
| G       |                                            |                          |                      |                   |
|---------|--------------------------------------------|--------------------------|----------------------|-------------------|
|         | Legend                                     |                          |                      |                   |
|         | ERI                                        | <sup>&gt;</sup> boundary | /                    |                   |
|         | Zon                                        | e B buildin              | a bounda             | aries             |
|         |                                            |                          | goodina              |                   |
| a       |                                            |                          |                      |                   |
|         |                                            |                          |                      |                   |
| a • 1 6 |                                            |                          |                      |                   |
| 3200    | 02 01-07-11                                | ML                       | VC                   | RO                |
|         | Issue Date                                 | Ву                       | Chkd                 | Appd              |
|         | ARI<br>13 Fitzroy Street<br>London W1T 4BC | JP                       |                      |                   |
| TV-     | Tel +44 (0)20 763<br>www.arup.com          |                          | (0)20 7580 393       | 24                |
| RA      | Client                                     | o O a satural            |                      |                   |
| P       | Kings Cros<br>General Pa                   |                          | ited                 |                   |
|         | Job Title                                  |                          |                      |                   |
| $\geq$  | KXC Zone<br>Earthworks                     |                          | rediation            | Plan              |
|         | Drawing Title                              |                          |                      |                   |
| Y       | Historical r                               | napping 1                | 984 - 198            | 89                |
| α       |                                            | 500                      |                      |                   |
| - 2352  |                                            | vironment                |                      |                   |
| O       | Drawing Status                             |                          |                      |                   |
| CAL     | Job No<br>216066                           | Drawing No<br>Appe       | o<br>ndix A - Drawir | lssue<br>ng 12 02 |



| G             |                                                                 |
|---------------|-----------------------------------------------------------------|
|               | Legend                                                          |
|               | ERP boundary                                                    |
|               | Zone B building boundaries                                      |
| 1 - 1         |                                                                 |
| 2 1 1         |                                                                 |
|               |                                                                 |
|               |                                                                 |
|               |                                                                 |
| IV-           |                                                                 |
|               |                                                                 |
|               |                                                                 |
|               |                                                                 |
|               |                                                                 |
| a 👘           |                                                                 |
| 14 188        |                                                                 |
| S)    \     . |                                                                 |
| ( III Bid     |                                                                 |
|               |                                                                 |
| OF            |                                                                 |
| IT -          |                                                                 |
|               |                                                                 |
| 1 41.0        |                                                                 |
| 19            |                                                                 |
| 8200          | 02 01-07-11 ML VC RO                                            |
|               | Issue Date By Chkd Appd                                         |
|               | 1                                                               |
|               | ARUP                                                            |
|               | I II CO I                                                       |
| LAL .         | 13 Fitzroy Street<br>London W1T 4BQ                             |
|               | Tel +44 (0)20 7636 1531 Fax +44 (0)20 7580 3924<br>www.arup.com |
| RA            | Client                                                          |
|               | Kings Cross Central                                             |
|               | General Partner Limited                                         |
|               |                                                                 |
|               | Job Title                                                       |
|               | KXC Zone B                                                      |
|               | Earthworks and Remediation Plan                                 |
|               |                                                                 |
|               | Drawing Title                                                   |
| R. 2008       |                                                                 |
| X             | Historical mapping 1992 - 1994                                  |
|               |                                                                 |
| <u>~</u>      | Scale at A3<br>1:1,500                                          |
| 201000        | Discipline Environment                                          |
|               | Drawing Status                                                  |
| 2000          | Issue           Job No         Drawing No         Issue         |
| >CAL          | 216066 Appendix A - Drawing 13 01                               |
| Unit.         | · · ·                                                           |

# Appendix B

RPS Unexploded Ordnance Plans



Crown copyright, All rights reserved. 2006 License number 0100031673

# Legend



Kings Cross Central Site Boundary

UXO Area 2

## <u>Notes</u>



Bomb strikes recorded between 7th October 1940 - 28th July 1941 Night Bomb strikes recorded up to 7th October 1940

# War Damage Locations

Blast Damage, Minor in Nature

Seriously Damaged, But Repairable at Cost

Damage Beyond Repair

# NOTE: Bomb strike, war damage & historical locations are approximate.

| N | Rev: | Date:      | Amendment         | t:          |                  | Name:       | Checked:     |
|---|------|------------|-------------------|-------------|------------------|-------------|--------------|
| Ι |      | Data So    | ource: RP         | S 2007      |                  |             |              |
|   |      | Status:    | FINAL             |             |                  |             |              |
|   |      | R          | PS                |             |                  |             |              |
|   |      | Explosives | Engineering Te    | am 185 Park | Street London    | SE1 9DY     |              |
|   |      | T 020 7928 | 3 0999 F 020      | 7928 0708 E | eetco-ord@rpsgro | up.com W ww | w.rpsuxo.com |
|   |      | Client:    | Argent            |             |                  |             |              |
|   |      | Project:   | Kings C           | ross Cen    | tral             |             |              |
|   |      | Title:     | Summar<br>UXO Are |             | ) and Explo      | sives Risl  | K            |
| 7 |      | Scale: A   | 3 @ 1:1,50        | 0           |                  |             |              |
| - |      |            | 0.025             |             | 0.05 km          |             | ≻z           |
| _ |      | Date: 12   | 2/06/2007         | Datum: (    | DSGB36           | Projection: | BNG          |
|   |      | Drawn:     | SRM               | Checked     | : -              | Job Ref: JI | ER3699       |
|   |      | Drawin     | g No: J           | ER3699      | 9-02-003         | Revisio     | n: <b>-</b>  |
| 1 |      |            |                   |             |                  |             |              |



<sup>©</sup> Crown copyright, All rights reserved. 2006 License number 0100031673

|           |          | .egei    | nd         |                                                          |             |               |
|-----------|----------|----------|------------|----------------------------------------------------------|-------------|---------------|
|           | ſ        |          | Kinas Cr   | oss Central Site E                                       | Boundarv    |               |
|           |          |          |            | a Boundary                                               | ,           |               |
|           | L        |          |            | -                                                        |             |               |
|           | <u> </u> | Inexp    | olodeo     | l Ordnance F                                             | <u>Risk</u> |               |
|           |          | l        | _ow Risk   | (                                                        |             |               |
| 12        |          |          | ow / Mo    | oderate Risk                                             |             |               |
| //        |          |          |            |                                                          |             |               |
| /         |          |          | Moderate   | e RISK                                                   |             |               |
|           |          |          |            |                                                          |             |               |
|           |          |          |            |                                                          |             |               |
|           |          |          |            |                                                          |             |               |
| 1         |          |          |            |                                                          |             |               |
| 11        |          |          |            |                                                          |             |               |
|           |          |          |            |                                                          |             |               |
| 1         |          |          |            |                                                          |             |               |
|           |          |          |            |                                                          |             |               |
| 1         |          |          |            |                                                          |             |               |
|           |          |          |            |                                                          |             |               |
| $\square$ |          |          |            |                                                          |             |               |
| T         |          |          |            |                                                          |             |               |
|           |          |          |            |                                                          |             |               |
| 1         |          |          |            |                                                          |             |               |
|           |          |          |            |                                                          |             |               |
|           |          |          |            |                                                          |             |               |
|           |          |          |            |                                                          |             |               |
|           |          |          |            |                                                          |             |               |
| -15-10-1  |          |          |            |                                                          |             |               |
|           |          |          |            |                                                          |             |               |
|           |          |          |            |                                                          |             |               |
| 4         |          |          |            |                                                          |             |               |
| 11        |          |          |            |                                                          |             |               |
| 11        |          |          |            |                                                          |             |               |
| 11        |          |          |            |                                                          |             |               |
| 11        |          |          |            |                                                          |             |               |
| ())       |          |          |            |                                                          |             |               |
| 11        |          |          |            |                                                          |             |               |
| 141       | D-:      | Data     | America    |                                                          | New         | Chorlin       |
|           | Rev:     | Date:    | Amendment  |                                                          | Name:       | Checked:      |
|           |          |          | FINAL      | 0 2007                                                   |             |               |
| 1         |          |          | 1110/12    |                                                          |             |               |
|           |          | D        | PS         |                                                          |             |               |
|           |          | R        | P2         |                                                          |             |               |
|           |          |          |            | am 185 Park Street London<br>7928 0708 E eetco-ord@rpsgr |             | vw.rpsuxo.com |
|           |          | Client:  | Argent     |                                                          |             |               |
|           |          | Project: | Kings Cr   | oss Central                                              |             |               |
|           |          |          | Unexplo    | ded Ordnance Risk                                        | Man         |               |
|           |          | Title:   | UXO Are    |                                                          |             |               |
|           |          | Scale: A | 3 @ 1:1,50 | 0                                                        |             |               |
| 1         |          | 0<br>L   | 0.025      | 0.05km                                                   |             | ≻z            |
| 1 1       |          | Date: 12 | 2/06/2007  | Datum: OSGB36                                            | Projection: | BNG           |
| -         |          | Drawn:   | SRM        | Checked: -                                               | Job Ref: J  |               |
|           |          | _        |            |                                                          |             |               |
| -         |          | Drawin   | g No: JE   | ER3699-02-004                                            | Revisio     | n: -          |
| -         |          |          |            |                                                          |             |               |

# Appendix C

Please see enclosed CD

# Ground Investigation Logs and Laboratory Test Data

# Appendix D

Screening Assessment

#### **Screening Assessment D1**

#### **D1.1** Introduction

To simplify the assessment of ground contamination risks, the UK statutory guidance suggests that generic soil quality guideline values may be used for initial screening of contamination testing results, provided that such guideline values are available and are appropriate to the site circumstances and the potential pollutant linkages in question. If the results from an adequate site investigation are below the scientific and appropriate guidelines then the site can be regarded as uncontaminated. If the results exceed the screening guidelines then more detailed risk assessment is required to determine whether or not there is a need for remediation.

#### **Human Health D1.2**

#### Methodology **D1.2.1**

Generic assessment criteria (GAC) and Soil Guideline Values (SGVs) have been used to assess whether further action is required to break an identified pollutant linkage. Due to the form of the future development, the commercial/industrial GAC and SGVs have been used as the "assessment criteria". GAC and SGV values have been calculated using the Contaminated Land Exposure Assessment (CLEA) model software (v.106) issued by the EA.

The assessment criteria used have been used as follows:

- SGV for 11 contaminants (arsenic, cadmium, mercury, nickel, selenium, BTEX, phenol and dioxins, furans and dioxin like polychlorinated biphenyls (PCB)) published during 2009 and 2010;
- Land Quality Management (LQM) and the Chartered Institute of Environmental Health (CIEH) GAC for 31 soil contaminants.
- Contaminated Land: Applications In Real Environments (CL:AIRE) has also developed GAC for 35 additional soil contaminants; and
- Arup has developed assessment criteria for determinands that using CLEA software and published toxicology reports in accordance with recommendations by the EA.

The screening criteria are based on the GAC values for a fraction of organic carbon (foc) content of 1%. The reported results give an average foc of 3.8% and therefore the use of 1% is considered to be a conservative assumption.

Collated soil sample laboratory results are included in Section D2.

#### D1.2.2 Assessment

Three soil samples collected from the backfill of gasholder 1 and gasholder 3 exceeded the assessment criteria. It is noted that one of these samples is a duplicate collected at approximately the same depth for waste acceptance criteria testing. A summary of the samples collected from inside the gasholders that exceed the assessment criteria is provided overleaf.

| Parameter                     | Units         | No of<br>Samples<br>Tested | Range<br>Measured | Assessment<br>Criteria | No of Samples<br>Exceeding<br>Screening<br>Value |
|-------------------------------|---------------|----------------------------|-------------------|------------------------|--------------------------------------------------|
| Recent Investigation          |               |                            |                   |                        |                                                  |
| Lead                          | mg/kg         | 136                        | 13-7,900          | 7,300                  | 1                                                |
| Total Cyanides                | mg/kg         | 69                         | <0.5-130          | 78                     | 3                                                |
| Benzo[a]anthracene            | mg/kg         | 200                        | 290-1,000         | 90                     | 5 (2.5%)                                         |
| Benzo[a]pyrene                | mg/kg         | 200                        | 21-870            | 14                     | 16 (8%)                                          |
| Benzo[b]fluoranthene          | mg/kg         | 200                        | 140-700           | 100                    | 5 (2.5%)                                         |
| Benzo[k]fluoranthene          | mg/kg         | 200                        | 170-460           | 141                    | 4 (2%)                                           |
| Chrysene                      | mg/kg         | 200                        | 290-1,000         | 137                    | 4 (2%)                                           |
| Dibenz(a,h)anthracene         | mg/kg         | 200                        | 20-45             | 13                     | 2 (1%)                                           |
| Indeno(1,2,3-c,d)pyrene       | mg/kg         | 200                        | 160-500           | 60                     | 3 (1.5%)                                         |
| Naphthalene                   | mg/kg         | 200                        | 204-6,300         | 204                    | 6 (3%)                                           |
| Total TPH                     | mg/kg         | 172                        | 7,100-<br>36,000  | 2,130                  | 3 (1.5%)                                         |
| Historical Investigation      |               |                            |                   |                        |                                                  |
| Benzo[a]pyrene                | mg/kg         | 29                         | 0.023-17          | 14                     | 1                                                |
| Total TPH                     | mg/kg         | 129                        | 3,164-<br>51,488  | 2,130                  | 6                                                |
| Note: PAH results from the 'n | recent invest | igation' are fr            | om gas chromat    | ography-mass spe       | ectroscopy analysis                              |

(GC-MS).

Chrysotile and amosite asbestos fibres were identified in samples collected from the areas outside of the gasholders on some of the building plots and in the proposed Pancras Square during the BAM Ritchie ground investigation. A summary of the positive identifications of asbestos fibres on Zone B is provided below.

| Location on<br>Zone B | Exploratory<br>hole | Depth (m) | Asbestos type          | Asbestos proportion by<br>weight (%) |
|-----------------------|---------------------|-----------|------------------------|--------------------------------------|
| B1                    | BH2015              | 0.3       | Amosite                | 0.1                                  |
| B6                    | TP2016-A            | 1.0       | Chrysotile             | 0.007                                |
| Pancras<br>Square     | TP2018              | 0.3       | Amosite and chrysotile | 0.007                                |

The results and assessment of the chemical testing indicate that elevated concentrations of PAH and asbestos fibres are present inside gasholders 3 and 9.

#### **Controlled Waters** D1.3

#### Methodology **D1.3.1**

In accordance with EA advice to third parties, laboratory results from water samples collected within the gasholder bases have been compared with the UK Drinking Water Standards (DWS). Where no DWS are available the results have been compared against the Environmental Quality Standards (EQS). Collated water sample laboratory results are included in Section D3.

#### **D1.3.2** Assessment

# **Gasholder 1**

Four water samples were collected during the BAM Ritchie ground investigation from a standpipe located inside gasholder 1 (BH2006).

Very high concentrations of TPH, PAH (specifically naphthalene) and BTEX (specifically benzene) were reported in some of the water samples as described below.

- TPH concentrations were reported up to 2,800µg/l (compared with an assessment criteria of 10µg/l);
- Naphthalene concentrations were reported up to 380µg/l (compared with an assessment criteria of 2.4µg/l) during sampling rounds 1 and 2, although concentrations were below method detection limits during sampling rounds 3 and 4; and
- Benzene concentrations were reported up to 910µg/l (compared with an assessment criterion of 1µg/l) during sampling rounds 1 and 2, although concentrations were below method detection limits during sampling rounds 3 and 4.

Slight to moderately high concentrations of cyanide, ethylbenzene and toluene were also reported in water samples collected during the monitoring rounds as described below:

- Total cyanide concentrations of up to 0.78mg/l slightly exceeded the assessment criteria of 0.5mg/l during three sampling rounds;
- A fluoranthene concentration of 0.7µg/l exceeded the assessment criteria of 0.1µg/l during sampling round four;
- Ethylbenzene concentrations of up to 60µg/l exceeded the assessment criteria of 20µg/l during sampling rounds one and two, although concentrations were below method detection limits during sampling rounds three and four; and
- Toluene concentrations of up to 110µg/l exceeded the assessment criteria of 50µg/l during sampling rounds one and two, although concentrations were below method detection limits during sampling rounds three and four.

One water sample was collected from gasholder 1 during the historical ground investigations by WYG. Concentrations of contaminants were low compared with the assessment criteria, with the exception of total cyanide which was moderately elevated.

# **Gasholder 3**

Ten water samples were collected during the BAM Ritchie ground investigation from three borehole locations located inside gasholder 1 (BH2007, BH2012 and BH2014). BH2012 and BH2007 were positioned close to the perimeter of the gasholder. BH2007 was located off-site in Pancras square and three water samples were collected from this borehole. BH2012 was positioned in the centre of the gasholder.

Very high concentrations of TPH, PAH (specifically naphthalene and anthracene), BTEX compounds (specifically benzene, toluene and ethylbenzene) and cyanide (total, free and thiocyanate) were reported in some of the water samples as described below:

- TPH concentrations were above the assessment criteria in samples collected from BH2012 during all sampling rounds, which concentrations reported up to 2,900µg/l (compared with an assessment criteria of 10µg/l). Similar concentrations (up to 3,900µg/l) were recorded in samples collected from BH2007. TPH was significantly elevated in water samples collected from the centre of the gasholder (BH2014) with concentrations of up to 44,000µg/l.
- Naphthalene concentrations were generally significantly elevated in all water samples with recorded concentrations of up to 4000µg/l (compared with an assessment criterion of 2.4µg/l). Anthracene concentrations exceeded the assessment criteria in six samples and was particularly elevated in samples collected from the centre of the gasholder (BH2014, concentrations up to 14µg/l compared with an assessment criteria of 0.1µg/l);
- BTEX compounds were elevated above the assessment criteria in the majority of water samples, although concentrations were particularly high in samples collected from the centre of the gasholder (BH2014). Concentrations of benzene were recorded up to 24,000µg/l during sampling round 3 (compared with an assessment criterion of  $1\mu g/l$ ). Elevated concentrations of toluene (up to 4,300µg/l in BH2014) and ethylbenzene (up to 510µg/l in BH2012) were also recorded; and
- Total cyanide exceeded the assessment criteria in all samples, although generally these were not significantly elevated. The cyanide concentration in the sample collected from the centre of the gasholder (BH2014) during the first round of sampling was recorded at 320mg/l (compared with assessment criteria of 0.5mg/l). Free cyanide and thiocyanate also exceeded the assessment criteria in some locations.

Concentrations of heavy metals were also reported in water samples collected during the monitoring rounds as described below:

- Five arsenic concentrations of up to 15µg/l slightly exceeded the assessment criteria of 10µg/l;
- Three mercury concentrations of up to 1.6µg/l slightly exceeded the assessment criteria of 1µg/l;
- Three selenium concentrations of up to 19µg/l slightly exceeded the assessment criteria of 10µg/l; and
- Four fluoranthene concentrations of up to 2.3µg/l slightly exceeded the assessment criteria of 0.1µg/l.

REP002 | Issue 4 | 13 July 2011 J1216000/216066 KXC B3 REMEDIATION SERVICES/4 INTERNAL PROJECT DATA(4-03 ARUP REPORTS)02 B3 ERP/03 ISSUE 4/ISSUE4 REP002 ZONE B ERP B3 AMENDMENT REPORT 13/UL11.DOCX

Groundwater samples were not collected from gasholder 3 during the historical ground investigations.

## **Gasholder 9**

Nine water samples were collected during the BAM Ritchie ground investigation from two boreholes located inside gasholder 9 (BH2004 and BH2016). Both boreholes were positioned close to the perimeter of the gasholder. BH2016 is located off-site on plot B3.

Very high concentrations of TPH, PAH (specifically naphthalene), BTEX compounds (specifically benzene, toluene and ethylbenzene) and cyanide (total, free and thiocyanate) were reported in some of the water samples as described below:

- TPH concentrations were above the assessment criteria in approximately half of the samples collected from both boreholes. TPH was significantly elevated in water samples collected from BH2004 during the first round of sampling, with concentrations of up to 310,000µg/l (compared with an assessment criteria of 10µg/l). TPH concentrations decreased during the later sampling rounds are were below detection limits in some instances;
- Naphthalene concentrations were significantly elevated in water samples collected from BH2004 during the first sampling round, with recorded concentrations of up to 5,500µg/l (compared with an assessment criteria of  $2.4\mu g/l$ ). Concentrations reduced to below detection limits during the later rounds of sampling and were also below detection limits in samples collected from BH2016:
- BTEX compounds in water samples collected during the first sampling round from BH2004 were elevated above the assessment criteria, although concentrations decreased in the following sampling rounds and were low in samples collected from BH2016. Concentrations of benzene were recorded up to 1,500µg/l during sampling round one (compared with assessment criteria of  $1\mu g/l$ ). Elevated concentrations of toluene (up to  $300\mu g/l$ ) and ethylbenzene (up to 57µg/l) were also recorded in samples collected from BH2004.

Slight to moderately high concentrations of lead, selenium, cyanide and ethylbenzene were also reported in water samples collected during the monitoring rounds as described below:

- Five lead concentrations of up to 110µg/l exceeded the assessment criteria of  $25\mu g/l;$
- Two total cyanide concentrations of up to 0.71mg/l slightly exceeded the assessment criteria of 0.5mg/l during the first sampling round; and
- Two fluoranthene concentrations of up to 0.6µg/l exceeded the assessment criteria of 0.1µg/l.

Samples collected from the northern side of gasholder 9 (off-site on plot B3) generally contained lower concentrations of contaminants, although it is noted that fewer sampling rounds were undertaken from this location.

The water results of the Oscar Faber ground investigation indicated significantly elevated concentrations of heavy metals (notably lead with concentrations up to

REP002 | Issue 4 | 13 July 2011 J3216000/216066 KXC B3 REMEDIATION SERVICES/4 INTERNAL PROJECT DATA/4-03 ARUP REPORTS/02 B3 ERPI03 ISSUE 4/ISSUE4 REP002 ZONE B ERP B3 AMENDMENT REPORT 13JUL11.DOCX

Page D5

830,000µg/l, cadmium with concentrations up to 510µg/l, arsenic with concentrations up to 1350µg/l and mercury up to 210µg/l in samples collected from BH4a). Coal tars and mineral oils were commonly tested for at this time (rather than TPH). Concentrations of coal tars exceeded 9000mg/l which is considered to be a significantly elevated result.

One water sample was collected from gasholder 9 during the historical ground investigations by WYG. Concentrations of contaminants were low compared with the assessment criteria, with the exception of total cyanide which was moderately elevated.

# **Gasholder 12**

Four water samples were collected from BH2001 installed inside gasholder 12 during the BAM Ritchie ground investigation.

Elevated concentrations of TPH, PAH (particularly naphthalene) and BTEX (particularly benzene and toluene) were reported in water samples collected during sampling rounds one, two and three as described below:

- TPH concentrations were reported up to 13,000µg/l (compared with an assessment criteria of 10µg/l);
- Naphthalene concentrations were reported up to 3,600µg/l (compared with an assessment criteria of 2.4µg/l);
- Benzene concentrations were reported up to 440µg/l (compared with an assessment criteria of 1µg/l); and
- Toluene concentrations were reported up to 140µg/l (compared with an assessment criterion of 50µg/l).

Slight to moderately elevated concentrations of PAH (specifically anthracene and fluoranthene), cyanides and BTEX (ethylbenzene) were also reported as described below:

- One anthracene concentration of  $0.3\mu g/l$  exceeded the assessment criteria of  $0.1 \mu g/l;$
- Two fluoranthene concentrations of up to 0.6µg/l exceeded the assessment criteria of  $0.1\mu g/l$ ;
- Total cyanide concentrations of up to 8mg/l exceeded the assessment criteria of 0.5mg/l during each monitoring round;
- Two thiocyanate concentrations of up to 1.6mg/l exceeded the assessment criteria of 0.17mg/l; and
- Ethylbenzene concentrations of up to 33µg/l exceeded the assessment criteria of 20ug/l during each monitoring round.

Ammoniacal nitrogen and sulphate concentrations were reported above the assessment criteria in all the water samples collected from gasholder 12. The highest concentrations of ammoniacal nitrogen and sulphate were 17mg/l and 1,400mg/l respectively.

## **Gasholder B**

One water sample was collected from gasholder B during the historical ground investigations by WYG. Concentrations of contaminants were low compared with the assessment criteria, with the exception of total cyanide which was moderately elevated.

# **Gasholder** C

One borehole was installed in BH1009 within gasholder base C. PBA reported elevated concentrations of PAHs in the water sample collected from the borehole.

# **Gasholders A, D and 8**

No groundwater samples were collected from within the bases of former gasholders A, D or 8.

# **Outside Gasholders**

Groundwater samples collected from BH2015 and BH2005C had determinand concentrations below the assessment criteria, with the exception of sulphate and ammoniacal nitrogen. An elevated lead result from BH2015 was reported from one sample.

#### **Ground Gas and Vapour D1.4**

#### Methodology **D1.4.1**

The ground gas/vapour regime has been assessed by considering both the concentrations of landfill gases in the ground, the quantity and variability of surface emission rates (which is related to ongoing biodegradation and further production of gases) and short term variations (especially peaks) in surface emissions.

The following published guidance on the assessment of ground gas has been used:

- The Building Regulations 2000 Approved Document C;
- CIRIA Report C665 Assessing risks posed by hazardous ground gases to buildings;
- BS 8485: Code of practice for the characterisation and remediation from ground gas in affected developments and
- The Local Authority Guide to Ground Gas, CIEH; London, 2008.

#### 4.6.4 Assessment

The gas monitoring results from the historical and recent ground investigations are provided in Section D4. A summary of the results is presented below:

All gas results from the 2010/11 PBA ground investigation were classified as characteristic situation (CS)1 which is defined as 'very low hazard potential';

- Carbon dioxide did not exceed 5% concentration by volume in any of the monitoring measurements;
- Hydrogen sulphide was at 1% or below detection limits for all monitoring rounds, (where measured); and
- Methane did not exceed 0.2% concentration by volume in any of the monitoring measurements during the 2010/11 PBA or WYG ground investigations.
- One gas sample was collected from BH2003 which is outside of the gasholder bases. Ammonia was reported at a concentration of 0.02mg/m<sup>3</sup>.
- The sample collected from BH2001 in gasholder 12 reported a naphthalene concentration of 2.83mg/m<sup>3</sup>.
- One sample collected from BH2004 in gasholder 9 reported toluene concentrations of 630mg/m<sup>3</sup> and 450mg/m<sup>3</sup> from the shallow and deep monitoring wells respectively.
- Gas samples collected in gasholder 3 (BH2007, BH2012, BH2014) reported concentrations of ammonia (maximum of 0.22mg/m<sup>3</sup>) and naphthalene  $(0.014 \text{mg/m}^3)$ .
- Gas samples collected from outside of the gasholders (BH2005C, BH2009 and BH2015) reported concentrations of ammonia (0.06mg/m<sup>3</sup> in BH2009), naphthalene (0.029mg/m<sup>3</sup> in BH2005C, 0.002 mg/m<sup>3</sup> in BH2009 and 0.003  $mg/m^3$  in BH2015).

### Historical Ground Investigations

- Gas monitoring was undertaken from standpipes located inside gasholders 1 and 9. Low concentrations of carbon dioxide and methane were recorded.
- Very high levels of methane were measured during the WYG ground investigation in gasholder B (BH107). These concentrations classify this area as CS3 which is defined as 'moderate hazard potential'. It was reported by WYG that the measured concentrations were 'above the detection limits' of the gas meter. Subsequently it is reported that a 'Transco engineer detected natural gas' at this location. A gas sample collected at this location reported elevated concentrations of methane, ethane, propane and butane. Elevated concentrations of methane (50%) were also detected in a standpipe (BH102) located in the area outside of the gasholders, which classifies this area as CS2 ('low hazard potential'). However no methane was measured at this location after it had been vented for one hour and sealed for a further two hours.
- A value of 4% methane was recorded in gasholder 9 during the Oscar Faber ground investigation. This concentration reduced to 0.5% after a certain amount of dissipation time, the duration of which was not specified in the report.

**Soil Screening Tables D2** 

REP002 | Issue 4 | 13 July 2011

J/2/16000/216066 KXC B3 REMEDIATION SERVICES/4 INTERNAL PROJECT DATA(4-03 ARUP REPORTS)/02 B3 ERP/03 ISSUE 4IISSUE4 REP002 ZONE B ERP B3 AMENDMENT REPORT 13JUL11.DOCX

King's Cross Central Zones B and E Earthworks & Remediation Plan

| Ground Investigation                                               | I                 |                            | CTRL 1992 -<br>1997 | CTRL 1992 -<br>1997 | CTRL 1992 -<br>1997 | CTRL 1992 -<br>1997 | CTRL 1992 -    | CTRL 1992 -<br>1997 | Norwest Holst         | Norwest Holst            | Norwest Holst        | Norwest Holst        | White Young<br>Green | CTRL 1992 -<br>1997       | CTRL 1992 -<br>1997       | Norwest Holst             | CTRL 1992 -<br>1997  |
|--------------------------------------------------------------------|-------------------|----------------------------|---------------------|---------------------|---------------------|---------------------|----------------|---------------------|-----------------------|--------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------------|---------------------------|---------------------------|----------------------|
| Report Number                                                      |                   |                            | 1997                | 1997                | 1997                | 1997                | 1997           | 1997                | F15323                | F15323                   | F15323               | F15323               | Green                | Green                | Gleen                | Green                | Green                | Green                | Gleen                | Green                | Green                | Gleen                | Green                | Green                | 1997                      | 1997                      | F15323                    | 1997                 |
|                                                                    |                   |                            |                     |                     |                     |                     |                |                     |                       |                          |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| Lab Ref                                                            |                   |                            | SA7323-0.2          | SA7323-0.55         |                     | SA7323-3            |                | TP5010-1            | 534-536(2)            | 529-541(7)               | 400-402(301)         | 406-408(305)         | WYG11399             | WYG11400             | WYG11407             | WYG11408             | WYG11409             | WYG11412             | WYG11413             | WYG11414             | WYG11428             | WYG11429             | WYG11415             | WYG11416             | TP7327-0.2                | TP7327-0.5                |                           | SA7324A-0.25         |
| Date<br>Exploatory hole location                                   |                   |                            | Not known<br>SA7323 | Not known<br>SA7323 | Not known<br>SA7323 |                     |                | Not known<br>TP5010 | 20/08/2008<br>TP1021A | 20/08/2008<br>TP1021A    | 15/08/2008<br>TP1022 | 15/08/2008<br>TP1022 | 15/7/99<br>BH102A    | 15/7/99<br>BH102A    | 15/7/99<br>BH104     | 15/7/99<br>BH104     | 15/7/99<br>BH104     | 15/7/99<br>BH106     | 15/7/99<br>BH106     | 15/7/99<br>BH106     | 15/7/99<br>TT109     | 15/7/99<br>TT109     | 15/7/99<br>BH107     | 15/7/99<br>BH107     | Not known<br>TP7327       | Not known<br>TP7327       | 13/08/2008<br>BH1017      | Not known<br>SA7324A |
| Zone B Location                                                    |                   |                            | B1                  | B1                  | B1                  | B1                  | B1             | B1                  | B1                    | B1                       | B1                   | B1                   | B1                   | B1                   | B1                   | B1                   | B1                   | B1100                | B1                   | B1                   | B1                   | B1                   | B1                   | BI1                  | Offsite B1                | Offsite B1                | Offsite B1                | B3                   |
| Zone B Eocation                                                    |                   |                            | ы                   | ы                   | ы                   | ы                   | 51             | ы                   | DI                    | 51                       | DI                   | DI                   | ы                    | ы                    | DI                   | ы                    | 51                   | 51                   | ы                    | DI                   | DI                   | 51                   | Di                   | 51                   |                           |                           |                           | 55                   |
| Location on plot/ gas holder number                                |                   |                            | Outside             | Outside             | Outside             | Outside             | Outside        | Outside             | Outside               | Outside                  | Outside              | Outside              | Outside              | Outside              | GH9 (interior)       | GH9                  | CH0 (interior)       | CH1 (interior)       | GH1 (interior)       | CLI1 (interior)      | GH1 footprint        | GH1 footprint        | GHB (exterior)       | GHB (exterior)       | Footprint<br>(immediately | Footprint<br>(immediately | Footprint<br>(immediately | Outside              |
| Location on plot gas holder humber                                 |                   |                            | gasholders          | gasholders          | gasholders          | gasholders          | gasholders     | gasholders          | gasholders            | gasholders               | gasholders           | gasholders           | gasholders           | gasholders           | GH9 (Interior)       | (interior)           | GH9 (IIItellol)      | GITT (ITTETIOT)      | GHT (Interior)       | GHT (Interior)       | GHT100(phin)         | GHT IOOIDIIII        | GHB (exterior)       | GHB (exterior)       | south of boundary)        | south of boundary)        | south of boundary)        | gasholders           |
| Depth (m)                                                          |                   |                            | 0.2m                | 0.55m               | 1.0m                | 3.0m                | 0.15m          | 1.0m                | 1.5m                  | 3m                       | 3.5m                 | 4.0m                 | 0.5m                 | 1.5m                 | 1.5m                 | 2.5m                 | 10.5m                | 1.0m                 | 7.0m                 | 11.0m                | 0.5m                 | 1.0m                 | 2.0m                 | 5.0m                 | 0.2m                      | 0.5m                      | 3m                        | 0.25m                |
| Strata                                                             | L                 |                            | Made Ground         | Made Ground         | Made<br>Ground      | London Clay         | Made<br>Ground | Made<br>Ground      | Made Ground           | Weathered<br>London Clay | Made Ground          | London Clay          | Made Ground          | Made<br>Ground       | Made Ground          | Made<br>Ground       | Made Ground          | London Clay               | London Clay               | London Clay               | Made Ground          |
|                                                                    |                   | Screening Criteria         | Made croand         |                     | Ground              | London oldy         | Ground         | Ground              | Made Ground           | London Oldy              | Midde Cirodina       | London Oldy          | Made croand          | Cirodina             |                      | Cirodina             | Made Ground          | Made Ground          | Made croand          | Made Ground          | Made croand          | Made Ground          | Made Ground          | Made circuita        | London Oldy               | London Oldy               | London Olay               | Made croand          |
| Determinants<br>Metals                                             | Units             | Commercial                 |                     |                     |                     | -                   |                |                     |                       |                          |                      |                      |                      |                      | _                    |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| Arsenic                                                            | mg/kg             | 640                        | 38                  | 32                  | 19                  | 20                  | 18             | 27                  | 11                    | 4                        | < 3                  | 4                    | 21                   | 15                   | 17                   | 15                   | 12                   | 8                    | 9                    | 39                   | 28                   | 22                   | 14                   | 14                   | 20                        | 23                        | 5                         | 16                   |
| Cadmium                                                            | mg/kg             | 230.0                      | 1                   | 1                   | 1                   | 1                   | 3              | 1                   | < 0.2                 | < 0.2                    | < 0.2                | < 0.2                | < 0.2                | < 0.5                | < 0.5                | < 0.5                | < 0.5                | < 0.5                | < 0.5                | 0.8                  | 0.6                  | 0.5                  | < 0.5                | < 0.5                | 1                         | 1                         | < 0.2                     | 1                    |
| Chromium<br>Copper                                                 | mg/kg<br>mg/kg    | 30400<br>71700             | 34<br>184           | 49<br>61            | 44 41               | 24<br>27            | 52<br>98       | 39<br>29            | 7.9<br>6              | 4/                       | 11<br>8              | 45<br>28             | 45<br>47             | 44<br>36             | 33<br>48             | 40<br>49             | 19<br>18             | 6<br>48              | 11<br>27             | 24<br>145            | 29<br>89             | 26<br>67             | 31<br>33             | 41<br>40             | 35<br>33                  | 25<br>36                  | 43<br>28                  | 22<br>87             |
| Lead                                                               | mg/kg             | 7300                       | 452                 | 279                 | 125                 | 18                  |                |                     | 11                    | 34                       | 5                    | 17                   | 200                  | 140                  | 260                  | 180                  | 71                   | 131                  | 488                  | 2516                 | 303                  | 424                  | 170                  | 45                   | 28                        | 27                        | 17                        | 230                  |
| Mercury<br>Nickel                                                  | mg/kg<br>mg/kg    | 3600<br>1800               | 1.13                | 0.89                | 0.31 20             | 0.09                | 21             | 1<br>26             | < 0.4 6.9             | 0.6                      | < 0.4<br>6.5         | < 0.4<br>48          | < 0.3<br>46          | < 0.3<br>38          | 0.8                  | < 0.3                | < 0.3 20             | 0.3                  | < 0.3                | < 0.3<br>49          | < 0.3<br>54          | 0.4 29               | < 0.3<br>30          | < 0.3<br>35          | 0.09<br>40                | 0.06<br>39                | 0.4<br>45                 | 0.29<br>42           |
| Molybdenum                                                         | mg/kg             | nc                         |                     |                     |                     |                     | 646            | 71                  |                       |                          |                      |                      |                      |                      |                      |                      |                      |                      | 1                    |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| Selenium                                                           | mg/kg             | 13000                      | 1.1                 | 0.64<br>179         | 0.45<br>88          | 0.33                | 1              | 1                   | < 3                   | < 3<br>91                | < 3                  | < 3<br>87            | < 0.5<br>120         | < 0.5                | < 0.5                | < 0.5<br>100         | < 0.5<br>41          | < 0.5<br>45          | < 0.5<br>99          | < 0.5                | 1<br>367             | 1.4                  | 0.4                  | < 0.5<br>78          | 0.65<br>73                | 0.67<br>75                | < 3<br>88                 | 0.66                 |
| Zinc<br>Miscellaneous                                              | mg/kg             | 662000                     | 580                 | 1/9                 | 52                  | 65                  | 326            | 60                  | 26                    | 91                       | 21                   | 0/                   | 120                  | 120                  | 208                  | 100                  | 41                   | 45                   | 99                   | 612                  | 367                  | 288                  | 102                  | /8                   | 13                        | 10                        | 00                        | 159                  |
| Total Cyanide                                                      | mg/kg             | nc                         | 5                   | 1                   | 1                   | 1                   |                |                     | < 1                   | < 1                      | < 1                  | < 1                  | < 5                  | < 5                  | 12                   | < 5                  | < 5                  | < 5                  | 4                    | 259                  | 53                   | 61                   | < 5                  | 8                    |                           |                           | < 1                       | 1                    |
| Free Cyanide<br>Thiocyanate                                        | mg/kg<br>mg/kg    | 78.00                      |                     |                     |                     |                     |                |                     |                       |                          |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| Boron                                                              | mg/kg             | 192000                     | 0.6                 | 0.7                 | 1.1                 | 1.8                 |                |                     | < 3.5                 | < 3.5                    | < 3.5                | < 3.5                | 1.5                  | 1.7                  | 2.6                  | 2.2                  | 0.9                  | 0.6                  | 0.8                  | 1.1                  | 1.7                  | 3                    | 1.4                  | 2.5                  | 1                         | 1.4                       | < 3.5                     | 1.4                  |
| Total organic carbon                                               | %                 | nc                         | 11.5                | 10                  | 8.2                 | 7.8                 | 0.02           | 7.84                | 7.98                  | 8.14                     | 1.4<br>8.63          | 7.05                 | 8.1                  | 7.8                  |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      | 8.7                       | 7.4                       | 7.8                       | 8.1                  |
| Asbestos identfication                                             | pH Units          | nc                         | Not detected        | Not detected        | 0.2                 | 7.0                 | 8.93           | 7.04                | 7.30                  | 0.14                     | 0.03                 | 7.85                 | 0.1                  | 7.0                  |                      |                      |                      | 1                    | 1 1                  |                      | 1                    |                      |                      |                      | Not detected              | 7.4                       |                           | Not detected         |
| Asbestos Concentration                                             | %                 | nc                         | < 0.001             | < 0.001             |                     |                     |                |                     |                       |                          |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      | <0.001                    |                           |                           | <0.001               |
| Phenol<br>Sulphur (free)                                           | mg/kg             | 3200<br>nc                 | -                   |                     |                     |                     |                |                     |                       |                          |                      |                      | < 0.02               |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| Sulphide                                                           | mg/kg             | nc                         |                     |                     |                     |                     |                |                     |                       |                          |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| Total Sulphate<br>Sulphur (elemental)                              | % as SO4<br>mg/kg | nc<br>nc                   |                     |                     |                     |                     |                |                     |                       |                          |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| Phenol (monohydric) SOM 1%                                         | mg/kg             | nc                         | 0.5                 | 0.5                 | 0.5                 | 0.5                 |                |                     |                       |                          | < 0.15               | < 0.15               |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           | < 0.15                    | 0.5                  |
| Total sulphate                                                     | mg/kg             | nc                         | 0.522               | 0.0920              | 0.167               | 1 50                |                |                     | 21000                 | 0.20                     | 1600<br>0.092        | 5200                 | 20                   | 30                   | 35                   | 230                  | 26                   | 45                   | 33                   | 527                  | 64                   | 34                   | 25                   | 30                   |                           |                           | 01                        | 0.124                |
| Sulphate (2:1 water soluble) as SO4<br>Organic matter              | g/l<br>%          | nc                         | 0.533               | 0.0839              | 0.167               | 1.59                |                |                     | 3.8                   | 0.29                     | 3.3                  | 2.2<br>0.97          |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           | 21<br>0.57                | 0.124                |
| Moisture                                                           | %                 | nc                         |                     |                     |                     |                     |                |                     |                       |                          |                      |                      | 34                   |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| Acid Neutralisation Capacity<br>Loss on ignition                   | mol/kg<br>%       | nc                         |                     |                     |                     |                     |                |                     |                       |                          |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| Stones content > 50mm                                              | %                 | nc                         |                     |                     |                     |                     |                |                     |                       |                          |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| BTEX<br>Benzene                                                    | μg/kg             | 28000.00                   |                     |                     |                     |                     |                |                     |                       |                          | < 0.01               |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| Toluene                                                            | μg/kg<br>μg/kg    | 870000.00                  |                     |                     |                     |                     |                |                     |                       |                          | < 0.01               |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| Ethylbenzene                                                       | µg/kg             | 581000                     |                     |                     |                     |                     |                |                     |                       |                          | < 0.01               |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| m- & p-Xylene<br>o-Xylene                                          | μg/kg<br>μg/kg    | 575000<br>480000           |                     |                     |                     |                     |                |                     |                       |                          | < 0.01               |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| Total BTEX                                                         | µg/kg             | nc                         |                     |                     |                     |                     |                |                     |                       |                          |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| Methyl tert-butyl ether<br>Hydrocarbons                            | μg/kg             | nc                         |                     |                     |                     |                     |                |                     |                       | ł – – –                  | < 0.01               |                      |                      |                      |                      |                      |                      |                      | + +                  |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| TEM                                                                | mg/kg             | nc                         | 700                 | 500                 | 1300                | 500                 |                |                     |                       |                          |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      | 500                       | 500                       |                           | 800                  |
| Diesel range organics (DRO)<br>Gasoline Range Organics by GC (GRO) | mg/kg<br>mg/kg    | 2130<br>2130               | 0.1                 | 57<br>0.1           | 65<br>0.1           | 39<br>0.1           |                |                     |                       |                          |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      | 88<br>0.1                 | 232<br>0.1                |                           | 39<br>0.1            |
| TPH (SUM DRO + GRO)                                                | mg/kg             | 2130                       | 127.1               | 57.1                | 65.1                | 39.1                |                |                     |                       |                          |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      | 88.1                      | 232.1                     |                           | 39.1                 |
| TPH (Mineral Oil/ Hydrocarbon oil)                                 | mg/kg             | 2130                       |                     |                     |                     |                     |                |                     |                       |                          |                      |                      |                      |                      | 43                   | < 10                 |                      |                      | 43                   |                      |                      | < 10                 | 30                   |                      |                           |                           |                           |                      |
| TPH (Aromatic hydrocarbons)<br>TPH (Solvent Extracted)             | mg/kg<br>mg/kg    | 2130<br>2130               |                     |                     |                     |                     | 1000           | 395                 |                       |                          |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| TPH                                                                | mg/kg             | 2130                       | 127.1               | 57.1                | 65.1                | 39.1                |                |                     |                       |                          |                      |                      |                      |                      |                      |                      |                      |                      | ļ                    |                      |                      |                      |                      |                      | 88.1                      | 232.1                     | ~~                        |                      |
| EPH DRO (C10 - C40)<br>Acenaphthene                                | mg/kg<br>mg/kg    | 2130<br>84900              | 1                   | 1                   | 1                   | 1                   |                |                     | 0.013                 |                          | 0.004                | 0.11                 | 1.3                  | 0.6                  | < 0.1                | < 0.1                | < 0.1                | < 0.1                | < 0.1                | 0.3                  | 0.5                  | 0.5                  | 0.3                  | < 0.1                | 1                         | 1                         | 55                        |                      |
| Acenaphthylene                                                     | mg/kg             | 84300                      | 1                   | 1                   | 1                   | 1                   |                |                     | 0.014                 |                          | 0.003                | 0.094                | 3                    | 0.2                  | 0.2                  | < 0.1                | < 0.1                | < 0.1                | < 0.1                | < 0.1                | 1.6                  | 1.6                  | 0.3                  | < 0.1                | 1                         | 1                         |                           |                      |
| Anthracene<br>Benzo(a)anthracene                                   | mg/kg<br>mg/kg    | 525000<br>90.0             | 1                   | 1                   | 1                   | 1                   | -              |                     | 0.032                 |                          | 0.008                | 0.34 0.79            | 23<br>26             | 0.4                  | 0.4                  | < 0.1                | 0.2                  | 0.6                  | 1.5<br>5.4           | 0.9 6.3              | 3.2                  | 3.5<br>8.5           | 1.1<br>3.1           | 0.1 0.3              | 1                         | 1                         |                           |                      |
| Benzo(a)pyrene                                                     | mg/kg             | 14.00                      | 4                   | 4                   | 1                   | 1                   |                |                     | 0.11                  |                          | 0.023                | 0.89                 | 27                   | 1.5                  | 1.7                  | < 0.1                | 0.4                  | 0.2                  | 4.9                  | 3.3                  | 5.4                  | 11.9                 | 3.1                  | 0.4                  | 1                         | 1                         |                           |                      |
| Benzo(b)fluoranthene<br>Benzo(k)fluoranthene                       | mg/kg<br>mg/kg    | 100.0<br>141.0             | 3                   | 3                   | 1                   | 1                   | <u> </u>       |                     | 0.15                  | <u> </u>                 | 0.032                | 1.1<br>0.51          | 26<br>16             | 1.6<br>1.4           | 1.6<br>1.4           | < 0.1                | 0.2                  | 0.2                  | 8.2<br>2.1           | 6<br>1.7             | 7.9<br>2.8           | 13.6<br>7.1          | 5<br>1.4             | < 0.1                | 1                         | 1                         | T                         |                      |
| Benzo(g,h,i)perylene                                               | mg/kg             | 654                        | 3                   | 2                   | 1                   | 1                   | 1              |                     | 0.17                  |                          | 0.015                | 0.6                  | 17                   | 1.9                  | 1.5                  | < 0.1                | 0.2                  | 0.1                  | 2.8                  | 2.2                  | 2.8                  | 7.3                  | 1.5                  | 0.1                  | 1                         | 1                         |                           |                      |
| Chrysene                                                           | mg/kg             | 137.0                      | 4                   | 3                   | 1                   | 1                   |                |                     | 0.13 0.027            |                          | 0.02                 | 0.82 0.092           | 36<br>5.8            | 1.5<br>0.4           | 2.3<br>0.5           | 0.3                  | 0.4                  | 0.3                  | 7.7<br>0.8           | 5.6<br>1.2           | 10.1                 | 10.2<br>1.4          | 4.2<br>0.6           | 0.4                  | 1                         | 1                         |                           |                      |
| Dibenzo(a,h)anthracene<br>Fluoranthene                             | mg/kg<br>mg/kg    | 13.00<br>22600             | 5                   | 3                   | 1                   | 1                   |                |                     | 0.027                 |                          | 0.003                | 2.1                  | 5.8<br>49            | 2                    | 2.8                  | < 0.1                | < 0.1                | < 0.1<br>0.5         | 0.8<br>5.4           | 1.2                  | 9                    | 1.4                  | 0.6<br>4.4           | < 0.1<br>0.5         | 1                         | 1                         |                           |                      |
| Fluorene                                                           | mg/kg             | 63500                      | 1                   | 1                   | 1                   | 1                   |                |                     | 0.023                 |                          | 0.004                | 0.16                 | 7.1                  | 0.1                  | < 0.1                | < 0.1                | < 0.1                | 1.8                  | 0.1                  | 0.3                  | 0.8                  | 0.8                  | 0.7                  | 0.1                  | 1                         | 1                         |                           |                      |
| Indeno(1,2,3-c,d)pyrene<br>Naphthalene                             | mg/kg<br>mg/kg    | 60.0<br>204.0              | 5                   | 4                   | 2                   | 2                   |                |                     | 0.11                  |                          | 0.011 0.003          | 0.51 0.096           | 17                   | 2                    | 1.4                  | < 0.1                | 0.2                  | 0.1                  | 4.1<br>1.4           | 3.6<br>7.3           | 4                    | 7.7<br>3.8           | 2.3<br>5.5           | 0.2                  | 2                         | 2                         |                           |                      |
| Phenanthrene                                                       | mg/kg             | 21900                      | 4                   | 2                   | 1                   | 1                   |                |                     | 0.25                  |                          | 0.025                | 1.4                  | 48                   | 1.3                  | 1.5                  | 0.5                  | 0.8                  | 0.6                  | 3.9                  | 3.2                  | 6.2                  | 8.3                  | 4.9                  | 0.7                  | 1                         | 1                         |                           |                      |
| Pyrene                                                             | mg/kg             | 54200                      | 5                   | 3                   | 1                   | 1                   |                |                     | 0.13                  | <u> </u>                 | 0.04                 | 1.7                  | 36                   | 1.6                  | 2.3                  | 0.1                  | 0.6                  | 0.8                  | < 0.1                | 6.5                  | 11                   | 13.6                 | 4.9                  | 0.2                  | 1                         | 1                         |                           |                      |
| Coronene<br>PAH (Sum of 16 - excluding coronene)                   | mg/kg<br>mg/kg    | nc<br>nc                   | 45                  | 35                  | 16                  | 16                  | -              |                     | <10                   | <10                      |                      | <10                  | 341.2                | 19.3                 | 20.6                 | 2.9                  | 5.5                  | 5.7                  | 48.3                 | 50.4                 | 84.6                 | 115.9                | 43.3                 | 6                    | 16                        | 16                        | <10                       |                      |
| PAH (Sum of 17 - including coronene)                               | mg/kg             | nc                         | -                   |                     |                     | -                   |                |                     | -                     |                          | 350                  |                      |                      | -                    |                      | -                    | -                    |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| PCB<br>PCB 28                                                      | mg/kg             | nc                         |                     |                     |                     |                     | -              |                     |                       |                          | < 0.003              |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| PCB 20<br>PCB 52<br>PCB 101                                        | mg/kg             | nc                         |                     |                     |                     |                     |                |                     |                       |                          | < 0.003              |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| PCB 101                                                            | mg/kg             | nc                         |                     |                     |                     |                     |                |                     |                       |                          | < 0.003              |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| PCB 118<br>PCB 138                                                 | mg/kg<br>mg/kg    | nc                         |                     |                     |                     |                     |                |                     |                       |                          | < 0.003              |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| PCB 153                                                            | mg/kg             | nc                         |                     |                     |                     |                     |                |                     |                       |                          | < 0.003              |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           |                           |                      |
| PCB 180                                                            | mg/kg             | nc                         |                     |                     |                     |                     |                | $\vdash$            |                       | <u> </u>                 | < 0.003              |                      |                      |                      |                      |                      | <u> </u>             |                      | ┨                    |                      |                      |                      |                      |                      |                           | T                         | T                         |                      |
|                                                                    | Indicates         | where the data exceeds the | screening criteria  |                     |                     |                     |                |                     |                       |                          |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      |                           |                           | +                         |                      |
|                                                                    |                   |                            |                     |                     |                     |                     |                |                     |                       |                          |                      |                      |                      |                      |                      |                      |                      |                      | -                    |                      |                      |                      |                      |                      |                           |                           |                           |                      |

| Ground Investigation                                                         |                |                     | CTRL 1992 -           | CTRL 1992 -           | CTRL 1992 -           | CTRL 1992 -           | White Young       | White Young    | White Young        | CTRL 1992 -           |                    |                    | CTRL 1992 -        | CTRL 1992 -           | CTRL 1992 -        | CTRL 1992 -        | CTRL 1992 -           |
|------------------------------------------------------------------------------|----------------|---------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------|----------------|--------------------|-----------------------|--------------------|--------------------|--------------------|-----------------------|--------------------|--------------------|-----------------------|
| Report Number                                                                |                |                     | 1997                  | 1997                  | 1997                  | 1997                  | Green             | Green          | Green              | 1997                  | 1997               | 1997               | 1997               | 1997                  | 1997               | 1997               | 1997                  |
| Lab Ref                                                                      |                |                     | SA7324A-0.5           | SA7324A-1.0           | SA7324A-3.0           | SA7324A-4.0           | WYG11422          | WYG11423       | WYG11424           | SA3838-0.5            | SA3838-2.0         | SA3838-2.8         | SA7322-0.2         | SA7322-0.2            | SA7322-0.2         | SA7322-1.2         | SA7322-0.2            |
| Date                                                                         |                |                     | Not known             | Not known             | Not known             | Not known             | 15/7/99           | 15/7/99        | 15/7/99            | Not known             | Not known          | Not known          | Not known          | Not known             | Not known          | Not known          | Not known             |
| Exploatory hole location                                                     |                |                     | SA7324A               | SA7324A               | SA7324A               | SA7324A               | TT105             | TT105          | TT106              | SA3838                | SA3838             | SA3838             | SA7322<br>Pancras  | SA7322<br>Pancras     | SA7322<br>Pancras  | SA7322A<br>Pancras | SA7322A<br>Pancras    |
| Zone B Location                                                              |                |                     | B3                    | B3                    | B3                    | B3                    | B3                | B3             | B3                 | B6                    | B6                 | B6                 | Square             | Square                | Square             | Square             | Square                |
| Location on plot/ gas holder number                                          |                |                     | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | GH9/<br>footprint | GH9/ footprint | Outside gasholders | Outside<br>gasholders | Outside gasholders | Outside gasholders | Outside gasholders | Outside<br>gasholders | Outside gasholders | Outside gasholders | Outside<br>gasholders |
| Depth (m)                                                                    |                |                     | 0.5m                  | 1.0m                  | 3.0m                  | 4.2m                  | 1.5m              | 2.4m           | 1.0m               | 0.5m                  | 2m<br>Made         | 2.8m<br>Made       | 0.2m               | 1.0m                  | 1.2m<br>Made       | 1.2m               | 2.6m                  |
| Strata                                                                       |                | Screening Criteria  | Made Ground           | Made Ground           | Made Ground           | London Clay           | Made Ground       | Made Ground    | Made Ground        | Made Ground           | Ground             | Ground             | Made Ground        | Made Ground           | Ground             | Made Ground        | London Clay           |
| Determinants                                                                 | Units          | Commercial          |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    |                       |
| Metals<br>Arsenic                                                            | mg/kg          | 640                 | 18                    | 16                    | 25                    | 23                    | 13                | 13             | 43                 | 23                    | 16                 | 12                 | 12                 | 64                    |                    | 20                 | 28                    |
| Cadmium                                                                      | mg/kg          | 230.0               | 1                     | 1                     | 1                     | 1                     | < 0.5             | < 0.5          | 1.2                | 1                     | 1                  | 1                  | 1                  | 1                     |                    | 1                  | 1                     |
| Chromium                                                                     | mg/kg          | 30400<br>71700      | 32<br>51              | 32<br>52              | 41<br>37              | 37<br>39              | 25<br>33          | 34<br>36       | 28<br>120          | 22<br>56              | 17<br>51           | 27<br>13           | 15<br>29           | 31<br>102             |                    | 47<br>48           | 45<br>40              |
| Copper<br>Lead                                                               | mg/kg<br>mg/kg | 7300                | 1030                  | 1350                  | 151                   | 132                   | 236               | 100            | 1000               | 262                   | 168                | 7                  | 142                | 407                   |                    | 108                | 64                    |
| Mercury                                                                      | mg/kg          | 3600                | 1.37                  | 1.67                  | 4.05                  | 5.99                  | < 0.3             | < 0.3          | 1.9                | 1                     | 1                  | 1                  | 0.7                | 0.77                  |                    | 0.26               | 0.21                  |
| Nickel                                                                       | mg/kg          | 1800                | 22                    | 20                    | 35                    | 36                    | 23                | 30             | 40                 | 19                    | 16                 | 23                 | 12                 | 24                    |                    | 34                 | 38                    |
| Molybdenum<br>Selenium                                                       | mg/kg<br>mg/kg | nc<br>13000         | 0.68                  | 0.89                  | 1.32                  | 1.32                  | < 0.5             | < 0.5          | 1                  | 1                     | 1                  | 1                  | 0.63               | 0.37                  |                    | 0.54               | 0.67                  |
| Zinc                                                                         | mg/kg          | 662000              | 552                   | 628                   | 114                   | 122                   | 132               | 79             | 790                | 96                    | 165                | 45                 | 195                | 404                   |                    | 150                | 113                   |
| Miscellaneous                                                                | malin          |                     | F                     |                       | 4                     |                       | .5                | .5             | 451                |                       |                    |                    | •                  |                       |                    | 4                  |                       |
| Total Cyanide<br>Free Cyanide                                                | mg/kg<br>mg/kg | nc<br>78.00         | 5                     | 1                     | 1                     | 1                     | < 5               | < 5            | 451                |                       |                    |                    | 2                  | 1                     |                    | 1                  | 1                     |
| Thiocyanate                                                                  | mg/kg          | nc                  |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    |                       |
| Boron<br>Total organic carbon                                                | mg/kg          | 192000              | 1                     | 1.5                   | 2.6                   | 2.7                   | 2                 | 1.5            | 6.3                |                       |                    |                    | 2.2                | 2.7                   |                    | 0.7                | 0.5                   |
| Total organic carbon<br>pH                                                   | %<br>pH Units  | nc                  | 7.4                   | 7.9                   | 8.4                   | 8.3                   |                   |                |                    | 8.24                  | 9.51               | 8.23               | 9.9                | 9.2                   |                    | 10.2               | 8.5                   |
| Asbestos identfication                                                       |                | nc                  |                       |                       |                       |                       |                   |                |                    | Not detected          |                    |                    | Not detected       | Not detected          |                    | Not detected       | 5.0                   |
| Asbestos Concentration                                                       | %              | nc<br>2200          |                       |                       |                       |                       |                   |                |                    | <0.001                |                    |                    | < 0.001            | < 0.001               |                    | < 0.001            | <u> </u>              |
| Phenol<br>Sulphur (free)                                                     | mg/kg          | 3200<br>nc          |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    |                       |
| Sulphide                                                                     | mg/kg          | nc                  |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    | 1                     |
| Total Sulphate                                                               | % as SO4       | nc                  |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    |                       |
| Sulphur (elemental)<br>Phenol (monohydric) SOM 1%                            | mg/kg<br>mg/kg | nc                  | 0.5                   | 0.5                   | 0.5                   | 0.5                   |                   |                |                    |                       |                    |                    | 0.5                | 0.5                   |                    | 0.5                | 0.5                   |
| Total sulphate                                                               | mg/kg          | nc                  |                       |                       |                       |                       | 160               | 250            | 200                |                       |                    |                    |                    |                       |                    |                    |                       |
| Sulphate (2:1 water soluble) as SO4                                          | g/l            | nc                  | 0.856                 | 0.751                 | 0.334                 | 0.399                 |                   |                |                    | 0.3                   | 0.48               | 0.03               | 0.537              | 0.645                 |                    | 0.168              | 0.106                 |
| Organic matter<br>Moisture                                                   | %              | nc                  |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    |                       |
| Acid Neutralisation Capacity                                                 | mol/kg         | nc                  |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    |                       |
| Loss on ignition<br>Stones content > 50mm                                    | %              | nc                  |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    |                       |
| BTEX                                                                         | 70             | nc                  |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    | 1                     |
| Benzene                                                                      | µg/kg          | 28000.00            |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       | 1                  |                    |                       |
| Toluene<br>Ethylbenzene                                                      | μg/kg<br>μg/kg | 870000.00<br>581000 |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       | 1                  |                    |                       |
| m- & p-Xylene                                                                | μg/kg<br>μg/kg | 575000              |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    | 1                     |
| o-Xylene                                                                     | µg/kg          | 480000              |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       | 1                  |                    |                       |
| Total BTEX<br>Methyl tert-butyl ether                                        | µg/kg          | nc                  |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       | 4                  |                    |                       |
| Hydrocarbons                                                                 | µg/kg          | nc                  |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    |                       |
| TÊM                                                                          | mg/kg          | nc                  | 2500                  | 2300                  | 500                   | 500                   |                   |                |                    |                       |                    |                    | 800                | 1500                  |                    | 500                | 500                   |
| Diesel range organics (DRO)<br>Gasoline Range Organics by GC (GRO)           | mg/kg<br>mg/kg | 2130<br>2130        | 82<br>0.1             | 60<br>0.1             | 69<br>0.1             | 96<br>0.1             |                   |                |                    |                       |                    |                    | 118<br>0.1         | 262                   |                    | 28                 | 66<br>0.1             |
| TPH (SUM DRO + GRO)                                                          | mg/kg<br>mg/kg | 2130                | 82.1                  | 60.1                  | 69.1                  | 96.1                  |                   |                |                    |                       |                    |                    | 118.1              | 262.1                 |                    | 28.1               | 66.1                  |
| TPH (Mineral Oil/ Hydrocarbon oil)                                           | mg/kg          | 2130                |                       |                       |                       |                       | 123               |                | 69                 | 581                   |                    |                    | -                  |                       |                    |                    |                       |
| TPH (Aromatic hydrocarbons)<br>TPH (Solvent Extracted)                       | mg/kg          | 2130<br>2130        |                       |                       |                       |                       |                   |                |                    | 110<br>4399           | 177                | 60                 |                    |                       |                    |                    |                       |
| TPH (Solvent Extracted)                                                      | mg/kg<br>mg/kg | 2130                |                       |                       |                       |                       |                   |                |                    | 4033                  | 1//                | 00                 | 118.1              | 262.1                 |                    | 28.1               | 66.1                  |
| EPH DRO (C10 - C40)                                                          | mg/kg          | 2130                |                       |                       |                       |                       |                   | -              |                    |                       |                    |                    |                    |                       |                    |                    |                       |
| Acenaphthene<br>Acenaphthylene                                               | mg/kg<br>mg/kg | 84900<br>84300      |                       |                       |                       |                       | 0.9               | < 0.1          | 0.4                |                       |                    |                    | 1                  | 1                     | 2                  | 1                  | 1                     |
| Anthracene                                                                   | mg/kg          | 525000              |                       |                       |                       |                       | 0.3               | 0.2            | 2.4                |                       |                    |                    | 1                  | 1                     | 4                  | 1                  | 1                     |
| Benzo(a)anthracene                                                           | mg/kg          | 90.0                |                       |                       |                       |                       | 1                 | 0.5            | 7.3                |                       |                    |                    | 2                  | 4                     | 3                  | 1                  | 1                     |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene                                       | mg/kg<br>mg/kg | 14.00               |                       |                       |                       |                       | 0.9               | 0.4            | 6.8<br>12          |                       |                    |                    | 3                  | 5                     | 6<br>12            | 1                  | 1                     |
| Benzo(k)fluoranthene                                                         | mg/kg<br>mg/kg | 141.0               |                       |                       |                       |                       | 0.7               | 0.6            | 3.7                |                       |                    |                    | 2                  | 4                     | 12                 | 1                  | 1                     |
| Benzo(g,h,i)perylene                                                         | mg/kg          | 654                 |                       |                       |                       |                       | 0.8               | 0.2            | 4.7                |                       |                    |                    | 2                  | 3                     | 5                  | 1                  | 1                     |
| Chrysene<br>Dibenzo(a b)anthracene                                           | mg/kg          | 137.0<br>13.00      |                       |                       |                       |                       | 1.2<br>0.3        | 0.8            | 9.5<br>1.8         |                       |                    |                    | 2                  | 4                     | 5                  | 1                  | 1                     |
| Dibenzo(a,h)anthracene<br>Fluoranthene                                       | mg/kg<br>mg/kg | 22600               |                       |                       |                       |                       | 0.3               | 0.1            | 1.8                |                       |                    |                    | 4                  | 6                     | 16                 | 1                  | 2                     |
| Fluorene                                                                     | mg/kg          | 63500               |                       |                       |                       |                       | 1.5               | < 0.1          | 0.9                |                       |                    |                    | 1                  | 1                     | 2                  | 1                  | 1                     |
| Indeno(1,2,3-c,d)pyrene                                                      | mg/kg          | 60.0<br>204.0       |                       |                       |                       |                       | 0.8               | 0.2            | 6.3<br>1.7         |                       |                    |                    | 3                  | 4                     | 5                  | 2                  | 2                     |
| Naphthalene<br>Phenanthrene                                                  | mg/kg<br>mg/kg | 204.0               |                       |                       |                       |                       | 4.1               | 0.5            | 8.5                |                       |                    |                    | 3                  | 5                     | 13                 | 1                  | 2                     |
| Pyrene                                                                       | mg/kg          | 54200               |                       |                       |                       |                       | 3.5               | 0.1            | 11                 |                       |                    |                    | 4                  | 6                     | 15                 | 1                  | 1                     |
| Coronene                                                                     | mg/kg          | nc                  | L                     |                       | L                     |                       | 23.1              | 7.4            | 94.8               |                       |                    |                    | 32                 | 49                    | 99                 | 16                 | 18                    |
| PAH (Sum of 16 - excluding coronene)<br>PAH (Sum of 17 - including coronene) | mg/kg<br>mg/kg | nc                  |                       |                       |                       |                       | 23.1              | /.4            | 94.8               |                       |                    |                    | 32                 | 49                    | 99                 | 16                 | 18                    |
| PCB                                                                          |                |                     |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    |                       |
| PCB 28                                                                       | mg/kg          | nc                  |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    |                       |
| PCB 52<br>PCB 101                                                            | mg/kg<br>mg/kg | nc                  |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    |                       |
| PCB 118                                                                      | mg/kg          | nc                  |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    |                       |
|                                                                              |                | 20                  |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    |                       |
| PCB 138                                                                      | mg/kg          | nc                  |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    |                       |
| PCB 138<br>PCB 153                                                           | mg/kg          | nc                  |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    |                       |
| PCB 138                                                                      |                |                     |                       |                       |                       |                       |                   |                |                    |                       |                    |                    |                    |                       |                    |                    |                       |

