3%@50%
Oxygen	0 – 25%	0.5%
Hydrogen Sulphate	200 ppm	5% of fs
Carbon Monoxide	1000 ppm	5% of fs
Atmospheric Pressure	800 – 1200 mbar	5mbar
Flow Range	0.1 to 20 l/hr	
Flow Resolution	0.1l/hr	
Differential Pressure	-0.1mbar to 0.8mbar	

Setting Out

Following completion of the ground works the locations and levels for the boreholes, using precise level and/or EDM equipment as appropriate.

26-28 Rochester Place

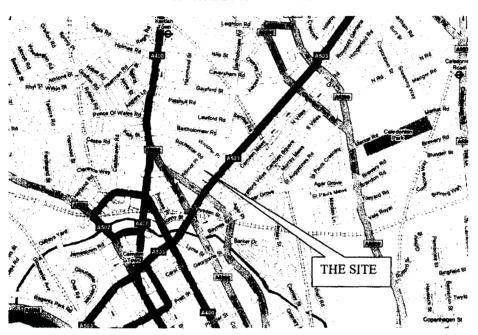
07/2035

4. LABORATORY TESTING

All soil tests have been carried out in accordance with BS1377 (1990). The results are presented in tabular format in Section 10 of this report.

All chemical testing has been carried out by AlControl Technichem in accordance with the requirements of UKAS ISO17025 and ISO17020. The results are presented in tabular format in Section 11 of this report.

REFERENCES


British Standards Institution, Methods of test for soils for civil engineering purposes, British Standard BS 1377: 1990, BSI, London, 1990.

British Standards Institution, Code of practice for site investigations, British Standard BS 5930: 1999, BSI, London, 1999.

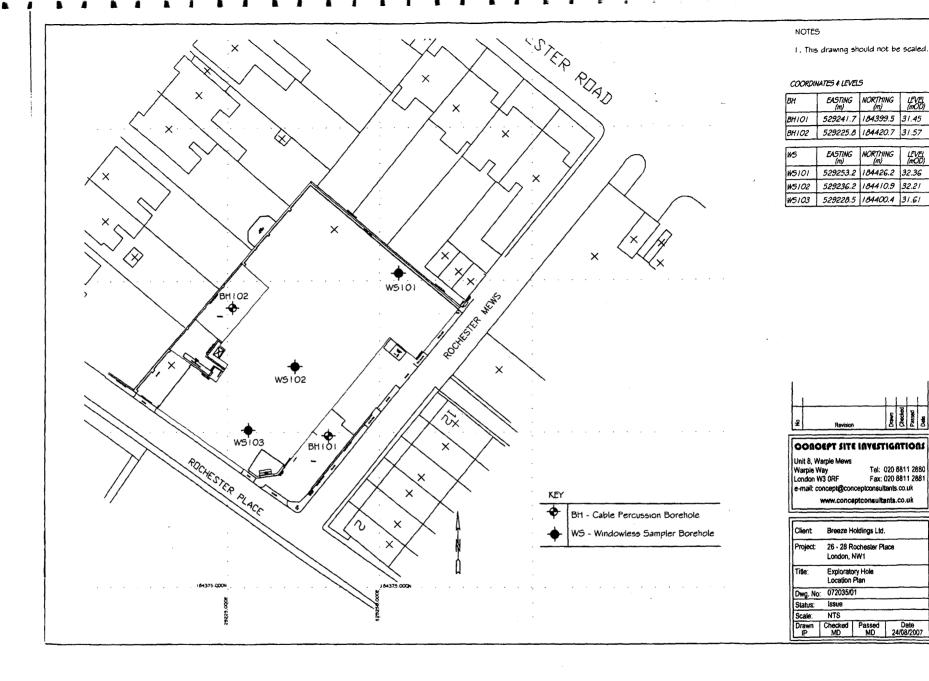
British Standards Institution, Investigation of potentially contaminated sites, British Standard BS10175: 2001, BSI, London, 2001.

Specification for Ground Investigation, Site Investigation Steering Group, Thomas Telford, London, 1999.

5. SITE LOCATION PLAN

Not to Scale @ Crown Copyright reserved

26-28 Rochester Place


07/2035

OOROEPT SITE INVESTIGATIONS

6. EXPLORATORY HOLE LOCATION PLAN

26-28 Rochester Place

07/2035

NORTHING (m)

LEVEL (mOD)

Tel: 020 8811 2880 Fax: 020 8811 2881

7. BOREHOLE LOGS

26-28 Rochester Place

07/2035

8 Warple Mews, Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

Borehole No

BH101

Project
26 - 28 Rochester Place, Camden, NW1

			Ground Level (mOD)	Co-Ordinates	Final Depth
07/2035	Date Completed	20/08/07	31.45	E 529241.7 N 184399.5	35.00m
Client Breeze H	loldings Ltd			Method/ Plant Used Cable Percussion	Sheet 1 of 4

PROGRESS SI				Si	TRATA	SAMPLI	CS & 1	ESTS		Įį.	
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)		Depth (m)	Type No	Test Result	Field Records	K Instrument/ K Backfill
17/08/07	<u> </u>	Dry	31.12		0.33	Tarmac over concrete.	0.35	T01			W W
				****		Brick rubble in a sandy clay matrix.	0.35	T02 J03			
			31.05	*****	0.40	(MADE GROUND) Orangey brown CLAY with fine to coarse	0.35	V04			
			1	⋘⋘	(0.90)	angular to subrounded flint gravel with	0.35	D05 B06	1		
			30.15	∞	1.30	pockets of decayed organic matter, glass and brick fragments. (MADE GROUND)	£ 0.70	T07			
17/08/07	1.50	Dry				Firm, orangey brown CLAY.	0.70 0.70	T08 J09	1		
						,	0.70	V10			
-					_	becoming stiff orangey brown mottled	0.70 - 1.00-1.45	D11 B12			: :
					-	bluish grey with occasional pockets of orange	1.00	1	N6	1, 1 / 2, 1, 1, 2	
						sand and claystone fragments at 2.00m	1.50	D13 U14	22 blows		
				===			2.45	D15			1:11
					-		3.00-3.45 3.00	D16	N9	1, 2 / 2, 2, 3, 2	
					-		3.50	D17		.,	1 1 1
						with pockets of yellowish brown sandy clay	F				1:目:1
						at 3.50m	4.00-4.45	U18	25 blows		
					-		E	Ì			
							4.45	D19			
							E	1	1	·	
			ľ	[-]	(7.20)		5.00-5.45	D20		22/2224	
							5.00		NI3	2, 3 / 3, 3, 3, 4	
							5.50	D21			
					-		E				
					_		6.00-6.45	U22	34 blows		
					-	becoming brown at 6.00m and with pockets of selenite crystals between 6.00m and	6.45	D23			
					-	10.00m	E 5.43	DL3			
				===			7.00-7.45	D24			
				$\begin{bmatrix}1 \end{bmatrix}$	-		7.00	224	N17	3, 3 / 4, 4, 4, 5	
							7.50	D25			
-							F				
						·	8.00-8.45	U26	42 blows		
				===	-		Ē				
			22.95		8.50		8.45	D27	1		
					:	Stiff, greyish brown CLAY.	Ę	1	1		
					_		9.00-9.45 9.00	D28	N22	1515656	
							F		1422	4, 5 / 5, 6, 5, 6	
				===			9.50	D29			
							E	Y 120	60.11		
					-	hasoming financed at 10 00m	10.00-10.45	U30	50 blows		
					:	becoming fissured at 10.00m	10.45	D31			
					:		E				
				==			Ē				
	L		L							<u> </u>	

C	Chiselling (m) Water Added (m)				GENERAL REMARKS				
From	То	Hours	From	То	An inspection pit was hand excavated to 1.20m beld 150mm casing used from ground level to 1.50m beld 3.50mm monitoring well installed at 4.00m below ground to 1.50m below ground to 1.50	ow ground level.			
Issue 1	No. 03				Driller DW	AGS ======			

8 Warple Mews, Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptoonsultants.co.uk

Borehole No

BH101

Project 26 - 28 Rochester Place, Camden, NW1

	Date Started		Ground Level (mOD)	Co-Ordinates	Final Depth
07/2035	Date Completed	20/08/07	31.45	E 529241.7 N 184399.5	35.00m
Client				Method/	Sheet
Breeze H	loldings Ltd			Plant Used Cable Percussion	2 of 4

PR	OGRI	ESS			Si	TRATA	SAMPLI	es & 7	TESTS		ent/
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
							11.50-11.95	D32	N23	4, 6 / 5, 6, 6, 6	
							12.25	D33			
						with occasional cream flecks at 13.00m	13.00-13.45	U34	47 blows		
						Will occasional cicam neons at 15.00m	13.45	D35			
					-		14.50-14.95 14.50	D36	N25	5,6/6,6,7,6	
						with a band of claystone between 15.30m and 15.50m	15.50	D37			
							16.50-16.95 16.50	D38	N30	6,6/7,8,7,8	
						with a band of claystone between 17.10m and 17.25m	17.50	D39			
							18.50-18.95 18.50	D40	N35	5,6/8,9,9,9	
							19.50	D41			
							20.50-20.95 20.50	D42	N35	6,7/8,8,9,10	
					(26.50)		21.50	D43			

