Issue / Revision	Description:			Date:	
First Issue				November-2010	
Development:	Title	Name [Print]	t]	Signature	Date
Author:	Engineer	WP Lam		Kauli Po	Nov 2010
Document Statu	is:				
	A	pproved			
Client: Originator:					
A GREEN	A GREENER PLACE CHARTERED ENGINEER 8 UILDING 0 DESIGN CONSULTANTS				
Location:					
UCL, ARCHAEOLOGY BUILDING					

Title:		
S	Structural Design of upport and Holding Down System For Solar Panels On Existing Roof Slab	r
Format	Document Number	Revis

Format	Document Number	Revision
A 4	WTL 2010-13.AB	00

The original master of this document is retained on the Document Management & Collaboration Database. Copies produced from the master, by whatever means, are deemed uncontrolled. You must confirm that you hold the latest version, before using this document for its intended purpose.

Document Reference No. WTL 2010-13.AB

Location(s):

UCL, ARCHAEOLOGY BUILDING

00	17 - Nov - 2010	WP Lam	First Issue	For Comment
Rev	Date	Ву	Section Amended	Details of
				Amendments

CONTENTS

CONTE	NTS	.3
1.0	INTRODUCTION	.4
2.0	EXECUTIVE SUMMARY	
3.0	OBSERVATION	.4
4.0	DISCUSSION	.4
5.0	CONCLUSION	
	APPENDICES	
APPEND APPEND	DIX A PROPOSED DRAWINGS BY WT&L DIX B ASSESSMENT AND DESIGN CALCULATIONS DIX C PHOTOS DIX D ARCHIVE DRAWINGS SUPPLIED BY THE CLIENT	.7 .8
APPEND	DIX D ARCHIVE DRAWINGS SUPPLIED BY THE CLIENT	.9

1.0 OBJECTIVE

To carry out a reconnaissance survey on part of the roof at the Archaeology Building; to view the structural elements which have been identified, by the client 'A GREENER PLACE, to support solar panels.

2.0 EXECUTIVE SUMMARY

The north-eastern part of the roof, which comprises 'reinforced concrete beam ribs with hollow clay pot' roof slab, & upstand reinforced concrete beams on reinforced concrete columns, walls or loadbearing masonry walls; are considered suitable to support the proposed solar panels.

3.0 OBSERVATION

The roof slab is located approximately 22 metres above adjacent road level. Adjacent buildings are not taller than the Archaeology Building, nor sufficiently close to it; to experience funnelling effect due to wind.

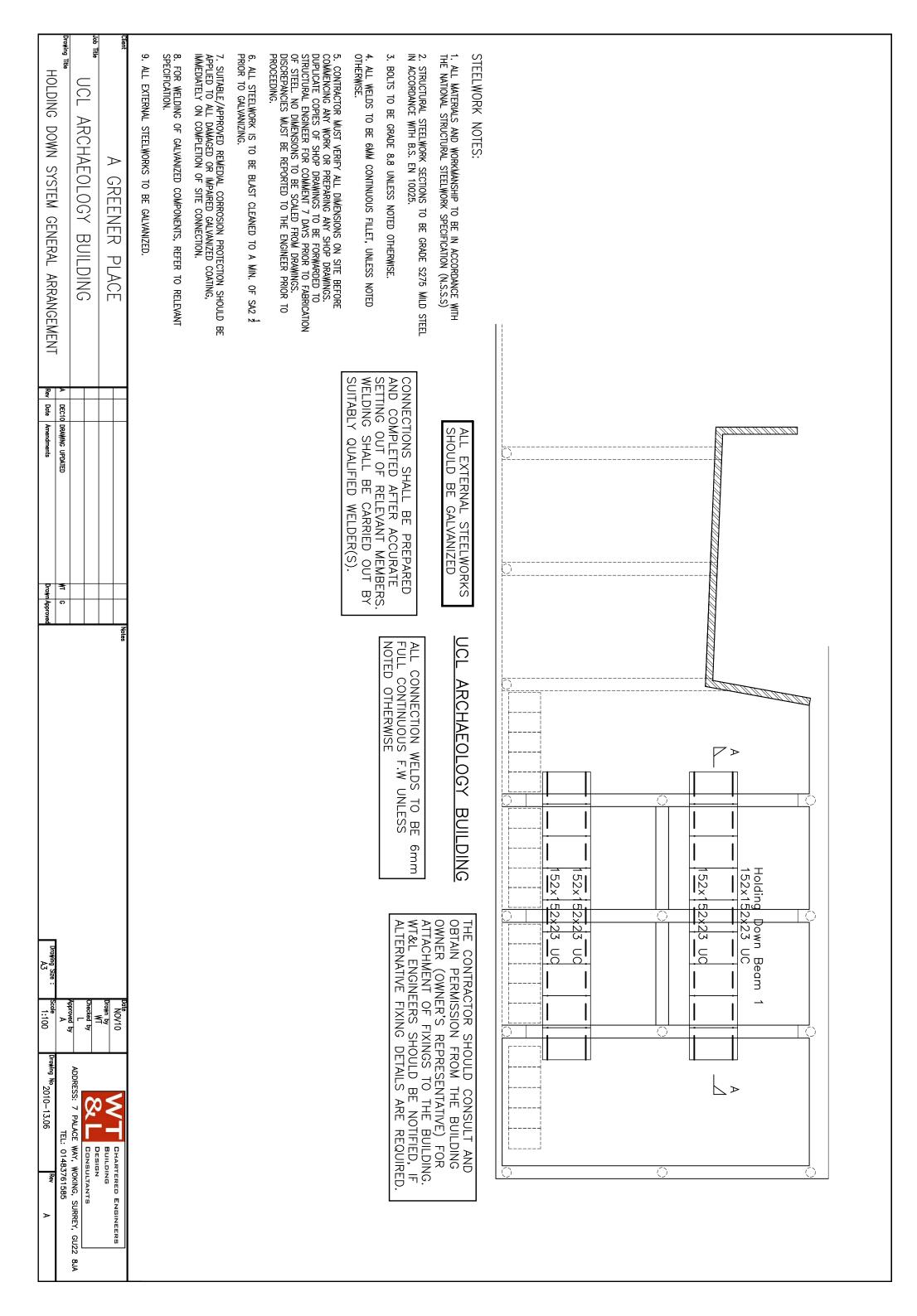
The building was constructed around 1957. The flat roof slab was constructed from insitu reinforced concrete beam ribs spaced apart by hollow clay pots. At the north-eastern area, the slab is supported by a small grid of intersecting upstand reinforced concrete beams . Those upstand beams are supported on loadbearing masonry wall, reinforced concrete columns and walls.

4.0 DISCUSSION

A visual 'structural condition' assessment was carried out on site; there was no significant sign of distress or cracking in the area of interest (area designated to support the solar panels.

A theoretical load-carrying / strength assessment has been evaluated, the slab and reinforced concrete beams are considered capable of supporting the solar panels in the proposed arrangement (attached drawing and calculations refer).

5.0 CONCLUSION


Visual and theoretical structural assessment would indicate that the designated roof area is capable of supporting the proposed solar panels.


The 'proposed works' drawing(s) indicate the required support and holding down details.

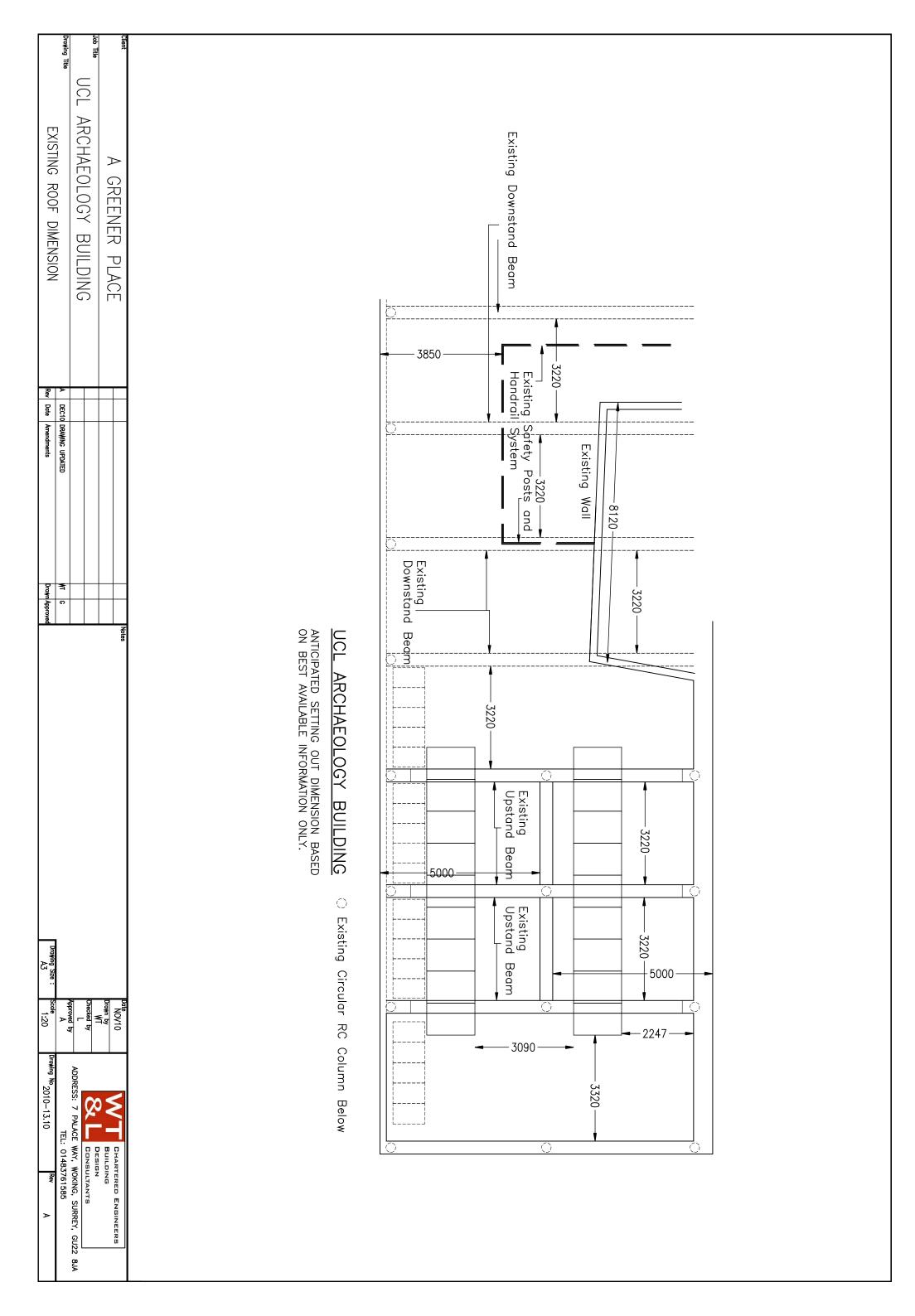
6.0 **APPENDICES**

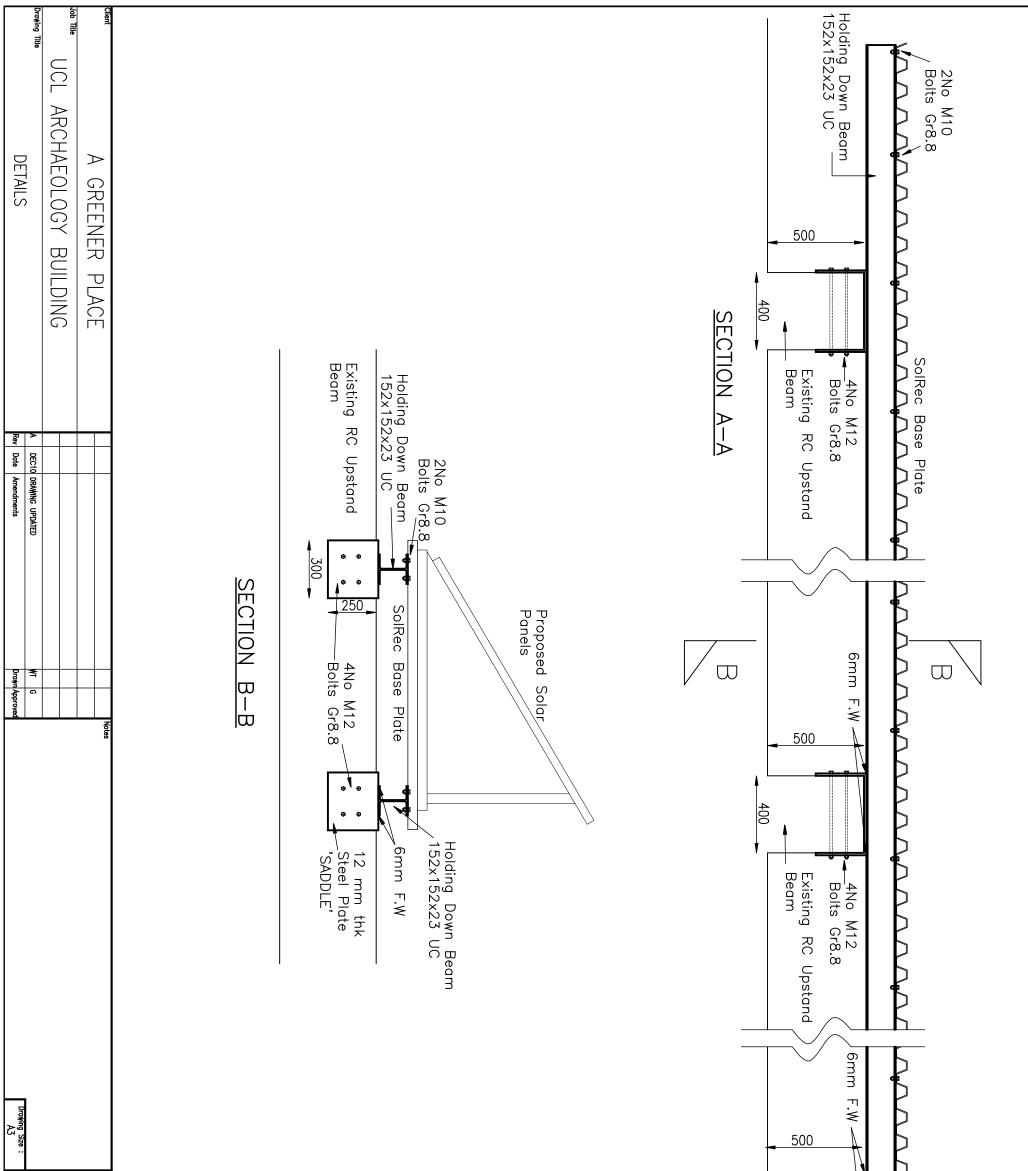
Appendix A

Proposed Drawings By WT&L

Scale 1:100	Approved by A	Drawn by WT Checked by	NOV10
Drawing No 2010-13.07	ADDRESS: 7 PALACE WAY, WOKING, TEL: 01483761585		
Rev A	ADDRESS: 7 PALACE WAY, WOKING, SURREY, GU22 8JA TEL: 01483761585	Building Design Consultants	CHARTERED ENGINEERS

ANTICIPATED SETTING OUT ARRANGEMENT


Rev Date


Amendments

Drawn Approve

Drawing Size : A3

Drawn by Drawn By WT Checked by Approved by Scale 1:20	400	
ADDRESS: 7 PAL	4No M Beam Beam	
	RC RC	
CHARTERED ENGINEERS BUILDING DESIGN CONSULTANTS : 01483761585 Rev A	Upstand	
GU22 BJA		