Ove Arup & Partners Ltd

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  | [               |                             |                            |                                |                      |                               |                         | <b></b>                 |                    |                     |                         |                  |                        |                                         |              |                       |                         |                        |                   |                                                                                           |                             |               |                  |                   |                        |                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------|-----------------------------|----------------------------|--------------------------------|----------------------|-------------------------------|-------------------------|-------------------------|--------------------|---------------------|-------------------------|------------------|------------------------|-----------------------------------------|--------------|-----------------------|-------------------------|------------------------|-------------------|-------------------------------------------------------------------------------------------|-----------------------------|---------------|------------------|-------------------|------------------------|-----------------------------------------------------------------|
| Ground Investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PBA 2010/ PBA 2010/<br>2011 2011 | 2011            | 2011 2011                   | 2011                       | 2011 2011                      | 2011                 | PBA 2010/<br>2011             | 2011 2011               | PBA 2010/<br>2011       | 2011               | 2011                | PBA 2010/<br>2011       | 2011             | 2011                   | 2011                                    | 2011         | 2011                  | 2011                    | 2011                   | 2011              | PBA 2010/ PBA 2<br>2011 201                                                               | 2011                        | 2011          | PBA 2010/ 201    | PBA 2010/<br>2011 | 2011                   | PBA 2010/<br>PBA 2010/2011 2011                                 |
| Report Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121863 121864                    | -               | 121863 121864               |                            | 121863 121863                  | 121863               | 58477                         | 58477 58477             | 58477                   | 58477              | 58477               | 58477                   | 58477            | 122210                 | 122209                                  | 122211       | 122209                |                         | 122210                 |                   | 122210 1222                                                                               |                             | _             | 133344 (Rev01    |                   | 133343                 | 133344 (Rev01) 121863                                           |
| Lab Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AF60247 AF60283                  | AF60249         | AF60251 AF6028              | 4 AF60252<br>10 10/12/2010 | AF60253 AF60254                | AF60255              | AF56035                       | AF56036 AF56037         | AF56038                 | AF56039            | AF56040             | AF56041                 |                  | AF68351<br>25/01/2011  | AF68283                                 | AF68427      | AF68284               | AF68285                 | AF68352                | AF68286           | AF68353 AF68                                                                              | 87 AF68288<br>011 25/01/201 |               | AF61314          | AF61275           | AF61276<br>04/01/2011  | AF61315 AF60263                                                 |
| Exploatory hole location                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 1                              |                 |                             | 6 BH2006                   | BH2006 BH2006                  | BH2006               |                               |                         |                         |                    |                     |                         | TT2002 (B)       | BH2014                 | BH2014                                  | BH2014       | BH2014                | BH2014<br>B1            |                        |                   | BH2014 BH20                                                                               | 14 BH2014                   | BH2012        | BH2012           | BH2012            |                        | BH2012 TP2021                                                   |
| Zone B Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1 B1                            | B1              | B1 B1                       | B1                         | B1 B1                          | B1                   | B1                            | B1 B1                   | B1                      | B1                 | B1                  | B1                      | B1               | B1                     | B1                                      | B1           | B1                    | ВІ                      | B1                     | B1                | B1 B1                                                                                     | B1                          | B1            | B1               | B1                | ВІ                     | B1 B1                                                           |
| Location on plot/ gas holder number                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Inside GH1 Inside GH1            |                 |                             |                            | Inside GH1 Inside GH1<br>8m 8m |                      |                               | Inside GH1 Inside GH1   | GH3                     | GH3                |                     |                         |                  |                        |                                         |              |                       |                         |                        |                   | Inside GH3 Inside                                                                         |                             |               |                  | Inside GH3        | Inside GH3<br>3m       | Inside GH3 Outside<br>gasholder 3<br>4m 0.3m                    |
| Depth (m) Strata Strata Screening Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Made Made<br>Ground Ground       | Made<br>Ground  | Made Made<br>Ground Ground  |                            | Made                           |                      |                               | Made Ground Made Ground |                         |                    |                     |                         |                  | Made<br>Ground         | Made Ground                             |              |                       | Made                    | Made                   | Made Ground       | Made                                                                                      |                             | y Made Groun  |                  |                   | Made Ground            | Made                                                            |
| Determinants Units Commercial<br>Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                 |                             |                            |                                |                      |                               |                         |                         |                    |                     |                         |                  |                        |                                         |              |                       |                         |                        |                   |                                                                                           |                             |               |                  |                   |                        |                                                                 |
| Arsenic         mg/kg         640           Cadmium         mg/kg         230.0           Chromium         mg/kg         30400                                                                                                                                                                                                                                                                                                                                                                   | 14<br>0.43<br>17                 | 15<br>1.4       | 15<br>0.16<br>17            |                            | 15<br>0.21                     |                      | 11<br>< 0.10                  | 11<br>0.15<br>27        |                         | 8.7<br>0.24        | 14<br>0.34<br>52    |                         | 13<br>0.18<br>37 |                        | 16<br><0.10<br>24                       |              | 6.4<br><0.10<br><5.0  |                         |                        | 14<br><0.10<br>11 | 14<br><0.1                                                                                | 0 0.11                      |               | 11<br>0.24<br>11 |                   |                        | 11 14<br>0.22 0.69<br>15 15                                     |
| Chromium         mg/kg         30400           Copper         mg/kg         71700           Lead         mg/kg         7300                                                                                                                                                                                                                                                                                                                                                                      | 39<br>260                        | 16<br>48<br>290 | 57<br>300                   |                            | 19<br>68<br>370                |                      | 26<br>220<br>260              | 110<br>310              |                         | 34<br>31<br>43     | 52<br>53<br>260     |                         | 37<br>34<br>21   |                        | 24<br>24<br>62                          |              | <5.0<br>26<br>23      |                         |                        | 20<br>95          | 28                                                                                        | 34                          | 28<br>300     | 26<br>200        |                   |                        | 15         15           27         38           220         480 |
| Mercury mg/kg 3600<br>Nickel mg/kg 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.54<br>23                       | 0.74            | 0.9 24                      |                            | 6.8<br>26                      |                      | 0.6<br>27                     | 1<br>32                 |                         | 0.44<br>35         | 0.59<br>51          |                         | 0.11 44          |                        | 0.29<br>27                              |              | <0.10<br>18           |                         |                        | 1.3<br>28         | 0.1                                                                                       | <0.10                       |               | 0.44             |                   |                        | 0.5 0.52 18 22                                                  |
| Molybdenum mg/kg nc<br>Selenium mg/kg 13000                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.20                           | < 0.20          | < 0.20                      |                            | < 0.20                         |                      | < 0.20                        | < 0.20                  |                         | 0.87               | 0.93                |                         | 0.74             |                        | <0.20                                   |              | <0.20                 |                         |                        | <0.20             |                                                                                           | 0 0.3                       | <0.20         | <0.2             |                   |                        | <0.2 < 0.20                                                     |
| Zinc         mg/kg         662000           Miscellaneous                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.5                            | 1.6             | 0.6                         |                            | 0.9                            |                      | 81<br>< 0.50                  | < 0.50                  |                         | 55<br><0.50        | 88                  |                         | 57<br><0.50      |                        | 66                                      |              | 33                    |                         |                        | 5/                | 71                                                                                        | 88                          | 85            | 38               |                   |                        | 150 210                                                         |
| Free Cyanide mg/kg 78.00<br>Thiocyanate mg/kg nc                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.5<br>< 5.0                   | < 0.5<br>< 5.0  | < 0.5<br>< 5.0              |                            | < 0.5<br>< 5.0                 |                      | < 0.50<br>< 5.0               | < 0.50<br>< 5.0         |                         | <0.50<br><5.0      | <0.50<br><5.0       |                         | <0.50<br><5.0    |                        |                                         |              |                       |                         |                        |                   |                                                                                           |                             | <0.50<br><5.0 | < 0.5<br><5      |                   |                        | <0.5 < 0.5<br><5 < 5.0                                          |
| Boron mg/kg 192000<br>Total organic carbon % nc                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.1                              |                 | 2                           |                            |                                |                      |                               |                         |                         |                    |                     |                         |                  | 2                      |                                         |              |                       |                         | 1.4                    |                   | 3.1                                                                                       |                             |               |                  |                   |                        |                                                                 |
| pH pH Units nc<br>Asbestos identification nc                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.4 11.3                        | 9.5             | 8.8 9.1                     |                            | 8.4<br>Not detected            |                      |                               | 9.5                     |                         | 8.3                | 8.9                 |                         | 8.3              | 10.7                   | 12                                      | Not detected | 10.5                  |                         | 8.4                    | 8.6               | 8.7 8.3                                                                                   | 8.5                         | 11.3          | 11               | 9.4               | 10.7                   | 9.9 9.5                                                         |
| Asbestos Concentration % nc<br>Phenol mg/kg 3200                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.3                            | < 0.3           | < 0.3                       |                            | < 0.3                          |                      |                               | <0.3                    |                         | <0.3               | <0.3                |                         | <0.3             |                        | <0.3                                    |              | <0.3                  |                         |                        | 7.1               | 4.8                                                                                       | 1.3                         | <0.3          |                  |                   |                        | < 0.3                                                           |
| Sulphur (free) nc<br>Sulphide mg/kg nc                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                 |                             |                            |                                |                      |                               |                         |                         |                    |                     |                         |                  |                        |                                         |              |                       |                         |                        |                   |                                                                                           |                             | +             |                  |                   |                        |                                                                 |
| Total Sulphate         % as SO4         nc           Sulphur (elemental)         mg/kg         nc           Phenol (monohydric) SOM 1%         mg/kg         nc                                                                                                                                                                                                                                                                                                                                  |                                  | <u> </u>        |                             |                            |                                |                      |                               |                         |                         |                    |                     |                         |                  |                        |                                         |              |                       |                         |                        |                   |                                                                                           |                             | 1             |                  |                   |                        |                                                                 |
| Total sulphate         mg/kg         nc           Sulphate (2:1 water soluble) as SO4         g/l         nc                                                                                                                                                                                                                                                                                                                                                                                     | 1.3                              | 1.1             | 1                           |                            | 0.9                            |                      | 0.5                           | 2.2                     |                         |                    |                     | 0.94                    |                  |                        | 0.64                                    |              | 0.87                  |                         |                        | 1.1               | 1.1                                                                                       |                             | 1.1           | 1.1              |                   |                        | 1 1.5                                                           |
| Organic matter % nc<br>Moisture % nc                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3<br>10.4 11.2                 | 3.3<br>14       | 3.8<br>24.6 23.9            |                            | 3.1<br>24.4                    | 23.1                 | 1.3                           | 0.43<br>21.3            | 21.1                    | 1.6<br>24.4        | 1.5<br>24.8         | 27.9                    | 1.5<br>27.6      |                        | 1.7<br>7.11                             |              | 0.95<br>17            | 30.2                    |                        | 7.6<br>31.1       |                                                                                           | 1.1<br>23.9                 | 3.4<br>10.4   | 3.1              | 12.8              |                        | 3.1 5<br>16.9                                                   |
| Acid Neutralisation Capacity         mol/kg         nc           Loss on ignition         %         nc           Stones content > 50mm         %         nc                                                                                                                                                                                                                                                                                                                                      | 0.168<br>3.72<br><0.02           |                 | 0.058<br><0.02<br><0.02     |                            |                                |                      |                               |                         |                         |                    |                     |                         |                  | 0.099<br>3.14<br><0.02 |                                         |              |                       |                         | 0.039<br>5.49<br><0.02 |                   | 0.096<br>3.96<br><0.02                                                                    |                             | <0.02         |                  | 4.48              | 0.124<br>3.75<br><0.02 |                                                                 |
| BTEX<br>Benzene μg/kg 28000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <1 <1                            | <1              | 13 17                       |                            | 4                              |                      |                               | 64                      | 79                      |                    |                     | 440                     |                  | 5.7                    |                                         |              |                       |                         | 660                    |                   | 3900                                                                                      |                             | 1.6           |                  | 3.1               | 2.5                    | <1                                                              |
| Toluene         μg/kg         870000.00           Ethylbenzene         μg/kg         581000                                                                                                                                                                                                                                                                                                                                                                                                      | <1<br>1.2 <1                     | <1              | <1 <1                       |                            | <1                             |                      |                               | 1.8                     | < 1<br>6.7              |                    |                     | 6.9<br>49               |                  | 1.6<br>< 1             |                                         |              |                       |                         | 99<br>88<br>210        |                   | 130000<br>7200                                                                            |                             | <1            |                  | 1.4               | <1<br><1               | <1                                                              |
| m-&p-Xylene µg/kg 575000<br>o-Xylene µg/kg 480000<br>Total BTEX µg/kg nc                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.8 <1<br>1.1 <1                 | <1<br><1        | <1 <1<br><1 <1<br>0.013     |                            | <1<br>3.3                      |                      |                               | <1 <1                   | 2.4<br>4.1              |                    |                     | 68<br>76                |                  | < 1<br>< 1<br>0.0064   |                                         |              |                       |                         | 210<br>100<br>0.83     |                   | 130000<br>39000<br>230                                                                    |                             | 1.7           |                  | <1<br><1          | < 1<br>< 1<br><0.005   | <1 <1                                                           |
| Total BTEX         μg/kg         nc           Methyl tert-butyl ether         μg/kg         nc           Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                            | <0.005                           |                 | 0.010                       | <1.0                       |                                | <1.0                 |                               | <1.0                    | <1.0                    |                    |                     | <1.0                    |                  | 0.0001                 |                                         |              |                       | <1.0                    | 0.00                   |                   | 230                                                                                       | <1.0                        |               |                  |                   | 40.000                 |                                                                 |
| Aliphatic C5-C6         mg/kg         3380           Aliphatic >C6-C8         mg/kg         8250                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                 |                             | < 0.1<br>< 0.1             |                                | < 0.1<br>< 0.1       |                               |                         | < 0.1<br>< 0.1          |                    |                     | < 0.1<br>< 0.1          |                  |                        |                                         |              |                       | < 0.1<br>< 0.1          |                        |                   |                                                                                           | < 0.1                       |               |                  |                   |                        |                                                                 |
| Aliphatic >C8-C10         mg/kg         2130           Aliphatic >C10-C12         mg/kg         10300           Aliphatic >C12-C16         mg/kg         60800                                                                                                                                                                                                                                                                                                                                   |                                  |                 |                             | < 0.1<br>< 0.1<br>< 0.1    |                                | < 0.1<br>3.6<br>7.9  |                               |                         | < 0.1<br>< 0.1<br>< 0.1 |                    |                     | < 0.1<br>< 0.1<br>< 0.1 |                  |                        |                                         |              |                       | < 0.1<br>< 0.1<br>< 0.1 |                        |                   |                                                                                           | < 0.1<br>< 0.1<br>< 0.1     |               |                  |                   |                        |                                                                 |
| Aliphatic >C16-C21         mg/kg         673000           Aliphatic >C21-C35         mg/kg         673000                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                 |                             | < 0.1                      |                                | 120<br>110           |                               |                         | < 0.1                   |                    |                     | < 0.1<br>< 0.1          |                  |                        |                                         |              |                       | < 0.1                   |                        |                   |                                                                                           | < 0.1                       |               |                  |                   |                        |                                                                 |
| Aliphatic >C35-C44         mg/kg         673000           Aromatic >C5-C7         mg/kg         27700                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                 |                             | < 0.1                      |                                | < 0.1                |                               |                         | < 0.1                   |                    |                     | < 0.1<br>< 0.1          |                  |                        |                                         |              |                       | < 0.1<br>< 0.1          |                        |                   |                                                                                           | < 0.1                       |               |                  |                   |                        |                                                                 |
| Aromatic >C7-C8         mg/kg         59000           Aromatic >C8-C10         mg/kg         3670           Aromatic >C10-C12         mg/kg         16900                                                                                                                                                                                                                                                                                                                                        |                                  |                 |                             | < 0.1<br>< 0.1<br>< 0.1    |                                | 2.7<br>18<br>50      |                               |                         | < 0.1<br>< 0.1<br>< 0.1 |                    |                     | < 0.1<br>< 0.1<br>3.5   |                  |                        |                                         |              |                       | < 0.1<br>27<br>60       |                        |                   |                                                                                           | < 0.1<br>< 0.1<br>3.1       |               |                  |                   |                        |                                                                 |
| Aromatic >C12-C16 mg/kg 36200<br>Aromatic >C16-C21 mg/kg 26700                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                 |                             | 2.4                        |                                | 18<br>30             |                               |                         | 0.72                    |                    |                     | 2.9                     |                  |                        |                                         |              |                       | 28<br>37                |                        |                   |                                                                                           | 4.9                         |               |                  |                   |                        |                                                                 |
| Aromatic >C21-C35         mg/kg         28400           Aromatic >C35-C44         mg/kg         28400           Aliphatic S5-C35         mg/kg         nc           Aromatic S5-C35         mg/kg         nc                                                                                                                                                                                                                                                                                     |                                  |                 |                             | 5.4<br>< 0.1               |                                | 40<br>< 0.1          |                               |                         | 0.7<br>< 0.1            |                    |                     | 4.2<br>< 0.1            |                  |                        |                                         |              |                       | 22<br>< 0.1             |                        |                   |                                                                                           | 7.4 < 0.1                   |               |                  |                   |                        |                                                                 |
| Aliphatic C5-C35         mg/kg         nc           Aromatic C5-C35         mg/kg         nc           Total hydrocarbons (alihpatics and aromatics)         mg/kg         2130                                                                                                                                                                                                                                                                                                                  | 1500                             | 43              | 21                          | 13                         | 16                             | 400                  |                               | 86                      | 4                       | 16                 | < 10                | 14                      | < 10             |                        | 48                                      |              | < 10                  | 170                     |                        | 5800              | 60                                                                                        | 27                          | 61            | 38               |                   |                        | 53 87                                                           |
| TPH Total WAC         mg/kg         nc           TEM         mg/kg         nc                                                                                                                                                                                                                                                                                                                                                                                                                    | 35                               | 10              | < 10                        |                            |                                | 100                  |                               |                         |                         | 10                 | (10                 |                         | (10              | < 10                   | 10                                      |              | <b>C</b> 10           |                         | 24                     | 0000              | 3500                                                                                      |                             |               |                  | 88                | 97                     |                                                                 |
| Diesel range organics (DRO) mg/kg 2130<br>Gasoline Range Organics by GC (GRO) mg/kg 2130                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                 |                             |                            |                                |                      |                               |                         |                         |                    |                     |                         |                  |                        |                                         |              |                       |                         |                        |                   |                                                                                           |                             |               |                  |                   |                        |                                                                 |
| TPH (SUM DRO + GRO)         mg/kg         2130           TPH (Mineral Oil/ Hydrocarbon oil)         mg/kg         2130           TPH (Aromatic hydrocarbons)         mg/kg         2130                                                                                                                                                                                                                                                                                                          |                                  |                 |                             |                            |                                |                      |                               |                         |                         |                    |                     |                         |                  |                        |                                         |              |                       |                         |                        |                   |                                                                                           |                             | 1             |                  |                   |                        |                                                                 |
| TPH (Solvent Extracted)         mg/kg         2130           TPH         mg/kg         2130                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                 |                             |                            |                                |                      |                               |                         |                         |                    |                     |                         |                  |                        |                                         |              |                       |                         |                        |                   |                                                                                           |                             |               |                  |                   |                        |                                                                 |
| EPH DRO (C10 - C40) mg/kg 2130                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.1 0.3                          | 0.69            | 9.9 0.2                     |                            | 0.17                           |                      | < 0.1                         | 0.3                     |                         | 0.34<br>0.38       | 0.1<br>0.11         |                         |                  | 0.5                    |                                         |              | 0.28                  |                         | 0.9                    | 5.9               | 14 0.1                                                                                    | 0.52                        |               |                  |                   | 0.3                    | < 0.1                                                           |
| Acenaphrinene         mg/kg         84300           Acenaphrinylene         mg/kg         84300           Anthracene         mg/kg         825000           Benzo(a)anthracene         mg/kg         90.0           Benzo(a)anthracene         mg/kg         14.00           Benzo(a)nuranthene         mg/kg         141.0           Benzo(k)fluoranthene         mg/kg         141.0           Benzo(k)fluoranthene         mg/kg         147.0           Chrysene         mg/kg         137.0 | 0.56 <0.1<br>5.3 0.5<br>5.7 1.9  | 1.3             | 110 0.3<br>290 1.3          | -                          | 0.36                           |                      | < 0.1<br>< 0.1<br>0.21        | 0.24 0.14               |                         | 1.2<br>1.3         | 0.63                |                         | 0.24             | 0.9<br>2.2<br>2        | 0.18<br>0.37<br>< 0.1<br>< 0.1          |              | 0.29 0.67             |                         | 3                      | 44 50             | 38         1.4           58         3.1           61         4.5           43         3.3 | 0.25                        |               |                  | 0.8               | 0.3<br>0.8<br>1.7      | 0.13                                                            |
| Benzo(a)pyrene mg/kg 14.00<br>Benzo(b)fluoranthene mg/kg 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.6 2.6<br>3.8 2.2               | 3.4<br>3.5      | 280 2.2<br>270 2            |                            | 0.64 0.87                      |                      | < 0.1<br>< 0.1                | 0.12                    |                         | 1.1                | 1.1<br>0.98         |                         | 0.3              | 2                      | < 0.1                                   |              | 1.3<br>< 0.1          |                         | 3.2                    | 33                | 50 < 0                                                                                    | < 0.1                       |               |                  | 2.3<br>2.2        | 1.6<br>2               | 1.2                                                             |
| Benzo(k)fluoranthene         mg/kg         141.0           Benzo(g,h,i)perylene         mg/kg         654           Chrysene         mg/kg         137.0                                                                                                                                                                                                                                                                                                                                         | 2.8 2<br>3 1.7<br>6 2            | 1.7<br>2.3      | 170 1<br>140 1.4<br>290 1.0 |                            | 0.46<br>0.52<br>0.73           |                      | < 0.1<br>< 0.1<br>0.21        | 0.15<br>< 0.1<br>0.17   |                         | 0.88<br>0.57       | 0.89<br>0.4<br>1.2  |                         | 0.25             | 1.5<br>2               | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1        |              | < 0.1<br>1.3<br>0.81  |                         | 2.4<br>1.6<br>3.2      | 27<br>14<br>53    | 30 < 0<br>16 1.2<br>61 5                                                                  | < 0.1<br>< 0.1<br>0.21      |               |                  | 1.2<br>2.7        | 1.1<br>1.3<br>1.8      | 0.83 0.92 1.3                                                   |
| Chrysene mg/kg 137.0<br>Dibenzo(a,h)anthracene mg/kg 13.00<br>Fluoranthene mg/kg 22600                                                                                                                                                                                                                                                                                                                                                                                                           | 6 2<br>0.52 1.5<br>16 4.3        | 0.49            | 45 1.5                      |                            | 0.73<br>< 0.1<br>1.3           |                      | <pre>0.21 &lt; 0.1 0.29</pre> | 0.17<br>< 0.1<br>0.37   |                         | 1.4<br>0.17<br>3.1 | 1.2<br>< 0.1<br>2.2 |                         | < 0.1<br>0.85    | 1.9<br>2<br>5.2        | < 0.1<br>< 0.1                          |              | 0.81<br>0.16<br>< 0.1 |                         | 2                      | 4                 | 61 5<br>20 0.2<br>130 < 0                                                                 | < 0.1                       |               |                  | 1.2               | 1.8<br>1.2<br>3.4      | 1.3<br>0.25<br>1.6                                              |
| Eluorene ma/ka 63500                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.4 0.2<br>2.8 0.3               | 0.58            | 42 <0.1                     |                            | 0.12                           |                      | < 0.1<br>< 0.1                | < 0.1                   |                         | 1.4<br>0.7         | 0.47                |                         | 0.53             | 1.2                    |                                         |              | < 0.1<br>1.1          |                         | 2.5                    | 69                | 62 < 0<br>3.4 1.5<br>870 14                                                               | < 0.1                       |               |                  | 0.2               | 0.3 0.1 0.8            | 0.19<br>0.81                                                    |
| Phenanthrene mg/kg 21900                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19 2.5                           | 4               | 390 1.1                     |                            | 0.27<br>0.97                   |                      | < 0.1                         | 0.1 0.32 0.32           |                         | 0.46<br>4.8<br>2.1 | 0.58                |                         | 0.27             | 14<br>6.5              | 0.46<br>0.44<br>0.39                    |              | 0.68                  |                         | 18<br>8.2              | 600<br>230        | 870 14<br>490 15<br>85 7.1<br>2.9                                                         | < 0.1                       |               |                  | 2.7               | 0.8<br>2.2<br>2.8      | 0.46                                                            |
| Pyrene         mg/kg         54200           Coronene         mg/kg         nc           PAH (Sum of 16 - excluding coronene)         mg/kg         nc                                                                                                                                                                                                                                                                                                                                           | 11 3.8<br><0.1<br>90             |                 | 510 1.6<br><0.1<br>3400     |                            | 8.7                            |                      | < 2                           | 2.5                     |                         | 2.1                | 1.6                 |                         |                  | <0.1                   | 2.2                                     |              | 0.83                  |                         |                        |                   | 85 7.<br>2.9<br>57                                                                        |                             |               |                  | 3.8<br><0.1       | <0.1                   | 1.2                                                             |
| PAH (Sum of 17 - including coronene) mg/kg nc<br>PCB                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26                               |                 | 16                          |                            |                                |                      |                               |                         |                         |                    |                     |                         |                  | 49                     |                                         |              |                       |                         | 63                     |                   | 2000                                                                                      |                             |               |                  | 27                |                        |                                                                 |
| PCB 52 mg/kg nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.1<br><0.1<br><0.1             |                 | <0.1<br><0.1<br><0.1        |                            |                                |                      |                               |                         |                         |                    |                     |                         |                  | <0.1<br><0.1<br><0.1   |                                         |              |                       |                         | <0.1<br><0.1<br><0.1   |                   | <0.1<br><0.1<br><0.1                                                                      |                             |               |                  | <0.1              | <0.1<br><0.1<br><0.1   |                                                                 |
| PCB 101         mg/kg         nc           PCB 118         mg/kg         nc           PCB 138         mg/kg         nc           PCB 153         mg/kg         nc                                                                                                                                                                                                                                                                                                                                | <0.1                             |                 | <0.1<br><0.1                |                            |                                |                      |                               |                         |                         |                    |                     |                         |                  | <0.1<br><0.1<br><0.1   |                                         |              |                       |                         | <0.1<br><0.1           |                   | <0.1<br><0.1                                                                              |                             |               |                  | <0.1<br><0.1      | <0.1                   |                                                                 |
| PCB 180 mg/kg nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.1                             |                 | <0.1                        |                            |                                |                      |                               |                         |                         |                    |                     |                         |                  | <0.1<br><0.1           |                                         |              |                       |                         | <0.1<br><0.1           |                   | <0.1<br><0.1                                                                              |                             |               |                  | <0.1<br><0.1      | <0.1<br><0.1           |                                                                 |
| Total PCBs (7 congeners) mg/kg nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                               |                 | <1                          |                            |                                | <10                  |                               | <10                     | -10                     |                    |                     | _10                     |                  | <1                     |                                         |              |                       |                         | <1                     |                   | <1                                                                                        |                             |               |                  | <1                | <1                     |                                                                 |
| Dichlorodifluoromethane μg/kg nc<br>Chloromethane μg/kg nc<br>Vinyl chloride μg/kg nc                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                 |                             | <1.0<br><1.0<br><1.0       |                                | <1.0<br><0.1<br><0.1 |                               | < 1.0<br>< 1.0<br>< 1.0 | <1.0<br><1.0<br><1.0    |                    |                     | <1.0<br><1.0<br><1.0    |                  |                        |                                         |              |                       | <1.0<br><1.0<br><1.0    |                        |                   |                                                                                           | <1.0<br><1.0<br><1.0        |               |                  |                   |                        |                                                                 |
| Bromomethane μg/kg nc<br>Chloroethane μg/kg nc                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                 |                             | <20<br><2.0                |                                | <20<br><2.0          |                               | < 20<br>< 2.0           | <20<br><2.0             |                    |                     | <20<br><2.0             |                  |                        |                                         |              |                       | <20<br><2.0             |                        |                   |                                                                                           | <20<br><2.0                 |               |                  |                   |                        |                                                                 |
| 1,1-Dichloroethene µg/kg nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                 |                             | <1.0<br><1.0               |                                | <1.0<br><1.0         |                               | < 1.0<br>< 1.0          | <1.0<br><1.0            |                    |                     | <1.0<br><1.0            |                  |                        |                                         |              |                       | <1.0<br><1.0            |                        |                   |                                                                                           | <1.0<br><1.0                |               |                  |                   |                        |                                                                 |
| Dichloromethane         μg/kg         nc           trans-1,2-Dichloroethane         μg/kg         nc           1,1-Dichloroethane         μg/kg         nc                                                                                                                                                                                                                                                                                                                                       |                                  |                 |                             | ne<br><1.0<br><1.0         |                                | ne<br><1.0<br><1.0   |                               | ne<br><1.0<br><1.0      | ne<br><1.0<br><1.0      |                    |                     | ne<br><1.0<br><1.0      |                  |                        |                                         |              |                       | ne<br><1.0<br><1.0      |                        |                   |                                                                                           | ne<br><1.0<br><1.0          |               |                  |                   |                        |                                                                 |
| r, i biomoloetitaite µg/kg nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | I               | L – –                       | <1.0                       | I I                            | <1.U                 |                               | <1.U                    | <1.0                    | ı – I              |                     | <1.U                    |                  | 1                      | ı – – – – – – – – – – – – – – – – – – – |              |                       | <1.U                    | I                      |                   | I                                                                                         | <1.0                        | 1             | 1                | 1                 | 1                      |                                                                 |

| Ground Investigation                                                                                                                                                                                              | DDA 0010       | ( DBA 0010)  | DDA 0010/      | DDA 0010       | / PBA 2010/    | DDA 2010/                   | DDA 0010/      | PBA 2010/      | DDA 0010/                        | DDA 0010/     | PBA 2010/                        | DDA 0010/     | PBA 2010/               | DDA 0010/     | DDA 0010/     | DDA 0010/               | DDA 0010/  | DDA 0010/      | DDA 0010/      | DDA 0010/      | PBA 2010/        | DDA 0010/               | DDA 2010/ DI  | 24.0010/ D   | 0010/    | DDA 0010/      | PBA 2010/               | PBA 2010/      |                                  | PBA 2010/      | PBA 2010/        |                                 | PBA 2010/                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|----------------|----------------|----------------|-----------------------------|----------------|----------------|----------------------------------|---------------|----------------------------------|---------------|-------------------------|---------------|---------------|-------------------------|------------|----------------|----------------|----------------|------------------|-------------------------|---------------|--------------|----------|----------------|-------------------------|----------------|----------------------------------|----------------|------------------|---------------------------------|--------------------------------|
| Report Number                                                                                                                                                                                                     | 2011<br>121863 | 2011         | 2011<br>121863 | 2011           | 2011<br>121864 | 2011<br>121863              | 2011<br>121863 | 2011<br>121863 | 2011<br>121863                   | 2011<br>58477 | 2011<br>58477                    | 2011<br>58477 | 2011<br>58477           | 2011<br>58477 | 2011<br>58477 | 2011<br>58477           | 2011       | 2011<br>122210 | 2011<br>122209 | 2011<br>122211 | 2011<br>122209   | 2011                    | 2011          | 2011         | 2011     | 2011<br>122209 | 2011<br>122209          | 2011<br>133344 | PBA 2010/ 2011<br>133344 (Rev01) | 2011<br>133343 | 2011             | PBA 2010/2011<br>133344 (Rev01) | 2011                           |
| Lab Ref                                                                                                                                                                                                           | AF60247        |              |                | AF60251        | + +            | AF60252                     | AF60253        | AF60254        | AF60255                          | AF56035       | AF56036                          | AF56037       | AF56038                 | AF56039       | AF56040       | AF56041                 | AF56042    |                | AF68283        | AF68427        | AF68284          |                         |               |              |          | AF68287        | AF68288                 | AF61313        | AF61314                          | AF61275        | AF61276          | AF61315                         | AF60263                        |
| Date<br>Exploatory hole location                                                                                                                                                                                  | 10/12/2010     | 0 10/12/2010 | 10/12/2010     | 10/12/2010     | 0 10/12/2010   | 10/12/2010                  | 10/12/2010     | 10/12/2010     | 10/12/2010                       | 07/12/2010    | 07/12/2010                       | 07/12/2010    | 07/12/2010              | 07/12/2010    | 07/12/2010    | 07/12/2010              | 07/12/2010 | 25/01/2011     | 25/01/2011     | 07/02/2011     | 25/01/2011       | 25/01/2011              | 25/01/2011 25 | 6/01/2011 25 | /01/2011 | 25/01/2011     | 25/01/2011              | 04/01/2011     | 04/01/2011<br>BH2012             | 04/01/2011     | 04/01/2011       | 04/01/2011                      | 10/12/2010                     |
| Zone B Location                                                                                                                                                                                                   | B1             | B12000       | B12000         | B1             | B1             | B12000                      | B1             | B1             | B12000                           | B1            | B1                               | B1            | B1                      | B1            | B1            | B1                      | B1         | BH2014         | B12014         | BI             | B1               | B1                      |               | B1           | B1       | B1             | B1                      | B1             | B1                               | B1             | B1               | B1                              | B1                             |
| Location on plot/ gas holder number<br>Depth (m)                                                                                                                                                                  |                |              |                |                |                |                             |                |                |                                  |               | Inside GH1                       |               | GH3                     | GH3           |               |                         |            |                |                |                | Inside GH3<br>5m |                         |               |              |          |                |                         | Inside GH3     |                                  |                | Inside GH3<br>3m | Inside GH3                      | Outside<br>gasholder 3<br>0.3m |
| Strata                                                                                                                                                                                                            | Made<br>Ground | Made         | Made<br>Ground | Made<br>Ground | Made           | Made Ground<br><1.0         | Made Groun     | Made           | Made Ground<br><1.0              | Made Ground   | Made Ground<br><1.0              |               |                         |               |               |                         |            | Made           | Made Ground    |                |                  | Made<br>Ground          | Made          |              | Made     |                |                         |                | Made Ground                      |                |                  |                                 | Made                           |
| Bromochloromethane μg/kg nc<br>Trichloromethane μg/kg 107000                                                                                                                                                      |                |              |                |                |                | <1.0<br><1.0                |                |                | <1.0<br><1.0                     |               | <1.0<br><1.0                     |               | <1.0<br><1.0            |               |               | <1.0<br><1.0            |            |                |                |                |                  | <1.0<br><1.0            |               |              |          |                | <1.0<br><1.0            |                |                                  |                |                  |                                 |                                |
| 1,1,1-Trichloroethane         µg/kg         700000           Tetrachloromethane         µg/kg         3000           1,1-Dichloropropene         µg/kg         nc                                                 |                |              |                |                |                | <1.0<br><1.0<br><1.0        |                |                | <1.0<br><1.0<br><1.0             |               | <1.0<br><1.0<br><1.0             |               | <1.0<br><1.0<br><1.0    |               |               | <1.0<br><1.0<br><1.0    |            |                |                |                |                  | <1.0<br><1.0<br><1.0    |               |              |          |                | <1.0<br><1.0<br><1.0    |                |                                  |                |                  |                                 |                                |
| 1,2-Dichloroethane µg/kg 700                                                                                                                                                                                      |                |              |                |                |                | 28<br><2.0                  |                |                | 4000<br><2.0                     |               | 64<br>< 2.0                      |               | <2.0                    |               |               | <2.0                    |            |                |                |                |                  | 3100<br><1.0            |               |              |          |                | 1400<br><1.0            |                |                                  |                |                  |                                 |                                |
| Trichloroethene         μg/kg         12000           1,2-Dichloropropane         μg/kg         nc           Dibromomethane         μg/kg         nc                                                              |                |              |                |                |                | <1.0<br><1.0<br><10         |                |                | <1.0<br><1.0<br><10              |               | < 1.0<br>< 1.0<br>< 10           |               | <1.0<br><1.0<br><10     |               |               | <1.0<br><1.0<br><10     |            |                |                |                |                  | <1.0<br><1.0<br><10     |               |              |          |                | <1.0<br><1.0<br><10     |                |                                  |                |                  |                                 |                                |
| Bromodichloromethane μg/kg nc<br>cis-1,3-Dichloropropene μg/kg nc                                                                                                                                                 |                |              |                |                |                | <5.0<br><10                 |                |                | <5.0<br><10                      |               | < 5.0<br>< 10                    |               | <5.0<br><10             |               |               | <5.0<br><10             |            |                |                |                |                  | <5.0<br><10             |               |              |          |                | <5.0<br><10             |                |                                  |                |                  |                                 |                                |
| Toluene         μg/kg         870000           trans-1,3-Dichloropropene         μg/kg         nc           1,1,2-Trichloroethane         μg/kg         nc                                                        |                |              |                |                |                | <1.0<br><10<br><10          |                |                | 4500<br><10<br><10               |               | 1.8<br>< 10<br>< 10              |               | <10<br><10              |               |               | <10<br><10              |            |                |                |                |                  | 1000<br><10<br><10      |               |              |          |                | 95<br><10<br><10        |                |                                  |                |                  |                                 |                                |
| Tetrachloroethene μg/kg 131000<br>1,3-Dichloropropane μg/kg nc                                                                                                                                                    |                |              |                |                |                | <1.0<br><2.0                |                |                | <1.0<br><2.0                     |               | < 1.0<br>< 2.0                   |               | <1.0<br><2.0            |               |               | <1.0<br><2.0            |            |                |                |                |                  | <1.0<br><2.0            |               |              |          |                | <1.0<br><2.0            |                |                                  |                |                  |                                 |                                |
| Dibromochloromethane         µg/kg         nc           1,2-Dibromoethane         µg/kg         nc           Chlorobenzene         µg/kg         59000                                                            |                |              |                |                |                | <10<br><5.0<br><1.0         |                |                | <10<br><5.0<br><1.0              |               | < 10<br>< 5.0<br>< 1.0           |               | <10<br><5.0<br><1.0     |               |               | <10<br><5.0<br><1.0     |            |                |                |                |                  | <10<br><5.0<br><1.0     |               |              |          |                | <10<br><5.0<br><1.0     |                |                                  |                |                  |                                 |                                |
| 1,1,2-Tetrachloroethane         μg/kg         115000           Ethylbenzene         μg/kg         581000                                                                                                          |                |              |                |                |                | <2.0<br>1.1                 |                |                | <2.0<br>5500                     |               | < 2.0<br>< 1                     |               | <2.0                    |               |               | <2.0                    |            |                |                |                |                  | <2.0<br>300             |               |              |          |                | <2.0<br>14              |                |                                  |                |                  |                                 |                                |
| m- & p-Xylene μg/kg 575000<br>o-Xylene μg/kg 480000                                                                                                                                                               |                |              |                |                |                | 4.8<br>3.3<br><1.0          |                |                | 4900<br>2100                     |               | <1<br><1<br><1.0                 |               | <1.0                    |               |               | <1.0                    |            |                |                |                |                  | 3400<br>1200<br><1.0    |               |              | -        |                | 160<br>63<br><1.0       |                |                                  |                |                  |                                 |                                |
| Tribromomethane μg/kg nc<br>Isopropylbenzene μg/kg nc                                                                                                                                                             |                |              |                |                |                | <10<br><1.0                 |                |                | <1.0<br><10<br>150               |               | < 10<br>< 1.0                    |               | <10<br><1.0             |               |               | <10<br>2.1              |            |                |                |                |                  | <10<br>31               |               |              |          |                | <10<br><1.0             |                |                                  |                |                  |                                 |                                |
| Bromobenzene µg/kg nc<br>1,2,3-Trichloropropane µg/kg nc                                                                                                                                                          |                |              |                |                |                | <1.0<br><50                 |                |                | <1.0<br><50<br>66<br><1.0        |               | < 1.0<br>< 50<br>< 1.0           |               | <1.0<br><50<br><1.0     |               |               | <1.0<br><50<br>1.8      |            |                |                |                |                  | <1.0<br><50<br>24       |               |              |          |                | <1.0<br><50<br><1.0     |                |                                  |                |                  |                                 |                                |
| n-Propylbenzene µg/kg nc<br>2-Chlorotoluene µg/kg nc<br>1,2,4-Timethylbenzene µg/kg nc                                                                                                                            |                |              |                |                |                | <1.0<br><1.0<br><1.0        |                |                | <1.0<br>1900                     |               | < 1.0<br>< 1.0<br>< 1.0          |               | <1.0<br><1.0<br><1.0    |               |               | <1.0<br><1.0<br>110     |            |                |                |                |                  | 7.5                     |               |              |          |                | <1.0<br><1.0<br>75      |                |                                  |                |                  |                                 |                                |
| 4-Chlorotoluene µg/kg nc<br>tert-Butylbenzene µg/kg nc                                                                                                                                                            |                |              |                |                |                | <1.0<br><1.0                |                |                | <1.0<br><1.0                     |               | < 1.0<br>< 1.0                   |               | <1.0<br><1.0            |               |               | <1.0<br><1.0            |            |                |                |                |                  | <1.0<br><1.0            |               |              |          |                | <1.0<br>7.3<br>74       |                |                                  |                |                  |                                 |                                |
| 1,3,5-Trimethylbenzene         µg/kg         nc           sec-Butylbenzene         µg/kg         nc           1,3-Dichlorobenzene         µg/kg         nc                                                        |                |              |                |                |                | <1.0<br><1.0<br><1.0        |                |                | <1.0<br>620<br><1.0<br><1.0      |               | < 1.0<br>< 1.0<br>< 1.0          |               | <1.0<br><1.0<br><1.0    |               |               | 29<br><1.0<br><1.0      |            |                |                |                |                  | 1300<br>2.2<br><1.0     |               |              |          |                | 74<br><1.0<br><1.0      |                |                                  |                |                  |                                 |                                |
| 4-Isopropyltoluene         μg/kg         nc           1,4-Dichlorobenzene         μg/kg         nc                                                                                                                |                |              |                |                |                | <1.0<br><1.0                |                |                | <1.0<br><1.0                     |               | < 1.0<br>< 1.0                   |               | <1.0<br><1.0            |               |               | 1.5<br><1.0             |            |                |                |                |                  | <1.0<br><1.0            |               |              |          |                | <1.0<br><1.0            |                |                                  |                |                  |                                 |                                |
| n-Butylbenzene <u>µg/kg nc</u><br>1,2-Dichlorobenzene <u>µg/kg</u> 2140000<br>1,2-Dibromo-3-chloropropane µg/kg nc                                                                                                |                |              |                |                |                | <1.0<br><1.0<br><50         |                |                | <1.0<br><1.0<br><50              |               | < 1.0<br>< 1.0<br>< 50           |               | <1.0<br><1.0<br><50     |               |               | <1.0<br><1.0<br><50     |            |                |                |                |                  | <1.0<br><1.0<br><50     |               |              |          |                | <1.0<br><1.0<br><50     |                |                                  |                |                  |                                 |                                |
| 1,2,4-Trichlorobenzene µg/kg nc<br>Hexachlorobutadiene µg/kg nc                                                                                                                                                   |                |              |                |                |                | <1.0<br><1.0                |                |                | <1.0<br><1.0                     |               | < 1.0<br>< 1.0                   |               | <1.0<br><1.0            |               |               | <1.0<br><1.0            |            |                |                |                |                  | <1.0<br><1.0            |               |              |          |                | <1.0<br><1.0            |                |                                  |                |                  |                                 |                                |
| 1,2,3-Trichlorobenzene µg/kg 108000<br>Tentatively Identified Compounds µg/kg nc<br>Велгеле, 1-ethenyi-3-methyl µg/kg nc                                                                                          |                |              |                |                |                | <2.0<br>None Detected       | 1              |                | <2.0<br>Detected<br>410          |               | < 2.0<br>None Detected           |               | <2.0<br>Detected        |               |               | <2.0<br>Detected        |            |                |                |                |                  | <2.0<br>Detected        |               |              |          |                | <2.0<br>None Detected   |                |                                  |                |                  |                                 |                                |
| Indane μg/kg nc<br>2-Benzothiphene μg/kg nc                                                                                                                                                                       |                |              |                |                |                |                             |                |                | 410                              |               |                                  |               | 9.1                     |               |               | 16                      |            |                |                |                |                  |                         |               |              |          |                |                         |                |                                  |                |                  |                                 |                                |
| Benzofuran         μg/kg         nc           Benzo(B)thiophene         μg/kg         nc           Phenol,4Methyl         μg/kg         nc                                                                        |                |              |                |                |                |                             |                |                |                                  |               |                                  |               |                         |               |               |                         |            |                |                |                |                  | 340                     |               |              |          |                |                         |                |                                  |                |                  |                                 |                                |
| Benzo(B)Thiophene µg/kg nc<br>Accenaphthene mg/kg 84900                                                                                                                                                           |                |              |                |                |                | 2.3                         | -              |                | <0.50                            |               | <0.50                            |               | <0.50                   |               |               | <0.50                   |            |                |                |                |                  | <0.50                   |               |              |          |                | <0.50                   |                |                                  |                |                  |                                 |                                |
| Acenaphthylene mg/kg 84300<br>Anthracene mg/kg 525000<br>Anshoarene                                                                                                                                               |                |              |                |                |                | <0.50<br>2.6<br><0.50       |                |                | <0.50<br><0.50<br><0.50          |               | <0.50<br><0.50<br><0.50          |               | <0.50<br>0.72<br><0.50  |               |               | <0.50<br><0.50<br><0.50 |            |                |                |                |                  | 1.1<br>1.4<br><0.50     |               |              |          |                | <0.50<br><0.50<br><0.50 |                |                                  |                |                  |                                 |                                |
| Azobenzene         mg/kg         nc           Benzo[a]anthracene         mg/kg         90           Benzo[a]pyrene         mg/kg         14                                                                       |                |              |                |                |                | <0.50<br>5.7<br>6.3         |                |                | <0.50<br>1.2<br>0.98             |               | <0.50<br>1.2<br>0.97             |               | <0.50<br><0.55<br><0.50 |               |               | <0.30<br>1<br>0.79      |            |                |                |                |                  | 2                       |               |              |          |                | <0.50<br><0.50<br><0.50 |                |                                  |                |                  |                                 |                                |
| Benzo[b/fluoranthene mg/kg 100<br>Benzo[b/fluoranthene mg/kg 654<br>Benzo[k/fluoranthene mg/kg 141                                                                                                                |                |              |                |                |                | 6.7<br>3.4                  |                |                | 1.3<br><0.50                     |               | 1.3<br><0.50                     |               | <0.50<br><0.50          |               |               | 1.1<br><0.50            |            |                |                |                |                  | 2.4<br>0.77             |               |              |          |                | <0.50<br><0.50          |                |                                  |                |                  |                                 |                                |
|                                                                                                                                                                                                                   |                |              |                |                |                | 2.2<br><0.50<br><0.50       |                |                | <0.50<br><0.50<br><0.50          |               | <0.50<br><0.50<br><0.50          |               | <0.50<br><0.50<br><0.50 |               |               | <0.50<br><0.50<br><0.50 |            |                |                |                |                  | 1<br><0.50<br><0.50     |               |              |          |                | <0.50<br><0.50<br><0.50 |                |                                  |                |                  |                                 |                                |
| bis(2-Chloroisopropyl)ether mg/kg nc<br>bis(2-Ethylhexyl)phthalate mg/kg nc                                                                                                                                       |                |              |                |                |                | <0.50<br><0.50              |                |                | <0.50<br><0.50                   |               | <0.50<br><0.50                   |               | <0.50<br><0.50          |               |               | <0.50<br><0.50          |            |                |                |                |                  | <0.50<br><0.50          |               |              |          |                | <0.50<br><0.50          |                |                                  |                |                  |                                 |                                |
| Butylbenzylphthalate         mg/kg         nc           Carbazole         mg/kg         nc           Chrysene         mg/kg         137                                                                           |                |              |                |                |                | <0.50<br>1.6<br>4.8         |                |                | <0.50<br><0.50<br>1.4            |               | <0.50<br><0.50<br>0.83           |               | <0.50<br><0.50<br><0.50 |               |               | <0.50<br><0.50<br>0.68  |            |                |                |                |                  | <0.50<br>0.8<br>2       |               |              |          |                | <0.50<br><0.50<br><0.50 |                |                                  |                |                  |                                 |                                |
| Di-n-butylphthalate mg/kg nc<br>Di-n-octylphthalate mg/kg nc                                                                                                                                                      |                |              |                |                |                | <0.50<br><0.50              |                |                | <0.50<br><0.50                   |               | <0.50<br><0.50                   |               | <0.50<br><0.50          |               |               | <0.50<br><0.50          |            |                |                |                |                  | <0.50<br><0.50          |               |              |          |                | <0.50<br><0.50          |                |                                  |                |                  |                                 |                                |
| Dibenzo[a,h]anthracene         mg/kg         nc           Dibenzofuran         mg/kg         nc           Diethylphthalate         mg/kg         nc                                                               |                |              |                |                |                | 0.81<br>1.2<br><0.50        |                |                | <0.50<br><0.50<br><0.50          |               | <0.50<br><0.50<br><0.50          |               | <0.50<br>0.69<br><0.50  |               |               | <0.50<br><0.50<br><0.50 |            |                |                |                |                  | <0.50<br>1.4<br><0.50   |               |              | _        |                | <0.50<br><0.50<br><0.50 |                |                                  |                |                  |                                 |                                |
| Dimethylphthalate mg/kg nc<br>Fluoranthene mg/kg 22600                                                                                                                                                            |                |              |                |                |                | <0.50<br><0.50<br>12<br>1.7 |                |                | <0.50<br>2.2<br><0.50            |               | <0.50<br>2.1                     |               | <0.50<br>1.8            |               |               | <0.50<br>1.7            |            |                |                |                |                  | <0.50<br>4              |               |              |          |                | <0.50<br><0.50          |                |                                  |                |                  |                                 |                                |
| Fluorene         mg/kg         63500           Hexachlorobenzene         mg/kg         47           Hexachlorobutadiene         mg/kg         nc                                                                  |                |              |                |                |                | 1.7<br><0.50<br><0.50       |                |                | <0.50<br><0.50<br><0.50          |               | <0.50                            |               | 0.86<br><0.50<br><0.50  |               |               | <0.50<br><0.50<br><0.50 |            |                |                |                |                  | 1.6<br><0.50<br><0.50   |               |              | _        |                | <0.50<br><0.50<br><0.50 |                |                                  |                |                  |                                 |                                |
| Hexachlorocyclopentadiene mg/kg nc<br>Hexachloroethane mg/kg nc                                                                                                                                                   |                |              |                |                |                | <0.50<br><0.50              |                |                | <0.50<br><0.50<br><0.50<br><0.50 |               | <0.50<br><0.50<br><0.50<br><0.50 |               | <0.50<br><0.50          |               |               | <0.50<br><0.50          |            |                |                |                |                  | <0.50<br><0.50<br>0.7   |               |              |          |                | <0.50<br><0.50          |                |                                  |                |                  |                                 |                                |
| Indeno[1,2,3-cd]pyrene mg/kg 60<br>Isophorone mg/kg nc<br>N-Nitrosodi-n-propylamine mg/kg nc                                                                                                                      |                | +            |                |                |                | 2.4<br><0.50<br><0.50       |                |                | <0.50<br><0.50                   |               | <0.50<br><0.50<br><0.50          |               | <0.50<br><0.50<br><0.50 |               |               | <0.50<br><0.50<br><0.50 |            |                |                |                |                  | 0.7<br><0.50<br><0.50   |               |              |          |                | <0.50<br><0.50<br><0.50 |                |                                  |                |                  |                                 |                                |
| N-Nitrosodimethylamine mg/kg nc<br>Naphthalene mg/kg 204                                                                                                                                                          |                |              |                |                |                | <0.50<br>3                  |                |                | <0.50<br><0.50<br>20<br><0.50    |               | <0.50<br><0.50                   |               | <0.50<br><0.50          |               |               | <0.50<br>4.2            |            |                |                |                |                  | <0.50<br>28             |               |              |          |                | <0.50                   |                |                                  |                |                  |                                 |                                |
| Nitrobenzene         mg/kg         nc           Pentachlorophenol         mg/kg         1220           Phenanthrene         mg/kg         21900                                                                   |                |              |                |                |                | <0.50<br><0.50              |                |                | <0.50<br><0.50<br>1.3            |               | <0.50<br><0.50<br>1.7            |               | <0.50<br><0.50<br>2.5   |               |               | <0.50<br><0.50<br>2     |            |                |                |                |                  | <0.50<br><0.50<br>5.2   |               |              |          |                | <0.50<br><0.50<br>0.51  |                |                                  |                |                  |                                 |                                |
| Phenol         mg/kg         3200           Pyrene         mg/kg         54200                                                                                                                                    |                |              |                |                |                | <0.50<br>10                 |                |                | <0.50<br>2.3                     |               | <0.50<br>1.8                     |               | <0.50<br>1.3            |               |               | <0.50<br>1.2            |            |                |                |                |                  | 0.79<br>3               |               |              |          |                | <0.50<br><0.50          |                |                                  |                |                  |                                 |                                |
| 1,2-Dichlorobenzene         mg/kg         2140           1,2,4-Trichlorobenzene         mg/kg         228                                                                                                         |                | +            |                |                |                | <0.50<br><0.50<br><0.50     |                |                | <0.50<br><0.50<br><0.50          |               | <0.50<br><0.50<br><0.50          |               | <0.50<br><0.50<br><0.50 |               |               | <0.50<br><0.50<br><0.50 |            |                |                |                |                  | <0.50<br><0.50<br><0.50 |               |              | $\neg$   |                | <0.50<br><0.50<br><0.50 |                |                                  |                |                  |                                 |                                |
| 1,4-Dichlorobenzene         mg/kg         4460           2-Chloronaphthalene         mg/kg         nc                                                                                                             |                |              |                |                |                | <0.50<br><0.50              |                |                | <0.50<br><0.50                   |               | <0.50<br><0.50                   |               | <0.50<br><0.50          |               |               | <0.50<br><0.50          |            |                |                |                |                  | <0.50<br><0.50          |               |              | _        |                | <0.50<br><0.50          |                |                                  |                |                  |                                 |                                |
| 2-Chlorophenol mg/kg 3540<br>2-Methyl-4.6-dinitrophenol mg/kg nc                                                                                                                                                  |                |              |                |                |                | <0.50<br><0.50              |                |                | <0.50<br><0.50<br>1.7            |               | <0.50<br><0.50                   |               | <0.50<br><0.50          |               |               | <0.50<br><0.50          |            |                |                |                |                  | <0.50<br><0.50<br>4     |               |              |          |                | <0.50<br><0.50          |                |                                  |                |                  |                                 |                                |
| 2-Methylnaphthalene mg/kg nc<br>2-Methylphenol mg/kg nc<br>2-Nitroaniline mg/kg nc                                                                                                                                |                | +            |                |                |                | 1<br><0.50<br><0.50         |                |                | 1.7<br><0.50<br><0.50            |               | <0.50<br><0.50<br><0.50          |               | <0.50<br><0.50<br><0.50 |               |               | <0.50<br><0.50<br><0.50 |            |                |                |                |                  | 4<br><0.50<br><0.50     |               |              |          |                | <0.50<br><0.50<br><0.50 |                |                                  |                |                  |                                 |                                |
| 2-Nitrophenol ma/ka nc                                                                                                                                                                                            |                |              |                |                |                | <0.50<br><0.50              |                |                | <0.50<br><0.50                   |               | <0.50<br><0.50                   |               | <0.50<br><0.50          |               |               | <0.50<br><0.50          |            |                |                |                |                  | <0.50<br><0.50          |               |              |          |                | <0.50<br><0.50          |                |                                  |                |                  |                                 |                                |
| 2.4-Dichlorophenol         mg/kg         3470           2.4-Dimethylphenol         mg/kg         nc           2.4-Dirittotoluene         mg/kg         nc           2.4.5-Tichlorophenol         mg/kg         nc |                |              |                |                |                | <0.50<br><0.50<br><0.50     |                |                | <0.50<br><0.50<br><0.50          |               | <0.50<br><0.50<br><0.50          |               | <0.50<br><0.50<br><0.50 |               |               | <0.50<br><0.50<br><0.50 |            |                |                |                |                  | <0.50<br><0.50<br><0.50 |               |              |          |                | <0.50<br><0.50<br><0.50 |                |                                  |                |                  |                                 | <b> </b>                       |
| 2,4,6-Trichlorophenol mg/kg 3880<br>2,6-Dinitrotoluene mg/kg nc                                                                                                                                                   |                |              |                |                |                | <0.50<br><0.50              |                |                | <0.50<br><0.50                   |               | <0.50<br><0.50                   |               | <0.50<br><0.50          |               |               | <0.50<br><0.50          |            |                |                |                |                  | <0.50<br><0.50          |               |              |          |                | <0.50<br><0.50          |                |                                  |                |                  |                                 |                                |
| 3-Nitroaniline mg/kg nc<br>4-Bromophenylphenylether mg/kg nc                                                                                                                                                      |                |              |                |                |                | <0.50<br><0.50<br><0.50     |                |                | <0.50<br><0.50<br><0.50          |               | <0.50<br><0.50<br><0.50          |               | <0.50<br><0.50<br><0.50 |               |               | <0.50<br><0.50<br><0.50 |            |                |                |                |                  | <0.50<br><0.50<br><0.50 |               |              |          |                | <0.50<br><0.50<br><0.50 |                |                                  |                |                  |                                 |                                |
| 4-Chloro-3-methylphenol mg/kg nc<br>4-Chloroaniline mg/kg nc                                                                                                                                                      |                |              |                | 1              |                | <0.50<br><0.50              |                |                | <0.50<br><0.50                   |               | <0.50<br><0.50                   |               | <0.50<br><0.50          |               |               | <0.50<br><0.50          |            |                |                |                |                  | <0.50<br><0.50          |               |              |          |                | <0.50<br><0.50          |                |                                  |                |                  |                                 |                                |

|                                                          |                 |                           | 1                 | -         | -             |             | _            |              |             |            |              |             |              |             |                | -              |             | -            |             |            |             |             |             |               |            |             |            |             |               |             |                |             |             |                |               |
|----------------------------------------------------------|-----------------|---------------------------|-------------------|-----------|---------------|-------------|--------------|--------------|-------------|------------|--------------|-------------|--------------|-------------|----------------|----------------|-------------|--------------|-------------|------------|-------------|-------------|-------------|---------------|------------|-------------|------------|-------------|---------------|-------------|----------------|-------------|-------------|----------------|---------------|
| Ground Investigation                                     |                 |                           | PBA 2010/         | PBA 2010  | D/ PBA 2010/  | PBA 2010    | / PBA 2010/  | PBA 2010/    | PBA 2010/   | PBA 2010/  | PBA 2010/    | PBA 2010/   | PBA 2010/    | PBA 2010/   | PBA 2010/      | PBA 2010/      | PBA 2010/   | PBA 2010/    | PBA 2010/   | PBA 2010/  | PBA 2010/   | PBA 2010/   | PBA 2010/   | PBA 2010/     | PBA 2010/  | PBA 2010/   | PBA 2010/  | PBA 2010/   | PBA 2010/     | PBA 2010/   |                | PBA 2010/   | PBA 2010/   |                | PBA 2010/     |
|                                                          |                 |                           | 2011              | 2011      |               | 2011        | 2011         | 2011         | 2011        | 2011       | 2011         | 2011        | 2011         | 2011        | 2011           | 2011           | 2011        | 2011         | 2011        | 2011       | 2011        | 2011        | 2011        | 2011          | 2011       | 2011        | 2011       | 2011        | 2011          | 2011        | PBA 2010/ 2011 | 2011        | 2011        | PBA 2010/2011  |               |
| Report Number                                            |                 |                           | 121863            | 121864    | 121863        | 121863      | 121864       | 121863       | 121863      | 121863     | 121863       | 58477       | 58477        | 58477       | 58477          | 58477          | 58477       | 58477        | 58477       | 122210     | 122209      | 122211      | 122209      | 122209        | 122210     | 122209      | 122210     | 122209      | 122209        | 133344      | 133344 (Rev01) | 133343      | 133343      | 133344 (Rev01) | ) 121863      |
|                                                          |                 |                           |                   |           | _             |             | -            |              | -           |            |              |             |              |             | 1              |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             | . ,            | -           |             | <u> </u>       |               |
| Lab Ref                                                  |                 |                           | AF60247           | AF60283   | 3 AF60249     | AF60251     | AF60284      | AF60252      | AF60253     | AF60254    | AF60255      | AF56035     | AF56036      | AF56037     | AF56038        | AF56039        | AF56040     | AF56041      | AF56042     | AF68351    | AF68283     | AF68427     | AF68284     | AF68285       | AF68352    | AF68286     | AF68353    | AF68287     | AF68288       | AF61313     | AF61314        | AF61275     | AF61276     | AF61315        | AF60263       |
| Date                                                     |                 |                           | 10/12/2010        | 10/12/201 | 10 10/12/2010 | 0 10/12/201 | 0 10/12/2010 | 10/12/2010   | 10/12/2010  | 10/12/2010 | 10/12/2010   | 07/12/2010  | 07/12/2010   | 07/12/2010  | 07/12/2010     | 07/12/2010     | 07/12/2010  | 07/12/2010   | 07/12/2010  | 25/01/2011 | 25/01/2011  | 07/02/2011  | 25/01/2011  | 25/01/2011    | 25/01/2011 | 25/01/2011  | 25/01/2011 | 25/01/2011  | 25/01/2011    | 04/01/2011  | 04/01/2011     | 04/01/2011  | 04/01/2011  | 04/01/2011     | 10/12/2010    |
| Exploatory hole location                                 |                 |                           | BH2006            | BH2006    | 6 BH2006      | BH2006      | BH2006       | BH2006       | BH2006      | BH2006     | BH2006       | TT2002      | TT2002       | TT2002      | TT2002 (A)     | TT2002 (A)     | TT2002 (B)  | TT2002 (B)   | TT2002 (B)  | BH2014     | BH2014      | BH2014      | BH2014      | BH2014        | BH2014     | BH2014      | BH2014     | BH2014      | BH2014        | BH2012      | BH2012         | BH2012      | BH2012      | BH2012         | TP2021        |
| Zone B Location                                          |                 |                           | B1                | B1        | B1            | B1          | B1           | B1           | B1          | B1         | B1           | B1          | B1           | B1          | B1             | B1             | B1          | B1           | B1          | B1         | B1          | B1          | B1          | B1            | B1         | B1          | B1         | B1          | B1            | B1          | B1             | B1          | B1          | B1             | B1            |
|                                                          |                 |                           |                   |           | _             |             |              |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             |             |                |               |
|                                                          |                 |                           |                   |           |               |             |              |              |             |            |              |             |              |             | Between        | Between        |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             | (           |                | Outside       |
| Location on plot/ gas holder number                      |                 |                           | Inside GH1        | Inside GH | 11 Inside GH1 | I Inside GH | 1 Inside GH1 | Inside GH1   | Inside GH1  | Inside GH1 | Inside GH1   | Inside GH1  | Inside GH1   | Inside GH1  | GH1 and<br>GH3 | GH1 and<br>GH3 | Inside GH3  | Inside GH3   | Inside GH3  | Inside GH3 | Inside GH3  | Inside GH3  | Inside GH3  | Inside GH3    | Inside GH3 | Inside GH3  | Inside GH3 | Inside GH3  | Inside GH3    | Inside GH3  | Inside GH3     | Inside GH3  | Inside GH3  | Inside GH3     | gasholder 3   |
|                                                          |                 |                           |                   |           |               |             |              |              |             |            |              |             |              |             | GIIG           | Grio           |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             |             |                |               |
| Depth (m)                                                |                 |                           | 1m                | 2m        | 3m            | 6m          | 6m           | 7m           | 8m          | 8m         | 9m           | 1.5m        | 4m           | 4.3m        | 3.5m           | 4m             | 3.5m        | 3.5m         | 4.5m        | 2m         | 3m          | 4m          | 5m          | 6m            | 6m         | 7m          | 7m         | 8m          | 9m            | 1m          | 2m             | 2m          | 3m          | 4m             | 0.3m          |
| Strata                                                   |                 |                           | Made              | Made      | Made          | Made        | Made         |              |             | Made       |              |             |              |             |                |                |             |              |             | Made       |             |             |             | Made          | Made       |             | Made       |             |               |             |                |             |             |                | Made          |
| otata                                                    |                 |                           | Ground            | Ground    |               | Ground      |              | Made Ground  | Made Ground |            | Made Ground  | Made Ground | Made Ground  | Made Ground | Made Ground    | Made Ground    | Made Ground | Made Ground  | Made Ground |            | Made Ground | Made Ground | Made Ground | Ground        |            | Made Ground |            | London Clay | London Clay   | Made Ground | Made Ground    | Made Ground | Made Ground | Made Ground    |               |
|                                                          | mg/kg           | nc                        |                   |           |               |             |              | < 0.50       |             |            | <0.50        |             | <0.50        |             | < 0.50         |                |             | < 0.50       |             |            |             |             |             | <0.50         |            |             |            | ,           | <0.50         |             |                |             |             |                |               |
|                                                          | mg/kg           | nc                        |                   |           |               |             | _            | <0.50        |             |            | <0.50        |             | <0.50        |             | <0.50          |                |             | <0.50        |             |            |             |             |             | <0.50         |            |             |            |             | <0.50         |             |                |             |             | L              |               |
|                                                          | mg/kg<br>mg/kg  |                           |                   |           | -             | -           | -            |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                | -           |             | <b>└───</b>    |               |
|                                                          | mg/kg           |                           |                   |           |               | -           |              | Not detected |             |            | Not detected |             | Not detected |             | Not detected   |                |             | Not detected |             |            |             |             |             | None Detected | 1          |             |            |             | None Detected |             |                |             |             | t              | +             |
|                                                          | mg/kg           |                           |                   |           |               |             |              |              |             |            |              |             |              |             |                |                |             |              |             | 1          |             |             | 1 1         |               |            |             |            |             |               |             |                |             | 1           | 1              | -             |
| biphenyl                                                 | mg/kg           |                           |                   |           |               |             |              |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             |             |                |               |
| 1-methylnahthalene                                       | mg/kg           |                           |                   |           |               |             |              |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             |             |                |               |
|                                                          | mg/kg           |                           | _                 |           | _             | -           |              |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                | -           |             | <b></b>        |               |
| Indene<br>2-benzothiophene                               | mg/kg<br>mg/kg  | nc                        |                   |           | -             | -           | -            |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                | -           |             | <b>└───</b>    |               |
| Cinnamaldehde                                            | mg/kg           | nc                        | -                 |           |               |             |              |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             |             | <u> </u>       |               |
| Biphenyl                                                 | mg/kg           |                           |                   |           |               |             |              |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             |             |                |               |
| naphtho[2,3-B]thiophene                                  | mg/kg           | nc                        |                   |           |               |             |              |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             |             |                |               |
|                                                          | mg/kg           |                           | _                 |           | _             | -           |              | <1           |             |            | <1           |             | <1           |             | <1             |                |             | <1           |             |            |             |             |             | <1            |            |             |            |             | <1            |             |                | -           |             | <b></b>        |               |
| 2-sec-Butyl-4,6-dinitrophenol<br>4-Chloro-3-methylphenol | mg/kg<br>mg/kg  |                           |                   |           |               |             |              |              | -           |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             |             | <u> </u>       | +             |
|                                                          | mg/kg           | nc                        |                   |           |               |             |              |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             | <u> </u>    | t              |               |
| 2,4-Dichlorophenol                                       | mg/kg           | nc                        |                   |           |               |             |              |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             |             |                |               |
|                                                          | mg/kg           |                           |                   |           |               |             |              |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             |             |                |               |
| 2,4-Dimethylphenol                                       | mg/kg           |                           |                   |           |               |             | _            |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             |             | L              |               |
|                                                          | mg/kg<br>mg/kg  |                           |                   |           | -             | +           |              |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             | +           | <b></b>        | +             |
|                                                          | mg/kg           |                           |                   | -         | -             | +           |              |              | 1           |            |              |             |              |             | 1              |                |             |              | -           |            |             |             |             |               |            |             |            |             |               |             |                |             | +           | 1              | +             |
| 3-Methylphenol                                           | mg/kg           | nc                        |                   |           |               | 1           |              |              | 1           |            |              |             |              |             | 1              |                |             |              | İ           | 1          | İ           | İ           |             |               |            |             |            |             |               | l .         |                | 1           |             |                |               |
| 4-Methylphenol                                           | mg/kg           | nc                        |                   |           |               |             |              |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             |             |                |               |
|                                                          | mg/kg           |                           |                   |           |               |             |              |              |             |            |              |             |              |             |                |                |             |              |             |            | l           | I           |             |               |            |             |            |             |               |             |                |             |             | <b></b>        | +             |
| 4-Nitrophenol<br>Pentachlorophenol                       | mg/kg<br>mg/kg  |                           |                   |           |               |             |              |              |             |            |              |             |              |             | L              |                |             |              |             |            | L           | L           |             |               |            |             |            |             |               |             |                | l           | +           | ł              | <b>∔</b> −−−− |
|                                                          | mg/kg           |                           |                   | -         | -             | +           |              |              | 1           |            |              |             |              |             | 1              |                |             |              | -           |            |             |             |             |               |            |             |            |             |               |             |                |             | +           | t              | +             |
| 2,3,4,5-Tetrachlorophenol                                | mg/kg           | nc                        |                   |           |               |             |              |              | 1           |            |              |             |              |             | 1              |                |             |              |             |            |             |             |             |               |            |             |            |             | i .           |             |                | 1           |             |                |               |
| 2,3,4,6-Tetrachlorophenol                                | mg/kg           |                           |                   |           |               |             |              |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             |             |                |               |
| 2,3,5,6-Tetrachlorophenol                                | mg/kg           |                           |                   |           |               |             |              |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             | <u> </u>    | <b></b>        | +             |
|                                                          | mg/kg           |                           |                   |           |               |             |              |              |             |            |              |             |              |             | L              |                |             |              |             |            | L           | L           |             |               |            |             |            |             |               |             |                | l           | +           | ł              | <u>+</u>      |
|                                                          | mg/kg<br>mg/kg  |                           |                   |           | -             | +           | 1 1          |              | 1           |            |              |             |              |             | 1              |                |             |              |             |            | 1           | 1           |             |               |            |             |            |             |               | 1           |                | 1           | 1           | 1              | +             |
| 2,4,5-Trichlorophenol                                    | mg/kg           |                           |                   | 1         | 1             | 1           | 1 1          |              | 1           |            |              |             |              |             | 1              |                |             | 1            |             |            | 1           | 1           |             |               |            |             |            |             | 1             | 1           |                | 1           | 1           | t              | +             |
| 2,4,6-Trichlorophenol                                    | mg/kg           | nc                        |                   |           |               |             |              |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             | 1           |                | 1             |
| 3,4,5-Trichlorophenol                                    | mg/kg           | nc                        |                   |           |               |             |              |              |             |            |              |             |              |             |                |                |             |              |             |            |             |             |             |               |            |             |            |             |               |             |                |             |             | <u> </u>       |               |
|                                                          | In discourse of | l                         |                   |           |               | +           |              |              | 1           |            |              |             |              |             |                |                |             |              |             |            | l           | l           |             |               |            |             |            |             |               | l           |                | +           |             | t              | <b>∔</b> ]    |
|                                                          | indicates wh    | here the data exceeds the | creening criteria |           | 1             | 1           | 1            |              | 1           | L          |              | 1           |              |             | 1              | I              | 1           | I            | L           | 1          | 1           | 1           |             |               |            |             |            |             |               | L           | L              | I           |             | <u> </u>       |               |