C	Chiselling (m) Water Added (m)		ided (m)	GENERAL REMARKS	
From	To	Hours	From	То	'
15.30 17.10	15.50 17.25	00.15.00 00.15.00			

	Issue No. 03	Driller DW	AGS =====
1			

8 Warple Mews, Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptoonsultants.co.uk

Borehole No

BH101

Project
26 - 28 Rochester Place, Camden, NW1

	Date Started		Ground Level (mOD)	Co-Ordinates	Final Depth
07/2035	Date Completed	20/08/07	31.45	E 529241.7 N 184399.5	35.00m
Client Breeze H	loldings Ltd			Method/ Plant Used Cable Percussion	Sheet 3 of 4

<u> </u>			umgs i								
PRO	OGRI				Sī	TRATA	SAMPLI	ES & 1	TESTS	,	le =
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
							22.50-22.95 22.50	D44	N41	7, 7 / 9, 10, 10, 12	
							23.50	D45			
							24.50-24.95 24.50	D56	N41	7,9/9,10,10,12	
							25.30	D57			
17/08/07 20/08/07	1.50 1.50	Dry Dry					26.50-26.95 26.50	D58	N45	7,9/11,10,12,12	
							27.50	D59			
							28.00-28.35	U60	70 blows		
					:	becoming hard and slightly sandy at 28.00m	28.35	D61			
							29.50-29.95 29.50	D62	N50/ 0.275	7, 10 / 10, 13, 14, 13	
							30.25	D63			
				===			31.00-31.45	U64	85 blows		
						becoming very stiff at 31.00m	31.45	D65			
							<u>-</u>				
							32.50-32.95 32.50	D66	N49	8,9/10,11,13,15	
							33.00	D67			

C	Chiselling (m) Water Added (m)		ided (m)	GENERAL REMARKS	
From	То	Hours	From	То	
L					

Issue No.	Driller	<i>Y.</i>
03	DW	AGS

8 Warple Mews, Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

Borehole No

BH101

Pro	iect

26 - 28 Rochester Place, Camden, NW1

Job No	Date Started	17/08/07	Ground Level (mOD)	Co-Ordinates	Final Depth
07/2035	Date Completed	20/08/07	31.45	E 529241.7 N 184399.5	35.00m
Client Breeze H	Ioldings Ltd			Method/ Plant Used Cable Percussion	Sheet 4 of 4

PRO	OGRI	ESS			S	TRATA	SAMPLI	ES & 1	TESTS		ent/
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)		Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
						becoming hard with pockets of orangey brown sandy clay and bioturbation at 33.50m	33.50-33.95 33.95 34.50-34.95 34.50	U68 D69 D70	85 blows	9, 10 / 11, 13, 13, 12	
20/08/07	1.50	Dry	-3.55		35.00	with pockets of yellowish brown sandy clay at 34.50m End of Borehole			N49/ 0.275		

С	Chiselling (m) Water Added (m)		dded (m)	GENERAL REMARKS		
From	То	Hours	From	То		
l						
	<u> </u>			<u> </u>		

Issue No.	Driller	\\
114	DW) AUS
V 3	2"	. 10

8 Warpie Mews, Warpie Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

Borehole No

BH102

Project

26 - 28 Rochester Place, Camden, NW1

	Date Started		Ground Level (mOD)	Co-Ordinates	Final Depth
07/2035	Date Completed	16/08/07	31.57	E 529225.8 N 184420.7	31.00m
Client Breeze H	loldings Ltd			Method/ Plant Used Cable Percussion	Sheet 1 of 3

PRO	OGRI	ESS			S	TRATA	SAMPLI	ES & 1	rests		int.
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)		Depth (m)	Type No	Test Result	Field Records	Sinstrument/
15/08/07		Dry	31.42 31.12 30.32		0.15 0.45 (0.80) 1.25	Concrete. Brick and concrete rubble. (MADE GROUND) Brown sandy CLAY with brick fragments. (MADE GROUND)	0.20 0.25 0.25 0.25 0.25 0.25 0.25 0.50	B01 T02 T03 J04 V05 D06 B07 T08			8 8
15/08/07	1.70	Dry	29.87		1.70	Orangey brown CLAY with some subangular to subrounded fine to coarse gravel, pockets of orange sand and chalk fragments. (MADE GROUND) Firm, orangey brown slightly mottled bluish	0.75 0.75 0.75 0.75 0.75	T09 J10 V11 D12 B13			
						Firm, orangey brown slightly mottled bluish grey CLAY with occasional pockets of orange fine sand.	1.00 1.50 2.00-2.45 2.45 - 3.00-3.45	D14 U15 D16 D17	N4 30 blows	1,0/1,0,1,2	
						with a band of claystone between 3.00m and 3.15m	3.00 3.50 4.00-4.45	D17 D18	N12	5,5/3,4,3,2	
						with pockets of yellowish brown sandy clay	4.45	D20	33 Blows		····
					• •	at 4.45m	5.00-5.45 5.00 5.50	D21 D22	NII	2, 3 / 2, 3, 3, 3	
					(8.20)	becoming stiff at 6.00m and with pockets of orange sand and selenite crystals between	6.00-6.45	U23	30 blows		
					_	6.00m and 8.00m	7.00-7.45 7.00	D25	N21	2, 4 / 4, 5, 6, 6	
							7.50 8.00-8.45	D26 U27	36 blows		
						becoming fissured at 8.00m	8.45	D28			
							9.00-9.45 9.00 9.50	D29 D30	N25	3, 4 / 5, 6, 7, 7	
			21,67		9.90	Stiff, greyish brown CLAY.	10.00-10.45	U31 D32	40 blows		
									:		

C	hiselling (Water Added (m)			
From	То	Hours	From	То	
3.00	3.15	00.15.00			

GENERAL REMARKS

- 1. An inspection pit was hand excavated to 1.20m below ground level, prior to boring commencing.
 2. 150mm casing used from ground level to 1.70m below ground level.
 3. 50mm monitoring well installed at 4.00m below ground level, slotted between 0.50m and 4.00m depth.
 4. The thread of the U100 tube taken at 28.00m below ground level snapped preventing recovery of the sample. Following a 2 hour recovery attempt which lead to the tube remains being pushed down into the hole, borehole was abandoned at 31.00m below ground level.

Issue No.	Driller	A. C.
03	ъw	IAOS

8 Warple Mews, Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

Borehole No

BH102

Project

26 - 28 Rochester Place, Camden, NW1

Job No	Date Started	15/08/07	Ground Level (mOD)	Co-Ordinates	Final Depth
07/2035	Date Completed	16/08/07	31.57	E 529225.8 N 184420.7	31.00m
Client Breeze H	Ioldings Ltd			Method/ Plant Used Cable Percussion	Sheet 2 of 3

L	OGRI		umgs i		27	TRATA		SAMPLE	7C P. 7	regre		<u> </u>
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	C: . D		Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
								11.50-11.95 11.50	D33	N25	4,4/5,6,7,7	
								12.21	D34			
						becoming very stiff at 13.00m		13.00-13.45	U35	45 blows		
								13.45	D36		,	
								14,50-14.95 14.50	D37	N29	4,6/6,7,8,8	
								15.25	D38			
								16.00-16.45 16.30	U39 D40	54 blows		
								17.30 17.50-17.95	D41	N29	6, 5 / 6, 8, 7, 8	
								18.25	D42			
						with occasional pyrite nodules at 19.00n	n	19.00-19.45 19.45	U43 D44	60 blows		

					(21.10)			20.50-20.95 20.50	D45	N36	6, 7 / 8, 10, 9, 9	
								21.25	D46			
								22.00-22.45	U47	62 blows		

Chiselling (m)		Water Added (m)		GENERAL REMARKS	
From	То	Hours	From	То	

Issue No.	Driller	<u> </u>
03	DW	AG8=====

8 Warple Mews, Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptoonsultants.co.uk

Borehole No

BH102

Project									
26 - 28 Rochester Place, Camden, NW1									
Job No	Date Started	15/08/07	Ground Level (mOD)	Co-Ordinates	Final Depth				
07/2035	Date Completed	16/08/07	31.57	E 529225.8 N 184420.7	31.00m				
Client Breeze H	Ioldings Ltd	**************		Method/ Plant Used Cable Percussion	Sheet 3 of 3				

PRO	OGRI	ESS			S	TRATA	SAMPLI	ES & 7	rests		ent/
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
15/08/07 16/08/07	1.70 1.70	Dry Dry				with occasional pockets of fine grey sand and shell fragments at 22.00m	22.45	D48			
							23.50-23.95 23.50	D49	N37	7, 8 / 8, 10, 9, 10	
						with occasional pockets of light brown slightly sandy clay at 24.25m	24.25	D50			
				==	-	with pockets of grey sand and pyritised	25.00-25.45	USI	65 blows		
						with pockets of grey sand and pyritised nodules at 25.00m	25.45	D52		·	
							26.50-26.95 26.50	D53	N44	8, 9 / 9, 11, 12, 12	
							27.25	D54			
							28.00 28.00	U55 B56		No Recovery	
							29.00-29.45 29.00	D57	N49	9, 8 / 10, 12, 14, 13	
						with claystone at 29.75m	29.75	D58			
16/08/07	1.70	Dry	0.57		31,00		30.50-30.95 30.50	D59	N50	8, 10 / 11, 12, 12, 15	
						End of Borehole					
							<u> </u>				

Chiselling (m)		Water Added (m)		GENERAL REMARKS		
From	То	Hours	From	То		
						•
l						
	L					