Appendix B

Assessment And Design Calculations

ARCHAEOLOGY BUILDING

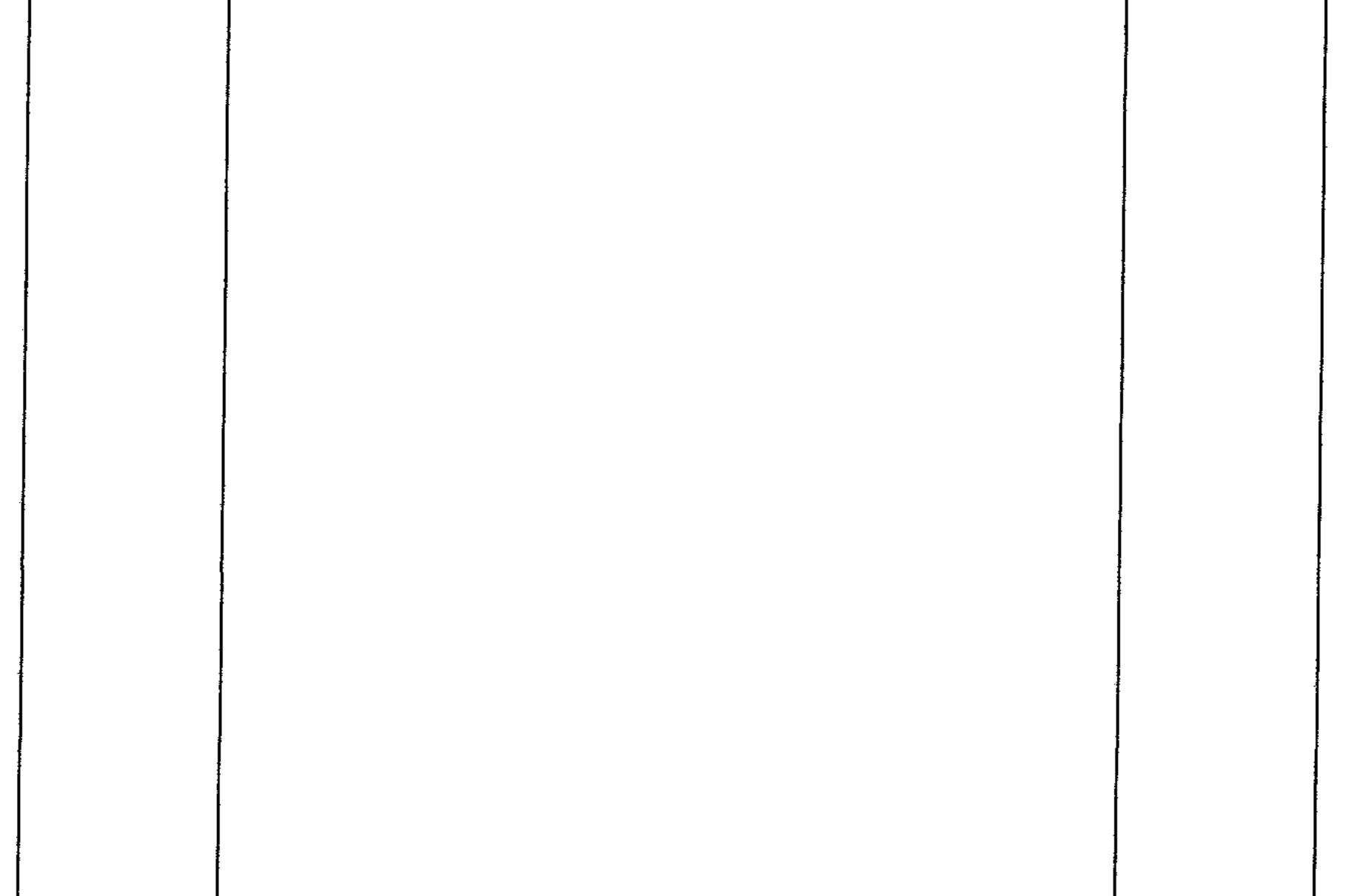
The building was designed by architects, structural engineers, engineers of other disciplines. It was constructed by professional contractors around 1957.

Vertical load-carrying elements of the Archaeology Building comprises load-bearing masonry walls, reinforced concrete columns; depending on the location.

Overall visual inspection / survey of the building was carried out on 26th October, 2010. Observation, discussion ...etc. are covered in a separate report.

The current proposal to install a designated number and configuration of solar panels on the flat roof slab has been assessed:

- To ensure the safe load-carrying capacity, integrity of the existing flat roof components (slabs, beams ...etc.) can support the small additional distributed downward vertical load associated with the solar panels and their plinths.
- To ensure the existing waterproofing membrane, future roof insulation layer, and other apparatus / equipment are not adversely affected by the installation and continued presence of the solar panels.
- To ensure that storm force wind, shall not lift any panel from its designated position, configuration on the roof.

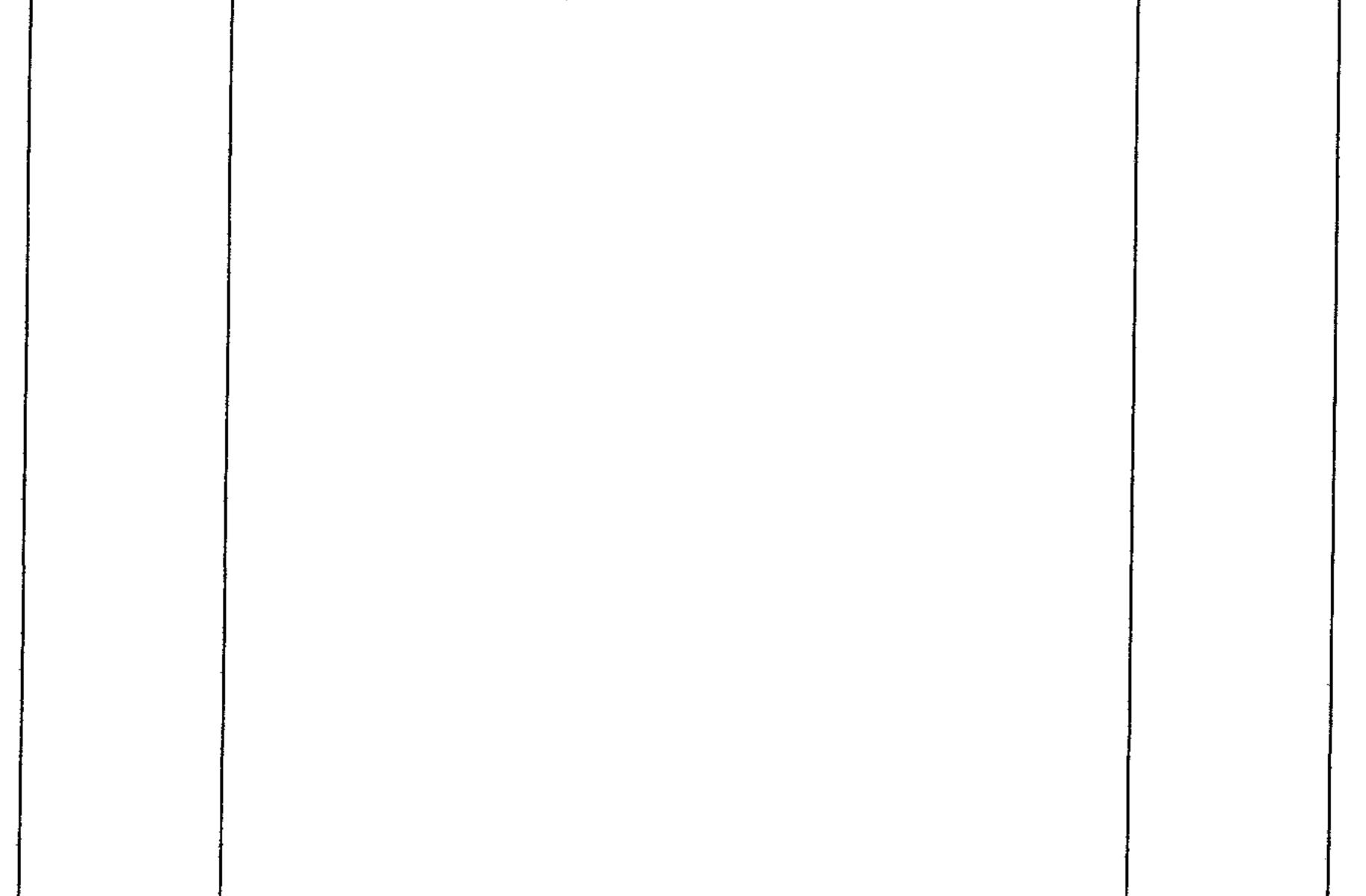

The following pages of 'strength assessment' calculation show that the existing 'Insitu reinforced concrete beam with voided clay block slab' can safely carry an imposed vertical load at a characteristic distributed intensity of 5 kilonewtons per square metre (based on a span of up to 3.3 metres, as noted in the site survey). The voided reinforced concrete slabs are supported by reinforced concrete upstand beams (downstand beams at internal locations), on reinforced concrete columns. The distributed vertical load intensity of proposed solar panels with the associated supports; amount to less than 0.5 kilonewtons per square metre, after installation of the solar panels. Current 'British standard' / 'European Standard' require a 'safe capacity' at just 0.75 kilonewton per square metre.

Underside of the plinths to the solar panels rest on lightweight steel sheets to disperse any concentrated load. The proposed arrangement is such that future waterproofing membrane will not be damaged (punctured), and future insulation layer will not be under any significant compressive strain or imposed creep deflection under sustained load (of very low pressure).

Wind pressure associated with 'Storm force wind' (speed up to 90 miles per hour); has been used to evaluate potential uplifting force on the solar panels. Appropriate light-weight, holding-down beam system; has been designed to ensure no solar panel will be lifted off under strong wind condition.

The current proposed holding down and restraining system of 152UC23 beams, allows future installation of insulation layer, by lifting of their fixed end.

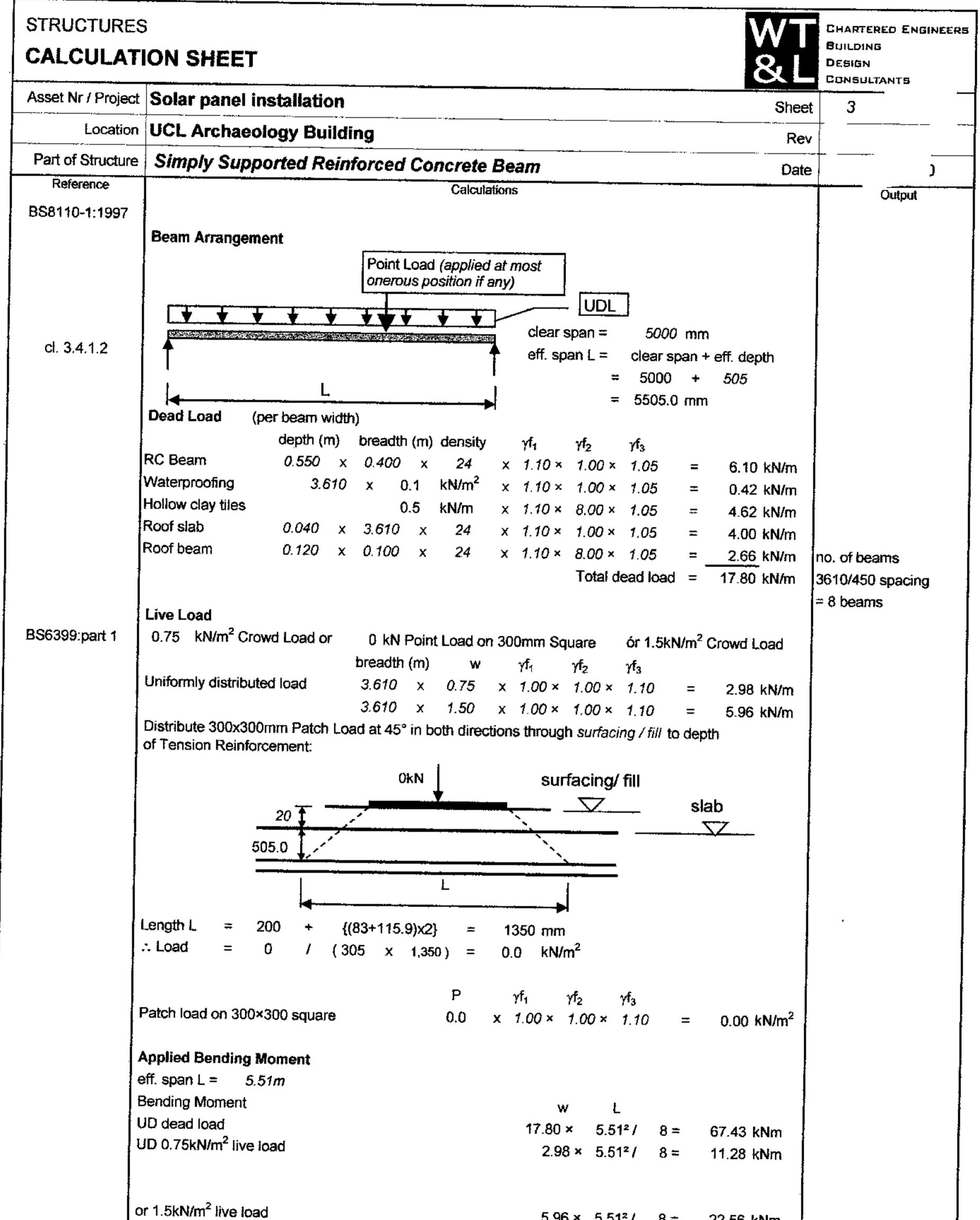
TRUCTURES	N SHE	ET	Q ,	CHARTEREO ENGINEER Building Design Consultants
Asset Nr / Project	Solar pa	nel installation	Sheet	(
Location	UCL Arc	haeology Building	Rev	
Part of Structure	Index		Date	11 November 201
Reference		Calculations		Output
	Assessment of RC Beam (to BS8110)			
	Page	Contents		
	2 3	Introduction Beam Arrangement		
	4 5	Section Details and Moment Capacity Shear Capacity check for a Reinforced Concrete Section		



	Print name (once only)	Signature (once only)	Date (every page)
Prepared by	WL		11 Nov 10
Checked by	AL.	······································	

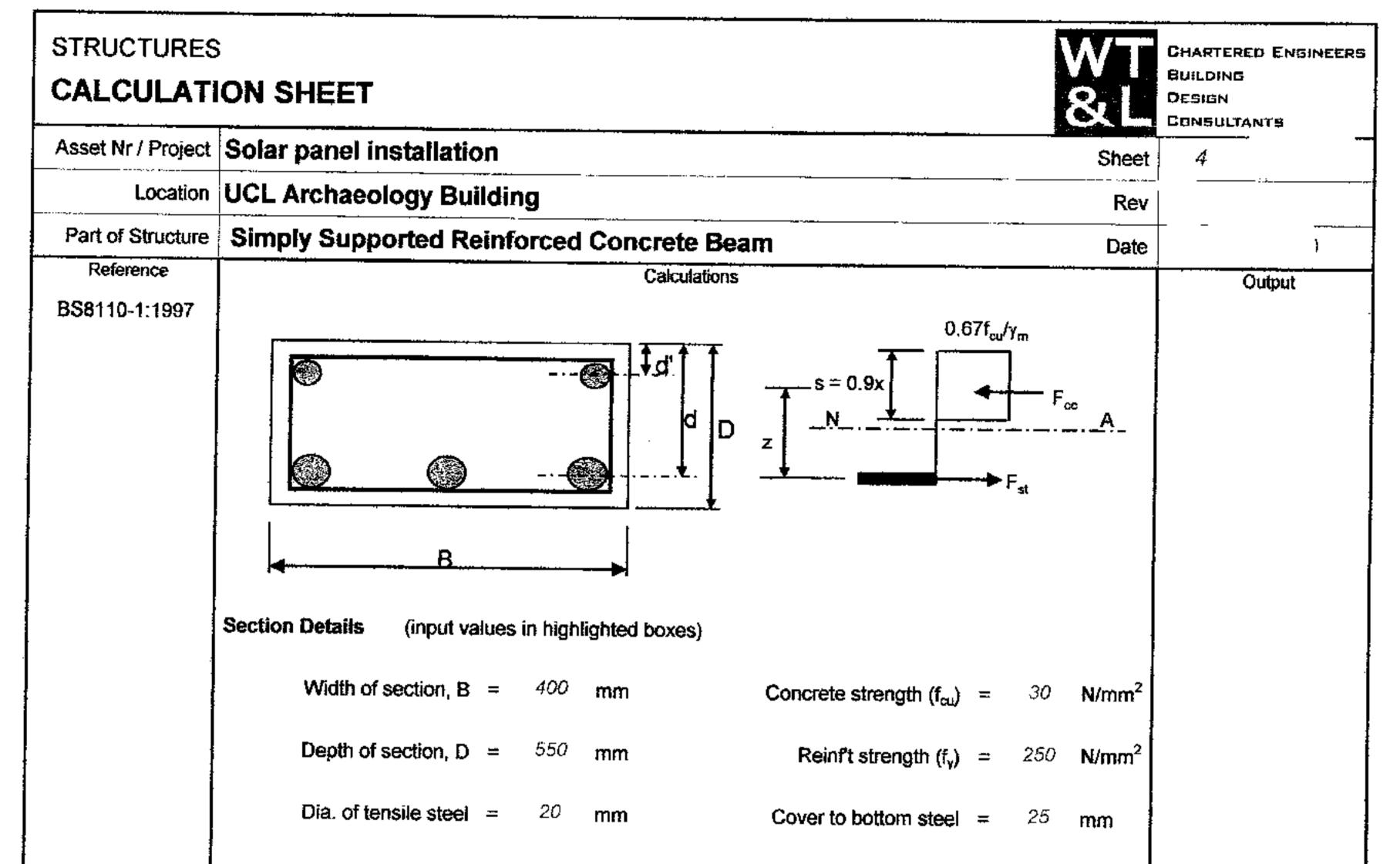
N.W.Ascough ver 0.01 ; 20 Mar 2006

RC CapCheck to 8\$8110_V1_260406 © 2006 printed 11/11/2010 22:14


TRUCTURES	N SHEET	CHARTERED ENGINEERI BUILDING DESIGN CONSULTANTS
Asset Nr / Project	Asset No. Sheet	2
Location	Station - Line Rev	
Part of Structure	Introduction Date	11/11/10
Reference	Calculations Introduction	Output
	Purpose	
	This calculation is to assess the load carrying capacity of reinforced concrete beam sections subject to crowd loading of 0.75 kN/m ² .	
	The calculation should not be used for the assessment of reinforced concrete slabs	
	The assessment is based on BS8110. However rather than calculating the ultimate moment capacity of the section by determining the lever arm z using a K factor based on the applied bending moment, z is derived by equating the force in the tension steel at yield $(f_y/\gamma_m)A_s$ to the force in the concrete based on a concrete strength of $0.67(f_{cu}/\gamma_m)$ and a depth to the compression zone of 0.9x so that the force in concrete = $0.67(f_{cu}/\gamma_m) \times b \times 0.9x$ and $z = d - 0.45x$.	