| Ground Investigation                                                                      |                         |                      | PBA 2010/<br>2011     | 2011           | 2011           | 2011              | PBA 2010/<br>2011           | 2011                  | 2011                    | 2011                    | PBA 2010/<br>2011    | PBA 2010/<br>2011       | PBA 2010/<br>2011<br>115023 & | 2011                 | PBA 2010/ 2011       | 2011                        | 2011                  | 2011                      | 2011                 | PBA 2010/<br>2011    | 2011                 | 2011                  | PBA 2010/ 2011 |                   | PBA 2010/ 2011        | 2011                    | 2011                   | PBA 2010/<br>2011       | PBA 2010/<br>2011       | 2011                  | PBA 2010/<br>2011                | PBA 2010/<br>2011       | 2011                  | PBA 2010/<br>2011       | PBA 2010/<br>2011     |
|-------------------------------------------------------------------------------------------|-------------------------|----------------------|-----------------------|----------------|----------------|-------------------|-----------------------------|-----------------------|-------------------------|-------------------------|----------------------|-------------------------|-------------------------------|----------------------|----------------------|-----------------------------|-----------------------|---------------------------|----------------------|----------------------|----------------------|-----------------------|----------------|-------------------|-----------------------|-------------------------|------------------------|-------------------------|-------------------------|-----------------------|----------------------------------|-------------------------|-----------------------|-------------------------|-----------------------|
| Report Number                                                                             |                         |                      | 121863                |                | 121863         | 121863            | 121863                      | 121863                | 121863                  | 121863                  | 115023               | 115023                  | 122039<br>AF54175 &           | 115023               | 115023               | 115023                      | 115023                | 115023                    | 115023               | 115023               | 115023               | 133346                | 133347         | 133347            | 133347                |                         | 133347                 | 133347                  | 133346                  | 133347                | 133347                           | 133347                  | 133347                | 133347                  | 133347<br>AF61367     |
| Lab Ref                                                                                   |                         |                      | AF60264<br>10/12/2010 | 10/12/2010     | AF60266        |                   | AF60268<br>10/12/2010       | AF60269<br>10/12/2010 | AF60270<br>10/12/2010   | AF60271<br>10/12/2010   | AF54173<br>Not known | AF54174<br>Not known    | AF64437<br>Not known          | AF54176<br>Not known | AF54177<br>Not known | AF54178<br>Not known        | Not known             |                           | AF54181<br>Not known | AF54182<br>Not known |                      |                       |                |                   | AF61358<br>04/01/2011 | 04/01/2011 0            |                        |                         | AF61340<br>04/01/2011   | 04/01/2011            |                                  | AF61364<br>04/01/2011   |                       | AF61366<br>04/01/2011   | 04/01/2011            |
| Exploatory hole location<br>Zone B Location                                               |                         |                      | TP2021<br>B1          | TP2021<br>B1   | TP2021<br>B1   | TP2021<br>B1      | TP2021A<br>B1               | TP2021A<br>B1         | TP2021A<br>B1           | TP2021A<br>B1           | TT2001<br>B1         | TT2001<br>B1            | TT2001<br>B1                  | TT2001<br>B1         | TT2001<br>B1         | TT2001<br>B1                | TT2001(A)<br>B1       | TT2001(B)<br>B1           | TT2001(B)<br>B1      | TT2001(B)<br>B1      | TT2001(B)<br>B1      | BH2004<br>B1          | BH2004<br>B1   | BH2004<br>B1      | BH2004<br>B1          | BH2004<br>B1            | BH2004<br>B1           | BH2004<br>B1            | BH2004<br>B1            | BH2004<br>B1          | BH2004<br>B1                     | BH2004<br>B1            | BH2004<br>B1          | BH2004<br>B1            | BH2004<br>B1          |
|                                                                                           |                         |                      | Outside               | Outside        | Outside        | Outside           |                             |                       |                         |                         |                      |                         |                               |                      |                      |                             | Between               |                           |                      |                      |                      |                       |                |                   |                       |                         |                        |                         |                         |                       |                                  |                         |                       |                         |                       |
| Location on plot/ gas holder number                                                       |                         |                      | gasholder 3           |                |                | gasholder 3       | Inside GH3                  | Inside GH3            | Inside GH3              | Inside GH3              | Inside GH3           | Inside GH3              | Inside GH3                    | Inside GH3           | Inside GH3           | Inside GH3                  | gas holder 3<br>and 9 | Inside GH9                | Inside GH9           | Inside GH9           | Inside GH9           | Inside GH9            | Inside GH9     | Inside GH9        | Inside GH9            | Inside GH9 In           | iside GH9              | Inside GH9              | Inside GH9              | Inside GH9            | Inside GH9                       | Inside GH9              | Inside GH9            | Inside GH9              | Inside GH9            |
| Depth (m)                                                                                 |                         |                      | 1m                    |                |                | 4.4m              | 1                           | 2.5m                  |                         | 4.3m                    | 0.2m                 | 1m                      |                               |                      | 4m                   |                             |                       |                           |                      | 4m                   | 4.5m                 | 1m                    | 0.3m           |                   | 2m                    |                         | Reworked               |                         |                         | Reworked              |                                  |                         | Reworked              | 11m                     | Reworked              |
| Strata                                                                                    |                         | Screening Criteria   | Made Ground           | Made<br>Ground | Made<br>Ground | Clay              | Made<br>Ground              | Made Ground           | Made<br>Ground          | Made Ground             | Made Ground          | Made Ground             | Made<br>Ground                | Made<br>Ground       | Made Ground          | Made<br>Ground              | Made<br>Ground        | Made<br>Ground            | Made<br>Ground       | Made Ground          | Made<br>Ground       | Made Ground           | Made Ground    | Made<br>Ground    | Made Ground           | Reworked<br>London Clay | London<br>Clay         | Reworked<br>London Clay | Reworked<br>London Clay | London<br>Clay        | London<br>Clay                   | Reworked<br>London Clay | London<br>Clay        | Reworked<br>London Clay | London<br>Clay        |
| Metals                                                                                    | Units                   | Commercial           |                       |                |                |                   |                             |                       |                         |                         |                      |                         |                               |                      |                      |                             |                       |                           |                      |                      |                      |                       |                |                   |                       |                         |                        |                         |                         |                       |                                  |                         |                       |                         |                       |
| Cadmium                                                                                   | mg/kg<br>mg/kg          | 230.0                |                       | 8.2<br>0.11    | <0.10          | 14<br>0.16<br>33  | 18<br>0.3                   |                       | 16<br><0.10<br>23       |                         | 15<br>2.3<br>17      |                         |                               | 14<br>0.38<br>18     |                      | 21<br>0.26                  | 27<br>0.94            | 21<br>0.55<br>33          |                      |                      | 11<br><0.10<br>14    |                       |                | 19<br>0.5<br>18   |                       |                         | 6.1<br><0.10<br>9.5    |                         |                         | < 0.10                | 6.1<br><0.10<br>10               |                         | 10<br>0.1<br>16       |                         | 9.4<br>0.11           |
| Copper<br>Lead                                                                            | mg/kg<br>mg/kg<br>mg/kg | 71700                |                       | 21             | 22             | 31 79             | 44                          |                       | 29<br>290               |                         | 50<br>260            |                         |                               | 54 260               |                      |                             | 86                    | 58                        | 29                   |                      | 15                   |                       |                | 43 610            |                       |                         | 21<br>340              |                         |                         | 29                    | 20 230                           |                         | 23 86                 |                         | 12<br>62<br>1500      |
| Mercury<br>Nickel                                                                         | mg/kg<br>mg/kg          | 3600<br>1800         |                       | <0.10<br>32    | 0.17<br>35     | 0.37<br>43        |                             |                       | 0.81<br>20              |                         | 0.45<br>18           |                         |                               | 0.51<br>16           |                      | 0.29<br>27                  | 0.54<br>22            | 0.67<br>26                | 0.13<br>42           |                      | 0.32                 |                       |                | 0.77<br>25        |                       |                         | 0.27<br>17             |                         |                         | 0.63<br>20            | 0.34<br>16                       |                         | 0.16<br>29            |                         | 0.25<br>24            |
| Selenium                                                                                  | mg/kg<br>mg/kg<br>mg/kg | 13000                |                       | < 0.20         | < 0.20         | 0.27              | < 0.20                      |                       | < 0.20<br>56            |                         | <0.20<br>190         |                         |                               | <0.20<br>240         |                      |                             |                       | <0.20<br>590              |                      |                      | <0.20<br>45          |                       |                | <0.20<br>290      |                       |                         | <0.20<br>62            |                         |                         |                       | <0.20<br>38                      |                         | 0.33<br>56            |                         | 0.36                  |
| Miscellaneous<br>Total Cyanide                                                            | mg/kg                   | nc                   |                       | 0.7            | 1.2            | 1                 | < 0.5                       |                       | 0.6                     |                         |                      |                         |                               |                      |                      |                             |                       |                           |                      |                      |                      |                       |                | 1.6               |                       |                         | <0.50                  |                         |                         | <0.50                 | <0.50                            |                         | <0.50                 |                         | <0.50                 |
| Thiocyanate                                                                               | mg/kg<br>mg/kg<br>mg/kg | nc                   |                       |                |                | < 0.5<br>< 5.0    |                             |                       | < 0.5<br>< 5.0          |                         |                      |                         |                               |                      |                      |                             |                       |                           |                      |                      |                      |                       |                | <0.50<br><5.0     |                       |                         | <0.50<br><5.0          |                         |                         |                       | <0.50<br><5.0                    |                         | <0.50<br><5.0         |                         | <0.50<br><5.0         |
| Total organic carbon                                                                      | %<br>pH Units           | nc                   |                       | 7.7            | 7.6            | 7.9               | 9.3                         |                       | 7.8                     |                         | 9.8                  |                         |                               | 11.4                 |                      | 11.9                        | 9.5                   | 9.2                       | 9                    |                      | 9.1                  | 10<br>8.4             |                | 8.3               |                       | 1.4<br>8.4              | 8.6                    |                         | 1.5<br>9.4              | 10.5                  | 8.7                              |                         | 8.4                   |                         | 8.5                   |
| Asbestos identifcation<br>Asbestos Concentration                                          | %                       | nc                   | Not detected          |                |                |                   |                             | Chrysotile<br>0.006   |                         |                         |                      |                         | Chrysotile                    |                      | Not detected         |                             |                       |                           |                      | Not detected         |                      |                       | Not detected   |                   | Not detected          |                         |                        |                         |                         |                       |                                  | Not detected            |                       |                         |                       |
|                                                                                           | %<br>mg/kg              |                      |                       | < 0.3          | < 0.3          | < 0.3             | < 0.3                       | 0.000                 | < 0.3                   |                         | <0.3                 |                         | 0.000                         | <0.3                 |                      | <0.3                        | <0.3                  | <0.3                      | <0.3                 |                      | <0.3                 |                       |                | <0.3              |                       |                         | <0.3                   |                         |                         | <0.3                  | <0.3                             |                         | <0.3                  |                         | <0.3                  |
| Sulphide<br>Total Sulphate                                                                | mg/kg<br>% as SO4       | nc                   |                       |                |                |                   |                             |                       |                         |                         |                      |                         |                               |                      |                      |                             |                       |                           |                      |                      |                      |                       |                |                   |                       |                         |                        |                         |                         |                       | Ē                                |                         |                       |                         |                       |
| Phenol (monohydric) SOM 1%                                                                | mg/kg<br>mg/kg<br>mg/kg | nc                   |                       |                |                |                   |                             |                       |                         |                         |                      |                         |                               |                      |                      |                             |                       |                           |                      |                      |                      |                       |                |                   |                       |                         |                        |                         |                         |                       | ╞═╛                              |                         |                       |                         | $\square$             |
| Sulphate (2:1 water soluble) as SO4<br>Organic matter                                     | g/l<br>%                | nc<br>nc             |                       | 1.3<br>0.9     | 1.7<br>1       | 1<br>1.6<br>31.9  | 0.68<br>3.1                 |                       | 0.19<br>2.4             |                         | 0.55<br>3.3          |                         |                               | 0.78<br>3.8          |                      | 1.9                         | 0.79<br>11            | 4.1                       | 0.14<br>0.9          |                      | 0.63<br>1.2          |                       |                | 1.2<br>7.1        |                       |                         | 0.56<br>1.6            |                         |                         | 1.7                   | 0.45<br>0.91                     |                         | 0.53<br>1.7           |                         | 0.69<br>0.95          |
|                                                                                           | %<br>mol/kg<br>%        | nc                   |                       | 27             | 27.4           | 31.9              | 13.8                        |                       | 17.1                    | 21.3                    | 13                   | 11.5                    |                               | 7.91                 |                      | 11.9                        | 12.8                  | 10.4                      | 18.5                 | 18.3                 | 22.3                 | 10.9<br>0.046<br>7.84 |                | 16.5              |                       | 15<br>0.036<br>3.9      | 27.2                   | 25.7                    | 20.4<br>0.042<br>5.33   | 18                    | 22.5                             |                         | 21.7                  | 21.6                    | 22.3                  |
|                                                                                           | %                       |                      |                       |                |                |                   |                             |                       |                         |                         |                      |                         |                               |                      |                      |                             |                       |                           |                      |                      |                      | <0.02                 |                | <0.02             |                       |                         | <0.02                  | <0.02                   | <0.02                   | <0.02                 | <0.02                            |                         | <0.02                 | <0.02                   | <0.02                 |
|                                                                                           | μg/kg<br>μg/kg          | 870000.00            |                       | <1             | 1.7            | 470               | <1                          |                       | <1                      |                         |                      |                         |                               |                      |                      |                             |                       |                           |                      |                      |                      | 1.6<br>< 1<br>< 1     |                | 11<br>4.3<br><1   |                       | 3.2<br>1.3<br>< 1       | 4.5<br>2.2<br>< 1      |                         | <1<br><1<br><1          |                       | 1.5<br><1<br><1                  |                         | <1<br><1<br><1        |                         | 2.6<br>< 1<br>< 1     |
| m- & p-Xylene                                                                             | μg/kg<br>μg/kg<br>μg/kg | 575000               |                       | < 1            | < 1            | 260<br>190        | <1                          |                       | <1<br><1<br><1          |                         |                      |                         |                               |                      |                      |                             |                       |                           |                      |                      |                      | <1<br><1              |                | <1<br><1<br><1    |                       |                         | <1<br><1<br><1         |                         | <1<br><1<br><1          | 1.6                   | <1<br><1<br><1                   |                         | <1<br><1              |                         | <1<br><1<br><1        |
| Total BTEX<br>Methyl tert-butyl ether                                                     | μg/kg<br>μg/kg          | nc                   |                       |                |                |                   |                             |                       |                         | <1.0                    |                      | <1.0                    |                               |                      |                      |                             |                       |                           |                      | <1.0                 |                      | <0.005                |                |                   |                       | <0.005                  |                        | <1.0                    | <0.005                  |                       |                                  |                         |                       | <1.0                    |                       |
|                                                                                           | mg/kg<br>mg/kg          |                      |                       |                |                |                   |                             |                       |                         | < 0.1<br>< 0.1          |                      | < 0.1<br>< 0.1          |                               |                      |                      |                             |                       |                           |                      | < 0.1<br>< 0.1       |                      |                       |                |                   |                       |                         |                        | < 0.1<br>< 0.1          |                         |                       |                                  |                         |                       | < 0.1<br>< 0.1          |                       |
| Aliphatic >C8-C10<br>Aliphatic >C10-C12                                                   | mg/kg<br>mg/kg          | 2130<br>10300        |                       |                |                |                   |                             |                       |                         | < 0.1                   |                      | < 0.1                   |                               |                      |                      |                             |                       |                           |                      | 0.6                  |                      |                       |                |                   |                       |                         |                        | < 0.1<br>< 0.1          |                         |                       |                                  |                         |                       | < 0.1<br>< 0.1          |                       |
| Aliphatic >C16-C21                                                                        | mg/kg<br>mg/kg<br>mg/kg | 673000               |                       |                |                |                   |                             |                       |                         | < 0.1<br>< 0.1<br>< 0.1 |                      | < 0.1<br>< 0.1<br>< 0.1 |                               |                      |                      |                             |                       |                           |                      | 12<br>5.8<br>2.1     |                      |                       |                |                   |                       |                         |                        | < 0.1<br>< 0.1<br>< 0.1 |                         |                       |                                  |                         |                       | < 0.1<br>< 0.1<br>< 0.1 |                       |
| Aliphatic >C35-C44<br>Aromatic >C5-C7                                                     | mg/kg<br>mg/kg          | 673000<br>27700      |                       |                |                |                   |                             |                       |                         | < 0.1                   |                      | < 0.1                   |                               |                      |                      |                             |                       |                           |                      | < 0.1<br>< 0.1       |                      |                       |                |                   |                       |                         |                        | < 0.1<br>< 0.1          |                         |                       |                                  |                         |                       | < 0.1<br>< 0.1          |                       |
| Aromatic >C8-C10                                                                          | mg/kg<br>mg/kg<br>mg/kg | 3670                 |                       |                |                |                   |                             |                       |                         | < 0.1<br>< 0.1<br>< 0.1 |                      | < 0.1<br>< 0.1<br>< 0.1 |                               |                      |                      |                             |                       |                           |                      | < 0.1<br>< 0.1       |                      |                       |                |                   |                       |                         |                        | < 0.1<br>< 0.1<br>< 0.1 |                         |                       |                                  |                         |                       | < 0.1<br>< 0.1<br>< 0.1 |                       |
| Aromatic >C12-C16                                                                         | mg/kg<br>mg/kg          | 36200                |                       |                |                |                   |                             |                       |                         | < 0.1                   |                      | 2.5                     |                               |                      |                      |                             |                       |                           |                      | 6.3<br>3             |                      |                       |                |                   |                       |                         |                        | < 0.1                   |                         |                       | ╞══┦                             |                         |                       | 0.38                    |                       |
| Aromatic >C21-C35<br>Aromatic >C35-C44                                                    | mg/kg<br>mg/kg          | 28400<br>28400       |                       |                |                |                   |                             |                       |                         | < 0.1<br>< 0.1          |                      | 20<br>< 0.1             |                               |                      |                      |                             |                       |                           |                      | 4.7<br>< 0.1         |                      |                       |                |                   |                       |                         |                        | < 0.1<br>< 0.1          |                         |                       |                                  |                         |                       | 0.68<br>< 0.1           |                       |
|                                                                                           | mg/kg<br>mg/kg<br>mg/kg | nc                   |                       | < 10           | 15             | 38                | 46                          |                       | < 10                    | < 2                     | 59                   | 29                      |                               | 180                  |                      | 140                         | 130                   | 37                        | < 10                 | 40                   | < 10                 |                       |                | 16                |                       |                         | < 10                   | < 2                     |                         | < 10                  | < 10                             |                         | < 10                  | 2                       | < 10                  |
| TPH Total WAC<br>TEM                                                                      | mg/kg<br>ma/ka          | nc                   |                       |                |                |                   |                             |                       |                         |                         |                      |                         |                               |                      |                      |                             |                       |                           |                      |                      |                      | 60                    |                |                   |                       | 14                      |                        |                         | < 10                    |                       |                                  |                         |                       |                         |                       |
| Diesel range organics (DRO)<br>Gasoline Range Organics by GC (GRO)<br>TPH (SUM DRO + GRO) | mg/kg<br>mg/kg<br>ma/ka | 2130<br>2130<br>2130 |                       |                |                |                   |                             |                       |                         |                         |                      |                         |                               |                      |                      |                             |                       |                           |                      |                      |                      |                       |                |                   |                       |                         |                        |                         |                         |                       | ╞══┦                             |                         |                       |                         |                       |
| TPH (Mineral Oil/ Hydrocarbon oil)<br>TPH (Aromatic hydrocarbons)                         | mg/kg<br>mg/kg          | 2130<br>2130         |                       |                |                |                   |                             |                       |                         |                         |                      |                         |                               |                      |                      |                             |                       |                           |                      |                      |                      |                       |                |                   |                       |                         |                        |                         |                         |                       |                                  |                         |                       |                         |                       |
| TPH                                                                                       | mg/kg<br>mg/kg<br>mg/kg | 2130                 |                       |                |                |                   |                             |                       |                         |                         |                      |                         |                               |                      |                      |                             |                       |                           |                      |                      |                      |                       |                |                   |                       |                         |                        |                         |                         |                       |                                  |                         |                       |                         |                       |
| Acenaphthene Acenaphthylene                                                               | mg/kg<br>mg/kg          | 84900<br>84300       |                       | < 0.1          | < 0.1          | 0.11<br>0.14      | 0.13                        |                       | < 0.1<br>< 0.1          |                         | 0.19<br>< 0.1        |                         |                               | 0.38<br>< 0.1        |                      | < 0.1<br>< 0.1              | 0.12<br>0.12          | 1.7<br>0.1                | 0.2<br>< 0.1         |                      | < 0.1<br>< 0.1       | <0.1                  |                | 0.39<br>0.61      |                       | <0.1                    | 0.42<br>< 0.1          |                         |                         | < 0.1                 | < 0.1<br>< 0.1                   |                         | < 0.1<br>< 0.1        |                         | 0.15<br>< 0.1         |
| Anthracene<br>Benzo(a)anthracene                                                          | mg/kg<br>mg/kg          | 525000<br>90.0       |                       | < 0.1 < 0.1    | < 0.1 0.43     | 1.5<br>2.8<br>2.3 | 0.24                        |                       | < 0.1<br>< 0.1<br>< 0.1 |                         | 0.56<br>2.2<br>2.4   |                         |                               | 0.51<br>1.8<br>1.6   |                      | < 0.1<br>0.29<br>1.5<br>1.7 | 0.63                  | 3.8<br>4.5<br>4.8         | 0.41                 |                      | 0.31<br>0.95<br>0.84 |                       |                | 1.1<br>4<br>5.6   |                       | 1.2                     | 0.43<br>0.42<br>< 0.1  |                         | 0.7                     | 0.19<br>0.36<br>< 0.1 | 0.12                             |                         | 0.16<br>0.27<br>< 0.1 |                         | 0.14<br>0.16<br>0.14  |
| Benzo(b)fluoranthene<br>Benzo(k)fluoranthene                                              | mg/kg<br>mg/kg<br>mg/kg | 100.0<br>141.0       |                       | < 0.1          | 0.43           | 2.9               | 1.5                         |                       | < 0.1                   |                         | 2.8<br>1.5           |                         |                               | 2.3<br>1.1           |                      | 1.8                         | 5.3                   | 5                         | 0.42                 |                      | 0.93 0.66            | 7.3<br>5.2            |                | 5<br>3.8          |                       | 1.1<br>0.5              | 0.18<br>< 0.1          |                         | 0.3                     | < 0.1                 | < 0.1<br>< 0.1<br>< 0.1<br>< 0.1 |                         | 0.1<br>< 0.1          |                         | < 0.1<br>< 0.1        |
| Benzo(g,h,i)perylene<br>Chrysene<br>Dibenzo(a,h)anthracene                                | mg/kg<br>mg/kg          | 654<br>137.0         |                       | < 0.1          | < 0.1          | 1.3               | 0.94<br>0.92<br>1.4<br>0.26 |                       | < 0.1                   |                         | 1.4<br>2.5           |                         |                               | 0.88<br>2<br>0.14    |                      | 0.95                        | 3.3<br>3.9            | 3.2<br>2.8<br>5.2<br>0.52 | 0.31                 |                      | 0.53<br>1.1<br>0.11  | 6<br>5.3              |                | 4.5<br>4.1<br>1.1 |                       | 1                       | 0.33                   |                         | 0.5                     | 0.35                  | < 0.1<br>< 0.1<br>< 0.1          |                         | < 0.1<br>0.28         |                         | < 0.1                 |
| Fluoranthene<br>Fluorene                                                                  | mg/kg<br>mg/kg<br>mg/kg | 22600<br>63500       |                       | < 0.1          | 0.58           | 5<br>0.31         | 2.4                         |                       | < 0.1<br>0.15<br>< 0.1  |                         | 0.29<br>5<br>0.26    |                         |                               | 4.4<br>0.18          |                      | 2.4 < 0.1                   | 5.4<br>0.16           | 11                        | 1.5<br>0.5           |                      | 0.11<br>2.2<br>0.2   | 5.7                   |                | 6<br>0.4          |                       | 0.9                     | < 0.1<br>0.85<br>< 0.1 |                         | 0.6                     | 0.59                  | < 0.1<br>0.25<br>< 0.1           |                         | < 0.1<br>0.49<br>0.14 |                         | < 0.1<br>0.42<br>0.14 |
| Indeno(1,2,3-c,d)pyrene<br>Naphthalene                                                    | mg/kg<br>mg/kg          | 60.0<br>204.0        |                       | < 0.1<br>< 0.1 | < 0.1<br>0.23  | 1.2<br>1.7        | 0.97<br>0.16<br>1.4         |                       | < 0.1<br>0.18           |                         | 1.5<br>0.17          |                         |                               | 0.99                 |                      | 0.96<br>0.43<br>1.3         | 3.5<br>1.5            | 3.3<br>0.52               | < 0.1<br>< 0.1       |                      | 0.52                 | 2.2                   |                | 4.3<br>0.79       |                       | <0.1<br>0.1             | 0.4 0.18               |                         | <0.1<br><0.1            | 0.27                  | < 0.1                            |                         | < 0.1<br>< 0.1        |                         | 0.16                  |
| Pyrene<br>Coronene                                                                        | mg/kg<br>mg/kg<br>mg/kg | 54200<br>nc          |                       | < 0.1<br>< 0.1 | 0.32           | 3.9<br>3.5        | 1.4<br>2.1                  |                       | 0.19<br>0.18            |                         | 3.4<br>4.1           |                         |                               | 3.1<br>3.5           |                      | 1.3<br>1.9                  | 2.7<br>4.5            | 11<br>8.9                 | 1.5<br>1.4           |                      | 1<br>1.7             | 3.6<br>4.5<br><0.1    |                | 3.6<br>4.8        |                       |                         | 0.64<br>0.58           |                         | 0.4<br>0.5<br><0.1      | 0.43<br>0.64          | 0.13<br>0.17                     |                         | 0.45<br>0.48          |                         | 0.28 0.14             |
| PAH (Sum of 16 - excluding coronene)                                                      | mg/kg<br>mg/kg          | nc                   |                       | < 2            | 2.8            | 32                | 15                          |                       | < 2                     |                         | 28                   |                         |                               | 23                   |                      | 16                          | 42                    | 68                        | 7.9                  |                      | 11                   | 62                    |                | 50                |                       | 9.9                     | 4.8                    |                         | 3.1                     | 3.7                   | < 2                              |                         | 2.4                   |                         | < 2                   |
| PCB<br>PCB 28                                                                             | mg/kg<br>mg/kg          | nc                   |                       |                |                |                   |                             |                       |                         |                         |                      |                         |                               |                      |                      |                             |                       |                           |                      |                      |                      | <0.1<br><0.1          |                |                   |                       | <0.1<br><0.1            |                        |                         | <0.1<br><0.1            |                       | ╞═┚                              |                         |                       |                         |                       |
| PCB 101<br>PCB 118                                                                        | mg/kg<br>mg/kg          | nc                   |                       |                |                |                   |                             |                       |                         |                         |                      |                         |                               |                      |                      |                             |                       |                           |                      |                      |                      | <0.1<br><0.1          |                |                   |                       | <0.1<br><0.1            |                        |                         | <0.1<br><0.1            |                       |                                  |                         |                       |                         |                       |
| PCB 153                                                                                   | mg/kg<br>mg/kg          | nc                   |                       |                |                |                   |                             |                       |                         |                         |                      |                         |                               |                      |                      |                             |                       |                           |                      |                      |                      | <0.1<br><0.1          |                |                   |                       | <0.1<br><0.1            |                        |                         | <0.1<br><0.1            |                       | Þ                                |                         |                       |                         |                       |
| Total PCBs (7 congeners)<br>VOCs                                                          | mg/kg<br>mg/kg          | nc                   |                       |                |                |                   |                             |                       |                         |                         |                      |                         |                               |                      |                      |                             |                       |                           |                      |                      |                      | <0.1<br><1            |                |                   |                       | <0.1<br><1              |                        |                         | <0.1<br><1              |                       | ╞═╛                              |                         |                       |                         | $\square$             |
| Dichlorodifluoromethane<br>Chloromethane                                                  | μg/kg<br>μg/kg          | nc                   |                       |                |                |                   |                             |                       |                         | <1.0<br><1.0            |                      | <1.0<br><1.0            |                               |                      |                      |                             |                       |                           |                      | <1.0<br><1.0         |                      |                       |                |                   |                       |                         |                        | <1.0<br><1.0            |                         |                       | E                                |                         |                       | <1.0<br><1.0            |                       |
| Bromomethane                                                                              | μg/kg<br>μg/kg          | nc                   |                       |                |                |                   |                             |                       |                         | <1.0<br><20<br><2.0     |                      | <1.0<br><20<br><2.0     |                               |                      |                      |                             |                       |                           |                      | <1.0<br><20<br><2.0  |                      |                       |                |                   |                       |                         |                        | <1.0<br><20<br><2.0     |                         |                       | ╞═┛                              |                         |                       | <1.0<br><20<br><2.0     | $\square$             |
| Trichlorofluoromethane<br>1,1-Dichloroethene                                              | μg/kg<br>μg/kg<br>μg/kg | nc                   |                       |                |                |                   |                             |                       |                         | <1.0<br><1.0            |                      | <1.0<br><1.0            |                               |                      |                      |                             |                       |                           |                      | <1.0<br><1.0         |                      |                       |                |                   |                       |                         |                        | <1.0<br><1.0            |                         |                       |                                  |                         |                       | <1.0<br><1.0            |                       |
| Dichloromethane<br>trans-1,2-Dichloroethene                                               | μg/kg<br>μg/kg          | nc                   |                       |                |                |                   |                             |                       |                         | ne<br><1.0              |                      | ne<br><1.0              |                               |                      |                      |                             |                       |                           |                      | ne<br><1.0           |                      |                       |                |                   |                       |                         |                        | ne<br><1.0              |                         |                       | Þ                                |                         |                       | ne<br><1.0              |                       |
|                                                                                           | µg/kg                   | nc                   |                       |                |                |                   |                             | L                     | I                       | <1.0                    |                      | <1.0                    | I                             |                      |                      |                             |                       |                           |                      | <1.0                 |                      |                       | I              |                   |                       |                         |                        | <1.0                    |                         |                       |                                  |                         |                       | <1.0                    |                       |

| Ground Investigation                                                                               |                                                                         |   | PBA 2010/         | PPA 2010/            | PPA 2010/    | PPA 20   | 10/ BRA 2010     | ( BRA 3010/    | PPA 2010/      | PBA 2010/                        | PPA 2010/      | PBA 2010/               | PBA 2010/                      | PPA 2010/           |                     | PPA 2010/              | PPA 2010/              | PBA 2010/            | PPA 2010/              | PPA 2010/                        | PBA 2010/      | PPA 2010/      |                          | PBA 2010/  |                          | PPA 2010/                     | PPA 2010/          | PPA 2010/                        | PPA 2010/                     | PPA 2010/    | PA 2010/           | PBA 2010/ PE  | A 2010/          | PBA 2010/                        | PBA 2010/                         |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---|-------------------|----------------------|--------------|----------|------------------|----------------|----------------|----------------------------------|----------------|-------------------------|--------------------------------|---------------------|---------------------|------------------------|------------------------|----------------------|------------------------|----------------------------------|----------------|----------------|--------------------------|------------|--------------------------|-------------------------------|--------------------|----------------------------------|-------------------------------|--------------|--------------------|---------------|------------------|----------------------------------|-----------------------------------|
| Report Number                                                                                      |                                                                         |   | 2011              | 2011                 | 2011         | 2011     | 2011<br>3 121863 | 2011           | 2011<br>121863 | 2011                             | 2011<br>115023 | 2011                    | 2011<br>115023 &               | 2011<br>115023      | PBA 2010/ 2011      | 2011                   | 2011                   | 2011<br>115023       | 2011                   | 2011<br>115023                   | 2011<br>115023 | 2011<br>133346 | PBA 2010/ 2011<br>133347 | 2011 F     | PBA 2010/ 2011<br>133347 | 2011<br>133346                | 2011               |                                  | 2011<br>133346                | 2011         | 2011               | 2011          | 2011<br>33347    | 2011<br>133347                   | 2011<br>133347                    |
| Lab Ref                                                                                            |                                                                         |   | AF60264           |                      | +            | -        | 67 AF60268       | +              |                | AF60271                          | AF54173        | AF54174                 | 122039<br>AF54175 &<br>AF64437 | AF54176             |                     |                        |                        | AF54180              |                        | AF54182                          | AF54183        | AF61338        | AF61356                  | AF61357    | AF61358                  | AF61339                       | <del>   </del>     | AF61361                          | AF61340                       | AF61362      |                    |               |                  |                                  | AF61367                           |
| Date<br>Exploatory hole location                                                                   |                                                                         |   |                   | 10/12/2010           | 0 10/12/2010 | 10/12/20 | 010 10/12/2010   | 0 10/12/2010   | 10/12/2010     | 10/12/2010                       | Not known      | Not known<br>TT2001     | Not known                      | Not known<br>TT2001 | Not known<br>TT2001 | Not known              | Not known              | Not known            | Not known              | Not known<br>TT2001(B)           | Not known      | 04/01/2011     | 04/01/2011<br>BH2004     | 04/01/2011 | 04/01/2011               | 04/01/2011                    | 04/01/2011         | 04/01/2011                       | 04/01/2011                    | 04/01/2011 0 | 4/01/2011          | 04/01/2011 04 | /01/2011         | 04/01/2011                       | 04/01/2011                        |
| Zone B Location                                                                                    |                                                                         |   | B1                | B1                   | B1           | B1       |                  | B1             | B1             | B1                               | B1             | B1                      | B1                             | B1                  | B1                  | B1                     | B1                     | B1                   | B1                     | B1                               | B1             | B1             | B1                       | B1         | B1                       | B1                            | B1                 | B1                               | B1                            | B1           | B1                 |               | B1               | B1                               | B1                                |
| Location on plot/ gas holder number                                                                |                                                                         | g | -                 | -                    | -            | -        |                  |                |                |                                  |                |                         |                                |                     |                     |                        | and 9                  |                      |                        |                                  |                |                | Inside GH9               |            |                          |                               |                    |                                  |                               |              |                    |               |                  |                                  |                                   |
| Depth (m) Strata                                                                                   |                                                                         |   | 1m<br>lade Ground | 2m<br>Made<br>Ground | Made         |          | Made             |                | Made           | 4.3m<br>Made Ground              |                | 1m<br>Made Ground       | 2m<br>Made<br>Ground           | Made                | 4m<br>Made Ground   | 4.5m<br>Made<br>Ground | 1.5m<br>Made<br>Ground | 1m<br>Made<br>Ground | 2.7m<br>Made<br>Ground | 4m<br>Made Ground                | Made           |                | 0.3m<br>Made Ground      | Made       | 2m<br>Made Ground        | 4m<br>Reworked<br>London Clay | Reworked<br>London | Reworked                         | 7m<br>Reworked<br>London Clay | Reworked     | Reworked<br>London | Reworked I    | eworked<br>ondon | 11m<br>Reworked<br>London Clay   | 12m<br>Reworked<br>London<br>Clay |
| cis-1,2-Dichloroethene<br>Bromochloromethane                                                       | μg/kg nc<br>μg/kg nc                                                    |   |                   | Cirodina             | Citodila     | Oldy     | Circuita         | inidde ciround | Giodila        | <1.0<br><1.0                     | Made cround    | <1.0<br><1.0            | Ground                         | Citodila            | Made croand         | Circuito               | Citodila               | Circuito             | Gibana                 | <1.0<br><1.0                     | Crodina        | made cround    | Made cround              | Circuito   | Made croand              | Echoon olay                   | Ulay 1             | <1.0<br><1.0                     | Eondon Olay                   | Oldy         | Ulay L             | chidon olay   | Ciay             | <1.0<br><1.0                     | Olay                              |
| 1,1,1-Trichloroethane                                                                              | µg/kg 107000<br>µg/kg 700000<br>µg/kg 3000                              |   |                   |                      |              |          |                  |                |                | <1.0<br><1.0<br><1.0             |                | <1.0<br><1.0<br><1.0    |                                |                     |                     |                        |                        |                      |                        | <1.0<br><1.0<br><1.0             |                |                |                          |            |                          |                               |                    | <1.0<br><1.0<br><1.0             |                               |              |                    |               |                  | <1.0<br><1.0<br><1.0             |                                   |
| 1,1-Dichloropropene<br>Benzene                                                                     | µg/kg nc<br>µg/kg 28000                                                 |   |                   |                      |              |          |                  |                |                | <1.0<br>4.3                      |                | <1.0<br>9               |                                |                     |                     |                        |                        |                      |                        | <1.0<br>28                       |                |                |                          |            |                          |                               |                    | <1.0<br><1.0                     |                               |              |                    |               |                  | <1.0<br><1.0                     |                                   |
| 1,2-Dichloroethane                                                                                 | μg/kg 700<br>μg/kg 12000<br>μg/kg nc                                    |   |                   |                      |              |          |                  |                |                | <2.0<br><1.0<br><1.0             |                | <2.0<br><1.0<br><1.0    |                                |                     |                     |                        |                        |                      |                        | <2.0<br><1.0<br><1.0             |                |                |                          |            |                          |                               |                    | <2.0<br><1.0<br><1.0             |                               |              |                    |               |                  | <2.0<br><1.0<br><1.0             |                                   |
| Dibromomethane<br>Bromodichloromethane                                                             | μg/kg nc<br>μg/kg nc                                                    |   |                   |                      |              |          |                  |                |                | <10<br><5.0                      |                | <10<br><5.0             |                                |                     |                     |                        |                        |                      |                        | <10<br><5.0                      |                |                |                          |            |                          |                               |                    | <10<br><5.0                      |                               |              |                    |               |                  | <10<br><5.0                      |                                   |
| cis-1,3-Dichloropropene<br>Toluene<br>trans-1,3-Dichloropropene                                    | <u>µg/kg nc</u><br>µg/kg 870000<br>µg/kg nc                             |   |                   |                      |              |          |                  |                |                | <10<br><1.0<br><10               |                | <10<br>2.6<br><10       |                                |                     |                     |                        |                        |                      |                        | <10<br>6.9<br><10                |                |                |                          |            |                          |                               |                    | <10<br><1.0<br><10               |                               |              |                    |               |                  | <10<br><1.0<br><10               |                                   |
| 1,1,2-Trichloroethane<br>Tetrachloroethene                                                         | µg/kg nc<br>µg/kg 131000                                                |   |                   |                      |              |          |                  |                |                | <10<br><1.0                      |                | <10<br><1.0             |                                |                     |                     |                        |                        |                      |                        | <10<br><1.0                      |                |                |                          |            |                          |                               |                    | <10<br><1.0                      |                               |              |                    |               |                  | <10<br><1.0                      |                                   |
| 1,3-Dichloropropane<br>Dibromochloromethane<br>1,2-Dibromoethane                                   | µg/kg nc<br>µg/kg nc<br>µg/kg nc                                        |   |                   |                      |              |          |                  |                |                | <2.0<br><10<br><5.0              |                | <2.0<br><10<br><5.0     |                                |                     |                     |                        |                        |                      |                        | <2.0<br><10<br><5.0              |                |                |                          |            |                          |                               |                    | <2.0<br><10<br><5.0              |                               |              |                    |               |                  | <2.0<br><10<br><5.0              |                                   |
| Chlorobenzene<br>1,1,1,2-Tetrachloroethane<br>Ethylbenzene                                         | μg/kg 59000<br>μg/kg 115000                                             |   |                   |                      |              |          |                  |                |                | <1.0<br><2.0<br><1.0             |                | <1.0<br><2.0<br><1.0    |                                |                     |                     |                        |                        |                      |                        | <1.0<br><2.0<br><1.0             |                |                |                          |            |                          |                               |                    | <1.0<br><2.0<br><1.0             |                               |              |                    |               |                  | <1.0<br><2.0<br><1.0             |                                   |
| m- & p-Xylene                                                                                      | µg/kg 575000<br>µg/kg 480000                                            |   |                   |                      |              |          |                  |                |                | <1.0<br><1.0                     |                | <1.0<br><1.0            |                                |                     |                     |                        |                        |                      |                        | 2.4<br><1.0                      |                |                |                          |            |                          |                               |                    | <1.0<br><1.0                     |                               |              |                    |               |                  | <1.0<br><1.0                     |                                   |
| Styrene<br>Tribromomethane                                                                         | µg/kg nc<br>µg/kg nc<br>µg/kg nc                                        |   |                   |                      |              |          |                  |                |                | <1.0<br><10<br><1.0              |                | <1.0<br><10<br><1.0     |                                |                     |                     |                        |                        |                      |                        | <1.0<br><10<br><1.0              |                |                |                          |            |                          |                               |                    | <1.0<br><10<br><1.0              |                               |              |                    |               |                  | <1.0<br><10<br><1.0              |                                   |
| Bromobenzene<br>1,2,3-Trichloropropane                                                             | μg/kg nc<br>μg/kg nc                                                    |   |                   |                      |              |          |                  |                |                | <1.0<br><50                      |                | <1.0<br><50             |                                |                     |                     |                        |                        |                      |                        | <1.0<br><50                      |                |                |                          |            |                          |                               |                    | <1.0<br><50                      |                               |              |                    |               |                  | <1.0<br><50                      |                                   |
|                                                                                                    | <u>µg/kg nc</u><br>µg/kg nc<br>µg/kg nc                                 |   |                   |                      |              |          | _                |                |                | <1.0<br><1.0<br><1.0             |                | <1.0<br><1.0<br><1.0    |                                |                     |                     |                        |                        |                      |                        | <1.0<br><1.0<br><1.0             |                |                |                          |            |                          |                               |                    | <1.0<br><1.0<br><1.0             |                               |              |                    |               |                  | <1.0<br><1.0<br><1.0             |                                   |
| 4-Chlorotoluene<br>tert-Butylbenzene                                                               | μg/kg nc<br>μg/kg nc                                                    |   |                   |                      |              |          |                  |                |                | <1.0<br><1.0                     |                | <1.0<br><1.0            |                                |                     |                     |                        |                        |                      |                        | <1.0<br><1.0                     |                |                |                          |            |                          |                               |                    | <1.0<br><1.0                     |                               |              |                    |               |                  | <1.0<br><1.0                     |                                   |
| 1,3,5-Trimethylbenzene<br>sec-Butylbenzene<br>1,3-Dichlorobenzene                                  | µg/kg nc<br>µg/kg nc<br>µg/kg nc                                        |   |                   |                      |              | -        |                  |                |                | <1.0<br><1.0<br><1.0             |                | <1.0<br><1.0<br><1.0    |                                |                     |                     |                        |                        |                      |                        | <1.0<br><1.0<br><1.0             |                |                |                          |            |                          |                               |                    | <1.0<br><1.0<br><1.0             |                               |              |                    |               |                  | <1.0<br><1.0<br><1.0             |                                   |
| 4-Isopropyltoluene                                                                                 | µg/kg пс<br>µg/kg пс<br>µg/kg пс                                        |   |                   |                      |              |          |                  |                |                | <1.0<br><1.0                     |                | <1.0<br><1.0            |                                |                     |                     |                        |                        |                      |                        | 1.2<br><1.0<br><1.0              |                |                |                          |            |                          |                               |                    | 3.4<br><1.0                      |                               |              |                    |               |                  | <1.0<br><1.0                     |                                   |
| 1,2-Dichlorobenzene<br>1,2-Dibromo-3-chloropropane                                                 | µg/kg nc<br>µg/kg 2140000<br>µg/kg nc                                   | 1 |                   |                      |              | -        | _                |                |                | <1.0<br><1.0<br><50              |                | <1.0<br><1.0<br><50     |                                |                     |                     |                        |                        |                      |                        | <1.0<br><1.0<br><50              |                |                |                          |            |                          |                               |                    | <1.0<br><1.0<br><50              |                               |              |                    |               |                  | <1.0<br><1.0<br><50              |                                   |
| 1,2,4-Trichlorobenzene                                                                             | µg/kg nc<br>µg/kg nc<br>µg/kg 108000                                    |   |                   |                      |              |          |                  |                |                | <1.0<br><1.0<br><2.0             |                | <1.0<br><1.0<br><2.0    |                                |                     |                     |                        |                        |                      |                        | <1.0<br><1.0<br><2.0             |                |                |                          |            |                          |                               |                    | <1.0<br><1.0<br><2.0             |                               |              |                    |               |                  | <1.0<br><1.0<br><2.0             |                                   |
| Tentatively Identified Compounds<br>Benzene, 1-ethenyl-3-methyl                                    | μg/kg nc<br>μg/kg nc                                                    |   |                   |                      |              |          |                  |                |                | None Detected                    |                | None Detected           |                                |                     |                     |                        |                        |                      |                        | None Detected                    | 1              |                |                          |            |                          |                               |                    | 42.0                             |                               |              |                    |               | N                | Ione Detected                    |                                   |
| Indane<br>2-Benzothiphene<br>Benzofuran                                                            | <u>µg/kg nc</u><br>µg/kg nc<br>µg/kg nc                                 |   |                   |                      |              |          |                  |                |                |                                  |                |                         |                                |                     |                     |                        |                        |                      |                        |                                  |                |                |                          |            |                          |                               |                    |                                  |                               |              |                    |               |                  |                                  | $\square$                         |
| Benzo(B)thiophene<br>Phenol,4Methyl<br>Benzo(B)Thiophene                                           | µg/kg nc<br>µg/kg nc<br>µa/ka nc                                        |   |                   |                      |              |          |                  |                |                |                                  |                |                         |                                |                     |                     |                        |                        |                      |                        |                                  |                |                |                          |            |                          |                               |                    |                                  |                               |              |                    |               |                  |                                  |                                   |
| Acenaphthene<br>Acenaphthylene                                                                     | mg/kg 84900<br>mg/kg 84300                                              |   |                   |                      |              |          |                  |                |                | <0.50<br><0.50                   |                | <0.50<br><0.50          |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50                   |                |                |                          |            |                          |                               |                    | <0.50<br><0.50                   |                               |              |                    |               |                  | <0.50<br><0.50                   |                                   |
| Azobenzene                                                                                         | mg/kg 525000<br>mg/kg nc<br>mg/kg 90                                    |   |                   |                      |              |          | -                |                |                | <0.50<br><0.50<br><0.50          |                | 0.51<br><0.50<br>1.4    |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50<br>0.8            |                |                |                          |            |                          |                               |                    | <0.50<br><0.50<br><0.50          |                               |              |                    |               |                  | <0.50<br><0.50<br><0.50          |                                   |
| Benzo[a]pyrene                                                                                     | mg/kg 14<br>mg/kg 100                                                   |   |                   |                      |              |          |                  |                |                | <0.50<br><0.50                   |                | 1.5<br>1.7              |                                |                     |                     |                        |                        |                      |                        | 0.7                              |                |                |                          |            |                          |                               |                    | <0.50<br><0.50                   |                               |              |                    |               |                  | <0.50<br><0.50                   |                                   |
| Benzo[b]fluoranthene<br>Benzo[g,h,i]perylene<br>Benzo[k]fluoranthene<br>bis(2-Chloroethoxy)methane | mg/kg 654<br>mg/kg 141<br>mg/kg nc                                      |   |                   |                      |              |          |                  |                |                | <0.50<br><0.50<br><0.50          |                | 0.57<br><0.50<br><0.50  |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50<br><0.50          |                |                |                          |            |                          |                               |                    | <0.50<br><0.50<br><0.50          |                               |              |                    |               |                  | <0.50<br><0.50<br><0.50          |                                   |
| bis(2-Chloroethyl)ether<br>bis(2-Chloroisopropyl)ether                                             | mg/kg nc<br>mg/kg nc                                                    |   |                   |                      |              |          |                  |                |                | <0.50<br><0.50                   |                | <0.50<br><0.50          |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50                   |                |                |                          |            |                          |                               |                    | <0.50<br><0.50                   |                               |              |                    |               |                  | <0.50<br><0.50                   |                                   |
| bis(2-Ethylhexyl)phthalate<br>Butylbenzylphthalate<br>Carbazole                                    | mg/kg nc<br>mg/kg nc<br>mg/kg nc                                        |   |                   |                      |              |          | _                |                |                | <0.50<br><0.50<br><0.50          |                | <0.50<br><0.50<br><0.50 |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50<br><0.50          |                |                |                          |            |                          |                               |                    | <0.50<br><0.50<br><0.50          |                               |              |                    |               |                  | <0.50<br><0.50<br><0.50          |                                   |
| Chrysene<br>Di-n-butylphthalate                                                                    | mg/kg 137<br>mg/kg nc<br>mg/kg nc                                       |   |                   |                      |              |          |                  |                |                | <0.50<br><0.50<br><0.50          |                | 0.99<br><0.50<br><0.50  |                                |                     |                     |                        |                        |                      |                        | 0.56<br><0.50<br><0.50           |                |                |                          |            |                          |                               |                    | <0.50<br><0.50<br><0.50          |                               |              |                    |               |                  | <0.50<br><0.50<br><0.50          |                                   |
| Dibenzo[a,h]anthracene<br>Dibenzofuran                                                             | mg/kg nc<br>mg/kg nc                                                    |   |                   |                      |              |          |                  |                |                | <0.50<br><0.50                   |                | <0.50<br><0.50          |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50                   |                |                |                          |            |                          |                               |                    | <0.50<br><0.50                   |                               |              |                    |               |                  | <0.50<br><0.50                   |                                   |
| Dimethylphthalate<br>Fluoranthene                                                                  | mg/kg nc<br>mg/kg nc<br>mg/kg 22600                                     |   |                   |                      |              |          |                  |                |                | <0.50<br><0.50<br><0.50          |                | <0.50<br><0.50<br>2.3   |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50<br>1.4            |                |                |                          |            |                          |                               |                    | <0.50<br><0.50<br><0.50          |                               |              |                    |               |                  | <0.50<br><0.50<br><0.50          |                                   |
| Fluorene<br>Hexachlorobenzene                                                                      | mg/kg 63500<br>mg/kg 47                                                 |   |                   |                      |              |          |                  |                |                | <0.50<br><0.50                   |                | <0.50<br><0.50          |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50                   |                |                |                          |            |                          |                               |                    | <0.50<br><0.50                   |                               |              |                    |               |                  | <0.50<br><0.50                   |                                   |
| Hexachloroethane                                                                                   | mg/kg nc<br>mg/kg nc<br>mg/kg nc                                        |   |                   |                      |              |          | +                | +              |                | <0.50<br><0.50<br><0.50          |                | <0.50<br><0.50<br><0.50 |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50<br><0.50          |                |                |                          |            |                          |                               |                    | <0.50<br><0.50<br><0.50          |                               |              |                    |               |                  | <0.50<br><0.50<br><0.50          |                                   |
| Indeno[1,2,3-cd]pyrene<br>Isophorone<br>N-Nitrosodi-n-propylamine                                  | mg/kg 60<br>mg/kg nc                                                    |   |                   |                      |              |          |                  |                |                | <0.50<br><0.50<br><0.50<br><0.50 |                | 0.52<br><0.50<br><0.50  |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50<br><0.50<br><0.50 |                |                |                          |            |                          |                               |                    | <0.50<br><0.50<br><0.50<br><0.50 |                               |              |                    |               |                  | <0.50<br><0.50<br><0.50<br><0.50 |                                   |
| N-Nitrosodimethylamine<br>Naphthalene                                                              | mg/kg         nc           mg/kg         nc           mg/kg         204 |   |                   |                      |              | -        | _                |                |                | <0.50<br><0.50<br><0.50          |                | <0.50<br><0.50<br><0.50 |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50<br><0.50          |                |                |                          |            |                          |                               |                    | <0.50<br><0.50<br><0.50          |                               |              |                    |               |                  | <0.50<br><0.50<br><0.50          | <u> </u>                          |
| Nitrobenzene<br>Pentachlorophenol                                                                  | mg/kg nc<br>mg/kg 1220<br>mg/kg 21900                                   |   |                   |                      |              |          |                  |                |                | <0.50<br><0.50<br><0.50          |                | <0.50<br><0.50<br>2     |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50<br>1.4            |                |                |                          |            |                          |                               |                    | <0.50<br><0.50<br><0.50          |                               |              |                    |               |                  | <0.50<br><0.50<br><0.50          |                                   |
| Pyrene                                                                                             | mg/kg 3200<br>mg/kg 54200                                               |   |                   |                      |              |          |                  |                |                | <0.50<br><0.50                   |                | <0.50<br>1.8            |                                |                     |                     |                        |                        |                      |                        | <0.50<br>1.3                     |                |                |                          |            |                          |                               |                    | <0.50<br><0.50                   |                               |              |                    |               |                  | <0.50<br><0.50                   |                                   |
| 1,2-Dichlorobenzene<br>1,2,4-Trichlorobenzene                                                      | mg/kg 2140<br>mg/kg 228<br>mg/kg 32                                     |   |                   |                      |              |          |                  |                |                | <0.50<br><0.50<br><0.50          |                | <0.50<br><0.50<br><0.50 |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50<br><0.50          |                |                |                          |            |                          |                               |                    | <0.50<br><0.50<br><0.50          |                               |              |                    |               |                  | <0.50<br><0.50<br><0.50          |                                   |
| 1,4-Dichlorobenzene<br>2-Chloronaphthalene                                                         | mg/kg 4460<br>mg/kg nc                                                  |   |                   |                      |              | <u> </u> |                  |                |                | <0.50<br><0.50                   |                | <0.50<br><0.50          |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50                   |                |                |                          |            |                          |                               |                    | <0.50<br><0.50                   |                               |              |                    |               |                  | <0.50<br><0.50                   |                                   |
| 2-Chlorophenol<br>2-Methyl-4,6-dinitrophenol<br>2-Methylnaphthalene                                | mg/kg 3540<br>mg/kg nc<br>mg/kg nc                                      |   |                   |                      |              | -        |                  |                |                | <0.50<br><0.50<br><0.50          |                | <0.50<br><0.50<br><0.50 |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50<br><0.50          |                |                |                          |            |                          |                               |                    | <0.50<br><0.50<br><0.50          |                               |              |                    |               |                  | <0.50<br><0.50<br><0.50          |                                   |
| 2-Methylphenol<br>2-Nitroaniline                                                                   | mg/kg nc<br>mg/kg nc                                                    |   |                   |                      |              |          |                  |                |                | <0.50<br><0.50                   |                | <0.50<br><0.50          |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50                   |                |                |                          |            |                          |                               |                    | <0.50<br><0.50                   |                               |              |                    |               |                  | <0.50<br><0.50                   |                                   |
| 2-Nitrophenol<br>2,4-Dichlorophenol<br>2,4-Dimethylphenol                                          | mg/kg nc<br>mg/kg 3470<br>mg/kg nc                                      |   |                   |                      |              |          | +                | +              |                | <0.50<br><0.50<br><0.50          |                | <0.50<br><0.50<br><0.50 |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50<br><0.50          |                |                |                          |            |                          |                               |                    | <0.50<br><0.50<br><0.50          |                               |              |                    |               |                  | <0.50<br><0.50<br><0.50          |                                   |
| 2,4-Dinitrotoluene<br>2,4.5-Trichlorophenol                                                        | mg/kg nc<br>mg/kg nc                                                    |   |                   |                      |              |          |                  |                |                | <0.50<br><0.50<br><0.50          |                | <0.50<br><0.50<br><0.50 |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50<br><0.50<br><0.50 |                |                |                          |            |                          |                               |                    | <0.50<br><0.50<br><0.50<br><0.50 |                               |              |                    |               |                  | <0.50<br><0.50<br><0.50<br><0.50 |                                   |
| 2,4,6-Trichlorophenol<br>2,6-Dinitrotoluene<br>3-Nitroaniline                                      | mg/kg nc<br>mg/kg nc                                                    |   |                   |                      |              |          |                  |                |                | <0.50<br><0.50                   |                | <0.50<br><0.50          |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50                   |                |                |                          |            |                          |                               |                    | <0.50<br><0.50                   |                               |              |                    |               |                  | <0.50<br><0.50                   |                                   |
| 4-Bromophenylphenylether<br>4-Chloro-3-methylphenol                                                | mg/kg nc<br>mg/kg nc<br>mg/kg nc                                        |   |                   |                      |              |          |                  |                |                | <0.50<br><0.50<br><0.50          |                | <0.50<br><0.50<br><0.50 |                                |                     |                     |                        |                        |                      |                        | <0.50<br><0.50<br><0.50          |                |                |                          |            |                          |                               |                    | <0.50<br><0.50<br><0.50          |                               |              |                    |               |                  | <0.50<br><0.50<br><0.50          |                                   |
| 4-GHIOIDAIIIIIIIE                                                                                  | ing/kg nc                                                               |   |                   |                      | 1            | 1        | 1                | 1              | 1              | <0.50                            |                | <0.50                   |                                |                     |                     |                        |                        | 1                    |                        | <0.50                            | 1              |                |                          |            |                          | 1                             | i – – – –          | <0.50                            |                               |              | 1                  | 1             |                  | <0.50                            | I                                 |

|                                                        |                   |                       | 1                                                                                                              |                        |                        |                        |                   |                   |                   |                       |                   |                      |                      | 1                 | 1                   | 1          |                                  |                   |                   |                      | -                 |                   |                |                   |                | -                 | -                  |                      |                   |                    |                            |                   |                    | ······               |                   |
|--------------------------------------------------------|-------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|------------------------|------------------------|------------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|----------------------|----------------------|-------------------|---------------------|------------|----------------------------------|-------------------|-------------------|----------------------|-------------------|-------------------|----------------|-------------------|----------------|-------------------|--------------------|----------------------|-------------------|--------------------|----------------------------|-------------------|--------------------|----------------------|-------------------|
| Ground Investigation                                   | 1                 |                       | PBA 2010/<br>2011                                                                                              | PBA 2010/<br>2011      | PBA 2010/<br>2011      | PBA 2010/<br>2011      | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011     | PBA 2010/<br>2011 | PBA 2010/<br>2011    | PBA 2010/<br>2011    | PBA 2010/<br>2011 | PBA 2010/ 2011      |            | PBA 2010/<br>2011                | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011    | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/ 2011 | PBA 2010/<br>2011 | PBA 2010/ 2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011  | PBA 2010/<br>2011    | PBA 2010/<br>2011 | PBA 2010/<br>2011  | PBA 2010/<br>2011          | PBA 2010/<br>2011 | PBA 2010/<br>2011  | PBA 2010/<br>2011    | PBA 2010/<br>2011 |
| Report Number                                          | r                 |                       | 121863                                                                                                         | 121863                 | 121863                 | 121863                 | 121863            | 121863            | 121863            | 121863                | 115023            | 115023               | 115023 &<br>122039   | 115023            | 115023              | 115023     | 115023                           | 115023            | 115023            | 115023               | 115023            | 133346            | 133347         | 133347            | 133347         | 133346            | 133347             | 133347               | 133346            | 133347             | 133347                     | 133347            | 133347             | 133347               | 133347            |
| Lab Ret                                                | f                 |                       | AF60264                                                                                                        | AF60265                | AF60266                | AF60267                | AF60268           | AF60269           | AF60270           | AF60271               | AF54173           | AF54174              | AF54175 &<br>AF64437 | AF54176           | AF54177             | AF54178    | AF54179                          | AF54180           | AF54181           | AF54182              | AF54183           | AF61338           | AF61356        | AF61357           | AF61358        | AF61339           | AF61360            | AF61361              | AF61340           | AF61362            | AF61363                    | AF61364           | AF61365            | AF61366              | AF61367           |
| Date                                                   | 9                 |                       |                                                                                                                |                        | 0 10/12/2010           |                        |                   |                   |                   | 10/12/2010<br>TP2021A |                   |                      |                      |                   | Not known<br>TT2001 |            |                                  |                   |                   | Not known            |                   |                   | 04/01/2011     |                   |                |                   |                    |                      |                   |                    |                            |                   |                    | 04/01/2011           |                   |
| Exploatory hole location<br>Zone B Location            |                   |                       | B1                                                                                                             | B1                     | B1                     | B1                     | B1                | B1                | B1                | B1                    | B1                | B1                   | B1                   | B1                | B1                  | B1         | B1                               | B1                | B1                | B1                   | B1                | BH2004<br>B1      | B1             | BH2004<br>B1      | BH2004<br>B1   | BH2004<br>B1      | BH2004<br>B1       | BH2004<br>B1         | BH2004<br>B1      | BH2004<br>B1       | BH2004<br>B1               | B1                | BH2004             | BH2004<br>B1         | BH2004<br>B1      |
| Zone D Eocation                                        |                   |                       | 51                                                                                                             | 51                     | 51                     | 51                     | 51                | 51                | 51                | 51                    | 51                | 51                   | 51                   | 51                | 51                  | 51         | 51                               | 51                | 51                | 51                   | 51                | 51                | 51             | 51                | 51             | 51                | 51                 | 51                   | ы                 | 51                 | 51                         | Di                |                    |                      |                   |
| Location on plot/ gas holder number                    | r                 |                       | Outside<br>gasholder 3                                                                                         | Outside<br>gasholder 3 | Outside<br>gasholder 3 | Outside<br>gasholder 3 |                   | Inside GH3        | Inside GH3        | Inside GH3            | Inside GH3        | Inside GH3           | Inside GH3           | Inside GH3        | Inside GH3          | Inside GH3 | Between<br>gas holder 3<br>and 9 | Inside GH9        | Inside GH9        | Inside GH9           | Inside GH9        | Inside GH9        | Inside GH9     | Inside GH9        | Inside GH9     | Inside GH9        | Inside GH9         | Inside GH9           | Inside GH9        | Inside GH9         | Inside GH9                 | Inside GH9        | Inside GH9         | Inside GH9           | Inside GH9        |
| Depth (m)                                              | )                 |                       | 1m                                                                                                             | 2m                     | 3m                     | 4.4m                   | 1.5m              | 2.5m              | 3.5m              | 4.3m                  | 0.2m              | 1m                   | 2m                   | 3m                | 4m                  | 4.5m       | 1.5m                             | 1m                | 2.7m              | 4m                   | 4.5m              | 1m                | 0.3m           | 2m                | 2m             | 4m                |                    | 7m                   | 7m                |                    |                            | 10m               |                    | 11m                  |                   |
| Strata                                                 | a                 |                       |                                                                                                                | Made<br>Ground         | Made<br>Ground         | 01                     | Made<br>Ground    |                   | Made              | Made Oracid           |                   |                      | Made                 | Made              |                     | Made       | Made<br>Ground                   | Made<br>Ground    | Made<br>Ground    |                      | Made              |                   | Made Oracid    | Made              | Made Orient    | Reworked          | Reworked<br>London | Reworked             | Reworked          | Reworked<br>London | Reworked<br>London<br>Clay | Reworked          | Reworked<br>London | Reworked             |                   |
| Chlorophenylphenylether                                | mg/kg             | nc                    | Made Ground                                                                                                    | Ground                 | Ground                 | Clay                   | Ground            | Made Ground       | d Ground          | Made Ground<br><0.50  | Made Ground       | Made Ground<br><0.50 | Ground               | Ground            | Made Ground         | Ground     | Ground                           | Ground            | Ground            | Made Ground<br><0.50 | Ground            | made Ground       | Made Ground    | Ground            | Made Ground    | London Clay       | Clay               | London Clay<br><0.50 | London Clay       | Clay               | Ciay                       | London Clay       | Clay               | London Clay<br><0.50 | Clay              |
| Methylphenol                                           | mg/kg             | nc                    |                                                                                                                |                        |                        |                        |                   |                   |                   | <0.50                 |                   | < 0.50               |                      |                   |                     |            |                                  |                   |                   | < 0.50               |                   |                   |                |                   |                |                   |                    | < 0.50               |                   |                    |                            |                   |                    | <0.50                | 1                 |
| Nitroaniline                                           | mg/kg             | nc                    |                                                                                                                |                        |                        |                        |                   |                   |                   |                       |                   | <0.50                |                      |                   |                     |            |                                  |                   |                   | <0.50                |                   |                   |                |                   |                |                   |                    | <0.50                |                   |                    |                            |                   |                    | <0.50                |                   |
| hyl-methyl benzenes<br>entatively Identified Compounds | mg/kg<br>mg/kg    | nc                    |                                                                                                                |                        | -                      |                        | -                 |                   |                   | Not detected          |                   | Not detected         |                      |                   |                     |            |                                  |                   |                   | Not detected         |                   |                   |                |                   |                |                   | -                  | Not detected         |                   |                    |                            |                   | ÷                  | Not detected         | -                 |
| enzofuran                                              | mg/kg             | nc                    |                                                                                                                |                        |                        |                        | -                 |                   |                   | NUL UELECLEU          |                   | NUL DELECTED         |                      |                   |                     |            |                                  |                   |                   | NUL DELECTED         |                   |                   |                |                   |                |                   |                    | NUL DELECTED         |                   |                    |                            |                   | +                  | NUL UELECIEU         |                   |
| ohenyl                                                 | mg/kg             | nc                    |                                                                                                                |                        |                        |                        |                   |                   |                   |                       |                   |                      |                      |                   |                     |            |                                  |                   |                   |                      |                   |                   |                |                   |                |                   |                    |                      |                   |                    |                            |                   |                    |                      | 1                 |
| methylnahthalene                                       | mg/kg             | nc                    |                                                                                                                |                        |                        |                        |                   |                   |                   |                       |                   |                      |                      |                   |                     |            |                                  |                   |                   |                      |                   |                   |                |                   |                |                   |                    |                      |                   |                    |                            |                   |                    |                      |                   |
| methylnaphthalene                                      | mg/kg<br>ma/ka    | nc                    |                                                                                                                |                        |                        |                        |                   |                   | + +               |                       |                   |                      |                      |                   |                     |            |                                  |                   |                   |                      |                   |                   |                |                   |                | l                 |                    |                      |                   |                    |                            |                   | / <b></b> +        |                      |                   |
| dene<br>benzothiophene                                 | mg/kg<br>mg/kg    | nc                    | -                                                                                                              | 1                      | -                      |                        | -                 |                   | + +               |                       |                   |                      |                      |                   |                     | 1          |                                  |                   |                   |                      |                   | 1                 |                |                   |                |                   |                    |                      |                   |                    |                            |                   | +                  |                      | +                 |
| namaldehde                                             | mg/kg             | nc                    |                                                                                                                |                        | 1                      |                        | 1                 |                   | 1 1               |                       |                   |                      | 1                    |                   |                     | 1          |                                  |                   |                   |                      | 1                 |                   |                |                   |                | 1                 | 1                  |                      |                   |                    |                            |                   | +                  |                      | +                 |
| phenyl                                                 | mg/kg             | nc                    |                                                                                                                |                        |                        |                        |                   |                   |                   |                       |                   |                      |                      |                   |                     |            |                                  |                   |                   |                      |                   |                   |                |                   |                |                   |                    |                      |                   |                    |                            |                   |                    | -                    | 1                 |
| phtho[2,3-B]thiophene                                  | mg/kg             | nc                    |                                                                                                                |                        |                        |                        | _                 |                   |                   |                       |                   |                      |                      |                   |                     |            |                                  |                   |                   |                      |                   |                   |                |                   |                |                   |                    |                      |                   |                    |                            |                   | ,                  |                      | _                 |
| CBs as Aroclor 1242<br>sec-Butyl-4,6-dinitrophenol     | mg/kg<br>mg/kg    | nc                    |                                                                                                                |                        |                        |                        |                   |                   |                   | <1.0                  |                   | <1                   |                      |                   |                     |            |                                  |                   |                   | <1                   |                   |                   |                |                   |                |                   |                    | <1.0                 |                   |                    |                            |                   | +                  | <1.0                 |                   |
| Chloro-3-methylphenol                                  | mg/kg             | nc                    |                                                                                                                |                        | 1                      |                        | 1                 |                   | 1 1               |                       |                   |                      | 1                    |                   |                     | 1          |                                  |                   |                   |                      | 1                 |                   |                |                   |                | 1                 | 1                  |                      |                   |                    |                            |                   | +                  |                      | +                 |
| Chlorophenol                                           | mg/kg             | nc                    |                                                                                                                |                        |                        |                        |                   |                   | 1 1               |                       |                   |                      |                      | 1                 |                     | 1          | 1                                |                   |                   |                      |                   |                   |                |                   |                | 1                 |                    |                      |                   |                    |                            |                   | · · · · · ·        |                      | 1                 |
| 4-Dichlorophenol                                       | mg/kg             | nc                    |                                                                                                                |                        |                        |                        |                   |                   |                   |                       |                   |                      |                      |                   |                     |            |                                  |                   |                   |                      |                   |                   |                |                   |                |                   |                    |                      |                   |                    |                            |                   |                    |                      |                   |
| 6-Dichlorophenol<br>4-Dimethylphenol                   | mg/kg<br>ma/ka    | nc                    |                                                                                                                |                        |                        |                        |                   |                   | + +               |                       |                   |                      | l                    |                   |                     |            |                                  |                   |                   |                      |                   |                   |                |                   |                | l                 |                    |                      |                   |                    |                            |                   | ·+                 |                      |                   |
| 4-Dinitrophenol                                        | mg/kg<br>mg/kg    | nc                    | -                                                                                                              | -                      | -                      |                        | -                 | 1                 | + +               |                       |                   |                      | 1                    |                   |                     | 1          |                                  |                   |                   |                      |                   |                   |                |                   |                | 1                 |                    |                      |                   |                    |                            |                   | +                  |                      | -                 |
| Methyl-4,6-dinitrophenol                               | mg/kg             | nc                    |                                                                                                                | 1                      | 1                      |                        | 1                 | 1                 |                   |                       | 1                 | 1                    |                      |                   | 1                   | 1          |                                  |                   |                   |                      |                   | 1                 | 1              |                   |                | 1                 | 1                  | 1                    | 1                 |                    |                            |                   | /t                 |                      | +                 |
| Methylphenol                                           | mg/kg             | nc                    |                                                                                                                |                        |                        |                        |                   |                   |                   |                       |                   |                      |                      |                   |                     |            |                                  |                   |                   |                      |                   |                   |                |                   |                |                   |                    |                      |                   |                    |                            |                   |                    |                      |                   |
| Methylphenol                                           | mg/kg             | nc                    |                                                                                                                |                        |                        |                        |                   |                   | +                 |                       |                   |                      |                      |                   |                     |            |                                  |                   |                   |                      |                   |                   |                |                   |                |                   |                    |                      |                   |                    |                            |                   |                    |                      | +                 |
| Methylphenol<br>Nitrophenol                            | mg/kg<br>mg/kg    | nc                    |                                                                                                                | +                      | +                      |                        | +                 |                   | + +               |                       | 1                 |                      |                      |                   | +                   | +          |                                  |                   |                   |                      |                   |                   |                |                   |                | ł                 | +                  | l                    |                   |                    |                            |                   | +                  |                      | +                 |
| Nitrophenol                                            | mg/kg             | nc                    |                                                                                                                | 1                      | -                      |                        | +                 |                   |                   |                       |                   |                      |                      |                   | -                   | 1          |                                  |                   |                   |                      |                   |                   |                |                   |                | 1                 | 1                  |                      |                   |                    |                            |                   | +                  |                      | +                 |
| entachlorophenol                                       | mg/kg             | nc                    |                                                                                                                |                        |                        |                        |                   |                   |                   |                       |                   |                      |                      |                   |                     |            |                                  |                   |                   |                      |                   |                   |                |                   |                |                   |                    |                      |                   |                    |                            |                   |                    |                      | 1                 |
| nenol                                                  | mg/kg             | 3200                  |                                                                                                                |                        |                        |                        |                   |                   |                   |                       |                   |                      |                      |                   |                     |            |                                  |                   |                   |                      |                   |                   |                |                   |                |                   |                    |                      |                   |                    |                            |                   |                    |                      |                   |
| 3,4,5-Tetrachlorophenol<br>3,4,6-Tetrachlorophenol     | mg/kg             | nc<br>3900            |                                                                                                                |                        |                        |                        |                   |                   | ┥──┤              |                       |                   |                      |                      |                   | +                   |            |                                  |                   |                   |                      |                   | ł                 |                | ┝──┤              |                |                   |                    |                      |                   |                    |                            |                   | +                  |                      | +                 |
| 3,4,6-1 etrachlorophenol<br>3,5,6-Tetrachlorophenol    | mg/kg<br>mg/kg    | 3900                  |                                                                                                                | +                      | +                      |                        | +                 |                   | + +               |                       | 1                 |                      |                      |                   | +                   | +          |                                  |                   |                   |                      |                   | l                 |                | ┝──┤              |                |                   | +                  |                      |                   |                    |                            |                   | +                  |                      | +                 |
| 3.4-Trichlorophenol                                    | mg/kg             | nc                    |                                                                                                                | 1                      | 1                      |                        | 1                 | 1                 |                   |                       | 1                 | 1                    |                      |                   | 1                   | 1          |                                  |                   |                   |                      |                   | 1                 | 1              |                   |                | 1                 | 1                  | 1                    | 1                 |                    |                            |                   | /t                 |                      | +                 |
| 3,5-Trichlorophenol                                    | mg/kg             | nc                    |                                                                                                                |                        |                        |                        |                   |                   |                   |                       |                   |                      |                      |                   |                     |            |                                  |                   |                   |                      |                   |                   |                |                   |                |                   |                    |                      |                   |                    |                            |                   |                    |                      |                   |
| 3,6-Trichlorophenol                                    | mg/kg             | nc                    |                                                                                                                |                        |                        |                        |                   |                   | +                 |                       |                   |                      |                      |                   |                     |            |                                  |                   |                   |                      |                   |                   |                |                   |                |                   |                    |                      |                   |                    |                            |                   |                    |                      | +                 |
| 4,5-Trichlorophenol<br>4,6-Trichlorophenol             | mg/kg<br>mg/kg    | nc                    |                                                                                                                |                        |                        |                        |                   |                   |                   |                       |                   |                      |                      |                   |                     |            |                                  |                   |                   |                      |                   |                   |                |                   |                |                   |                    |                      |                   |                    |                            |                   | +                  |                      | +                 |
| 4,5-Trichlorophenol                                    | mg/kg<br>mg/kg    | nc                    | -                                                                                                              | +                      | +                      | -                      | +                 |                   |                   |                       |                   |                      | -                    | -                 | 1                   | 1          |                                  |                   |                   |                      |                   |                   |                |                   |                | 1                 | +                  |                      |                   |                    |                            |                   | +                  |                      | +                 |
|                                                        |                   |                       |                                                                                                                | 1                      | 1                      | 1                      | 1                 | 1                 |                   |                       |                   |                      | 1                    | 1                 |                     | i          | i                                |                   |                   |                      | 1                 |                   |                |                   |                | 1                 | 1                  |                      |                   |                    |                            |                   |                    |                      | 1                 |
|                                                        | Indicates where t | he data exceeds the s | ic in the second second second second second second second second second second second second second second se |                        |                        |                        |                   |                   |                   |                       |                   |                      |                      |                   |                     |            |                                  |                   |                   |                      |                   |                   |                |                   |                |                   |                    |                      |                   |                    |                            |                   |                    |                      |                   |