Issue No. 03 Driller $\mathbf{D}\mathbf{W}$

8. WINDOW SAMPLE LOGS

26-28 Rochester Place

07/2035

8 Warple Mews, Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

Borehole No

WS101

Project

26 - 28 Rochester Place, Camden, NW1

Job No	Date Started	21/08/07	Ground Level (mOD)	Co-Ordinates	Final Depth
07/2035	Date Completed	21/07/07	32.36	E 529253.2 N 184426.2	5.00m
Client Breeze H	loldings Ltd			Method/ Plant Used Drive Tube Sampler	Sheet 1 of 1

PRO	OGRI	ESS			Si	rata	SAMPLI	ES & 7	rests		lent
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
21/08/07	0.00	Dry	32.01 31.76		. (0.35) - 0.35 - (0.25) - 0.60	Dark brown sandy gravelly SILT with brick, concrete, clinker, glass and plastic fragments.	0.40-1.40	B09			
21/08/07	1.00	Dry	30.96			Firm, dark brown mottled dark grey sandy CLAY with much angular to rounded fine to coarse flin gravel and occasional fine to medium gravel sized brick fragments. (MADE GROUND)	0.60 - 0.60 - 0.60 - 1.00 - 1.00 - 1.00 - 1.00	T02 J03 V04 T05 T06 J07 V08 B14			
					(0.90)	Stiff, brown occasionally mottled grey CLAY with some occasional flint gravel and pockets and lenses of cream occasionally cemented silt.	1.60 1.70 1.70 1.70 1.70 1.70	T10 T11 J12 V13	PP 130kPa PP 130kPa		
			30.06		2.30	with a band of claystone between 2.20m and 2.30m Stiff, fissured dark brown mottled bluish grey CLAY with occasional pockets of dark orangey brown fine sand.	2.60		PP 125kPa		
					(2.70)		3.00 3.00 3.00 3.00 3.00-5.00 3.10	T15 T16 J17 V18 B19	PP 130kPa		
					-		4.10		PP 130kPa PP 140kPa		
21/08/07	1.00	Dry	27.36	==	5.00	End of Borehole					

Chiselling (m)			Water Added (m)		GENERAL REMARKS				
From	То	Hours	From	То	Surface concrete was diamond cored to 0.35m below Hand auger was used to 1.20m below ground level fiprior boring commencing. 101mm casing used from ground level to 1.00m below Borehole backfilled with bentonite pellets.	or inspecting presence of underground services			
Issue l	No. 03		***************************************		Driller LR	AGS			

8 Warple Mews, Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptoonsultants.co uk

Borehole No

WS102

Project

26 - 28 Rochester Place, Camden, NW1

Job No	Date Started	22/08/07	Ground Level (mOD)	Co-Ordinates	Final Depth
07/2035	Date Completed	22/08/07	32.21	E 529236.2 N 184410.9	5.00m
Client Breeze F	Toldings Ltd			Method/ Plant Used Drive Tube Sampler	Sheet 1 of 1

B	Breeze Holdings Ltd								Samp	ICI	1 01 1	
PR	OGR	ESS			Sī	rata		SAMPLI	ES & 1	TESTS		nent/
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	ភា	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
22/08/07	0.00	Dry	32.11 31.76 31.56		0.10 - (0.35) - 0.45 - 0.65	Concrete Dark brown gravelly SAND with concrete, clinker, glass and plast (MADE GROUND) Concrete	n brick, ic fragments.	0.20-0.40 0.20-0.40 0.20-0.40 0.20-0.40 0.20-0.40	T01 T02 J03 V04 B05			
22/08/07	1.00	Dry	31.31		(0.25) 0.90 - (0.60)	Dark brown gravelly SAND with concrete, clinker, glass and plast (MADE GROUND) Firm, dark brown mottled dark g CLAY with much angular to rou coarse gravel and occasional fine gravel sized brick fragments. (MADE GROUND) becoming brown below 1.00n with some fine gravel sized produced organic matter below 1. Firm, brown occasionally mottle with pockets and lenses of crean cemented silt.	rey sandy mided fine to e to medium nockets of 10m d grey CLAY	0.80-0.90 0.80-0.90 0.90-1.00 1.00-1.20 1.00-1.20 1.00-1.50 1.00 1.50-1.70 1.50-1.70 1.50-1.70 1.50-1.70	T06 J07 D08 T09 J10 V11 B12 T13 J14 V15 B16	PP 50kPa PP 50kPa		
22/08/07	1.00	3.50	28.71		- (2.00)	becoming stiff and closely fiss 2.00m becoming mottled bluish grey of orange fine sand below 2.40m with a band of light brown classes between 2.90m and 3.30m	with pockets	2.80	B18	PP 110kPa		
220807	1.00	3.30	26.71		(1.50)	Stiff, fissured dark brown mottle CLAY with occasional pockets of orangey brown fine sand.	d bluish grey of dark	4.20		PP 112kPA		
22/08/07	1.00	4.70	27.21		5.00	End of Borehole		4.90		PP 125kPa		

Chiselling (m)		Water Added (m)		GENERAL REMARKS	
From	То	Hours	From	То	An inspection pit was hand excavated to 1.20m below ground level, prior to boring commencing. 101mm casing used from ground level to 1.00m below ground level. Borehole backfilled with bentonite pellets.
<u> </u>					

Issue No. 03 Driller LR

8 Warple Mews, Warple Way London W3 0RF Telephone: 020 8811 2880_Fax: 020 8811 2881 E-mail: si@conceptconsultants.co.uk

Borehole No

WS103

Project 26 - 28 Rochester Place, Camden, NW1

20-20	20 - 20 Nothester Tract, Camuch, NVV1										
Job No	Date Started	21/08/07	Ground Level (mOD)	Co-Ordinates	Final Depth						
07/2035	Date Completed	21/07/07	31.61	E 529228.5 N 184400.4	5.00m						
Client Breeze H	Ioldings Ltd			Method/ Plant Used Drive Tube Sampler	Sheet 1 of 1						

PR	OGR	ESS			ST	TRATA	SAMPLI	ES & 1	ESTS		ent
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
21/08/07	0.00	Dry	31.51		0.10 - (0.35) - 0.45	Concrete. Dark brown silty sandy GRAVEL with brick, concrete, clinker, glass and plastic fragments. (MADE GROUND)	-				
			30.96		0.65	Concrete Dark brown silty sandy GRAVEL with brick, concrete, clinker, glass and plastic fragments. (MADE GROUND)	0.65-1.70 - 0.85 - 0.85	B09 T01 T02			
21/08/07	1.00	Dry	30.66		- 0.95	Firm, dark brown mortled dark grey sandy CLAY with much angular to rounded fine to coarse gravel and occasional fine to medium gravel sized brick fragments. (MADE GROUND)	0.85 0.85 1.25 1.30 1.30 1.30 1.70-5.00	T05 T06 J07 V08 B18	PP 63kPa		
					(1.30)	Firm, brown occasionally mottled grey CLAY with occasional gravel and pockets and lenses of cream occasionally cemented silt.	2.00 2.00 2.00 2.00 2.25	T10 T11 J12 V13	PP 75kPa PP 88kPa		
			28.61		3.00	with a band of claystone 2.90m and 3.00m Stiff, fissured dark brown mottled bluish grey CLAY with occasional pockets of dark orangey brown fine sand.	3.00			No recovery between 3.00m and 4.00m depth	
21/08/07	1.00	Dry	26.61		- (2.00) - - - - - - - - - - - - - - - - - -	End of Borehole	4.25 4.50 4.50 4.50 4.50 4.75	T14 T15 J16 V17	PP 120kPa PP 140kPa		

Chiselling (m)	Water A	dded (m)	GENERAL REMARKS
From To Ho	rs From	То	1. An inspection pit was hand excavated to 1.20m below ground level, prior to boring commencing. 2. No recovery between 3.00m and 4m below ground level due to claystone obstruction in cutting shoe.
			101 mm casing used from ground level to 1.00m below ground level. 4. Borehole backfilled with bentonite pellets.