	Print name (once only)	Signature (once only)	initials (every page)	Date (every page)
Prepared by	WL			11 Nov 10
Checked by	AL			

N.W.Ascough ver 0.01 : 20 Mar 2006

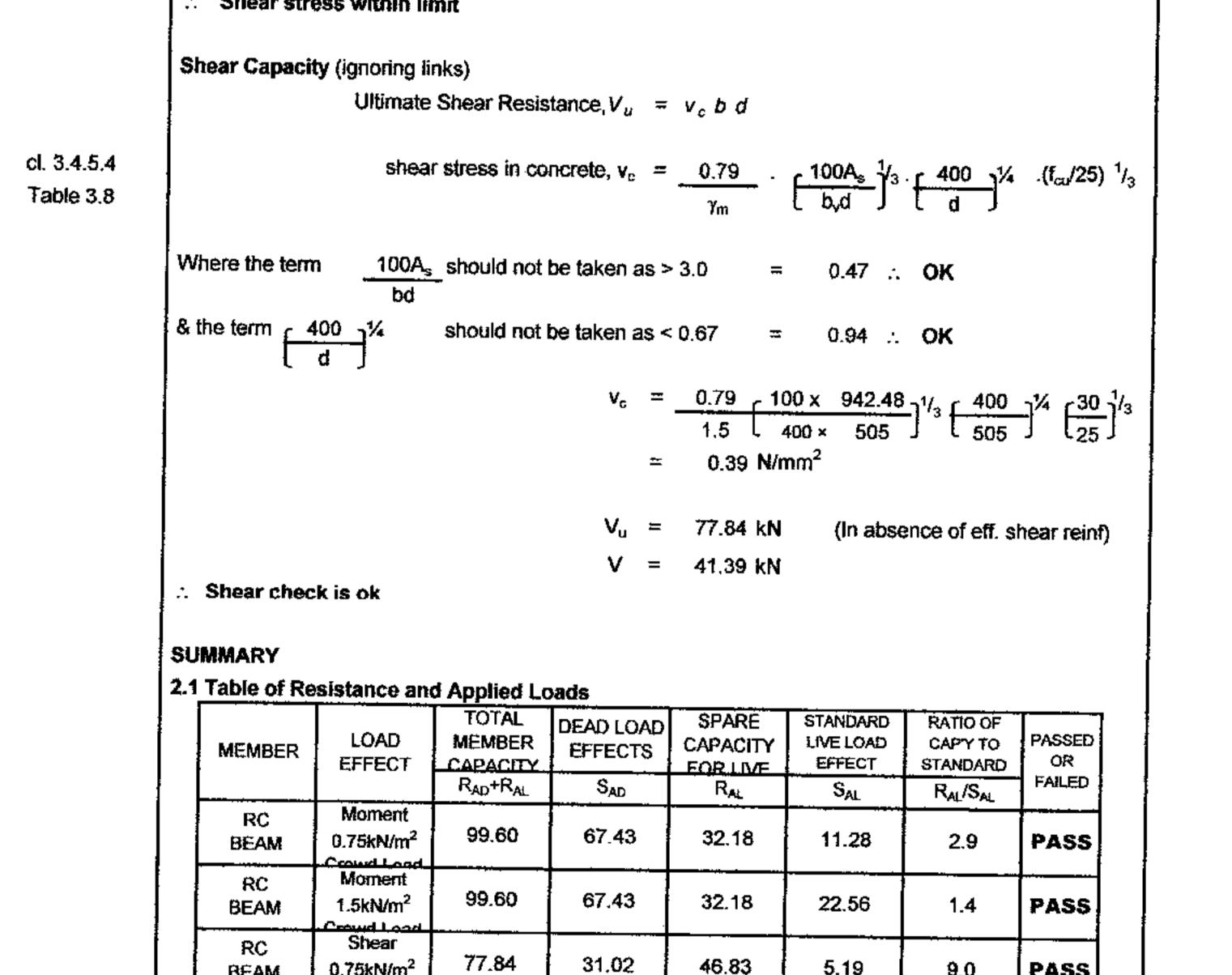

RC CapCheck to BS8110_V1_260405 © 2006 printed 11/11/2010 22:14

		5.96 × 5.51*7 8 ≑ 22.56 kNm Max BM, SA = 89.99 kNm	
	Print name (once only)	Signature (once only)	Date (every page)
Prepared by	WL		11 Nov 10
Checked by	AL		! ;••=

N.W.Ascough ver 0.01 ; 20 Mar 2006

RC CapCheck to BS8110_V1_260406 @ 2006 printed 11/11/2010 22:14

	Dia. of compr. Steel = 16.0 mm Cover to top steel = 25 mm
	Dia. of links = 10.0 mm Mat. Factor (conc), $\gamma_{mc} = 1.5$
	Mat Fact. (shear), $\gamma_{mv} = 1.25$ Mat. Factor (steel), $\gamma_{ms} = 1.15$
	No of legs = 0 No of bars (tension) = 3
	(per metre width for slabs) Effective Depth, d = 505.0 mm No of bars (compr) = 2
	Effective Depth, $d' = 43.0 \text{ mm}$
	$A_{s (tensile)}$ in width b = 942.5 mm ² $A'_{s (compr.)} = 402.1 mm2$
	Condition Factor (CF) = 1.0 Applied Bending Moment, M = 89.99 kNm
cl. 3.4 on	Moment Capacity For equilibrium of the compressive and tensile forces:
	$F_{\infty} = F_{st} \Rightarrow 0.67 f_{cu} / \gamma_m bs = f_v / \gamma_m A_s$
γ _{me} ≕ 1.5 γ _{ms} ≕ 1.15	0.67 / 1.5 x 30 x 400.0 x s = 250 / 1.15 x 942 ∴ s = 38.2 mm
	$\Rightarrow x = s / 0.9 = 42.5 \text{ mm}$
	$M_u = F_{st} \times z = 0.87 f_y A_s (d - s/2)$
	$M_{\mu} = 0.87 \times 250 \times 942 (505.0 - 38.2 / 2) \times 10^{-6}$
-	M _n = 99.60 kNm Applied Bending Moment, M = 89.99 kNm

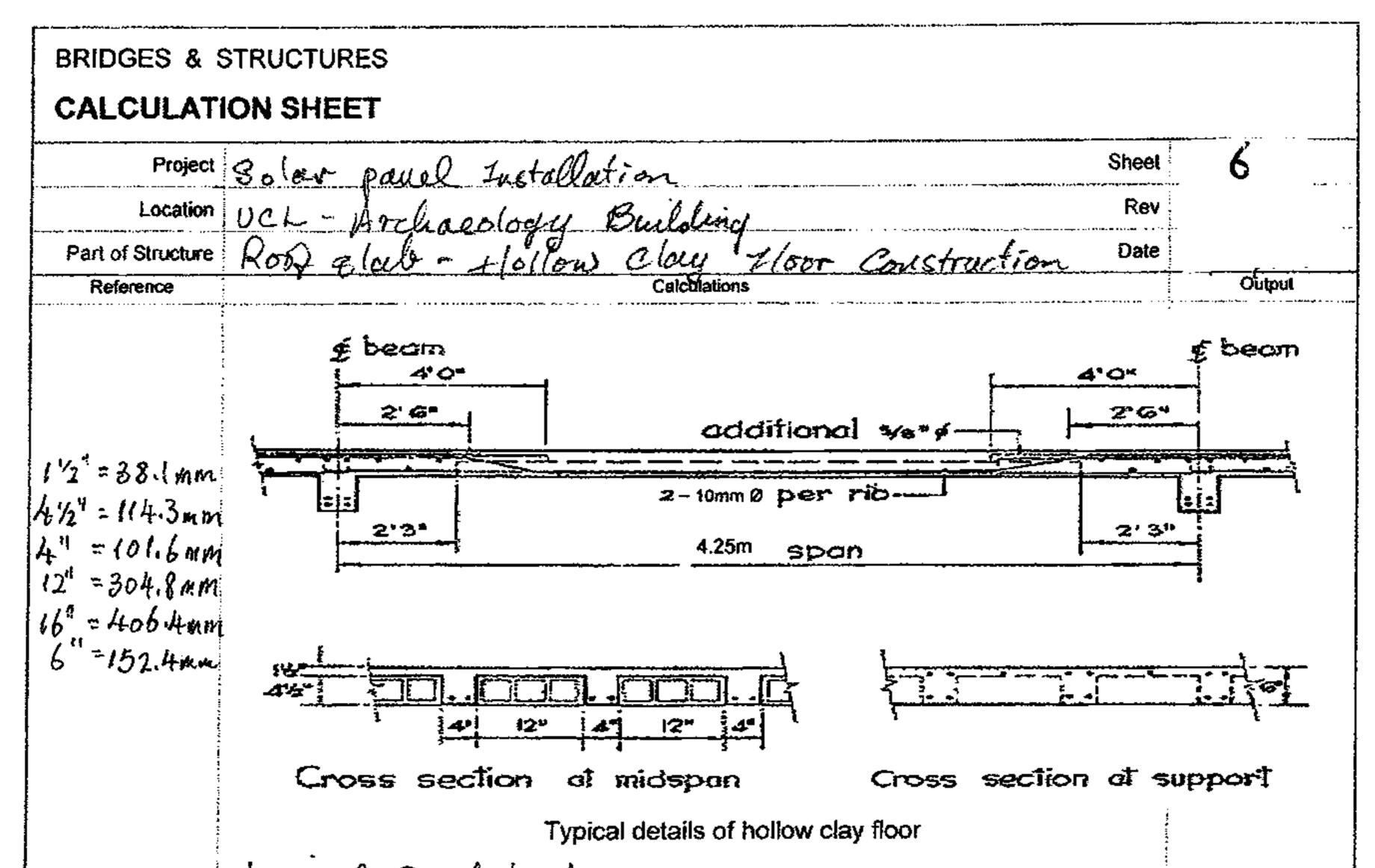

			\$
	Print name (once only)	Signature (once only)	Date (avery page)
Prepared by	WL		11 Nov 10
Checked by	AL	, <u></u>	

N.W.Ascough ver 0.01:20 Mar 2006

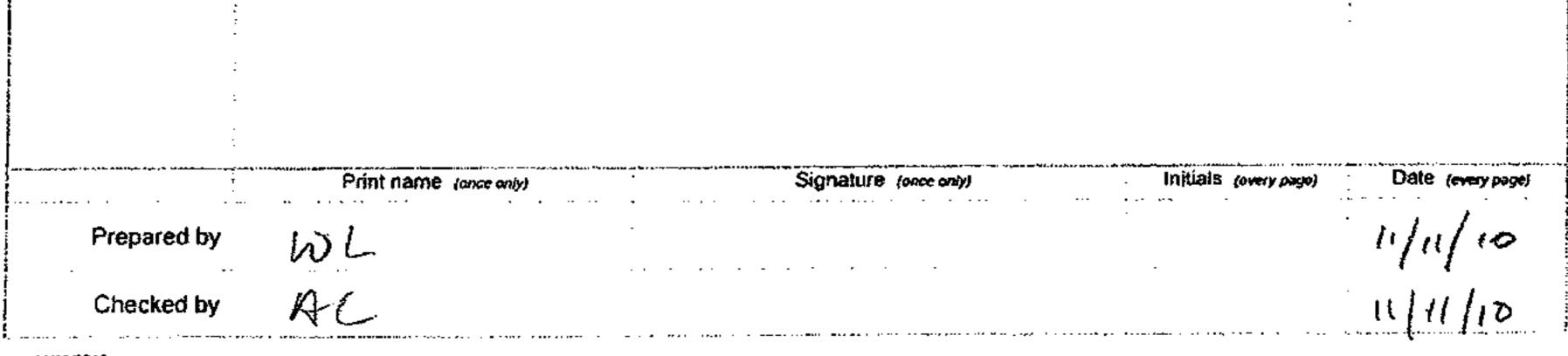
RC CapCheck to BS8110_V1_260406 @ 2006 printed 11/11/2010 22:15

0K

STRUCTURES								V 8	VT XL	CHARTERED ENGINEER Building Design Consultants
Asset Nr / Project	Solar panel installat	tion							Sheet	5
Location	UCL Archaeology B	uilding		— <u>_u</u>		<u> </u>		·	Rev	
Part of Structure	f		Concre	te B	eam			· · · -	Date	
Reference				culatio						Output
BS8110-1:1997	Shear Capacity check for	r a Reinforced	Concrete	e Sect	ion					
	Applied Shear Force									
cl. 3.4.5.8	Calculate Shear at 2d from support, [Note; no shear enhancement effects] V:									
	Shear Force	w	Ł		2d					
	UD dead load	17.80 ×	5.51 /	2-	(1.010 x	17.80)	=	31.02 kN		
	UD 0.75kN/m ² live load	2.98 ×	5.51 /		(1.010 x	2.98)		5,19 kN		
	or 1.5kN/m ² live load	5.96 ×	5.51 /	2 -	(1.010 x	5.96)	æ	10.38 kN		
					-	$= V_d + V_L$		41.39 kN	ĺ	
	Shear Stress									
			v	=,	V_N/mm ²				Ī	
					1.4 x 10E3					
ĺ					00 × 505					
			v		0.20 N/mm ²					
cl. 3.4,5.2	In no case should v exc		N/mm ²			5.00 N/mr	n²			0.20

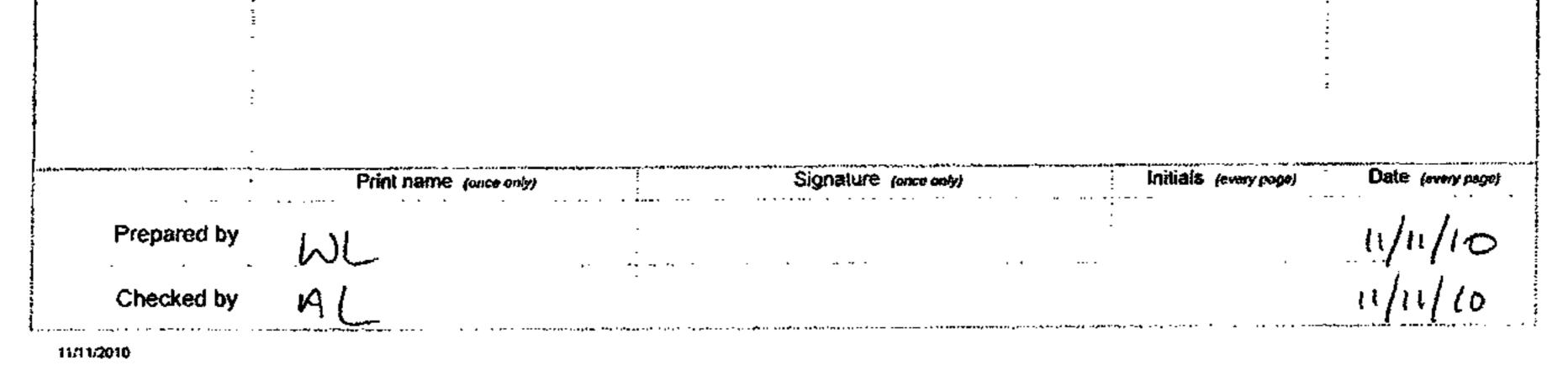


OK


	BEA	M 0.10KW/H			40.00	5.15	9.0	FA35	
	RC BEA		77.84	31.02	46.83	10.38	4.5	PASS	
		t name <i>(once only</i>)		Signal	ture <i>(once on</i>	ly)	·······	Date (every page)
Prepared by	WL								11 Nov 10
Checked by	AL						— - <u>-</u>		

N.W.Ascough ver 0.01;20 Mar 2006

RC CapCheck to BS8110_V1_260406 C 2006 printed 11/11/2010 22:15



Nominal David Lood
BS648:1964 Hollows alay plocks
$$4.12^{\circ}$$
 with concrete ribe = 132 kg/m² or 1.32 kg/m²
Concrete topping = 24 kn/m³ × 0.038 m thick = 0.91 kn/m²
2.23 kn/m²
Water provering membrane Say
Live Load = 0.75 kn/m² or 1.5 kn/m².
ULS Moment and Shear
W = (2.33 + 0.75) × 1.1 × 0.406 m = 1.38 kn/m
Compare value approach & assuminy it's single span
Simply supported.
0.75 kn/m² Live Load
Moment = 1.38 × 4.25²/8 = 3.12 kn m
V = 1.38 × 4.25 / 2 = 2.93 kn

11/11/2010

BRIDGES & STRUCTURES CALCULATION SHEET Sheet Project Rev Location Date Part of Structure Output Reference Calculations 1.5 kN/m² Live Load St W=(2.33+1.5)×1.1×0.406m=1.71kN/m Moment = 1.71×4.252/8 = 3.86 kNM V=1.71 ×4.25/2 = 3.63 kN. Conclusion The Hollow clay floor is adequate for both 0.75 kN/m² or 1.5 kN/m² Live Load.