|                                                                                          |                            |                    | PBA 2010/               | DRA 00101              | DDA 0010             | DRA 00101             | DDA octor             | PBA 2010/             | PBA 2010/          | PBA 2010/              | PBA 2010/             | PRA 00101             | DDA 00101             | PBA 2010/                   | PPA 00101               | PPA potoi             | PPA control           | DDA 00101           | DRA 00101             | DD4 00101               | DPA contai              | DDA 00101         | PRA actor              | DDA 00101              | DRA 00101             | PRA 00101             | DDA 00101               | PBA 2010/                 | PBA 2010/             | PBA 2010/         | PBA 2010/             | PBA 2010/               | PBA 2010/ PBA 2010/              |
|------------------------------------------------------------------------------------------|----------------------------|--------------------|-------------------------|------------------------|----------------------|-----------------------|-----------------------|-----------------------|--------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------------|-------------------------|-----------------------|-----------------------|---------------------|-----------------------|-------------------------|-------------------------|-------------------|------------------------|------------------------|-----------------------|-----------------------|-------------------------|---------------------------|-----------------------|-------------------|-----------------------|-------------------------|----------------------------------|
| Ground Investigation                                                                     |                            |                    | 2011                    | 2011                   | 2011                 | 2011                  | 2011                  | 2011                  | 2011               | 2011                   | 2011                  | 2011                  | 2011                  | 2011                        | 2011                    | 2011                  | 2011<br>133347/       | 2011                | 2011                  | 2011                    | 2011                    | 2011              | 2011                   | 2011                   | 2011                  | 2011                  | 2011                    | 2011                      | 2011                  | 2011              | 2011                  | 2011                    | 2011 2011                        |
| Report Number                                                                            |                            |                    | 133347<br>AF61368       | 133347<br>AF61369      | 121863<br>AF60262    | 122111<br>AF68443     | 122209<br>AF68336     | 122210<br>AF68366     | 122209<br>AF68337  | 133347<br>AF61376      | 133347<br>AF61377     | 133347<br>AF61378     | 133346<br>AF61343     | 133347<br>AF61379           | 133347<br>AF61380       | 133346<br>AF61344     | 122039<br>AF61381/    | 133347<br>AF61382   | 133346<br>AF61345     | 133347<br>AF61383       | 133347<br>AF61384       | 133347<br>AF61385 | 133344<br>AF61323      | 133344<br>AF61318      | 133344<br>AF61319     | 133344<br>AF61320     | 133344<br>AF61321       | 133344<br>AF61322         | 121783<br>AF57622     | 122211<br>AF68428 | 122209<br>AF68289     | 122209<br>AF68290       | 122210 122211<br>AF68354 AF68429 |
| Date                                                                                     |                            |                    | 04/01/2011              | 04/01/2011             | 10/12/2010           | 07/02/2011            | 25/01/2011            | 25/01/2011            | 25/01/2011         | 04/01/2011             | 04/01/2011            | 04/01/2011            | 04/01/2011            | 04/01/2011                  | 04/01/2011              | 04/01/2011            |                       | 04/01/2011          | 04/01/2011            | 04/01/2011              | 04/01/2011              | 04/01/2011        | 04/01/2011             | 04/01/2011             | 04/01/2011            | 04/01/2011            | 04/01/2011              | 04/01/2011                | 10/12/2010            | 07/02/2011        | 25/01/2011            | 25/01/2011              | 25/01/2011 07/02/2011            |
| Exploatory hole location<br>Zone B Location                                              |                            |                    | BH2004<br>B1            | BH2004<br>B1           | TP2020<br>B1         | TP2026<br>B1          | TP2026<br>B1          | TP2026<br>B1          | TP2026<br>B1       | BH2009<br>B1           | BH2009<br>B1          | BH2009<br>B1          | BH2009<br>B1          | BH2009<br>B1                | BH2009<br>B1            | BH2009<br>B1          | BH2015<br>B1          | BH2015<br>B1        | BH2015<br>B1          | BH2015<br>B1            | BH2015<br>B1            | BH2015<br>B1      | TP2019<br>B1           | TP2014<br>B1           | TP2014<br>B1          | TP2014<br>B1          | TP2014<br>B1            | TP2014<br>B1              | TP2002<br>B3          | BH2016<br>B3      | BH2016<br>B3          | BH2016<br>B3            | BH2016 BH2016<br>B3 B3           |
| Location on plot/ gas holder number                                                      |                            |                    | Inside GH9              | Inside GH9             | GHB (edge)           | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside gasholders | Outside<br>gasholders  | Outside<br>gasholders | Outside<br>gasholders | Outside gasholders    | Outside<br>gasholders       | Outside<br>gasholders   | Outside<br>gasholders | Outside<br>gasholders | Outside gasholders  | Outside<br>gasholders | Outside<br>gasholders   | Outside<br>gasholders   |                   | Gas holder B<br>(edge) | Outside<br>gasholders  | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders   | Outside<br>gasholders     | Outside<br>gasholders | Inside GH9        | Inside GH9            | Inside GH9              | Inside GH9 Inside GH9            |
| Depth (m)<br>Strata                                                                      |                            |                    | 13m<br>Reworked         | 15m                    | 1m<br>Made           | 1m                    | 1m                    | 1m                    | 2m                 | 0.35m                  | 1m                    | 2m                    | 2m<br>Made            | 3m<br>Reworked<br>Weathered |                         | 5m<br>Weathered       | 0.3m<br>Made          | 1m<br>Made          | 2m<br>Made            | 3m                      | 4m<br>Weathered         | 5m<br>Weathered   | 0.1m - 0.8m<br>Made    | 0.6m                   | 1m<br>Made            | 2m<br>Made            | 2m                      | 3m<br>Made                | 0.3m                  | 0.3m              | 1m                    | 2m                      | 2m 3m<br>Made Made               |
|                                                                                          |                            | Screening Criteria |                         | London Clay            |                      | Made Ground           | Made Ground           | Made Ground           | Made Ground        | Made Ground            | Made Ground           | Made Ground           | Ground                | London Clay                 |                         |                       | Ground                | Ground              | Ground                | Made Ground             | London Clay             | London Clay       | Ground                 | Topsoil                | Ground                |                       | Made Ground             |                           | Made Ground           | Made Ground       | Made Ground           | Made Ground             | Ground Ground                    |
| Metals                                                                                   | Units<br>ma/ka             | Commercial<br>640  |                         | 19                     | 15                   |                       | 21                    |                       | 25                 | 3.8                    | 12                    |                       |                       |                             | 8.7                     |                       |                       | 9.5                 |                       |                         | 7.8                     |                   | 15                     | 9.7                    |                       | 7.8                   |                         | 25                        |                       |                   | 38                    | 13                      |                                  |
| Cadmium                                                                                  | mg/kg<br>mg/kg<br>mg/kg    | 230.0              |                         | 0.17<br>10             | <0.10                |                       | 0.19<br><5.0<br>61    |                       |                    | 0.14                   | 0.12                  |                       |                       |                             | <0.10                   |                       |                       | 9.5<br>0.16<br>11   |                       |                         | <0.10                   |                   |                        | 0.2                    |                       | <0.10                 |                         | 0.53                      |                       |                   | 0.3<br>11             | <0.10<br>23             |                                  |
| Copper<br>Lead                                                                           | mg/kg<br>mg/kg             | 71700<br>7300      |                         | 72<br>360<br>0.15      | 31<br>180            |                       | 260                   |                       | 44<br>330          | 21<br>30<br><0.10      | 74<br>140             |                       |                       |                             | 15<br>19<br>16<br><0.10 |                       |                       | 28<br>160<br>0.41   |                       |                         | 20<br>21<br>16<br><0.10 |                   | 41<br>460              | 16<br>24<br>59<br>0.13 |                       | 13<br>19<br>26        |                         | <5.0<br>21<br>33<br><0.10 |                       |                   | 130<br>170<br>0.32    | 27<br>62<br>0.14        |                                  |
| Nickel                                                                                   | mg/kg<br>mg/kg<br>mg/kg    | 1800               |                         | 47                     |                      |                       | 1.2<br>19             |                       |                    | <0.10                  | 0.23<br>16            |                       |                       |                             | 29                      |                       |                       | 16                  |                       |                         | <0.10                   |                   |                        | 31                     |                       | <0.10<br>26           |                         | <0.10<br>6.5              |                       |                   | 27                    | 0.14<br>36              |                                  |
| Selenium<br>Zinc                                                                         | mg/kg<br>mg/kg             | 13000              |                         | 2.7<br>140             | < 0.20<br>57         |                       | <0.20<br>160          |                       | <0.20<br>120       | <0.20<br>63            | <0.20<br>90           |                       |                       |                             | 0.3<br>50               |                       |                       | <0.20<br>75         |                       |                         | <0.20<br>54             |                   | <0.20<br>220           |                        |                       | 0.35<br>47            |                         | <0.20<br>63               |                       |                   | <0.20<br>320          | <0.20<br>74             |                                  |
|                                                                                          | mg/kg                      |                    |                         | 84                     |                      |                       |                       |                       |                    | 3.5<br><0.50           | 4.5<br><0.50          |                       |                       |                             | <0.50<br><0.50          |                       |                       | 0.5<br><0.50        |                       |                         | <0.50<br><0.50          |                   | 1.6                    | 13<br><0.50            |                       | 3.3<br><0.50          |                         | 0.5<br><0.50              |                       |                   |                       |                         |                                  |
| Thiocyanate                                                                              | mg/kg<br>mg/kg<br>mg/kg    | nc                 |                         |                        | < 5.0                |                       |                       |                       |                    | <5.0                   | <5.0                  |                       |                       |                             | <5.0                    |                       |                       | <5.0                |                       |                         | < 5.0                   |                   |                        | <5.0                   |                       | <5.0                  |                         | <5.0                      |                       |                   |                       |                         |                                  |
| Total organic carbon                                                                     | %<br>pH Units              | nc                 |                         | 8.9                    | 7.9                  |                       | 9                     | 7.5<br>9.2            | 9.3                | 10.8                   | 10.8                  |                       | 1.5<br>8.7            |                             | 8.1                     | 0.59<br>8.1           |                       | 10.5                | 17<br>8.5             |                         | 8.1                     |                   | 8.9                    | 5.8                    |                       | 8.2                   |                         | 8.3                       |                       |                   | 10.1                  | 8.2                     | 0.78<br>8.4                      |
|                                                                                          | %                          | nc                 |                         |                        |                      |                       |                       |                       |                    |                        |                       | Not detected          |                       |                             |                         |                       | Amosite<br>0.01       |                     |                       |                         |                         |                   |                        |                        | Not detected          |                       |                         |                           | Not detected          | Not detected      |                       |                         | Not detected                     |
| Phenol<br>Sulphur (free)                                                                 | mg/kg                      | 3200<br>nc         |                         | <0.3                   | < 0.3                |                       | <0.3                  |                       | <0.3               | <0.3                   | <0.3                  |                       |                       |                             | <0.3                    |                       |                       | <0.3                |                       |                         | <0.3                    |                   | <0.3                   | <0.3                   |                       | <0.3                  |                         | <0.3                      |                       |                   | <0.3                  | <0.3                    |                                  |
| Total Sulphate                                                                           | mg/kg<br>% as SO4<br>mg/kg | nc                 |                         |                        |                      |                       |                       |                       |                    |                        |                       |                       |                       |                             |                         |                       |                       |                     |                       |                         |                         |                   |                        |                        |                       |                       |                         |                           |                       |                   |                       |                         |                                  |
| Phenol (monohydric) SOM 1%<br>Total sulphate                                             | mg/kg<br>mg/kg             | nc<br>nc           |                         |                        |                      |                       |                       |                       |                    |                        |                       |                       |                       |                             |                         |                       |                       |                     |                       |                         |                         |                   |                        |                        |                       |                       |                         |                           |                       |                   | 1.1                   | 0.29                    |                                  |
| Sulphate (2:1 water soluble) as SO4<br>Organic matter                                    | g/l<br>%                   | nc<br>nc           |                         | 0.19                   | 2.9                  |                       | 1.3<br>15             |                       | 1.8<br>14          | 0.33                   | 1.1<br>1.2            |                       | 10.0                  |                             | 1.3<br>0.52             | 15.0                  |                       | 0.51                | 17.6                  |                         | 1.5<br>0.81             |                   |                        | 1.5<br>2.1             |                       | 1.4<br>1.6            |                         | 0.99 0.84                 |                       |                   | 1.6                   | 1.4                     | 05.0                             |
|                                                                                          | %<br>mol/kg<br>%           | nc                 | 18.4                    | 18.2                   | 20.8                 |                       | 14.9                  | 14.3<br>0.134<br>5.56 | 14.6               | 2.84                   | 11.4                  |                       | 13.6<br>0.011<br>5.21 | 19.6                        | 17                      | 15.6<br>0.016<br>4.85 |                       | 11.3                | 0.01                  | 24.3                    | 22.2                    |                   | 2.48                   | 27.5                   |                       | 26.3                  | 26                      | 22.1                      |                       |                   | 13.2                  | 27.5                    | 25.9<br>0.083<br>5.54            |
| Stones content > 50mm BTEX                                                               | %                          | nc                 | <0.02                   | <0.02                  |                      |                       |                       | 0.00                  |                    | <0.02                  | <0.02                 |                       | <0.02                 | <0.02                       | <0.02                   | <0.02                 |                       | <0.02               | <0.02                 | <0.02                   | <0.02                   |                   | <0.02                  | <0.02                  |                       | <0.02                 | <0.02                   | <0.02                     |                       |                   |                       |                         | <0.02                            |
| Toluene                                                                                  | µg/kg<br>µg/kg             | 870000.00          |                         | 320<br>270             | <1                   |                       |                       | <1<br><1<br><1        |                    | 40<br>7.6              | 20<br>5.5             |                       | <1                    |                             | 1.2                     | 1.5                   |                       | 2.5                 | <1<br><1<br><1        |                         | 2.4                     |                   | <1<br><1<br><1         | 4.3<br>2.8             |                       | 9.4<br>1.5            |                         | 150<br>1.8                |                       |                   |                       |                         | 9.6                              |
| m- & p-Xylene                                                                            | μg/kg<br>μg/kg<br>μg/kg    | 575000             |                         | 380<br>78<br>180       | <1<br><1<br><1       |                       |                       | <1<br><1<br><1        |                    | 6<br>6.2<br>3.3        | 1.9<br>2.8<br>1.1     |                       | <1<br><1<br><1        |                             | <1<br><1<br><1          | <1<br><1              |                       | <1<br><1<br><1      | <1<br><1              |                         | 2.3<br>< 1<br>< 1       |                   | < 1                    | 2.5<br>1.5<br>1.5      |                       | 3.4<br>3.7<br><1      |                         | 24<br>14<br>9.1           |                       |                   |                       |                         | <1<br><1<br><1                   |
| Total BTEX<br>Methyl tert-butyl ether                                                    | μg/kg<br>μg/kg             | nc                 | <1.0                    |                        |                      |                       |                       | <0.005                |                    |                        |                       |                       | <0.005                | <1.0                        |                         | <0.005                |                       |                     | <0.005                | <1.0                    |                         |                   |                        |                        |                       |                       | <1.0                    |                           |                       |                   |                       |                         | 0.0071                           |
| Hydrocarbons<br>Aliphatic C5-C6<br>Aliphatic >C6-C8                                      | mg/kg<br>mg/kg             |                    | < 0.1<br>< 0.1          |                        |                      |                       |                       |                       |                    |                        |                       |                       |                       | < 0.1<br>< 0.1              |                         |                       |                       |                     |                       | < 0.1<br>< 0.1          |                         |                   |                        |                        |                       |                       | < 0.1<br>< 0.1          |                           |                       |                   |                       |                         |                                  |
| Aliphatic >C8-C10                                                                        | mg/kg<br>mg/kg             | 2130               | < 0.1                   |                        |                      |                       |                       |                       |                    |                        |                       |                       |                       | < 0.1                       |                         |                       |                       |                     |                       | < 0.1                   |                         |                   |                        |                        |                       |                       | < 0.1                   |                           |                       |                   |                       |                         |                                  |
| Aliphatic >C12-C16<br>Aliphatic >C16-C21                                                 | mg/kg<br>mg/kg             | 60800<br>673000    | < 0.1                   |                        |                      |                       |                       |                       |                    |                        |                       |                       |                       | < 0.1                       |                         |                       |                       |                     |                       | < 0.1                   |                         |                   |                        |                        |                       |                       | < 0.1                   |                           |                       |                   |                       |                         |                                  |
| Aliphatic >C35-C44                                                                       | mg/kg<br>mg/kg<br>mg/kg    | 673000             | < 0.1<br>< 0.1<br>< 0.1 |                        |                      |                       |                       |                       |                    |                        |                       |                       |                       | < 0.1<br>< 0.1<br>< 0.1     |                         |                       |                       |                     |                       | < 0.1<br>< 0.1<br>< 0.1 |                         |                   |                        |                        |                       |                       | < 0.1<br>< 0.1<br>< 0.1 |                           |                       |                   |                       |                         |                                  |
| Aromatic >C7-C8<br>Aromatic >C8-C10                                                      | mg/kg<br>mg/kg             | 59000<br>3670      | < 0.1<br>< 0.1          |                        |                      |                       |                       |                       |                    |                        |                       |                       |                       | < 0.1<br>< 0.1              |                         |                       |                       |                     |                       | < 0.1<br>< 0.1          |                         |                   |                        |                        |                       |                       | < 0.1<br>< 0.1          |                           |                       |                   |                       |                         |                                  |
| Aromatic >C12-C16                                                                        | mg/kg<br>mg/kg<br>mg/kg    | 36200              | < 0.1<br>0.13<br>0.64   |                        |                      |                       |                       |                       |                    |                        |                       |                       |                       | < 0.1<br>< 0.1<br>< 0.1     |                         |                       |                       |                     |                       | < 0.1<br>3.1<br>15      |                         |                   |                        |                        |                       |                       | < 0.1<br>< 0.1<br>< 0.1 |                           |                       |                   |                       |                         |                                  |
| Aromatic >C21-C35<br>Aromatic >C35-C44                                                   | mg/kg<br>mg/kg             | 28400              | 0.74                    |                        |                      |                       |                       |                       |                    |                        |                       |                       |                       | < 0.1                       |                         |                       |                       |                     |                       | 19 < 0.1                |                         |                   |                        |                        |                       |                       | < 0.1                   |                           |                       |                   |                       |                         |                                  |
|                                                                                          | mg/kg<br>mg/kg             | nc                 | <2                      | 42                     | < 10                 |                       | 180                   |                       | 110                | 44                     | 32                    |                       |                       | - 2                         | < 10                    |                       |                       | 110                 |                       | 37                      | < 10                    |                   | - 10                   | 15                     |                       | < 10                  | <2                      | < 10                      |                       |                   | < 10                  | 32                      |                                  |
|                                                                                          | mg/kg<br>mg/kg             | nc                 | <2                      | 42                     | < 10                 |                       | 180                   | 130                   | 110                | 44                     | 32                    |                       | < 10                  | <2                          | < 10                    | < 10                  |                       | 110                 | 470                   | 31                      | < 10                    |                   | < 10                   | 13                     |                       | < 10                  | <2                      | < 10                      |                       |                   | < 10                  | 32                      | < 10                             |
| Gasoline Range Organics by GC (GRO)                                                      | mg/kg<br>mg/kg             | 2130<br>2130       |                         |                        |                      |                       |                       |                       |                    |                        |                       |                       |                       |                             |                         |                       |                       |                     |                       |                         |                         |                   |                        |                        |                       |                       |                         |                           |                       |                   |                       |                         |                                  |
| TPH (SUM DRO + GRO)<br>TPH (Mineral Oil/ Hydrocarbon oil)<br>TPH (Aromatic hydrocarbons) | mg/kg<br>mg/kg<br>mg/kg    | 2130               |                         |                        |                      |                       |                       |                       |                    |                        |                       |                       |                       |                             |                         |                       |                       |                     |                       |                         |                         |                   |                        |                        |                       |                       |                         |                           |                       |                   |                       |                         |                                  |
| TPH (Solvent Extracted)<br>TPH                                                           | mg/kg<br>mg/kg             | 2130<br>2130       |                         |                        |                      |                       |                       |                       |                    |                        |                       |                       |                       |                             |                         |                       |                       |                     |                       |                         |                         |                   |                        |                        |                       |                       |                         |                           |                       |                   |                       |                         |                                  |
| Acenanhthene                                                                             | mg/kg<br>mg/kg<br>mg/kg    | 84900              |                         | 0.32                   | < 0.1                |                       | 0.59                  | 0.4<br><0.1           | < 0.1              | < 0.1                  | 0.85                  |                       | <0.1<br>0.2           |                             | < 0.1<br>< 0.1          |                       |                       | 0.57                | 3<br>4.3              |                         | 0.11                    |                   |                        |                        |                       |                       |                         |                           |                       |                   |                       | 0.33                    |                                  |
| Anunacene                                                                                | mg/kg                      | 90.0               |                         | 0.37 0.68              | < 0.1<br>0.46        |                       | 2.7<br>7              | 1.1<br>3.5            | 0.71 3.7           | 0.22 0.29              | 0.95                  |                       | 0.3                   |                             | < 0.1<br>< 0.1          | <0.1<br><0.1          |                       | 1.4                 | 13<br>35              |                         | < 0.1<br>0.14           |                   |                        |                        |                       |                       |                         |                           |                       |                   | 0.65                  | 0.25<br>< 0.1           | 0.3 0.3                          |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene                                                   | mg/kg<br>mg/kg             | 14.00<br>100.0     |                         | < 0.1                  | 0.35<br>0.38<br>0.18 |                       | 11<br>9.3<br>6.1      | 6.3<br>5.3<br>4.2     | 6.3<br>5.5<br>4.1  | < 0.1<br>0.19<br>< 0.1 | 1.8<br>2<br>0.95      |                       | 0.6<br>0.6<br>0.4     |                             | < 0.1<br>< 0.1<br>< 0.1 | <0.1<br><0.1<br><0.1  |                       | 2<br>2.4<br>1.7     | 30<br>29<br>19        |                         | < 0.1<br>< 0.1<br>< 0.1 |                   |                        |                        |                       |                       |                         |                           |                       |                   | 1.8<br>< 0.1<br>< 0.1 | < 0.1<br>< 0.1<br>< 0.1 | 0.2<br>0.5<br>0.1                |
| Benzo(g,h,i)perylene                                                                     | mg/kg<br>mg/kg<br>mg/kg    | 654                |                         | < 0.1<br>< 0.1<br>0.54 | 0.24                 |                       | 8.3                   | 4.2<br>5.3<br>4       | 5.5                | < 0.1                  | 0.95<br>1<br>2.2      |                       | 0.4 0.8 0.8           |                             | < 0.1                   | <0.1<br><0.1<br><0.1  |                       | 1./<br>1.9<br>2.7   | 19<br>16<br>36        |                         | < 0.1<br>< 0.1<br>0.17  |                   |                        |                        |                       |                       |                         |                           |                       |                   | < 0.1<br>0.79<br>1.4  | < 0.1<br>< 0.1<br>< 0.1 | 0.2                              |
| Dibenzo(a,h)anthracene<br>Fluoranthene                                                   | mg/kg<br>mg/kg             | 13.00<br>22600     |                         | 0.11                   | < 0.1 0.7            |                       | 1.9<br>13             | 5.9                   |                    | < 0.1                  | 0.41<br>4.2           |                       | 0.9                   |                             | < 0.1<br>< 0.1          | <0.1<br><0.1          |                       | 0.42<br>5.1         | 15<br>67              |                         | < 0.1 0.14              |                   |                        |                        |                       |                       |                         |                           |                       |                   | 0.12                  | < 0.1                   | 0.1 0.8                          |
| Indeno(1,2,3-c,d)pyrene                                                                  | mg/kg<br>mg/kg<br>mg/kg    | 60.0               |                         | 0.17<br>0.16<br>10     |                      |                       | 0.68<br>8.4<br>2.8    | 0.3<br>1.4<br>1.5     | 5.5                | 0.1<br>0.11<br>0.2     | 0.3<br>1.5<br>0.13    |                       | <0.1<br><0.1<br>0.6   |                             | < 0.1<br>< 0.1<br>< 0.1 | <0.1<br><0.1<br><0.1  |                       | 0.72<br>1.9<br>0.29 | 4.4<br>1.5<br>4.1     |                         | < 0.1<br>< 0.1<br>< 0.1 |                   |                        |                        |                       |                       |                         |                           |                       |                   | < 0.1<br>0.99<br>2.6  | < 0.1<br>< 0.1<br>< 0.1 | 0.2<br><0.1<br>2.4               |
| Phenanthrene<br>Pyrene                                                                   | mg/kg<br>mg/kg             | 21900<br>54200     |                         | 0.42                   | 0.33                 |                       |                       | 3.9<br>4.6            |                    |                        | 3.2<br>3.6            |                       | 0.6                   |                             | < 0.1                   | <0.1<br><0.1          |                       | 2.9<br>4.3          | 42<br>53              |                         | < 0.1                   |                   |                        |                        |                       |                       |                         |                           |                       |                   | 1.7<br>1.9            | 0.47                    | 1<br>0.7                         |
| Coronene<br>PAH (Sum of 16 - excluding coronene)                                         | mg/kg<br>mg/kg             | nc<br>nc           |                         | 15                     | 4                    |                       | 100                   | <0.1<br>53            | 53                 | 3.2                    | 25                    |                       | <0.1<br>8.6           |                             | < 2                     | <0.1                  |                       | 31                  | <0.1<br>370           |                         | < 2                     |                   | <2                     | 10                     |                       | 19                    |                         | 3.1                       |                       |                   | 14                    | <2                      | <0.1                             |
| PCB                                                                                      | mg/kg<br>mg/kg             |                    |                         |                        |                      |                       |                       | <0.1                  |                    |                        |                       |                       | <0.1                  |                             |                         | <2                    |                       |                     | <0.1                  |                         |                         |                   |                        |                        |                       |                       |                         |                           |                       |                   |                       |                         | <0.1                             |
| PCB 52<br>PCB 101                                                                        | mg/kg<br>mg/kg             | nc<br>nc           |                         |                        |                      |                       |                       | <0.1<br><0.1          |                    |                        |                       |                       | <0.1<br><0.1          |                             |                         | <0.1<br><0.1          |                       |                     | <0.1<br><0.1          |                         |                         |                   |                        |                        |                       |                       |                         |                           |                       |                   |                       |                         | <0.1<br><0.1                     |
| PCB 138                                                                                  | mg/kg<br>mg/kg<br>mg/kg    | nc                 |                         |                        |                      |                       |                       | <0.1<br><0.1<br><0.1  |                    |                        |                       |                       | <0.1<br><0.1<br><0.1  |                             |                         | <0.1<br><0.1<br><0.1  |                       |                     | <0.1<br><0.1<br><0.1  |                         |                         |                   |                        |                        |                       |                       |                         |                           |                       |                   |                       |                         | <0.1<br><0.1<br><0.1             |
| PCB 180<br>Total PCBs (7 congeners)                                                      | mg/kg<br>mg/kg<br>mg/kg    | nc<br>nc           |                         |                        |                      |                       |                       | <0.1<br><0.1<br><1    |                    |                        |                       |                       | <0.1<br><0.1<br><1    |                             |                         | <0.1<br><0.1<br><1    |                       |                     | <0.1<br><0.1<br><1    |                         |                         |                   |                        |                        |                       |                       |                         |                           |                       |                   |                       |                         | <0.1<br><0.1<br><1               |
| VOCs<br>Dichlorodifluoromethane                                                          | μg/kg                      | nc                 | <1.0                    |                        |                      |                       |                       |                       |                    |                        |                       |                       |                       | <1.0                        |                         |                       |                       |                     |                       | <1.0                    |                         |                   |                        |                        |                       |                       | <1.0                    |                           |                       |                   |                       |                         |                                  |
| Vinyl chloride                                                                           | µg/kg<br>µg/kg<br>µg/kg    | nc                 | <1.0<br><1.0<br><20     |                        |                      |                       |                       |                       |                    |                        |                       |                       |                       | <1.0<br><1.0<br><20         |                         |                       |                       |                     |                       | <1.0<br><1.0<br><20     |                         |                   |                        |                        |                       |                       | <1.0<br><1.0<br><20     |                           |                       |                   |                       |                         |                                  |
| Trichlorofluoromethane                                                                   | μg/kg<br>μg/kg             | nc<br>nc           | <2.0<br><1.0            |                        |                      |                       |                       |                       |                    |                        |                       |                       |                       | <2.0<br><1.0                |                         |                       |                       |                     |                       | <2.0<br><1.0            |                         |                   |                        |                        |                       |                       | <20<br><2.0<br><1.0     |                           |                       |                   |                       |                         |                                  |
| Dichloromethane                                                                          | μg/kg<br>μg/kg             | nc<br>nc           | <1.0<br>ne              |                        |                      |                       |                       |                       |                    |                        |                       |                       |                       | <1.0<br>ne                  |                         |                       |                       |                     |                       | <1.0<br>ne              |                         |                   |                        |                        |                       |                       | <1.0<br>ne              |                           |                       |                   |                       |                         |                                  |
| trans-1,2-Dichloroethene<br>1,1-Dichloroethane                                           | µg/kg<br>µg/kg             | nc                 | <1.0<br><1.0            |                        |                      |                       |                       |                       |                    |                        |                       |                       |                       | <1.0<br><1.0                |                         |                       |                       |                     |                       | <1.0<br><1.0            |                         |                   |                        |                        |                       |                       | <1.0<br><1.0            |                           |                       |                   |                       |                         |                                  |

| Ground Investigation                                                                                                                                                                                          | PBA 2010/<br>2011       | PBA 2010/ PBA 2010/<br>2011 2011         | 2011                     | 2011                  | 2011                  | 2011                  | 2011                  | PBA 2010/<br>2011     | 2011                  | 2011                  | PBA 2010/<br>2011           | 2011                     | 2011                     | PBA 2010/<br>2011<br>133347/ | 2011           | 2011                  | 2011                    | 2011                     | PBA 2010/<br>2011        | 2011                  | 2011                  | 2011                  | 2011                  | 2011                    | 2011                  | PBA 2010/<br>2011     | PBA 2010/<br>2011     | PBA 2010/<br>2011     | 2011                  | 2011           | PBA 2010/<br>2011     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------------|--------------------------|--------------------------|------------------------------|----------------|-----------------------|-------------------------|--------------------------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|
| Report Number                                                                                                                                                                                                 | 133347                  | 133347 121863                            | -                        | 122209                | 122210                | 122209                | 133347                | 133347                | 133347                | 133346                | 133347                      | 133347                   | 133346                   | 122039<br>AF61381/           | 133347         | 133346                | 133347                  | 133347                   |                          | 133344                | 133344                | 133344                | 133344                | 133344                  | 133344                | 121783                | 122211                | 122209                | 122209                | 122210         | 122211                |
| Lab Ref Date                                                                                                                                                                                                  | AF61368<br>04/01/2011   | AF61369 AF60262<br>04/01/2011 10/12/2010 |                          | AF68336<br>25/01/2011 | AF68366<br>25/01/2011 | AF68337<br>25/01/2011 | AF61376<br>04/01/2011 | AF61377<br>04/01/2011 | AF61378<br>04/01/2011 | AF61343<br>04/01/2011 | AF61379<br>04/01/2011       | AF61380<br>04/01/2011    |                          | AF64444                      |                | AF61345<br>04/01/2011 | AF61383<br>04/01/2011   | AF61384<br>04/01/2011    |                          | AF61323<br>04/01/2011 | AF61318<br>04/01/2011 | AF61319<br>04/01/2011 | AF61320<br>04/01/2011 | AF61321<br>04/01/2011   | AF61322<br>04/01/2011 | AF57622<br>10/12/2010 | AF68428<br>07/02/2011 | AF68289<br>25/01/2011 | AF68290<br>25/01/2011 |                | AF68429<br>07/02/2011 |
| Exploatory hole location<br>Zone B Location                                                                                                                                                                   | BH2004<br>B1            | BH2004 TP2020<br>B1 B1                   | TP2026<br>B1             | TP2026<br>B1          | TP2026<br>B1          | TP2026<br>B1          | BH2009<br>B1          | BH2009<br>B1          | BH2009<br>B1          | BH2009<br>B1          | BH2009<br>B1                | BH2009<br>B1             | BH2009<br>B1             | BH2015<br>B1                 | BH2015<br>B1   | BH2015<br>B1          | BH2015<br>B1            | BH2015<br>B1             | BH2015<br>B1             | TP2019<br>B1          | TP2014<br>B1          | TP2014<br>B1          | TP2014<br>B1          | TP2014<br>B1            | TP2014<br>B1          | TP2002<br>B3          | BH2016<br>B3          | BH2016<br>B3          | BH2016<br>B3          | BH2016<br>B3   | BH2016<br>B3          |
|                                                                                                                                                                                                               |                         |                                          |                          |                       |                       |                       |                       |                       |                       |                       |                             |                          |                          |                              |                |                       |                         |                          |                          |                       |                       |                       |                       |                         |                       |                       | 20                    | 20                    | 50                    | 50             |                       |
| Location on plot/ gas holder number                                                                                                                                                                           | Inside GH9              | Inside GH9 GHB (edge                     | e) Outside<br>gasholders | Outside gasholders    | Outside gasholders    | Outside<br>gasholders | Outside<br>gasholders | Outside gasholders    | Outside gasholders    | Outside gasholders    | Outside gasholders          |                          | Outside gasholders       |                              |                | Outside gasholders    | Outside<br>gasholders   |                          | Outside gasholders       |                       |                       | Outside gasholders    | Outside gasholders    | Outside gasholders      |                       |                       | Inside GH9            | Inside GH9            | Inside GH9            | Inside GH9     | Inside GH9            |
| Depth (m)                                                                                                                                                                                                     | 13m                     | 15m 1m                                   | 1m                       | 1m                    | 1m                    | 2m                    | 0.35m                 | 1m                    | 2m                    | 2m                    | 3m<br>Reworked              | 4m                       | 5m                       | 0.3m                         | 1m             | 2m                    | 3m                      | 4m                       | 5m                       | 0.1m - 0.8m           | 0.6m                  | 1m                    | 2m                    | 2m                      | 3m                    | 0.3m                  | 0.3m                  | 1m                    | 2m                    | 2m             | 3m                    |
| Strata                                                                                                                                                                                                        | Reworked<br>London Clay | Made<br>London Clay Ground               | Made Ground              | Made Ground           | Made Ground           | Made Ground           | Made Ground           | Made Ground           | Made Ground           | Made<br>Ground        | Weathered                   | Weathered<br>London Clay | Weathered<br>London Clay | Made<br>Ground               | Made<br>Ground | Made<br>Ground        | Made Ground             | Weathered<br>London Clay | Weathered<br>London Clay | Made<br>Ground        | Topsoil               | Made<br>Ground        | Made<br>Ground        | Made Ground             | Made<br>Ground        | Made Ground           | Made Ground           | Made Ground           | Made Ground           | Made<br>Ground | Made<br>Ground        |
| cis-1,2-Dichloroethene μg/kg nc<br>Bromochloromethane μg/kg nc                                                                                                                                                | <1.0<br><1.0            |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <1.0<br><1.0                |                          |                          |                              |                |                       | <1.0<br><1.0            |                          |                          |                       |                       |                       |                       | <1.0<br><1.0            |                       |                       |                       |                       |                       |                |                       |
| Trichloromethane         μg/kg         107000           1,1,1-Trichloroethane         μg/kg         700000           Tetrachloromethane         μg/kg         3000                                            | <1.0<br><1.0            |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <1.0<br><1.0<br><1.0        |                          |                          |                              |                |                       | <1.0<br><1.0<br><1.0    |                          |                          |                       |                       |                       |                       | <1.0<br><1.0<br><1.0    |                       |                       |                       |                       |                       |                |                       |
| Tetrachloromethane         µg/kg         3000           1,1-Dichloropropene         µg/kg         nc           Benzene         µg/kg         28000           4 0 Dichloroptic         270                     | <1.0<br><1.0<br>2.3     |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <1.0<br><1.0<br><1.0        |                          |                          |                              |                |                       | <1.0                    |                          |                          |                       |                       |                       |                       | <1.0                    |                       |                       |                       |                       |                       |                |                       |
| 1,2-Dichloroethane         µg/kg         700           Trichloroethane         µg/kg         12000           1,2-Dichloroptopane         µg/kg         nc                                                     | <2.0<br><1.0            |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <2.0<br><1.0                |                          |                          |                              |                |                       | 1.6<br><2.0<br><1.0     |                          |                          |                       |                       |                       |                       | 22<br><2.0<br><1.0      |                       |                       |                       |                       |                       |                |                       |
| Dibromomethane ua/ka nc                                                                                                                                                                                       | <1.0<br><10             |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <1.0<br><10                 |                          |                          |                              |                |                       | <1.0<br><10             |                          |                          |                       |                       |                       |                       | <1.0<br><10             |                       |                       |                       |                       |                       |                |                       |
| Bromodichloromethane µg/kg nc<br>cis-1,3-Dichloropropene µg/kg nc<br>Toluene µg/kg 870000                                                                                                                     | <5.0<br><10<br><1.0     |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <5.0<br><10<br><1.0         |                          |                          |                              |                |                       | <5.0<br><10<br>1.4      |                          |                          |                       |                       |                       |                       | <5.0<br><10<br>1.1      |                       |                       |                       |                       |                       |                |                       |
| trans-1,3-Dichloropropene µg/kg nc<br>1,1,2-Trichloroethane µg/kg nc                                                                                                                                          | <10<br><10              |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <10<br><10                  |                          |                          |                              |                |                       | <10<br><10              |                          |                          |                       |                       |                       |                       | <10<br><10              |                       |                       |                       |                       |                       |                |                       |
| Tetrachloroethene         μg/kg         131000           1,3-Dichloropropane         μg/kg         nc                                                                                                         | <1.0<br><2.0            |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <1.0<br><2.0                |                          |                          |                              |                |                       | <1.0<br><2.0            |                          |                          |                       |                       |                       |                       | <1.0<br><2.0            |                       |                       |                       |                       |                       |                |                       |
| 1,3-Dichloropropane         µg/kg         nc           Dibromochloromethane         µg/kg         nc           1,2-Dibromoethane         µg/kg         nc           Chlorobenzene         µg/kg         59000 | <10<br><5.0<br><1.0     |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <10<br><5.0<br><1.0         |                          |                          |                              |                |                       | <10<br><5.0<br><1.0     |                          |                          |                       |                       |                       |                       | <10<br><5.0<br><1.0     |                       |                       |                       |                       |                       |                |                       |
| μg/kg         15000           1,1,2,2-Tetrachloroethane         μg/kg         115000           Ethylbenzene         μg/kg         581000                                                                      | <2.0<br><1.0            |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <2.0 <1.0                   |                          |                          |                              |                |                       | <2.0                    |                          |                          |                       |                       |                       |                       | <2.0                    |                       |                       |                       |                       |                       |                |                       |
| m- & p-Xylene μg/kg 575000<br>o-Xylene μg/kg 480000                                                                                                                                                           | <1.0<br><1.0            |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <1.0<br><1.0                |                          |                          |                              |                |                       | <1.0<br><1.0            |                          |                          |                       |                       |                       |                       | 2.6<br><1.0             |                       |                       |                       |                       |                       |                |                       |
| Styrene µg/kg nc<br>Tribromomethane µg/kg nc<br>Isoprovilenzane welke pc                                                                                                                                      | <1.0<br><10             |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <1.0<br><10                 |                          |                          |                              |                |                       | <1.0<br><10             |                          |                          |                       |                       |                       |                       | <1.0<br><10             |                       |                       |                       |                       |                       |                |                       |
| Isopropylbenzene         µg/kg         nc           Bromobenzene         µg/kg         nc           1,2,3-Tirchloropropane         µg/kg         nc                                                           | <1.0<br><1.0<br><50     |                                          |                          | 1                     |                       |                       |                       |                       |                       |                       | <1.0<br><1.0<br><50         |                          |                          |                              |                |                       | <1.0<br><1.0<br><50     |                          |                          |                       |                       |                       |                       | 1.3<br><1.0<br><50      |                       |                       |                       |                       |                       |                |                       |
| n-Propylbenzene μg/kg nc<br>2-Chlorotoluene μg/kg nc                                                                                                                                                          | <1.0<br><1.0            |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <1.0<br><1.0                |                          |                          |                              |                |                       | <1.0<br><1.0            |                          |                          |                       |                       |                       |                       | <1.0<br><1.0            |                       |                       |                       |                       |                       |                |                       |
| 1,2,4-Trimethylbenzene         μg/kg         nc           4-Chlorotoluene         μg/kg         nc                                                                                                            | <1.0<br><1.0            |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <1.0<br><1.0                |                          |                          |                              |                |                       | <1.0<br><1.0            |                          |                          |                       |                       |                       |                       | <1.0<br><1.0            |                       |                       |                       |                       |                       |                |                       |
| tert-Butylbenzene         μg/kg         nc           1,3,5-Trimethylbenzene         μg/kg         nc           sec-Butylbenzene         μg/kg         nc                                                      | <1.0<br><1.0<br><1.0    |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <1.0<br><1.0<br><1.0        |                          |                          |                              |                |                       | <1.0<br><1.0<br><1.0    |                          |                          |                       |                       |                       |                       | <1.0<br>2<br><1.0       |                       |                       |                       |                       |                       |                |                       |
| μg/kg         nc           1,3-Dichlorobenzene         μg/kg         nc           4-Isopropyltoluene         μg/kg         nc                                                                                 | <1.0 <1.0 <1.0          |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <1.0 <1.0                   |                          |                          |                              |                |                       | <1.0                    |                          |                          |                       |                       |                       |                       | <1.0<br><1.0<br><1.0    |                       |                       |                       |                       |                       |                |                       |
| 1,4-Dichlorobenzene μg/kg nc<br>n-Butylbenzene μg/kg nc                                                                                                                                                       | <1.0<br><1.0            |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <1.0<br><1.0                |                          |                          |                              |                |                       | <1.0<br><1.0            |                          |                          |                       |                       |                       |                       | <1.0<br><1.0            |                       |                       |                       |                       |                       |                |                       |
| 1.2-Dichlorobenzene <u>µg/kg</u> 2140000<br>1.2-Dibromo-3-chloropropane <u>µg/kg</u> nc<br>1.2.4-Trichlorobenzene <u>µg/kg</u> nc                                                                             | <1.0<br><50<br><1.0     |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <1.0<br><1.0<br><50<br><1.0 |                          |                          |                              |                |                       | <1.0<br><50<br><1.0     |                          |                          |                       |                       |                       |                       | <1.0<br><50<br><1.0     |                       |                       |                       |                       |                       |                |                       |
| Hexachlorobutadiene µg/kg nc<br>1.2,3-Trichlorobenzene µg/kg 108000                                                                                                                                           | <1.0<br><1.0<br><2.0    |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <1.0<br><2.0                |                          |                          |                              |                |                       | <1.0<br><1.0<br><2.0    |                          |                          |                       |                       |                       |                       | <1.0<br><1.0<br><2.0    |                       |                       |                       |                       |                       |                |                       |
| Tentatively Identified Compounds         μg/kg         nc           Benzene, 1-ethenyl-3-methyl         μg/kg         nc                                                                                      | None Detected           |                                          |                          |                       |                       |                       |                       |                       |                       |                       | None Detected               |                          |                          |                              |                |                       | None Detected           |                          |                          |                       |                       |                       |                       | None Detected           |                       |                       |                       |                       |                       |                |                       |
| Indane yg/kg nc<br>2-Benzothiphene yg/kg nc<br>Benzofuran yg/kg nc                                                                                                                                            |                         |                                          |                          |                       |                       |                       |                       |                       |                       |                       |                             |                          |                          |                              |                |                       |                         |                          |                          |                       |                       |                       |                       |                         |                       |                       |                       |                       |                       |                |                       |
| Benzo(B)thiophene μg/kg nc<br>Phenol,4Methyl μg/kg nc                                                                                                                                                         |                         |                                          |                          |                       |                       |                       |                       |                       |                       |                       |                             |                          |                          |                              |                |                       |                         |                          |                          |                       |                       |                       |                       |                         |                       |                       |                       |                       |                       |                |                       |
| Benzo(B)Thiophene µg/kg nc<br>Acenaphthene mg/kg 84900                                                                                                                                                        | <0.50                   |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50                       |                          |                          |                              |                |                       | <0.50                   |                          |                          |                       |                       |                       |                       | <0.50                   |                       |                       |                       |                       |                       |                |                       |
| Accenaphthylene         mg/kg         84300           Anthracene         mg/kg         525000           Azobenzene         mg/kg         nc                                                                   | <0.50<br><0.50<br><0.50 |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50<br><0.50     |                          |                          |                              |                |                       | <0.50<br><0.50<br><0.50 |                          |                          |                       |                       |                       |                       | <0.50<br><0.50<br><0.50 |                       |                       |                       |                       |                       |                |                       |
|                                                                                                                                                                                                               | <0.50<br><0.50<br><0.50 |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50<br><0.50     |                          |                          |                              |                |                       | <0.50<br><0.50<br><0.50 |                          |                          |                       |                       |                       |                       | <0.50<br><0.50<br><0.50 |                       |                       |                       |                       |                       |                |                       |
| Benzofa,h.ilpervlene ma/ka 654                                                                                                                                                                                | <0.50<br><0.50          |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50              |                          |                          |                              |                |                       | <0.50<br><0.50          |                          |                          |                       |                       |                       |                       | <0.50<br><0.50          |                       |                       |                       |                       |                       |                |                       |
| Benzolk/Ituoranthene mg/kg 141<br>bis(2-Chloroethy)methane mg/kg nc<br>bis(2-Chloroethy)lether mg/kg nc                                                                                                       | <0.50<br><0.50<br><0.50 |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50<br><0.50     |                          |                          |                              |                |                       | <0.50<br><0.50<br><0.50 |                          |                          |                       |                       |                       |                       | <0.50<br><0.50<br><0.50 |                       |                       |                       |                       |                       |                |                       |
| bis(2-Chloroisopropyl)ether mg/kg nc<br>bis(2-Ethylhexyl)phthalate mg/kg nc                                                                                                                                   | <0.50<br><0.50          |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50<br><0.50     |                          |                          |                              |                |                       | <0.50<br><0.50          |                          |                          |                       |                       |                       |                       | <0.50<br><0.50          |                       |                       |                       |                       |                       |                |                       |
| Butylbenzylphthalate mg/kg nc<br>Carbazole mg/kg nc                                                                                                                                                           | <0.50<br><0.50          |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50              |                          |                          |                              |                |                       | <0.50<br><0.50          |                          |                          |                       |                       |                       |                       | <0.50<br><0.50          |                       |                       |                       |                       |                       |                |                       |
| Di-n-butylphthalate mg/kg nc                                                                                                                                                                                  | <0.50<br><0.50<br><0.50 |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50<br><0.50     |                          |                          |                              |                |                       | <0.50<br><0.50<br><0.50 |                          |                          |                       |                       |                       |                       | <0.50<br><0.50<br><0.50 |                       |                       |                       |                       |                       |                |                       |
| Dibenzo[a,h]anthracene         mg/kg         nc           Dibenzofuran         mg/kg         nc                                                                                                               | <0.50<br><0.50          |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50              |                          |                          |                              |                |                       | <0.50<br><0.50          |                          |                          |                       |                       |                       |                       | <0.50<br><0.50          |                       |                       |                       |                       |                       |                |                       |
| Diethylphthalate mg/kg nc<br>Dimethylphthalate mg/kg nc                                                                                                                                                       | <0.50<br><0.50          |                                          | +                        |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50              |                          |                          |                              |                |                       | <0.50<br><0.50          |                          |                          |                       |                       |                       |                       | <0.50<br><0.50          |                       |                       |                       |                       |                       |                |                       |
| Fluoranthene         mg/kg         22600           Fluorene         mg/kg         63500           Hexachlorobenzene         mg/kg         47                                                                  | <0.50<br><0.50<br><0.50 |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50<br><0.50     |                          |                          |                              |                |                       | <0.50<br><0.50<br><0.50 |                          |                          |                       |                       |                       |                       | 0.53<br><0.50<br><0.50  |                       |                       |                       |                       |                       |                |                       |
| Hexachlorobutadiene mg/kg nc<br>Hexachlorocyclopentadiene mg/kg nc                                                                                                                                            | <0.50<br><0.50          |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50              |                          |                          |                              |                |                       | <0.50<br><0.50          |                          |                          |                       |                       |                       |                       | <0.50<br><0.50          |                       |                       |                       |                       |                       |                |                       |
| Hexachloroethane         mg/kg         nc           Indeno[1,2,3-cd]pyrene         mg/kg         60                                                                                                           | <0.50<br><0.50          |                                          | +                        |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50              |                          |                          |                              |                |                       | <0.50<br><0.50          |                          |                          |                       |                       |                       |                       | <0.50<br><0.50          |                       |                       |                       |                       |                       |                |                       |
| Isophorone mg/kg nc<br>N-Nitrosodin-propylamine mg/kg nc<br>N-Nitrosodimethylamine mg/kg nc                                                                                                                   | <0.50<br><0.50<br><0.50 |                                          | 1                        |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50<br><0.50     |                          |                          |                              |                |                       | <0.50<br><0.50<br><0.50 |                          |                          |                       |                       |                       |                       | <0.50<br><0.50<br><0.50 |                       |                       |                       |                       |                       |                |                       |
| Naphthalene mg/kg 204<br>Nitrobenzene mg/kg nc                                                                                                                                                                | <0.50                   |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50<br><0.50     |                          |                          |                              |                |                       | <0.50<br><0.50<br><0.50 |                          |                          |                       |                       |                       |                       | <0.50<br><0.50<br><0.50 |                       |                       |                       |                       |                       |                |                       |
| Pentachlorophenol mg/kg 1220 Phenanthrene mg/kg 21900                                                                                                                                                         | <0.50<br><0.50          |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50              |                          |                          |                              |                |                       | <0.50<br><0.50          |                          |                          |                       |                       |                       |                       | <0.50<br><0.50          |                       |                       |                       |                       |                       |                |                       |
| Pyrene mg/kg 54200                                                                                                                                                                                            | <0.50<br><0.50<br><0.50 |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50              |                          |                          |                              |                |                       | <0.50<br><0.50          |                          |                          |                       |                       |                       |                       | <0.50<br><0.50          |                       |                       |                       |                       |                       |                |                       |
| 1,2,4-Trichlorobenzene         mg/kg         228           1,3-Dichlorobenzene         mg/kg         32                                                                                                       | <0.50<br><0.50<br><0.50 |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50<br><0.50     |                          |                          |                              |                |                       | <0.50<br><0.50<br><0.50 |                          |                          |                       |                       |                       |                       | <0.50<br><0.50<br><0.50 |                       |                       |                       |                       |                       |                |                       |
| 1,4-Dichlorobenzene mg/kg 4460<br>2-Chloronaphthalene mg/kg nc                                                                                                                                                | <0.50<br><0.50          |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50              |                          |                          |                              |                |                       | <0.50<br><0.50          |                          |                          |                       |                       |                       |                       | <0.50<br><0.50          |                       |                       |                       |                       |                       |                |                       |
| 2-Chlorophenol mg/kg 3540<br>2-Methyl-4,6-dinitrophenol mg/kg nc                                                                                                                                              | <0.50<br><0.50<br><0.50 |                                          | 1                        | <u> </u>              |                       |                       |                       |                       |                       |                       | <0.50<br><0.50<br><0.50     |                          |                          |                              |                |                       | <0.50<br><0.50<br><0.50 |                          |                          |                       |                       |                       |                       | <0.50<br><0.50<br><0.50 |                       |                       |                       |                       |                       |                |                       |
| 2-Methylphenol ma/ka nc                                                                                                                                                                                       | <0.50<br><0.50          |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50              |                          |                          |                              |                |                       | <0.50<br><0.50          |                          |                          |                       |                       |                       |                       | <0.50<br><0.50          |                       |                       |                       |                       |                       |                |                       |
| 2-Nitrophenol mg/kg nc<br>2,4-Dichlorophenol mg/kg 3470                                                                                                                                                       | <0.50<br><0.50          |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50              |                          |                          |                              |                |                       | <0.50<br><0.50          |                          |                          |                       |                       |                       |                       | <0.50<br><0.50          |                       |                       |                       |                       |                       |                |                       |
| 2,4-Dimethylphenol mg/kg nc<br>2,4-Dinitrotoluene mg/kg nc                                                                                                                                                    | <0.50<br><0.50          |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50              |                          |                          |                              |                |                       | <0.50<br><0.50          |                          |                          |                       |                       |                       |                       | <0.50<br><0.50          |                       |                       |                       |                       |                       |                |                       |
| 2.4,5-Trichlorophenol         mg/kg         nc           2.4,6-Trichlorophenol         mg/kg         3880           2.6-Diritotoluene         mg/kg         nc                                                | <0.50<br><0.50<br><0.50 |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50<br><0.50     |                          |                          |                              |                |                       | <0.50<br><0.50<br><0.50 |                          |                          |                       |                       |                       |                       | <0.50<br><0.50<br><0.50 |                       |                       |                       |                       |                       |                |                       |
| 3-Nitroaniline mg/kg nc<br>4-Bromophenylphenylether mg/kg nc                                                                                                                                                  | <0.50<br><0.50<br><0.50 |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50<br><0.50     |                          |                          |                              |                |                       | <0.50<br><0.50<br><0.50 |                          |                          |                       |                       |                       |                       | <0.50<br><0.50<br><0.50 |                       |                       |                       |                       |                       |                |                       |
| 4-Chloro-3-methylphenol mg/kg nc                                                                                                                                                                              | <0.50<br><0.50          |                                          |                          |                       |                       |                       |                       |                       |                       |                       | <0.50<br><0.50              |                          |                          |                              |                |                       | <0.50<br><0.50          |                          |                          |                       |                       |                       |                       | <0.50<br><0.50          |                       |                       |                       |                       |                       |                |                       |
|                                                                                                                                                                                                               |                         |                                          |                          |                       |                       |                       |                       |                       |                       |                       |                             |                          |                          |                              |                |                       |                         |                          |                          |                       |                       |                       |                       |                         |                       |                       |                       |                       |                       |                |                       |

|                                                       |                   |                         |                      |             | 1          |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            | -                     |                       | -           | -             |                        |            |                       |             |                       |                       |                       |             |             |             |            |                                        |
|-------------------------------------------------------|-------------------|-------------------------|----------------------|-------------|------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------|------------|-----------------------|-------------|-------------|---------------------|------------|-----------------------|-----------------------|-------------|---------------|------------------------|------------|-----------------------|-------------|-----------------------|-----------------------|-----------------------|-------------|-------------|-------------|------------|----------------------------------------|
| Ground Investigation                                  | n                 |                         | PBA 2010/            | PBA 2010/   | PBA 2010/  | PBA 2010/             | PBA 2010/             | PBA 2010/             | PBA 2010/             | PBA 2010/             | PBA 2010/             | PBA 2010/   | PBA 2010/  | PBA 2010/             | PBA 2010/   | PBA 2010/   | PBA 2010/           | PBA 2010/  | PBA 2010/             | PBA 2010/             | PBA 2010/   | PBA 2010/     | PBA 2010/              | PBA 2010/  | PBA 2010/             | PBA 2010/   | PBA 2010/             | PBA 2010/             | PBA 2010/             | PBA 2010/   | PBA 2010/   | PBA 2010/   | PBA 2010/  | PBA 2010/                              |
|                                                       | -                 |                         | 2011                 | 2011        | 2011       | 2011                  | 2011                  | 2011                  | 2011                  | 2011                  | 2011                  | 2011        | 2011       | 2011                  | 2011        | 2011        | 2011                | 2011       | 2011                  | 2011                  | 2011        | 2011          | 2011                   | 2011       | 2011                  | 2011        | 2011                  | 2011                  | 2011                  | 2011        | 2011        | 2011        | 2011       | 2011                                   |
| Report Number                                         | r                 |                         | 133347               | 133347      | 121863     | 122111                | 122209                | 122210                | 122209                | 133347                | 133347                | 133347      | 133346     | 133347                | 133347      | 133346      | 133347/             | 133347     | 133346                | 133347                | 133347      | 133347        | 133344                 | 133344     | 133344                | 133344      | 133344                | 133344                | 121783                | 122211      | 122209      | 122209      | 122210     | 122211                                 |
|                                                       |                   |                         |                      |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             | 122000              |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             | <u> </u>   | 4                                      |
| Lab Re                                                | f                 |                         | AF61368              | AF61369     | AF60262    | AF68443               | AF68336               | AF68366               | AF68337               | AF61376               | AF61377               | AF61378     | AF61343    | AF61379               | AF61380     | AF61344     | AF61381/<br>AF64444 | AF61382    | AF61345               | AF61383               | AF61384     | AF61385       | AF61323                | AF61318    | AF61319               | AF61320     | AF61321               | AF61322               | AF57622               | AF68428     | AF68289     | AF68290     | AF68354    | AF68429                                |
| Date                                                  | e                 |                         | 04/01/2011           | 04/01/2011  | 10/12/2010 | 07/02/2011            | 25/01/2011            | 25/01/2011            | 25/01/2011            | 04/01/2011            | 04/01/2011            | 04/01/2011  | 04/01/2011 | 04/01/2011            | 04/01/2011  | 04/01/2011  |                     | 04/01/2011 | 04/01/2011            | 04/01/2011            | 04/01/2011  | 04/01/2011    | 04/01/2011             | 04/01/2011 | 04/01/2011            | 04/01/2011  | 04/01/2011            | 04/01/2011            | 10/12/2010            | 07/02/2011  | 25/01/2011  | 25/01/2011  | 25/01/2011 | 07/02/2011                             |
| Exploatory hole location                              | n                 |                         |                      |             |            |                       |                       |                       |                       |                       |                       |             |            | BH2009                |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             |            |                                        |
| Zone B Location                                       | n                 |                         | B1                   | B1          | B1         | B1                    | B1                    | B1                    | B1                    | B1                    | B1                    | B1          | B1         | B1                    | B1          | B1          | B1                  | B1         | B1                    | B1                    | B1          | B1            | B1                     | B1         | B1                    | B1          | B1                    | B1                    | B3                    | B3          | B3          | B3          | B3         | B3                                     |
|                                                       | -                 |                         |                      |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       | -                     |             | -           | -           | <u> </u>   | <u> </u>                               |
|                                                       |                   |                         |                      |             |            | Outside               | Outside               | Outoida               | Outsida               | Outsida               | Outside               | Outside     | Outside    | Outside               | Outside     | Outside     | Outside             | Outside    | Outside               | Outsida               | Outside     | Outside       | Can halder D           | Outoida    | Outside               | Outside     | Outside               | Outoida               | Outside               |             |             |             | 4          |                                        |
| Location on plot/ gas holder number                   | r                 |                         | Inside GH9           | Inside GH9  | GHB (edge) | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside     | Outside    | Outside<br>gasholders | Outside     | Outside     | Outside             | Outside    | Outside<br>gasholders | Outside<br>gasholders | Outside     |               | Gas holder B<br>(edge) |            | Outside<br>gasholders | Outside     | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Inside GH9  | Inside GH9  | Inside GH9  | Inside GH9 | Inside GH9                             |
|                                                       |                   |                         |                      |             |            | guoriolacio           | guonolocio            | guonoidoro            | guoriolaoro           | guorioluoro           | guoriolocio           | guoriolaoro | guonoicoro | guoriolocio           | guonolocio  | guorioidoro | guonoidoro          | guonoidoro | guonolocio            | guoriolidoro          | guonoidoro  | guonoidoro    | (ougo)                 | guonolocio | gaonoloolo            | guoriolaoro | guonolocio            | guonolaolo            | gaonolaolo            |             |             |             | 4          | 1                                      |
| Depth (m                                              | 0                 |                         | 13m                  | 15m         | 1m         | 1m                    | 1m                    | 1m                    | 2m                    | 0.35m                 | 1m                    | 2m          | 2m         | 3m                    | 4m          | 5m          | 0.3m                | 1m         | 2m                    | 3m                    | 4m          | 5m            | 0.1m - 0.8m            | 0.6m       | 1m                    | 2m          | 2m                    | 3m                    | 0.3m                  | 0.3m        | 1m          | 2m          | 2m         | 3m                                     |
|                                                       |                   |                         |                      |             |            |                       |                       |                       |                       |                       |                       |             |            | Reworked              |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             |            |                                        |
| Strata                                                | a                 |                         | Reworked             |             | Made       |                       |                       |                       |                       |                       |                       |             | Made       | Weathered             | Weathered   | Weathered   | Made                | Made       | Made                  |                       | Weathered   |               | Made                   |            | Made                  | Made        |                       | Made                  |                       |             |             |             | Made       | Made                                   |
| 4-Chlorophenylphenylether                             | malka             | nc                      | London Clay<br><0.50 | London Clay | / Ground   | Made Ground           | Made Ground           | Made Ground           | Made Ground           | Made Ground           | Made Ground           | Made Ground | Ground     | London Clay<br><0.50  | London Clay | London Clay | Ground              | Ground     | Ground                | Made Ground<br><0.50  | London Clay | / London Clay | Ground                 | Topsoil    | Ground                | Ground      | Made Ground<br><0.50  | Ground                | Made Ground           | Made Ground | Made Ground | Made Ground | Ground     | Ground                                 |
| 4-Chlorophenylphenylether<br>4-Methylphenol           | mg/kg<br>mg/kg    | nc                      | <0.50                | -           | 1          | 1                     |                       | 1                     | 1                     |                       |                       |             |            | <0.50                 |             |             |                     |            | 1                     | < 0.50                |             | +             |                        |            |                       |             | <0.50                 |                       |                       |             |             |             | +          | 1                                      |
| 4-Nitroaniline                                        | mg/kg             | nc                      | <0.50                |             |            | 1                     |                       | İ                     | 1                     |                       |                       |             |            | <0.50                 |             |             |                     |            |                       | < 0.50                |             |               |                        |            |                       |             | <0.50                 |                       |                       |             |             |             |            |                                        |
| ethyl-methyl benzenes                                 | mg/kg             | nc                      |                      |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             |            |                                        |
| Tentatively Identified Compounds<br>Benzofuran        | mg/kg             | nc                      | Not detected         |             |            |                       |                       |                       |                       |                       |                       |             |            | Not detected          |             |             |                     |            |                       | Not detected          |             |               |                        |            |                       |             | Not detected          |                       |                       |             |             |             |            |                                        |
| biphenyl                                              | mg/kg<br>mg/kg    | nc                      | -                    |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             | +          | +                                      |
| 1-methylnahthalene                                    | mg/kg             | nc                      |                      |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             |            |                                        |
| 1-methylnaphthalene                                   | mg/kg             | nc                      |                      |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             |            |                                        |
| Indene<br>2-benzothiophene                            | mg/kg             | nc                      |                      |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             |            | -                                      |
| Cinnamaldehde                                         | mg/kg<br>mg/kg    | nc                      |                      |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             |            | +                                      |
| Biphenyl                                              | mg/kg             | nc                      |                      |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             |            |                                        |
| naphtho[2,3-B]thiophene                               | mg/kg             | nc                      |                      |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             |            |                                        |
| PCBs as Aroclor 1242<br>2-sec-Butyl-4,6-dinitrophenol | mg/kg<br>mg/kg    | nc                      | <1.0                 |             |            |                       |                       |                       |                       |                       |                       |             |            | <1.0                  |             |             |                     |            |                       | <1.0                  |             |               |                        |            |                       |             | <1.0                  |                       |                       |             |             |             |            |                                        |
| 4-Chloro-3-methylphenol                               | mg/kg             | nc                      |                      | 1           | 1          |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            | 1                     |                       | 1           | 1             | 1                      |            |                       |             |                       | 1                     |                       |             |             |             | +          |                                        |
| 2-Chlorophenol                                        | mg/kg             | nc                      |                      |             |            |                       |                       |                       | İ                     |                       |                       |             | 1          |                       |             |             |                     |            | 1                     |                       | 1           | 1             | l .                    | 1          |                       |             |                       |                       |                       |             |             |             |            |                                        |
| 2,4-Dichlorophenol                                    | mg/kg             | nc                      |                      |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             |            |                                        |
| 2,6-Dichlorophenol<br>2,4-Dimethylphenol              | mg/kg<br>mg/kg    | nc                      |                      |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             |            | 4                                      |
| 2,4-Dinitrophenol                                     | mg/kg             | nc                      |                      |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            | 1                     |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             | +          | 1                                      |
| 2-Methyl-4.6-dinitrophenol                            | mg/kg             | nc                      |                      |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             |            | 1                                      |
| 2-Methylphenol                                        | mg/kg             | nc                      |                      | L           |            |                       |                       |                       |                       |                       |                       |             | L          |                       |             |             |                     |            |                       |                       | <u> </u>    | <u> </u>      |                        | <b>↓</b>   |                       |             |                       |                       |                       |             |             |             | <b></b>    | +                                      |
| 3-Methylphenol<br>4-Methylphenol                      | mg/kg<br>mg/kg    | nc                      |                      |             | -          |                       |                       | 1                     | 1                     |                       |                       |             | -          |                       |             |             |                     |            | 1                     |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             | +          | +                                      |
| 2-Nitrophenol                                         | mg/kg             | nc                      |                      |             |            | i                     | i                     |                       | i                     | i .                   |                       |             |            |                       |             |             |                     |            | 1                     | i .                   |             |               |                        |            |                       |             |                       |                       | i .                   |             | i .         | i .         |            |                                        |
| 4-Nitrophenol                                         | mg/kg             | nc                      |                      |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             |            |                                        |
| Pentachlorophenol                                     | mg/kg             | nc                      |                      | L           |            |                       |                       |                       |                       |                       |                       |             | L          |                       |             |             |                     |            |                       |                       | <u> </u>    | <u> </u>      |                        | <b>↓</b>   |                       |             |                       |                       |                       |             |             |             | <b></b>    | +                                      |
| Phenol<br>2,3,4,5-Tetrachlorophenol                   | mg/kg<br>mg/kg    | 3200                    |                      | -           | +          | 1                     |                       | 1                     | 1                     |                       |                       |             |            |                       |             |             |                     |            | +                     |                       | +           | +             |                        |            |                       |             |                       |                       |                       |             |             |             | +          | +                                      |
| 2,3,4,6-Tetrachlorophenol                             | mg/kg             | 3900                    |                      | 1           | 1          | 1                     | 1                     | 1                     | 1                     | 1                     |                       |             |            |                       |             |             |                     |            | 1                     |                       | 1           | 1             |                        |            |                       |             |                       |                       | 1                     |             | 1           | 1           | 1          | 1                                      |
| 2,3,5,6-Tetrachlorophenol                             | mg/kg             | nc                      |                      |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             |            |                                        |
| 2,3,4-Trichlorophenol                                 | mg/kg             | nc                      |                      |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            | +                     |                       |             | +             |                        |            |                       |             |                       |                       |                       |             |             |             | +          | +                                      |
| 2,3,5-Trichlorophenol<br>2,3,6-Trichlorophenol        | mg/kg<br>mg/kg    | nc                      |                      | -           | +          | 1                     |                       | 1                     | 1                     |                       |                       |             |            |                       |             |             |                     |            | +                     |                       | +           | +             |                        |            |                       |             |                       |                       |                       |             |             |             | +          | +                                      |
| 2,4,5-Trichlorophenol                                 | mg/kg             | nc                      |                      | 1           | 1          | 1                     | 1                     | 1                     | 1                     | 1                     |                       |             |            |                       |             |             |                     |            | 1                     |                       | 1           | 1             |                        |            |                       |             |                       |                       | 1                     |             | 1           | 1           | 1          | 1                                      |
| 2,4,6-Trichlorophenol                                 | mg/kg             | nc                      |                      |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             |            |                                        |
| 3,4,5-Trichlorophenol                                 | mg/kg             | nc                      |                      |             |            |                       |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             | <b></b>    |                                        |
|                                                       | Indicates where I | the data exceeds the s  |                      |             |            |                       |                       |                       |                       |                       |                       |             | -          |                       |             |             |                     |            |                       |                       |             | +             |                        |            |                       |             |                       |                       |                       |             |             |             | +          | +                                      |
|                                                       | maluates millie   | and odia exceeds IIIB S | 4                    |             |            | 1                     |                       |                       |                       |                       |                       |             |            |                       |             |             |                     |            |                       |                       |             |               |                        |            |                       |             |                       |                       |                       |             |             |             |            | ــــــــــــــــــــــــــــــــــــــ |