Issue No. 03 Driller LR

9. GAS & GROUNDWATER MONITORING RESULTS

26-28 Rochester Place

07/2035

JOB DETAILS													
Location:	Rochester Pla	ce						Engineer:	IP				
Date:	24/08/2007			Job	No:	07/2035			Time:	14:30			
METEOROLOGIC	AL AND SIT	E INFORMATION											
State of ground:		Dry			Х	Moist			Wet				
Wind:		X Calm				Light			Moderate			Strong	
Cloud cover:		None				Slight			Cloudy		V	Overcast	
Precipitation		None			v	Slight			Moderate			Heavy	
1 '						Bilgitt			ļi.	[-A-		Heavy	
Barometric pressure ((mb):	1022				***************************************		Air temperatur	re (°C)	8°C			
INSTRUMENTATI													
Gas concentration:	Gas Data LMS	xi G3.18, Accuaracy: Cl	(0 to	5%), ±	1.0% (at 30%), ±3.09	% (at 100%); CO ₂ ±0.1% (0	to 10%), ±3.0% (a	t 40%); O ₂	±0.5%		
ВН	Time (secs)	Depths to GW (m)	aP (mb)	dP	Flow	CH ₄ (%)	Peak	LEL (%)	CO ₂ (%)	02 (%)	H ₂ S(%)	CO (ppm)	Comments
(No.)				mb)	rate		(%)		-			,	
BH101		2.15			0.0							والسيادة ويبيات وتحد	
	5					0.0	0.0	0.0	0.3	19.9	0.0	0.0	
	30					0.0	0.0	0.0	0.0	20.7	0.0	0.0	
	60					0.0	0.0	0.0	0.0	20.7	0.0	0.0	
	120					0.0	0.0	0.0	0.0	20.6	0.0	0.0	
	180					0.0	0.0	0.0	0.0	20.6	0.0	0.0	
	240					0.0	0.0	0.0	0.0	20.5	0.0	0.0	
	300					0.0	0.0	0.0	0.0	20.5	0.0	0.0	
	360 420				ļ	0.0	0.0	0.0	0.0	20.5	0.0	0.0	
	420					0.0	0.0	0.0	0.0	20.4	0.0	0.0	
	540				\vdash	0.0	0.0	0.0	0.0	20.4	0.0	0.0	
	600					0.0	0.0	0.0	0.0	20.4	0.0	0.0	
										1			
					L						,		
					 					 			
					 					 			

JOB DETAILS													
Location:	Rochester Pla	ce						Engineer:	TP				
Date:	24/08/2007			Job	No:	07/2035			Time:	13:30			
METEODOL OCIC	AV AND OVE	E INTERDEM TENDE											
	AL AND SIT	E INFORMATION											
State of ground:		Dry			Х	Moist			Wet				
Wind:		X Calm				Light		<u> </u>	Moderate			Strong	:
Cloud cover:		None				Slight			Cloudy		X	Overcast	
Precipitation		None			X	Slight			Moderate			Heavy	
Barometric pressure ((mb)·	1022						Air temperatur	re (°C)	8°C	- 1		
	(Tio temperatur	0(0)	<u> </u>			
INSTRUMENTATI													
Gas concentration:	Gas Data LMS	xi G3.18, Accuaracy: Cl	H ₄ ±0.2% (0 to	5%), =	1.0% (at 30%), ±3.09	% (at 100%)); CO ₂ ±0.1% (0	to 10%), ±3.0% (a	t 40%); O2	±0.5%		
BH	Time (sees)	Depths to GW (m)	aP (mb)	dP	Flow	CH ₄ (%)	Peak	LEL (%)	CO ₂ (%)	02 (%)	H ₂ S(%)	CO (ppm)	Comments
(No.)	- 11110 (0000)	~	()		rate	~*** (/8)	(%)	20D (70)	202 (70)	2 (/6)		CO (ppid)	Commence
							(.0)					15 T.L. (1. 15 J. 15 M.	
BH102		3.62			0.0								
	5				\vdash	0.0	0.0	0.0	0.1	19.7	0.0	0.0	
	30					0.0	0.0	0.0	0.0	20.8	0.0	0.0	
	60					0.0	0.0	0.0	0.0	20.8	0.0	0.0	
	120					0.0	0.0	0.0	0.0	20.7	0.0	0.0	
	180					0.0	0.0	0.0	0.0	20.7	0.0	0.0	
	240					0.0	0.0	0.0	0.0	20.7	0.0	0.0	
	300					0.0	0.0	0.0	0.0	20.7	0.0	0.0	
-	360					0.0	0.0	0.0	0.0	20.7	0.0	0.0	
	420					0.0	0.0	0.0	0.2	20.3	0.0	0.0	
	480					0.0	0.0	0.0	0.3	20.1	0.0	0.0	
-	540					0.0	0.0	0.0	0.3	20.0	0.0	0.0	
	600					0.0	0.0	0.0	0.4	19.9	0.0	0.0	
					\vdash					 			
	ļ												ļ
					 					-			
					\vdash								
					$\vdash \vdash \vdash$								
					$\vdash \vdash \vdash$					-			
······································	 				\vdash			-		-			
	 				$\vdash \vdash$								
					$\vdash \vdash \vdash$					+			

JOB DETAILS						·····							
Location:	Rochester Pla	ce						Engineer:	IP				
Date:	23/10/2007			Job	No:	07/2035			Time:	11:00			
METEOROLOGIC	AL AND SIT	E INFORMATION											
State of ground:	AL AND SIL	X Dry				Moist			Wet			······································	
Wind:					=							G	
		X Calm				Light			Moderate			Strong	
Cloud cover:		X None				Slight			Cloudy			Overcast	
Precipitation		X None				Slight		L	Moderate			Heavy	
Barometric pressure (mb):	1024						Air temperatur	re (°C)	11°C			
INSTRUMENTATI	ON USED												
Gas concentration:	Gas Data LMS	xi G3.18, Accuaracy: Cl	14 ±0.2% (0 to	5%), ±	:1.0% (a	at 30%), ±3.09	% (at 100%)); CO ₂ ±0.1% (0	to 10%), ±3.0% (a	40%); O ₂	±0.5%		
ВН	Time (secs)	Depths to GW (m)	aP (mb)		Flow	СН, (%)	Peak	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S(%)	CO (ppm)	Comments
(No.)				mb)	rate		(%)	-					
вню		0.95			0.0								, i
	5					0.0	0.0	0.0	0.0	18	0.0	0.0	
	30					0.0	0.0	0.0	0.0	21.0	0.0	0.0	
	60					0.0	0.0	0.0	0.0	20.9	0.0	0.0	
	120					0.0	0.0	0.0	0.0	20.9	0.0	0.0	
	180					0.0	0.0	0.0	0.0	20.8	0.0	0.0	
	240					0.0	0.0	0.0	0.0	20.8	0.0	0.0	
	300					0.0	0.0	0.0	0.0	20.7	0.0	0.0	
	360					0.0	0.0	0.0	0.0	20.7	0.0	0.0	
·····	420					0.0	0.0	0.0	0.0	20.6	0.0	0.0	
	480					0.0	0.0	0.0	0.1	20.5	0.0	0.0	
····	540					0.0	0.0	0.0	0.1	20.5	0.0	0.0	
	600					0.0	0.0	0.0	0.1	20.5	0.0	0.0	
										 			