Page: ! Made by: WL/AL Date: 11/11/10 Ref No:

d'--

Office: 5658

Location: UCL Archaeology Building Hollow Clay Floor Roof

Design of flanged beams to resist bending

Calculations are based on formulae hfin Clause 3.4.4.4 of BS8110: Part 1 $-\!\!\!\!$ and thus assume the use of a simplified rectangular concrete stress-block, and that the depth to the neutral axis is restricted to 0.5*d.

Design to BS8110(1997) with partial safety factor for steel gammaS=1.05 Mbef=3.86 kNm Moment before redistribution Beam being analysed is considered as non-continuous. Characteristic concrete strength fcu=30 N/mm² Max.aggregate size (for bar spc.) hagg=20 mm Char.strength of long'l bars fy=250 N/mm² Longitudinal reinforcement is mild steel. dia=10 mm Diameter of tension bars dial=6 mm Diameter of link legs Minimum nominal cover to all steel is 30 mm cover=20 mm Nominal concrete cover Overall depth of section h=152.4 mm Effective depth of section d=121.4 mm Breadth of flange b=406.4 mm Breadth of rib bw=100 mm

Thickness of flange

hf=38.1 mm

Longitudinal reinforcement

As Mbef=M, no redistribution has occurred. Thus redistribution ratio betab=1 xmax=0.5*d=60.7 mm and K'=0.156 [Condition (b) in Clause 3.2.2.1]. Max.depth of conc.stress-block dpmax=0.9*xmax=0.9*60.7=54.63 mm As max.depth of stress-block of 54.63 mm exceeds flange thickness of 38.1 mm , stress-block may extend below flange: check resistance moment.

```
Moment capacity of flange alone Mfl=b*hf*0.45*fcu*(d-hf/2)/1000000
=406.4*38.1*0.45*30*(121.4-38.1
/2)/1000000
=21.394 kNm
As this exceeds M, lower edge of stress-block does not fall below
underside of flange and section may be designed as a rectangular beam.
```

UCL	Page: 9 Made by: WL/ML Date: 11/11/10 Ref No:
Applied-moment factor	Office: 5658 K=M*1000*1000/(b*d^2*fcu) =3.86*1000*1000/(406.4*121.4^2*30) =0.021482
As this does not exceed the resisno compression steel is required.	stance-moment factor K' (0.156),
and lever arm	z=d*(0.5+SQR(0.25-K/0.9)) =121.4*(0.5+SQR(0.25-0.021482/0.9)) =118.43 mm
but this must not exceed 0.95*d = so make	
Area of tension steel required	As=M*1000*1000/(z*fy/gammaS) =3.86*1000*1000/(115.33*250/1.05) =140.57 mm ²
Min.number of tension bars reqd.	nbrtmn=2
Number of tension bars provided	nbart=2
Area of tension steel provided	Aspr=157.08 mm ² (2 No. 10 mm bars)
Tension steel provided per0=100*	'Aspr/(b*hf+bw*(h~hf))
=100*	(157.08/(406.4*38.1+100*(152.4-38.1))
	364 % of gross section.
As this does not exceed 4% (see C Percentage of tension steel provi	<pre>clause 3.12.6.1), the design is O.K. ded per=100*Aspr/(bw*b)</pre>

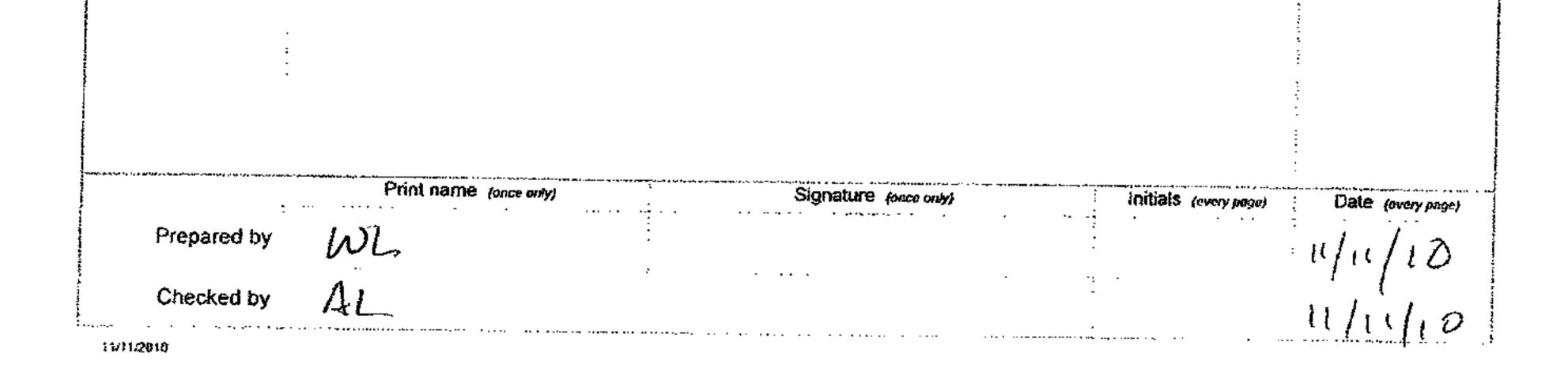
```
Percentage of tension steel provided per=100^Aspr/(bw^n)
                                         =100*157.08/(100*152.4)
                                         =1.0307 % of web area.
As this is not less than minimum of 0.32 %, the design is O.K.
Maximum clear distance allowed between tension bars according to
Clause 3.12.11.2.4 is given by
                           cdist=47000*3*Aspr*betab/(2*fy*As)
                                 =47000*3*157.08*1/(2*250*140.57)
                                 =315.12 mm
but as this exceeds 300 mm , take cdist=300 mm
                                    Characteristic strength 250 N/mm<sup>2</sup>
   TENSION
   REINFORCEMENT
                                   Diameter of bars
                                                            10 mm
                                                            2
   SUMMARY
                                   Number of bars
                                   arranged in a single layer
                                                            20 mm
                                   Cover to all steel
                                    Area of steel required 140.57 mm<sup>2</sup>
                                    Area of steel provided 157.08 mm<sup>2</sup>
                                   Percentage provided:
                                                           0.58364 %
                                     of gross section
                                     of web area
                                                            1.0307 %
                                  Weight of steel provided 1.2331 kg/m
                                  Max.permissible spacing 300 mm
                                  Link size assumed
                                                            6 mm
```

No 74

UCL Page: (එ Made by: WL/AL Date: 11/11/10 Ref No: 5658 Office: Shear in rectangular and flanged beams, with av enhancement Location: UCL Archaeology Building Hollow Clay Floor Roof. The shear calculations are in accordance with the requirements of Clause 3.4.5 Support \mathbf{A} <---av---> <---Design section</pre> Design to BS8110(1997) with partial safety factor for steel gammaS=1.05 Shear force due to ultimate loads V=3.63 kN Overall depth of section h=152.4 mm Effective depth of section d=121.4 mm bv=100 mm Effective breadth for shear Characteristic concrete strength fcu=30 N/mm² Distance to support av=100 mm diac=0 mm Diameter of compression bars Diameter of tension bars dia=10 mm

```
dial=6 mm
Diameter of link legs
Number of tension bars at section nbars=2
                                       fyv=250 N/mm^2
Char.strength of link steel
                                     As=nbars*PI*dia^2/4
Area of longitudinal steel
                                       =2*3.1416*10^2/4
                                          =157.08 \text{ mm}^2
Percentages of longitudinal steel:
  In terms of (bv*d):
                                     per=100*As/(bv*d)
                                         =100*157.08/(100*121.4)
                                        =1.2939 %
                                     perg=100*As/(bv*h)
  In terms of (bv*h):
                                          =100 \times 157.08 / (100 \times 152.4)
                                          =1.0307 %
From Table 3.8 with fcu=25 N/mm2, effective depth=121.4 mm and steel
percentage=1.2939 %, design concrete shear stress vc=0.91641 N/mm2.
Since characteristic concrete strength is between 25 and 40 N/mm2,
increase vc according to formula in footnote below Table 3.8. Then
                                     vc=vc25*(fcu/25)^{(1/3)}
                                       =0.91641*(30/25)^{(1/3)}
                                          =0.97384 \text{ N/mm}^2
Since av is less than 2*d (see Clause 3.4.5.8),
                                     vc = vc + 2 d/av
enhanced value of
                                       =0.97384 \times 2 \times 121.4 / 100
                                         =2.3645 \text{ N/mm}^2
```

UCL	Page: 11 Made by: <i>WL/ItL</i> Date: 11/11/10 Ref No:
	Office: 5658
Design shear stress	v=V*1000/(bv*d)
	=3.63*1000/(100*121.4)
	=0.29901 N/mm ²
Number of legs to be provided	nlegs=2
Total leg area	Asv=nlegs*(PI*dial^2/4)
	=2*(3.1416*6^2/4)
	$=56.549 \text{ mm}^2$
Since v (i.e. 0.29901 N/mm2) does /mm2),	s not exceed (vc+0.4) (i.e. 2.7645 N
minimum spacing of links	sv=fyv/gammaS*Asv/(0.4*bv)
	=250/1.05*56.549/(0.4*100)
	=336.6 mm
	=320 mm (rounded)
Proposed spacing sv greater than	$0.75 \times d = 0.75 \times 121.4 = 91.05 \text{ mm}.$
Reset link spacing to limiting va	alue of 90 mm (rounded).
Use 6 mm links (two legs), spaced	d at 90 mm centres along beam.
Approx.total weight of links	
	No 78


•

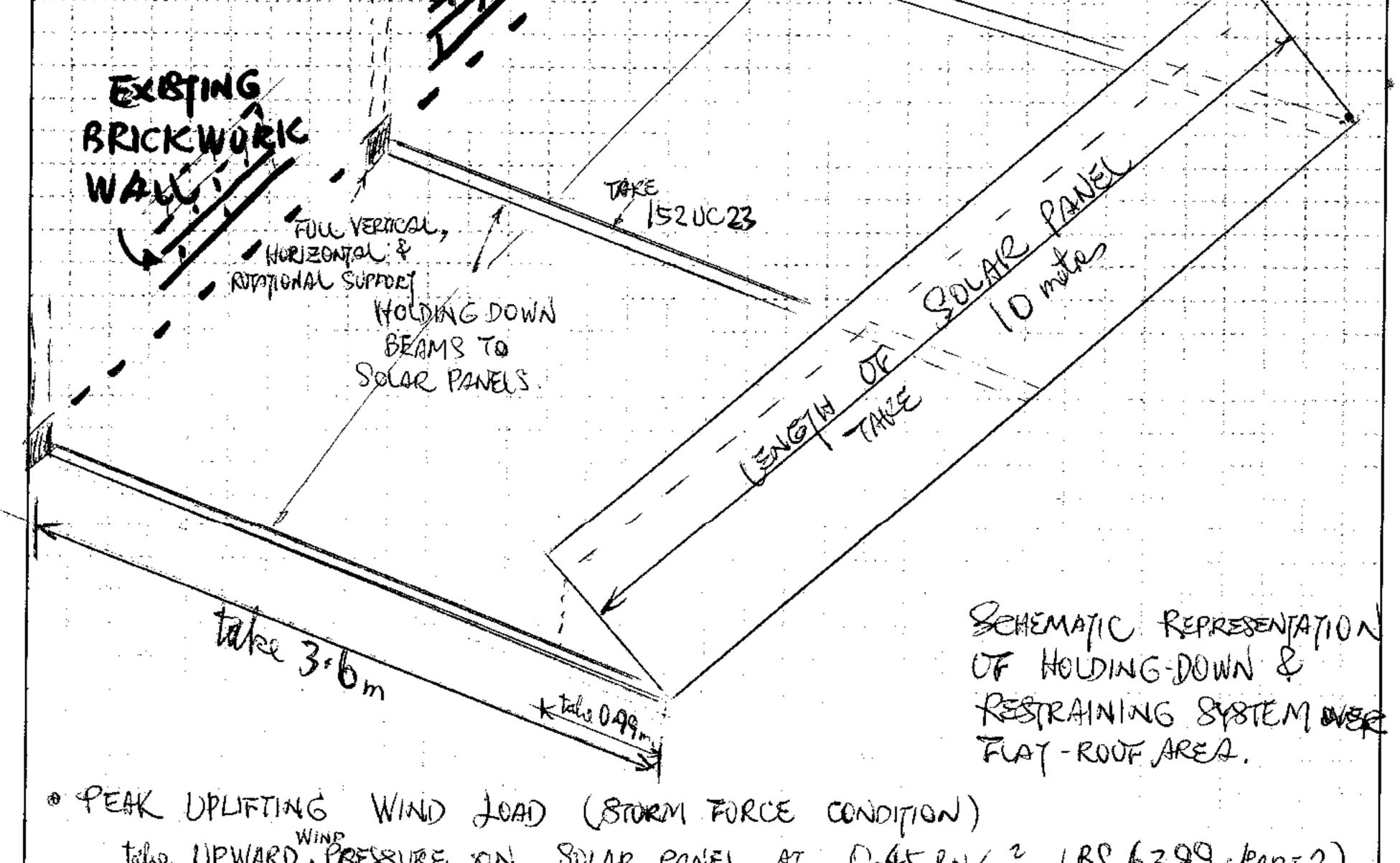
BRIDGES & STRUCTURES CALCULATION SHEET Project Solar Panel Installation. Sheet Location UCL Archaeology Building Part of Structure Solar Panel up 184 due to Wind Reference Calculations Rev Date Output that Weight of Solar Panel = 21kg per 1.5m×1.0m Total weight = 21kg x10m long = 210kg or 2.1kN Total ceptift force due to wind = 0.597 kN/m2 × 1.5 m×10m (any = 9 kN X1.2(84) = 10.8 RN Counter Weight needed = 10.8 km - 2.1 km = 8.7 km or 870 kg Try 152× 152×37 Rg/m UC Total lougthe required = 870 / 87 = 24 1 . .