|                                                                                              |                            |                      |                   |                        |                   |                      |                             |                       |                   |                       |                      |                         |                      |                   |                              |                         |                       |                   |                      |                  |                         |                                 |              |                      |                       |                         |                   | PBA PBA                       | PBA            |                       | PBA               |                       |
|----------------------------------------------------------------------------------------------|----------------------------|----------------------|-------------------|------------------------|-------------------|----------------------|-----------------------------|-----------------------|-------------------|-----------------------|----------------------|-------------------------|----------------------|-------------------|------------------------------|-------------------------|-----------------------|-------------------|----------------------|------------------|-------------------------|---------------------------------|--------------|----------------------|-----------------------|-------------------------|-------------------|-------------------------------|----------------|-----------------------|-------------------|-----------------------|
| Ground Investigation                                                                         |                            |                      | PBA 2010/<br>2011 | PBA 2010/<br>2011      | PBA 2010/ 2011    |                      | PBA 2010/<br>2011           |                       | PBA 2010/ 2011    | PBA 2010/<br>2011     | PBA 2010/<br>2011    | PBA 2010/<br>2011       | PBA 2010/<br>2011    | PBA 2010/<br>2011 | PBA 2010/<br>2011            |                         | PBA 2010/ 2011        | 2011              | 2011                 | -                | PBA 2010/ 2011          | 2011                            | 2011         | PBA 2010/<br>2011    |                       | PBA 2010/ 2011          | PBA 2010/<br>2011 | 2010/ 2010/<br>2011 2011      | 2011           | PBA 2010/ 2011        | 2011              | PBA 2010/<br>2011     |
| Report Number                                                                                |                            |                      | 122209            | 122209                 | 122211<br>AF68430 | 122210<br>AF68355    | 122209                      | 122209                | 122211<br>AF68431 | 122209                | 122210               | 122209<br>AF68296       | 122210               | 122209<br>AF68297 | 122209<br>AF68298            | 122209                  | 133344                | 133344            |                      | 133344           | 133344<br>AF61288       | 133343                          | 133344       | 133343               | 133344                | 133344                  | 133344            | 133344 133344                 |                |                       | 133344<br>AF61301 | 121783                |
| Lab Ref                                                                                      |                            |                      |                   |                        | 07/02/2011        | 25/01/2011           |                             |                       | 07/02/2011        |                       |                      | 25/01/2011              |                      | 25/01/2011        | 25/01/2011                   |                         | AF61285<br>04/01/2011 |                   | 04/01/2011           |                  | 04/01/2011              | AF61270<br>04/01/2011<br>BH2001 |              |                      | AF61290<br>04/01/2011 |                         | 04/01/2011        | 01/01/201101/20               | 104/01/2011    | 04/01/2011            | 04/01/2011 1      | 10/12/2010            |
| Exploatory hole location<br>Zone B Location                                                  |                            |                      | BH2016<br>B3      | BH2016<br>B3           | BH2016<br>B3      | BH2016<br>B3         | BH2016<br>B3                | BH2016<br>B3          | BH2016<br>B3      | BH2016<br>B3          | BH2016<br>B3         | BH2016<br>B3            | BH2016<br>B3         | BH2016<br>B3      | BH2016<br>B3                 | BH2016<br>B3            | BH2001<br>B3          | BH2001<br>B3      | BH2001<br>B3         | BH2001<br>B3     | BH2001<br>B3            | BH2001<br>B3                    | BH2001<br>B3 | BH2001<br>B3         | BH2001<br>B3          | BH2001<br>B3            | BH2001<br>B3      | BH2001 BH2001<br>B3 B3        | BH2001<br>B3   | BH2001<br>B3          | BH2001<br>B3      | BH2003<br>B3          |
|                                                                                              |                            |                      |                   |                        |                   |                      |                             |                       |                   |                       |                      |                         |                      |                   |                              |                         |                       |                   |                      |                  |                         |                                 |              |                      |                       |                         |                   | Inside Inside                 | Inside         |                       | Inside            | Outside               |
| Location on plot/ gas holder number                                                          |                            |                      | Inside GH9        | Inside GH9             | Inside GH9        | Inside GH9           | Inside GH9                  | Inside GH9            | Inside GH9        | Inside GH9            | Inside GH9           | Inside GH9              | Inside GH9           | Inside GH9        | Inside GH9                   | Inside GH9              | Inside GH12           | Inside GH12       | Inside GH12 II       | nside GH12       | Inside GH12             | Inside GH12                     | Inside GH12  | Inside GH12          | Inside GH12           | Inside GH12             | Inside GH12       | GH12 GH12                     | GH12           | Inside GH12           |                   | gasholders            |
| Depth (m)                                                                                    |                            |                      | 4m                | 6m                     | 6m                |                      | 7m                          | 8m                    | 8m                | 9m                    | 9m                   | 10m                     | 11m                  | 12m               | 13m                          | 15m                     | 0.3m                  | 1m                | 2m                   |                  | 3m                      | 4m                              | 5m           | 6m                   | 7m                    | 8m                      |                   | 10m 12m                       |                | 14m                   |                   |                       |
| Strata                                                                                       |                            | Screening Criteria   |                   | Made Ground            | Made Ground       | Made<br>Ground       | Made Ground                 | Made Ground           | Made Ground       | Made Ground           | Made Ground          | Made Ground             | Made Ground          | Made Ground       | Made Ground                  | Clay                    | Made Ground           | Made Ground       | Made Ground          | Made<br>Ground   | Made Ground             | Made Ground                     | Made Ground  | Made Ground          | Made Ground           | Made Ground             | Made<br>Ground    | Made Made<br>Ground Ground    | Made<br>Ground | Made Ground           | London<br>Clay    | Made<br>Ground        |
| Metals                                                                                       | Units                      | Commercial           | 10                | 10                     |                   |                      | 15                          | 40                    |                   | 10                    |                      |                         |                      |                   | 10                           | 10                      |                       |                   |                      | 7.0              |                         |                                 |              |                      | 10                    |                         |                   | 7 50                          |                |                       |                   |                       |
| Cadmium                                                                                      | mg/kg<br>mg/kg<br>mg/kg    | 230.0                | <0.10<br>8        | <0.10<br>7             |                   |                      | 0.1                         | <0.10<br>9.8          |                   | <0.10<br><5.0         |                      | 14<br><0.10<br>11       |                      | <0.10 6.8         | <0.10<br>21                  | 0.24<br>13              |                       | 0.16              |                      | 0.17<br>8.9      |                         |                                 |              |                      | 10<br><0.10<br>17     |                         |                   | 7 5.9<br><0.10 <0.10<br>15 11 | 0.39           |                       | 6.6<br>0.25<br>15 | 9<br>0.11<br>24       |
| Copper<br>Lead                                                                               | mg/kg<br>mg/kg             | 71700<br>7300        | 20<br>67          | 21<br>88               |                   |                      | 27<br>99                    | 43<br>400             |                   | 39<br>230             |                      | 100<br>820<br>0.41      |                      | 150<br>4100       | 24<br>890                    | 27<br>25                |                       | 23<br>110<br>0.29 |                      | 19<br>95<br>0.21 |                         |                                 |              |                      | 12<br>19              |                         |                   | 7.7 6.9<br>22 15              | 26<br>330      |                       | 25<br>19          | 27<br>140             |
| Nickel                                                                                       | mg/kg<br>mg/kg<br>mg/kg    | 1800                 | 0.27              | 0.19<br>21             |                   |                      | 0.12<br>32                  | 0.58<br>26            |                   | 0.24<br>25            |                      | 26                      |                      | 0.35<br>22        | <0.10<br>24                  | <0.10<br>33             |                       | 18                |                      | 13               |                         |                                 |              |                      | <0.10<br>11           |                         |                   | <0.10 0.27<br>12 11           | 41             |                       | 0.11<br>27        | 13                    |
| Selenium                                                                                     | mg/kg<br>mg/kg             | 13000                | <0.20<br>52       | <0.20<br>65            |                   |                      | <0.20<br>92                 | <0.20<br>72           |                   | <0.20<br>66           |                      | <0.20<br>120            |                      | <0.20<br>230      | <0.20<br>83                  | 0.46<br>68              |                       | <0.20<br>71       |                      | <0.20<br>71      |                         |                                 |              |                      | <0.20<br>22           |                         |                   | <0.20 <0.20<br>26 28          |                |                       | 1<br>78           | < 0.20<br>60          |
| Total Cyanide                                                                                | mg/kg<br>mg/kg             | nc<br>78.00          |                   |                        |                   |                      |                             |                       |                   |                       |                      |                         |                      |                   |                              |                         |                       | <0.50<br><0.50    |                      | 4.6<br><0.50     |                         |                                 |              |                      | 4<br><0.50            |                         |                   | 3.1 88<br><0.50 <0.50         |                |                       | 4.8<br><0.50      | 2.2<br>< 0.5          |
| Thiocyanate<br>Boron                                                                         | mg/kg<br>mg/kg             | nc<br>192000         |                   |                        |                   |                      |                             |                       |                   |                       | 1.6                  |                         |                      |                   |                              |                         |                       | <5.0              |                      | <5.0             |                         |                                 |              |                      | <5.0                  |                         |                   | <5.0 18                       | 16             |                       | <5.0              | < 5.0                 |
|                                                                                              | %<br>pH Units              | nc                   | 9                 | 8.9                    |                   | 8.8                  | 8.5                         | 9.2                   |                   | 8.9                   | 9.3                  | 9                       | 9.5                  | 8.9               | 10.4                         | 9                       |                       | 9.7               | 9.8                  | 10.9             |                         | 11.3                            |              | 10.5                 | 11                    |                         |                   | 11.5 11.9                     | 11.7           |                       | 9.4               | 8.3                   |
|                                                                                              | %                          |                      |                   |                        | Not detected      |                      |                             |                       | Not detected      |                       |                      |                         |                      |                   |                              | 0.4                     | Not detected          |                   |                      | 0.7              |                         |                                 | Not detected |                      |                       |                         | Not detected      | 0.8 1.1                       |                |                       | 0.0               |                       |
| Sulphur (free)                                                                               | mg/kg<br>mg/kg             | 3200<br>nc<br>nc     | <0.3              | <0.3                   |                   |                      | <0.3                        | <0.3                  |                   | <0.3                  |                      | <0.3                    |                      | <0.3              | <0.3                         | 0.4                     |                       | <0.3              |                      | 0.7              |                         |                                 |              |                      | 1                     |                         |                   | 0.8 1.1                       | 2.3            |                       | 0.3               | <0.2                  |
| Total Sulphate<br>Sulphur (elemental)                                                        | % as SO4<br>mg/kg<br>mg/kg | nc                   |                   |                        |                   |                      |                             |                       |                   |                       |                      |                         |                      |                   |                              |                         |                       |                   |                      |                  |                         |                                 |              |                      |                       |                         |                   |                               |                |                       |                   |                       |
| Total sulphate                                                                               | mg/kg<br>mg/kg<br>g/l<br>% | nc                   | 0.28              | 0.22                   |                   |                      | 0.76                        | 0.66                  |                   | 0.37                  |                      | 0.47                    |                      | 0.98              | 0.09                         | 0.08                    |                       | 1.1               |                      | 1.2              |                         |                                 |              |                      | 1.2                   |                         |                   | 0.78 0.27                     |                |                       | 0.25              | 0.3                   |
| Moisture                                                                                     | %<br>%<br>mol/kg           | nc                   | 1.2<br>18.9       | 1.1<br>15.4            |                   | 19.9<br>0.026        | 0.9<br>20.8                 | 3.1<br>20.5           |                   | 2.6<br>22.3           | 24.1<br>0.04         | 3.1<br>25.8             | 22.7<br>0.048        | 1.7<br>16.9       | 0.5<br>5.23                  | 1.1<br>19.2             |                       | 2.2<br>13.6       | 14.1<br>0.062        | 2.6<br>14.6      | 14.8                    | 11.8<br>0.119                   |              | 16.2<br>0.115        | 1.3<br>13.7           | 14.2                    |                   | 0.84 < 0.40<br>11.2 6.54      | 1.2<br>13.1    | 12                    | 1.1<br>20.5       | 2.6<br>19             |
| Loss on ignition<br>Stones content > 50mm                                                    | %                          | nc                   |                   |                        |                   | 3.09                 |                             |                       |                   |                       | 4.14<br><0.02        |                         | 23.7<br><0.02        |                   |                              |                         |                       |                   | 3.2                  | <0.02            | <0.02                   | 1.69<br><0.02                   |              | 3.33                 | <0.02                 | <0.02                   |                   | <0.02 <0.02                   | <0.02          | <0.02                 | <0.02             |                       |
| BTEX<br>Benzene<br>Toluene                                                                   | μg/kg<br>μg/kg             |                      |                   |                        |                   | 1.5                  |                             |                       |                   |                       | 3.3<br>3.6           |                         | 13                   |                   |                              |                         |                       | 2.8               | 1.7                  | 5.9<br>4         |                         | 7.6                             |              | 5.1<br>5.3           | 7.8                   |                         |                   | 2.8 28                        | 7400           |                       | 35<br>19          | <1                    |
| Ethylbenzene<br>m- & p-Xylene                                                                | μg/kg<br>μg/kg             | 581000<br>575000     |                   |                        |                   | <1                   |                             |                       |                   |                       | < 1<br>2.6           |                         | <1<br><1             |                   |                              |                         |                       | 2.7<br>4.4        | <1<br><1             | 4 5              |                         | 5.7<br>8.6                      |              | 4.7                  | 6.5                   |                         |                   | 4.6 41<br>5.6 43              | 18000          |                       | 12                |                       |
| Total BTEX                                                                                   | μg/kg<br>μg/kg<br>μg/kg    | nc                   |                   |                        |                   | < 1<br><0.005        | <1.0                        | <1.0                  |                   |                       | < 1<br>0.0072        | <1.0                    | < 1<br>0.0097        |                   | <1.0                         | <1.0                    |                       | 7.6               | < 1<br><0.005        | 3.4              | <1.0                    | 5.6<br>0.03                     |              | 6.9<br>0.027         | 4.2                   | <1.0                    |                   | 2.7 22                        | 7100           | <1.0                  | 6.3               | <1                    |
| Hydrocarbons<br>Aliphatic C5-C6                                                              | mg/kg                      | 3380                 |                   |                        |                   |                      | < 0.1                       | < 0.1                 |                   |                       |                      | < 0.1                   |                      |                   | < 0.1                        | < 0.1                   |                       |                   |                      |                  | < 0.1                   |                                 |              |                      |                       | < 0.1                   |                   |                               |                | < 0.1                 |                   |                       |
| Aliphatic >C8-C10                                                                            | mg/kg<br>mg/kg<br>mg/kg    |                      | -                 |                        |                   |                      | < 0.1<br>< 0.1<br>< 0.1     | < 0.1<br>1.1<br>6.7   |                   |                       |                      | < 0.1<br>< 0.1<br>< 0.1 |                      |                   | < 0.1<br>< 0.1<br>< 0.1      | < 0.1<br>< 0.1<br>< 0.1 |                       |                   |                      |                  | < 0.1<br>< 0.1<br>< 0.1 |                                 |              |                      |                       | < 0.1<br>< 0.1<br>< 0.1 |                   |                               |                | < 0.1<br>< 0.1<br>19  |                   |                       |
| Aliphatic >C12-C16<br>Aliphatic >C16-C21                                                     | mg/kg<br>mg/kg             | 673000               |                   |                        |                   |                      | < 0.1<br>< 0.1              | 27<br>25              |                   |                       |                      | < 0.1<br>< 0.1          |                      |                   | < 0.1<br>< 0.1               | < 0.1<br>< 0.1          |                       |                   |                      |                  | < 0.1<br>< 0.1          |                                 |              |                      |                       | < 0.1<br>< 0.1          |                   |                               |                | 21<br>160             |                   |                       |
| Aliphatic >C35-C44                                                                           | mg/kg<br>mg/kg<br>mg/kg    | 673000               | -                 |                        |                   |                      | < 0.1<br>< 0.1<br>< 0.1     | 13<br>< 0.1<br>< 0.1  |                   |                       |                      | < 0.1<br>< 0.1<br>< 0.1 |                      |                   | < 0.1<br>< 0.1<br>< 0.1      | < 0.1<br>< 0.1<br>< 0.1 |                       |                   |                      |                  | < 0.1<br>< 0.1<br>< 0.1 |                                 |              |                      |                       | < 0.1<br>< 0.1<br>< 0.1 |                   |                               |                | 540<br>< 0.1<br>< 0.1 |                   |                       |
| Aromatic >C7-C8<br>Aromatic >C8-C10                                                          | mg/kg<br>mg/kg<br>mg/kg    | 59000<br>3670        |                   |                        |                   |                      | < 0.1<br>< 0.1<br>< 0.1     | < 0.1<br>0.35<br>4.2  |                   |                       |                      | < 0.1<br>< 0.1<br>< 0.1 |                      |                   | < 0.1<br>< 0.1<br>< 0.1      | < 0.1<br>< 0.1<br>< 0.1 |                       |                   |                      |                  | < 0.1<br>< 0.1<br>5.9   |                                 |              |                      |                       | < 0.1<br>< 0.1<br>0.61  |                   |                               |                | < 0.1<br>< 0.1<br>390 |                   |                       |
| Aromatic >C12-C16                                                                            | mg/kg<br>mg/kg             | 36200                |                   |                        |                   |                      | 1.5                         | < 0.1<br>9.3          |                   |                       |                      | 1.4                     |                      |                   | 0.74                         |                         |                       |                   |                      |                  | 11<br>35                |                                 |              |                      |                       | 3.3<br>10               |                   |                               |                | 24<br>19              |                   |                       |
| Aromatic >C21-C35<br>Aromatic >C35-C44<br>Aliphatic C5-C35                                   | mg/kg<br>mg/kg<br>mg/kg    | 28400<br>28400<br>nc | -                 |                        |                   |                      | 3.7<br>< 0.1                | 13<br>< 0.1           |                   |                       |                      | 1.3<br>< 0.1            |                      |                   | 0.9<br>< 0.1                 | 1.6<br>< 0.1            |                       |                   |                      |                  | 45<br>< 0.1             |                                 |              |                      |                       | 10<br>< 0.1             |                   |                               |                | 1.7<br>< 0.1          |                   |                       |
| Aromatic C5-C35<br>Total hydrocarbons (alihpatics and aromatics)                             | mg/kg<br>mg/kg             | nc<br>2130           | < 10              | < 10                   |                   |                      | 8                           | 99                    |                   | < 10                  |                      | 4                       |                      | 63                | 3                            | 3                       |                       | 22                |                      | 350              | 97                      |                                 |              |                      | 44                    | 24                      |                   | 86 180                        | 3900           | 1200                  | 12                | 21                    |
| TEM                                                                                          | mg/kg<br>mg/kg<br>mg/kg    | nc                   |                   |                        |                   | < 10                 |                             |                       |                   |                       | 520                  |                         | < 10                 |                   |                              |                         |                       |                   | 190                  |                  |                         | 76                              |              | 150                  |                       |                         |                   |                               |                |                       | -                 |                       |
| Gasoline Range Organics by GC (GRO)<br>TPH (SUM DRO + GRO)                                   | mg/kg<br>mg/kg             | 2130<br>2130         |                   |                        |                   |                      |                             |                       |                   |                       |                      |                         |                      |                   |                              |                         |                       |                   |                      |                  |                         |                                 |              |                      |                       |                         |                   |                               |                |                       |                   |                       |
| TPH (Mineral Oil/ Hydrocarbon oil)<br>TPH (Aromatic hydrocarbons)<br>TPH (Solvent Extracted) | mg/kg<br>mg/kg<br>mg/kg    | 2130<br>2130<br>2130 |                   |                        |                   |                      |                             |                       |                   |                       |                      |                         |                      |                   |                              |                         |                       |                   |                      |                  |                         |                                 |              |                      |                       |                         |                   |                               |                |                       |                   |                       |
| TPH<br>EPH DRO (C10 - C40)                                                                   | mg/kg<br>mg/kg             | 2130<br>2130         | 0.50              | 0.94                   |                   | 0.0                  | 0.57                        | .01                   |                   | 0.00                  | 0.0                  | .01                     | 0.1                  | 0.01              | 0.00                         | 11                      |                       |                   | 1                    |                  |                         | 0.7                             |              | 11                   |                       |                         |                   |                               |                |                       |                   | 0.01                  |
| Acenaphthylene<br>Anthracene                                                                 | mg/kg<br>mg/kg<br>mg/kg    | 84300<br>525000      | 0.23              | 0.24 0.44              |                   | 0.2                  | 0.57<br>0.24<br>0.58<br>1.1 | < 0.1                 |                   | 0.92<br>0.36<br>0.81  | 0.2 0.2 0.6          | < 0.1                   | <0.1                 | 0.32              | 0.39<br>0.22<br>0.46<br>0.38 | 0.58                    |                       |                   | 0.4                  |                  |                         | 0.1                             |              | 0.3                  |                       |                         |                   |                               |                |                       |                   | 0.21<br>< 0.1<br>0.29 |
| Benzo(a)pyrene                                                                               | mg/kg<br>mg/kg<br>mg/kg    | 14.00                | 0.14              | 0.46<br>0.47<br>< 0.1  |                   | 0.3                  | 1.1<br>1.3<br>< 0.1         | 0.3                   |                   | 0.61<br>0.41<br>< 0.1 | 0.5<br>0.3<br>0.4    | 0.2                     | 0.5<br>0.6<br>0.6    | 0.29              | 0.47                         | < 0.1                   |                       |                   | 5.9<br>5.1<br>6.2    |                  |                         | 0.9<br>0.3<br>0.2               |              | 2.1<br>1.8<br>0.6    |                       |                         |                   |                               |                |                       |                   | 1.2<br>1.4<br>1.8     |
| Benzo(k)fluoranthene<br>Benzo(g,h,i)perylene                                                 | mg/kg<br>mg/kg             | 141.0<br>654         | < 0.1             | < 0.1                  |                   | 0.1                  | < 0.1                       | < 0.1                 |                   | < 0.1<br>< 0.1        | 0.1                  | < 0.1                   | 0.4 0.3              | < 0.1             | < 0.1 < 0.1                  | < 0.1<br>< 0.1          |                       |                   | 4.4<br>3.4           |                  |                         | 0.2                             |              | 0.3                  |                       |                         |                   |                               |                |                       |                   | 0.46 0.96             |
| Dibenzo(a,h)anthracene                                                                       | mg/kg<br>mg/kg<br>mg/kg    | 13.00                |                   | 0.56<br>< 0.1<br>< 0.1 |                   | 0.3                  | 1.2<br>< 0.1<br>< 0.1       | 0.42<br>0.15<br>< 0.1 |                   | 0.93<br>0.22<br>< 0.1 | 0.6<br>0.3<br>1.7    |                         | 0.5<br>0.3<br>0.9    | < 0.1             |                              | < 0.1                   |                       |                   | 6.3<br>3.8<br>11     |                  |                         | 0.6<br>0.4<br>1.5               |              | 2.3<br>1.2<br>5.3    |                       |                         |                   |                               |                |                       |                   | 1.2<br>0.16<br>2.4    |
| Fluorene<br>Indeno(1,2,3-c,d)pyrene                                                          | mg/kg<br>mg/kg             | 63500<br>60.0        | < 0.1             | < 0.1<br>0.29          |                   | 0.4                  | < 0.1<br>0.75               | < 0.1<br>0.2          |                   | < 0.1<br>< 0.1        | 0.4                  | < 0.1<br>< 0.1          | 0.1<br><0.1          | < 0.1             | < 0.1<br>< 0.1               | < 0.1<br>< 0.1          |                       |                   | 0.7                  |                  |                         | <0.1<br><0.1                    |              | 0.7                  |                       |                         |                   |                               |                |                       |                   | 0.2                   |
| Phenanthrene                                                                                 | mg/kg<br>mg/kg<br>mg/kg    | 21900                | 0.89              | 0.75<br>1.6<br>0.9     |                   | 2.2                  | 1.3<br>2<br>1.9             | < 0.1<br>1.9<br>0.85  |                   | < 0.1<br>1.7<br>1.1   | 2.1                  | < 0.1<br>1.1<br>0.56    | 0.7                  | 1.6               | 1.8                          |                         |                       |                   | 0.3<br>6.1<br>11     |                  |                         | 0.9<br>1.2<br>0.8               |              | 0.7<br>5.2<br>4.2    |                       |                         |                   |                               |                |                       |                   | 0.52<br>1.6<br>2.1    |
| Coronene<br>PAH (Sum of 16 - excluding coronene)                                             | mg/kg<br>mg/kg             | nc<br>nc             |                   | 7                      |                   | <0.1                 | 12                          |                       |                   | 7.1                   | 0.6                  | 3.3                     | <0.1                 | 5.6               |                              | 3.8                     |                       | 38                |                      | 48               |                         | <0.1                            |              | <0.1                 | 160                   |                         |                   | 11 4.3                        | 84             |                       | <2                |                       |
| PCB                                                                                          | mg/kg<br>mg/kg             |                      |                   |                        |                   | 13<br><0.1           |                             |                       |                   |                       | 14<br><0.1           |                         | <0.1                 |                   |                              |                         |                       |                   | <0.1                 |                  |                         | <0.1                            |              | 30<br><0.1           |                       |                         |                   |                               |                |                       |                   |                       |
| PCB 52<br>PCB 101                                                                            | mg/kg<br>mg/kg             | nc                   |                   |                        |                   | <0.1                 |                             |                       |                   |                       | <0.1                 |                         | <0.1<br><0.1         |                   |                              |                         |                       |                   | <0.1<br><0.1         |                  |                         | <0.1                            |              | <0.1                 |                       |                         |                   |                               |                |                       |                   |                       |
| PCB 153                                                                                      | mg/kg<br>mg/kg<br>mg/kg    | nc                   |                   |                        |                   | <0.1<br><0.1<br><0.1 |                             |                       |                   |                       | <0.1<br><0.1<br><0.1 |                         | <0.1<br><0.1<br><0.1 |                   |                              |                         |                       |                   | <0.1<br><0.1<br><0.1 |                  |                         | <0.1<br><0.1<br><0.1            |              | <0.1<br><0.1<br><0.1 |                       |                         |                   |                               |                |                       |                   |                       |
| PCB 180                                                                                      | mg/kg<br>mg/kg             | nc                   |                   |                        |                   | <0.1<br><1           |                             |                       |                   |                       | <0.1<br><1           |                         | <0.1<br><1           |                   |                              |                         |                       |                   | <0.1<br><1           |                  |                         | <0.1<br><1                      |              | <0.1<br><1           |                       |                         |                   |                               |                |                       |                   |                       |
| Dichlorodifluoromethane<br>Chloromethane                                                     | μg/kg<br>μg/kg             | nc                   |                   |                        |                   |                      | <1.0<br><1.0                | <1.0<br><1.0          |                   |                       |                      | <1.0<br><1.0            |                      |                   | <1.0<br><1.0                 | <1.0<br><1.0            |                       |                   |                      |                  | <1.0<br><1.0            |                                 |              |                      |                       | <1.0<br><1.0            |                   |                               |                | <1.0<br><1.0          |                   |                       |
| Vinyl chloride<br>Bromomethane                                                               | μg/kg<br>μg/kg             | nc<br>nc             |                   |                        |                   |                      | <20                         | <1.0<br><20<br><2.0   |                   |                       |                      | <1.0<br><20<br><2.0     |                      |                   | <1.0<br><20<br><2.0          | <20                     |                       |                   |                      |                  | <1.0<br><20<br><2.0     |                                 |              |                      |                       | <1.0<br><20<br><2.0     |                   |                               |                | <1.0<br><20<br><2.0   |                   |                       |
| Trichlorofluoromethane<br>1,1-Dichloroethene                                                 | µg/kg<br>µg/kg<br>µg/kg    | nc                   |                   |                        |                   |                      | <1.0<br><1.0                | <1.0<br><1.0          |                   |                       |                      | <1.0<br><1.0            |                      |                   | <1.0<br><1.0                 | <1.0<br><1.0            |                       |                   |                      |                  | <1.0<br><1.0            |                                 |              |                      |                       | <1.0<br><1.0            |                   |                               |                | <1.0<br><1.0          |                   |                       |
| Dichloromethane<br>trans-1.2-Dichloroethene                                                  | μg/kg<br>μg/kg             | nc                   |                   |                        |                   |                      | ne<br><1.0                  | ne<br><1.0            |                   |                       |                      | ne<br><1.0<br><1.0      |                      |                   | ne<br><1.0                   | ne<br><1.0              |                       |                   |                      |                  | ne<br><1.0              |                                 |              |                      |                       | ne<br><1.0              |                   |                               |                | ne<br><1.0            |                   |                       |
| 1,1-Dichloroethane                                                                           | µg/kg                      | nc                   |                   | 1                      | 1                 | 1                    | <1.0                        | <1.0                  |                   |                       |                      | <1.0                    |                      |                   | <1.0                         | <1.0                    |                       |                   |                      |                  | <1.0                    |                                 |              |                      |                       | <1.0                    | I                 | 1                             | 1              | <1.0                  |                   |                       |

| unit         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L <thl< th="">         L        <thl< th=""> <thl< th=""></thl<></thl<></thl<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              |                         |                  |             |             |             |            |                |                |             |             |             |                         |             | 221         | -              |                |             |             |             |            |                     |             |             |             |             |                |            | PBA PBA            | PBA          |                | РВА                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------|------------------|-------------|-------------|-------------|------------|----------------|----------------|-------------|-------------|-------------|-------------------------|-------------|-------------|----------------|----------------|-------------|-------------|-------------|------------|---------------------|-------------|-------------|-------------|-------------|----------------|------------|--------------------|--------------|----------------|-----------------------|
| 100         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500        500        500        500        500        500        500        500        500        500        500        500        500        500       500       500       500 </th <th>Ground Investigation</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1 2011</th> <th>2011</th> <th>2011</th> <th></th> <th>2011</th> <th></th> <th></th> <th></th> <th>2011</th> <th>2011</th> <th></th> <th></th> <th></th> <th>2011</th> <th>2011</th> <th></th> <th>2011</th> <th>2011</th> <th>2011</th> <th>2011</th> <th></th> <th>2011</th> <th>2011 2011</th> <th>2011</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ground Investigation                                                         |                         |                  |             |             |             | 1 2011     | 2011           | 2011           |             | 2011        |             |                         |             | 2011        | 2011           |                |             |             | 2011        | 2011       |                     | 2011        | 2011        | 2011        | 2011        |                | 2011       | 2011 2011          | 2011         |                |                       |
| No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200No. 200 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                         |                  |             |             |             |            |                |                |             |             |             |                         |             |             |                |                |             |             |             |            |                     |             |             |             |             |                |            |                    |              |                |                       |
| b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b        b         b         b        b    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date                                                                         |                         |                  | 25/01/2011  | 25/01/2011  | 07/02/2011  | 25/01/2011 | 25/01/2011     | 25/01/2011     | 07/02/2011  | 25/01/2011  | 25/01/2011  | 25/01/2011              | 25/01/2011  | 25/01/2011  | 25/01/2011     | 25/01/2011     | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011 | 04/01/2011          | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011  | 04/01/2011     | 04/01/2011 | 04/01/201104/01/20 | 1104/01/2011 | 04/01/2011     | 04/01/2011 10/12/2010 |
| bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th>1 1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1 1</th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th>1 1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                              |                         |                  |             | 1           |             | 1 1        |                |                |             |             |             |                         |             |             | 1 1            |                |             | 1           |             |            |                     | 1 1         |             |             |             |                |            |                    | -            |                |                       |
| b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              |                         |                  |             |             |             |            |                |                |             |             |             |                         |             |             |                |                |             |             |             |            |                     |             |             |             |             |                |            | GH12 GH12          | GH12         | Inside GH12    | GH12 gasholders       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                              |                         |                  |             |             |             | Made       |                |                |             |             |             |                         |             |             |                |                |             |             |             | Made       |                     |             |             |             |             |                | Made       | Made Made          | Made         |                | London Made           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                              |                         |                  | Made Ground | Made Ground | Made Ground | Ground     | <1.0           | <1.0           | Made Ground | Made Ground | Made Ground | <1.0                    | Made Ground | Made Ground | <1.0           | <1.0           | Made Ground | Made Ground | Made Ground | Ground     | <1.0                | Made Ground | Made Ground | Made Ground | Made Ground | <1.0           | Ground     | Ground Ground      | Ground       | <1.0           | Clay Ground           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trichloromethane                                                             | μg/kg<br>μg/kg          | 107000<br>700000 |             |             |             |            | <1.0<br><1.0   | <1.0<br><1.0   |             |             |             | <1.0<br><1.0            |             |             | <1.0<br><1.0   | <1.0<br><1.0   |             |             |             |            | <1.0                |             |             |             |             | <1.0<br><1.0   |            |                    |              | <1.0<br><1.0   |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1-Dichloropropene                                                          | µg/kg                   | nc               |             |             |             |            | <1.0           | <1.0           |             |             |             | <1.0                    |             |             | <1.0           | <1.0           |             |             |             |            | <1.0                |             |             |             |             | <1.0           |            |                    |              | <1.0           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-Dichloroethane                                                           | μg/kg<br>μg/kg          | 12000            |             |             |             |            | <1.0           | <1.0           |             |             |             | <1.0                    |             |             | <1.0           | <1.0           |             |             |             |            | <1.0                |             |             |             |             | <1.0           |            |                    |              | <1.0           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dibromomethane<br>Bromodichloromethane                                       | μg/kg<br>μg/kg          | nc<br>nc         |             |             |             |            | <10<br><5.0    | <10<br><5.0    |             |             |             | <10<br><5.0             |             |             | <10<br><5.0    | <10<br><5.0    |             |             |             |            | <10<br><5.0         |             |             |             |             | <10<br><5.0    |            |                    |              | <10<br><5.0    |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Toluene                                                                      | µg/kg                   | 870000           |             |             |             |            | 2              | 6.3            |             |             |             | 1.6                     |             |             | 51             | 1300           |             |             |             |            | 9.2                 |             |             |             |             | 4.9            |            |                    | -            | 69000          |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1,2-Trichloroethane<br>Tetrachloroethene                                   | μg/kg<br>μg/kg          |                  |             |             |             |            | <1.0           | <1.0           |             |             |             | <1.0                    |             |             | <1.0           | <1.0           |             |             |             |            | <1.0                |             |             |             |             | <1.0           |            |                    |              | <1.0           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dibromochloromethane 1,2-Dibromoethane                                       | µg/kg                   | nc               |             |             |             |            | <10<br><5.0    | <10<br><5.0    |             |             |             | <10<br><5.0             |             |             | <10<br><5.0    | <10<br><5.0    |             |             |             |            | <10<br><5.0         |             |             |             |             | <10<br><5.0    |            |                    |              | <10<br><5.0    |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1,1,2-Tetrachloroethane                                                    | µg/kg                   | 115000           |             |             |             |            | <2.0           | <2.0           |             |             |             | <2.0                    |             |             | <2.0           | <2.0           |             |             |             |            | <1.0<br><2.0<br>7.5 |             |             |             |             | <2.0           |            |                    |              | <2.0           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m- & p-Xylene<br>o-Xylene                                                    | μg/kg<br>μg/kg          | 575000<br>480000 |             |             |             |            | 2.3<br><1.0    | 1.1<br>3.2     |             |             |             | <1.0<br><1.0            |             |             | 95<br>32       | 270<br>190     |             |             |             |            | 8.8<br>5.8          |             |             |             |             | 13<br>4.8      |            |                    |              | 54000<br>26000 |                       |
| NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME         NAME        NAME        NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tribromomethane                                                              | µg/kg                   | nc               |             |             |             |            | <10            | <10            |             |             |             | <10                     |             |             | <10            | <10            |             |             |             |            | <10                 |             |             |             |             | <10            |            |                    |              | <10            |                       |
| Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm         Norm        Norm        Norm         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2,3-Trichloropropane                                                       | μg/kg<br>μg/kg          | nc<br>nc         |             |             |             |            | <50            | <50            |             |             |             | <50                     |             |             | <50            | <50            |             |             |             |            | <50                 |             |             |             |             | <50            |            |                    |              | <50            |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-Chlorotoluene<br>1,2,4-Trimethylbenzene                                    | μg/kg<br>μg/kg          | nc<br>nc         |             |             |             |            | <1.0<br><1.0   | <1.0<br>11     |             |             |             | <1.0<br><1.0            |             |             | <1.0<br>71     | <1.0<br>8.4    |             |             |             |            | <1.0<br>2.4         |             |             |             |             | <1.0<br>2.2    |            |                    |              | <1.0<br>24000  |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tert-Butylbenzene<br>1.3.5-Trimethylbenzene                                  | µg/kg                   | nc               |             |             |             |            | <1.0           | 1              |             |             |             | <1.0                    |             |             | <1.0           | <1.0           |             |             |             |            | <1.0                |             |             |             |             | <1.0           |            |                    |              | <1.0           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sec-Butylbenzene<br>1,3-Dichlorobenzene                                      | μg/kg<br>μg/kg          | nc<br>nc         |             |             |             |            | <1.0<br><1.0   | <1.0<br><1.0   |             |             |             | <1.0<br><1.0            |             |             | <1.0<br><1.0   | <1.0<br><1.0   |             |             |             |            | <1.0<br><1.0        |             |             |             |             | <1.0<br><1.0   |            |                    |              | <1.0<br><1.0   |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,4-Dichlorobenzene<br>n-Butylbenzene                                        | µg/kg                   | nc               |             |             |             |            | <1.0           | <1.0           |             |             |             | <1.0                    |             |             | <1.0           | <1.0           |             |             |             |            | <1.0<br><1.0        |             |             |             |             | <1.0<br><1.0   |            |                    |              | <1.0           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-Dichlorobenzene<br>1,2-Dibromo-3-chloropropane<br>1,2-4-Trichlorobenzene | µg/kg                   |                  |             |             |             |            | <50            | <50            |             |             |             | <50                     |             |             | <50            | <50            |             |             |             |            | <50                 |             |             |             |             | <50            |            |                    |              | <50            |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hexachlorobutadiene<br>1,2,3-Trichlorobenzene                                | μg/kg<br>μg/kg          | 108000           |             |             |             |            | <2.0           | <1.0<br><2.0   |             |             |             | <1.0<br><2.0            |             |             | <1.0<br><2.0   | <2.0           |             |             |             |            | <1.0<br><2.0        |             |             |             |             | <1.0<br><2.0   |            |                    |              | <2.0           |                       |
| bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit <th>Benzene, 1-ethenyl-3-methyl</th> <th>µg/kg</th> <th>nc</th> <th></th> <th></th> <th></th> <th></th> <th>None Detected</th> <th>None Detected</th> <th></th> <th></th> <th></th> <th>None Detected</th> <th></th> <th></th> <th>None Detected</th> <th>Detected</th> <th></th> <th></th> <th></th> <th></th> <th>None Detected</th> <th></th> <th></th> <th></th> <th></th> <th>None Detected</th> <th></th> <th></th> <th></th> <th>None Detected</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Benzene, 1-ethenyl-3-methyl                                                  | µg/kg                   | nc               |             |             |             |            | None Detected  | None Detected  |             |             |             | None Detected           |             |             | None Detected  | Detected       |             |             |             |            | None Detected       |             |             |             |             | None Detected  |            |                    |              | None Detected  |                       |
| Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name </th <th>Benzofuran</th> <th>µg/kg</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Benzofuran                                                                   | µg/kg                   |                  |             |             |             |            |                |                |             |             |             |                         |             |             |                |                |             |             |             |            |                     |             |             |             |             |                |            |                    |              |                |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phenol,4Methyl<br>Benzo(B)Thiophene                                          | µg/kg<br>µg/kg          | nc               |             |             |             |            | 0.50           | 0.50           |             |             |             | 0.50                    |             |             | 0.50           | 0.50           |             |             |             |            |                     |             |             |             |             | 0.50           |            |                    |              | 0.50           |                       |
| MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA         MA        MA        MA         MA </th <th>Acenaphthylene Anthracene</th> <th>mg/kg<br/>mg/kg</th> <th>84300<br/>525000</th> <th></th> <th></th> <th></th> <th></th> <th>&lt;0.50<br/>&lt;0.50</th> <th>&lt;0.50<br/>&lt;0.50</th> <th></th> <th></th> <th></th> <th>&lt; 0.50</th> <th></th> <th></th> <th>&lt; 0.50</th> <th>&lt; 0.50</th> <th></th> <th></th> <th></th> <th></th> <th>&lt;0.50<br/>1</th> <th></th> <th></th> <th></th> <th></th> <th>&lt;0.50<br/>&lt;0.50</th> <th></th> <th></th> <th></th> <th>&lt;0.50</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Acenaphthylene Anthracene                                                    | mg/kg<br>mg/kg          | 84300<br>525000  |             |             |             |            | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             | < 0.50                  |             |             | < 0.50         | < 0.50         |             |             |             |            | <0.50<br>1          |             |             |             |             | <0.50<br><0.50 |            |                    |              | <0.50          |                       |
| nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm         nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzo[a]anthracene                                                           |                         |                  |             |             |             |            |                |                |             |             |             |                         |             |             |                |                |             |             |             |            |                     |             |             |             |             |                |            |                    |              |                |                       |
| bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit </th <th>Benzo[g,h,i]perylene</th> <th>mg/kg</th> <th>654</th> <th></th> <th></th> <th></th> <th></th> <th>&lt;0.50</th> <th>0.54</th> <th></th> <th></th> <th></th> <th>&lt; 0.50</th> <th></th> <th></th> <th>&lt; 0.50</th> <th>&lt; 0.50</th> <th></th> <th></th> <th></th> <th></th> <th>0.64</th> <th></th> <th></th> <th></th> <th></th> <th>&lt;0.50</th> <th></th> <th></th> <th></th> <th>&lt; 0.50</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Benzo[g,h,i]perylene                                                         | mg/kg                   | 654              |             |             |             |            | <0.50          | 0.54           |             |             |             | < 0.50                  |             |             | < 0.50         | < 0.50         |             |             |             |            | 0.64                |             |             |             |             | <0.50          |            |                    |              | < 0.50         |                       |
| bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit         bit <th>bis(2-Chloroethoxy)methane<br/>bis(2-Chloroethyl)ether</th> <th>mg/kg<br/>mg/kg</th> <th>nc<br/>nc</th> <th></th> <th></th> <th></th> <th></th> <th>&lt;0.50<br/>&lt;0.50</th> <th>&lt;0.50<br/>&lt;0.50</th> <th></th> <th></th> <th></th> <th>&lt; 0.50</th> <th></th> <th></th> <th>&lt;0.50</th> <th>&lt; 0.50</th> <th></th> <th></th> <th></th> <th></th> <th>&lt;0.50<br/>&lt;0.50</th> <th></th> <th></th> <th></th> <th></th> <th>&lt;0.50<br/>&lt;0.50</th> <th></th> <th></th> <th></th> <th>&lt;0.50<br/>&lt;0.50</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bis(2-Chloroethoxy)methane<br>bis(2-Chloroethyl)ether                        | mg/kg<br>mg/kg          | nc<br>nc         |             |             |             |            | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             | < 0.50                  |             |             | <0.50          | < 0.50         |             |             |             |            | <0.50<br><0.50      |             |             |             |             | <0.50<br><0.50 |            |                    |              | <0.50<br><0.50 |                       |
| mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail         mail <th< th=""><th>bis(2-Chloroisopropyl)ether<br/>bis(2-Ethylhexyl)phthalate</th><th>mg/kg<br/>mg/kg<br/>mg/kg</th><th>nc<br/>nc<br/>nc</th><th></th><th></th><th></th><th></th><th>&lt;0.50</th><th>&lt; 0.50</th><th></th><th></th><th></th><th>&lt; 0.50</th><th></th><th></th><th>&lt; 0.50</th><th>&lt; 0.50</th><th></th><th></th><th></th><th></th><th>&lt;0.50</th><th></th><th></th><th></th><th></th><th>&lt;0.50</th><th></th><th></th><th></th><th>&lt; 0.50</th><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bis(2-Chloroisopropyl)ether<br>bis(2-Ethylhexyl)phthalate                    | mg/kg<br>mg/kg<br>mg/kg | nc<br>nc<br>nc   |             |             |             |            | <0.50          | < 0.50         |             |             |             | < 0.50                  |             |             | < 0.50         | < 0.50         |             |             |             |            | <0.50               |             |             |             |             | <0.50          |            |                    |              | < 0.50         |                       |
| Nome         No         o        No         No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Carbazole                                                                    | mg/kg<br>mg/kg          | 137              |             |             |             |            | <0.50          | 0.92           |             |             |             | < 0.50                  |             |             | < 0.50         | < 0.50         |             |             |             |            | 1.3                 |             |             |             |             | <0.50          |            |                    |              | < 0.50         |                       |
| shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift         shift <t< th=""><th>Dibenzo[a,h]anthracene</th><th>mg/kg<br/>mg/kg</th><th>nc</th><th></th><th></th><th></th><th></th><th>&lt;0.50<br/>&lt;0.50</th><th>&lt;0.50<br/>&lt;0.50</th><th></th><th></th><th></th><th>&lt;0.50<br/>&lt;0.50</th><th></th><th></th><th>&lt;0.50<br/>&lt;0.50</th><th>&lt;0.50<br/>&lt;0.50</th><th></th><th></th><th></th><th></th><th>&lt;0.50<br/>&lt;0.50</th><th></th><th></th><th></th><th></th><th>&lt;0.50<br/>&lt;0.50</th><th></th><th></th><th></th><th>&lt;0.50<br/>&lt;0.50</th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dibenzo[a,h]anthracene                                                       | mg/kg<br>mg/kg          | nc               |             |             |             |            | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             | <0.50<br><0.50          |             |             | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             |            | <0.50<br><0.50      |             |             |             |             | <0.50<br><0.50 |            |                    |              | <0.50<br><0.50 |                       |
| name         nb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Diethylphthalate                                                             | mg/kg                   | nc               |             |             |             |            | <0.50          | < 0.50         |             |             |             | <0.50                   |             |             | <0.50          | <0.50          |             |             |             |            | <0.50<br><0.50      |             |             |             |             | <0.50<br><0.50 |            |                    |              | <0.50<br><0.50 |                       |
| Max         Math         Math <th< th=""><th>Fluoranthene<br/>Fluorene</th><th>mg/kg</th><th>63500</th><th></th><th></th><th></th><th></th><th>&lt; 0.50</th><th>&lt; 0.50</th><th></th><th></th><th></th><th>&lt; 0.50</th><th></th><th></th><th>&lt; 0.50</th><th>&lt; 0.50</th><th></th><th></th><th></th><th></th><th>&lt;0.50</th><th></th><th></th><th></th><th></th><th>&lt;0.50</th><th></th><th></th><th></th><th>&lt;0.50</th><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fluoranthene<br>Fluorene                                                     | mg/kg                   | 63500            |             |             |             |            | < 0.50         | < 0.50         |             |             |             | < 0.50                  |             |             | < 0.50         | < 0.50         |             |             |             |            | <0.50               |             |             |             |             | <0.50          |            |                    |              | <0.50          |                       |
| Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name </th <th>Hexachlorobutadiene</th> <th>mg/kg<br/>mg/kg</th> <th>nc</th> <th></th> <th></th> <th></th> <th></th> <th>&lt;0.50<br/>&lt;0.50</th> <th>&lt;0.50<br/>&lt;0.50</th> <th></th> <th></th> <th></th> <th>&lt;0.50<br/>&lt;0.50</th> <th></th> <th></th> <th>&lt;0.50<br/>&lt;0.50</th> <th>&lt;0.50<br/>&lt;0.50</th> <th></th> <th></th> <th></th> <th></th> <th>&lt;0.50<br/>&lt;0.50</th> <th></th> <th></th> <th></th> <th></th> <th>&lt;0.50<br/>&lt;0.50</th> <th></th> <th></th> <th></th> <th>&lt;0.50<br/>&lt;0.50</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hexachlorobutadiene                                                          | mg/kg<br>mg/kg          | nc               |             |             |             |            | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             | <0.50<br><0.50          |             |             | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             |            | <0.50<br><0.50      |             |             |             |             | <0.50<br><0.50 |            |                    |              | <0.50<br><0.50 |                       |
| Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indication programme         Indicatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Indeno[1,2,3-cd]pyrene                                                       | mg/kg                   | 60               |             |             |             |            | < 0.50         | < 0.50         |             |             |             | <0.50<br><0.50          |             |             | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             |            | 0.58                |             |             |             |             | <0.50<br><0.50 |            |                    |              | < 0.50         |                       |
| Network       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N-Nitrosodi-n-propylamine<br>N-Nitrosodimethylamine                          | mg/kg<br>mg/kg          | nc<br>nc         |             |             |             |            | <0.50          | < 0.50         |             |             |             | <0.50                   |             |             | <0.50          | <0.50          |             |             |             |            | <0.50               |             |             |             |             | <0.50          |            |                    |              | <0.50          |                       |
| Interfant         Ind         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nitrobenzene                                                                 | mg/kg<br>mg/kg          | nc<br>1220       |             |             |             |            | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             | < 0.50                  |             |             | <0.50          | <0.50          |             |             |             |            | < 0.50              |             |             |             |             | <0.50<br><0.50 |            |                    |              | <0.50<br><0.50 |                       |
| 12.4.1.6.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pyrene                                                                       | mg/kg                   | 3200<br>54200    |             |             |             |            | <0.50<br>1.1   | <0.50<br>1.7   |             |             |             | <0.50<br><0.50          |             |             | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             |            | <0.50<br>3.1        |             |             |             |             | <0.50          |            |                    |              | <0.50          |                       |
| 1.4 belichtorberzeie       mglg       4460       4.60       4.60       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50 <th< th=""><th>1,2-Dichlorobenzene</th><th>mg/kg<br/>mg/kg</th><th>2140<br/>228</th><th></th><th></th><th></th><th></th><th>&lt; 0.50</th><th>&lt; 0.50</th><th></th><th></th><th></th><th>&lt;0.50<br/>&lt;0.50</th><th></th><th></th><th>&lt;0.50<br/>&lt;0.50</th><th>&lt;0.50<br/>&lt;0.50</th><th></th><th></th><th></th><th></th><th>&lt;0.50<br/>&lt;0.50</th><th></th><th></th><th></th><th></th><th>&lt;0.50<br/>&lt;0.50</th><th></th><th></th><th></th><th>&lt;0.50<br/>&lt;0.50</th><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2-Dichlorobenzene                                                          | mg/kg<br>mg/kg          | 2140<br>228      |             |             |             |            | < 0.50         | < 0.50         |             |             |             | <0.50<br><0.50          |             |             | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             |            | <0.50<br><0.50      |             |             |             |             | <0.50<br><0.50 |            |                    |              | <0.50<br><0.50 |                       |
| And built         And         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,4-Dichlorobenzene<br>2-Chloronaphthalene                                   | mg/kg<br>mg/kg          | 4460<br>nc       |             |             |             |            | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             | <0.50<br><0.50          |             |             | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             |            | <0.50<br><0.50      |             |             |             |             | <0.50<br><0.50 |            |                    |              | <0.50<br><0.50 |                       |
| ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg       ngkg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-Methyl-4,6-dinitrophenol<br>2-Methylnaphthalene                            | mg/kg<br>mg/kg          | nc               |             |             |             |            | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             | <0.50<br><0.50          |             |             | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             |            | <0.50<br><0.50      |             |             |             |             | <0.50<br><0.50 |            |                    |              | <0.50<br>1.6   |                       |
| 24-Dintroluene       mg/kg       nc       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-Methylphenol<br>2-Nitroaniline                                             | mg/kg<br>mg/kg          | nc<br>nc         |             |             |             |            | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             | <0.50<br><0.50          |             |             | <0.50          | < 0.50         |             |             |             |            | <0.50<br><0.50      |             |             |             |             | <0.50<br><0.50 |            |                    |              | <0.50<br><0.50 |                       |
| 24-Dintroluene       mg/kg       nc       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50       -0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,4-Dichlorophenol<br>2,4-Dimethylphenol                                     | mg/kg<br>mg/kg          | 3470<br>nc       |             |             |             |            | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             | <0.50<br><0.50          |             |             | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             |            | <0.50<br><0.50      |             |             |             |             | <0.50<br><0.50 |            |                    |              | <0.50<br><0.50 |                       |
| 2.6-Dhirrobluene         mg/kg         nc         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50         -0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,4-Dinitrotoluene<br>2,4,5-Trichlorophenol                                  | mg/kg                   | nc               |             |             |             |            | <0.50          | < 0.50         |             |             |             | < 0.50                  |             |             | < 0.50         | <0.50          |             |             |             |            | <0.50               |             |             |             |             | <0.50          |            |                    |              | <0.50          |                       |
| $\frac{1}{4 - Char c^2} = 0 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} +$ | 2,6-Dinitrotoluene<br>3-Nitroaniline                                         | mg/kg<br>mg/kg          | nc               |             |             |             |            | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             | <0.50<br><0.50          |             |             | <0.50<br><0.50 | <0.50<br><0.50 |             |             |             |            | <0.50<br><0.50      |             |             |             |             | <0.50<br><0.50 |            |                    |              | <0.50<br><0.50 |                       |
| 4-Chioraniline mg/kg nc 0 0 0.50 0.50 0.50 0.50 0 0.50 0 0.50 0 0 0.50 0 0 0.50 0 0 0.50 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-Chloro-3-methylphenol<br>4-Chloroaniline                                   |                         | nc               |             |             | 1           |            | < 0.50         | < 0.50         |             |             |             | <0.50<br><0.50<br><0.50 |             |             | < 0.50         | < 0.50         |             |             |             |            |                     |             |             |             |             |                |            |                    |              |                |                       |

| Ground Investigation                |                     |                       |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        |                       |
|-------------------------------------|---------------------|-----------------------|-------------------|-------------------|----------------|-------------------|-------------------|-------------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|-------------------|-------------------|-------------------|----------------|-------------------|-------------------|-------------------|-------------------|----------------|-------------------|--------------|----------------------|--------------------------|-------------|------------------------|-----------------------|
|                                     |                     |                       | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/ 2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/ 2011 | PBA 2010/<br>2011 | PBA 2010/ 2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/ 2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/ 2011 | PBA 2010/<br>2011 |              | PBA<br>2010/<br>2011 | PBA<br>2010/<br>2011 PBA |             | PBA<br>2010/ I<br>2011 | PBA 2010/<br>2011     |
| Report Number                       |                     |                       | 122209            | 122209            | 122211         | 122210            | 122209            | 122209            | 122211         | 122209            | 122210            | 122209            | 122210            | 122209            | 122209            | 122209            | 133344         | 133344            | 133343            | 133344            | 133344         | 133343            | 133344            | 133343            | 133344            | 133344         | 133344            | 133344       | 133344               | 133344                   | 33344 1     | 133344                 | 121783                |
| Lab Ref                             |                     |                       | AF68291           | AF68292           | AF68430        | AF68355           | AF68293           | AF68294           | AF68431        | AF68295           | AF68356           | AF68296           | AF68357           | AF68297           | AF68298           | AF68299           | AF61285        | AF61286           | AF61269           | AF61287           | AF61288        | AF61270           | AF61289           | AF61271           | AF61290           | AF61291        | AF61292           | AF61293 A    | AF61296              | AF61298 A                | F61299 AF   | F61301                 | AF57621               |
| Date                                |                     |                       | 25/01/2011        | 25/01/2011        | 07/02/2011     | 25/01/2011        | 25/01/2011        | 25/01/2011        | 07/02/2011     | 25/01/2011        | 25/01/2011        | 25/01/2011        | 25/01/2011        | 25/01/2011        | 25/01/2011        | 25/01/2011        | 04/01/2011     | 04/01/2011        | 04/01/2011        | 04/01/2011        | 04/01/2011     | 04/01/2011        | 04/01/2011        | 04/01/2011        | 04/01/2011        | 04/01/2011     | 04/01/2011        | 04/01/201104 | 4/01/20110           | 4/01/2011 04             | 01/2011 04/ | /01/2011               | 10/12/2010            |
| Exploatory hole location            |                     |                       | BH2016            | BH2016            | BH2016         | BH2016            | BH2016            | BH2016            | BH2016         | BH2016            | BH2016            | BH2016            | BH2016            | BH2016            | BH2016            | BH2016            | BH2001         | BH2001            | BH2001            | BH2001            | BH2001         | BH2001            | BH2001            | BH2001            | BH2001            | BH2001         | BH2001            | BH2001 B     | BH2001               | BH2001 I                 | H2001 B     | 3H2001                 | BH2003                |
| Zone B Location                     |                     |                       | B3                | B3                | B3             | B3                | B3                | B3                | B3             | B3                | B3                | B3                | B3                | B3                | B3                | B3                | B3             | B3                | B3                | B3                | B3             | B3                | B3                | B3                | B3                | B3             | B3                | B3           | B3                   | B3                       | B3          | B3                     | B3                    |
| Location on plot/ gas holder number |                     |                       | Inside GH9        | Inside GH9        | Inside GH9     | Inside GH9        | Inside GH9        | Inside GH9        | Inside GH9     | Inside GH9        | Inside GH9        | Inside GH9        | Inside GH9        | Inside GH9        | Inside GH9        | Inside GH9        | Inside GH12    | Inside GH12       | Inside GH12       | Inside GH12       | Inside GH12    | Inside GH12       | Inside GH12       | Inside GH12       | Inside GH12       | Inside GH12    | Inside GH12       |              |                      | Inside<br>GH12 Ins       |             | Inside<br>GH12 g       | Outside<br>gasholders |
| Depth (m)                           |                     |                       | 4m                | 6m                | 6m             | 6m                | 7m                | 8m                | 8m             | 9m                | 9m                | 10m               | 11m               | 12m               | 13m               | 15m               | 0.3m           | 1m                | 2m                | 3m                | 3m             | 4m                | 5m                | 6m                | 7m                | 8m             | 9m                | 10m          | 12m                  | 14m                      | 14m         | 16m                    | 0.3m                  |
| Strata                              |                     |                       | Made Ground       | Made Ground       | Made Ground    | Made<br>Ground    | Made Ground       | Made Ground       | Made Ground    | Made Ground       | Made Ground       | Made Ground       | Made Ground       | Made Ground       | Made Ground       | Clav              | Made Ground    | Made Ground       | Made Ground       | Made<br>Ground    | Made Ground    | Made Ground       | Made Ground       | Made Ground       | Made Ground       | Made Ground    | Made<br>Ground    |              | Made<br>Ground       | Made<br>Ground Ma        |             | London                 | Made<br>Ground        |
| -Chlorophenylphenylether            | mg/kg               | nc                    | Widde Crodina     | Made cround       | Made cround    | Citouria          | <0.50             | <0.50             | Migde Cround   | Made Ground       | Made cround       | <0.50             | Made cround       | Migde Ground      | <0.50             | <0.50             | Made cround    | Made Ground       | Made cround       | Ground            | <0.50          | Made Ground       | Made cround       | Made Ground       | Made cround       | <0.50          | Ground            | Cirodila     | Circuita             |                          | <0.50       | Oldy                   | Ground                |
| -Methylphenol                       | mg/kg               | nc                    |                   |                   |                |                   | <0.50             | <0.50             |                |                   |                   | <0.50             |                   |                   | <0.50             | <0.50             |                |                   |                   |                   | <0.50          |                   |                   |                   |                   | <0.50          |                   |              |                      |                          | <0.50       |                        |                       |
|                                     | mg/kg               | nc                    |                   |                   |                | <b>↓</b>          |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   | <0.50          |                   |                   |                   |                   | <0.50          |                   |              |                      |                          | <0.50       |                        |                       |
|                                     | mg/kg<br>mg/kg      | nc                    |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   | Not detected   |                   |                   |                   |                   | Not detected   |                   |              |                      | No                       | detected    |                        |                       |
|                                     | mg/kg               | nc                    |                   |                   |                | 1 1               |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   | Not detected   |                   |                   |                   |                   | Not detected   |                   |              |                      | 140                      | detected    |                        |                       |
| piphenvl                            | mg/kg               | nc                    |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        |                       |
|                                     | mg/kg               | nc                    |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        |                       |
|                                     | mg/kg<br>mg/kg      | nc                    |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        |                       |
|                                     | mg/kg               | nc                    |                   |                   |                | 1 1               |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   | 1                 |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        |                       |
| Cinnamaldehde                       | mg/kg               | nc                    |                   |                   |                | 1 1               |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                | 1                 |                   |                   |                   |                |                   |              |                      |                          |             |                        |                       |
|                                     | mg/kg               | nc                    |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        |                       |
|                                     | mg/kg<br>mg/kg      | nc                    |                   |                   |                | + +               | <1                | <1                |                |                   |                   | <1                |                   |                   | <1                | <1                |                |                   |                   |                   | <1.0           |                   |                   |                   |                   | <1.0           |                   |              |                      |                          | <1.0        |                        |                       |
|                                     | mg/kg               | nc                    |                   |                   |                | 1 1               |                   | ~'                |                |                   |                   |                   |                   |                   |                   | ~                 |                |                   | 1                 |                   | \$1.0          |                   |                   |                   |                   | <1.0           |                   |              |                      |                          | \$1.0       |                        | < 0.2                 |
| -Chloro-3-methylphenol              | mg/kg               | nc                    |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        | < 0.2                 |
| 2-Chlorophenol                      | mg/kg               | nc                    |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        | < 0.2                 |
|                                     | mg/kg<br>mg/kg      | nc                    |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        | < 0.2<br>< 0.2        |
|                                     | mg/kg               | nc                    | -                 |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        | < 0.2                 |
| ,4-Dinitrophenol                    | mg/kg               | nc                    |                   |                   |                | 1 1               |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        | < 0.2                 |
|                                     | mg/kg               | nc                    |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        | < 0.2                 |
|                                     | mg/kg<br>mg/kg      | nc                    |                   |                   |                | + +               |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        | < 0.2                 |
|                                     | mg/kg               | nc                    |                   |                   |                | 1 1               |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        | < 0.2                 |
| 2-Nitrophenol                       | mg/kg               | nc                    |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        | < 0.2                 |
|                                     | mg/kg               | nc                    |                   |                   |                | <u> </u>          |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        | < 0.2                 |
|                                     | mg/kg<br>mg/kg      | nc<br>3200            |                   |                   |                | + +               |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        | < 0.2                 |
|                                     | mg/kg               | nc                    |                   | 1                 | 1              | 1 1               |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   | 1                 |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             | -                      | < 0.2                 |
| 3,4,6-Tetrachlorophenol             | mg/kg               | 3900                  |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        | < 0.2                 |
| 3,5,6-Tetrachlorophenol             | mg/kg               | nc                    |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      | _                        |             |                        | < 0.2                 |
|                                     | mg/kg<br>mg/kg      | nc                    |                   |                   |                | + +               |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        | < 0.2                 |
| 2,3,6-Trichlorophenol               | mg/kg               | nc                    |                   | 1                 | 1              | 1 1               |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   | 1                 |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             | -                      | < 0.2<br>< 0.2        |
| 2,4,5-Trichlorophenol               | mg/kg               | nc                    |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        | < 0.2                 |
| 4,6-Trichlorophenol                 | mg/kg               | nc                    |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        | < 0.2                 |
| 3,4,5-Trichlorophenol               | mg/kg               | nc                    |                   |                   |                | + +               |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   |                   |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        | < 0.2                 |
| b                                   | Indicates where the | he data exceeds the s | 4                 |                   |                | 1 1               |                   |                   |                |                   |                   |                   |                   |                   |                   |                   |                |                   | -                 |                   |                |                   |                   |                   |                   |                |                   |              |                      |                          |             |                        |                       |