					-		•			ļ			
					 								
										 			
				-									
									·				
	· · · · · · · · · · · · · · · · · · ·												
·													

	Location:	Rochester Place							Engineer:	IP				
Maintain Maintain			~		Joh	No. I	07/2035		magnicei.		11.20			
Moist Wet Moderate Strong Cloud cover: X None Slight Cloud worderate Strong Cloud cover: X None Slight Cloud worderate Strong Cloud cover: X None Slight Cloud worderate Moderate Heavy Moderate Moderate Heavy Heavy Moderate Heavy Moderate Heavy Heavy Moderate Heavy Hea					400	110.	V-12033			1 mic.	111.20			
Mind: X	METEOROLOGIC	AL AND SIT	E INFORMATION											
Cloud cover: X	State of ground:		X Dry				Moist			Wet				
None Slight Moderate Heavy Heavy Air temperature (°C) I1°C I1°C I1°C I1°C I1°C I1°C I1°C I1°C I1°C I1°C I1°C I1°C I1°C I1°C I1°C I1°C I1°C I1°C I1°C	Wind:				Ì		Light			Moderate			Strong	
NSTRUMENTATION USED Gas Data LMSxi G3.18, Accuaracy: CH4 ±0.2% (0 to 5%), ±1.0% (at 30%), ±3.0% (at 100%); CO2 ±0.1% (0 to 10%), ±3.0% (at 40%); O2 ±0.5%	Cloud cover:		X None		Ì		Slight			Cloudy			Overcast	
NSTRUMENTATION USED Gas Data LMSxi G3.18, Accuaracy: CH4 ±0.2% (0 to 5%), ±1.0% (at 30%), ±3.0% (at 100%); CO2 ±0.1% (0 to 10%), ±3.0% (at 40%); O2 ±0.5%	Precipitation	Ì	X None		Ì		Slight			Moderate			Heavy	
NSTRUMENTATION USED Gas Data LMSxi G3.18, Accuaracy: CH4 ±0.2% (0 to 5%), ±1.0% (at 30%), ±3.0% (at 100%); CO2 ±0.1% (0 to 10%), ±3.0% (at 40%); O2 ±0.5%	Barometric pressure (mb):	1023						Air temperatur	re (°C)	11°C			
Base Concentration: Gas Data LMSxi G3.18, Accuracy: CH4 ±0.2% (0 to 5%), ±1.0% (at 30%), ±3.0% (at 100%); CO2 ±0.1% (0 to 10%), ±3.0% (at 40%); O2 ±0.5%	· · · · · · · · · · · · · · · · · · ·													
BH (No.) Time (secs) Depths to GW (m) aP (mb) dP flow rate mb) rate CH ₄ (%) Peak (%) CO ₂ (%) CO ₂ (%) H ₂ S(%) CO (ppm) Comments														
No. mb rate (%)	Gas concentration:	Gas Data LMS:	xi G3.18, Accuaracy: Cl	44 ±0.2% (0 to) 5%), ±	:1.0% (:	at 30%), ±3.09	% (at 100%)); CO ₂ ±0.1% (0	to 10%), ±3.0% (a	t 40%); O ₂	±0.5%		
No.		Time (secs)	Depths to GW (m)	aP (mb)	dP	Flow	CH ₄ (%)		LEL (%)	CO ₂ (%)	02 (%)	H ₂ S(%)	CO (ppm)	Comments
SH102 S	(No.)				mb)	rate		(%)						
5 0.0 0.0 0.0 0.1 20.6 0.0 0.0 30 0.0 0.0 0.0 0.1 20.7 0.0 0.0 60 0.0 0.0 0.0 0.1 20.7 0.0 0.0 120 0.0 0.0 0.0 0.1 20.7 0.0 0.0 180 0.0 0.0 0.0 0.1 20.7 0.0 0.0 240 0.0 0.0 0.0 0.1 20.7 0.0 0.0 300 0.0 0.0 0.0 0.1 20.7 0.0 0.0 360 0.0 0.0 0.0 0.1 20.6 0.0 0.0 420 0.0 0.0 0.0 0.1 20.6 0.0 0.0 480 0.0 0.0 0.0 0.1 20.6 0.0 0.0 540 0.0 0.0 0.0 0.1 20.6 0.0 <td< td=""><td>BH102</td><td></td><td>1.32</td><td></td><td></td><td>0.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	BH102		1.32			0.0								
30	D		****			L***								and the second
60 0.0 0.0 0.0 0.1 20.7 0.0 0.0 120 0.0 0.0 0.0 0.1 20.7 0.0 0.0 180 0.0 0.0 0.0 0.1 20.7 0.0 0.0 240 0.0 0.0 0.0 0.1 20.7 0.0 0.0 300 0.0 0.0 0.0 0.1 20.7 0.0 0.0 360 0.0 0.0 0.0 0.1 20.6 0.0 0.0 420 0.0 0.0 0.0 0.1 20.6 0.0 0.0 480 0.0 0.0 0.0 0.1 20.6 0.0 0.0 540 0.0 0.0 0.0 0.1 20.6 0.0 0.0						$\sqcup \sqcup$								
120	ma.************************************					igsquare								
180 0.0 0.0 0.0 0.1 20.7 0.0 0.0 240 0.0 0.0 0.0 0.1 20.7 0.0 0.0 300 0.0 0.0 0.0 0.1 20.6 0.0 0.0 360 0.0 0.0 0.0 0.1 20.6 0.0 0.0 420 0.0 0.0 0.0 0.1 20.6 0.0 0.0 480 0.0 0.0 0.0 0.1 20.6 0.0 0.0 540 0.0 0.0 0.0 0.1 20.6 0.0 0.0						igsqcup								
240 0.0 0.0 0.0 0.1 20.7 0.0 0.0 300 0.0 0.0 0.0 0.1 20.6 0.0 0.0 360 0.0 0.0 0.0 0.1 20.6 0.0 0.0 420 0.0 0.0 0.0 0.1 20.6 0.0 0.0 480 0.0 0.0 0.0 0.1 20.6 0.0 0.0 540 0.0 0.0 0.0 0.1 20.6 0.0 0.0						\vdash								
300 0.0 0.0 0.0 0.1 20.6 0.0 0.0 360 0.0 0.0 0.0 0.1 20.6 0.0 0.0 420 0.0 0.0 0.0 0.1 20.6 0.0 0.0 480 0.0 0.0 0.0 0.1 20.6 0.0 0.0 540 0.0 0.0 0.0 0.1 20.6 0.0 0.0					<u> </u>	 								
360 0.0 0.0 0.1 20.6 0.0 0.0 420 0.0 0.0 0.0 0.1 20.6 0.0 0.0 480 0.0 0.0 0.0 0.1 20.6 0.0 0.0 540 0.0 0.0 0.0 0.1 20.6 0.0 0.0					-	$\vdash \vdash$								
420 0.0 0.0 0.1 20.6 0.0 0.0 480 0.0 0.0 0.0 0.1 20.6 0.0 0.0 540 0.0 0.0 0.0 0.1 20.6 0.0 0.0			ļ		-	$\vdash \vdash \vdash$								
480 0.0 0.0 0.1 20.6 0.0 0.0 540 0.0 0.0 0.0 0.1 20.6 0.0 0.0						$\vdash \vdash \vdash$								
540 0.0 0.0 0.0 0.1 20.6 0.0 0.0						\vdash								
									0.0					
						<u> </u>					1			
						igsquare					 			
						┞——					 			
						├		ļ						
						\vdash		—			-			
		 			 	$\vdash \vdash \vdash$					 			
					$\vdash \vdash$	\vdash								

Gas Monitoring Results

JOB DETAILS												······································	
Location:	Rochester Pla	ce						Engineer:	IP				
Date:	01/11/2007			Job	No:	07/2035			Time:	15:20			
METEOROLOGIC	'AL AND SIT	E INFORMATION											
State of ground:	JAL KILL GI	X Dry	······································			Moist			Wet				
Wind:		X Calm							Moderate			S	
Cloud cover:						Light		 			<u></u>	Strong	
1		None				Slight		<u> </u>	Cloudy			Overcast	
Precipitation		X None				Slight		L	Moderate			Heavy	
Barometric pressure	(mb):	1028						Air temperatur	re (°C)	15°C			
INSTRUMENTAT	ION USED												
Gas concentration:		xí G3.18, Accuaracy: C	H4 ±0.2% (0 t	o 5%), ±	1.0% (at 30%), ±3.09	% (at 100%); CO ₂ ±0.1% (0	to 10%), ±3.0% (a	t 40%); O	±0.5%		
BH (No.)	Time (secs)	Depths to GW (m)	aP (mb)	dP mb)	: 1	CH ₄ (%)	Peak (%)	LEL (%)	CO ₂ (%)	02 (%)	H ₂ S(%)	CO (ppm)	Comments
		0.00		Í									
BH101		0.98			0.1	eriore	and the second	المرابة المتأثرين	and the state of the state of the state of			man of the state of	
	5					0.0	0.0	0.0	0.1	18.4	0.0	0.0	
	30					0.0	0.0	0.0	0.1	20.2	0.0	0.0	
	60					0.0	0.0	0.0	0.1	20.2	0.0	0.0	
	120					0.0	0.0	0.0	0.1	20.2	0.0	0.0	
	180					0.0	0.0	0.0	0.1	20.3	0.0	0.0	
	240					0.0	0.0	0.0	0.1	20.2	0.0	0.0	
	300				ш	0.0	0.0	0.0	0.2	20.2	0.0	0.0	
	360					0.0	0.0	0.0	0.2	20.1	0.0	0.0	
	420			ļ	ļ	0.0	0.0	0.0	0.2	20.1	0.0	0.0	
	480				<u> </u>	0.0	0.0	0.0	0.2 0.3	20.1	0.0	0.0	
	540 600			<u> </u>	-	0.0	0.0	0.0	0.3	20.0	0.0	0.0	
	000		ļ		\vdash	0.0	0.0	0.0	0.2	20.0	0,0	0.0	
	-			 				 		-			
		<u> </u>		 				-		 			
										 			
				1		<u> </u>				T			1
	1							1					
1			l "	1	1		l	1	I	1	l	l	

Form SI 072 Rev 1/06 21 November 2006

G://SI/Excel Templates/Gas monitoring (cir)

JOB DETAILS													
Location:	Rochester Pla	ce						Engineer:	IP				
Date:	01/11/2007			Job	No:	07/2035			Time:	15:40			
METEOROLOGIC	TAL AND CET	TE INFORMATION											
	AL AND SH												
State of ground:		X Dry				Moist			Wet				
Wind:		X Calm				Light			Moderate			Strong	
Cloud cover:		None				Slight		Х	Cloudy			Overcast	
Precipitation		X None				Slight			Moderate			Heavy	
Barometric pressure	(mh).	1028						Air temperatur	re (°C)	15°C			
								- To tomporate	v(v)	1.5 0			
INSTRUMENTAT	ION USED												
Gas concentration:	Gas Data LMS	xi G3.18, Accuaracy: C	H4 ±0.2% (0 to	o 5%), ±	1.0% (at 30%), ±3.09	% (at 100%); CO ₂ ±0.1% (0	to 10%), ±3.0% (a	t 40%); O2	±0.5%		
ВН	Time (secs)	Depths to GW (m)	aP (mb)	dЪ	Flow	CH ₄ (%)	Peak	LEL (%)	CO ₂ (%)	0. (%)	H ₂ S(%)	CO (ppm)	Comments
(No.)	T mile (sees)	Deptilis to O (iii)	ux ()		rate	0114 (70)	(%)	DD2 (70)	001(10)	102(10)	1120(70)	со (ррш)	Connens
							. ()		1000			Special Distriction	
BH102		1,11			0.1								
	5					0.0	0.0	0.0	0.3	20.1	0.0	0.0	
	30					0.0	0.0	0.0	0.2	20.5	0.0	0.0	
	60			<u> </u>		0.0	0.0	0.0	0.2	20.4	0.0	0.0	
	120					0.0	0.0	0.0	0.2	20.4	0.0	0.0	
	180					0.0	0.0	0.0	0.2	20.4	0.0	0.0	
	240					0.0	0.0	0.0	0.2	20.3	0.0	0.0	
	300					0.0	0.0	0.0	0.2	20.3	0.0	0.0	
	360					0.0	0.0	0.0	0.2	20.3	0.0	0.0	
	420					0.0	0.0	0.0	0.1	20.4	0.0	0.0	
	480					0.0	0.0	0.0	0.1	20.4	0.0	0.0	
	540					0.0	0.0	0.0	0.1	20.4	0.0	0.0	
	600					0.0	0.0	0.0	0.2	20.3	0.0	0.0	
										1			
	<u> </u>				L								
	ļ			<u> </u>						 			ļ
	<u> </u>				<u> </u>								
	ļ				ļ					 			
	<u> </u>							 		-			ļ
	 			├	\vdash					 			
	 			 	-					 			
	 	_		 	 			 		 			