Here
$$3 \times 4m = 12m$$

 $2 \times 5m = 10m$
 $2 \times m$.
Bracing use $50 \times 50 \times 8 \equiv R$ ($5 \cdot 9 \log / m$).
Total weight = $5 \cdot 9 \log / m \times 12m = 70 \cdot 8 \log$
Use $2 \times 6m = 12m$.
Total Counter Weight = $37 \log / m \times 22m$
 $5 \cdot 9 \log / m \times 12m = \frac{70 \cdot 8 \log}{884 \cdot 8 \log}$
 $5 \cdot 9 \log / m \times 12m$

Rg

8 ka


Calculations

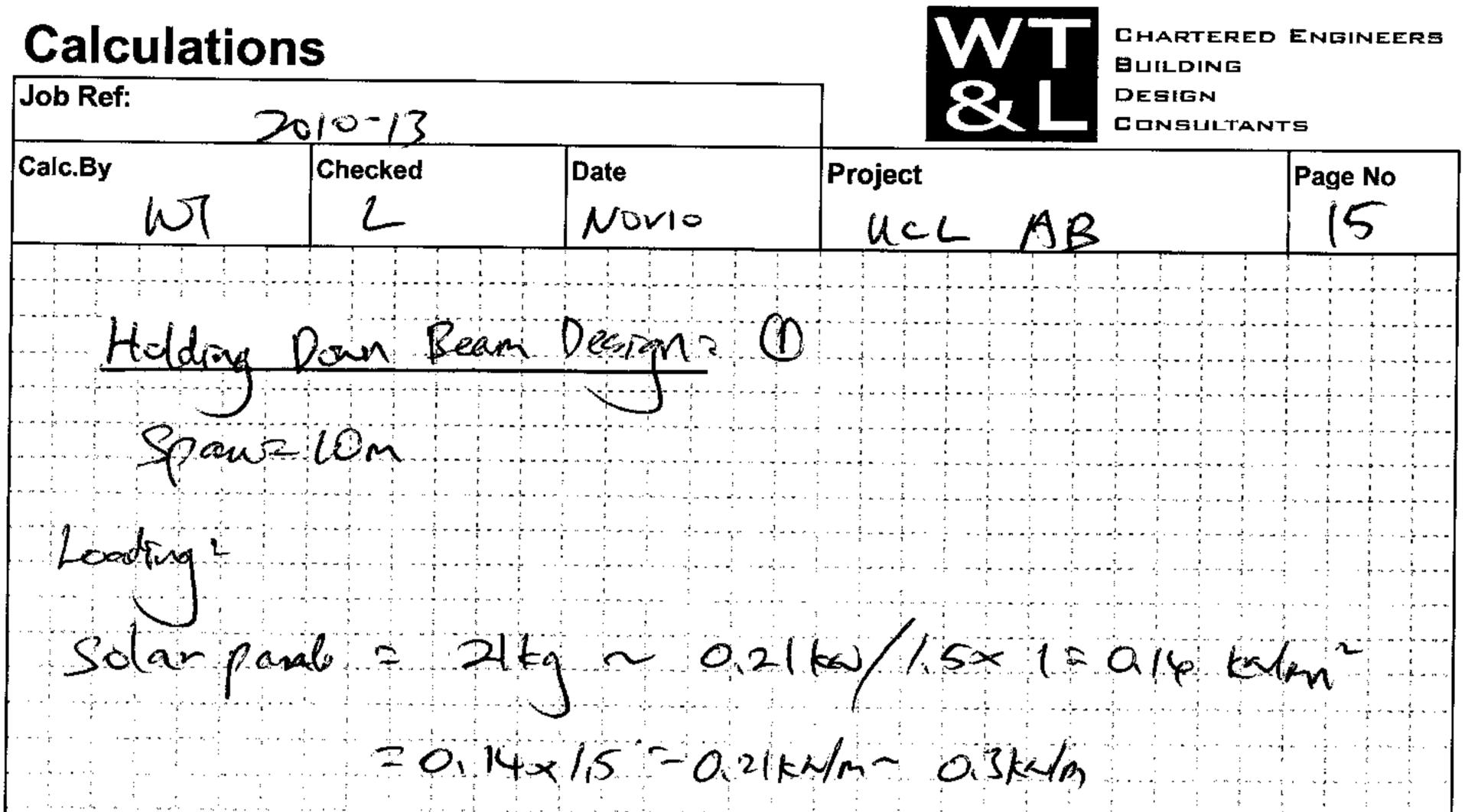
Job Ref:

CHARTERED ENGINEERS Building Design

Calc.By			CONSULTANTS				
Jail. Dy	/ Checked D		Project	Page No			
at ME	ARCHA	zucogy	BUIUDING				
ROW OF UPST	E I 1 1 1	PANEUS	AWAY FROM CONCRETE BEAMS.	THE.			
• MAIN / Qn			NT = EX1871NG 2.5 METRES HIGH	BRICKWOI			

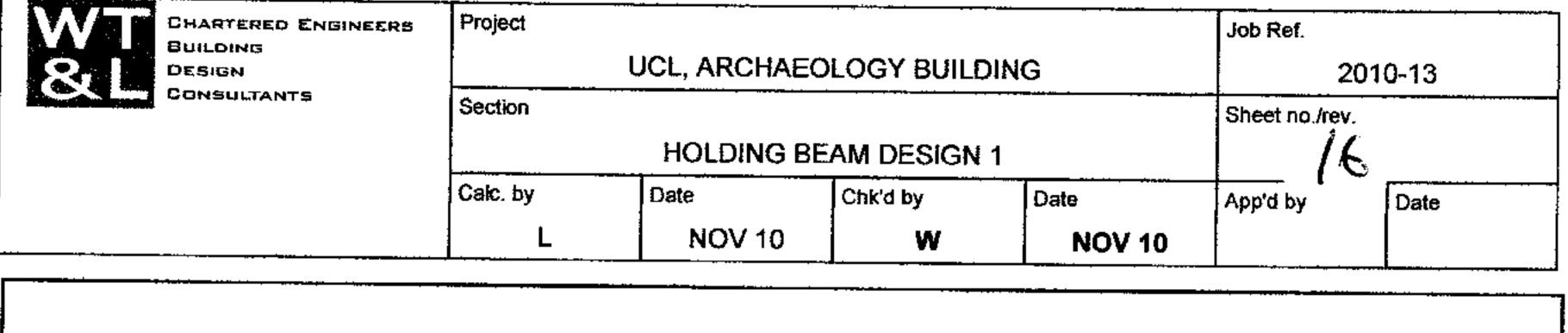
(B) Form No Q16 02.09.97

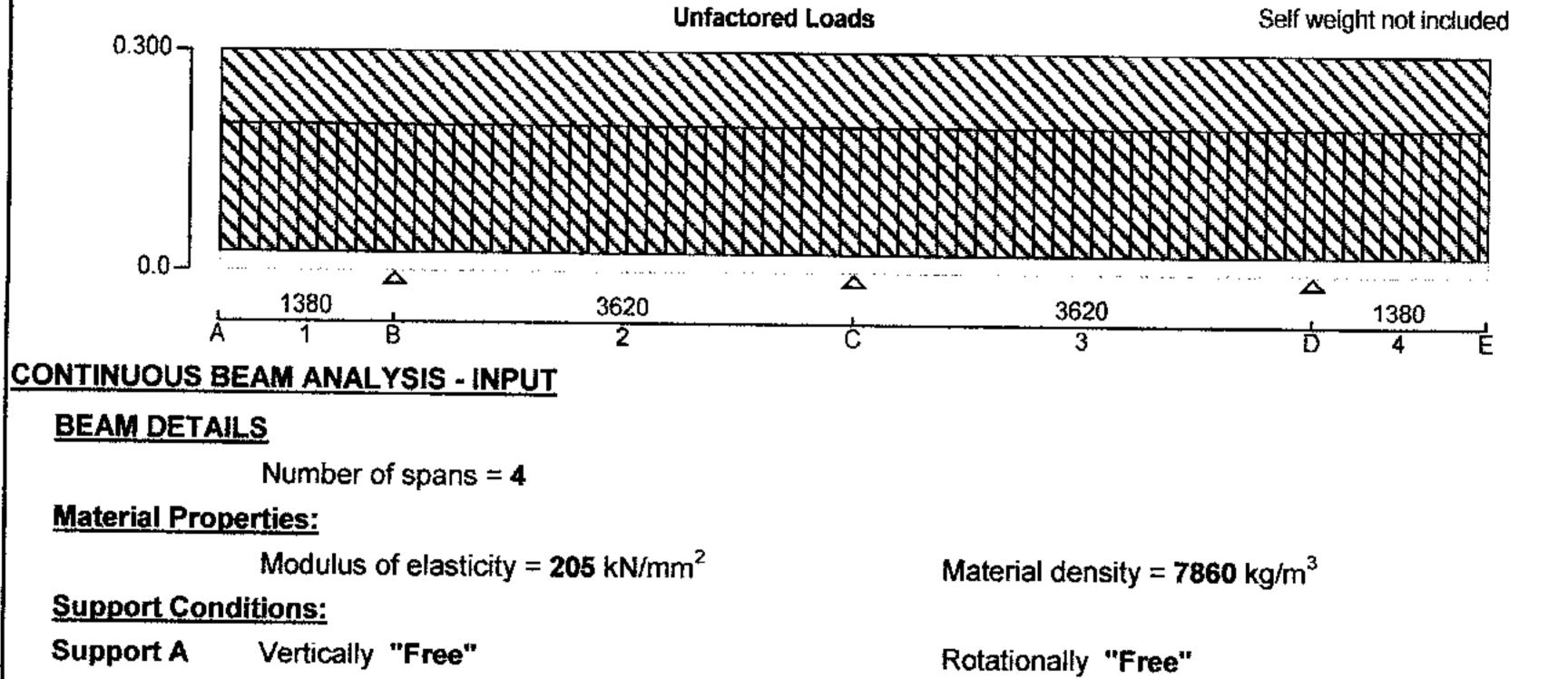
Calculations


Job Ref:

VVT 8.L

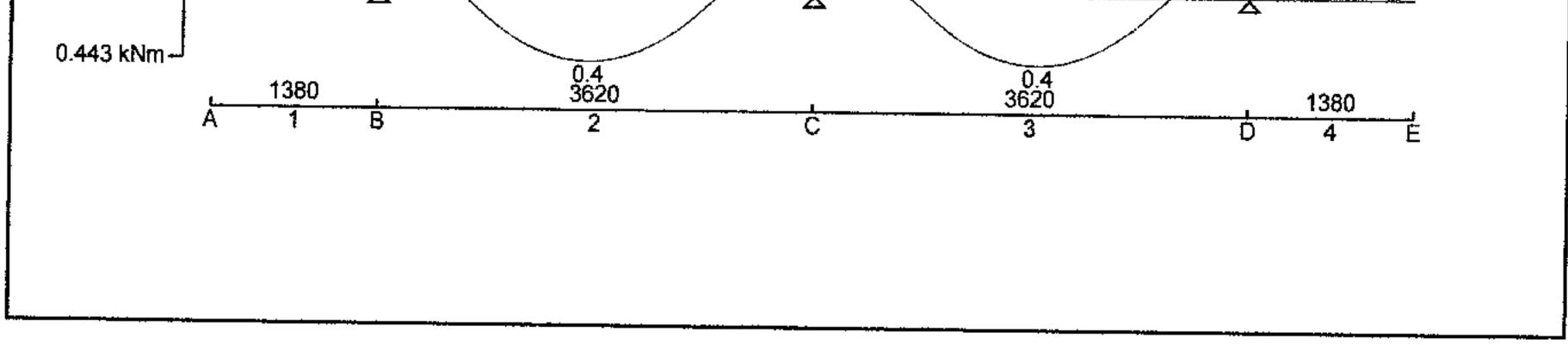
CHARTERED ENGINEERS Building Design Consultants

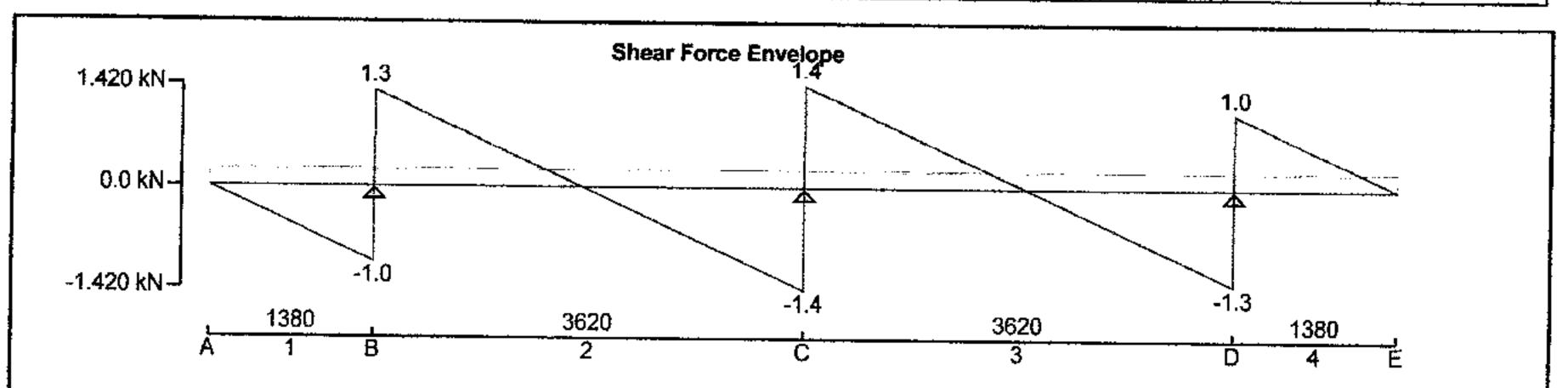

	CONSULTAN					
Calc.By	Checked Date		Project	Page No		
	• · · · · · · · · · · · · · · · · · · ·		1 2 1 <th></th>			
at THE	ARCHAEOLD	GY BUILDING	L E I L I I I I L I I I I I I I I I I I	1 1 1 1 1 1 7 1 1 1		
HOLDING - DS	WN, RESTRA	INING SYSTEM	TO LUNG ROW OF SULA	e parels		
ON THE FL	A7 ROOF (AWDY TROM THE	UPSTAND BEAMS)	1 1 1 1 1 1 2 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1 4 1 1 1 1		
Danalle		120, grade 8.8.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
FLANGE		BOLTS (2mo)		C234N		
CHANNEL RECTION	EXISTING		152UG23 BEAM			
		NUTS.				
	124	8-8 (2mc.)		· · · · · · · · · · · · · · · · · · ·		


take 3.1m TO CENTRE OF LIFTING FORCE BOCK OF VERTICAL CHANNEL * CONSIDER VERTICAL RESISTANCE LAT MOSONRY SUPPORT VERTICAL SHEAR CAPACITY OF 4 no. 12\$ grade 8+8 holts 4 × 15.8 hr = 63.26N. (2.23 hr) VERTICAL SHEAR CAPARITY OF 152UC 23 WEB PLATE 152 × 58m × 1400/m = 1234 hr (konz.236) * CONSIDER RESISTANCE OF FIXED END OF BEAM AGAINST ROTATION & BENDING. APPLIED BENDING MOMENT DUE TO WIND LIFT at ULTIMATE LIMT STATE. 2.23 LNX 31 m = 69 LNm. MOMENT OF RESISTANCE DUE TO 2nd. 120 ANCHOR BOYS 2× 18-9 × 018= 6.9 hr m (SAFE) O.K. MOMENT OF RESISTANCE OF 152UC 23 SECTION 275/ X 182×10 mm = 50.1 hund (greater the 6.9 hund) . THE FIXING AT SUPPORT IS SAFE.

1,38 3.62 3.62 WE 1522152 × 234C Design Analysis See computer actent= cheel upbift Uplift Pressure 2 any creekalm = 0.448×10×1.5= 6.72k Istal Davinained Piore: 23kgx10 -230kg -2,3ke x2 = 4.6 ke) + arisis = 6.742 < 6.72 C-USE Stadle M12 show capacity > 31.6 km > 6.72 km うった Go holding dom Bear to batt to Upstand Beams

(B) Form No Q16 02.09.97




	1	,		rotationany	LIGG	
	Support B	Vertically "Restrained"		Rotationally	"Fr ee "	
	Support C	Vertically "Restrained"		Rotationally	"Free"	
	Support D	Vertically "Restrained"		Rotationally	"Free"	
	Support E	Vertically "Free"		Rotationally	"Free"	
	Span Definition	<u>ons:</u>		-		
	Span 1	Length = 1380 mm	Cross-sectional area = 2925	mm ²	Moment of in	$ertia = 12.5 \times 10^{6} mm^{4}$
	Span 2	Length = 3620 mm	Cross-sectional area = 2925	2		$ertia = 12.5 \times 10^6 \text{ mm}^4$
	Span 3	Length = 3620 mm	Cross-sectional area = 2925	2		ertia = 12.5 × 10⁶ mm ⁴
	Span 4	Length = 1380 mm	Cross-sectional area = 2925	-		ertia = 12.5 ×10 ⁶ mm ⁴
	LOADING DE	<u>rails</u>				
	Beam Loads:					
	Load 1	UDL Dead load 0.2 kN/m	1			
	Load 2	UDL Live load 0.3 kN/m				
	LOAD COMBI	NATIONS				
	Load combina	<u>ution 1</u>				
-	Span 1	1.4*Dead + 1.6*Live				
	Span 2	1.4*Dead + 1.6*Live				
	Span 3	1.4*Dead + 1.6*Live				
	Span 4	1.4*Dead + 1.6*Live				
1	CONTINUOUS BE	AM ANALYSIS - RESULT	<u>'S</u>			
	Unfactored su	pport reactions				
ĺ	Support A	Dead load = 0.0 kN	Live load = 0.0 kN	Wind load = (0.0 kN	Other load = 0.0 kN
	Support B	Dead load = -0.6 kN	Live load = -0.9 kN	Wind load = (Other load = 0.0 kN
	Support C	Dead load = -0.7 kN	Live load = -1.1 kN	Wind load = ().0 kN	Other load = 0.0 kN

eact = -2.4 kN	Min react = -2.4 kN	Max mom = 0.0 kNm	Min mom = 0.0 kNm
eact = -2.8 kN	Min react = -2.8 kN	Max mom = 0.0 kNm	Min mom = 0.0 kNm
eact = -2.4 kN	Min react = -2.4 kN	Max mom = 0.0 kNm	Min mom = 0.0 kNm
		Wax mont - U.U KINI	Min mom = 0.0 kNm
eact = 0.0 kN	Min react = 0.0 kN	Max mom = 0.0 kNm	
Combination Su	<u>Immary</u>		
load = 0.0 kN	Live load = 0.0 kN	Wind load = 0.0 kN	Other load = 0.0 kN
• • •		which load $=$ 0.0 kin	Other load = 0.0 kN
			load = -0.6 kN Live load = -0.9 kN Wind load = 0.0 kN