|                                                                                              |                         |                          |                       |                         |                         | -                 | -                           |                       |                      |                        |                   |                         |                   |                   |                         |                    |                         |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             | -                           |                             |                               |                       |                        |                               |                             |
|----------------------------------------------------------------------------------------------|-------------------------|--------------------------|-----------------------|-------------------------|-------------------------|-------------------|-----------------------------|-----------------------|----------------------|------------------------|-------------------|-------------------------|-------------------|-------------------|-------------------------|--------------------|-------------------------|-------------------|------------------------|-------------------|----------------------|-----------------------|-------------------------|-------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------------|-----------------------|------------------------|-------------------------------|-----------------------------|
| Ground Investigation                                                                         |                         |                          | PBA 2010/<br>2011     | PBA 2010/ 2011          | PBA 2010/<br>1 2011     | PBA 2010/<br>2011 | PBA 2010/<br>2011           | PBA 2010/<br>2011     | PBA 2010/<br>2011    | PBA 2010/<br>2011      | PBA 2010/<br>2011 | PBA 2010/<br>2011       | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011       | PBA 2010/<br>2011  | PBA 2010/ 2011          | PBA 2010/<br>2011 | PBA 2010/<br>2011      | PBA 2010/<br>2011 | PBA 2010/<br>2011    | PBA 2010/<br>2011     | PBA 2010/<br>2011       | PBA 2010/<br>2011             | PBA 2010/<br>2011           | PBA 2010/ 2011              | PBA 2010/<br>2011           | PBA 2010/ 2011              | PBA 2010/ 2011              | PBA 2010/<br>2011             | PBA 2010/<br>2011     | PBA 2010/<br>2011      | PBA 2010/<br>2011             | PBA 2010/<br>2011           |
| Report Number                                                                                |                         |                          | 121783                | 121783                  | 122209                  | 122211            | 122209                      | 122209                | 122210               | 122209                 | 122211            | 122209                  | 133344            | 133344            | 133344                  | 133344             | 133344                  | 133344            | 122209                 | 122211            | 122209               | 122209                | 122209                  | 122209                        | 122211                      | 122209                      | 122210                      | 122209                      | 122209                      | 133344                        | 133344                | 122209                 | 122210                        | 122211                      |
| Lab Ref                                                                                      |                         |                          | AF57623               | AF57624                 | AF68302                 | AF68433           | AF68305                     | AF68306               | AF68358              | AF68307                | AF68734           | AF68308                 | AF61330           | AF61331           | AF61332                 | AF61333            | AF61334                 | AF61335           | AF68303                | AF68432           | AF68304              | AF68300               | AF68301                 | AF68279                       | AF68426                     | AF68280                     | AF68350                     | AF68281                     | AF68282                     | AF61303                       | AF61304               | AF68309                | AF68359                       | AF68435                     |
| Exploatory hole location                                                                     |                         |                          | TP2002                |                         |                         |                   |                             |                       |                      |                        |                   |                         |                   |                   | TP2025                  |                    |                         | TP2025            |                        |                   |                      |                       |                         |                               |                             |                             | BH2002                      |                             | BH2002                      | TP2006<br>Immediately         | TP2006<br>Immediately |                        |                               |                             |
| Zone B Location                                                                              |                         |                          | B3                    | B3                      | B3                      | B3                | B3                          | B3                    | B3                   | B3                     | B3                | B3                      | B3                | B3                | B3                      | B3                 | B3                      | B3                | B3                     | B3                | B3                   | B3                    | B3                      | B3                            | B3                          | B3                          | B3                          | B3                          | B3                          | north of B3                   | north of B3           | B5                     | B5                            | B5                          |
| Location on plot/ gas holder number                                                          |                         |                          | Outside<br>gasholders | Outside<br>gasholders   | Outside<br>gasholders   | -                 | gasholders                  | Outside<br>gasholders | -                    | -                      | -                 | gaariolocia             |                   |                   | GH9 (edge)<br>2m        |                    | GH9 (edge)              | GH9 (edge)        |                        |                   |                      | Outside<br>gasholders | Outside<br>gasholders   | Outside<br>gasholders<br>0.3m | Outside<br>gasholders<br>1m | Outside<br>gasholders<br>2m | Outside<br>gasholders<br>3m | Outside<br>gasholders<br>4m | Outside<br>gasholders<br>6m | Outside<br>gasholders<br>0.3m | Outside<br>gasholders | gasholders             | Outside<br>gasholders<br>1.2m | Outside<br>gasholders<br>2m |
| Strata                                                                                       |                         | Screening Criter         | Made Ground           | Possible MG/            |                         | Made<br>Ground    | Made                        | Made<br>Ground        | Made<br>Ground       | 411<br>Made<br>Ground  | Made Ground       | Made                    |                   |                   | Made Ground             |                    | Made Ground             |                   | Made                   | Made<br>Ground    | Made                 | Made Ground           |                         |                               |                             | Made Ground                 |                             |                             |                             | Made Ground                   |                       | Made                   | Made                          | Aade Ground                 |
| Determinants<br>Metals                                                                       | Units                   | Commercial               |                       |                         |                         |                   |                             |                       |                      |                        |                   |                         |                   |                   |                         |                    |                         |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       |                        |                               |                             |
| Arsenic<br>Cadmium<br>Chromium<br>Copper<br>Lead                                             | mg/kg<br>mg/kg          | 640<br>230.0<br>30400    | 15<br>0.18<br>38      |                         | 15<br><0.10<br>32       |                   | 15<br>0.18                  | 22<br><0.10<br><5.0   |                      | 14<br><0.10<br>12      |                   | 14<br><0.10<br><5.0     |                   | 9.5<br>0.19<br>12 |                         | 8.4<br><0.10<br>11 |                         | 9.1<br>0.18       | 9.1<br><0.10<br>7.2    |                   | 12<br><0.10<br>19    | 16<br>0.11<br>16      | 16<br><0.10<br>25       | 16<br><0.1<br>17              |                             | 18<br>0.16<br>34            |                             | 17<br><0.10<br>18           | 11<br>0.19<br>19            | 11<br><0.10<br>14             | 13<br>0.13<br>21      | 30<br>0.16<br><5.0     |                               |                             |
| Copper<br>Lead                                                                               | mg/kg<br>mg/kg<br>mg/kg | 71700<br>7300            | 46                    |                         | 30                      |                   | 69                          | <5.0<br>150<br>760    |                      | 54 270                 |                   | <5.0<br>74<br>330       |                   | 39                |                         | 23 210             |                         | 23<br>160         | 16                     |                   | 25<br>83             | 27                    | 23<br>28<br>25          | 27<br>84                      |                             | 34<br>33<br>48              |                             | 22                          | 25<br>18                    | 33<br>180                     | 20                    | <0.0<br>400<br>1000    |                               |                             |
| Mercury<br>Nickel<br>Molybdenum<br>Selenium<br>Zinc                                          | mg/kg<br>mg/kg          | 3600<br>1800             | 0.41 39               |                         | <0.10<br>49             |                   | 3.4<br>26                   | 3.5<br>17             |                      | 1.9<br>20              |                   | 5.2<br>15               |                   | 0.51<br>23        |                         | 0.41<br>18         |                         | 0.52<br>17        | 0.1<br>24              |                   | 0.4<br>31            | 0.31<br>25            | <0.10<br>47             | 0.32<br>17                    |                             | <0.10<br>51                 |                             | <0.10<br>34                 | <0.10<br>37                 | 0.51<br>16                    | <0.10<br>42           | 4.7<br>25              |                               |                             |
| Molybdenum<br>Selenium                                                                       | mg/kg<br>mg/kg          |                          | < 0.20                |                         | 0.21                    |                   |                             | <0.20<br>120          |                      | <0.20<br>69            |                   | <0.20<br>73             |                   | 0.27<br>140       |                         | <0.20<br>74        |                         | <0.20<br>85       | <0.20                  |                   | <0.20<br>67          | <0.20<br>80           | <0.20                   | <0.20<br>44                   |                             | <0.20<br>79                 |                             | <0.20                       | <0.20<br>67                 | 0.31<br>54                    | 0.37                  | <0.20<br>190           |                               |                             |
| Miscellaneous<br>Total Cyanide                                                               | mg/kg<br>mg/kg          | nc                       | 1.2                   |                         | 01                      |                   | 100                         | 120                   |                      | 00                     |                   | 75                      |                   | 0.5               |                         | <0.50              |                         | <0.50             | -1/                    |                   | 07                   | 00                    | 13                      |                               |                             | 13                          |                             | 00                          | 07                          | 1.2                           | 0.7                   | 130                    |                               |                             |
| Free Cyanide<br>Thiocyanate                                                                  | mg/kg<br>mg/kg          | 78.00<br>nc              | < 0.5<br>< 5.0        |                         |                         |                   |                             |                       |                      |                        |                   |                         |                   | <0.50<br><5.0     |                         | <0.50<br><5.0      |                         | <0.50<br><5.0     |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             | <0.50<br><5.0                 | <0.50<br><5.0         |                        |                               |                             |
| Boron<br>Total organic carbon<br>pH                                                          | mg/kg<br>%<br>pH Units  | nc                       | 8.4                   |                         | 8                       |                   | 8.1                         | 8.3                   | 5.6<br>8.8           | 8                      |                   | 8.2                     |                   | 8.6               |                         | 8.5                |                         | 8.9               | 7.8                    |                   | 8.2                  | 8.2                   | 8.1                     | 11.4                          |                             | 8.3                         | 6.8<br>7.9                  | 8.1                         | 8.2                         | 7.8                           | 8                     | 8.1                    | 0.85                          |                             |
| Asbestos identfication                                                                       |                         | nc                       |                       |                         |                         | Not detected      | d                           |                       |                      |                        | Not detected      |                         | Not detected      |                   |                         |                    |                         |                   |                        | Chrysotile        |                      |                       |                         |                               | Not detected                |                             |                             |                             |                             |                               |                       |                        | 1                             | Not detected                |
| Asbestos Concentration<br>Phenol<br>Sulphur (free)                                           | %<br>mg/kg              | 3200                     | <0.2                  |                         | <0.3                    |                   | <0.3                        | <0.3                  |                      | <0.3                   |                   | <0.3                    |                   | <0.3              |                         | <0.3               |                         | <0.3              | <0.3                   | 0.005             | <0.3                 | <0.3                  | <0.3                    | <0.3                          |                             | <0.3                        |                             | <0.3                        | <0.3                        | <0.3                          | <0.3                  | <0.3                   |                               |                             |
| Sulphur (free)<br>Sulphide<br>Total Sulphate                                                 | mg/kg<br>% as SO4       | nc<br>nc<br>nc           |                       |                         |                         |                   |                             |                       |                      |                        |                   |                         |                   |                   |                         |                    |                         |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       |                        |                               |                             |
| Sulphur (elemental)<br>Phenol (monohydric) SOM 1%                                            | mg/kg<br>mg/kg          | nc                       |                       |                         |                         |                   |                             |                       |                      |                        |                   |                         |                   |                   |                         |                    |                         |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       |                        |                               |                             |
| Total sulphate<br>Sulphate (2:1 water soluble) as SO4                                        | mg/kg<br>g/l<br>%       | nc<br>nc<br>nc           | 0.15                  |                         | 0.27                    |                   |                             | 1.1                   |                      | 1.2                    |                   | 0.43                    |                   | 0.19              |                         | 0.28               |                         |                   | 0.29                   |                   | 0.35                 |                       | 0.13                    | 1.2<br>2.8                    |                             | 0.53                        |                             | 1.7                         | 1.5                         | 0.29                          | 0.08                  | 1.3<br>3.8             |                               |                             |
| Organic matter<br>Moisture<br>Acid Neutralisation Capacity                                   | %<br>mol/kg             | nc                       | 25.6                  | 19.9                    | 21.9                    |                   | 29                          | 10<br>19.2            | 17.9<br>0.091        | 39.4                   |                   | 24.4                    |                   | 18                | 23.5                    | 23.7               | 20.9                    | 13.5              | 15.4                   |                   | 26.7                 | 21.4                  | 0.55                    | 11.7                          |                             | 22.9                        | 17.8<br>0.028               | 0.97<br>28.4                | 0.67<br>23.5                | 21.1                          | 18.5                  | 14                     | 24.2<br>0.033                 |                             |
| Loss on ignition<br>Stones content > 50mm                                                    | %                       | nc                       |                       |                         |                         |                   |                             |                       | 5.94<br><0.02        |                        |                   |                         |                   | <0.02             | <0.02                   | <0.02              | <0.02                   | <0.02             |                        |                   |                      |                       |                         |                               |                             |                             | 12.9<br><0.02               |                             |                             | <0.02                         | <0.02                 |                        | 4.31<br><0.02                 |                             |
| BTEX<br>Benzene<br>Toluene                                                                   | µg/kg<br>µg/kg          | 28000.00                 | <1                    | 15<br>1.5               |                         |                   |                             |                       | <1                   |                        |                   |                         |                   | 3.4<br>< 1        |                         | <1<br><1           |                         | <1                |                        |                   |                      |                       |                         |                               |                             |                             | <1<br><1                    |                             |                             | <1                            | <1<br><1              |                        | <1                            |                             |
| Ethylbenzene<br>m- & p-Xylene                                                                | μg/kg<br>μg/kg<br>μg/kg | 581000                   | <1                    | 6.7                     |                         |                   |                             |                       | <1                   |                        |                   |                         |                   | <1                |                         | <1                 |                         | <1                |                        |                   |                      |                       |                         |                               |                             |                             | <1                          |                             |                             | <1                            | <1                    |                        | <1                            |                             |
| o-Xylene<br>Total BTEX                                                                       | μg/kg<br>μg/kg          | 480000<br>nc             | <1                    | 8                       |                         |                   |                             |                       | < 1<br><0.005        |                        |                   |                         |                   | <1                |                         | <1                 |                         | < 1               |                        |                   |                      |                       |                         |                               |                             |                             | < 1<br><0.005               |                             |                             | <1                            | < 1                   |                        | < 1<br><0.005                 |                             |
| Methyl tert-butyl ether<br>Hydrocarbons<br>Aliphatic C5-C6                                   | μg/kg<br>mg/kg          | nc<br>3380               |                       | < 1.0                   |                         |                   |                             |                       |                      |                        |                   |                         |                   |                   | < 0.1                   |                    | < 0.1                   |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       |                        |                               |                             |
| Aliphatic >C6-C8<br>Aliphatic >C8-C10                                                        | mg/kg<br>mg/kg          | 8250<br>2130             |                       | < 0.1                   |                         |                   |                             |                       |                      |                        |                   |                         |                   |                   | < 0.1                   |                    | < 0.1                   |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       |                        |                               |                             |
| Aliphatic >C10-C12<br>Aliphatic >C12-C16<br>Aliphatic >C16-C21                               | mg/kg<br>mg/kg          | 10300<br>60800<br>673000 |                       | < 0.1<br>< 0.1<br>< 0.1 |                         |                   |                             |                       |                      |                        |                   |                         |                   |                   | < 0.1<br>< 0.1<br>< 0.1 |                    | < 0.1<br>< 0.1<br>< 0.1 |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       |                        |                               |                             |
| Aliphatic >C16-C21<br>Aliphatic >C21-C35<br>Aliphatic >C35-C44                               | mg/kg<br>mg/kg<br>mg/kg |                          |                       | < 0.1                   |                         |                   |                             |                       |                      |                        |                   |                         |                   |                   | < 0.1<br>< 0.1<br>< 0.1 |                    | < 0.1<br>< 0.1          |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       |                        |                               |                             |
| Aromatic >C5-C7<br>Aromatic >C7-C8                                                           | mg/kg<br>mg/kg          | 27700<br>59000           |                       | < 0.1<br>< 0.1          |                         |                   |                             |                       |                      |                        |                   |                         |                   |                   | < 0.1<br>< 0.1          |                    | < 0.1<br>< 0.1          |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       |                        |                               |                             |
| Aromatic >C8-C10<br>Aromatic >C10-C12<br>Aromatic >C12-C16                                   | mg/kg<br>mg/kg<br>mg/kg |                          |                       | < 0.1<br>< 0.1<br>1.4   |                         |                   |                             |                       |                      |                        |                   |                         |                   |                   | < 0.1<br>< 0.1<br>< 0.1 |                    | < 0.1<br>< 0.1<br>< 0.1 |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       |                        |                               |                             |
| Aromatic >C16-C21                                                                            | mg/kg<br>mg/kg          |                          |                       | 4.4                     | -                       | -                 | -                           |                       |                      |                        |                   |                         |                   |                   | < 0.1                   |                    | < 0.1                   |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       |                        |                               |                             |
| Aromatic >C21-C35<br>Aromatic >C35-C44<br>Aliphatic C5-C35                                   | mg/kg<br>mg/kg          | nc                       |                       | < 0.1                   |                         |                   |                             |                       |                      |                        |                   |                         |                   |                   | < 0.1                   |                    | < 0.1                   |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       |                        |                               |                             |
| Aromatic C5-C35<br>Total hydrocarbons (alihpatics and aromatics)<br>TPH Total WAC            | mg/kg<br>mg/kg<br>mg/kg |                          | < 10                  | 16                      | < 10                    |                   | 31                          | 71                    | 44                   | 41                     |                   | 29                      |                   | 15                | < 2                     | 220                | <2                      | < 10              | < 10                   |                   | < 10                 | < 10                  | < 10                    | 40                            |                             | < 10                        | < 10                        | < 10                        | < 10                        | < 10                          | < 10                  | < 10                   | < 10                          |                             |
| TEM<br>Diesel range organics (DRO)<br>Gasoline Range Organics by GC (GRO)                    | ma/ka                   | nc                       |                       |                         |                         |                   |                             |                       |                      |                        |                   |                         |                   |                   |                         |                    |                         |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       |                        |                               |                             |
| TPH (SUM DRO + GRO)                                                                          | mg/kg                   | 2130                     |                       |                         |                         |                   |                             |                       |                      |                        |                   |                         |                   |                   |                         |                    |                         |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       |                        |                               |                             |
| TPH (Mineral Oil/ Hydrocarbon oil)<br>TPH (Aromatic hydrocarbons)<br>TPH (Solvent Extracted) | mg/kg<br>mg/kg<br>mg/kg | 2130<br>2130             |                       |                         |                         |                   |                             |                       |                      |                        |                   |                         |                   |                   |                         |                    |                         |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       |                        |                               |                             |
| EPH DRO (C10 - C40)                                                                          | mg/kg<br>mg/kg          | 2130<br>2130             |                       |                         |                         |                   | 0.75                        | 0.45                  |                      | <u>.</u>               |                   | 0.46                    |                   |                   |                         |                    |                         |                   | 0.01                   |                   |                      |                       |                         |                               |                             |                             | 100                         |                             |                             |                               |                       |                        |                               |                             |
| Acenaphthene<br>Acenaphthylene<br>Anthracene                                                 | mg/kg<br>mg/kg<br>mg/kg |                          | 0.14<br>< 0.1<br>0.1  |                         | < 0.1<br>< 0.1<br>< 0.1 | 1                 | 0.45<br>0.47<br>0.94<br>2.8 | 0.48<br>0.45<br>0.94  | 0.2                  | < 0.1<br>< 0.1<br>0.4  |                   | 0.12<br>0.16<br>0.25    |                   |                   |                         |                    |                         |                   | 0.21<br>0.15<br>0.17   |                   | 0.43                 | 0.47                  | 0.19<br>0.21<br>0.11    | 0.3<br>< 0.1<br>0.6           |                             | 0.12<br>< 0.1<br>< 0.1      | 120<br>230<br>460           | 0.2<br>0.1<br>< 0.1         | < 0.1                       |                               |                       | 0.2<br>0.28<br>0.38    |                               |                             |
| Benzo(a)anthracene<br>Benzo(a)pyrene<br>Benzo(b)fluoranthene                                 | mg/kg<br>mg/kg          | 90.0<br>14.00            | 0.29 0.43             |                         | < 0.1<br>< 0.1          |                   | 2.5                         | 4.2                   | 3.8                  | 0.56                   |                   | 0.17 0.17               |                   |                   |                         |                    |                         |                   | 0.27 0.23              |                   | 0.26 0.31            | 0.63                  | < 0.1 < 0.1             | 0.95<br>0.87                  |                             | < 0.1<br>< 0.1              | 330<br>270                  | < 0.1 < 0.1                 | < 0.1<br>< 0.1              |                               |                       | 0.67<br>0.81           | 0.3                           |                             |
| Benzo(b)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(g,h,i)perylene                         | mg/kg<br>mg/kg          | 141.0                    | 0.41 0.26 0.24        |                         | < 0.1<br>< 0.1<br>< 0.1 |                   | < 0.1                       | < 0.1                 | 2.8                  | < 0.1                  |                   | < 0.1<br>< 0.1<br>< 0.1 |                   |                   |                         |                    |                         |                   | < 0.1<br>< 0.1<br>0.16 |                   | < 0.1                |                       | < 0.1<br>< 0.1<br>< 0.1 | < 0.1<br>< 0.1<br>0.11        |                             | < 0.1<br>< 0.1<br>< 0.1     | 250<br>190<br>140           | < 0.1<br>< 0.1<br>< 0.1     |                             |                               |                       | < 0.1<br>< 0.1<br>0.54 | 0.3                           |                             |
| Chrysene<br>Dibenzo(a,h)anthracene                                                           | mg/kg<br>mg/kg<br>mg/kg | 137.0                    | 0.24                  |                         | < 0.1                   |                   | 2.7                         | 3.2                   | 2.9                  | < 0.1<br>0.53<br>< 0.1 |                   | 0.18                    |                   |                   |                         |                    |                         |                   | 0.29                   |                   | 0.2                  | 0.65                  | < 0.1<br>< 0.1          | 1.2                           |                             | < 0.1<br>< 0.1              | 340<br>140                  | < 0.1<br>< 0.1              | < 0.1<br>< 0.1<br>< 0.1     |                               |                       | 0.79                   | 0.3                           |                             |
| Fluoranthene<br>Fluorene                                                                     | mg/kg<br>mg/kg          | 22600<br>63500           | 0.72                  |                         | < 0.1                   |                   | < 0.1                       | < 0.1<br>< 0.1        | 0.2                  | < 0.1                  |                   | < 0.1<br>< 0.1          |                   |                   |                         |                    |                         |                   | < 0.1<br>< 0.1         |                   | < 0.1                | < 0.1                 | < 0.1<br>< 0.1          |                               |                             | < 0.1<br>< 0.1              | 880<br>350                  | < 0.1<br>< 0.1              | < 0.1                       |                               |                       | < 0.1<br>< 0.1         | 0.1                           |                             |
| Indeno(1,2,3-c,d)pyrene<br>Naphthalene<br>Phenanthrene<br>Pyrene<br>Coronene                 | mg/kg<br>mg/kg<br>mg/kg | 60.0<br>204.0<br>21900   | 0.27<br>0.8<br>0.58   |                         | < 0.1<br>< 0.1<br>< 0.1 |                   | 1.3<br>5.7                  | 2.7                   | 0.5                  | < 0.1<br>< 0.1<br>0.94 |                   | < 0.1<br>< 0.1<br>0.53  |                   |                   |                         |                    |                         |                   | 0.11<br>< 0.1<br>0.92  |                   | 0.17<br>< 0.1<br>2.5 | < 0.1                 | < 0.1<br>< 0.1<br>0.61  | 0.24<br>0.9<br>2.4            |                             | < 0.1<br>< 0.1<br>0.25      | 11<br>4600<br>1400          | < 0.1<br>< 0.1<br>0.28      | < 0.1<br>< 0.1<br>< 0.1     |                               |                       | 0.48<br>< 0.1<br>1.1   | <0.1<br>0.7<br>0.4            |                             |
| Pyrene<br>Coronene                                                                           | mg/kg<br>mg/kg          | 54200                    | 0.74                  |                         | < 0.1                   |                   | 3.5                         | 2.7                   | 2.8<br><0.1          | 0.6                    |                   | 0.17                    |                   |                   |                         |                    |                         |                   | 0.52                   |                   |                      |                       | < 0.1                   | 1.8                           |                             | 0.11                        | 660<br>15                   | < 0.1                       | < 0.1                       |                               |                       | 0.74                   | 0.2                           |                             |
| PAH (Sum of 16 - excluding coronene)<br>PAH (Sum of 17 - including coronene)                 | mg/kg<br>mg/kg          | nc                       | 5.3                   |                         | <2                      |                   | 26                          | 27                    | 32                   | 3.5                    |                   | <2                      |                   | 38                |                         | 5.1                |                         | 11                | 3                      |                   | 6.5                  | 8.9                   | < 2                     | 9.5                           |                             | < 2                         | 10000                       | <2                          | < 2                         | 7.9                           | <2                    | 6                      | 3.8                           |                             |
| PCB 28 PCB 52                                                                                | mg/kg<br>mg/kg          |                          |                       |                         | 1                       | 1                 | 1                           |                       | <0.1<br><0.1         |                        |                   |                         |                   |                   |                         |                    |                         |                   |                        |                   |                      |                       |                         |                               |                             |                             | <0.1<br><0.1                |                             |                             |                               |                       |                        | <0.1<br><0.1                  |                             |
| PCB 101<br>PCB 118                                                                           | mg/kg<br>mg/kg          | nc<br>nc                 |                       |                         |                         |                   |                             |                       | <0.1<br><0.1         |                        |                   |                         |                   |                   |                         |                    |                         |                   |                        |                   |                      |                       |                         |                               |                             |                             | <0.1<br><0.1                |                             |                             |                               |                       |                        | <0.1<br><0.1                  |                             |
| PCB 138<br>PCB 153<br>PCB 180                                                                | mg/kg<br>mg/kg          | nc                       |                       |                         |                         |                   |                             |                       | <0.1<br><0.1<br><0.1 |                        |                   |                         |                   |                   |                         |                    |                         |                   |                        |                   |                      |                       |                         |                               |                             |                             | <0.1<br><0.1<br><0.1        |                             |                             |                               |                       |                        | <0.1<br><0.1<br><0.1          |                             |
| Total PCBs (7 congeners)<br>VOCs                                                             | mg/kg<br>mg/kg          | nc                       |                       |                         | 1                       | -                 |                             |                       | <0.1<br><1           |                        |                   |                         |                   |                   |                         |                    |                         |                   |                        |                   |                      |                       |                         |                               |                             |                             | <0.1<br><1                  |                             |                             |                               |                       |                        | <0.1<br><1                    |                             |
| Dichlorodifluoromethane<br>Chloromethane                                                     | µg/kg<br>µg/kg          | nc                       |                       | < 1.0<br>< 1.0          |                         |                   |                             |                       |                      |                        |                   |                         |                   |                   | <1.0<br><1.0            |                    | <1.0<br><1.0            |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       |                        |                               |                             |
| Vinyl chloride<br>Bromomethane                                                               | μg/kg<br>μg/kg          | nc                       |                       | < 1.0<br>< 20<br>< 2.0  |                         |                   |                             |                       |                      |                        |                   |                         |                   |                   | <1.0<br><20<br><2.0     |                    | <1.0<br><20<br><2.0     |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       | [                      |                               |                             |
| Chloroethane<br>Trichlorofluoromethane<br>1,1-Dichloroethene                                 | μg/kg<br>μg/kg<br>μg/kg | nc                       |                       | < 1.0                   |                         | -                 |                             |                       |                      |                        |                   |                         |                   |                   | <1.0<br><1.0            |                    | <1.0<br><1.0            |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       |                        |                               |                             |
| Dichloromethane<br>trans-1,2-Dichloroethene                                                  | μg/kg<br>μg/kg          | nc                       |                       | ne<br>< 1.0             |                         |                   |                             |                       |                      |                        |                   |                         |                   |                   | ne<br><1.0              |                    | ne<br><1.0              |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       |                        |                               |                             |
| 1,1-Dichloroethane                                                                           | µg/kg                   | nc                       |                       | < 1.1                   |                         |                   |                             |                       |                      |                        |                   |                         |                   |                   | <1.0                    |                    | <1.0                    |                   |                        |                   |                      |                       |                         |                               |                             |                             |                             |                             |                             |                               |                       |                        |                               |                             |

|                                                                                                                    |                         |                    | DBA 0010/             |                             | DDA 0010      | 0            | DDA 0010     | DDA 0010/         | DDA 2010/      | DDA 0010/    | DDA 0010/    | DDA 0010/    | DDA 0010/    | DDA 0010/         | PBA 2010/                   | DDA 0010/         |                         | DDA 0010/    | DDA 0010/         | DDA 0010/    | DDA 0010/  | DDA 0010/    | DDA 0010/             | DDA 0010/         | DDA 0010/         |                   | BBA 0010/         |                       |                       | DDA 0010/                            | PDA 0010/                            | DDA 0010/         | DDA 0010/    | DDA 0010/         |
|--------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|-----------------------|-----------------------------|---------------|--------------|--------------|-------------------|----------------|--------------|--------------|--------------|--------------|-------------------|-----------------------------|-------------------|-------------------------|--------------|-------------------|--------------|------------|--------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-----------------------|--------------------------------------|--------------------------------------|-------------------|--------------|-------------------|
| Ground Investigation                                                                                               |                         |                    | PBA 2010/<br>2011     | PBA 2010/ 20                | 11 2011       | 2011         | 2011         | 2011              | 2011           | 2011         | 2011         | 2011         | 2011         | 2011              | 2011                        | 2011              | PBA 2010/ 201           | 1 2011       | 2011              | 2011         | 2011       | 2011         | PBA 2010/<br>2011     | 2011              | 2011              | PBA 2010/ 2011    |                   | PBA 2010/ 2011        |                       | 2011                                 | PBA 2010/<br>2011                    | 2011              | 2011         | 2011              |
| Report Number                                                                                                      |                         |                    | 121783<br>AF57623     | 121783<br>AF57624           |               | 122211       |              | 122209<br>AF68306 |                |              | 122211       |              |              | 133344<br>AF61331 | +                           | 133344<br>AF61333 | 133344<br>AF61334       |              | 122209<br>AF68303 |              |            | 122209       | 122209<br>AF68301     | 122209<br>AF68279 | 122211<br>AF68426 | 122209<br>AF68280 | 122210<br>AF68350 | 122209<br>AF68281     | 122209<br>AF68282     | 133344<br>AF61303                    | 133344<br>AF61304                    | 122209<br>AF68309 | 122210       | 122211<br>AF68435 |
| Date                                                                                                               |                         |                    | 10/12/2010            | 10/12/2010                  | 25/01/201     | 11 07/02/201 | 1 25/01/201  | 1 25/01/2011      | 25/01/2011     | 25/01/2011   | 07/02/2011   | 25/01/2011   | 04/01/2011   | 04/01/2011        | 04/01/2011                  | 04/01/2011        | 04/01/2011              | 04/01/2011   | 25/01/2011        | 07/02/2011   | 25/01/2011 | 25/01/2011   | 25/01/2011            | 25/01/2011        | 07/02/2011        | 25/01/2011        | 25/01/2011        | 25/01/2011            | 25/01/2011            | 04/01/2011                           | 04/01/2011                           | 25/01/2011        | 25/01/2011   | 07/02/2011        |
| Exploatory hole location<br>Zone B Location                                                                        |                         |                    | TP2002<br>B3          | TP2002<br>B3                | TP2003<br>B3  |              | TP2005<br>B3 | TP2005<br>B3      | TP2005<br>B3   | TP2005<br>B3 | TP2007<br>B3 | TP2007<br>B3 | TP2025<br>B3 | TP2025<br>B3      | TP2025<br>B3                | TP2025<br>B3      | TP2025<br>B3            | TP2025<br>B3 | TP2004<br>B3      | TP2004<br>B3 |            | TP2003<br>B3 | TP2003<br>B3          | BH2002<br>B3      | BH2002<br>B3      | BH2002<br>B3      | BH2002<br>B3      | BH2002<br>B3          | BH2002<br>B3          | TP2006<br>Immediately<br>north of B3 | TP2006<br>Immediately<br>north of B3 | TP2008<br>B5      | TP2008<br>B5 | TP2008<br>B5      |
| Location on plot/ gas holder number                                                                                |                         |                    | Outside<br>gasholders | -                           |               |              |              |                   |                |              |              |              |              |                   |                             |                   | GH9 (edge)              |              |                   |              |            |              | Outside<br>gasholders |                   | -                 |                   |                   | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders                | Outside<br>gasholders                | gasholders        | gasholders   |                   |
| Depth (m)<br>Strata                                                                                                |                         |                    |                       | Possible MG<br>Reworked Cla | a/<br>ay Clay | Made         | Made         | Made              | Made<br>Ground | Made         |              | Made         |              |                   | d Made Ground               | Made Ground       | Made Ground             | Made Ground  | Made              | Made         | Made       |              |                       |                   |                   | 2m<br>Made Ground |                   |                       | 6m<br>London Clay     |                                      |                                      | Made              | Made         | Made Ground       |
| cis-1,2-Dichloroethene<br>Bromochloromethane<br>Trichloromethane                                                   | μg/kg<br>μg/kg<br>μg/kg | nc                 |                       | < 1.2<br>< 1.3<br>< 1.4     |               | _            |              |                   |                |              |              |              |              |                   | <1.0<br><1.0<br><1.0        |                   | <1.0<br><1.0<br><1.0    |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Trichloromethane<br>1,1,1-Trichloroethane<br>Tetrachloromethane                                                    | μg/kg<br>μg/kg          | 700000<br>3000     |                       | < 1.5<br>< 1.6              |               |              |              |                   |                |              |              |              |              |                   | <1.0<br><1.0                |                   | <1.0<br><1.0            |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| 1,1-Dichloropropene<br>Benzene<br>1,2-Dichloroethane                                                               | μg/kg<br>μg/kg<br>μg/kg | nc<br>28000<br>700 |                       | < 1.7<br>12<br>< 2.0        |               |              |              |                   |                |              |              |              |              |                   | <1.0<br><1.0<br><2.0        |                   | <1.0<br><1.0<br><2.0    |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Trichloroethene<br>1,2-Dichloropropane                                                                             | μg/kg<br>μg/kg          | 12000<br>nc        |                       | < 1.0<br>< 1.0              |               |              |              |                   |                |              |              |              |              |                   | <1.0<br><1.0                |                   | <1.0<br><1.0            |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Dibromomethane<br>Bromodichloromethane<br>cis-1,3-Dichloropropene                                                  | μg/kg<br>μg/kg<br>μg/kg | nc                 |                       | < 10<br>< 5.0<br>< 10       |               |              |              |                   |                |              |              |              |              |                   | <10<br><5.0<br><10          |                   | <10<br><5.0<br><10      |              |                   |              |            |              |                       |                   |                   |                   | -                 |                       |                       |                                      |                                      |                   |              |                   |
| Toluene<br>trans-1,3-Dichloropropene                                                                               | μg/kg<br>μg/kg          | 870000<br>nc       |                       | 1.2<br>< 10                 |               |              |              |                   |                |              |              |              |              |                   | <1.0<br><10                 |                   | <1.0<br><10             |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| 1,1,2-Trichloroethane<br>Tetrachloroethene<br>1,3-Dichloropropane                                                  | μg/kg<br>μg/kg          | 131000             |                       | < 10<br>< 1.0<br>< 2.0      |               |              |              |                   |                |              |              |              |              |                   | <10<br><1.0<br><2.0         |                   | <10<br><1.0<br><2.0     |              |                   |              |            |              |                       |                   |                   |                   | -                 |                       |                       |                                      |                                      |                   |              |                   |
| Dibromochloromethane<br>1,2-Dibromoethane                                                                          | μg/kg<br>μg/kg<br>μg/kg | nc                 |                       | < 10<br>< 5.0               |               |              |              |                   |                |              |              |              |              |                   | <10<br><5.0                 |                   | <10<br><5.0             |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Chlorobenzene<br>1,1,1,2-Tetrachloroethane<br>Ethylbenzene                                                         | μg/kg<br>μg/kg<br>μg/kg | 115000             |                       | < 1.0<br>< 2.0<br>5.4       |               |              |              |                   |                |              |              |              |              |                   | <1.0<br><2.0<br><1.0        |                   | <1.0<br><2.0<br><1.0    |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| m- & p-Xylene<br>o-Xylene                                                                                          | μg/kg<br>μg/kg<br>μg/kg | 575000             |                       | 5.5<br>3.6                  |               |              |              |                   |                |              |              |              |              |                   | <1.0 <1.0 <1.0              |                   | <1.0<br><1.0<br><1.0    |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Styrene<br>Tribromomethane<br>Isopropylbenzene                                                                     | μg/kg<br>μg/kg          | nc                 |                       | < 1.0<br>< 10<br>6.4        |               |              |              |                   |                |              |              |              |              |                   | <1.0<br><1.0<br><1.0        |                   | <1.0<br><10<br><1.0     |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Bromobenzene<br>1.2.3-Trichloropropane                                                                             | μg/kg<br>μg/kg<br>μg/kg | nc                 |                       | < 1.0<br>< 50               |               | -            |              |                   |                |              |              |              |              |                   | <1.0<br><1.0<br><50<br><1.0 |                   | <1.0<br><1.0<br><50     |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| n-Propylbenzene<br>2-Chlorotoluene<br>1,2,4-Trimethylbenzene                                                       | μg/kg<br>μg/kg          | nc                 |                       | < 1.0<br>< 1.0<br>6.4       |               | _            |              |                   |                |              |              |              |              |                   | <1.0<br><1.0<br><1.0        |                   | <1.0<br><1.0<br><1.0    |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| 4-Chlorotoluene<br>tert-Butylbenzene                                                                               | μg/kg<br>μg/kg<br>μg/kg | nc                 |                       | < 1.0                       |               | -            |              |                   |                |              |              |              |              |                   | <1.0 <1.0 <1.0              |                   | <1.0 <1.0 <1.0          |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| 1,3,5-Trimethylbenzene<br>sec-Butylbenzene<br>1,3-Dichlorobenzene                                                  | μg/kg<br>μg/kg          | nc                 |                       | 2.5<br>< 1.0                |               |              |              |                   |                |              |              |              |              |                   | <1.0<br><1.0<br><1.0        |                   | <1.0<br><1.0<br><1.0    |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| 4-Isopropyltoluene<br>1,4-Dichlorobenzene                                                                          | μg/kg<br>μg/kg<br>μg/kg | nc                 |                       | < 1.0<br>< 1.0<br>< 1.0     |               |              |              |                   |                |              |              |              |              |                   | <1.0<br><1.0<br><1.0        |                   | <1.0<br><1.0<br><1.0    |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| n-Butylbenzene<br>1.2-Dichlorobenzene                                                                              | μg/kg<br>μg/kg          | nc<br>2140000      |                       | < 1.0<br>< 1.0              |               |              |              |                   |                |              |              |              |              |                   | <1.0<br><1.0                |                   | <1.0<br><1.0            |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| 1,2-Dibromo-3-chloropropane<br>1,2,4-Trichlorobenzene<br>Hexachlorobutadiene                                       | μg/kg<br>μg/kg<br>μg/kg | nc                 |                       | < 50<br>< 1.0<br>< 1.0      |               |              |              |                   |                |              |              |              |              |                   | <50<br><1.0<br><1.0         |                   | <50<br><1.0<br><1.0     |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| 1,2,3-Trichlorobenzene<br>Tentatively Identified Compounds                                                         | μg/kg<br>μg/kg          | 108000<br>nc       |                       | < 2.0<br>None Detecte       |               |              |              |                   |                |              |              |              |              |                   | <2.0                        |                   | <2.0<br>None Detected   | ł            |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Benzene, 1-ethenyl-3-methyl<br>Indane<br>2-Benzothiphene                                                           | μg/kg<br>μg/kg<br>μg/kg | nc                 |                       |                             |               |              |              |                   |                |              |              |              |              |                   | -                           |                   |                         |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Benzofuran<br>Benzo(B)thiophene                                                                                    | μg/kg<br>μg/kg          | nc<br>nc           |                       |                             |               |              |              |                   |                |              |              |              |              |                   |                             |                   |                         |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Phenol,4Methyl<br>Benzo(B)Thiophene<br>Acenaphthene                                                                | μg/kg<br>μg/kg<br>mg/kg | nc                 |                       | < 0.50                      |               |              |              |                   |                |              |              |              |              |                   | <0.50                       |                   | <0.50                   |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Acenaphthylene<br>Anthracene                                                                                       | mg/kg<br>mg/kg          | 84300<br>525000    |                       | < 0.50<br>< 0.50<br>< 0.50  |               |              |              |                   |                |              |              |              |              |                   | <0.50<br><0.50<br><0.50     |                   | <0.50<br><0.50<br><0.50 |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Azobenzene<br>Benzo[a]anthracene<br>Benzo[a]pyrene                                                                 | mg/kg<br>mg/kg<br>mg/kg | 90<br>14           |                       | < 0.50<br>< 0.50            | _             | -            |              |                   |                |              |              |              |              |                   | <0.50<br><0.50              |                   | <0.50<br><0.50          |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Benzo[b]fluoranthene<br>Benzo[g,h,i]perylene<br>Benzo[k]fluoranthene                                               | mg/kg<br>mg/kg          | 654                |                       | < 0.50<br>< 0.50<br>< 0.50  |               |              |              |                   |                |              |              |              |              |                   | <0.50<br><0.50<br><0.50     |                   | <0.50<br><0.50<br><0.50 |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| bis(2-Chloroethoxy)methane<br>bis(2-Chloroethoxy)methane<br>bis(2-Chloroethyl)ether<br>bis(2-Chloroisopropyl)ether | mg/kg<br>mg/kg<br>mg/kg | nc                 |                       | < 0.50<br>< 0.50            |               |              |              |                   |                |              |              |              |              |                   | <0.50<br><0.50              |                   | <0.50<br><0.50          |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| bis(2-Chloroisopropyl)ether<br>bis(2-Ethylhexyl)phthalate<br>Butylbenzylphthalate                                  | mg/kg<br>mg/kg          | nc                 |                       | < 0.50<br>< 0.50<br>< 0.50  |               |              |              |                   |                |              |              |              |              |                   | <0.50<br><0.50<br><0.50     |                   | <0.50<br><0.50<br><0.50 |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Carbazole                                                                                                          | mg/kg<br>mg/kg<br>mg/kg | nc                 |                       | < 0.50<br>< 0.50            | -             | -            |              | -                 |                |              |              |              |              |                   | <0.50<br><0.50              |                   | <0.50<br><0.50          |              |                   |              |            |              |                       |                   |                   |                   | -                 |                       |                       |                                      |                                      |                   |              |                   |
| Di-n-butylphthalate<br>Di-n-octylphthalate<br>Dibenzo[a,h]anthracene                                               | mg/kg<br>mg/kg          | nc                 |                       | < 0.50<br>< 0.50<br>< 0.50  |               |              |              |                   |                |              |              |              |              |                   | <0.50<br><0.50<br><0.50     |                   | <0.50<br><0.50<br><0.50 |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Dibenzofuran<br>Diethylphthalate                                                                                   | mg/kg<br>mg/kg<br>mg/kg | nc                 |                       | < 0.50<br>< 0.50            |               |              | 1            | 1                 |                |              |              |              |              |                   | <0.50<br><0.50              |                   | <0.50<br><0.50          |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Dimethylphthalate<br>Fluoranthene<br>Fluorene                                                                      | mg/kg<br>mg/kg<br>mg/kg | 22600              |                       | < 0.50<br>< 0.50<br>< 0.50  |               |              |              |                   |                |              |              |              |              |                   | <0.50<br><0.50<br><0.50     |                   | <0.50<br>0.5<br><0.50   |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Hexachlorobenzene<br>Hexachlorobutadiene<br>Hexachlorocyclopentadiene<br>Hexachlorocyclopentadiene                 | mg/kg<br>mg/kg          | 47<br>nc           |                       | < 0.50<br>< 0.50            |               |              |              |                   |                |              |              |              |              |                   | <0.50<br><0.50              |                   | <0.50<br><0.50          |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Hexachlorocyclopentadiene<br>Hexachloroethane<br>Indeno[1,2,3-cd]pyrene                                            | mg/kg<br>mg/kg<br>mg/kg | nc                 |                       | < 0.50<br>< 0.50<br>< 0.50  |               | -            |              |                   |                |              |              |              |              |                   | <0.50<br><0.50<br><0.50     |                   | <0.50<br><0.50<br><0.50 |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Isophorone<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodimethylamine                                                  | mg/kg<br>mg/kg          | nc                 |                       | < 0.50<br>< 0.50            |               |              |              |                   |                |              |              |              |              |                   | <0.50<br><0.50              |                   | <0.50<br><0.50          |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
|                                                                                                                    | mg/kg<br>mg/kg<br>mg/kg | nc<br>204          |                       | < 0.50<br>< 0.50<br>< 0.50  |               |              |              |                   |                |              |              |              |              |                   | <0.50<br><0.50<br><0.50     |                   | <0.50<br><0.50<br><0.50 |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Nitrobenzene<br>Pentachlorophenol<br>Phenanthrene<br>Phenol                                                        | mg/kg<br>mg/kg          | 1220<br>21900      |                       | < 0.50                      |               |              |              |                   |                |              |              |              |              |                   | <0.50<br><0.50              |                   | <0.50<br><0.50          |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| Phenol<br>Pyrene<br>1,2-Dichlorobenzene                                                                            | mg/kg<br>mg/kg          | 3200<br>54200      |                       | < 0.50<br>< 0.50<br>< 0.50  |               |              |              |                   |                |              |              |              |              |                   | <0.50<br><0.50<br><0.50     |                   | <0.50<br><0.50<br><0.50 |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| 1,2,4-Trichlorobenzene<br>1,3-Dichlorobenzene                                                                      | mg/kg<br>mg/kg<br>mg/kg | 228<br>32          |                       | < 0.50<br>< 0.50            |               |              |              |                   |                |              |              |              |              |                   | <0.50<br><0.50              |                   | <0.50<br><0.50          |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| 1,4-Dichlorobenzene<br>2-Chloronaphthalene<br>2-Chloronaphenol                                                     | mg/kg<br>mg/kg          | 4460<br>nc         |                       | < 0.50<br>< 0.50<br>< 0.50  |               | +            |              |                   |                |              |              |              |              |                   | <0.50<br><0.50<br><0.50     |                   | <0.50<br><0.50<br><0.50 |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| 2-Methylnaphthalene                                                                                                | mg/kg<br>mg/kg<br>mg/kg | nc<br>nc           |                       | < 0.50<br>< 0.50            |               |              |              |                   |                |              |              |              |              |                   | <0.50<br><0.50              |                   | <0.50<br><0.50          |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| 2-Methylphenol<br>2-Nitroaniline                                                                                   | mg/kg<br>mg/kg          | nc                 |                       | < 0.50<br>< 0.50            |               |              |              |                   |                |              |              |              |              |                   | <0.50<br><0.50<br><0.50     |                   | <0.50<br><0.50<br><0.50 |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| 2-Nitrophenol<br>2,4-Dichlorophenol<br>2,4-Dimethylphenol                                                          | mg/kg<br>mg/kg<br>mg/kg | 3470               |                       | < 0.50<br>< 0.50<br>< 0.50  |               |              |              |                   |                |              |              |              |              |                   | <0.50<br><0.50              |                   | <0.50<br><0.50          |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| 2,4-Dinitrotoluene<br>2,4,5-Trichlorophenol                                                                        | mg/kg<br>mg/kg          | nc<br>nc           |                       | < 0.50<br>< 0.50            |               |              |              |                   |                |              |              |              |              |                   | <0.50<br><0.50              |                   | <0.50<br><0.50          |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| 2,4,6-Trichlorophenol<br>2,6-Dinitrotoluene<br>3-Nitroaniline                                                      | mg/kg<br>mg/kg<br>mg/kg |                    |                       | < 0.50<br>< 0.50<br>< 0.50  |               | +            | 1            | -                 |                |              |              |              |              |                   | <0.50<br><0.50<br><0.50     |                   | <0.50<br><0.50<br><0.50 |              |                   | <u> </u>     |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| 4-Bromophenylphenylether                                                                                           | mg/kg<br>mg/kg<br>mg/kg | nc                 |                       | < 0.50<br>< 0.50            |               |              |              |                   |                |              |              |              |              |                   | <0.50<br><0.50              |                   | <0.50<br><0.50          |              |                   |              |            |              |                       |                   |                   |                   |                   |                       |                       |                                      |                                      |                   |              |                   |
| 4-Chloroaniline                                                                                                    | mg/kg                   | nc                 |                       | < 0.50                      |               | 1            | 1            | 1                 | I              | <u> </u>     |              | 1            | I            | 1                 | <0.50                       | I                 | <0.50                   | 1            | 1                 | I            | 1          | I            | I                     |                   |                   | I                 |                   | I                     | 1                     | 1                                    | <u>I T</u>                           | Ī                 | T            |                   |

|                                                | -              |                             |             |                |           | -         |           | -          |           |           |             |           |             | -           |                |             |                |             |            | -          |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
|------------------------------------------------|----------------|-----------------------------|-------------|----------------|-----------|-----------|-----------|------------|-----------|-----------|-------------|-----------|-------------|-------------|----------------|-------------|----------------|-------------|------------|------------|------------|-------------|------------|-------------|-------------|----------------|-------------|----------------|----------------|----------------------------|----------------------------|------------|------------|-------------|
| Ground Investigation                           |                |                             | PBA 2010/   |                | PBA 2010/ | PBA 2010/ | PBA 2010/ | PBA 2010/  | PBA 2010/ | PBA 2010/ | PBA 2010/   | PBA 2010/ | PBA 2010/   | PBA 2010/   | PBA 2010/      | PBA 2010/   |                | PBA 2010/   | PBA 2010/  | PBA 2010/  | PBA 2010/  | PBA 2010/   | PBA 2010/  | PBA 2010/   | PBA 2010/   |                | PBA 2010/   |                |                | PBA 2010/                  | PBA 2010/                  | PBA 2010/  | PBA 2010/  | PBA 2010/   |
|                                                |                |                             | 2011        | PBA 2010/ 2011 | 2011      | 2011      | 2011      | 2011       | 2011      | 2011      | 2011        | 2011      | 2011        | 2011        | 2011           | 2011        | PBA 2010/ 2011 | 2011        | 2011       | 2011       | 2011       | 2011        | 2011       | 2011        | 2011        | PBA 2010/ 2011 | 2011        | PBA 2010/ 2011 | PBA 2010/ 2011 | 2011                       | 2011                       | 2011       | 2011       | 2011        |
| Report Number                                  |                |                             | 121783      | 121783         | 122209    | 122211    | 122209    | 122209     | 122210    | 122209    | 122211      | 122209    | 133344      | 133344      | 133344         | 133344      | 133344         | 133344      | 122209     | 122211     | 122209     | 122209      | 122209     | 122209      | 122211      | 122209         | 122210      | 122209         | 122209         | 133344                     | 133344                     | 122209     | 122210     | 122211      |
| Lab Ref                                        |                |                             | AF57623     | AF57624        | AF68302   | AF68433   | AE69205   | AF68306    | AF68358   | AF68307   | AF68734     | AF68308   | AF61330     | AF61331     | AF61332        | AF61333     | AF61334        | AF61335     | AF68303    | AF68432    | AF68304    | AF68300     | AF68301    | AF68279     | AF68426     | AF68280        | AF68350     | AF68281        | AF68282        | AF61303                    | AF61304                    | AF68309    | AF68359    | AF68435     |
| Date                                           |                |                             | 10/12/2010  | 10/12/2010     |           |           |           | 25/01/2011 |           |           |             |           |             |             |                |             | 04/01/2011     |             |            | 07/02/2011 |            |             | 25/01/2011 |             |             | 25/01/2011     |             | 25/01/2011     |                | 04/01/2011                 |                            | 25/01/2011 |            | 07/02/2011  |
| Exploatory hole location                       | 1              |                             | TP2002      |                |           |           |           |            |           |           |             |           |             |             |                | TP2025      |                |             |            |            |            |             | TP2003     |             | BH2002      | BH2002         | BH2002      | BH2002         |                | TP2006                     |                            |            | TP2008     |             |
| Zone B Location                                | 1              |                             | B3          | B3             | B3        | B3        | B3        | B3         | B3        | B3        | B3          | B3        | B3          | B3          | B3             | B3          | B3             | B3          | B3         | B3         | B3         | B3          | B3         | B3          | B3          | B3             | B3          | B3             | B3             | Immediately<br>north of B3 | Immediately<br>north of B3 | B5         | B5         | B5          |
|                                                |                |                             |             |                |           |           |           |            |           |           |             |           |             |             |                | 1           |                |             |            |            |            |             |            |             |             |                |             |                |                | HOILII OI BS               | HOILIT OF BS               |            |            |             |
|                                                |                |                             | Outside     | Outside        | Outside   | Outside   | Outside   | Outside    | Outside   | Outside   | Outside     | Outside   |             |             |                |             |                |             |            |            |            | Outside     | Outside    | Outside     | Outside     | Outside        | Outside     | Outside        | Outside        | Outside                    | Outside                    | Outside    | Outside    | Outside     |
| Location on plot/ gas holder number            |                |                             | gasholders  | gasholders     |           |           |           | gasholders |           |           |             |           | GH9 (edge)  | GH9 (edge)  | GH9 (edge)     | GH9 (edge)  | GH9 (edge)     | GH9 (edge)  | Inside GH9 | Inside GH9 | Inside GH9 | gasholders  | gasholders | gasholders  | gasholders  | gasholders     | gasholders  | gasholders     | gasholders     | gasholders                 |                            |            | gasholders |             |
|                                                |                |                             |             |                |           |           |           |            |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| Depth (m)                                      |                |                             | 1m          | 2m             | 2m        | 0.3m      | 1m        | 2m         | 2m        | 4m        | 1.8m        | 1.8m      | 0.3m        | 1m          | 2m             | 2m          | 3m             | 4m          | 1m         | 1m         | 3m         | 0.3m        | 1m         | 0.3m        | 1m          | 2m             | 3m          | 4m             | 6m             | 0.3m                       | 1m                         | 1m         | 1.2m       | 2m          |
| Strata                                         | 1              |                             |             | Possible MG/   |           | Made      | Made      | Made       | Made      | Made      |             | Made      |             |             |                |             |                |             | Made       | Made       | Made       |             |            |             |             |                |             |                |                |                            |                            | Made       | Made       |             |
|                                                |                |                             | Made Ground | Reworked Clay  | Clay      | Ground    | Ground    | Ground     | Ground    | Ground    | Made Ground | Ground    | Made Ground | Made Ground | Made Ground    | Made Ground | Made Ground    | Made Ground | Ground     | Ground     | Ground     | Made Ground | Clay       | Made Ground | Made Ground | Made Ground    | Made Ground | Made Ground    | London Clay    | Made Ground                | Head Deposits              | Ground     | Ground I   | Made Ground |
| 4-Chlorophenylphenylether<br>4-Methylphenol    | mg/kg<br>mg/kg | nc                          |             | < 0.50         |           |           |           |            |           |           |             |           |             |             | <0.50<br><0.50 |             | <0.50<br><0.50 |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| 4-Nitroaniline                                 | mg/kg          | nc                          | -           | < 0.50         |           |           |           | -          |           |           |             |           |             |             | <0.50          |             | <0.50          |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| ethyl-methyl benzenes                          | mg/kg          |                             |             |                |           |           |           |            | 1 1       |           |             |           |             |             | 20.00          |             | 20.00          |             | 1 1        |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| Tentatively Identified Compounds               | mg/kg          |                             |             | Not detected   |           |           |           | 1          |           |           |             |           |             |             | Not detected   |             | Not detected   |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| Benzofuran                                     | mg/kg          | nc                          |             |                |           |           |           |            |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| biphenyl                                       | mg/kg          |                             |             |                |           |           |           |            |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| 1-methylnahthalene                             | mg/kg          |                             |             |                |           |           |           |            |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| 1-methylnaphthalene                            | mg/kg          |                             | _           |                |           |           |           |            |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| Indene<br>2-benzothiophene                     | mg/kg<br>mg/kg |                             |             |                |           |           |           |            |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| Cinnamaldehde                                  | mg/kg          |                             | -           | -              |           |           |           |            |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| Biphenyl                                       | mg/kg          |                             |             |                |           |           |           |            |           |           |             |           |             |             | 1              |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| naphtho[2,3-B]thiophene                        | mg/kg          |                             |             |                |           |           |           |            |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| PCBs as Aroclor 1242                           | mg/kg          |                             |             | <1             |           |           |           |            |           |           |             |           |             |             | <1.0           |             | <1.0           |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| 2-sec-Butyl-4,6-dinitrophenol                  | mg/kg          | nc                          | < 0.2       |                |           |           |           |            |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            | ,           |
| 4-Chloro-3-methylphenol                        | mg/kg          | nc                          | < 0.2       |                |           |           |           |            |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| 2-Chlorophenol                                 | mg/kg          |                             | < 0.2       |                |           |           |           |            |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| 2,4-Dichlorophenol<br>2,6-Dichlorophenol       | mg/kg<br>mg/kg |                             | < 0.2       |                |           |           |           |            |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| 2,4-Dimethylphenol                             | mg/kg          |                             | < 0.2       |                |           | -         |           |            |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| 2,4-Dinitrophenol                              | mg/kg          | nc                          | < 0.2       |                |           |           |           |            |           |           |             |           |             |             |                |             |                | 1           |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| 2-Methyl-4,6-dinitrophenol                     | mg/kg          | nc                          | < 0.2       | 1              | 1         | 1         |           | 1          |           |           |             |           |             |             | 1              | 1           |                | i           |            |            |            |             |            |             | 1           |                |             | 1              |                |                            |                            |            | t          |             |
| 2-Methylphenol<br>3-Methylphenol               | mg/kg          | nc                          | < 0.2       |                |           |           |           |            |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| 3-Methylphenol                                 | mg/kg          | nc                          | < 0.2       |                |           |           |           |            |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| 4-Methylphenol                                 | mg/kg          | nc                          | < 0.2       |                |           |           |           |            | I         |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| 2-Nitrophenol                                  | mg/kg          |                             | < 0.2       |                |           |           |           | 1          |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            | I           |
| 4-Nitrophenol                                  | mg/kg<br>mg/kg | nc                          | < 0.2       | 1              | +         | 1         |           | 1          |           |           |             |           |             |             |                | 1           |                | l           |            |            |            |             |            |             | 1           |                |             | +              |                |                            |                            |            | +          |             |
| Pentachlorophenol<br>Phenol                    | mg/kg          | 3200                        | < 0.2       | 1              | 1         | 1         |           | 1          |           |           |             |           |             |             | 1              | 1           |                | 1           |            | -          |            |             |            |             | 1           |                |             | 1              |                |                            |                            |            |            |             |
| 2,3,4,5-Tetrachlorophenol                      | mg/kg          |                             | < 0.2       | 1              | 1         |           |           |            |           |           |             |           |             |             | 1              | 1           | 1              | i i         |            |            |            |             |            |             | 1           |                |             | 1              |                |                            |                            | 1          |            |             |
| 2,3,4,6-Tetrachlorophenol                      | mg/kg          |                             | < 0.2       |                | 1         |           |           |            |           |           |             |           |             |             |                |             |                |             |            | 1          |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| 2,3,5,6-Tetrachlorophenol                      | mg/kg          | nc                          | < 0.2       |                |           |           |           |            |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| 2,3,4-Trichlorophenol                          | mg/kg          |                             | < 0.2       |                |           |           |           |            |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| 2,3,5-Trichlorophenol                          | mg/kg          |                             | < 0.2       |                |           |           |           |            |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            |            |             |
| 2,3,6-Trichlorophenol                          | mg/kg          |                             | < 0.2       |                | ł         |           |           |            |           |           |             |           |             |             |                | I           |                | l           | ┥ ┥        |            | L          |             |            |             | l           | <b> </b>       |             |                |                |                            |                            |            |            |             |
| 2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol | mg/kg<br>mg/kg | nc                          | < 0.2       | 1              | +         |           |           | 1          |           |           |             |           |             |             |                |             |                | l           |            |            |            |             |            |             | ł           |                |             |                |                |                            |                            |            | +          | <u> </u>    |
| 3.4.5-Trichlorophenol                          | mg/kg          | nc                          | < 0.2       | 1              | 1         |           |           | 1          |           |           |             |           |             |             | 1              | 1           |                | 1           |            | -          |            |             |            |             | 1           |                |             | 1              |                |                            |                            |            |            |             |
|                                                | mgmg           |                             | 10.2        |                | 1         |           |           | 1          |           |           |             |           |             |             |                |             |                |             |            |            |            |             |            |             |             |                |             |                |                |                            |                            |            | +          |             |
|                                                | Indicates wh   | here the data exceeds the s | d           | 1              | İ         | 1         |           | 1          | i 1       |           |             |           |             | l l         | İ              | İ           | İ              | i           | i l        |            | i i        | İ           |            |             | 1           |                | İ           | 1              | 1              |                            |                            | 1          |            |             |
|                                                |                |                             |             |                | •         | •         |           | •          | • • • •   |           | -           |           | -           | •           |                |             | -              | •           | · · · · ·  |            |            | •           |            |             |             |                |             |                |                |                            |                            |            | b          |             |

| Ground Investigation                                              |                         |                      | _                       |                               | 1 PBA 2010/ 201       | -                              | PBA 2010/<br>2011     | PBA 2010/<br>2011      | 2011                  | 2011                          | PBA 2010/<br>2011 | 2011                 | 2011              | 2011                   | PBA 2010/<br>2011 | PBA 2010/<br>2011       | 2011                     | PBA 2010/<br>2011       | 2011              | 2011                  | 2011                  | 2011          | 2011            |                                                                  | 1 20                | 11        | 2011 2                 | A 2010/ PBA 2010<br>2011 2011 | 2011                  | 2011              | PBA 2010/<br>2011 | 2011                | PBA 2010/ PBA 2010/<br>2011 2011 |   |
|-------------------------------------------------------------------|-------------------------|----------------------|-------------------------|-------------------------------|-----------------------|--------------------------------|-----------------------|------------------------|-----------------------|-------------------------------|-------------------|----------------------|-------------------|------------------------|-------------------|-------------------------|--------------------------|-------------------------|-------------------|-----------------------|-----------------------|---------------|-----------------|------------------------------------------------------------------|---------------------|-----------|------------------------|-------------------------------|-----------------------|-------------------|-------------------|---------------------|----------------------------------|---|
| Report Number<br>Lab Ref                                          |                         |                      | 122209<br>AF68310       | 122209<br>AF68311             | 122209<br>AF68312     | 122209<br>AF68313              | 122209<br>AF68314     | 122210<br>AF68360      | 122209<br>AF68315     | 122209<br>AF68316             | 133344<br>AF61305 | 133343<br>AF61272    | 133344<br>AF61306 | 133343<br>AF61273      | 133344<br>AF61308 | 133344<br>AF61310       | 133343<br>AF61274        | 133344<br>AF61316       | 122211<br>AF68436 | 122209<br>AF68317     | 122210<br>AF68361     |               |                 |                                                                  | 209 122<br>319 AF6  |           |                        | 22209 122211<br>68322 AF68438 | 122210<br>AF68363     | 122209<br>AF68323 | 122209<br>AF68324 |                     | 122209 122209<br>AF68325 AF68326 | _ |
| Date                                                              |                         |                      | 25/01/2011              | 25/01/2011                    | 25/01/2011            | 25/01/2011                     | 25/01/2011            | 25/01/2011             | 25/01/2011            | 25/01/2011                    | 04/01/2011        | 04/01/2011           | 04/01/2011        | 04/01/2011             | 04/01/2011        | 04/01/2011              | 04/01/2011               | 04/01/2011              | 07/02/2011        | 25/01/2011            | 25/01/2011            | 07/02/2011 25 | /01/2011 2      | 5/01/2011 25/01                                                  | 2011 25/01          | /2011 25  | 5/01/2011 25/0         | 01/2011 07/02/201             | 25/01/2011            | 25/01/2011        | 25/01/2011        | 07/02/2011          | 25/01/2011 25/01/2011            | 1 |
| Exploatory hole location<br>Zone B Location                       |                         |                      | TP2008<br>B5            | TP2010<br>B5                  | TP2010<br>B5          | TP2010<br>B5                   | B5                    | B5                     | B5                    | B5                            | BH2010<br>B5      | BH2010<br>B5         | BH2010<br>B5      | BH2010<br>B5           | BH2010<br>B5      | BH2010<br>B5            | BH2010<br>B5             | BH2010<br>B5            | B5                | B5                    | B5                    |               | B6              | B6 E                                                             |                     |           |                        | B6 B6 B6                      | B6                    | B6                | B6                | B6                  | TP2016-A TP2016-A<br>B6 B6       | - |
|                                                                   |                         |                      | Outside                 | Outside<br>gasholders         | Outside<br>gasholders | Outside<br>gasholders          | Outside<br>gasholders | Outside<br>gasholders  | Outside<br>gasholders | Outside<br>gasholders         | Outside           | Outside              | Outside           | Outside                | Outside           | Outside                 | Outside                  | Outside                 | Outside           | Outside               | Outside               | Outside (     | Dutside         | Outside Out                                                      | ide Out             | side (    | Outside O              | utside Outside                | Outside               | Outside           | Outside           | Outside             | Outside Outside                  |   |
| Location on plot/ gas holder number                               |                         |                      |                         | (condensers and<br>scrubbers) | d (condensers         | (condensers)<br>and scrubbers) | (condensers           | (condensers            |                       | (condensers<br>and scrubbers) |                   |                      | gasholders        |                        | gasholders        | gasholders              |                          | gasholders              | gasholders        | gasholders            | gasholders            | gasholders ga | sholders g      | asholders gash                                                   | Iders gash          | olders ga |                        | holders gasholder             |                       |                   | gasholders        |                     | gasholders gasholders            |   |
| Depth (m)                                                         |                         |                      | 3m                      | 0.3m                          | 1m                    | 1.5m                           | 2m                    | 2m                     | 2.8 - 2.9m            |                               |                   | 1m                   |                   |                        | 4m                | 5m                      | 1                        | 9m                      | 0.6m              |                       |                       | 0.3           |                 |                                                                  |                     |           | 0.7 - 1.0m             |                               |                       | 3.5m - 3.9m       |                   |                     |                                  | - |
| Strata                                                            |                         | Screening Criteria   | Clay                    | Made Ground                   | Made Ground           | Made Ground                    | Made Ground           | Made Ground            | Made Ground           | Possible MG/<br>Clay          | Made Ground       | Made<br>Ground       | Made<br>Ground    | Made<br>Ground         | Clay              | Clay & Head<br>deposits | Weathered<br>London Clay | London Clay             | Made Ground       | Made<br>Ground        | Made<br>Ground        |               | Made<br>Ground  | Made<br>Ground Cl                                                | Ma<br>ay Gro        | und Mad   |                        | Made Made<br>round Ground     | Made<br>Ground        | Made Ground       | Made<br>Ground    | Made<br>Ground      | Made Made<br>Ground Ground       | 4 |
| Metals                                                            | Units                   | Commercial           |                         |                               |                       |                                |                       |                        |                       |                               |                   |                      |                   |                        |                   |                         |                          |                         |                   |                       |                       |               |                 |                                                                  |                     |           |                        |                               |                       |                   |                   |                     |                                  |   |
| Cadmium                                                           | mg/kg<br>mg/kg<br>mg/kg | 230.0<br>30400       | 19<br><0.10<br>16       | 50<br>0.68<br>53              | 67<br>1.3<br>6.4      | 320<br>1.7<br>18               | 140<br>3<br>30        |                        |                       | 13<br><0.10<br>21             |                   |                      | 8.9<br>0.11<br>18 |                        | <0.10             | 8.5<br><0.10<br>18      |                          |                         |                   | 24<br>0.13<br>29      |                       |               | 79<br>0.39<br>8 | <0                                                               | 9 3<br>10 0.<br>3 1 | -         |                        | 140<br>0.73<br>11             |                       | 54<br>0.2<br><5.0 | 0.44<br>6.8       |                     | 41 39<br>0.88 1.6<br>10 8.1      |   |
| Copper<br>Lead                                                    | mg/kg<br>mg/kg          | 71700<br>7300        | 51<br>140<br>0.71       | 99<br>1000                    | 81<br>1000            | 94<br>7900                     | 180<br>3400           |                        | 44<br>610             | 27<br>30                      |                   |                      | 21<br>32<br><0.10 |                        | 24<br>25          | 22<br>19                |                          |                         |                   | 33<br>140             |                       |               | 340<br>1300     | 5                                                                | 0 10<br>5 4         | 50        |                        | 70<br>840                     |                       | 57                | 84<br>490<br>2.1  |                     | 68 44<br>1900 520                |   |
| Nickel                                                            | mg/kg<br>mg/kg<br>mg/kg | 3600<br>1800<br>nc   | 0.71                    | 1.3<br>55                     | 2.2<br>25             | 3.3<br>36                      | 50<br>35              |                        |                       | 0.56<br>36                    |                   |                      | <0.10<br>30       |                        | <0.10<br>36       | <0.10<br>34             |                          |                         |                   | 0.46<br>41            |                       |               | 0.91<br>27      |                                                                  | 8 1                 |           |                        | 5.4<br>32                     |                       | 11<br>25          |                   |                     | 33 2.9<br>21 26                  |   |
| Selenium<br>Zinc                                                  | mg/kg<br>mg/kg          | 13000                | <0.20<br>68             |                               | <0.20<br>420          | 1.5<br>320                     | 0.97<br>1800          |                        | <0.20<br>350          | <0.20<br>69                   |                   |                      | <0.20<br>50       |                        | <0.20<br>57       | 0.37<br>61              |                          |                         |                   | <0.20<br>71           |                       |               | <0.20<br>320    |                                                                  | 20 <0<br>5 21       |           | <                      | :0.20<br>350                  |                       | 0.59<br>150       | <0.20<br>240      |                     | <0.20 <0.20<br>1600 280          | _ |
|                                                                   | mg/kg<br>mg/kg          | nc<br>78.00          |                         |                               |                       |                                |                       |                        |                       |                               |                   |                      | <0.50<br><0.50    |                        | 1.6<br><0.50      | <0.50<br><0.50          |                          |                         |                   |                       |                       |               | _               |                                                                  |                     | _         |                        |                               |                       |                   |                   |                     |                                  | 4 |
| Thiocyanate<br>Boron                                              | mg/kg<br>mg/kg          | nc<br>192000         |                         |                               |                       |                                |                       |                        |                       |                               |                   |                      | <5.0              |                        | <5.0              | <5.0                    |                          |                         |                   |                       |                       |               |                 |                                                                  |                     |           |                        |                               |                       |                   |                   |                     |                                  | _ |
|                                                                   | %<br>pH Units           | nc                   | 7.6                     | 8.2                           | 8.4                   | 7.3                            | 7.6                   | 13<br>7.9              | 8.1                   | 8.2                           |                   | 8.6                  | 8.1               | 8                      | 8.1               | 8                       | 8                        |                         |                   |                       | 0.63<br>8.4           |               | 8.9             | 15<br>10.1                                                       | 10                  | 0.9       |                        | 8                             | 9.9<br>8.2            | 7.8               | 9                 |                     | 9.1 8.4                          | _ |
|                                                                   | %                       |                      |                         |                               |                       |                                |                       |                        |                       |                               | Not detected      |                      |                   |                        |                   |                         |                          |                         | Not detected      |                       |                       | Not detected  |                 |                                                                  |                     |           |                        | Not detecte                   | d                     |                   |                   | Chrysotile<br>0.007 |                                  | _ |
| Sulphur (free)                                                    | mg/kg<br>mg/kg          | 3200<br>nc<br>nc     | <0.3                    | <0.3                          | <0.3                  | 260                            | 0.8                   |                        | <0.3                  | 0.5                           |                   |                      | <0.3              |                        | <0.3              | <0.3                    |                          |                         |                   | <0.3                  |                       |               | <0.3            | <                                                                | .3 <0               | 0.3       |                        | <0.3                          |                       | <0.3              | <0.3              |                     | <0.3 <0.3                        | _ |
| Total Sulphate<br>Sulphur (elemental)                             | % as SO4<br>mg/kg       | nc                   |                         |                               |                       |                                |                       |                        |                       |                               |                   |                      |                   |                        |                   |                         |                          |                         |                   |                       |                       |               |                 |                                                                  |                     |           |                        |                               |                       |                   |                   |                     |                                  | _ |
| Total sulphate                                                    | mg/kg<br>mg/kg<br>g/l   | nc                   | 0.62                    | 0.14                          | 0.36                  | 1.6                            | 1.8                   |                        | 0.97                  | 0.24                          |                   |                      | 0.16              |                        | 0.14              | 0.26                    |                          |                         |                   | 0.22                  |                       |               | 0.16            | 0                                                                | i6 0.               | 57        |                        | 1.4                           |                       | 11                | 0.7               |                     | 0.65 0.63                        | _ |
| Organic matter<br>Moisture                                        | %                       | nc<br>nc             | 8.4<br>25.9             | 17                            | 11<br>19.5            | 60                             | 26                    | 24.7                   | 6.4                   | 1.4                           |                   | 22.9                 | 0.47              | 25                     | 0.41              | < 0.40                  | 21.4                     | 19.7                    |                   | 1.4                   |                       |               | 33              | 16.2 20                                                          | 2 4                 | 1         |                        | 21<br>21.8                    |                       | 31<br>19.8        | 10                |                     | 5 5.5<br>20.1 25.9               |   |
| Loss on ignition                                                  | mol/kg<br>%             | nc                   |                         |                               | -                     | -                              |                       | 0.019<br>17.1<br><0.02 |                       |                               |                   | 0.04<br>4.82         |                   | 0.012<br>5.89<br><0.02 | <0.02             | <0.02                   | 0.008<br>4.47<br><0.02   | <0.02                   |                   |                       | 0.044<br>4.4<br><0.02 |               |                 | 0.154<br>15.9<br><0.02                                           |                     |           |                        |                               | 0.07<br>9.31<br><0.02 |                   |                   |                     | <u> </u>                         | 4 |
| BTEX<br>Benzene                                                   | μg/kg                   | 28000.00             |                         |                               |                       |                                |                       | 190                    |                       |                               |                   | <1                   | < 1               | <1                     | 3.5               | 1.3                     | < 1                      | <0.02                   |                   |                       | < 1                   |               |                 | <1                                                               |                     |           |                        |                               | < 1                   |                   |                   |                     |                                  | _ |
| Ethylbenzene                                                      | µg/kg<br>µg/kg<br>µg/kg | 581000               |                         |                               | 1                     |                                |                       | 82<br>310<br>1500      |                       |                               |                   | <1                   | <1                | <1<br><1<br><1         | 3<br>2.8<br>2.8   | <1<br>1.3<br><1         | <1<br><1<br><1           |                         |                   |                       | <1<br><1<br><1        |               |                 | <1<br><1<br><1                                                   |                     |           |                        |                               | <1<br><1<br><1        |                   |                   |                     |                                  | _ |
| o-Xylene<br>Total BTEX                                            | μg/kg<br>μg/kg          | 480000               |                         |                               |                       |                                |                       | 730                    |                       |                               |                   | <1 <0.005            | <1                | <1 <0.005              | <1                | <1                      | < 1<br><0.005            |                         |                   |                       | < 1                   |               |                 | < 1<br><0.005                                                    |                     |           |                        |                               | < 1                   |                   |                   |                     |                                  | _ |
| Hydrocarbons                                                      | μg/kg<br>mg/kg          |                      |                         |                               |                       | <1.0                           | < 0.1                 |                        | <1.0                  | < 0.1                         |                   |                      |                   |                        |                   |                         |                          | < 0.1                   |                   |                       |                       |               |                 |                                                                  |                     |           | < 0.1                  |                               |                       |                   |                   |                     |                                  | _ |
| Aliphatic >C6-C8<br>Aliphatic >C8-C10                             | mg/kg<br>mg/kg          | 8250<br>2130         |                         |                               |                       | < 0.1                          | < 0.1<br>9.3          |                        | < 0.1 2.6             | < 0.1 < 0.1                   |                   |                      |                   |                        |                   |                         |                          | < 0.1<br>< 0.1          |                   |                       |                       |               |                 |                                                                  |                     |           | < 0.1<br>< 0.1         |                               |                       |                   |                   |                     |                                  | - |
| Aliphatic >C12-C16                                                | mg/kg<br>mg/kg<br>mg/kg | 60800                |                         |                               |                       | 31<br>93<br>57                 | 22<br>24<br>16        |                        | 6.7<br>16<br>10       | < 0.1<br>< 0.1<br>< 0.1       |                   |                      |                   |                        |                   |                         |                          | 52<br>52<br>200         |                   |                       |                       |               |                 |                                                                  |                     |           | 2.5<br>18<br>29        |                               |                       |                   |                   |                     |                                  | 4 |
| Aliphatic >C21-C35<br>Aliphatic >C35-C44                          | mg/kg<br>mg/kg          | 673000<br>673000     |                         |                               |                       | 35<br>< 0.1                    | 44<br>< 0.1           |                        | 8.2<br>< 0.1          | < 0.1<br>< 0.1                |                   |                      |                   |                        |                   |                         |                          | 400<br>< 0.1            |                   |                       |                       |               |                 |                                                                  |                     |           | 25<br>< 0.1            |                               |                       |                   |                   |                     |                                  | _ |
| Aromatic >C7-C8                                                   | mg/kg<br>mg/kg<br>mg/kg | 59000                |                         |                               |                       | 68<br>120<br>1000              | < 0.1<br>7.8<br>360   |                        | < 0.1<br>7.2<br>66    | < 0.1                         |                   |                      |                   |                        |                   |                         |                          | < 0.1<br>< 0.1<br>< 0.1 |                   |                       |                       |               | _               |                                                                  |                     |           | < 0.1<br>< 0.1<br>0.32 |                               |                       |                   |                   |                     |                                  | _ |
| Aromatic >C10-C12<br>Aromatic >C12-C16                            | mg/kg<br>mg/kg<br>mg/kg | 36200                |                         |                               |                       | 4500<br>12000                  |                       |                        | 520                   |                               |                   |                      |                   |                        |                   |                         |                          | 190<br>55               |                   |                       |                       |               |                 |                                                                  |                     |           | 0.32<br>12<br>120      |                               |                       |                   |                   |                     |                                  | Ξ |
| Aromatic >C21-C35                                                 | mg/kg<br>mg/kg<br>mg/kg |                      |                         |                               |                       | 14000<br>5200<br>< 0.1         |                       |                        | 530<br>200<br>< 0.1   | 5                             |                   |                      |                   |                        |                   |                         |                          | 32<br>< 0.1<br>< 0.1    |                   |                       |                       |               |                 |                                                                  |                     |           | 720<br>830<br>< 0.1    |                               |                       |                   |                   |                     |                                  | 4 |
| Aliphatic C5-C35<br>Aromatic C5-C35                               | mg/kg<br>mg/kg          | nc                   | 10                      |                               | 460                   | 36000                          |                       |                        | 1800                  |                               |                   |                      | 10                |                        | 10                | 40                      |                          | 000                     |                   | < 10                  |                       |               |                 |                                                                  | 0 1                 | 10        | 1800                   | 1100                          |                       | 660               | 400               |                     | 36 920                           | 3 |
| TEM                                                               | mg/kg                   | nc                   | < 10                    | 230                           | 460                   | 36000                          |                       | 52000                  |                       | 14                            |                   | < 10                 | < 10              | < 10                   | < 10              | < 10                    | < 10                     | 990                     |                   |                       | 99                    |               | 60              | 200                                                              | 0 1                 | 10        | 1800                   | 1100                          | 2000                  |                   | 400               |                     | 36 920                           | - |
| Gasoline Range Organics by GC (GRO)                               | mg/kg<br>mg/kg          | 2130<br>2130<br>2130 |                         |                               |                       |                                |                       |                        |                       |                               |                   |                      |                   |                        |                   |                         |                          |                         |                   |                       |                       |               |                 |                                                                  |                     |           |                        |                               |                       |                   |                   |                     |                                  | 3 |
| TPH (Mineral Oil/ Hydrocarbon oil)<br>TPH (Aromatic hydrocarbons) | mg/kg<br>mg/kg<br>mg/kg | 2130                 |                         |                               |                       |                                |                       |                        |                       |                               |                   |                      |                   |                        |                   |                         |                          |                         |                   |                       |                       |               |                 |                                                                  |                     |           |                        |                               |                       |                   |                   |                     |                                  | _ |
| TPH                                                               | mg/kg<br>mg/kg<br>mg/kg | 2130                 |                         |                               |                       |                                |                       |                        |                       |                               |                   |                      |                   |                        |                   |                         |                          |                         |                   |                       |                       |               |                 |                                                                  |                     |           |                        |                               |                       |                   |                   |                     |                                  | 4 |
| Acenaphthene<br>Acenaphthylene                                    | mg/kg<br>mg/kg          | 84900<br>84300       |                         | 0.46                          |                       | 110<br>720                     | 94                    |                        | 15                    | 0.52                          |                   | 0.3<br>0.1           |                   | 0.2<br>0.3             |                   |                         | 0.1<br><0.1              |                         | l .               | 0.15<br>0.14          | <0.1                  |               | 0.71            | 0.4 0.<br>0.3 0.                                                 | 1 0                 | .8        |                        | 11<br>7.6                     |                       | 1.3<br>2.9        |                   |                     | 0.1 1.6<br>0.33 1.4              |   |
| Benzo(a)anthracene                                                | mg/kg<br>mg/kg<br>mg/kg | 90.0                 | 0.19<br>< 0.1<br>< 0.1  | 6.8                           | 25                    | 1200<br>1000<br>870            | 380                   | 370                    | 65                    | 1.7                           |                   | 0.2<br><0.1<br><0.1  |                   | 0.2<br><0.1<br><0.1    |                   |                         | <0.1<br><0.1             |                         |                   | 0.27<br>0.23<br>0.11  | 0.2                   |               | 16              | 0.9 0.<br>4.4 0.<br>7.6 0.                                       | 7 1                 | 2         |                        | 26<br>69<br>90                | 72                    | 8.4<br>29<br>35   | 15                |                     | 0.66 5.2<br>2.4 28<br>3 50       |   |
| Benzo(b)fluoranthene<br>Benzo(k)fluoranthene                      | mg/kg<br>mg/kg          | 100.0<br>141.0       | < 0.1                   | < 0.1                         |                       |                                | 180                   |                        | < 0.1                 | < 0.1                         |                   | <0.1<br><0.1         |                   | <0.1<br><0.1           |                   |                         | <0.1<br><0.1<br><0.1     |                         |                   | 0.11<br>0.22<br>0.11  | 0.1                   |               | 12              | 7.6         0.           5.9         0.           4.7         0. | 87 8                | .1        |                        | 85<br>49                      | 66<br>52              | 35<br>27<br>14    | 22<br>13          |                     | 3 42<br>2.1 32                   |   |
| Chrysene                                                          | mg/kg<br>mg/kg<br>mg/kg | 137.0                | < 0.1<br>< 0.1<br>< 0.1 |                               |                       | 500<br>1000<br>140             | 400                   | 370                    | 69                    | 1.6                           |                   | <0.1<br><0.1<br><0.1 |                   | <0.1<br><0.1<br><0.1   |                   |                         | <0.1<br><0.1<br><0.1     |                         |                   | 0.14<br>0.25<br>< 0.1 | 0.2                   |               | 17              | 5.6 0.<br>5.1 0.<br>6.5 0.                                       | i5 1                | 2         |                        | 56<br>72<br>15                | 75                    | 21<br>30<br>6.7   | 16                |                     | 2.1 36<br>3 29<br>0.56 12        |   |
| Fluoranthene<br>Fluorene                                          | mg/kg<br>mg/kg          | 22600<br>63500       | < 0.1                   | < 0.1 < 0.1                   | < 0.1                 |                                | 250                   |                        | < 0.1                 | < 0.1                         |                   | <0.1<br>0.5<br><0.1  |                   | <0.1<br><0.1<br>0.3    |                   |                         | <0.1<br><0.1<br>0.2      |                         |                   | 0.53                  | 0.4<br><0.1           |               | 1.2             | 6.5 0.<br>5.8 0<br>0.2 0.                                        | 6 2                 | .7        |                        | 15<br>< 0.1<br>12             | 8.8                   | 6.7<br>49<br>2.1  | 0.88              |                     | 4.4 27<br>0.18 1.3               |   |
| Naphthalene                                                       | mg/kg<br>mg/kg<br>mg/kg | 204.0                | < 0.1<br>< 0.1<br>0.35  | 4.8                           | 21<br>11<br>48        | 550<br>1000<br>4000            | 650                   | 19<br>6300<br>1600     | 210                   | < 0.1                         |                   | <0.1<br>0.4<br>0.2   |                   | <0.1<br>0.8<br>0.3     |                   |                         | <0.1<br>0.4<br><0.1      |                         |                   | 0.16<br>0.61<br>1.1   | 0.5                   |               | 6.9             | 1.6 0.<br>2.2 1<br>4 1                                           | 1 2                 | .3        |                        | 59<br>16<br>86                | 5.3                   | 23<br>7<br>27     | 2.2               |                     | 2 39<br>1.4 3.8<br>2.5 11        |   |
| Pyrene<br>Coronene                                                | mg/kg<br>mg/kg          | 54200<br>nc          | < 0.1                   | 12                            | 46                    | 2100                           | 810                   | 1600<br>730<br>28      | 120                   | 2.7                           |                   | 0.2<br>0.3<br><0.1   | _                 | <0.1<br><0.1           |                   | <2                      | <0.1<br><0.1             |                         |                   | 0.45<br>4.8           | 0.2<br><0.1           |               | 17              | 4 1<br>5.5 0.<br>0.2 9                                           | 68 2                | 3         |                        | 86<br>< 0.1<br>650            | 110<br>7              | 27<br>44<br>330   |                   |                     | 2.5 11<br>4 24<br>32 340         |   |
|                                                                   | mg/kg<br>mg/kg          |                      | <2                      | 64                            | 250                   | 18000                          | 6800                  | 13000                  | 910                   | 17                            |                   | 2                    | <2                | 2.2                    | <2                | <2                      | <2                       |                         |                   | 4.8                   | 3.2                   |               |                 | 61                                                               |                     | 50        |                        | 650                           | 870                   |                   | 180               |                     | 32 340                           | _ |
| PCB 28<br>PCB 52                                                  | mg/kg<br>mg/kg          | nc                   |                         |                               |                       |                                |                       | <0.1<br><0.1<br><0.1   |                       |                               |                   | <0.1<br><0.1<br><0.1 |                   | <0.1<br><0.1<br><0.1   |                   |                         | <0.1<br><0.1<br><0.1     |                         |                   |                       | <0.1<br><0.1<br><0.1  |               |                 | <0.1<br><0.1<br><0.1                                             |                     |           |                        |                               | <0.1<br><0.1<br><0.1  |                   |                   |                     | <u> </u>                         | 1 |
| PCB 118                                                           | mg/kg<br>mg/kg<br>mg/kg | nc                   |                         |                               |                       |                                |                       | <0.1<br><0.1<br><0.1   |                       |                               |                   | <0.1<br><0.1<br><0.1 |                   | <0.1<br><0.1<br><0.1   |                   |                         | <0.1<br><0.1<br><0.1     |                         |                   |                       | <0.1<br><0.1<br><0.1  |               |                 | <0.1<br><0.1<br><0.1                                             |                     |           |                        |                               | <0.1<br><0.1<br><0.1  |                   |                   |                     |                                  | 4 |
| PCB 153<br>PCB 180                                                | mg/kg<br>mg/kg          | nc<br>nc             |                         |                               |                       |                                |                       | <0.1<br><0.1           |                       |                               |                   | <0.1<br><0.1         |                   | <0.1<br><0.1           |                   |                         | <0.1<br><0.1<br><1       |                         |                   |                       | <0.1<br><0.1          |               |                 | <0.1<br><0.1<br><1                                               |                     |           |                        |                               | <0.1<br><0.1          |                   |                   |                     |                                  | 1 |
| VOCs<br>Dichlorodifluoromethane                                   | mg/kg<br>μg/kg          |                      |                         |                               |                       | <1.0                           | <1.0                  | <1                     | <1.0                  | <1.0                          |                   | <1                   |                   | <1                     |                   |                         | <1                       | <1.0                    |                   |                       | <1                    |               |                 | <1                                                               |                     |           | <1.0                   |                               | <1                    |                   |                   |                     |                                  | 1 |
| Chloromethane<br>Vinyl chloride                                   | μg/kg<br>μg/kg          | nc                   |                         |                               |                       | <1.0<br><1.0                   | <1.0<br><1.0          |                        | <1.0<br><1.0          | <1.0<br><1.0                  |                   |                      |                   |                        |                   |                         |                          | <1.0<br><1.0            |                   |                       |                       |               |                 |                                                                  |                     |           | <1.0<br><1.0           |                               |                       |                   |                   |                     |                                  | _ |
| Chloroethane<br>Trichlorofluoromethane                            | µg/kg<br>µg/kg<br>µg/kg | nc                   |                         |                               |                       | <20<br><2.0<br><1.0            | <20<br><2.0<br><1.0   |                        | <20<br><2.0<br><1.0   | <1.0                          |                   |                      |                   |                        |                   |                         |                          | <20<br><2.0<br><1.0     |                   |                       |                       |               |                 |                                                                  |                     | _         | <20<br><2.0<br><1.0    |                               |                       |                   |                   |                     |                                  | 1 |
| 1,1-Dichloroethene<br>Dichloromethane                             | μg/kg<br>μg/kg          | nc<br>nc             |                         |                               |                       | <1.0<br>ne                     | <1.0<br>ne            |                        | <1.0<br>ne            | <1.0<br>ne                    |                   |                      |                   |                        |                   |                         |                          | <1.0<br>ne              |                   |                       |                       |               |                 |                                                                  |                     |           | <1.0<br>ne             |                               |                       |                   |                   |                     |                                  | 1 |
| trans-1,2-Dichloroethene<br>1,1-Dichloroethane                    | μg/kg<br>μg/kg          | nc                   |                         | 1                             |                       | <1.0<br><1.0                   | <1.0<br><1.0          |                        | <1.0<br><1.0          | <1.0<br><1.0                  |                   |                      |                   |                        |                   |                         |                          | <1.0<br><1.0            |                   |                       |                       |               |                 |                                                                  |                     |           | <1.0<br><1.0           |                               |                       |                   |                   |                     |                                  | Е |