10. LABORATORY TEST RESULTS

26-28 Rochester Place

07/2035

CONCEPT SITE INVESTIGATIONS Site Name: Rochester Place Job No. 07/2035 Breeze Holdings Ltd Date: 12/10/07 Client: **Determination of Moisture Content and Liquid and Plastic Limits** Plastic Plasticity 425 µm index Content sieve BH101 D 69 33.95 Greyish brown CLAY wih pockets of orangey 24 78 57 brown sandy clay and occasional decayed root fragments (1mm) BH101 D 70 34.50 Greiysh brown slightly sandy CLAY with pockets 20 of yellowish brown sandy clay Orangey brown CLAY with fine to coarse 21 85 71 20 51 BH102 D 14 1.50 subangular to rounded gravel with chalk fragments and pockets of orange sandy clay Orangey brown CLAY with pockets of yellowish 100 72 22 50 BH102 D 16 2.45 26 brown sandy clay and pockets of light grey clay 100 BH102 D 18 3.50 Brown CLAY with pockets of yellowish brown 30 79 23 55 sandy clay Brown CLAY with pockets of yellowish brown BH102 D 20 4.45 31 100 82 24 58 Brown CLAY with pockets of yellowish brown 100 BH102 D 22 5.50 31 81 25 57 sandy clay BH102 6.45 Brown CLAY with sellinite crystals 31 100 81 24 D 24 58 BH102 Ū 27 8.00 Brown mottled orangey brown fissured CLAY 27 with pockets of orange sand and selenite crystals BH102 D 32 10.45 Brown CLAY 26 100 70 22 48 BH102 D 33 11.50 Brown CLAY with pockets light brown slightly 27 sandy clay 100 BH102 D 36 13.45 Brown slightly gravelly CLAY 26 71 24 47 BH102 D 38 15.25 greyish brown CLAY with pockets of light brown 28 slightly sandy clay BH102 17.50 Greyish brown CLAY 100 23 D 41 24 75 53 BH102 D 44 19.45 Greyish brown CLAY with pockets of yellowish 23 brown sandy clay BH102 Greyish brown CLAY with occasional pockets of U 47 22.00 24

BS 1377: Part 2: Clause 4.4: 1990 Determination of the liquid limit by the cone penetrometer method. BS 1377: Part 2: Clause 5: 1990 Determination of the plastic limit and plasticity index.

fine grey sand and shell fragments

of light brown slightly sandy clay

Greyish brown CLAY with occasional pockets

24.25

BH102

D

50

BS 1377: Part 2: Clause 3.2: 1990 Determination of the moisture content by the oven drying method

23

66

26

100

43

Site Na	me:	31 Bron	pton Squa	re		Job No.:	07/2080	
	out for		Ramboll W			Date:	28-Nov-07	······
				Sulphate Content of Soil				
Barehole No	Sample	Sample No	Depth	Description	% dry mass passing 2mm sleve	рН	Suiphate 2:1 water soil g/l SO ₃	Suiphate Total % 50 ₃
BH01	В	26	9.50	Brownish grey CLAY with occasional pockets of dark grey sandy clay and white flecks	100.0	8.46	0.27	
3H01	8	34	15.00	Brownish grey CLAY with occasional pockets of dark grey sandy clay	100.0	8.47	0.40	
BH01	В	37	20.00	Brownish grey CLAY with occasional white flecks	100.0	8.90	0.19	
BH01	В	45	30.00	Brownish grey CLAY with occasional white flecks	100.0	8.84	0.34	
BH01	В	52	35.00	Brownish grey CLAY with occasional white flecks	100.0	8.89	0.22	
BH01	В	56	39.50	Brownish grey CLAY with occasional fine to medium subangular to subrounded claystone fragments	97.0	8.81	0.33	
			-					

Undrained Triaxial Compression CONCEPT SITE INVESTIGATIONS Date: 12-Oct-07 BS 1377: Part 7: 1990 Clause 8 Unit 8 Warple Mews Warple Way, London W3 0RF Tel: 020 8811 2880/Fax: 020 8811 2881 Job No. 07/2035 Client: Breeze Holding Ltd Site Location: Rochester Place BH No. Depth top Description Strain at **Bulk Density** Dry Density Mode of (m) Mg/m3 Dev. Stress Type pressure failure Mg/m3 Strength failure/Comments kN/m2 kPa kPa Ptastic Stiff, orangey brown mottled bluish grey CLAY BH101 U with occasional pockets of orange sand and 14 2.00 85 2.018 27 11.6 1.591 175 87 claystone fragments (20mm) Plastic BH101 18 U 4.00 Stiff, orangey brown mottled bluish grey CLAY 150 14.8 1.938 1.496 30 158 79 Brittle Stiff, Brown CLAY with occasional pockets of 22 U 205 BH101 6m 7.3 1.962 1.509 30 194 97 selenite crystal Brittle Stiff, greyish brown slightly sandy CLAY with U 330 1.966 BH101 26 8.00 6.3 1.519 29 241 121 pockets of selenite and orange fine sand Brittle Stiff, brown fissured CLAY with orangey sand BH101 30 u 10.00 330 7.3 1.990 1.569 27 230 115 in fissures and occasional selenite crystals Brittle Stiff, brownish grey CLAY with occasional BH101 34 U 13.00 415 4.1 1.995 1.563 28 291 146 cream flecks Brittle Hard, fissured brownish grey slighly sandy BH101 60 U 28.00 780 2.034 24 3.1 1.638 676 338 CLAY Brittle BH101 64 U 31.00 Very stiff, very fissured brownish grey CLAY 850 11.3 1.975 1.556 27 411 206 Plastic/Brittle Hard, fissured sandy CLAY with bioturbation BH101 U 910 10.0 1.858 1.529 21 676 338

Form Lab 028 Rev 1/06 11 October 2007

Undrained Triaxial Compression CONCEPT SITE INVESTIGATIONS 16-Oct-07 BS 1377 : Part 7: 1990 Clause 8 Date: Unit 8 Warple Mows Warple Way, London W3 0RF Tel: 020 8811 2880/Fax: 020 8811 2881 Job No. 07/2035 Client: Breeze Holdings Ltd Site Location: Rochester Place BH No. Sample Sample Depth top Description Strain at **Dry Density** Mode of No. Type (m) pressure failure Mg/m3 Mg/m3 Dev. Stress Strength failure/Comments kN/m2 kPa kPa Plastic Firm, orangey brown mottled slightly bluish BH102 grey CLAY with occasional pockets of fine 15 U 2.00 85 18.2 1.998 1.567 27 117 58 orange sand Brittle Firm, brown mottled bluish grey CLAY with BH102 18 U 4.00 150 9.8 1.987 1.535 29 105 53 pockets of orange sand Stiff, brown fissured CLAY with fine orangey Brittle brown sand on fissures and occasional selenite **BH102** 23 U 6.00 205 7.8 1.940 1.505 29 197 98 Stiff, brown mottled orangey brown fissured Brittle BH102 27 CLAY with occasional pockets of orange sand U 8.00 270 7.1 1.984 1.563 27 229 115 and selenite cystals Brittle BH102 31 U 10.00 Stiff, brownish grey CLAY 330 2.000 1.593 6.5 26 242 121 Brittle BH102 35 13.00 Very stiff, greyish brown fissured CLAY 415 3.8 1.974 1.558 27 284 142 Brittle BH102 39 U 16.00 Very stiff, fissured brownish grey CLAY 490 3.2 2.052 1.644 25 315 157 Brittle Very stiff, brownish grey, fissured sandy CLAY BH102 43 U 19.00 570 3.2 2.013 1.664 21 361 180 with occasional pyrite nodules (10mm) Very stiff, brownish grey fissured CLAY with Brittle occasional pockets of fine grey sand and shell **BH102** 47 22.00 640 5.5 2.028 1.639 24 372 186 fragments Very stiff, brownish grey fissured CLAY with Brittle occasional pockets of fine brown sand and **BH102** 51 710 4.8 2.032 1.598 27 303 151 pyritised wood fragment (40x 20mm)

Form Lab 028 Rev 1/06 11 October 2007

11. CHEMICAL TEST RESULTS

26-28 Rochester Place

07/2035

19 September 2007

TEST REPORT

Our Report Number: 07-38177

Your Order Reference: Instructions of 04/09/2007

9 soil samples submitted for analysis on 03/09/2007

Project Name: Rochester Place

Project Code: 07/2035

Laboratory analysis started on 06/09/2007
All laboratory analysis completed by 19 September 2007

Sharon Googh
Project Co-Ordinator

ALCONTROL TECHNICHEM

Rexona Rahman
Analytical Reporting Manager
ALCONTROL TECHNICHEM

Test methods are documented in house procedures or where appropriate standard methods. Non accredited tests (if applicable) are identified on each page. Procedures for sampling are outside the scope of the laboratory UKAS accreditation. Opinions and interpretations expressed herein are outside the scope of our UKAS accreditation. All samples connected with this report, including any 'on hold', will be stored and disposed of according to company policy. A copy of this policy is available on request.