Support Deflections - Combination Summary Support A Max def = 0.1 mm Min def = 0.1 mm Max rot = Support B Max def = 0.0 mm Min def = 0.0 mm Max rot = Support C Max def = 0.0 mm Min def = 0.0 mm Max rot = Support D Max def = 0.0 mm Min def = 0.0 mm Max rot = Support D Max def = 0.1 mm Min def = 0.1 mm Max rot = Support E Max def = 0.1 mm Min def = 0.1 mm Max rot = Beam Max/Min results - Combination Summary Maximum shear = 1.4 kN Minimum Maximum moment = 0.4 kNm Minimum Minimum Maximum deflection = 0.1 mm Minimum of Minimum of Span 1 Maximum shear = 0.0 kN at 0.000 m Minimum of Maximum deflection = 0.1 mm at 0.000 m Minimum of Maximum deflection = 0.1 mm at 1.756 m Minimum of Maximum deflection = 0.1 mm at 1.756 m Minimum of Maximum deflection = 0.1 mm at 1.868 m Minimum of Maximum deflection = 0.1 mm at 1.868 m Minimum of Maximum deflection = 1.4 kN at 0.000 m Minimum of Maximum deflection = 1.4 kN at 0.000 m Minimum of	Sheet no./rDateApp'd byNOV 10App'd byNOV 10Min mom= 0.0 kNmMin mom0.0 degMin rot =.0 degMin rot =.0 degMin rot =.0 degMin rot =.0 degMin rot =	Date Date = 0.0 kNm 0.0 deg 0.0 deg 0.0 deg 0.0 deg 0.0 deg
Calc. by Date Child by Support E Max react = 0.0 kN Min react = 0.0 kN Max more Support Deflections - Combination Summary Support A Max def = 0.1 mm Min def = 0.1 mm Max not = Support B Max def = 0.1 mm Min def = 0.1 mm Max rot = Support B Max def = 0.0 mm Max rot = Support C Max def = 0.0 mm Min def = 0.0 mm Max rot = Support D Max def = 0.1 mm Min def = 0.0 mm Max rot = Support D Max def = 0.1 mm Min def = 0.1 mm Max rot = Support E Max def = 0.1 mm Max rot = Support D Max def = 0.1 mm Min def = 0.1 mm Max rot = Support E Max def = 0.1 mm Max rot = Beam Max/Min results - Combination Summary Maximum Minimum Maximum Minimum Maximum deflection = 0.1 mm Minimum Minimum of Minimum of Span 1 Maximum shear = 1.3 kN at 0.000 m Minimum of Minimum of Span 2 Maximum shear = 1.4 kN at 1.752 m Minimum of Minimum of Maximum defl	DateApp'd byNOV 10NOV 10= 0.0 kNmMin mom0.0 degMin rot =0.0 degMin rot =0 degMin rot =	Date Date = 0.0 kNm 0.0 deg 0.0 deg 0.0 deg 0.0 deg 0.0 deg
L NOV 10 W Support E Max react = 0.0 kN Min react = 0.0 kN Max more Support Deflections - Combination Summary Max def = 0.1 mm Max def = 0.1 mm Max rot = Support A Max def = 0.1 mm Min def = 0.1 mm Max rot = Support B Max def = 0.0 mm Min def = 0.0 mm Max rot = Support C Max def = 0.0 mm Min def = 0.0 mm Max rot = Support D Max def = 0.1 mm Min def = 0.0 mm Max rot = Support E Max def = 0.1 mm Min def = 0.1 mm Max rot = Support E Max def = 0.1 mm Min def = 0.1 mm Max rot = Beam Max/Min results - Combination Summary Minimum Minimum Maximum moment = 0.4 kNm Minimum deflection = 0.1 mm Minimum deflection = 0.1 mm Span 1 Maximum shear = 1.0 kN at 0.000 m Minimum shimum of Minimum shimum deflection = 0.1 mm at 0.000 m Minimum of Minimum shimum shimum deflection = 0.1 mm at 1.756 m Span 3 Maximum deflection = 0.1 mm at 1.756 m Minimum shimum shiminum shimum shimum shimum shimum shimum shimum shimum	NOV 10= 0.0 kNmMin mom.0 degMin rot =.0 degMin rot =	= 0.0 kNm 0.0 deg 0.0 deg 0.0 deg 0.0 deg
Support E Max react = 0.0 kN Min react = 0.0 kN Max more Support Deflections - Combination Summary Max def = 0.1 mm Max def = 0.1 mm Max rot = Support A Max def = 0.1 mm Min def = 0.1 mm Max rot = Support B Max def = 0.0 mm Min def = 0.0 mm Max rot = Support C Max def = 0.0 mm Min def = 0.0 mm Max rot = Support D Max def = 0.0 mm Min def = 0.0 mm Max rot = Support D Max def = 0.1 mm Min def = 0.1 mm Max rot = Support E Max def = 0.1 mm Min def = 0.1 mm Max rot = Beam Max/Min results - Combination Summary Maximum Minimum Maximum moment = 0.4 kNm Minimum Minimum Maximum deflection = 0.1 mm Minimum of Minimum of Span 1 Maximum shear = 1.0 kN at 0.000 m Minimum of Maximum deflection = 0.1 mm at 0.000 m Minimum of Minimum of Maximum deflection = 0.1 mm at 1.756 m Minimum of Minimum of Span 3 Maximum shear = 1.4 kN at 0.000 m Minimum of	= 0.0 kNm Min mom 0.0 deg Min rot = 0.0 deg Min	0.0 deg 0.0 deg 0.0 deg 0.0 deg
Support Deflections - Combination Summary Support A Max def = 0.1 mm Min def = 0.1 mm Max rot = Support B Max def = 0.0 mm Min def = 0.0 mm Max rot = Support C Max def = 0.0 mm Min def = 0.0 mm Max rot = Support D Max def = 0.0 mm Min def = 0.0 mm Max rot = Support D Max def = 0.1 mm Min def = 0.1 mm Max rot = Support E Max def = 0.1 mm Min def = 0.1 mm Max rot = Beam Max/Min results - Combination Summary Maximum shear = 1.4 kN Minimum Maximum moment = 0.4 kNm Minimum Minimum Span Max/Min results - Combination Summary Minimum Minimum Maximum deflection = 0.1 mm Minimum of Minimum of Maximum moment = 0.0 kN at 0.000 m Minimum of Minimum of Maximum deflection = 0.1 mm at 0.000 m Minimum of Minimum of Maximum deflection = 0.1 mm at 1.756 m Minimum of Minimum of Maximum deflection = 0.1 mm at 1.868 m Minimum of Minimum of Maximum deflection = 0.1 mm at 1.868 m Minimum of Minimum of Maximum deflection = 0.1 mm at 1.864 m </th <th>0.0 degMin rot =0.0 degMin rot =0.0 degMin rot =0 degMin rot =0 degMin rot =0 degMin rot =</th> <th>0.0 deg 0.0 deg 0.0 deg 0.0 deg</th>	0.0 degMin rot =0.0 degMin rot =0.0 degMin rot =0 degMin rot =0 degMin rot =0 degMin rot =	0.0 deg 0.0 deg 0.0 deg 0.0 deg
Support Deflections - Combination Summary Support A Max def = 0.1 mm Min def = 0.1 mm Max rot = Support B Max def = 0.0 mm Min def = 0.0 mm Max rot = Support C Max def = 0.0 mm Min def = 0.0 mm Max rot = Support D Max def = 0.0 mm Min def = 0.0 mm Max rot = Support D Max def = 0.1 mm Min def = 0.1 mm Max rot = Support E Max def = 0.1 mm Min def = 0.1 mm Max rot = Beam Max/Min results - Combination Summary Maximum shear = 1.4 kN Minimum Maximum moment = 0.4 kNm Minimum Minimum Span Max/Min results - Combination Summary Minimum Minimum Maximum deflection = 0.1 mm Minimum of Minimum of Maximum moment = 0.0 kN at 0.000 m Minimum of Minimum of Maximum deflection = 0.1 mm at 0.000 m Minimum of Minimum of Maximum deflection = 0.1 mm at 1.756 m Minimum of Minimum of Maximum deflection = 0.1 mm at 1.868 m Minimum of Minimum of Maximum deflection = 0.1 mm at 1.868 m Minimum of Minimum of Maximum deflection = 0.1 mm at 1.864 m </td <td>0.0 degMin rot =0.0 degMin rot =0.0 degMin rot =0 degMin rot =0 degMin rot =0 degMin rot =</td> <td>0.0 deg 0.0 deg 0.0 deg 0.0 deg</td>	0.0 degMin rot =0.0 degMin rot =0.0 degMin rot =0 degMin rot =0 degMin rot =0 degMin rot =	0.0 deg 0.0 deg 0.0 deg 0.0 deg
Support A Max def = 0.1 mm Min def = 0.1 mm Max rot = Support B Max def = 0.0 mm Min def = 0.0 mm Max rot = Support C Max def = 0.0 mm Min def = 0.0 mm Max rot = Support D Max def = 0.0 mm Min def = 0.0 mm Max rot = Support D Max def = 0.1 mm Min def = 0.1 mm Max rot = Support E Max def = 0.1 mm Min def = 0.1 mm Max rot = Beam Max/Min results - Combination Summary Maximum moment = 0.4 kNm Minimum Maximum moment = 0.4 kNm Minimum minimum deflection = 0.1 mm Minimum deflection = 0.1 mm Span 1 Maximum shear = 0.0 kN at 0.000 m Minimum deflection = 0.1 mm at 0.000 m Minimum deflection = 0.1 mm at 0.000 m Maximum deflection = 0.1 mm at 0.000 m Minimum deflection = 0.1 mm at 1.752 m Minimum deflection = 0.1 mm at 1.756 m Span 3 Maximum shear = 1.4 kN at 0.000 m Minimum deflection = 0.1 mm at 1.756 m Minimum deflection = 0.4 kNm at 1.868 m Maximum deflection = 0.1 mm at 1.864 m Minimum deflection = 0.1 mm at 1.864 m Minimum deflection = 0.1 mm at 1.864 m	.0 degMin rot =.0 degMin rot =.0 degMin rot =.0 degMin rot =.0 degMin rot =	0.0 deg 0.0 deg 0.0 deg
Support B Max def = 0.0 mm Min def = 0.0 mm Max rot = Support C Max def = 0.0 mm Min def = 0.0 mm Max rot = Support D Max def = 0.1 mm Min def = 0.1 mm Max rot = Support E Max def = 0.1 mm Min def = 0.1 mm Max rot = Beam Max/Min results - Combination Summary Maximum shear = 1.4 kN Minimum Maximum deflection = 0.1 mm Minimum Minimum deflection = Span Max/Min results - Combination Summary Minimum deflection = 0.1 mm Minimum deflection = Span 1 Maximum shear = 0.0 kN at 0.000 m Minimum deflection = Minimum deflection = Span 2 Maximum deflection = 0.1 mm at 0.000 m Minimum deflection = Minimum deflection = Maximum deflection = 0.1 mm at 1.756 m Minimum deflection = 0.1 mm at 1.756 m Minimum deflection = Span 3 Maximum shear = 1.4 kN at 0.000 m Minimum deflection = Minimum deflection = Maximum deflection = 0.1 mm at 1.756 m Minimum deflection = Minimum deflection = Minimum deflection = Maximum deflection = 0.1 mm at 1.868 m Minimum deflection = Minimum deflection = Minimum deflection = Maximum deflection = 0.1 mm at 1.864 m <t< td=""><td>.0 degMin rot =.0 degMin rot =.0 degMin rot =.0 degMin rot =.0 degMin rot =</td><td>0.0 deg 0.0 deg 0.0 deg</td></t<>	.0 degMin rot =.0 degMin rot =.0 degMin rot =.0 degMin rot =.0 degMin rot =	0.0 deg 0.0 deg 0.0 deg
Support C Max def = 0.0 mm Min def = 0.0 mm Max rot = Support D Max def = 0.0 mm Min def = 0.0 mm Max rot = Support E Max def = 0.1 mm Min def = 0.1 mm Max rot = Beam Max/Min results - Combination Summary Maximum shear = 1.4 kN Minimum Maximum shear = 1.4 kN Minimum Minimum Maximum deflection = 0.1 mm Minimum Minimum Span Max/Min results - Combination Summary Minimum Minimum Maximum deflection = 0.1 mm Minimum Minimum of Span Max/Min results - Combination Summary Minimum of Minimum of Span Max/Min results - Combination Summary Minimum of Minimum of Maximum deflection = 0.1 mm Minimum of Minimum of Maximum deflection = 0.1 mm at 0.000 m Minimum of Minimum of Maximum moment = 0.4 kNm at 1.752 m Minimum of Minimum of Span 3 Maximum shear = 1.4 kN at 0.000 m Minimum of Maximum deflection = 0.1 mm at 1.756 m Minimum of Maximum deflection = 0.1 mm at 1.868 m Minimum of Maximum deflection = 0.1 mm at 1.864 m Minimum of M	10 deg Min rot = 10 deg Min rot = 10 deg Min rot = 10 deg Min rot = 11 hear $F_{min} = -1.4$ kN	0.0 deg 0.0 deg
Support DMax def = 0.0 mmMin def = 0.0 mmMax rot =Support EMax def = 0.1 mmMin def = 0.1 mmMax rot =Beam Max/Min results - Combination Summary Maximum shear = 1.4 kNMinimumMaximum shear = 1.4 kNMinimumMaximum deflection = 0.1 mmMinimumSpan Max/Min results - Combination Summary Maximum deflection = 0.1 mmMinimumMaximum deflection = 0.1 mmMinimumSpan Max/Min results - Combination Summary Maximum deflection = 0.1 mmMinimumSpan 1Maximum shear = 0.0 kN at 0.000 mMinimum ofMaximum deflection = 0.1 mm at 0.000 mMinimum ofMaximum deflection = 0.1 mm at 0.000 mMinimum ofSpan 2Maximum shear = 1.3 kN at 0.000 mMinimum ofMaximum deflection = 0.1 mm at 1.756 mMinimum ofSpan 3Maximum shear = 1.4 kN at 0.000 mMinimum ofMaximum deflection = 0.1 mm at 1.868 mMinimum ofMaximum shear = 1.0 kN at 0.000 mMinimum ofMaximum deflection = 0.1 mm at 1.864 mMinimum ofMaximum shear = 1.0 kN at 0.000 mMinimum ofMaximum shear = 1.0 kN at 0.000 mMinimum of	.0 deg Min rot = .0 deg Min rot = hear $F_{min} = -1.4$ kN	0.0 deg
Support E Max def = 0.1 mm Min def = 0.1 mm Max rot = Beam Max/Min results - Combination Summary Maximum shear = 1.4 kN Minimum Maximum shear = 1.4 kN Minimum Minimum Maximum deflection = 0.1 mm Minimum Minimum Span Max/Min results - Combination Summary Minimum Minimum Span Max/Min results - Combination Summary Minimum Minimum Span 1 Maximum shear = 0.0 kN at 0.000 m Minimum shear Maximum deflection = 0.1 mm at 0.000 m Minimum shear Minimum shear Maximum deflection = 0.1 mm at 0.000 m Minimum shear Minimum shear Span 2 Maximum shear = 1.3 kN at 0.000 m Minimum shear Maximum deflection = 0.1 mm at 1.756 m Minimum shear Minimum shear Span 3 Maximum shear = 1.4 kN at 0.000 m Minimum shear Maximum deflection = 0.1 mm at 1.868 m Minimum shear Minimum shear Maximum deflection = 0.1 mm at 1.864 m Minimum shear Minimum shear Maximum shear = 1.0 kN at 0.000 m Minimum shear Minimum shear	.0 deg Min rot = 1.6 Min	ų.
Beam Max/Min results - Combination Summary Maximum shear = 1.4 kN Minimum Maximum moment = 0.4 kNm Minimum Maximum deflection = 0.1 mm Minimum of Span Max/Min results - Combination Summary Span Max/Min results - Combination Summary Minimum of Span Max/Min results - Combination Summary Span 1 Maximum deflection = 0.1 mm Minimum of Minimum of Maximum shear = 0.0 kN at 0.000 m Maximum deflection = 0.0 kNm at 0.000 m Minimum of Minimum of Maximum deflection = 0.1 mm at 0.000 m Minimum of Minimum of Minimum of Maximum shear = 1.3 kN at 0.000 m Span 2 Maximum deflection = 0.1 mm at 1.752 m Minimum of Minimum of Minimum of Maximum deflection = 0.1 mm at 1.756 m Span 3 Maximum deflection = 0.1 mm at 1.756 m Minimum of Minimum of Minimum of Maximum shear = 1.4 kN at 0.000 m Span 4 Maximum deflection = 0.1 mm at 1.864 m Minimum of Minimum of Minimum of Maximum deflection = 0.1 mm at 1.864 m	near F _{min} = -1.4 kN	v.v ucy
Maximum moment = 0.4 kNm Minimum Maximum deflection = 0.1 mm Minimum of Minimum of Minimum of Span Max/Min results - Combination Summary Span 1 Maximum shear = 0.0 kN at 0.000 m Minimum of Minimum of Minimum of Maximum moment = 0.0 kNm at 0.000 m Maximum deflection = 0.1 mm at 0.000 m Minimum of Minimum of Maximum deflection = 0.1 mm at 0.000 m Minimum of Minimum of Minimum of Minimum of Maximum moment = 0.4 kNm at 1.752 m Span 3 Maximum deflection = 0.1 mm at 1.756 m Minimum of		
Maximum deflection = 0.1 mmMinimum deflectionSpan Max/Min results - Combination SummaryMinimum deflection SummarySpan 1Maximum shear = 0.0 kN at 0.000 mMinimum deflection =Maximum moment = 0.0 kNm at 0.000 mMinimum deflection = 0.1 mm at 0.000 mMinimum deflection =Maximum deflection = 0.1 mm at 0.000 mMinimum deflection =Minimum deflection =Span 2Maximum shear = 1.3 kN at 0.000 mMinimum deflection =Maximum deflection = 0.1 mm at 1.752 mMinimum deflection =Maximum deflection = 0.1 mm at 1.756 mMinimum deflection =Span 3Maximum shear = 1.4 kN at 0.000 mMinimum deflection =Span 4Maximum deflection = 0.1 mm at 1.864 mMinimum deflection =	oment = -0.9 kNm	
Span Max/Min results - Combination SummarySpan 1Maximum shear = 0.0 kN at 0.000 mMaximum moment = 0.0 kNm at 0.000 mMinimum rMaximum deflection = 0.1 mm at 0.000 mMinimum rSpan 2Maximum shear = 1.3 kN at 0.000 mSpan 3Maximum deflection = 0.1 mm at 1.756 mMaximum deflection = 0.1 mm at 1.756 mMinimum oMaximum shear = 1.4 kN at 0.000 mMinimum oMaximum deflection = 0.1 mm at 1.756 mMinimum oMaximum deflection = 0.1 mm at 1.756 mMinimum oMaximum deflection = 0.1 mm at 1.868 mMinimum oMaximum deflection = 1.4 kN at 0.000 mMinimum oMaximum shear = 1.4 kN at 0.000 mMinimum oMaximum shear = 1.4 kN at 1.868 mMinimum oMaximum shear = 1.0 kN at 0.000 mMinimum oMaximum shear = 1.0 kN at 0.000 mMinimum o		
Span Max/Min results - Combination SummarySpan 1Maximum shear = 0.0 kN at 0.000 mMaximum moment = 0.0 kNm at 0.000 mMinimum rMaximum deflection = 0.1 mm at 0.000 mMinimum rSpan 2Maximum shear = 1.3 kN at 0.000 mMinimum rMaximum moment = 0.4 kNm at 1.752 mMinimum rMaximum deflection = 0.1 mm at 1.756 mMinimum rSpan 3Maximum shear = 1.4 kN at 0.000 mMinimum rMaximum deflection = 0.1 mm at 1.756 mMinimum rSpan 4Maximum shear = 1.4 kN at 0.000 mMinimum rMaximum deflection = 0.1 mm at 1.864 mMinimum rMaximum deflection = 1.0 kN at 0.000 mMinimum d	eflection = 0.0 mm	
Span 1Maximum shear = 0.0 kN at 0.000 mMinimum sMaximum moment = 0.0 kNm at 0.000 mMinimum rMaximum deflection = 0.1 mm at 0.000 mMinimum rSpan 2Maximum shear = 1.3 kN at 0.000 mMinimum rMaximum moment = 0.4 kNm at 1.752 mMinimum rMaximum deflection = 0.1 mm at 1.756 mMinimum rSpan 3Maximum shear = 1.4 kN at 0.000 mMinimum rMaximum deflection = 0.1 mm at 1.756 mMinimum rMaximum deflection = 0.1 mm at 1.868 mMinimum rMaximum deflection = 0.1 mm at 1.868 mMinimum rMaximum deflection = 0.1 mm at 1.864 mMinimum rMaximum deflection = 1.0 kN at 0.000 mMinimum d		
Maximum deflection = 0.1 mm at 0.000 mMinimum ofSpan 2Maximum shear = 1.3 kN at 0.000 mMinimum ofMaximum moment = 0.4 kNm at 1.752 mMinimum ofMaximum deflection = 0.1 mm at 1.756 mMinimum ofSpan 3Maximum shear = 1.4 kN at 0.000 mMinimum ofMaximum deflection = 0.1 mm at 1.868 mMinimum ofMaximum deflection = 0.1 mm at 1.868 mMinimum ofMaximum deflection = 0.1 mm at 1.868 mMinimum ofMaximum deflection = 0.1 mm at 1.864 mMinimum ofMaximum deflection = 1.0 kN at 0.000 mMinimum of	ear = -1.0 kN at 1.380 m	
Span 2Maximum shear = 1.3 kN at 0.000 mMinimum sMaximum moment = 0.4 kNm at 1.752 mMinimum rMaximum deflection = 0.1 mm at 1.756 mMinimum dSpan 3Maximum shear = 1.4 kN at 0.000 mMinimum sMaximum moment = 0.4 kNm at 1.868 mMinimum nMaximum deflection = 0.1 mm at 1.868 mMinimum nMaximum deflection = 0.1 mm at 1.864 mMinimum nMaximum deflection = 1.0 kN at 0.000 mMinimum s	oment = -0.7 kNm at 1.38	0 m
Maximum moment = 0.4 kNm at 1.752 mMinimum moment =Maximum deflection = 0.1 mm at 1.756 mMinimum dSpan 3Maximum shear = 1.4 kN at 0.000 mMinimum sMaximum moment = 0.4 kNm at 1.868 mMinimum nMaximum deflection = 0.1 mm at 1.868 mMinimum dSpan 4Maximum shear = 1.0 kN at 0.000 mMinimum s	flection = 0.0 mm at 1.23	2 m
Maximum deflection = 0.1 mm at 1.756 mMinimum dSpan 3Maximum shear = 1.4 kN at 0.000 mMinimum sMaximum moment = 0.4 kNm at 1.868 mMinimum nMaximum deflection = 0.1 mm at 1.864 mMinimum dSpan 4Maximum shear = 1.0 kN at 0.000 mMinimum s	ear = -1.4 kN at 3.620 m	
Span 3Maximum shear = 1.4 kN at 0.000 mMinimum sMaximum moment = 0.4 kNm at 1.868 mMinimum nMaximum deflection = 0.1 mm at 1.864 mMinimum dSpan 4Maximum shear = 1.0 kN at 0.000 mMinimum s	oment = -0.9 kNm at 3.62	0 m
Span 3Maximum shear = 1.4 kN at 0.000 mMinimum sMaximum moment = 0.4 kNm at 1.868 mMinimum nMaximum deflection = 0.1 mm at 1.864 mMinimum dSpan 4Maximum shear = 1.0 kN at 0.000 mMinimum s	flection = 0.0 mm at 0.000) m
Maximum deflection = 0.1 mm at 1.864 mMinimum dSpan 4Maximum shear = 1.0 kN at 0.000 mMinimum s	ear = -1.3 kN at 3.620 m	
Span 4 Maximum shear = 1.0 kN at 0.000 m Minimum s) m
Span 4 Maximum shear = 1.0 kN at 0.000 m Minimum s	oment = -0.9 kNm at 0.000) m
Maximum moment = 0.0 kNm at 1.380 m Minimum m		
	oment = -0.9 kNm at 0.000 flection = 0.0 mm at 0.000 ear = 0.0 kN at 1.380 m	
Maximum deflection = 0.1 mm at 1.380 m Minimum deflection	flection = 0.0 mm at 0.000	
883 kNm-n o z	flection = 0.0 mm at 0.000 ear = 0.0 kN at 1.380 m) m
	flection = 0.0 mm at 0.000 ear = 0.0 kN at 1.380 m ment = -0.7 kNm at 0.000) m