|                                                                                                                  |                         |                            | PBA 2010/      |                          |                                | PBA 2010/                          | PBA 2010/                     | DD4 0040/                     | PBA 2010/               | PBA 2010/                     | PBA 2010/      |                | 004 00404  | PBA 2010/      | 224 00101  | PBA 2010/               | PBA 2010/       | 004 0040/               | DD4 00404   | DD1 00404  | DD4 0040/      | DD4 00401   |                | DD4 costor | DD1 0040/  | DDA 0040/    | PBA 2010/                     | DDA 00404      |            |                | PBA 2010/   | DD4 0010/      |            | DDA 0040/        | PDA 00101  |
|------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------|----------------|--------------------------|--------------------------------|------------------------------------|-------------------------------|-------------------------------|-------------------------|-------------------------------|----------------|----------------|------------|----------------|------------|-------------------------|-----------------|-------------------------|-------------|------------|----------------|-------------|----------------|------------|------------|--------------|-------------------------------|----------------|------------|----------------|-------------|----------------|------------|------------------|------------|
| Ground Investigation<br>Report Number                                                                            |                         |                            | 2011<br>122209 | PBA 2010/ 20             | 011 PBA 2010/ 20<br>122209     | 11 2011                            | 2011<br>122209                | 2011<br>122210                | 2011<br>122209          | 2011<br>122209                | 2011<br>133344 | 2011<br>133343 |            | 2011<br>133343 |            | 2011<br>133344          | 2011<br>133343  | 2011<br>133344          |             |            | 2011<br>122210 | 2011        | 2011<br>122209 | 2011       | 2011       | 2011         | 2011<br>122209                | 2011<br>122209 | 2011       | 2011<br>122210 |             | 2011<br>122209 | 2011       | 2011<br>122209   |            |
| Lab Ref                                                                                                          |                         |                            | AF68310        | AF68311                  |                                | -                                  | AF68314                       | AF68360                       | AF68315                 | AF68316                       | AF61305        | AF61272        |            | AF61273        | AF61308    | AF61310                 | AF61274         | AF61316                 | AF68436     | AF68317    | AF68361        | AF68437     | AF68318        |            |            |              | AF68321                       | AF68322        |            | AF68363        | AF68323     | AF68324        |            | AF68325          |            |
| Date                                                                                                             |                         |                            |                | 25/01/201                | 1 25/01/2011                   | 25/01/2011<br>TP2010               | 25/01/2011                    | 25/01/2011                    | 25/01/2011              | 25/01/2011                    | 04/01/2011     | 04/01/2011     | 04/01/2011 | 04/01/2011     | 04/01/2011 | 04/01/2011              | 04/01/2011      | 04/01/2011              | 07/02/2011  | 25/01/2011 | 25/01/2011     | 07/02/2011  | 25/01/2011     | 25/01/2011 | 25/01/2011 | 25/01/2011   | 25/01/2011                    | 25/01/2011     | 07/02/2011 | 25/01/2011     | 25/01/2011  | 25/01/2011     | 07/02/2011 | 25/01/2011       | 25/01/2011 |
| Exploatory hole location<br>Zone B Location                                                                      |                         |                            | B5             | B5                       | B5                             | B5                                 | B5                            | B5                            | B5                      | B5                            | B12010         | Bh2010<br>B5   | B12010     | Bh2010<br>B5   | B5         | B12010                  | B5              | B12010                  | B5          | B5         | B5             | B6          | B6             | B6         | B6         | B6           | B6                            | B6             | B6         | B6             | B6          | B6             | B6         | B6               | B6         |
|                                                                                                                  |                         |                            | Outside        | Outside<br>gasholders    |                                | Outside gasholders                 | Outside<br>gasholders         | Outside<br>gasholders         | Outside<br>gasholders   | Outside<br>gasholders         | Outside        | Outside        | Outside    | Outside        | Outside    | Outside                 | Outside         | Outside                 | Outside     | Outside    | Outside        | Outside     | Outside        | Outside    | Outside    | Outside      | Outside                       | Outside        | Outside    | Outside        | Outside     | Outside        | Outside    | Outside          | Outside    |
| Location on plot/ gas holder number                                                                              |                         |                            | Ť              | (condensers<br>scrubbers | and (condenser<br>and scrubber | s (condensers<br>s) and scrubbers) | (condensers<br>and scrubbers) | (condensers<br>and scrubbers) |                         | (condensers<br>and scrubbers) | gasholders     | gasholders     | gasholders | gasholders     | gasholders | gasholders              | gasholders      | gasholders              | gasholders  | gasholders | gasholders     | gasholders  | gasholders     | gasholders | gasholders | gasholders   | gasholders                    | gasholders     | gasholders | gasholders     | gasholders  |                | gasholders | gasholders       | gasholders |
| Depth (m)                                                                                                        |                         |                            | 3m             | 0.3m                     | 1m                             | 1.5m                               | 2m                            | 2m                            | 2.8 - 2.9m              | 4m<br>Possible MG/            | 0.3m           | 1m<br>Made     | 2m<br>Made | 3m<br>Made     |            |                         | 7m<br>Weathered | 9m                      | 0.6m        | 1m<br>Made | 1m<br>Made     | 0.3<br>Made | 1m<br>Made     | 1m<br>Made | 3m         | 0.3m<br>Made | 0.7 - 1.0m                    | 2m<br>Made     | 2m<br>Made | 2m<br>Made     | 3.5m - 3.9m | 1m<br>Made     | 1m<br>Made | 3 - 3.5m<br>Made | 4m<br>Made |
| Strata<br>cis-1,2-Dichloroethene                                                                                 | µg/kg                   | nc                         | Clay           | Made Grou                | nd Made Groun                  | 1.2                                | Made Ground<br><1.0           | Made Ground                   | Made Ground<br><1.0     | Clay<br><1.0                  | Made Ground    | Ground         | Ground     | Ground         | Clay       | Clay & Head<br>deposits | London Clay     | <1.0                    | Made Ground | Ground     | Ground         | Ground      | Ground         | Ground     | Clay       | Ground       | Made Ground<br><1.0           |                | Ground     | Ground         | Made Ground | Ground         | Ground     | Ground           | Ground     |
| Bromochloromethane<br>Trichloromethane<br>1,1,1-Trichloroethane                                                  | µg/kg<br>µg/kg<br>µg/kg | nc<br>107000<br>700000     |                |                          |                                | <1.0<br><1.0<br><1.0               | <1.0<br><1.0<br><1.0          |                               | <1.0<br><1.0<br><1.0    | <1.0<br><1.0<br><1.0          |                |                |            |                |            |                         |                 | <1.0<br><1.0<br><1.0    |             |            |                |             |                |            |            |              | <1.0<br><1.0<br><1.0          |                |            |                |             |                |            |                  |            |
|                                                                                                                  | µg/kg<br>µg/kg          | 3000<br>nc                 |                |                          |                                | <1.0<br>5.4                        | <1.0<br><1.0                  |                               | <1.0<br><1.0            | <1.0<br><1.0                  |                |                |            |                |            |                         |                 | <1.0<br><1.0            |             |            |                |             |                |            |            |              | <1.0<br><1.0                  |                |            |                |             |                |            |                  |            |
| 1,2-Dichloroethane                                                                                               | µg/kg<br>µg/kg<br>µg/kg | 28000<br>700<br>12000      |                |                          |                                | 3100<br><2.0<br><1.0               | 10000<br><2.0<br><1.0         |                               | 580<br><2.0<br><1.0     | 87<br><2.0<br><1.0            |                |                |            |                |            |                         |                 | 4200<br><2.0<br><1.0    |             |            |                |             |                |            |            |              | <1.0<br><2.0<br><1.0          |                |            |                |             |                |            |                  |            |
| 1,2-Dichloropropane                                                                                              | μg/kg<br>μg/kg<br>μg/kg | nc                         |                |                          |                                | <1.0<br><10                        | <1.0<br><10                   |                               | <1.0<br><10             | <1.0<br><10                   |                |                |            |                |            |                         |                 | <1.0<br><10             |             |            |                |             |                |            |            |              | <1.0<br><10                   |                |            |                |             |                |            |                  |            |
| Dibromomethane<br>Bromodichloromethane<br>cis-1,3-Dichloropropene<br>Toluene                                     | µg/kg<br>µg/kg<br>µg/kg | nc<br>nc<br>870000         |                |                          |                                | <5.0<br><10<br>2200                | <5.0<br><10<br>6400           |                               | <5.0<br><10<br>450      | <5.0<br><10<br>4.9            |                |                |            |                |            |                         |                 | <5.0<br><10<br>5700     |             |            |                |             |                |            |            |              | <5.0<br><10<br><1.0           |                |            |                |             |                |            |                  |            |
| trans-1,3-Dichloropropene<br>1,1,2-Trichloroethane                                                               | μg/kg<br>μg/kg          | nc<br>nc                   |                |                          |                                | <10<br>150                         | <10<br><10                    |                               | <10<br><10              | <10<br><10                    |                |                |            |                |            |                         |                 | <10<br><10              |             |            |                |             |                |            |            |              | <10<br><10                    |                |            |                |             |                |            |                  |            |
| Dibromochloromethane                                                                                             | µg/kg<br>µg/kg<br>µg/kg | 131000<br>nc<br>nc         |                |                          |                                | <1.0<br><2.0<br><10                | <1.0<br><2.0<br><10           |                               | <1.0<br><2.0<br><10     | <1.0<br><2.0<br><10           |                |                |            |                |            |                         |                 | <1.0<br><2.0<br><10     |             |            |                |             |                |            |            |              | <1.0<br>35<br><10             |                |            |                |             |                |            |                  |            |
| 1,2-Dibromoethane                                                                                                | µg/kg<br>µg/kg          | nc<br>59000                |                |                          |                                | <5.0<br><1.0<br><2.0               | <5.0<br><1.0<br><2.0          |                               | <5.0<br><1.0<br><2.0    | <5.0<br><1.0<br><2.0          |                |                |            |                |            |                         |                 | <5.0<br><1.0<br><2.0    |             |            |                |             |                |            |            |              | <5.0<br><1.0<br><2.0          |                |            |                |             |                |            |                  |            |
| Ethylbenzene<br>m- & p-Xylene                                                                                    | µg/kg<br>µg/kg<br>µg/kg | 115000<br>581000<br>575000 |                |                          |                                | 62<br>1200                         | 6200<br>53000                 |                               | 410<br>2700             | 13<br>39                      |                |                |            |                |            |                         |                 | 10000<br>11000          |             |            |                |             |                |            |            |              | <1.0<br><1.0                  |                |            |                |             |                |            |                  |            |
| o-Xylene<br>Styrene                                                                                              | μg/kg<br>μg/kg          | nc                         |                |                          |                                | 560<br><1.0<br><10                 | 24000<br><1.0                 |                               | 1600<br><1.0            | <1.0                          |                |                |            |                |            |                         |                 | 4800<br><1.0<br><10     |             |            |                |             |                |            |            |              | <1.0<br><1.0                  |                |            |                |             |                |            |                  |            |
| Isopropylbenzene<br>Bromobenzene                                                                                 | µg/kg<br>µg/kg<br>µg/kg | nc<br>nc<br>nc             |                |                          |                                | 13<br><1.0                         | <10<br>220<br><1.0            |                               | <10<br>62<br><1.0       | <10<br>2<br><1.0              |                |                |            |                |            |                         |                 | 610<br><1.0             |             |            |                |             |                |            |            |              | <10<br><1.0<br><1.0           |                |            |                |             |                |            |                  |            |
| n-Propylbenzene                                                                                                  | µg/kg<br>µg/kg<br>µg/kg | nc<br>nc<br>nc             |                |                          |                                | <50<br>18<br><1.0                  | <50<br>230<br><1.0            |                               | <50<br>30<br><1.0       | <50<br>2.5<br><1.0            |                |                |            |                |            |                         |                 | <50<br>260<br><1.0      |             |            |                |             |                |            |            |              | <50<br><1.0<br><1.0           |                |            |                |             |                |            |                  |            |
| 1,2,4-Trimethylbenzene<br>4-Chlorotoluene                                                                        | µg/kg                   | nc                         |                |                          |                                | 310<br><1.0                        | 19000<br><1.0                 |                               | 2400<br><1.0            | 52<br><1.0                    |                |                |            |                |            |                         |                 | 7100<br><1.0            |             |            |                |             |                |            |            |              | 6.1<br><1.0                   |                |            |                |             |                |            |                  |            |
| tert-Butylbenzene<br>1,3,5-Trimethylbenzene<br>sec-Butylbenzene                                                  | μg/kg<br>μg/kg<br>μg/kg | nc                         |                |                          |                                | <1.0<br>150<br><1.0                | <1.0<br>8800<br><1.0          |                               | 190<br>1300<br><1.0     | <1.0<br>30<br><1.0            |                |                |            |                |            |                         |                 | <1.0<br>2500<br><1.0    |             |            |                |             |                |            |            |              | <1.0<br>6.4<br><1.0           |                |            |                |             |                |            |                  |            |
| 1,3-Dichlorobenzene<br>4-Isopropyltoluene                                                                        | μg/kg<br>μg/kg          | nc                         |                |                          |                                | <1.0<br><1.0                       | <1.0<br><1.0                  |                               | <1.0<br><1.0            | <1.0<br><1.0                  |                |                |            |                |            |                         |                 | <1.0<br>180             |             |            |                |             |                |            |            |              | <1.0<br><1.0                  |                |            |                |             |                |            |                  |            |
| 1,4-Dichlorobenzene<br>n-Butylbenzene<br>1,2-Dichlorobenzene                                                     | µg/kg<br>µg/kg<br>µg/kg | nc<br>nc<br>2140000        |                |                          |                                | <1.0<br><1.0<br><1.0               | <1.0<br><1.0<br><1.0          |                               | <1.0<br><1.0<br><1.0    | <1.0<br><1.0<br><1.0          |                |                |            |                |            |                         |                 | <1.0<br><1.0<br><1.0    |             |            |                |             |                |            |            |              | <1.0<br><1.0<br><1.0          |                |            |                |             |                |            |                  |            |
| 1,2-Dibromo-3-chloropropane<br>1,2,4-Trichlorobenzene                                                            | μg/kg<br>μg/kg          | nc                         |                |                          |                                | <50<br><1.0<br><1.0                | <50<br><1.0                   |                               | <50<br><1.0<br><1.0     | <50<br><1.0                   |                |                |            |                |            |                         |                 | <50<br><1.0<br><1.0     |             |            |                |             |                |            |            |              | <50<br><1.0<br><1.0           |                |            |                |             |                |            |                  |            |
| Hexachlorobutadiene<br>1,2,3-Trichlorobenzene<br>Tentatively Identified Compounds<br>Benzene, 1-ethenyl-3-methyl | µg/kg<br>µg/kg<br>µg/kg | nc<br>108000<br>nc         |                |                          |                                | <2.0                               | <1.0<br><2.0<br>Detected      |                               | <2.0<br>Detected        | <1.0<br><2.0<br>None Detected |                |                |            |                |            |                         |                 | <2.0<br>Detected        |             |            |                |             |                |            |            |              | <1.0<br><2.0<br>None Detected |                |            |                |             |                |            |                  | FFFF       |
| Benzene, 1-ethenyl-3-methyl<br>Indane<br>2-Benzothiphene                                                         | μg/kg<br>μg/kg          | nc<br>nc<br>nc             |                |                          |                                |                                    | 2200                          |                               |                         |                               |                |                |            |                |            |                         |                 |                         |             |            |                |             |                |            |            |              |                               |                |            |                |             |                |            |                  |            |
| Benzofuran<br>Benzo(B)thiophene                                                                                  | µg/kg<br>µg/kg<br>µg/kg | nc                         |                |                          |                                | 2400<br>4300                       | 2200                          |                               | 590                     |                               |                |                |            |                |            |                         |                 |                         |             |            |                |             |                |            |            |              |                               |                |            |                |             |                |            |                  |            |
| Benzo(B)Thiophene                                                                                                | µg/kg<br>µg/kg<br>mg/kg | nc<br>nc<br>84900          |                |                          |                                | 260                                | 80                            |                               | 8.8                     | 0.6                           |                |                |            |                |            |                         |                 | <0.50                   |             |            |                |             |                |            |            |              | 23                            |                |            |                |             |                |            |                  |            |
| Acenaphthylene<br>Anthracene                                                                                     | mg/kg<br>mg/kg          | 84300                      |                |                          |                                | 1700<br>2400                       | 160<br>440                    |                               | 22<br>55                | 3<br>3.2                      |                |                |            |                |            |                         |                 | <0.50<br><0.50          |             |            |                |             |                |            |            |              | 6.7<br>61                     |                |            |                |             |                |            |                  |            |
| Azobenzene<br>Benzo[a]anthracene<br>Benzo[a]pyrene                                                               | mg/kg<br>mg/kg<br>mg/kg | 90<br>14                   |                |                          |                                | <0.50<br>1800<br>1700              | <0.50<br>390<br>380           |                               | <0.50<br>32<br>29       | <0.50<br>3.3<br>3.1           |                |                |            |                |            |                         |                 | <0.50<br><0.50<br><0.50 |             |            |                |             |                |            |            |              | 0.54<br>100<br>120            |                |            |                |             |                |            |                  |            |
| Benzo[g,h,i]perylene                                                                                             | mg/kg<br>mg/kg          | 654                        |                |                          |                                | 1900<br>890<br>560                 | 470<br>220                    |                               | 29<br>10<br>11          | 3.1<br>2.7<br>1               |                |                |            |                |            |                         |                 | <0.50<br><0.50<br><0.50 |             |            |                |             |                |            |            |              | 140<br>68                     |                |            |                |             |                |            |                  |            |
| bis(2-Chloroethoxy)methane<br>bis(2-Chloroethyl)ether                                                            | mg/kg<br>mg/kg<br>mg/kg | 141<br>nc<br>nc            |                |                          |                                | <0.50<br><0.50                     | 130<br><0.50<br><0.50         |                               | <0.50<br><0.50          |                               |                |                |            |                |            |                         |                 | <0.50<br><0.50<br><0.50 |             |            |                |             |                |            |            |              | 48<br><0.50<br><0.50          |                |            |                |             |                |            |                  | FFFF       |
| bis(2-Chloroisopropyl)ether<br>bis(2-Ethylhexyl)phthalate                                                        | mg/kg<br>mg/kg          | nc                         |                |                          |                                | <0.50<br><0.50<br><0.50            | <0.50<br><0.50<br><0.50       |                               | <0.50<br>7.3<br>1.1     | <0.50<br><0.50<br><0.50       |                |                |            |                |            |                         |                 | <0.50<br><0.50<br><0.50 |             |            |                |             |                |            |            |              | <0.50<br><0.50<br><0.50       |                |            |                |             |                |            |                  |            |
| Chrysene                                                                                                         | mg/kg<br>mg/kg<br>mg/kg | nc<br>nc<br>137            |                |                          |                                | 910<br>1500                        | 170<br>310                    |                               | 23 23                   | 1.3<br>2.2                    |                |                |            |                |            |                         |                 | <0.50<br><0.50<br><0.50 |             |            |                |             |                |            |            |              | 19<br>88                      |                |            |                |             |                |            |                  | FFFF       |
| Di-n-butylphthalate<br>Di-n-octylphthalate<br>Dibenzo[a,h]anthracene                                             | mg/kg<br>mg/kg<br>mg/kg | nc<br>nc<br>nc             |                |                          |                                | <0.50<br><0.50<br>210              | <0.50<br><0.50<br>44          |                               | <0.50<br>1.8<br>4.2     | <0.50<br><0.50<br><0.50       |                |                |            |                |            |                         |                 | <0.50<br><0.50<br><0.50 |             |            |                |             |                |            |            |              | <0.50<br><0.50<br>19          |                |            |                |             |                |            |                  |            |
| Dibenzofuran                                                                                                     | mg/kg<br>mg/kg          | nc                         |                |                          |                                | 1500<br><0.50                      | 300<br><0.50                  |                               | 34<br><0.50             | 2.4<br><0.50                  |                |                |            |                |            |                         |                 | <0.50<br><0.50          |             |            |                |             |                |            |            |              | 23<br><0.50                   |                |            |                |             |                |            |                  |            |
| Fluoranthene                                                                                                     | mg/kg<br>mg/kg          | nc                         |                |                          |                                | <0.50<br>5100<br>1400              | <0.50<br>950<br>260           |                               | <0.50<br>67<br>43       | <0.50<br>5.9<br>2.9           |                |                |            |                |            |                         |                 | <0.50<br><0.50<br><0.50 |             |            |                |             |                |            |            |              | <0.50<br>200<br>32            |                |            |                |             |                |            |                  |            |
| Hexachlorobenzene<br>Hexachlorobutadiene                                                                         | mg/kg<br>mg/kg<br>mg/kg | 47<br>nc                   |                |                          |                                | <0.50<br><0.50                     | <0.50<br><0.50                |                               | <0.50<br><0.50          | <0.50<br><0.50                |                |                |            |                |            |                         |                 | <0.50<br><0.50          |             |            |                |             |                |            |            |              | 32<br><0.50<br><0.50          |                |            |                |             |                |            |                  |            |
| Hexachloroethane                                                                                                 | mg/kg<br>mg/kg<br>mg/kg | nc<br>nc<br>60             |                |                          | -                              | <0.50<br>710                       | 170                           |                               | <0.50<br><0.50<br>11    | < 0.50                        |                |                |            |                |            |                         |                 | <0.50<br><0.50<br><0.50 |             |            |                |             |                |            |            |              | <0.50<br><0.50<br>58          |                |            |                |             |                |            |                  |            |
| Isophorone<br>N-Nitrosodi-n-propylamine                                                                          | mg/kg<br>mg/kg<br>mg/kg | nc                         |                |                          |                                | <0.50<br><0.50                     | <0.50<br><0.50                |                               | <0.50<br><0.50          |                               |                |                |            |                |            |                         |                 | <0.50<br><0.50          |             |            |                |             |                |            |            |              | <0.50<br><0.50                |                |            |                |             |                |            |                  |            |
| N-Nitrosodimethylamine<br>Naphthalene<br>Nitrobenzene                                                            | mg/kg<br>mg/kg<br>mg/kg | nc<br>204<br>nc            |                |                          |                                |                                    | <0.50<br>6700<br><0.50        |                               | <0.50<br>200<br><0.50   | 8.4                           |                |                |            |                |            |                         |                 | <0.50<br>27<br><0.50    |             |            |                |             |                |            |            |              | <0.50<br>14<br><0.50          |                |            |                |             |                |            |                  |            |
| Pentachlorophenol<br>Phenanthrene                                                                                | mg/kg<br>mg/kg<br>mg/kg | 1220<br>21900              |                |                          |                                | <0.50<br>7500<br>140               | <0.50<br>1400<br><0.50        |                               | <0.50<br>110<br><0.50   | <0.50<br>9.8                  |                |                |            |                |            |                         |                 | <0.50<br>0.54<br><0.50  |             |            |                |             |                |            |            |              | <0.50<br>180<br><0.50         |                |            |                |             |                |            |                  |            |
| Pyrene<br>1,2-Dichlorobenzene                                                                                    | mg/kg<br>mg/kg          | 54200                      |                |                          |                                | 4000<br><0.50                      | 750<br><0.50                  |                               | 49<br><0.50             | 3.8<br><0.50                  |                |                |            |                |            |                         |                 | <0.50<br><0.50<br><0.50 |             |            |                |             |                |            |            |              | <0.50<br>170<br><0.50         |                |            |                |             |                |            |                  | $\square$  |
|                                                                                                                  | mg/kg<br>mg/kg<br>mg/kg |                            |                |                          |                                | <0.50<br><0.50<br><0.50            | < 0.50                        |                               | <0.50<br><0.50<br><0.50 | <0.50<br><0.50<br><0.50       |                |                |            |                |            |                         |                 | <0.50<br><0.50<br><0.50 |             |            |                |             |                |            |            |              | <0.50<br><0.50<br><0.50       |                |            |                |             |                |            |                  |            |
| 2-Chloronaphthalene<br>2-Chlorophenol                                                                            | mg/kg<br>mg/kg          | nc<br>3540                 |                |                          |                                | < 0.50                             | <0.50<br><0.50<br><0.50       |                               | <0.50<br><0.50          | <0.50<br><0.50                |                |                |            |                |            |                         |                 | <0.50<br><0.50          |             |            |                |             |                |            |            |              | <0.50<br><0.50                |                |            |                |             |                |            |                  |            |
| 2-Methyl-4,6-dinitrophenol<br>2-Methylnaphthalene                                                                | mg/kg<br>mg/kg<br>mg/kg | nc<br>nc<br>nc             |                |                          |                                | 110<br>1400<br>60                  | 110<br>390<br><0.50           |                               | <0.50<br>65<br><0.50    | <0.50<br>0.76<br><0.50        |                |                |            |                |            |                         |                 | <0.50<br>2.8<br><0.50   |             |            |                |             |                |            |            |              | <0.50<br>9<br><0.50           |                |            |                |             |                |            |                  |            |
| 2-Nitroaniline<br>2-Nitrophenol                                                                                  | mg/kg<br>mg/kg          | nc                         |                |                          |                                | <0.50<br><0.50                     | <0.50<br><0.50                |                               | <0.50<br><0.50          | <0.50<br><0.50                |                |                |            |                |            |                         |                 | <0.50<br><0.50          |             |            |                |             |                |            |            |              | <0.50<br><0.50                |                |            |                |             |                |            |                  |            |
|                                                                                                                  | mg/kg<br>mg/kg<br>mg/kg | nc                         |                |                          |                                | <0.50<br>43<br><0.50               | <0.50<br><0.50<br><0.50       |                               | <0.50<br><0.50<br><0.50 |                               |                |                |            |                |            |                         |                 | <0.50<br><0.50<br><0.50 |             |            |                |             |                |            |            |              | <0.50<br><0.50<br><0.50       |                |            |                |             |                |            |                  |            |
| 2,4,5-1 richlorophenol<br>2,4,6-Trichlorophenol                                                                  | mg/kg<br>mg/kg          | nc<br>3880                 |                |                          |                                | <0.50<br><0.50                     | <0.50<br><0.50                |                               | <0.50<br><0.50          | <0.50<br><0.50                |                |                |            |                |            |                         |                 | <0.50<br><0.50          |             |            |                |             |                |            |            |              | <0.50<br><0.50                |                |            |                |             |                |            |                  |            |
| 2,6-Dinitrotoluene<br>3-Nitroaniline                                                                             | mg/kg<br>mg/kg<br>mg/kg |                            |                |                          |                                | <0.50<br><0.50<br><0.50            | <0.50<br><0.50<br><0.50       |                               | <0.50<br><0.50<br><0.50 | <0.50<br><0.50<br><0.50       |                |                |            |                |            |                         |                 | <0.50<br><0.50<br><0.50 |             |            |                |             |                |            |            |              | <0.50<br><0.50<br><0.50       |                |            |                |             |                |            |                  |            |
| 4-Chloro-3-methylphenol                                                                                          | mg/kg<br>mg/kg          | nc                         |                |                          |                                | < 0.50                             | <0.50<br><0.50<br><0.50       |                               | < 0.50                  | <0.50<br><0.50<br><0.50       |                |                |            |                |            |                         |                 | <0.50<br><0.50<br><0.50 |             |            |                |             |                |            |            |              | <0.50<br><0.50<br><0.50       |                |            |                |             |                |            |                  |            |
|                                                                                                                  |                         |                            |                |                          |                                |                                    |                               |                               |                         |                               | _              |                | _          |                |            |                         |                 |                         |             |            | _              |             |                |            |            | _            |                               | _              |            |                |             |                |            | _                |            |

|                                                          |                |                           | 1         |                       |                       |                       |                       | 1                     |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         |                                              |                                                   |                |
|----------------------------------------------------------|----------------|---------------------------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------|-----------|----------------|-----------|----------------------|-------------------------|-------------|---------------|-------------|----------------|----------------|-----------|----------------|----------------|------------|------------|-------------|---------|---------|----------------|-------------|---------|----------------------------------------------|---------------------------------------------------|----------------|
| Ground Investigatio                                      | on             |                           | PBA 2010/ |                       |                       | PBA 2010/             / |                | PBA 2010/ | PBA 2010/            | PBA 2010/               | PBA 2010/   | PBA 2010/     | PBA 2010/   | PBA 2010/      | PBA 2010/      | PBA 2010/ | PBA 2010/      | PBA 2010/      | PBA 2010/  | PBA 2010/  | PBA 2010/   |         |         |                | PBA 2010/   |         | PBA 2010/                                    |                                                   |                |
|                                                          | _              |                           | -         |                       | 1 PBA 2010/ 2011      | -                     | 2011                  | 2011                  | 2011                  | 2011                  | 2011        | 2011      | 2011           | 2011      | 2011                 | 2011                    | 2011        | 2011          | 2011        | 2011           | 2011           |           | 2011           |                | 2011       | 2011       | 2011        | 2011    | 2011    | 2011           | 2011        | 2011    |                                              | 2011                                              | 2011           |
| Report Number                                            | ber            |                           | 122209    | 122209                | 122209                | 122209                | 122209                | 122210                | 122209                | 122209                | 133344      | 133343    | 133344         | 133343    | 133344               | 133344                  | 133343      | 133344        | 122211      | 122209         | 122210         | 122211    | 122209         | 122210         | 122209     | 122209     | 122209      | 122209  | 122211  | 122210         | 122209      | 122209  | 122211                                       | 122209                                            | 122209         |
| Lab Re                                                   | Ref            |                           | AF68310   | AF68311               | AF68312               | AF68313               | AF68314               | AF68360               | AF68315               | AF68316               | AF61305     | AF61272   | AF61306        | AF61273   | AF61308              | AF61310                 | AF61274     | AF61316       | AF68436     | AF68317        | AF68361        | AF68437   | AF68318        | AF68362        | AF68319    | AF68320    | AF68321     | AF68322 | AF68438 | AF68363        | AF68323     | AF68324 | AF68439                                      | AF68325                                           | AF68326        |
| Dat                                                      | ate            |                           |           |                       | 25/01/2011            |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         |                                              |                                                   |                |
| Exploatory hole locatio                                  |                |                           |           | TP2010                |                       |                       | TP2010                |                       |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         |                                              |                                                   |                |
| Zone B Locatio                                           | on             |                           | B5        | B5                    | B5                    | B5                    | B5                    | B5                    | B5                    | B5                    | B5          | B5        | B5             | B5        | B5                   | B5                      | B5          | B5            | B5          | B5             | B5             | B6        | B6             | B6             | B6         | B6         | B6          | B6      | B6      | B6             | B6          | B6      | B6                                           | B6                                                | B6             |
|                                                          |                |                           | Outside   | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside     | Outside   | Outside        | Outside   | Outside              | Outside                 | Outside     | Outside       | Outside     | Outside        | Outside        | Outside   | Outside        | Outside        | Outside    | Outside    | Outside     | Outside | Outside | Outside        | Outside     | Outside | Outside                                      | Outside                                           | Outside        |
| Location on plot/ gas holder number                      | ber            |                           |           | (condensers an        |                       | (condensers           | (condensers           |                       | (condensers<br>and    | (condensers           |             |           |                |           |                      |                         | gasholders  | gasholders    |             |                |                |           |                |                | gasholders | gasholders | gasholders  |         |         |                | gasholders  |         |                                              |                                                   |                |
|                                                          |                |                           | -         | scrubbers)            | and scrubbers)        | ) and scrubbers)      | ) and scrubbers)      | and scrubbers)        | scrubbers)            | and scrubbers)        | -           | -         | -              | -         | -                    | -                       | -           | -             | -           | -              | -              | -         | -              | -              | -          | -          | -           | -       | -       | -              | -           | -       | ( )                                          | ſ I                                               | í I            |
| Depth (n                                                 | m)             |                           | 3m        | 0.3m                  | 1m                    | 1.5m                  | 2m                    | 2m                    | 2.8 - 2.9m            | 4m                    | 0.3m        | 1m        | 2m             | 3m        | 4m                   | 5m                      | 7m          | 9m            | 0.6m        | 1m             | 1m             | 0.3       | 1m             | 1m             | 3m         | 0.3m       | 0.7 - 1.0m  | 2m      | 2m      | 2m             | 3.5m - 3.9m | 1m      | 1m                                           | 3 - 3.5m                                          | 4m             |
| 0                                                        |                |                           |           |                       |                       |                       |                       |                       |                       | Possible MG/          |             | Made      | Mada           | Made      |                      | Claur 8 Lianad          | Weethered   |               |             | Mada           | Mada           | Made      | Mada           | Mada           |            | Made       |             | Made    | Made    | Mada           |             | Made    | Maria                                        | Maria                                             | Mada           |
| Strat                                                    | ata            |                           | Clav      | Made Ground           | Made Ground           | Made Ground           | Made Ground           | Made Ground           | Made Ground           |                       | Made Ground | Ground    | Made<br>Ground | Ground    | Possible MG/<br>Clav | Clay & Head<br>deposits | London Clav | London Clav   | Made Ground | Made<br>Ground | Made<br>Ground | Ground    | Made<br>Ground | Made<br>Ground | Clay       | Ground     | Made Ground | Ground  | Ground  | Made<br>Ground | Made Ground | Ground  | Made<br>Ground                               | Made<br>Ground                                    | Made<br>Ground |
| 4-Chlorophenylphenylether                                | mg/kg          | nc                        |           | June                  | June 2. June          | < 0.50                | < 0.50                |                       | < 0.50                | <0.50                 |             |           |                |           |                      |                         |             | < 0.50        |             |                |                |           |                |                |            |            | <0.50       |         |         |                |             |         |                                              |                                                   |                |
| 4-Methylphenol                                           | mg/kg          | nc                        |           |                       |                       | <0.50                 | <0.50                 |                       | <0.50                 | <0.50                 |             |           |                |           |                      |                         |             | <0.50         |             |                |                |           |                |                |            |            | <0.50       |         |         |                |             |         | <u>`                                    </u> |                                                   | ,              |
| 4-Nitroaniline<br>ethyl-methyl benzenes                  | mg/kg<br>mg/kg |                           | -         |                       | -                     |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             | <0.50         |             |                |                |           |                |                |            |            |             |         |         |                |             |         | <u>ا ا ا ا</u>                               | ļļ                                                |                |
| Tentatively Identified Compounds                         | mg/kg          | nc                        |           |                       |                       |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             | Not detected  |             | 1              |                |           |                |                |            |            |             | -       |         |                |             |         | بـــــــــــــــــــــــــــــــــــــ       | <del>ب</del> ــــــــــــــــــــــــــــــــــــ |                |
| Benzofuran                                               | mg/kg          | nc                        |           |                       |                       |                       | 1                     |                       | 2.1                   |                       |             |           |                |           |                      |                         |             | 1401 06160160 | 1           |                |                |           |                |                |            |            |             |         |         |                |             |         | ,                                            |                                                   |                |
| biphenyl<br>1-methylnahthalene                           | mg/kg          |                           |           |                       |                       | 460                   | 110                   |                       |                       | 0.85                  |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            | 3.9         |         |         |                |             |         | $\square$                                    |                                                   |                |
| 1-methylnahthalene                                       | mg/kg          |                           |           |                       |                       |                       | 290                   |                       |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         | '                                            |                                                   | ·              |
| 1-methylnaphthalene                                      | mg/kg          |                           |           |                       |                       | 760                   |                       |                       | 17                    |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         | <b>└───┘</b>                                 |                                                   |                |
| Indene<br>2-benzothiophene                               | mg/kg          | nc                        |           |                       | -                     | 270                   |                       |                       | 1.7                   |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         | <u>ا</u>                                     | ļļ                                                |                |
| Cinnamaldehde                                            | mg/kg<br>mg/kg |                           |           |                       |                       | 210                   | 1                     |                       | 1.4                   |                       |             |           |                |           |                      |                         |             |               | 1           |                |                |           |                |                |            |            |             |         |         |                |             |         | ,                                            |                                                   |                |
| Biphenyl                                                 | mg/kg          |                           |           |                       |                       |                       | 1                     |                       | 12                    |                       |             |           |                |           |                      |                         |             |               | 1           |                |                |           |                |                |            |            |             |         |         |                |             |         | ,                                            | $ \longrightarrow $                               |                |
| naphtho[2,3-B]thiophene                                  | mg/kg          |                           |           |                       |                       | 520                   |                       |                       |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         | $\square$                                    |                                                   | ,              |
| PCBs as Aroclor 1242                                     | mg/kg          |                           | _         |                       | _                     | <1                    | <1                    |                       | <1                    | <1                    |             |           |                |           |                      |                         |             | <1.0          |             |                |                |           |                |                |            |            | <1          |         |         |                |             |         | —                                            | <b>ل</b> ــــــــــا                              |                |
| 2-sec-Butyl-4,6-dinitrophenol<br>4-Chloro-3-methylphenol | mg/kg<br>mg/kg | nc                        |           |                       |                       |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         | <i>_</i>                                     | <del>ب</del>                                      |                |
| 2-Chlorophenol                                           | mg/kg          | nc                        |           |                       |                       |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         | ,                                            |                                                   |                |
| 2,4-Dichlorophenol                                       | mg/kg          | nc                        |           |                       |                       |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         | $\square$                                    |                                                   |                |
| 2,6-Dichlorophenol                                       | mg/kg          |                           |           |                       |                       |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         | <u> </u>                                     |                                                   | ,              |
| 2,4-Dimethylphenol                                       | mg/kg          | nc                        |           |                       | _                     |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             | L       |         |                |             |         | ┢────┘                                       | ┙                                                 | r              |
| 2,4-Dinitrophenol<br>2-Methyl-4,6-dinitrophenol          | mg/kg<br>mg/kg | nc                        |           | 1                     |                       | +                     | 1                     | 1                     |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         | <u>ل</u> ــــــا                             | <del>ب</del> ــــــــــــــــــــــــــــــــــــ |                |
| 2-Methylphenol                                           | mg/kg          |                           |           | 1                     | 1                     | 1                     | 1                     | 1                     |                       |                       |             | 1         |                |           |                      |                         | 1           |               |             | 1 1            |                |           |                |                |            |            |             |         |         |                |             |         | ,                                            | $\rightarrow$                                     |                |
| 3-Methylphenol                                           | mg/kg          |                           |           |                       |                       |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             |               |             | 1              |                |           |                |                |            |            |             |         |         |                |             |         |                                              |                                                   | (              |
| 4-Methylphenol                                           | mg/kg          | nc                        |           |                       | _                     |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         | <b>└──</b> ′                                 |                                                   |                |
| 2-Nitrophenol<br>4-Nitrophenol                           | mg/kg<br>ma/ka | nc                        | -         |                       | -                     | +                     | 1                     |                       |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         | <b>└───┘</b>                                 | <b>ب</b> ــــــــــــــــــــــــــــــــــــ     | I              |
| 4-Nitrophenol<br>Pentachlorophenol                       | mg/kg          |                           |           | 1                     | -                     | +                     | 1                     | 1                     |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         | <u>ب</u>                                     | <del>ب</del> ــــــــــــــــــــــــــــــــــــ |                |
| Phenol                                                   | mg/kg          |                           |           | 1                     |                       |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         | ,                                            | <del> </del>                                      |                |
| 2,3,4,5-Tetrachlorophenol                                | mg/kg          | nc                        |           |                       |                       |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         |                                              |                                                   |                |
| 2,3,4,6-Tetrachlorophenol                                | mg/kg          |                           |           |                       |                       |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         | '                                            |                                                   |                |
| 2,3,5,6-Tetrachlorophenol                                | mg/kg          | nc                        |           |                       |                       |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             |               |             | <b>├</b> ──┤   |                |           |                | $\vdash$       |            |            |             |         |         |                |             |         | ┢────┘                                       | <b>ا</b> لـــــــــــا                            |                |
| 2,3,4-Trichlorophenol<br>2,3,5-Trichlorophenol           | mg/kg<br>mg/kg | nc                        |           | 1                     |                       | 1                     | 1                     | 1                     |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         | <u>ب</u>                                     | <del>ا ــــــــــ</del>                           |                |
| 2.3.6-Trichlorophenol                                    | mg/kg          |                           |           | 1                     |                       |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         | ,                                            | <del> </del>                                      |                |
| 2,4,5-Trichlorophenol                                    | mg/kg          | nc                        |           |                       |                       |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             |               |             | i              |                |           |                |                |            |            |             |         |         |                |             |         |                                              |                                                   |                |
| 2,4,6-Trichlorophenol                                    | mg/kg          | nc                        |           |                       |                       |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         |                                              |                                                   |                |
| 3,4,5-Trichlorophenol                                    | mg/kg          | nc                        |           |                       |                       |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             |               |             | <b>├</b> ──┤   |                |           |                | $\vdash$       |            |            |             |         |         |                |             |         | ┢────┘                                       | <b>ا</b> لــــــــــا                             |                |
|                                                          | Indicator      | where the data exceeds th |           |                       |                       | +                     | 1                     |                       |                       |                       |             |           |                |           |                      |                         |             |               |             |                |                |           |                |                |            |            |             |         |         |                |             |         | <b>ل</b> ـــــــــــا                        | لبسسم                                             | I              |
|                                                          | muicates       | more are usia exceeds (if | 1.04      |                       |                       |                       |                       |                       |                       |                       |             |           |                |           |                      |                         |             |               |             | 1              |                |           |                |                |            |            |             |         |         |                |             |         | <u> </u>                                     | ,)                                                | ,              |

| Ground Investigation                                                                                                                                                                                                            | PBA 2010/<br>2011     | 2011                   | 2011                      | 2011                   | 2011                    | 2011                    | 2011                        | 2011                    | 2011                    |                         | 2011                        | 2011                   | 2011                    | 2011                   | PBA 2010/<br>2011     | PBA 2010/<br>2011      | PBA 2010/<br>2011     | PBA 2010/<br>2011           | PBA 2010/<br>2011           |                             | PBA 2010/ 2011              |                       | PBA 2010/<br>2011   | PBA 2010/<br>2011           | PBA 2010/<br>2011           | PBA 2010/<br>2011    | PBA 2010/<br>2011     | PBA 2010/<br>2011           | PBA 2010/<br>2011        | 2011                        | 2011                     |                        | 2011                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|---------------------------|------------------------|-------------------------|-------------------------|-----------------------------|-------------------------|-------------------------|-------------------------|-----------------------------|------------------------|-------------------------|------------------------|-----------------------|------------------------|-----------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|---------------------|-----------------------------|-----------------------------|----------------------|-----------------------|-----------------------------|--------------------------|-----------------------------|--------------------------|------------------------|------------------------|
| Report Number                                                                                                                                                                                                                   | 122209                | 133346                 |                           |                        | 115023                  | 115023<br>AF54166       | 115023                      | 115023                  | 115023                  | 115023<br>AF54170       | 115023                      | 115023                 |                         | 122209                 | 122211                | 122209                 | 122211                | 122209                      | 122209                      | 122210                      | 122209                      | 122209                | 121783<br>AF57626   | 121783                      | 121863                      | 121863               | 121864                | 121863                      | 121863                   | 121863                      |                          | 115023                 | 115023                 |
|                                                                                                                                                                                                                                 | AF68327<br>25/01/2011 |                        | 04/01/2011                | Not known              | Not known               | Not known               |                             |                         |                         | Not known               |                             |                        |                         | 25/01/2011             |                       |                        |                       |                             |                             |                             |                             |                       | 10/12/2010          |                             |                             |                      | 10/12/2010            | 10/12/2010                  | 10/12/2010               | 10/12/2010                  | Not known N              | Not known              | tot innomi             |
| Exploatory hole location Zone B Location                                                                                                                                                                                        | TP2016-A<br>B6        | Pancras<br>Square      | Pancras                   | Pancras<br>Square      | Pancras                 | Pancras                 | Pancras                     |                         | Pancras<br>Square       | Pancras<br>Square       | BH2011<br>Pancras<br>Square | Pancras<br>Square      | Pancras                 | Pancras<br>Square      | Pancras<br>Square     | Pancras<br>Square      | Pancras<br>Square     | TP2017<br>Pancras<br>Square | TP2017<br>Pancras Square    | TP2017<br>Pancras<br>Square | Pancras Square              | Pancras<br>Square     | Pancras<br>Square   | TP2018<br>Pancras<br>Square | TP2015<br>Pancras<br>Square | Pancras<br>Square    | Pancras<br>Square     | Pancras<br>Square           | Pancras<br>Square        | TP2015<br>Pancras<br>Square | Pancras                  |                        | Pancras<br>Square      |
| Location on plot/ gas holder number                                                                                                                                                                                             | Outside<br>gasholders | -                      | -                         |                        |                         |                         |                             |                         |                         | Outside<br>gasholders   | gasholders                  | -                      | gasholders              | -                      | Outside<br>gasholders | Ť                      | Outside<br>gasholders | Outside<br>gasholders       | Outside<br>gasholders       | Outside<br>gasholders       | Outside<br>gasholders       | Outside<br>gasholders | Č.                  | Outside<br>gasholders       | Outside<br>gasholders       | -                    | Outside<br>gasholders | Outside<br>gasholders       | Outside<br>gasholders    | gastioiders                 | asholder 3 ga<br>and A   | asholder 3 ga<br>and A | and A                  |
| Depth (m) Strata Strata Screening Criteria                                                                                                                                                                                      | 4m<br>Made Ground     | 0.3m<br>Made<br>Ground | 5m<br>Made<br>Ground      | 0.3m<br>Made<br>Ground | 3m<br>Made<br>Ground    | 6m<br>Made<br>Ground    | 8m<br>Made<br>Ground        |                         | London Clay             | 1m<br>Made Ground       | 2m<br>Made<br>Ground        | 6m<br>Made<br>Ground   | 1m<br>Made<br>Ground    | 0.3m<br>Made<br>Ground | 0.3m<br>Made Ground   | 1m<br>Clay             | 1m<br>Made Ground     | 2m<br>Clay                  | 2m<br>Clay                  | 2m<br>Clay                  | 3m<br>Clay                  | 4m<br>Clay            | 0.5m<br>Made Ground |                             | 0.3m<br>Made Ground         | 1m<br>Made Ground    |                       |                             | Made                     | 4m/ 4.5 - 5?<br>Made Ground | Made                     | 1.5m<br>Made<br>Ground | 0.5m<br>Made<br>Ground |
| Determinants Units Commercial Metals                                                                                                                                                                                            |                       |                        |                           |                        |                         |                         |                             |                         |                         |                         |                             |                        |                         |                        |                       |                        |                       |                             |                             |                             |                             |                       | **                  |                             |                             |                      |                       |                             |                          |                             |                          |                        |                        |
| Arsenic         mg/kg         640           Cadmium         mg/kg         230.0           Chromium         mg/kg         30400                                                                                                  |                       |                        |                           | 0.18                   | 11<br>0.24<br>13        | <0.10                   |                             | 9.7<br><0.10<br>16      |                         |                         | 15<br><0.10<br>25           | 12<br>0.1<br>24        | 0.4                     | 0.24                   |                       | 13<br><0.10<br>17      |                       | 18<br><0.10<br>19           |                             |                             | 18<br><0.10<br>21           | 12<br><0.10<br>14     | 44                  |                             |                             | 16<br>0.38<br>16     |                       |                             | 20<br><0.10<br>21        |                             | 25<br>0.21<br>17         | 0.28                   | 11<br>0.24<br>17       |
| Copper         mg/kg         71700           Lead         mg/kg         7300                                                                                                                                                    |                       |                        |                           | 250                    | 13<br>21<br>100<br>0.21 | 13                      |                             | 55<br>140<br>0.19       |                         |                         | 25<br>29<br>160<br>0.3      | 24<br>25<br>18         | 29<br>71<br>560<br>0.47 | 370                    |                       | 17<br>29<br>78<br>0.56 |                       | 19<br>25<br>200<br>0.59     |                             |                             | 31<br>110<br>0.9            | 26<br>37<br>0.3       | 39<br>440<br>0.45   |                             |                             | 55<br>330<br>1.9     |                       |                             | 21<br>100<br>1700<br>1.3 |                             | 17<br>60<br>1000<br>2.1  | 170                    |                        |
| Nickel mg/kg 1800<br>Molybdenum mg/kg nc                                                                                                                                                                                        |                       |                        |                           | 17                     | 11                      | 13                      |                             | 13                      | 47                      |                         | 30                          | 33                     | 20                      | 22                     |                       | 18                     |                       | 24                          |                             |                             | 34                          | 29                    | 34                  |                             |                             | 25                   |                       |                             | 26                       |                             | 20                       | 14                     | 14                     |
| Selenium         mg/kg         13000           Zinc         mg/kg         662000           Miscellaneous                                                                                                                        |                       |                        |                           |                        | <0.20<br>96             |                         |                             | <0.20<br>400            | 1<br>90                 |                         | 0.32<br>63                  | 0.24<br>96             | <0.20<br>550            | <0.20<br>210           |                       | <0.20<br>57            |                       | <0.20<br>53                 |                             |                             | <0.20<br>62                 | <0.20<br>57           | 0.2<br>130          |                             |                             | < 0.20<br>170        |                       |                             | < 0.20<br>1200           |                             | 0.55<br>450              |                        | <0.20<br>210           |
| Total Cyanide         mg/kg         nc           Free Cyanide         mg/kg         78.00                                                                                                                                       |                       |                        |                           |                        |                         |                         |                             |                         |                         |                         |                             |                        |                         |                        |                       |                        |                       |                             |                             |                             |                             |                       | 7.6<br>< 0.5        |                             |                             | 1.9<br>< 0.5         |                       |                             | 35<br>9.5                |                             |                          |                        |                        |
| Thicoyanate         mg/kg         nc           Boron         mg/kg         192000           Total organic carbon         %         nc                                                                                           |                       |                        | 1.6                       |                        |                         |                         |                             |                         |                         |                         |                             |                        |                         |                        |                       |                        |                       |                             |                             | 17                          |                             |                       | < 5.0               |                             |                             | < 5.0                | 1.7                   |                             | < 5.0                    |                             |                          |                        |                        |
| pH pH Units nc                                                                                                                                                                                                                  |                       | 9.6                    | 8.5                       | 10.7                   | 11.5                    | 12.4                    | Net detected                | 11.9                    | 8.8                     |                         | 8.8                         | 8.1                    | 10.5                    | 10.3                   | Not detected          | 8.2                    | Not detected          | 8.2                         |                             | 8.1                         | 8.2                         | 8.1                   | 8.3                 |                             | Not detected                | 8.1                  | 8.7                   |                             | 7.9                      |                             | 7.8                      | 8.6                    | 10.5                   |
| Asbestos identification % nc<br>Asbestos Concentration % nc<br>Phenol mg/kg 3200                                                                                                                                                |                       |                        |                           | <0.3                   | <0.3                    | <0.3                    | Not detected                | <0.3                    | <0.3                    |                         | <0.3                        | <0.3                   | <0.3                    | <0.3                   | Not detected          | <0.3                   | Not detected          | <0.3                        |                             |                             | <0.3                        | <0.3                  | <0.2                |                             | Not detected                | < 0.3                |                       |                             | < 0.3                    |                             | <0.3                     | <0.3                   | <0.3                   |
| Sulphur (free)         nc           Sulphide         mg/kg         nc           Total Sulphate         % as SO4         nc                                                                                                      |                       |                        |                           |                        |                         |                         |                             |                         |                         |                         |                             |                        |                         |                        |                       |                        |                       |                             |                             |                             |                             |                       |                     |                             |                             |                      |                       |                             |                          |                             |                          |                        |                        |
| Sulphur (elemental)         mg/kg         nc           Phenol (monohydric) SOM 1%         mg/kg         nc                                                                                                                      |                       |                        |                           |                        |                         |                         |                             |                         |                         |                         |                             |                        |                         |                        |                       |                        |                       |                             |                             |                             |                             |                       |                     |                             |                             |                      |                       |                             |                          |                             |                          |                        |                        |
| Total sulphate         mg/kg         nc           Sulphate (2:1 water soluble) as SO4         g/l         nc           Organic matter         %         nc                                                                      |                       |                        |                           | 1 4.1                  | 1.1                     | 0.19                    |                             | 0.27                    | 0.47                    |                         | 0.18<br>3.3                 | 1 0.83                 | 1.2<br>15               | 1.4                    |                       | 0.37                   |                       | 0.27<br>7.8                 |                             |                             | 0.36                        | 0.45                  | 0.16<br>15          |                             |                             | <0.01                |                       |                             | 1                        |                             | 0.61                     | 0.24                   | 1.1<br>2.6             |
| Moisture         %         nc           Acid Neutralisation Capacity         mol/kg         nc                                                                                                                                  | 23.8                  | 10.8<br>0.079          | 17.5<br>0.01              | 10.6                   | 12.1                    | 10.9                    | 0                           | 11.2                    |                         | 13.9                    | 27.1                        | 23.2                   |                         |                        |                       | 21.4                   |                       | 22.9                        | 22.9                        | 26.1<br>0.05                | 24.5                        | 24.4                  |                     | 23.1                        |                             |                      | 28.4<br>0.027         | 22.5                        | 22.4                     | 25.8                        |                          |                        | 8.49                   |
| Loss on ignition         %         nc           Stones content > 50mm         %         nc           BTEX         %         nc                                                                                                  |                       |                        | 5.91<br><0.02             |                        |                         |                         |                             |                         |                         |                         |                             |                        |                         |                        |                       |                        |                       |                             |                             | 12.5<br><0.02               |                             |                       |                     |                             |                             |                      | 5.89<br><0.02         |                             |                          |                             |                          |                        |                        |
| Benzene         μg/kg         28000.00           Toluene         μg/kg         870000.00           Ethuisnesse         504000                                                                                                   |                       | 3.8<br>1.7             | 15<br>2.1                 |                        |                         |                         |                             |                         |                         |                         |                             |                        |                         |                        |                       |                        |                       |                             |                             | 6.2<br>5.5                  |                             |                       | 51<br>10            | 73<br>3.1                   |                             | 1.9                  | 320<br>13             |                             | 670                      |                             |                          |                        |                        |
| Ethylbenzene µg/kg 581000<br>m·& p-Xylene µg/kg 575000<br>o-Xylene µg/kg 480000                                                                                                                                                 |                       | 2.9<br>1.8             | 1.7                       |                        |                         |                         |                             |                         |                         |                         |                             |                        |                         |                        |                       |                        |                       |                             |                             | 3.5<br><1<br><1             |                             |                       | < 1<br>7.1<br>5     | 4.4<br>5.9<br>4.9           |                             | <1<br><1<br><1       | 170<br>57<br>54       |                             | 44 30                    |                             |                          |                        |                        |
| Тоtal BTEX μg/kg nc<br>Methyl tert-butyl ether μg/kg nc<br>Hydrocarbons /                                                                                                                                                       | <1.0                  | 0.0091                 | 0.015                     |                        |                         |                         | <1.0                        |                         |                         | <1.0                    |                             |                        |                         |                        |                       |                        |                       |                             | <1.0                        | 0.011                       | <1.0                        |                       |                     | < 1.0                       |                             |                      | 0.44                  | <1.0                        |                          | <1.0                        |                          |                        |                        |
| Aliphatic C5-C6         mg/kg         3380           Aliphatic >C6-C8         mg/kg         8250                                                                                                                                | < 0.1<br>< 0.1        |                        |                           |                        |                         |                         | < 0.1<br>< 0.1              |                         |                         | < 0.1<br>< 0.1          |                             |                        |                         |                        |                       |                        |                       |                             | < 0.1<br>< 0.1              |                             | < 0.1<br>< 0.1              |                       |                     | < 0.1<br>< 0.1              |                             |                      |                       | < 0.1<br>< 0.1              |                          | < 0.1<br>< 0.1              |                          |                        |                        |
| Aliphatic >C8-C10         mg/kg         2130           Aliphatic >C10-C12         mg/kg         10300           Aliphatic >C12-C16         mg/kg         60800                                                                  | 7.4<br>37<br>200      |                        |                           |                        |                         |                         | 86<br>120<br>92             |                         |                         | < 0.1<br>< 0.1<br>< 0.1 |                             |                        |                         |                        |                       |                        |                       |                             | < 0.1<br>< 0.1<br>< 0.1     |                             | < 0.1<br>< 0.1<br>< 0.1     |                       |                     | < 0.1<br>< 0.1<br>< 0.1     |                             |                      |                       | < 0.1<br>2.6<br>7           |                          | < 0.1<br>< 0.1<br>< 0.1     |                          |                        |                        |
| Aliphatic >C16-C21         mg/kg         673000           Aliphatic >C21-C35         mg/kg         673000                                                                                                                       | 430<br>100<br>< 0.1   |                        |                           |                        |                         |                         | 1700<br>3100<br>< 0.1       |                         |                         | < 0.1<br>< 0.1<br>< 0.1 |                             |                        |                         |                        |                       |                        |                       |                             | < 0.1<br>< 0.1<br>< 0.1     |                             | < 0.1<br>< 0.1<br>< 0.1     |                       |                     | < 0.1<br>< 0.1<br>< 0.1     |                             |                      |                       | 5<br>11<br>< 0.1            |                          | < 0.1<br>< 0.1<br>< 0.1     |                          |                        |                        |
| Aromatic >C5-C7         mg/kg         27700           Aromatic >C7-C8         mg/kg         59000                                                                                                                               | < 0.1<br>< 0.1        |                        |                           |                        |                         |                         | < 0.1<br>< 0.1              |                         |                         | < 0.1<br>< 0.1          |                             |                        |                         |                        |                       |                        |                       |                             | < 0.1<br>< 0.1              |                             | < 0.1<br>< 0.1              |                       |                     | < 0.1<br>< 0.1<br>< 0.1     |                             |                      |                       | 4.5<br>0.98                 |                          | < 0.1<br>< 0.1<br>< 0.1     |                          |                        |                        |
| Aromatic >C8-C10         mg/kg         3670           Aromatic >C10-C12         mg/kg         16900           Aromatic >C12-C16         mg/kg         36200                                                                     | 1.7<br>47<br>190      |                        |                           |                        |                         |                         | 160<br>260<br>60            |                         |                         | < 0.1<br>0.14<br>1.8    |                             |                        |                         |                        |                       |                        |                       |                             | < 0.1<br>10<br>16           |                             | < 0.1<br>1.4<br>3.1         |                       |                     | < 0.1<br>< 0.1<br>1.2       |                             |                      |                       | 12<br>79<br>66              |                          | < 0.1<br>7.4<br>11          |                          |                        |                        |
| Aromatic >C16-C21         mg/kg         26700           Aromatic >C21-C35         mg/kg         28400                                                                                                                           | 340<br>110            |                        |                           |                        |                         |                         | 570<br>910                  |                         |                         | 18<br>40                |                             |                        |                         |                        |                       |                        |                       |                             | 100<br>190                  |                             | 20<br>77                    |                       |                     | 1.6<br>2.1                  |                             |                      |                       | 110<br>110                  |                          | 23<br>16                    |                          |                        |                        |
| Aromatic >C35-C44         mg/kg         28400           Aliphatic C5-C35         mg/kg         nc           Aromatic C5-C35         mg/kg         nc                                                                            | < 0.1                 |                        |                           |                        |                         |                         | < 0.1                       |                         |                         | < 0.1                   |                             |                        |                         |                        |                       |                        |                       |                             | < 0.1                       |                             | < 0.1                       |                       |                     | < 0.1                       |                             |                      |                       | 7.5                         |                          | < 0.1                       |                          |                        |                        |
| Total hydrocarbons (alihpatics and aromatics)         mg/kg         2130           TPH Total WAC         mg/kg         nc                                                                                                       | 1500                  | 49                     | 46                        |                        | 1300                    | 54                      | 7100                        | 1200                    | < 10                    | 60                      | 230                         | < 10                   | 280                     | 56                     |                       | < 10                   |                       | 700                         | 320                         | 350                         | 100                         | < 10                  | 120                 | 5                           |                             | 77                   | 80                    | 420                         | 220                      | 58                          | 650                      | 31                     | < 10                   |
| TEM         mg/kg         nc           Diesel range organics (DRO)         mg/kg         2130           Gasoline Range Organics by GC (GRO)         mg/kg         2130           TPH (SUM DRO + GRO)         mg/kg         2130 |                       |                        |                           |                        |                         |                         |                             |                         |                         |                         |                             |                        |                         |                        |                       |                        |                       |                             |                             |                             |                             |                       |                     |                             |                             |                      |                       |                             |                          |                             |                          |                        |                        |
| TPH (SUM DRO + GRO)         mg/kg         2130           TPH (Mineral Oil/ Hydrocarbon oil)         mg/kg         2130           TPH (Aromatic hydrocarbons)         mg/kg         2130                                         |                       |                        |                           |                        |                         |                         |                             |                         |                         |                         |                             |                        |                         |                        |                       |                        |                       |                             |                             |                             |                             |                       |                     |                             |                             |                      |                       |                             |                          |                             |                          |                        |                        |
| TPH (Solvent Extracted)         mg/kg         2130           TPH         mg/kg         2130                                                                                                                                     |                       |                        |                           |                        |                         |                         |                             |                         |                         |                         |                             |                        |                         |                        |                       |                        |                       |                             |                             |                             |                             |                       |                     |                             |                             |                      |                       |                             |                          |                             |                          |                        |                        |
| Acenaphthene mg/kg 84900<br>Acenaphthylene mg/kg 84300                                                                                                                                                                          |                       | 0.9                    | <0.1<br><0.1              | < 0.1                  | < 0.1                   | < 0.1                   |                             |                         | < 0.1                   |                         |                             | < 0.1                  | 0.64<br>0.41            | 0.82                   |                       | 0.11<br>< 0.1          |                       | 0.93<br>1                   |                             |                             | 0.11                        |                       | 1.5                 |                             |                             | 0.19<br>0.12         | 0.2                   |                             | 0.41<br>0.45             |                             | 7.4<br>3.5               | 1                      | < 0.1                  |
| Anthracene         mg/kg         525000           Benzo(a)anthracene         mg/kg         90.0           Benzo(a)pyrene         mg/kg         14.00                                                                            |                       | 1.2<br>3.7<br>5.1      | <0.1<br>0.6<br>0.6<br>0.4 | 0.16                   | < 0.1<br>0.26<br>0.31   | < 0.1                   |                             | < 0.1<br>< 0.1<br>< 0.1 | < 0.1<br>< 0.1<br>< 0.1 |                         | 4.3<br>7<br>6.8             | < 0.1<br>< 0.1         | 2.3<br>8<br>10<br>10    | 1.7<br>5.4<br>8.1      |                       | 0.18<br>0.62<br>0.76   |                       | 3.6<br>14<br>17<br>15       |                             | 11<br>46<br>65              | 0.65<br>2<br>1.8            | < 0.1                 | 9.8<br>21<br>23     |                             |                             | 0.23<br>0.66<br>0.71 | 0.3<br>1.4<br>1.9     |                             | 1.2<br>5.1<br>5.5        |                             | 5.1<br>5.3<br>6.3        | 11                     | 1.1                    |
| Benzo(b)fluoranthene mg/kg 100.0<br>Benzo(k)fluoranthene mg/kg 141.0                                                                                                                                                            |                       | 3.1                    | 0.3                       | 0.76                   | 0.19                    | < 0.1                   |                             | < 0.1                   | < 0.1                   |                         | 4.7                         | < 0.1                  | 7.6                     | 4.4                    |                       | 0.76<br>0.71<br>0.38   |                       | 7.1                         |                             | 46<br>52                    | 1.8<br>1.3                  | < 0.1                 | 9.3                 |                             |                             | 0.74 0.62            | 1.4                   |                             | 4.2<br>3.8               |                             | 6.3<br>6.2<br>3.7        | 8.2                    | 0.55                   |
| Benzo(g, h,i)pervlene         mg/kg         654           Chrysene         mg/kg         137.0           Dibenzo(a,h)anthracene         mg/kg         13.00                                                                     |                       | 3.8<br>3.9<br>4.7      | <0.1<br>0.6<br>0.5<br>1.1 | 0.77                   | 0.2                     | < 0.1<br>< 0.1<br>< 0.1 |                             |                         | < 0.1<br>< 0.1<br>< 0.1 |                         | 3.7<br>7.9<br>0.8           | < 0.1<br>0.12<br>< 0.1 | 8.2<br>9.7<br>2.9<br>14 | 6.8<br>5.9<br>1.7      |                       | 0.3<br>0.64<br>0.15    |                       | 9<br>15<br>3.3              |                             | 42<br>49<br>45              | 1.8<br>0.25                 | 0.11                  | 2.4                 |                             |                             | 0.55<br>0.73<br>0.11 | 1.4                   |                             | 4<br>6<br>1.5            |                             | 1.8<br>4.8<br>0.91<br>10 | 14                     | 1.3                    |
| Fluoranthene         mg/kg         22600           Fluorene         mg/kg         63500                                                                                                                                         |                       | 0.2                    | 1.1<br><0.1<br><0.1       | 0.1                    | < 0.1                   | < 0.1                   |                             | 0.46<br>< 0.1<br>< 0.1  | < 0.1<br>< 0.1<br>< 0.1 |                         | 13<br>4.1<br>3.9            | < 0.1                  | 14<br>0.49<br>9         | 0.53                   |                       | 0.96<br>0.14<br>0.46   |                       | 24<br>2.3<br>10             |                             | 71<br>9.4<br>16             | 4.1<br>0.63                 | 0.25                  |                     |                             |                             | 1.2<br>0.17<br>0.55  |                       |                             | 8.6<br>1.2<br>4.4        |                             | 10<br>19<br>2.4          | 1.5                    | < 0.1                  |
| Naphthalene mg/kg 204.0<br>Phenanthrene mg/kg 21900                                                                                                                                                                             |                       | 1.1                    | 0.3                       | < 0.1                  | < 0.1                   | < 0.1                   |                             | < 0.1<br>0.18           | < 0.1<br>< 0.1          |                         | 2.9                         | < 0.1                  | 0.92                    | 2.7                    |                       | 0.83                   |                       | 7.7                         |                             | 16                          | 1.5<br>2.3                  | < 0.1<br>0.52         | 6.1                 |                             |                             | 0.44 0.72            | <0.1<br>1.1           |                             | 7.9<br>6.1               |                             | 220                      | 3.3                    | 0.19                   |
| Pyrene         mg/kg         54200           Coronene         mg/kg         nc           PAH (Sum of 16 - excluding coronene)         mg/kg         nc                                                                          |                       | 4.7<br><0.1            | 0.7<br>0.7<br><0.1        | 1.9                    | 0.62                    | < 0.1                   |                             | 0.49<br>< 2             | < 0.1                   |                         |                             |                        | 8.6<br>11<br>100        |                        |                       | 0.82                   |                       | 16                          |                             | 43<br>55<br>3.9             | 2.8                         | 0.25                  | 26<br>34<br>250     |                             |                             | 0.84                 | 1.5<br><0.1           |                             | 5.2<br>66                |                             | 140<br>9.2<br>450        |                        |                        |
| PAH (Sum of 17 - including coronene) mg/kg nc<br>PCB                                                                                                                                                                            |                       | 49                     | 5.9                       |                        | 0.0                     | ~~                      |                             | ~ ~                     | ~ 5                     |                         | JE                          | 12                     | 100                     |                        |                       |                        |                       | 100                         |                             | 580                         | 67                          | ~                     | 200                 |                             |                             | 0.0                  | 16                    |                             |                          |                             |                          |                        |                        |
| PCB 28         mg/kg         nc           PCB 52         mg/kg         nc           PCB 101         mg/kg         nc                                                                                                            |                       |                        | <0.1<br><0.1<br><0.1      |                        |                         |                         |                             |                         |                         |                         |                             |                        |                         |                        |                       |                        |                       |                             |                             | <0.1<br><0.1<br><0.1        |                             |                       |                     |                             |                             |                      | <0.1<br><0.1<br><0.1  |                             |                          |                             |                          |                        |                        |
| PCB 118         mg/kg         nc           PCB 138         mg/kg         nc                                                                                                                                                     |                       | <0.1<br><0.1           | <0.1<br><0.1              |                        |                         |                         |                             |                         |                         |                         |                             |                        |                         |                        |                       |                        |                       |                             |                             | <0.1<br><0.1                |                             |                       |                     |                             |                             |                      | <0.1<br><0.1          |                             |                          |                             |                          |                        |                        |
| PCB 153         mg/kg         nc           PCB 180         mg/kg         nc           Total PCBs (7 congeners)         mg/kg         nc                                                                                         |                       | <0.1<br><0.1<br><1     | <0.1<br><0.1<br><1        |                        |                         |                         |                             |                         |                         |                         |                             |                        |                         |                        |                       |                        |                       |                             |                             | <0.1<br><0.1<br><1          |                             |                       |                     |                             |                             |                      | <0.1<br><0.1<br><1    |                             |                          |                             |                          |                        |                        |
| VOCs<br>Dichlorodifluoromethane µg/kg nc                                                                                                                                                                                        | <1.0<br><1.0          |                        |                           |                        |                         |                         | <1.0<br><1.0                |                         |                         | <1.0                    |                             |                        |                         |                        |                       |                        |                       |                             | <1.0<br><1.0                |                             | <1.0<br><1.0                |                       |                     | < 1.0<br>< 1.0              |                             |                      |                       | <1.0<br><1.0                |                          | <1.0                        |                          |                        |                        |
| Chloromethane         μg/kg         nc           Vinyl chloride         μg/kg         nc           Bromomethane         μg/kg         nc                                                                                        | <1.0<br><20           |                        |                           |                        |                         |                         | <1.0<br><1.0<br><20<br><2.0 |                         |                         | <1.0                    |                             |                        |                         |                        |                       |                        |                       |                             | <1.0<br><1.0<br><20<br><2.0 |                             | <1.0<br><1.0<br><20<br><2.0 |                       |                     | < 1.0<br>< 20               |                             |                      |                       | <1.0<br><1.0<br><20<br><2.0 |                          | <1.0                        |                          |                        |                        |
| Chloroethane         µg/kg         nc           Trichlorofluoromethane         µg/kg         nc                                                                                                                                 | <2.0<br><1.0          |                        |                           |                        |                         |                         | <1.0                        |                         |                         | <2.0<br><1.0            |                             |                        |                         |                        |                       |                        |                       |                             | <1.0                        |                             | <1.0                        |                       |                     | < 2.0                       |                             |                      |                       | <2.0<br><1.0<br><1.0        |                          | <2.0<br><1.0<br><1.0        |                          |                        |                        |
| Dichloromethane µg/kg nc<br>trans-1.2-Dichloroethene µg/kg nc                                                                                                                                                                   | <1.0<br>ne<br><1.0    |                        |                           |                        |                         |                         | <1.0<br>ne<br><1.0          |                         |                         | <1.0<br>ne<br><1.0      |                             |                        |                         |                        |                       |                        |                       |                             | <1.0<br>ne<br><1.0          |                             | <1.0<br>ne<br><1.0          |                       |                     | < 1.0<br>ne<br>< 1.0        |                             |                      |                       | ne<br><1.0                  |                          | ne<br><1.0                  |                          |                        |                        |
| 1,1-Dichloroethane µg/kg nc                                                                                                                                                                                                     | <1.0                  |                        |                           |                        |                         | 1                       | <1.0                        |                         |                         | <1.0                    |                             |                        |                         |                        |                       |                        |                       |                             | <1.0                        |                             | <1.0                        |                       |                     | < 1.0                       |                             |                      |                       | <1.0                        |                          | <1.0                        |                          |                        |                        |