ALcontrol Technichem Sample Description

Job Number: 07-38177

Matrix: Soil Project Name: Rochester Place

Project Code: 07/2035

Laboratory Reference No	Sample Reference	Sample Depth (m)	Date Sampled	Sample Description
35 0	Sample Reference			
259548	WS101	0.6	•	Dark brown clay with gravel
259549	WS101	1.7	-	Dark brown clay with gravel
259550	WS102	0.8	-	Light grey sand with gravel
259551	WS102	1.0-1.20	•	Dark brown clay with gravel
259552	WS102	1.50-1.70	-	Dark brown clay with gravel
259553	WS103	0.85	-	Orange / brown clay
259554	WS103	2.0	-	Dark brown clay with gravel
259555	BH101	0.7	-	Dark brown clay with gravel
259556	BH102	0.75		Dark brown clay with gravel
	***************************************	,		

ALcontrol Technichem Table Of Results

Job Number: 07-38177

Matrix : Soil

Project Code: 07/2035

Sample Reference	WS101	WS101	WS102	WS102	WS102			S. 7
Sample Depth (m)	0.60	1.70	0.80	1.0-1.20	1.50-1.70			
Date Sampled	_	-	-	-	-			
Date Scheduled	03/09/07	03/09/07	03/09/07	03/09/07	03/09/07			
Laboratory Reference No	259548	259549	259550	259551	259552			
		No.						
Moisture Content (Dry Weight)	11.4	20.1	20.3	22.9	25.8		%	0.1
Moisture Content (Wet Weight)	10.2	16.8	16.9	18.6	20.5		%	0.1
Asbestos (Screen)	Absent	Absent	Absent	Absent	Absent	001a		
Antimony	< 2	< 2	< 2	< 2	< 2	069S™	mg/kg	2
Arsenic	19	7.3	6.5	14	6.9	069S™	mg/kg	3
Barium	82	89	190	81	88	069S™	mg/kg	10
Cadmium	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	069S ^{IM}	mg/kg	0.5
Chromium	35	52	17	52	54	069S™	mg/kg	10
Copper	20	21	43	18	21	069S™	mg/kg	5
Lead	49	34	62	36	31	069S™	mg/kg	10
Mercury	< 0.6	0.9	0.6	0.9	0.9	069S [™]	mg/kg	0.6
Molybdenum	< 6	< 6	< 6	< 6	< 6	069S ^{IM}	mg/kg	6
Nickel	10	37	28	18	38	069S™	mg/kg	4
Selenium	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	069S [™]	mg/kg	2.5
Sulphate (Total Acid Soluble) as SO4	770	530	3600	310	580	025a [™]	mg/kg	200
Zinc	43	74	230	56	78	069S [™]	mg/kg	10
W/S Chloride	17	32	380	49	68	073S™	mg/kg	10
Organic Carbon	0.51	0.14	15	0.38	0.35	092 ^{IM}	%	0.1
W/S Fluoride	< 1	3.7	< 1	2.9	5.7	073S	mg/kg	1
рН	8.1	8.2	10.4	8.6	9.0	084S™	pH Units	1
мтве	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	068S™	mg/kg	0.01
Benzene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	068S™	mg/kg	0.01
Toluene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	068S™	mg/kg	0.01
Ethylbenzene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	068S™	mg/kg	0.01
m,p-Xylenes	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	068S™	mg/kg	0.01
o-Xylene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	068S™	mg/kg	0.01
1,3,5-Trimethylbenzene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	068S™	mg/kg	0.01
1,2,4-Trimethylbenzene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	068S™	mg/kg	0.01
VPH Compounds (C6-C10)	< 0.01	< 0.01	0.14	< 0.01	< 0.01	0688	mg/kg	0.01

I ISO 17025 accredited.

[™] MCERTS accredited for sand, loam and clay.

ALcontrol Technichem Table Of Results

Job Number : 07-38177

Matrix : Soil

Project Code: 07/2035

	r			 	ř	le serve	47.39.39.35	No secure
Sample Reference	WS101	WS101	WS102	WS102	WS102	(F)		
Sample Depth (m)	0.60	1.70	0.80	1.0-1.20	1.50-1.70			
Date Sampled	-		-	-	-	15 J		
Date Scheduled	03/09/07	03/09/07	03/09/07	03/09/07	03/09/07			
Laboratory Reference No	259548	259549	259550	259551	259552			
								ì
Book on the Bis adams for			<u> 200 - Augusta</u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2,300	
EPH (C10-C20)	16	< 5	18	5	< 5	0708	mg/kg	5
EPH (C20-C30)	57	< 5	41	17	< 5	070S	mg/kg	5
EPH (C30-C40)	72	< 5	29	13	< 5	070S	mg/kg	5
EPH (C10-C40)	150	11	87	35	6	070S™	mg/kg	5
Phenol	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	020S ^{IM}	mg/kg	0.1
Total Monohydric Phenols	< 1	< 1	< 1	< 1	< 1	020S1	mg/kg	1
								<u> </u>
							 	
								
								
					<u></u>	<u> </u>	L	

¹ ISO 17025 accredited.

 $[\]ensuremath{^{\mathrm{M}}}$ MCERTS accredited for sand, loam and clay.

ALcontrol Technichem Table Of Results

Job Number: 07-38177

Matrix : Soil

Project Code: 07/2035

			_	T		70000000	Messara
Sample Reference	WS103	WS103	BH101	BH102			
Sample Depth (m)	0.85	2.00	0.70	0.75			
Date Sampled	-	-	•	•			
Date Scheduled	03/09/07	03/09/07	03/09/07	03/09/07			
Laboratory Reference No	259553	259554	259555	259556			
		4.45) <u></u>				
Moisture Content (Dry Weight)	31.2	23.1	17.1	25.5		%	0.1
Moisture Content (Wet Weight)	23.8	18.7	14.6	20.3		%	0.1
Asbestos (Screen)	Absent	Absent	Absent	Absent	001a		
Antimony	3.0	< 2	< 2	< 2	069S™	mg/kg	2
Arsenic	19	8.2	17	14	069S ^{IM}	mg/kg	3
Barium	120	250	73	110	069S™	mg/kg	10
Cadmium	< 0.5	< 0.5	< 0.5	< 0.5	069S™	mg/kg	0.5
Chromium	55	53	39	45	069S™	mg/kg	10
Copper	29	23	26	27	069S ^{IM}	mg/kg	5
Lead	91	81	110	88	069S ^{IM}	mg/kg	10
Mercury	1.1	1.0	0.9	1.0	069S™	mg/kg	0.6
Molybdenum	< 6	< 6	< 6	< 6	069S™	mg/kg	6
Nickel	24	45	13	20	069S™	mg/kg	4
Selenium	< 2.5	< 2.5	< 2.5	< 2.5	069S™	mg/kg	2.5
Sulphate (Total Acid Soluble) as SO4	850	630	880	1300	025a [™]	mg/kg	200
Zinc	73	75	54	78	069S ^{1M}	mg/kg	10
W/S Chloride	62	56	75	18	073S™	mg/kg	10
Organic Carbon	1.1	0.12	0.64	2.1	092 ^{IM}	%	0.1
W/S Fluoride	< 1	5.2	2.3	3.1	073S	mg/kg	1
pH	7.9	8.7	9.9	9.1	084S ^{IM}	pH Units	1
мтве	< 0.01	< 0.01	< 0.01	< 0.01	068S™	mg/kg	0.01
Benzene	< 0.01	< 0.01	< 0.01	< 0.01	068S™	mg/kg	0.01
Toluene	< 0.01	< 0.01	< 0.01	< 0.01	068S™	mg/kg	0.01
Ethylbenzene	< 0.01	< 0.01	< 0.01	< 0.01	068S™	mg/kg	0.01
m,p-Xylenes	< 0.01	< 0.01	< 0.01	< 0.01	068S™	mg/kg	0.01
o-Xylene	< 0.01	< 0.01	< 0.01	< 0.01	068S™	mg/kg	0.01
1,3,5-Trimethylbenzene	< 0.01	< 0.01	< 0.01	< 0.01	068S ^{IM}	mg/kg	0.01
1,2,4-Trimethylbenzene	< 0.01	< 0.01	< 0.01	< 0.01	068S™	mg/kg	0.01
VPH Compounds (C6-C10)	0.013	< 0.01	< 0.01	< 0.01	0688	mg/kg	0.01

^I ISO 17025 accredited.

 $^{^{\}mbox{\tiny H}}$ MCERTS accredited for sand, loam and clay.

ALcontrol Technichem Table Of Results

Job Number : 07-38177

Matrix : Soil Project Code: 07/2035

	T			<u> </u>		(5 ay a)	ST.	250 754
Sample Reference	WS103	WS103	BH101	BH102				
Sample Depth (m)	0.85	2.00	0.70	0.75		<u>.</u>		
Date Sampled	-	•	•	-				
Date Scheduled	03/09/07	03/09/07	03/09/07	03/09/07				
Laboratory Reference No	259553	259554	259555	259556				
		100						
EPH (C10-C20)	7	< 5	< 5	< 5		0708	mg/kg	5
EPH (C20-C30)	26	< 5	5	6		070S	mg/kg	5
EPH (C30-C40)	30	< 5	5	5		070S	mg/kg	5
EPH (C10-C40)	63	8	15	14		070S ^{1M}	mg/kg	5
Phenol	< 0.1	< 0.1	< 0.1	< 0.1		020S™		0.1
Total Monohydric Phenols	< 1	< 1	< 1	< 1		020S ¹	mg/kg	1
		-				_		
								-
			-					
								
					L			l

^I ISO 17025 accredited.