CHARTERED ENGINEERS BUILDING DESIGN	Project	UCL, ARCHAE	Job Ref. 2010-13			
CONSULTANTS	Section	HOLDING B	EAM DESIGN	1	Sheet no./rev	Z
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	L	NOV 10	w	NOV 10		

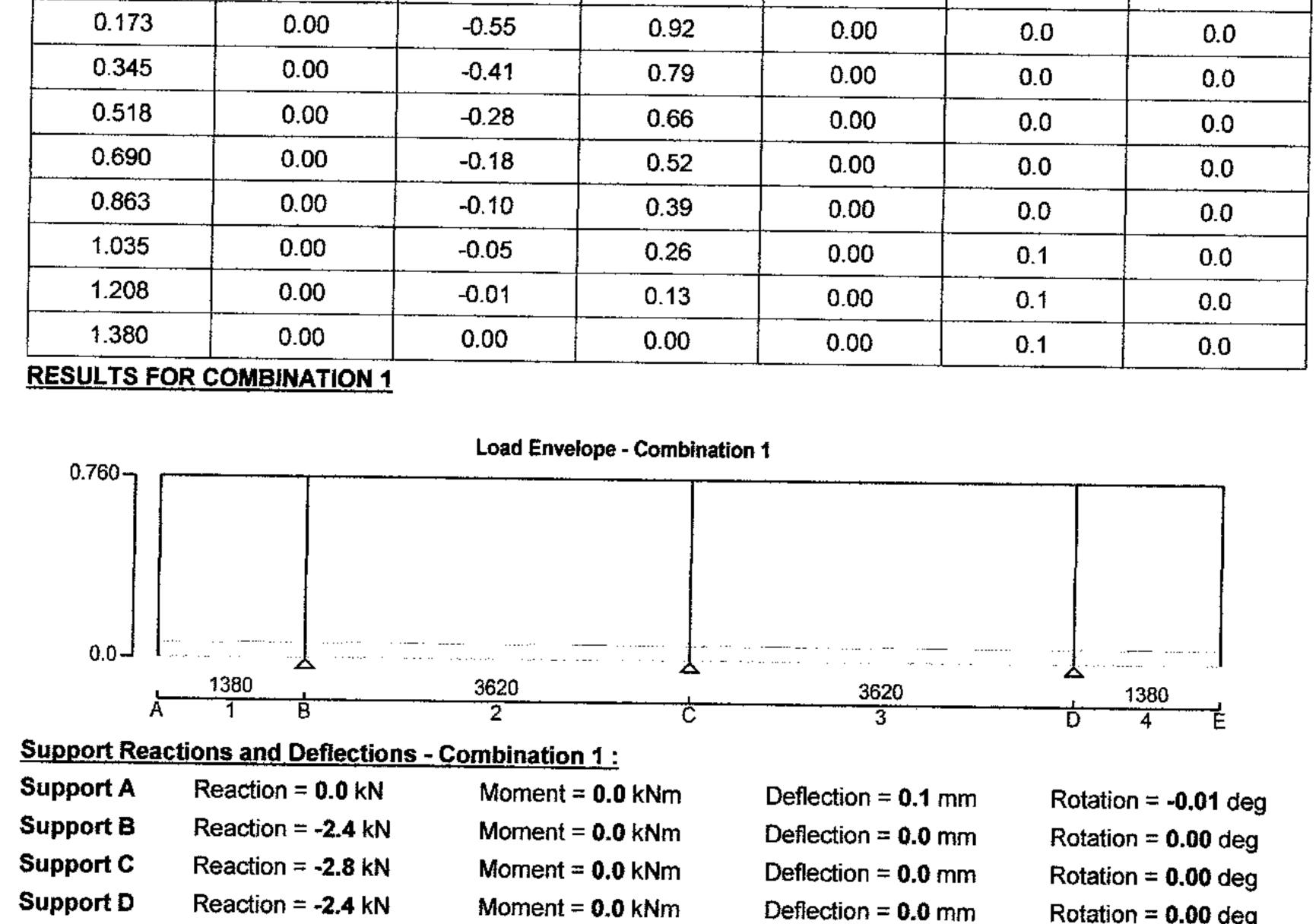
SPAN RESULTS - SPAN 1

x (m)	M _{max} (kNm)	M _{min} (kNm)	F _{max} (kN)	F _{min} (kN)	δ _{max} (mm)	δ _{min} (mm)
0.000	0.00	0.00	0.00	0.00	0.1	0.0
0.173	0.00	-0.01	0.00	-0.13	0.1	0.0
0.345	0.00	-0.05	0.00	-0.26	0.1	0.0
0.518	0.00	-0.10	0.00	-0.3 9	0.0	0.0
0.690	0.00	-0.18	0.00	-0.52	0.0	0.0
0.863	0.00	-0.28	0.00	-0.66	0.0	0.0
1.035	0.00	-0.41	0.00	-0.79	0.0	0.0
1.208	0.00	-0.55	0.00	-0.92	0.0	0.0
1.232	0.00	-0.58	0.00	-0.94	0.0	0.0
1.380	0.00	-0.72	0.00	-1.05	0.0	0.0

SPAN RESULTS - SPAN 2

x (m)	M _{max} (kNm)	M _{min} (kNm)	F _{max} (kN)	F _{min} (kN)	δ _{max} (mm)	δ _{min} (mm)
0.000	0.00	-0.72	1.33	0.00	0.0	0.0
0.453	0.00	-0.20	0.99	0.00	0.0	0.0
0.905	0.17	0.00	0.64	0.00	0.1	0.0
1.358	0.38	0.00	0.30	0.00	0.1	0.0
1.752	0.44	0.00	0.00	0.00	0.1	0.0
1.756	0.44	0.00	0.00	0.00	0.1	0.0
1.810	0.44	0.00	0.00	-0.04	0.1	0.0
2.263	0.34	0.00	0.00	-0.39	0.1	0.0
2.715	0.09	0.00	0.00	-0.73	0.1	0.0
3.168	0.00	-0.35	0.00	-1.08	0.0	0.0
3.620	0.00	-0.88	0.00	-1.42	0.0	0.0

SPAN RESULTS - SPAN 3

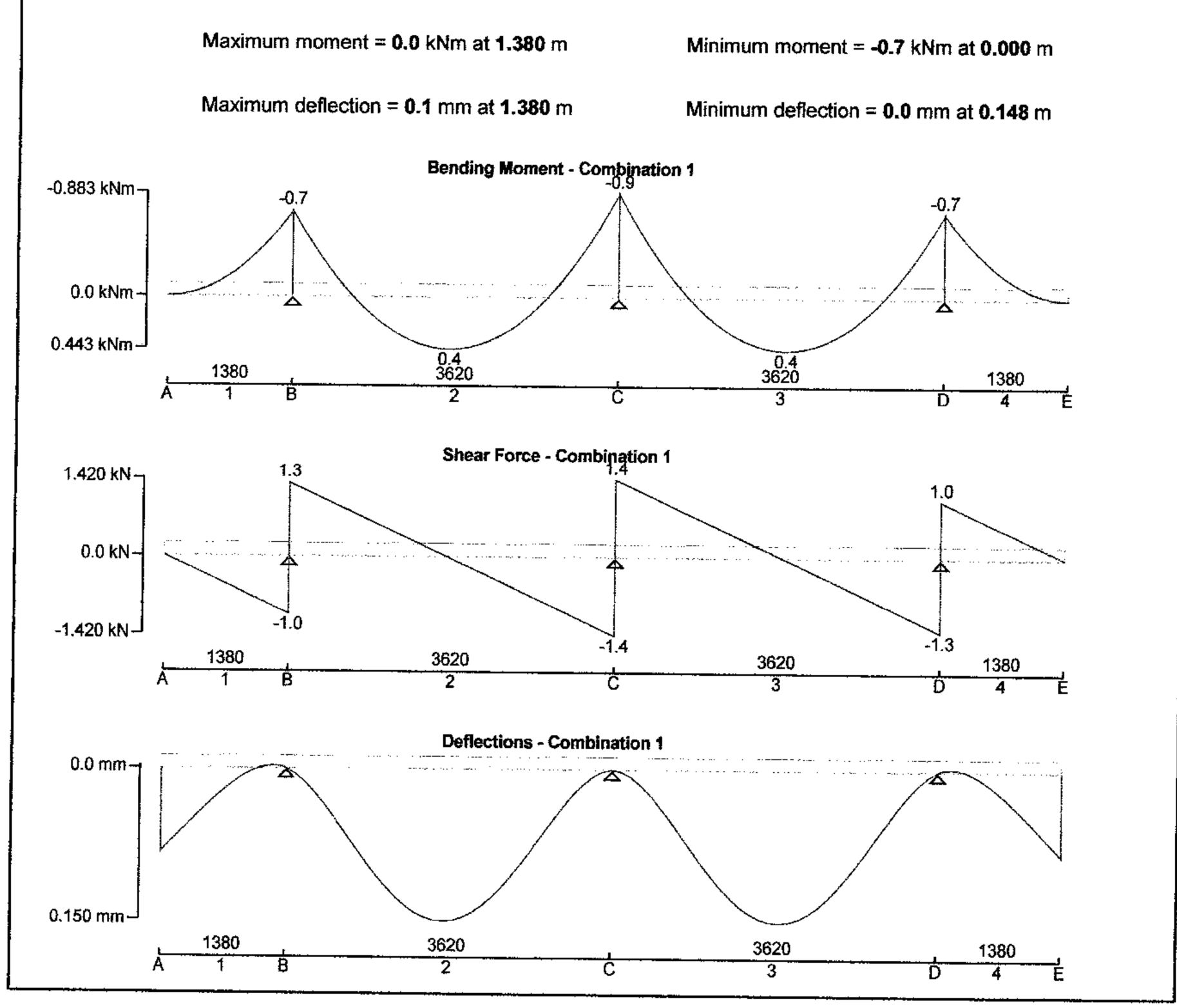

x (m)	M _{max} (kNm)	M _{min} (kNm)	F _{max} (kN)	F _{min} (kN)	δ _{max} (mm)	δ _{min} (mm)
0.000	0.00	-0.88	1.42	0.00	0.0	0.0
0.000	0.00	-0.88	1.42	0.00	0.0	0.0
0.453	0.00	-0.32	1.08	0.00	0.0	0.0
0.905	0.09	0.00	0.73	0.00	0.1	0.0