^M MCERTS accredited for sand, loam and clay.

ALcontrol Technichem Table Of Results

Job Number: 07-38177

Matrix : Soil

Project Code: 07/2035

							1200	W. C. S.
Sample Reference	WS101	WS101	WS102	WS102	WS102			
Sample Depth (m)	0.60	1.70	0.80	1.0-1.20	1.50-1.70			
Date Sampled	-	-	•	-	•		ż	
Date Scheduled	03/09/07	03/09/07	03/09/07	03/09/07	03/09/07			
Laboratory Reference No	259548	259549	259550	259551	259552			
La Maria de La Maria de Cara d		106					i de la constante de la consta	
Naphthalene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	022S ^{IM}	mg/kg	0.1
Acenaphthylene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	022S ^{IM}	mg/kg	0.1
Acenaphthene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	022S™	mg/kg	0.1
Fluorene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	022S™	mg/kg	0.1
Phenanthrene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	022S ^{IM}	mg/kg	0.1
Anthracene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	022S ^{1M}	mg/kg	0.1
Fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	022\$ [™]	mg/kg	0.1
Pyrene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	022S™	mg/kg	0.1
Benzo(a)anthracene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	022S™	mg/kg	0.1
Chrysene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	022S™	mg/kg	0.1
Benzo(b)fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	022S™	mg/kg	0.1
Benzo(k)fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	022S ^{1M}	mg/kg	0.1
Benzo(a)pyrene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	022S ^{IM}	mg/kg	0.1
Indeno(1,2,3-cd)pyrene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	022S™	mg/kg	0.1
Dibenzo(a,h)anthracene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	022S™	mg/kg	0.1
Benzo(g,h,i)perylene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	022S ^{IM}	mg/kg	0.1
PAH (Sum of EPA 16)	ND	ND	ND	ND	ND	022S ^I	mg/kg	1.6

ISO 17025 accredited.

^{*} MCERTS accredited for sand, loam and clay.

ALcontrol Technichem Table Of Results

Job Number : 07-38177

Matrix : Soil

Project Code: 07/2035

	r			T	028009830	TO SERVICE OF SERVICE	Francisco II
Sample Reference	WS103	WS103	BH101	BH102			
Sample Depth (m)	0.85	2.00	0.70	0.75			
Date Sampled	-	-	-	-			
Date Scheduled	03/09/07	03/09/07	03/09/07	03/09/07			
Laboratory Reference No	259553	259554	259555	259556			
			1 1 2 1 3 1 1 1 1 2 2		1 24		
Naphthalene	< 0.1	< 0.1	< 0.1	< 0.1	022S ^{IM}	mg/kg	0.1
Acenaphthylene	< 0.1	< 0.1	< 0.1	< 0.1	022S ^{IM}	mg/kg	0.1
Acenaphthene	< 0.1	< 0.1	< 0.1	< 0.1	022S™	mg/kg	0.1
Fluorene	< 0.1	< 0.1	< 0.1	< 0.1	022S ^{IM}	mg/kg	0.1
Phenanthrene	< 0.1	< 0.1	< 0.1	< 0.1	022S ^{IM}	mg/kg	0.1
Anthracene	< 0.1	< 0.1	< 0.1	< 0.1	022S™	mg/kg	0.1
Fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	022S™	mg/kg	0.1
Pyrene	< 0.1	< 0.1	< 0.1	< 0.1	022S ^{IM}	mg/kg	0.1
Benzo(a)anthracene	< 0.1	< 0.1	< 0.1	< 0.1	022S™	mg/kg	0.1
Chrysene	< 0.1	< 0.1	< 0.1	< 0.1	022S ^{IM}	mg/kg	0.1
Benzo(b)fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	022S ^{IM}	mg/kg	0.1
Benzo(k)fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	022S™	mg/kg	0.1
Benzo(a)pyrene	< 0.1	< 0.1	< 0.1	< 0.1	022S [™]	mg/kg	0.1
Indeno(1,2,3-cd)pyrene	< 0.1	< 0.1	< 0.1	< 0.1	022S ^{IM}	mg/kg	0.1
Dibenzo(a,h)anthracene	< 0.1	< 0.1	< 0.1	< 0.1	022S ^{IM}	mg/kg	0.1
Benzo(g,h,i)perylene	< 0.1	< 0.1	< 0.1	< 0.1	022S ^{IM}	mg/kg	0.1
PAH (Sum of EPA 16)	ND	ND	ND	ND	022S ¹	mg/kg	1.6

I ISO 17025 accredited.

 $^{^{\}mbox{\scriptsize M}}$ MCERTS accredited for sand, loam and clay.

ALcontrol Technichem EPH Description

Job Number: 07-38177

Project Code: 07/2035

Matrix: Soils

Laboratory Reference No	Sample Reference	Sample Depth (m)	Date Sampled	EPH Description
	MARKANA BAKA			
259548	WS101	0.6		The sample chromatogram exhibits a hump of unresolved complex material eluting from C14 to beyond C40, overlain by several peaks unidentifiable by this analysis.
259549	WS101	1.7	-	The sample chromatogram exhibits too little GC-FID amenable material to provide qualitative analysis.
259550	WS102	0.8	-	The sample chromatogram exhibits a hump of unresolved complex material eluting from C10 to C40.
259551	WS102	1.0-1.20	-	The sample chromatogram exhibits a hump of unresolved complex material eluting from C16 to C38.
259552	WS102	1.50-1.70	-	The sample chromatogram exhibits too little GC-FID amenable material to provide qualitative analysis.
259553	WS103	0.85	-	The sample chromatogram exhibits a hump of unresolved complex material eluting from C14 to beyond C40.
259554	WS103	2.0	-	The sample chromatogram exhibits too little GC-FID amenable material to provide qualitative analysis.
259555	BH101	0.7	-	The sample chromatogram exhibits a hump of unresolved complex material eluting from C16 to C38.

ALcontrol Technichem EPH Description

Job Number: 07-38177

Matrix: Soils

Project Name: Rochester Place

Project Code: 07/2035

Laboratory Reference No	Sample Reference	Sample Depth (m)	Date Sampled	EPH Description
259556	BH102	0.75	-	The sample chromatogram exhibits a hump of unresolved complex material eluting from C16 to C38.

ALcontrol Technichem Table Of Results - Appendix

Job Number : 07-38177

Project Code: 07/2035

Project Name: Rochester Place

Summary of methods contained within report:

107857.11 2265.22.1	Contraction of the Contraction o		
068S	In-house method	Determination of Total Gasoline Range Organics Hydrocarbons (GRO) including BTEX and MTBE compounds by Headspace GC-FID (VPH).	w
0228	In-house method	Determination of PAH compounds in soil samples by hexane / acetone extraction followed by GC-MS detection	w
020S	In-house method based on Second Site Property: Environmental Assessment Guidance Version 3: March 2003	Determination of methanol/water based mobile phase extractable phenols in soil samples by HPLC with electrochemical detection	W
0708	In-house method	Determination of hexane/acetone extractable hydrocarbons in soil by gas chromatography with flame ionisation detection. Note: UKAS accreditation only applies to C10-C40 and excludes other carbon banding.	w
092	In-house method	Determination of organic content and organic carbon in soil samples by combustion analyser	D
084S	In-house method referencing BS1377: Part 3: 1990 and Second Site Property: Environmental Assessment Guidance Version 3: March 2003	Determination of pH by addition of water followed by electrometric measurement	D
073\$	In-house method based on BS1377 Part 3, "Chemical and Electrochemical Tests", 1990	Determination of water soluble anion content in soils using a 2:1 water:soil extration ratio followed by ion chromatographic determination with electrical conductivity detector	D
0698	In-house method based on MEWAM "Methods for the Determination of Metals in Soil", HMSO, 1986	Determination of metals in soil samples by aqua-regia digestion followed by ICP- OES detection	D
025a	In-house method based on BS1377 Part 3, "Chemical and Electrochemical Tests", 1990	Determination of hydrochloric acid soluble sulphate in soil samples by Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES)	D

ALcontrol Technichem Table Of Results - Appendix

Job Number: 07-38177

Project Code: 07/2035

Project Name: Rochester Place

Summary of methods contained within report :

167k(C) 171k(C)	Control Contro	
	In-house method	Visual screening of soil samples for fibrous material requiring further identification according to method 001 (note for samples > approximately 1kg it may be necessary to sub-sample prior to screening)
022\$	In-house method	end sample, a moisture correction factor is applied to the wet weight result. This factor is
0208	In-house method based on Second Site Property: Environmental Assess Guidance Version 3: March 2003	es -
070S	In-house method	
092	In-house method	
084S	In-house method referencing BS1377: Part 3: 1990 and Second Site Pro Environmental Assessment Guidance Version 3: March 2003	0
073S	In-house method based on BS1377 Part 3, "Chemical and Electrochemi Tests", 1990	 cic
0698	In-house method based on MEWAM "Methods for the Determination of in Soil", HMSO, 1986	
025a	In-house method based on BS1377 Part 3, "Chemical and Electrochemi Tests", 1990	iic