CHARTERED ENGINEERS BUILDING DESIGN	Project	UCL, ARCHAE	OLOGY BUILD	ING	Job Ref.	010-13
CONSULTANTS	Section	HOLDING B	EAM DESIGN	1	Sheet no./rev	7
	Calc. by L	Date NOV 10	Chk'd by W	Date NOV 10	App'd by	Date

x (m)	M _{max} (kNm)	M _{min} (kNm)	Fmax (kN)	F _{min} (kN)	δ _{max} (mm)	δ _{min} (mm)
1.358	0.34	0.00	0.39	0.00	0.1	0.0
1.810	0.44	0.00	0.04	0.00	0.1	0,0
1.864	0.44	0.00	0.00	0.00	0.1	0.0
1.868	0.44	0.00	0.00	0.00	0.1	0.0
2.263	0.38	0.00	0.00	-0.30	0.1	0.0
2.715	0.17	0.00	0.00	-0.64	0.1	0.0
3.168	0.00	-0.20	0.00	-0.99	0.0	0.0
3.620	0.00	-0.72	0.00	-1.33	0.0	0.0

SPAN RESULTS - SPAN 4

x (m)	M _{max} (kNm)	M _{min} (kNm)	F _{max} (kN)	F _{min} (kN)	δ _{max} (mm)	δ _{min} (mm)
0.000	0.00	-0.72	1.05	0.00	0.0	0.0
0.148	0.00	-0.58	0.94	0.00	0.0	0.0



eappoir D		$WOMENT = \mathbf{U}.\mathbf{U} KNM$
Support E	Reaction = 0.0 kN	Moment = 0.0 kNm
<u>Beam Max/Mir</u>	n results - Combination 1	
	Maximum shear = 1.4 kN	
	Maximum moment = 0.4 k	Nm
	Maximum deflection = 0.1	mm
<u>Span Max/Min</u>	results - Combination 1 :	

Deflection = 0.0 mm	Rotation = 0.00 deg
Deflection = 0.1 mm	Rotation = 0.01 deg

Minimum shear = -1.4 kN Minimum moment = -0.9 kNm Minimum deflection = 0.0 mm

	HARTERED ENGINEERS JILDING	Project	•••••			Job Ref.	
	SIGN Insultants		UCL, ARCHAE	2010-13			
		Section				Sheet no./rev.	
			HOLDING B	EAM DESIGN	1	20	
		Calc. by	Date	Chk'd by	Date	App'd by	Date
	····	L	NOV 10	W	NOV 10		
Span 1	Maximum shear	Maximum shear = 0.0 kN at 0.000 m		Minimum shear = -1.0 kN at 1.380 m			· · · · · · · · · · · · · · · · · · ·
	Maximum mome	ent = 0.0 kNm	at 0.000 m	Minimun	n moment = -0.7	kNm at 1.380	m
	Maximum deflec	tion = 0.1 mm	at 0.000 m	Minimun	n deflection = 0.0	mm at 1.232	m
Span 2	Maximum shear	= 1.3 kN at 0	. 000 m		n shear = -1.4 kN		
	Maximum mome	ent = 0.4 kNm	at 1.752 m	Minimum moment = -0.9 kNm at 3.620 m			m
	Maximum deflec	tion = 0.1 mm	at 1.756 m	Minimun	n deflection = 0.0	mm at 0.000	m
Span 3	Maximum shear	= 1.4 kN at 0	.000 m		n shear = -1.3 kN		
	Maximum mome	nt = 0.4 kNm	at 1.868 m	Minimum	n moment = - 0.9 k	Nm at 0.000	m
	Maximum deflect	tion = 0.1 mm	at 1.864 m	Minimum	a deflection = 0.0	mm at 0.000	m
Span 4	Maximum shear	= 1.0 kN at 0	.000 m		n shear = 0.0 kN		

CHARTERED EI Building Design		UCL, ARCHAE		ING	Job Ref.	010-13
CONSULTANTS	Section	HOLDING B	EAM DESIGN	1	Sheet no./rev.	
	Calc, by	Date	Chk'd by	Date	App'd by	Date
	L	NOV 10	W	NOV 10		

X (m)	F _{left} (kN)	Fright (kN)	M (kNm)	δ (mm)
0.000	0.00		0.00	0.1
0.345	-0.26	· · · · · · · · · · · · · · · · · · ·	-0.05	0.1
0.690	-0.52		-0.18	0.0
1.035	-0.79		-0.41	0.0
1.232	-0.94		-0.58	0.0
1.380	-1.05		-0.72	0.0
Span Results - Sp	oan 2 - Combination		I. ,,	
x (m)	F _{left} (kN)	Fright (kN)	M (kNm)	δ (mm)
0.000	1.33		-0.72	0.0
0.905	0.64		0.17	0,1
1.752	0.00		0.44	0.1
1.756	0.00		0.44	0.1
1.810	-0.04		0.44	0.1
2.715	-0.73		0.09	0.1
3.620	-1.42	· · · · · · · · · · · · · · · · · · ·	-0.88	0.0
pan Results - Sp	an 3 - Combination	······································	<u> </u>	
x (m)	F _{left} (kN)	F _{right} (kN)	M (kNm)	δ (mm)
0.000	1.42	·····	-0.88	0.0
0.905	0.73		0.09	0.1
1.810	0.04		0.44	0.1
1.864	0.00		0.44	0.1
1.868	0.00		0.44	0.1
2.715	-0.64		0.17	0.1
3.620	-1.33		-0.72	0.0
<u>pan Results - Sp</u>	an 4 - Combination			<u></u>
x (m)	F _{left} (kN)	F _{right} (kN)	M (kNm)	δ (mm)
0.000	1.05		-0.72	0.0
0.148	0.94		-0.58	0.0
0.345	0.79		-0.41	0.0
0.690	0.52		-0.18	0.0
1.035	0.26		-0.05	0.1
1.380	0.00		0.00	0.1

DESIGN FOR WORST CASE

Member design checks for a simply-supported steel beam to BS 5950 (with LTB)

		·····	
Material	Grade = "S275"	p _y = 275 N/mm ²	
Section	"UC 152x152x23"	Classification	"Semi-Compact"

CHARTERED ENGINEERS BUILDING DESIGN CONSULTANTS	Project	UCL, ARCHAE	DLOGY BUILDI	NG	Job Ref. 201	10-13
CONSULTANTS	Section HOLDING BEAM DESIGN 1				Sheet no./rev.	
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	L	NOV 10	w	NOV 10		

Check	Load	Capacity	Notes	Result
Deflection	δ _{y_max} = 0.1 mm	δ _{tim} = 10.0 mm	Span / 360 or 10.0 mm	Pass
Shear	F _{vy} = 1.4 kN	P _{vy} = 145.8 kN	Low shear	Pass
Moment	M _x = 0.9 kNm	M _{cx} = 45.1 kNm	Low shear	Pass
LTB	M _{LT} = 0.9 kNm	M _b / m _{LT} = 33.1 kNm	L _{E_LT} = 3.6 m m _{LT} = 1.00	Pass

Appendix C

Photos

EXISITNG UPSTAND BEAMS

EXISITNG SAFETY HANDRAIL

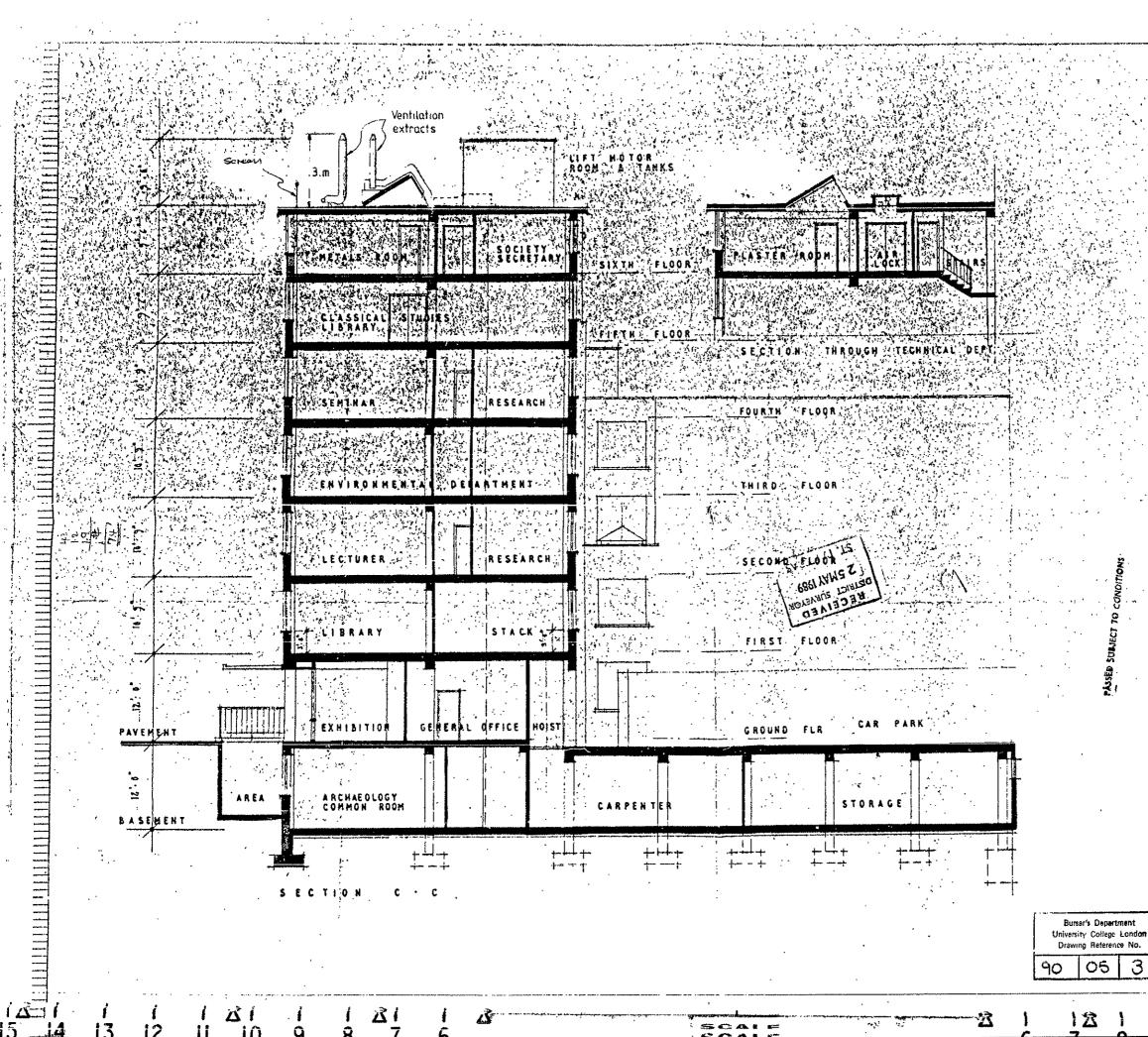
EXISITNG MASONRY ENCLOSURE WALL AND SAFETY HANDRAIL

GENERAL VIEW OF EXISITNG ROOF

EXISTING DOWNSTAND BEAM BELOW ROOF SLAB

EXISTING DOWNSTAND BEAM BELOW ROOF SLAB

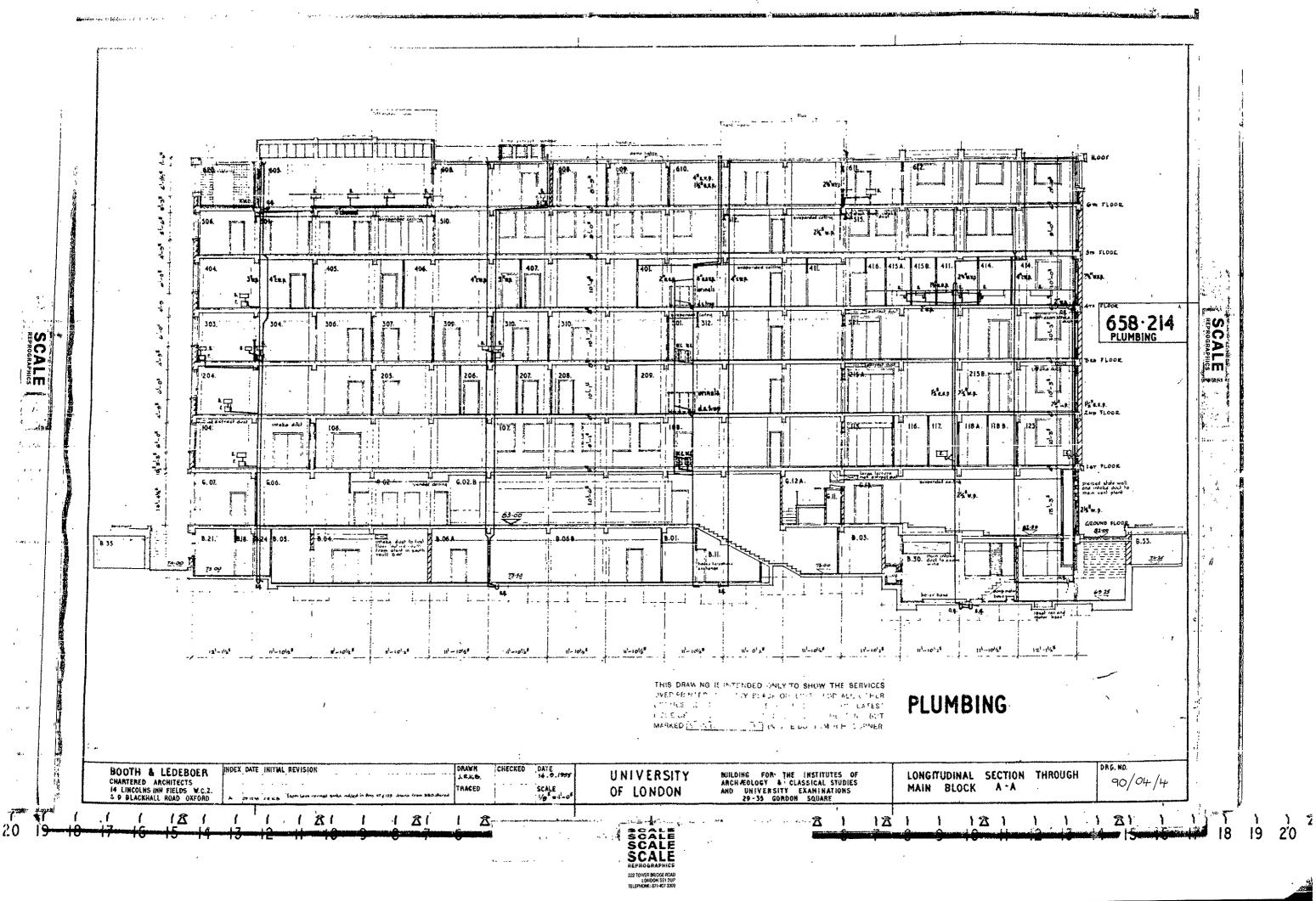
GENERAL VIEW OF EXISITNG ROOF


EXISTING ROOF SLAB CONSTRUCTED FROM REINFORCED CONCRETE BEAM RIBS SPACED APART BY HOLLOW CLAY POTS

EXISTING CIRCULAR CLOUMN BELOW ROOF LEVEL

Appendix D

Archive Drawings Supplied By The Client


CONDITI

õ

50

ASSED

11 1 1 1 1 1 1 1 1 м. ^с з