| Ground Investigation                                                                               | n                       |                     | PBA 2010/                   | PBA 2010/  | PBA 2010/      | PBA 2010  | / PBA 2010/                 | / PBA 2010/ | PBA 2010/               | PBA 2010/   | PBA 2010/   | PBA 2010/               | PBA 2010/  | PBA 2010/      | PBA 2010/                   | PBA 2010/  | PBA 2010/                   | PBA 2010/                   | PBA 2010/                   | PBA 2010/                   | PBA 2010/                   | PBA 2010/                   |                                | PBA 2010/  | PBA 2010/                   | PBA 2010/                         | PBA 2010/                     | PBA 2010/                   | PBA 2010/                   | PBA 2010/                     | PBA 2010/                   | PBA 2010/                   | PBA 2010/      | PBA 2010/            | PBA 2010/                    |
|----------------------------------------------------------------------------------------------------|-------------------------|---------------------|-----------------------------|------------|----------------|-----------|-----------------------------|-------------|-------------------------|-------------|-------------|-------------------------|------------|----------------|-----------------------------|------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------|------------|-----------------------------|-----------------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------|-----------------------------|-----------------------------|----------------|----------------------|------------------------------|
| Report Number                                                                                      |                         |                     | 2011                        | 2011       | 2011           | 2011      | 2011                        | 2011        | 2011                    | 2011 115023 | 2011        | 2011                    | 2011       | 2011           | 2011 115023                 | 2011       | 2011                        | 2011 122209                 | 2011                        | 2011                        | 2011                        | 2011                        | PBA 2010/ 2011                 | 2011       | 2011                        | 2011                              | 2011                          | 2011                        | 2011                        | 2011                          | 2011                        | 2011                        | 2011           | 2011                 | 2011                         |
| Lab Re                                                                                             | ər<br>>f                |                     | AF68327                     | AF61341    |                | AF54164   | +                           |             |                         | AF54168     | AF54169     | AF54170                 | AF54171    |                | AF54163                     | AF68328    | AF68440                     | AF68329                     | AF68441                     | AF68330                     | AF68331                     | AF68364                     | AF68332                        | AF68333    |                             | AF57627                           | AF60256                       | AF60257                     | AF60285                     | AF60259                       | AF60260                     | AF60261                     | AF54184        | AF54185              |                              |
| Date                                                                                               | e                       |                     | 25/01/2011                  | 04/01/2011 | 04/01/2011     | Not known | n Not known                 | Not known   | Not known               | Not known   | Not known   | Not known               | Not known  | Not known      | Not known                   | 25/01/2011 | 07/02/2011                  | 25/01/2011                  | 07/02/2011                  | 25/01/2011                  | 25/01/2011                  | 25/01/2011                  | 25/01/2011                     | 25/01/2011 | 10/12/2010                  | 10/12/2010                        | 10/12/2010                    | 10/12/2010                  | 10/12/2010                  | 10/12/2010                    | 10/12/2010                  | 10/12/2010                  | Not known      | Not known            | Not known                    |
| Exploatory hole location<br>Zone B Location                                                        |                         |                     | TP2016-A<br>B6              |            | Pancras        | Pancras   | BH2007<br>Pancras<br>Square | Pancras     | Pancras                 |             |             |                         |            | Pancras        | BH2005<br>Pancras<br>Square |            | TP2017<br>Pancras<br>Square | TP2017<br>Pancras<br>Square | TP2017<br>Pancras<br>Square | Denerge                     | TP2017<br>Pancras Square    | Deperso                     | TP2017<br>Pancras Square       | Deperso    | TP2018<br>Pancras<br>Square | TP2018<br>Pancras<br>Square       | TP2015<br>Pancras<br>Square   | TP2015<br>Pancras<br>Square | TP2015<br>Pancras<br>Square | TP2015<br>Pancras<br>Square   | TP2015<br>Pancras<br>Square | TP2015<br>Pancras<br>Square | Pancras        |                      | TT2003A<br>Pancras<br>Square |
|                                                                                                    |                         |                     | Outside                     |            |                |           |                             |             |                         |             |             |                         |            |                |                             |            | Outside                     |                             |                             |                             | Outside                     |                             | Outsida                        |            |                             | Outside                           |                               |                             |                             |                               |                             |                             | Between        | Between              | Between                      |
| Location on plot/ gas holder number                                                                |                         |                     | Outside<br>gasholders<br>4m |            |                |           | or GH3 interior             |             |                         |             |             |                         | gasholders | gasholders     | Outside<br>gasholders<br>1m | gasholders |                             | Outside<br>gasholders<br>1m | Outside<br>gasholders<br>1m | Outside<br>gasholders<br>2m | Outside<br>gasholders<br>2m | Outside<br>gasholders<br>2m | Outside<br>gasholders<br>3m    | -          | gasholders                  | gasholders                        | Outside<br>gasholders<br>0.3m | -                           | -                           | Outside<br>gasholders<br>2.5m | gasholders                  |                             |                | gasholder 3<br>and A | gasholder 3<br>and A         |
| Strata                                                                                             |                         |                     | Made Ground                 | Made       | Made<br>Ground | Made      | Made                        | Made        | Made<br>Ground          | Made        | London Clay |                         | Made       | Made<br>Ground | Made<br>Ground              | Made       | Made Ground                 | Clay                        | Made Ground                 | Clay                        | Clay                        | Clay                        | Clay                           | Clay       |                             | Made Ground                       |                               |                             |                             |                               | Made                        | Made Ground                 | Made<br>Ground | Made<br>Ground       | Made<br>Ground               |
| cis-1,2-Dichloroethene<br>Bromochloromethane                                                       | μg/kg<br>μg/kg          | nc                  | <1.0<br><1.0                | Ground     | Giodila        | Giouria   | Giodila                     | Gibund      | <1.0<br><1.0            |             |             | <1.0<br><1.0            | Giouna     | Gibunu         | Ground                      | Ground     | Made Ground                 |                             | Made Ground                 |                             | <1.0<br><1.0                |                             | <1.0<br><1.0                   | -          | Made Ground                 | < 1.0<br>< 1.0                    | Made Ground                   | Made Ground                 | Made Ground                 | <1.0<br><1.0                  |                             | <1.0<br><1.0                | Ground         | Giodila              | Giodila                      |
| Trichloromethane<br>1,1,1-Trichloroethane                                                          | μg/kg<br>μg/kg          | 107000<br>700000    | <1.0<br><1.0                |            |                |           |                             |             | <1.0<br><1.0            |             |             | <1.0<br><1.0            |            |                |                             |            |                             |                             |                             |                             | <1.0<br><1.0                |                             | <1.0<br><1.0                   |            |                             | < 1.0<br>< 1.0                    |                               |                             |                             | <1.0<br><1.0                  |                             | <1.0<br><1.0                |                |                      |                              |
| Tetrachloromethane<br>1,1-Dichloropropene                                                          | μg/kg<br>μg/kg          | 3000<br>nc<br>28000 | <1.0<br><1.0<br>7.8         |            |                |           |                             |             | <1.0<br><1.0<br>10000   |             |             | <1.0<br><1.0<br>14      |            |                |                             |            |                             |                             |                             |                             | <1.0<br><1.0                |                             | <1.0<br><1.0                   |            |                             | < 1.0 < 1.0                       |                               |                             |                             | <1.0<br><1.0                  |                             | <1.0<br><1.0<br>1100        |                |                      |                              |
| Benzene<br>1,2-Dichloroethane<br>Trichloroethene                                                   | µg/kg<br>µg/kg<br>µg/kg | 700 12000           | <2.0                        |            |                |           |                             |             | <2.0                    |             |             | <2.0<br><1.0            |            |                |                             |            |                             |                             |                             |                             | 120<br><2.0<br><1.0         |                             | 2.2<br><2.0<br><1.0            |            |                             | 56<br>< 2.0<br>< 1.0              |                               |                             |                             | 2000<br><2.0<br><1.0          |                             | <2.0                        |                |                      |                              |
| 1,2-Dichloropropane<br>Dibromomethane                                                              | μg/kg<br>μg/kg          | nc<br>nc            | <1.0<br><10                 |            |                |           |                             |             | <1.0<br><10             |             |             | <1.0<br><10             |            |                |                             |            |                             |                             |                             |                             | <1.0<br><10                 |                             | <1.0<br><10                    |            |                             | < 1.0<br>< 10                     |                               |                             |                             | <1.0<br><10                   |                             | <1.0<br><10                 |                |                      |                              |
| Bromodichloromethane<br>cis-1,3-Dichloropropene<br>Toluene                                         | μg/kg<br>μg/kg          |                     | <5.0<br><10<br><1.0         |            |                |           |                             |             | <5.0<br><10<br>13000    |             |             | <5.0<br><10<br>3.9      |            |                |                             |            |                             |                             |                             |                             | <5.0<br><10                 |                             | <5.0<br><10<br><1.0            |            |                             | < 5.0<br>< 10<br>2.4              |                               |                             |                             | <5.0<br><10                   |                             | <5.0<br><10                 |                |                      |                              |
| trans-1,3-Dichloropropene<br>1,1,2-Trichloroethane                                                 | µg/kg<br>µg/kg<br>µg/kg | nc                  | <10                         |            |                |           | -                           |             | <10                     |             |             | <10<br><10              |            |                |                             |            |                             |                             |                             |                             | <10<br><10                  |                             | <10<br><10                     |            |                             | < 10                              |                               |                             |                             | <10<br><10                    |                             | <10<br><10                  |                |                      |                              |
| Tetrachloroethene<br>1,3-Dichloropropane                                                           | μg/kg<br>μg/kg          | 131000              | <1.0<br><2.0                |            |                |           |                             |             | <1.0<br><2.0            |             |             | <1.0<br><2.0            |            |                |                             |            |                             |                             |                             |                             | <1.0<br><2.0                |                             | <1.0<br><2.0                   |            |                             | < 10<br>< 2.0                     |                               |                             |                             | <1.0<br><2.0                  |                             | <1.0<br><2.0                |                | $\square$            |                              |
| Dibromochloromethane<br>1,2-Dibromoethane<br>Chlorobenzene                                         | μg/kg<br>μg/kg<br>μα/ka | nc<br>nc<br>59000   | <10<br><5.0                 |            |                |           |                             | 1           | <10<br><5.0<br><1.0     |             |             | <10<br><5.0<br><1.0     |            |                |                             |            |                             |                             |                             |                             | <10<br><5.0<br><1.0         |                             | <10<br><5.0<br><1.0            | <u> </u>   |                             | < 10<br>< 5.0<br>< 1.0            |                               |                             |                             | <10<br><5.0<br><10            |                             | <10<br><5.0<br><10          |                |                      |                              |
| 1,1,1,2-Tetrachloroethane<br>Ethylbenzene                                                          | µg/kg<br>µg/kg<br>µg/kg | 115000              | <1.0<br><2.0<br><1.0        |            |                |           |                             |             | <1.0<br><2.0<br>24000   |             |             | <1.0<br><2.0<br>2.1     |            |                |                             |            |                             |                             |                             |                             | <2.0<br>91                  |                             | <1.0<br><2.0<br><1.0           |            |                             | < 1.0<br>< 2.0<br>3.4             |                               |                             |                             | <10<br><2.0<br>250            |                             | <10<br><2.0<br>77           |                |                      | E                            |
| m- & p-Xylene<br>o-Xylene                                                                          | μg/kg<br>μg/kg          | 575000<br>480000    | <1.0<br><1.0                |            |                |           |                             |             | 23000<br>10000          |             |             | 4.2                     |            |                |                             |            |                             |                             |                             |                             | 31                          |                             | <1.0<br><1.0                   |            |                             | 2.5<br>3.8                        |                               |                             |                             | 95<br>70                      |                             | 37<br>37                    |                |                      |                              |
| Styrene<br>Tribromomethane                                                                         | μg/kg<br>μg/kg          | nc<br>nc            | <1.0<br><10                 |            |                |           |                             |             | <1.0<br><10             |             |             | <1.0<br><10             |            |                |                             |            |                             |                             |                             |                             | <1.0<br><10                 |                             | <1.0<br><10                    |            |                             | < 1.0<br>< 1.1                    |                               |                             |                             | <1.0<br><10                   |                             | <1.0<br><10<br>1.7          |                | Ē                    |                              |
| Isopropylbenzene<br>Bromobenzene<br>1,2,3-Trichloropropane                                         | µg/kg<br>µg/kg<br>µg/kg |                     | <1.0<br><1.0<br><50         |            |                |           | -                           | 1           | 1400<br><1.0<br><50     |             |             | <1.0<br><1.0<br><50     |            |                |                             |            |                             |                             |                             |                             | 8<br><1.0<br><50            |                             | <1.0<br><1.0<br><50            | 1          |                             | 2.2<br>< 1.0<br>< 50              |                               |                             |                             | <1.0<br><1.0<br><50           |                             | 1.7<br><1.0<br><50          |                | $\square$            | <b> </b>                     |
| n-Propylbenzene<br>2-Chlorotoluene                                                                 | μg/kg<br>μg/kg          | nc                  | <1.0<br><1.0                |            |                |           |                             |             | 770<br><1.0             |             |             | 1.6<br><1.0             |            |                |                             |            |                             |                             |                             |                             | <1.0<br><1.0                |                             | <1.0<br><1.0                   |            |                             | < 1.0<br>< 1.0                    |                               |                             |                             | 1.8<br><1.0                   |                             | <1.0<br><1.0                |                |                      |                              |
| 1,2,4-Trimethylbenzene<br>4-Chlorotoluene                                                          | μg/kg<br>μg/kg          | nc                  | <1.0<br><1.0                |            |                |           |                             |             | 13000<br><1.0           |             |             | 5.3<br><1.0             |            |                |                             |            |                             |                             |                             |                             | <1.0<br><1.0                |                             | <1.0<br><1.0                   |            |                             | 2.2<br>< 1.0                      |                               |                             |                             | 85<br><1.0                    |                             | 39<br><1.0                  |                |                      |                              |
| tert-Butylbenzene<br>1,3,5-Trimethylbenzene<br>sec-Butylbenzene                                    | µg/kg<br>µg/kg<br>µg/kg | nc                  | <1.0 <1.0 <1.0              |            |                |           | -                           |             | <1.0<br>4800<br>240     |             |             | <1.0<br>4.5<br><1.0     |            |                |                             |            |                             |                             |                             |                             | <1.0<br><1.0<br><1.0        |                             | <1.0<br><1.0<br><1.0           |            |                             | < 1.0<br>< 1.0<br>< 1.0           |                               |                             |                             | <1.0<br>42<br><1.0            |                             | <1.0<br>10<br><1.0          |                |                      |                              |
| 1,3-Dichlorobenzene<br>4-Isopropyltoluene                                                          | μg/kg<br>μg/kg          | nc                  | <1.0                        |            |                |           | -                           |             | <1.0<br>440             |             |             | <1.0<br><1.0<br><1.0    |            |                |                             |            |                             |                             |                             |                             | <1.0                        |                             | <1.0<br><1.0<br><1.0           |            |                             | < 1.0<br>< 1.0<br>< 1.0           |                               |                             |                             | <1.0<br><1.0<br>2.9           |                             | <1.0<br><1.0<br><1.0        |                |                      |                              |
| 1,4-Dichlorobenzene<br>n-Butylbenzene                                                              | μg/kg<br>μg/kg          | nc                  | <1.0<br><1.0                |            |                |           |                             |             | <1.0<br><1.0            |             |             | <1.0<br><1.0            |            |                |                             |            |                             |                             |                             |                             | <1.0<br><1.0                |                             | <1.0<br><1.0                   |            |                             | < 1.0<br>< 1.0                    |                               |                             |                             | <1.0<br><1.0                  |                             | <1.0<br><1.0                |                |                      |                              |
| 1,2-Dichlorobenzene<br>1,2-Dibromo-3-chloropropane                                                 | μg/kg<br>μg/kg          |                     | <1.0<br><50<br><1.0         |            |                |           |                             |             | <1.0<br><50             |             |             | <1.0<br><50<br><1.0     |            |                |                             |            |                             |                             |                             |                             | <1.0<br><50<br><1.0         |                             | <1.0<br><50<br><1.0            |            |                             | < 1.0<br>< 50<br>< 1.0            |                               |                             |                             | <1.0<br><50<br><1.0           |                             | <1.0<br><50<br><1.0         |                |                      |                              |
| 1,2,4-Trichlorobenzene<br>Hexachlorobutadiene<br>1,2,3-Trichlorobenzene                            | µg/kg<br>µg/kg<br>µg/kg | nc                  | <1.0<br><1.0<br><2.0        |            |                |           |                             |             | <1.0<br><1.0<br><2.0    |             |             | <1.0<br><1.0<br><2.0    |            |                |                             |            |                             |                             |                             |                             | <1.0<br><1.0<br><2.0        |                             | <1.0<br><1.0<br><2.0           |            |                             | < 1.0<br>< 1.0<br>< 2.0           |                               |                             |                             | <1.0<br><1.0<br><2.0          |                             | <1.0<br><1.0<br><2.0        |                |                      |                              |
| Tentatively Identified Compounds<br>Benzene, 1-ethenyl-3-methyl                                    | μg/kg<br>μg/kg          | nc                  | None Detected               |            |                |           |                             |             | Detected<br>3700        |             |             | None Detected           |            |                |                             |            |                             |                             |                             |                             | None Detected               |                             | None Detected                  |            |                             | None Detected                     |                               |                             |                             | None Detected                 | 1                           | None Detected               |                |                      |                              |
| Indane<br>2-Benzothiphene                                                                          | μg/kg<br>μg/kg          | nc                  |                             |            |                |           |                             |             |                         |             |             |                         |            |                |                             |            |                             |                             |                             |                             |                             |                             |                                |            |                             |                                   |                               |                             |                             |                               |                             |                             |                |                      |                              |
| Benzofuran<br>Benzo(B)thiophene<br>Phenol,4Methyl                                                  | µg/kg<br>µg/kg<br>µg/kg | nc<br>nc            |                             |            |                |           |                             |             |                         |             |             |                         |            |                |                             |            |                             |                             |                             |                             |                             |                             |                                |            |                             |                                   |                               |                             |                             |                               |                             |                             |                |                      |                              |
| Benzo(B)Thiophene<br>Acenaphthene                                                                  | μg/kg<br>mg/kg          | nc<br>84900         | 1.2                         |            |                |           |                             |             | 0.71                    |             |             | <0.50                   |            |                |                             |            |                             |                             |                             |                             | <0.50                       |                             | <0.50                          |            |                             | < 0.50                            |                               |                             |                             | 1                             |                             | <0.50                       |                |                      |                              |
| Acenaphthylene<br>Anthracene                                                                       | mg/kg<br>mg/kg          |                     | 4.3<br>6.2                  |            |                |           |                             |             | <0.50<br><0.50          |             |             | <0.50<br>1.1            |            |                |                             |            |                             |                             |                             |                             | 1.6                         |                             | 1.2<br>0.94                    |            |                             | < 0.50<br>0.67                    |                               |                             |                             | 1.8<br>2.1                    |                             | 1 2.5                       |                |                      |                              |
| Azobenzene<br>Benzo[a]anthracene<br>Benzo[a]ovrene                                                 | mg/kg<br>mg/kg<br>mg/kg | 90<br>14            | <0.50<br>22<br>30           |            |                |           |                             |             | <0.50<br><0.50<br><0.50 |             |             | <0.50<br>4.4<br>5.6     |            |                |                             |            |                             |                             |                             |                             | <0.50<br>3.8<br>5.3         |                             | <0.50<br>2.2<br>2.3            |            |                             | < 0.50<br>4.1<br>7.5              |                               |                             |                             | <0.50<br><0.50<br><0.50       |                             | <0.50<br>2.3<br>2.2         |                |                      |                              |
| Benzo[b]fluoranthene<br>Benzo[b,fluoranthene<br>Benzo[k]fluoranthene<br>bis[2-Chloroethoxy]methane | mg/kg<br>mg/kg          | 100<br>654          | 33<br>17                    |            |                |           |                             |             | <0.50<br><0.50          |             |             | 5.9<br>2.8              |            |                |                             |            |                             |                             |                             |                             | 5.1<br>2.7                  |                             | 2.8<br>1.2                     |            |                             | 8.5<br>3.8                        |                               |                             |                             | <0.50<br><0.50                |                             | 2<br>0.73                   |                |                      |                              |
| Benzo[k]fluoranthene<br>bis(2-Chloroethoxy)methane                                                 | mg/kg<br>mg/kg          | nc                  | 11<br><0.50                 |            |                |           |                             |             | <0.50<br><0.50          |             |             | 1.7<br><0.50<br><0.50   |            |                |                             |            |                             |                             |                             |                             | 2.1<br><0.50<br><0.50       |                             | 0.81<br><0.50<br><0.50         |            |                             | 2.2                               |                               |                             |                             | <0.50<br><0.50                |                             | 0.9<br><0.50                |                |                      |                              |
| bis(2-Chloroethyl)ether<br>bis(2-Chloroisopropyl)ether<br>bis(2-Ethylhexyl)phthalate               | mg/kg<br>mg/kg<br>mg/kg |                     | <0.50<br><0.50<br><0.50     |            |                |           |                             |             | <0.50<br><0.50<br><0.50 |             |             | <0.50<br><0.50<br><0.50 |            |                |                             |            |                             |                             |                             |                             | <0.50<br><0.50<br><0.50     |                             | <0.50<br><0.50<br><0.50        |            |                             | < 0.50<br>< 0.50<br>< 0.50        |                               |                             |                             | <0.50<br><0.50<br><0.50       |                             | <0.50<br><0.50<br><0.50     |                |                      |                              |
| Butylbenzylphthalate<br>Carbazole                                                                  | mg/kg<br>mg/kg          | nc                  | <0.50                       |            |                |           |                             |             | <0.50                   |             |             | <0.50<br><0.50          |            |                |                             |            |                             |                             |                             |                             | <0.50<br>0.81               |                             | <0.50<br><0.50                 |            |                             | < 0.50                            |                               |                             |                             | <0.50                         |                             | <0.50                       |                |                      |                              |
| Di-n-butylphthalate                                                                                | mg/kg<br>mg/kg          | 137<br>nc           | 18<br><0.50                 |            |                |           |                             |             | <0.50<br><0.50          |             |             | 2.8<br><0.50            |            |                |                             |            |                             |                             |                             |                             | 3.1<br><0.50                |                             | 1.9<br><0.50                   |            |                             | 4.5<br>< 0.50                     |                               |                             |                             | <0.50<br><0.50                |                             | 1.7<br><0.50                |                | $\square$            |                              |
| Di-n-octylphthalate<br>Dibenzo[a,h]anthracene<br>Dibenzofuran                                      | mg/kg<br>mg/kg<br>mg/kg | nc                  | <0.50<br>5.5                |            |                |           |                             | 1           | <0.50<br><0.50<br>0.8   |             |             | <0.50<br>0.72<br><0.50  |            |                |                             |            |                             |                             |                             |                             | <0.50<br>1<br><0.50         |                             | <0.50<br><0.50<br><0.50        | <u> </u>   |                             | < 0.50<br>1<br>< 0.50             |                               |                             |                             | <0.50<br><0.50<br>3.6         |                             | <0.50<br><0.50<br>1.9       |                |                      |                              |
| Diethylphthalate<br>Dimethylphthalate                                                              | mg/kg<br>mg/kg<br>mg/kg | nc                  | <0.50<br><0.50              |            |                |           |                             |             | <0.50<br><0.50          |             |             | <0.50<br><0.50          |            |                |                             |            |                             |                             |                             |                             | <0.50<br><0.50              |                             | <0.50<br><0.50<br><0.50<br>3.5 |            |                             | < 0.50<br>< 0.50<br>< 0.50<br>7.5 |                               |                             |                             | <0.50<br><0.50<br>6.5         |                             | <0.50<br><0.50              |                |                      |                              |
| Fluoranthene<br>Fluorene                                                                           | mg/kg<br>mg/kg          | 22600<br>63500      | 22 2.1                      |            |                |           |                             |             | <0.50<br>0.71           |             |             | 6.2<br><0.50            |            |                |                             | -          |                             |                             |                             |                             | 4.5                         |                             | <0.50                          |            |                             | < 0.50                            |                               |                             |                             | 3.8                           |                             | 4.7<br>2.4                  |                |                      | Ē                            |
| Hexachlorobenzene<br>Hexachlorobutadiene<br>Hexachlorocyclopentadiene<br>Hexachloroethane          | mg/kg<br>mg/kg          |                     | <0.50<br><0.50<br><0.50     |            |                |           |                             | -           | <0.50<br><0.50<br><0.50 |             |             | <0.50<br><0.50<br><0.50 |            |                |                             |            |                             |                             |                             |                             | <0.50<br><0.50<br><0.50     |                             | <0.50<br><0.50<br><0.50        |            |                             | < 0.50<br>< 0.50<br>< 0.50        |                               |                             |                             | <0.50<br><0.50<br><0.50       |                             | <0.50<br><0.50<br><0.50     |                |                      |                              |
| Indeno[1,2,3-cd]pyrene                                                                             | mg/kg<br>mg/kg<br>mg/kg | nc                  | <0.50<br>15                 |            |                |           |                             |             | <0.50<br><0.50          |             |             | <0.50<br>2.6            |            |                |                             |            |                             |                             |                             |                             | <0.50<br>2.4                |                             | <0.50<br>1                     |            |                             | < 0.50<br>3.7                     |                               |                             |                             | <0.50<br><0.50                |                             | <0.50<br>0.59               |                |                      |                              |
| Isophorae<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodimethylamine<br>Naphthalene                    | mg/kg<br>mg/kg          | nc                  | <0.50<br><0.50              |            |                |           |                             |             | <0.50<br><0.50          |             |             | <0.50<br><0.50          |            |                |                             |            |                             |                             |                             |                             | <0.50<br><0.50              |                             | <0.50<br><0.50                 |            |                             | < 0.50<br>< 0.50                  |                               |                             |                             | <0.50<br><0.50                |                             | <0.50<br><0.50              |                |                      | $\square$                    |
| N-Nitrosodimethylamine<br>Naphthalene                                                              | mg/kg<br>mg/kg          |                     | <0.50<br>2.6<br><0.50       |            |                |           |                             |             | <0.50                   |             |             | <0.50<br><0.50<br><0.50 |            |                |                             |            |                             |                             |                             |                             | <0.50<br>2.1<br><0.50       |                             | <0.50<br><0.50<br><0.50        |            |                             | < 0.50                            |                               |                             |                             | <0.50<br>33<br><0.50          |                             | <0.50<br>13<br><0.50        |                |                      |                              |
| Nitrobenzene Pentachlorophenol                                                                     | mg/kg<br>mg/kg<br>mg/kg | 1220                | <0.50<br><0.50<br>3.6       |            |                |           |                             | -           | <0.50<br><0.50<br><0.50 |             |             | <0.50<br><0.50<br>3.5   |            |                |                             |            |                             |                             |                             |                             | <0.50<br><0.50<br>3.3       |                             | <0.50<br><0.50<br>0.94         | -          |                             | < 0.50<br>< 0.50<br>2.6           |                               |                             |                             | <0.50<br><0.50<br>9.7         |                             | <0.50<br><0.50<br>6.3       |                |                      | $\models = 1$                |
| Phenanthrene<br>Phenol<br>Pyrene                                                                   | mg/kg<br>mg/kg          | 3200<br>54200       | <0.50<br>21                 |            |                |           |                             |             | <0.50<br><0.50          |             |             | <0.50<br>5.8            |            |                |                             |            |                             |                             |                             |                             | <0.50<br>3.4                |                             | <0.50<br>2.6                   |            |                             | < 0.50<br>6.5                     |                               |                             |                             | <0.50<br>4.9                  |                             | <0.50<br>3.7                |                |                      |                              |
| 1,2-Dichlorobenzene<br>1,2,4-Trichlorobenzene                                                      | mg/kg<br>mg/kg          | 228                 | <0.50<br><0.50              |            |                |           |                             |             | <0.50<br><0.50          |             |             | <0.50<br><0.50          |            |                |                             |            |                             |                             |                             |                             | <0.50<br><0.50              |                             | <0.50<br><0.50                 |            |                             | < 0.50<br>< 0.50                  |                               |                             |                             | <0.50                         |                             | <0.50<br><0.50              |                | $\square$            |                              |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>2-Chloronaphthalene                                  | mg/kg<br>mg/kg<br>mg/kg |                     | <0.50<br><0.50<br><0.50     |            |                |           |                             | 1           | <0.50<br><0.50<br><0.50 |             |             | <0.50<br><0.50<br><0.50 |            |                |                             |            |                             |                             |                             |                             | <0.50<br><0.50<br><0.50     |                             | <0.50<br><0.50<br><0.50        | <u> </u>   | ļ                           | < 0.50<br>< 0.50<br>< 0.50        |                               |                             |                             | <0.50<br><0.50<br><0.50       |                             | <0.50<br><0.50<br><0.50     |                | $\square$            | $\models = \downarrow$       |
| 2-Chloronaphthalene<br>2-Chlorophenol<br>2-Methyl-4,6-dinitrophenol                                | mg/kg<br>mg/kg<br>mg/kg | nc                  | <0.50<br>0.58               |            |                |           |                             |             | <0.50<br><0.50          |             |             | <0.50<br><0.50          |            |                |                             |            |                             |                             |                             |                             | <0.50<br><0.50<br><0.50     |                             | <0.50<br>2.3                   |            |                             | < 0.50<br>< 0.50                  |                               |                             |                             | <0.50<br><0.50                |                             | <0.50<br><0.50              |                |                      |                              |
| 2-Methylnaphthalene<br>2-Methylphenol                                                              | mg/kg<br>mg/kg          | nc                  | <0.50<br><0.50              |            |                |           |                             |             | 11<br><0.50             |             |             | <0.50<br><0.50          |            |                |                             | -          |                             |                             |                             |                             | <0.50<br><0.50              |                             | <0.50<br><0.50                 |            |                             | < 0.50<br>< 0.50                  |                               |                             |                             | 0.85<br><0.50                 |                             | 0.61<br><0.50               |                |                      | Ē                            |
| 2-Nitrophenol                                                                                      | mg/kg<br>mg/kg          | nc                  | <0.50<br><0.50<br><0.50     |            |                |           |                             |             | <0.50<br><0.50<br><0.50 |             |             | <0.50<br><0.50<br><0.50 |            |                |                             |            |                             |                             |                             |                             | <0.50<br><0.50<br><0.50     |                             | <0.50<br><0.50<br><0.50        |            | <u> </u>                    | < 0.50<br>< 0.50<br>< 0.50        |                               |                             |                             | <0.50<br><0.50<br><0.50       |                             | <0.50<br><0.50<br><0.50     |                |                      |                              |
| 2,4-Dichlorophenol<br>2,4-Dimethylphenol<br>2,4-Dinitrotoluene                                     | mg/kg<br>mg/kg<br>mg/kg | nc                  | <0.50<br><0.50<br><0.50     |            |                |           |                             | -           | <0.50<br><0.50<br><0.50 |             |             | <0.50<br><0.50<br><0.50 |            |                |                             |            |                             |                             |                             |                             | <0.50<br><0.50<br><0.50     |                             | <0.50<br><0.50<br><0.50        | -          |                             | < 0.50<br>< 0.50<br>< 0.50        |                               |                             |                             | <0.50<br><0.50<br><0.50       |                             | <0.50<br><0.50<br><0.50     |                |                      | $\models = 1$                |
| 2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol                                                     | mg/kg<br>mg/kg          | nc                  | <0.50<br><0.50              |            |                |           |                             |             | <0.50<br><0.50          |             |             | <0.50<br><0.50          |            |                |                             |            |                             |                             |                             |                             | <0.50<br><0.50              |                             | <0.50<br><0.50                 |            |                             | < 0.50<br>< 0.50                  |                               |                             |                             | <0.50<br><0.50                |                             | <0.50<br><0.50              |                |                      |                              |
| 2,6-Dinitrotoluene<br>3-Nitroaniline<br>4-Bromophenylphenylether                                   | mg/kg<br>mg/kg          | nc                  | <0.50<br><0.50              |            |                |           |                             |             | <0.50<br><0.50          |             |             | <0.50<br><0.50          |            |                |                             |            |                             |                             |                             |                             | <0.50<br><0.50              |                             | <0.50<br><0.50                 |            |                             | < 0.50<br>< 0.50                  |                               |                             |                             | <0.50<br><0.50                |                             | <0.50<br><0.50              |                |                      |                              |
| 4-Chloro-3-methylphenol                                                                            | mg/kg<br>mg/kg          | nc                  | <0.50<br><0.50              |            |                |           |                             |             | <0.50<br><0.50          |             |             | <0.50<br><0.50          |            |                |                             |            |                             |                             |                             |                             | <0.50<br><0.50              |                             | <0.50<br><0.50                 |            |                             | < 0.50<br>< 0.50                  |                               |                             |                             | <0.50<br><0.50                |                             | <0.50<br><0.50              |                |                      |                              |
| 4-Chloroaniline                                                                                    | mg/kg                   | nc                  | <0.50                       | I          | 1              | 1         | 1                           | 1           | <0.50                   | I           |             | <0.50                   |            |                | I                           |            |                             | I                           |                             | 1                           | <0.50                       | 1                           | <0.50                          | 1          | 1                           | < 0.50                            | 1                             | 1                           | 1                           | <0.50                         | 1                           | <0.50                       | 1              |                      | I                            |

|                                                    | -              |                           | _                     | -              | -                     | -              | -              | -              |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 1              |                                                   |                |
|----------------------------------------------------|----------------|---------------------------|-----------------------|----------------|-----------------------|----------------|----------------|----------------|--------------------|----------------|--------------|--------------|----------------|----------------|----------------|----------------|-------------|-------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|---------------------------------------------------|----------------|
| Ground Investigation                               | 1              |                           | PBA 2010/             | PBA 2010/      | PBA 2010/             | PBA 2010/      |                |                |                    |                | PBA 2010/    | PBA 2010/    | PBA 2010/      | PBA 2010/      | PBA 2010/      | PBA 2010/      | PBA 2010/   | PBA 2010/   | PBA 2010/             | PBA 2010/             | PBA 2010/             | PBA 2010/             |                       | PBA 2010/             010/                                         | PBA 2010/      |
|                                                    |                |                           | 2011                  | 2011           | 2011                  | 2011           | 2011           | 2011           | 2011               | 2011           | 2011         | 2011         | 2011           | 2011           | 2011           | 2011           | 2011        | 2011        | 2011                  | 2011                  | 2011                  | 2011                  | PBA 2010/ 2011        | 2011                  | 2011                  | 2011                  | 2011                  | 2011                  | 2011                  | 2011                  | 2011                  | 2011                  | 2011           | 2011                                              | 2011           |
| Report Number                                      | r              |                           | 122209                | 133346         | 133346                | 115023         | 115023         | 115023         | 115023             | 115023         | 115023       | 115023       | 115023         | 115023         | 115023         | 122209         | 122211      | 122209      | 122211                | 122209                | 122209                | 122210                | 122209                | 122209                | 121783                | 121783                | 121863                | 121863                | 121864                | 121863                | 121863                | 121863                | 115023         | 115023                                            | 115023         |
| Let De                                             |                |                           | AF68327               | AF61341        | 4504040               | AF54164        | AF54165        | 4554400        | AF54167            | 1554400        | AF54169      | AF54170      | AF54171        | 4554470        | AF54163        | 1500000        | AF68440     | AF68329     | AF68441               | AF68330               | AF68331               | AF68364               | AF68332               | AF68333               | AF57626               | AF57627               | 4500050               | 4500057               | AF60285               | AF60259               | AF60260               | AF60261               | AF54184        | AF54185                                           | AF54187        |
| Lab Re                                             | r              |                           |                       |                |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       |                       |                       | AF60256               | AF60257               |                       |                       |                       | AF60261               | AF54184        | AF54185                                           | AF54187        |
| Date                                               | e              |                           |                       |                |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       | 25/01/2011            |                       | 25/01/2011<br>TP2017  |                       |                       |                       |                       |                       |                       | 10/12/2010            |                       | 10/12/2010            |                |                                                   |                |
| Exploatory hole location                           | 1              |                           | B6                    | Pancras        |                       |                |                |                | Pancras            |                |              |              |                | Pancras        |                | Pancras        |             | Pancras     | Pancras               | Descurre              |                       |                       |                       | Pancras               as                                           | Pancras        |
| Zone B Location                                    | ו              |                           | Вб                    | Square         | Square                |                | Square         | Square         | Square             | Square         |              | Square       | Square         | Square         | Square         | Square         | Square      | Square      | Square                | Square                | Pancras Square        | Square                | Pancras Square        | Square                | Square                | Square                | Square                | Square                | Square                | Square                | Square                | Square                | Square         | Square                                            | Square         |
|                                                    |                |                           |                       |                |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | Between        | Between                                           | Between        |
| Location on plot/ gas holder number                | r              |                           | Outside<br>gasholders | Outside        | Outside<br>gasholders |                | GH3 interior   | GH3 interior   | GH3 interior       | GH3 interior   | GH3 interior | Outside      | Outside        |                |                | Outside        |             |             | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | gasholder 3    | gasholder 3                                       | gasholder 3    |
|                                                    |                |                           | gasiloideis           | gasnoiuers     | gasnoiders            |                |                |                |                    |                |              | gastioluers  | gastioluers    | gasiloideis    | gasiloideis    | yasholders     | gastioluers | gasiloideis | gastioluers           | gastioluers           | gasiloideis           | gasilolueis           | gasiloideis           | gasilolueis           | gasiloiders           | gastiolders           | gastioluers           | gasnoiders            | gasnoiders            | gastiolders           | gasiloideis           | gastioluers           | and A          | and A                                             | and A          |
| Depth (m)                                          | )              |                           | 4m                    | 0.3m           | 5m                    | 0.3m           | 3m             | 6m             | 8m                 | 9m             | 11m          | 1m           | 2m             | 6m             | 1m             | 0.3m           | 0.3m        | 1m          | 1m                    | 2m                    | 2m                    | 2m                    | 3m                    | 4m                    | 0.5m                  | 1.2m                  | 0.3m                  | 1m                    | 1.5m                  | 2.5m                  | 3.5m                  | 4m/ 4.5 - 5?          | 1m             | 1.5m                                              | 0.5m           |
|                                                    |                |                           |                       | Made           | Marti                 | Made           | Made           | Marti          | Mark               | Mada           | Landar Of    |              | Made           | Made           | Made           |                |             | 01          |                       | 01                    | 0                     | 01                    | 01                    | 01                    |                       |                       |                       |                       |                       |                       | Mada                  |                       | 14.4           |                                                   | Mark           |
| Strata                                             | a              |                           | Made Ground           | Made<br>Ground | Made<br>Ground        | Made<br>Ground | Made<br>Ground | Made<br>Ground | Made<br>Ground     | Made<br>Ground | London Clay  | Made Ground  | Made<br>Ground | Made<br>Ground | Made<br>Ground | Made<br>Ground | Made Ground | Clay        | Made Ground           | Clay                  | Clay                  | Clay                  | Clay                  | Clay                  | Made Ground           | Made<br>Ground        | Made Ground           | Made<br>Ground | Made<br>Ground                                    | Made<br>Ground |
| 4-Chlorophenylphenylether                          | mg/kg          |                           | < 0.50                |                |                       |                |                |                | <0.50              |                |              | < 0.50       |                |                |                |                |             |             |                       |                       | <0.50                 |                       | <0.50                 |                       |                       | < 0.50                |                       |                       |                       | <0.50                 |                       | <0.50                 |                |                                                   |                |
| 4-Methylphenol                                     | mg/kg          |                           | <0.50                 |                |                       |                |                |                | < 0.50             |                |              | < 0.50       |                |                |                |                |             |             |                       |                       | <0.50                 |                       | <0.50                 |                       |                       | < 0.50                |                       |                       |                       | <0.50                 |                       | <0.50                 |                | <u>ا</u> ــــــــــــــــــــــــــــــــــــ     | <u> </u>       |
| 4-Nitroaniline<br>ethyl-methyl benzenes            | mg/kg          |                           |                       |                |                       |                |                |                | <0.50<br>900       |                |              | <0.50        |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                | ┥────┤                                            | t              |
| Tentatively Identified Compounds                   | mg/kg<br>mg/kg |                           | None Detected         |                | 1                     | -              | 1              | 1              | 900                |                |              | Not detected |                |                |                |                |             |             |                       |                       | None Detected         | 1 1                   | None Detected         |                       |                       | Not detected          |                       |                       |                       | Not detected          |                       | Not detected          |                | i−−−−−−]                                          | <u> </u>       |
| Benzofuran                                         | mg/kg          |                           | None Detected         | -              | 1                     | -              |                |                |                    |                |              | NOT DETECTED |                |                |                |                |             |             |                       |                       | None Detected         |                       | None Detected         |                       |                       | NOT DETECTED          |                       |                       |                       | NOT DETECTED          |                       | Not detected          |                | <b>┌───</b> †                                     |                |
| biphenyl                                           | mg/kg          |                           |                       |                |                       |                |                |                | 1 1                |                |              |              |                |                |                |                | 1           |             |                       |                       |                       | 1 1                   |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                | $\square$                                         |                |
| 1-methylnahthalene                                 | mg/kg          | nc                        |                       |                |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                |                                                   |                |
| 1-methylnaphthalene                                | mg/kg          |                           |                       |                |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                |                                                   | <b>↓</b>       |
| Indene                                             | mg/kg          |                           |                       |                |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                | <b>↓</b>                                          | <b>↓</b>       |
| 2-benzothiophene<br>Cinnamaldehde                  | mg/kg<br>mg/kg | nc                        |                       |                |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                | ┢────┤                                            | t              |
| Biphenyl                                           | mg/kg          |                           |                       |                | 1                     | -              | 1              | 1              | <del>   </del>     |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                | i−−−−−−]                                          | ii             |
| naphtho[2,3-B]thiophene                            | mg/kg          |                           |                       |                |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                |                                                   |                |
| PCBs as Aroclor 1242                               | mg/kg          | nc                        | <1                    |                |                       |                |                |                | <1                 |                |              | <1           |                |                |                |                |             | 1           |                       |                       | <1                    | 1 1                   | <1                    |                       |                       | <1                    |                       |                       |                       | <1.0                  |                       | <1.0                  |                | $\square$                                         |                |
| 2-sec-Butyl-4,6-dinitrophenol                      | mg/kg          | nc                        |                       |                |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       |                |                                                   | í l            |
| 4-Chloro-3-methylphenol                            | mg/kg          | nc                        |                       |                |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       |                |                                                   | L              |
| 2-Chlorophenol                                     | mg/kg          |                           |                       |                |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       |                | ┥────┤                                            | t              |
| 2,4-Dichlorophenol<br>2,6-Dichlorophenol           | mg/kg<br>mg/kg |                           |                       |                | -                     |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       |                | ++                                                | t              |
| 2,4-Dimethylphenol                                 | mg/kg          |                           |                       |                |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       |                | <b>├───</b>                                       |                |
| 2,4-Dinitrophenol                                  | mg/kg          | nc                        |                       |                |                       |                |                |                | 1 1                |                |              |              |                |                |                |                |             |             |                       |                       |                       | 1 1                   |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       |                | +                                                 |                |
| 2-Methyl-4.6-dinitrophenol                         | mg/kg          |                           |                       |                |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       |                |                                                   |                |
| 2-Methylphenol                                     | mg/kg          | nc                        |                       |                |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       |                |                                                   |                |
| 2-Methylphenol<br>3-Methylphenol<br>4-Methylphenol | mg/kg          |                           |                       |                |                       |                |                |                | <u> </u>           |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       |                |                                                   |                |
| 4-Methylphenol                                     | mg/kg          |                           |                       | l              | +                     |                | l              | I              | <b>├</b> ──┤       |                |              |              |                |                |                |                |             |             |                       |                       |                       | <b>↓</b>              |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       | l              | ┥────┤                                            | ←───┤          |
| 2-Nitrophenol                                      | mg/kg<br>mg/kg | nc                        |                       |                |                       |                |                |                | <b>├</b> ──-       |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       |                | <del>ا</del> ــــــــــــــــــــــــــــــــــــ | <u> </u>       |
| 4-Nitrophenol<br>Pentachlorophenol                 | mg/kg<br>mg/kg |                           |                       | +              | +                     | +              | 1              | l              | <del>  − −  </del> |                |              |              |                |                |                |                | l           |             |                       |                       | l                     |                       |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       |                | <del>ا ا ا</del>                                  | <u>—</u>       |
| Phenol                                             | mg/kg          |                           |                       | 1              | 1                     | 1              | 1              | 1              |                    |                |              |              |                |                |                |                | 1           |             |                       |                       | 1                     |                       |                       |                       | < 0.2                 |                       | 1                     |                       |                       |                       |                       |                       | 1              | $ \longrightarrow $                               |                |
| 2,3,4,5-Tetrachlorophenol                          | mg/kg          |                           |                       | i              | 1                     | 1              | İ              | i –            | i i                |                |              |              |                |                | 1              |                | i           | i i         |                       | İ                     | i                     | 1 1                   |                       | i i                   | < 0.2                 |                       | İ                     |                       | i i                   |                       |                       |                       | 1              | -                                                 |                |
| 2,3,4,6-Tetrachlorophenol                          | mg/kg          | 3900                      |                       |                |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       |                |                                                   |                |
| 2,3,5,6-Tetrachlorophenol                          | mg/kg          |                           |                       |                |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       |                |                                                   |                |
| 2,3,4-Trichlorophenol                              | mg/kg          |                           |                       |                |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       |                |                                                   |                |
| 2,3,5-Trichlorophenol                              | mg/kg          |                           |                       | l              | +                     |                | l              | I              | <b>├</b> ──┤       |                |              |              |                |                |                |                |             |             |                       |                       |                       | <b>↓</b>              |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       | l              | ┥────┤                                            | <b>⊢</b>       |
| 2,3,6-Trichlorophenol<br>2,4,5-Trichlorophenol     | mg/kg<br>mg/kg |                           |                       |                |                       |                |                |                | <b>├</b> ──-       |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       |                | <del>ا</del> ــــــــــــــــــــــــــــــــــــ | <u> </u>       |
| 2,4,5-Trichlorophenol                              | mg/kg<br>mg/kg |                           |                       | +              | +                     | +              | 1              | l              | <del>  − −  </del> |                |              |              |                |                |                |                | l           |             |                       |                       | l                     |                       |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       |                | <del>ا ا ا</del>                                  | <u>—</u>       |
|                                                    | mg/kg          | nc                        |                       | 1              | 1                     |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       | < 0.2                 |                       |                       |                       |                       |                       |                       |                       |                | $\longrightarrow$                                 |                |
|                                                    |                | 110                       |                       | 1              | 1                     | 1              | 1              | 1              |                    |                |              |              |                |                |                |                | l I         | 1           |                       | l                     | 1                     | 1 1                   |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                | (                                                 |                |
|                                                    | Indicates w    | here the data exceeds the | e sc                  | 1              |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       | 1                     |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       | 1              | $\square$                                         |                |
|                                                    |                |                           |                       |                |                       |                |                |                |                    |                |              |              |                |                |                |                |             |             |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                |                                                   |                |

**Groundwater Screening Tables D3** 

REP002 | Issue 4 | 13 July 2011

J/2/16000/216066 KXC B3 REMEDIATION SERVICES/4 INTERNAL PROJECT DATA(4-03 ARUP REPORTS)/02 B3 ERP/03 ISSUE 4IISSUE4 REP002 ZONE B ERP B3 AMENDMENT REPORT 13JUL11.DOCX

King's Cross Central Zones B and E Earthworks & Remediation Plan

| er                                 | Concentration e       | exceeds the as | sessment criteria |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   |                      |
|------------------------------------|-----------------------|----------------|-------------------|-----------------------|-----------------------|-----------------------|--------------------|------------------------------------------|--------------------|-------------------|-----------------------|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------|----------------------|
| nc = no criteria                   |                       |                |                   |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   |                      |
| Ground Investigation               |                       |                |                   | Oscar Faber           | Oscar Faber           | Oscar Faber           | Oscar Faber        | Oscar Faber                              | Oscar Faber        | Oscar Faber       | Oscar Faber           | Oscar Faber           | Oscar Faber             | Oscar Faber             | Oscar Faber             | Oscar Faber             | Oscar Faber       | White Young<br>Green |
| Lab Ref                            |                       |                |                   |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   |                      |
| Date samples collected             |                       |                |                   | W06903                | W06904                | W06905                | W06913             | W08081                                   | W07495             | W08080            | W06906                | W06907                | W06908                  | W06909                  | W06910                  | W06911                  | W06912            | WYG11814             |
| Exploratory Hole Location          |                       |                |                   | 18.03.91<br>Not known | 18.03.91<br>Not known | 18.03.91<br>Not known | 19.03.91<br>TP20   | 18.03.91<br>TP12                         | 18.03.91<br>BH4A   | 18.03.91<br>BH2   | 18.03.91<br>Not known | 18.03.91<br>Not known | 18/03/1991<br>Not known | 19/03/1991<br>Not known | 19/03/1991<br>Not known | 19/03/1991<br>Not known | 18/03/1991<br>TP2 | 16/07/1999<br>BH106  |
| Depth (m)                          |                       |                |                   | Surface               | 4.5                   | 7.0                   | 1120               | 8.0                                      | 2.5                | 9.0               | Surface               | 4.5                   | 8.0                     | Surface                 | 7.0                     | 14.0                    | 3.3               | 0.9                  |
|                                    |                       |                |                   |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   |                      |
| Location                           |                       |                |                   | Inside<br>gasholder 3 | Inside<br>gasholder 3 | Inside<br>gasholder 3 | B3 (inside<br>GH9) | On B1 and B3<br>boundary<br>(inside GH9) | B3 (inside<br>GH9) | Pancras<br>Square | Gas holder 8          | Gas holder 8          | Gas holder 8            | Gas holder 10           | Gas holder 10           | Gas holder 10           | B5                | Inside GH1<br>B1     |
|                                    |                       |                |                   |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | 51                   |
|                                    | Screening<br>Criteria | Units          | Standard          | Historical data       | Historical data       | Historical data       | Historical data    | Historical data                          | Historical data    | Historical data   | Historical data       | Historical data       | Historical data         | Historical data         | Historical data         | Historical data         | Historical data   | Historical data      |
| Inorganics                         |                       |                |                   |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   |                      |
| Arsenic                            | 10                    | ug/l           | UK DWS            | < 5                   | < 5                   | 9                     | 150                | 66                                       | 1350               | < 5               | < 5                   | < 5                   | < 5                     | < 5                     | < 5                     | < 5                     | 157               | 0.026                |
| Cadmium                            | 5                     | ug/l           | UK DWS            | 1                     | < 1                   | 1                     | 2                  | < 2                                      | 510                | 2                 | < 1                   | < 1                   | 2                       | < 1                     | < 1                     | < 1                     | < 1               | < 0.001              |
| Chromium<br>Copper                 | 50<br>2000            | ug/l<br>ug/l   | UK DWS<br>UK DWS  | -                     |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | < 0.01<br>< 0.005    |
| Lead                               | 2000                  | ug/l           | UK DWS            | 530                   | 690                   | 920                   | 3300               | 238                                      | 830000             | 150               | 550                   | 770                   | < 20                    | < 20                    | < 20                    | < 20                    | 1200              | < 0.005              |
| Mercury                            | 1                     | ug/l           | UK DWS            | 23                    | 1.4                   | 0.8                   | 14                 | 4                                        | 210                | 4.3               | 0.8                   | 0.5                   | < 0.5                   | < 0.5                   | < 0.5                   | 0.9                     | 8                 | < 0.00005            |
| Nickel                             | 50                    | ug/l           | UK DWS            |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | < 0.005              |
| Selenium                           | 10                    | ug/l           | UK DWS            |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | 0.014                |
| Zinc                               | 5000                  | ug/l           | UK DWS            | -                     |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | < 0.005              |
| Miscellaneous<br>Alkalinity        | nc                    | mg CaCO3 I-1   | nc                |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   |                      |
| Chloride                           | nc                    | mg/l           | nc                | 13                    | 14                    | 14                    |                    | 15                                       | 80                 | 277               | 9                     | 14                    | 10                      | 20                      | 20                      | 20                      | 29                |                      |
| Sulphate as SO4                    | 250                   | mg/l           | UK DWS            | 6                     | 2                     | 1                     | 307                | 195                                      | 104                | 1504              | 5                     | 6                     | 1                       | 4                       | 3                       | 3                       | 354               | 280                  |
| Cyanide total                      | 0.5                   | mg/l           | UK DWS            | 0.6                   | 1.9                   | 1.4                   | 0.1                | 3.6                                      | 5                  | < 0.5             | 1.2                   | 0.9                   | 0.9                     | 0.3                     | 0.3                     | 0.2                     | 6.4               | 3                    |
| Cyanide free                       | 0.001                 | mg/l           | FEQS              |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   |                      |
| Thiocyanate                        | 0.17                  | mg/l           | DIV               | < 1                   | <1                    | <1                    | < 1                | < 1                                      | 4.4                | 13.6              | < 1                   | < 1                   | < 1                     | < 1                     | < 1                     | < 1                     | 3.1               |                      |
| Hardness                           | nc<br>0.39            | mg/l           | UK DWS            | 2                     | 3.4                   | 3.4                   | 3.3                | 0.24                                     | 32                 | 0.65              | 2.9                   | 3.8                   | 4.1                     | 6.5                     | 7                       | 12                      | 51                |                      |
| Ammoniacal Nitrogen as N<br>Phenol | 0.03                  | mg/l           | UK DWS            | 2                     | 3.4                   | 3.4                   | 3.3                | 0.24                                     | 32                 | 0.05              | 2.9                   | 3.0                   | 4.1                     | 0.0                     | /                       | 12                      | 51                |                      |
| Total Organic Carbon               | nc                    |                |                   |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | 23                   |
| pH                                 | nc                    | pH units       | nc                | 7                     | 7.6                   | 7.7                   | 8.6                | 7.4                                      | 7.4                | 7.1               | 7.5                   | 7.6                   | 7.6                     | 7.8                     | 7.6                     | 7.6                     | 9.4               | 8.3                  |
| Electrical conductivity            | nc                    | μS cm-1        | nc                | 425                   | 495                   | 500                   | 1000               | 748                                      | 1358               | 3510              | 380                   | 290                   | 470                     | 375                     | 380                     | 380                     | 930               | 1000                 |
| Total phenol                       | 0.0005                | mg/l           | UK DWS            | 0.1                   | 0.07                  | 0.08                  | < 0.05             | < 0.5                                    | < 0.5              | 15.2              | < 0.05                | < 0.05                | 0.2                     | 0.08                    | < 0.05                  | 0.07                    | 0.6               | ND                   |
| Sulphide (H2S)                     | 0.00025               | mg/l           | FEQS              | 0.2                   | 0.2                   | 0.2                   | 0.4                | < 0.05                                   | 23                 | < 0.05            | 0.2                   | 0.8                   | 1                       | 0.2                     | 0.2                     | 0.2                     | 0.2               |                      |
| PAH<br>Acenaphthene                | 2.57                  | ma/l           | DIV               |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | 0.003                |
| Acenaphthene                       | 4.01                  | mg/l           | DIV               | -                     |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | <0.003               |
| Anthracene                         | 0.00002               | mg/l           | FEQS              |                       |                       |                       |                    | 1                                        |                    |                   | 1                     |                       |                         |                         |                         | 1                       |                   | 0.001                |
| Benzo(a)anthracene                 | 0.001                 | mg/l           | DIV               |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | <0.001               |
| Benzo(a)pyrene                     | 0.00001               | mg/l           | UK DWS            |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | <0.001               |
| Benzo(b)fluoranthene               | 0.017                 | mg/l           | DIV               |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | < 0.001              |
| Benzo(k)fluoranthene               | 0.00036               | mg/l           | DIV               |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | < 0.001              |
| Benzo(g,h,i)perylene<br>Chrysene   | 0.00018               | mg/l<br>mg/l   | DIV               | -                     |                       |                       |                    | +                                        |                    |                   | +                     |                       |                         |                         |                         | +                       |                   | <0.001<br><0.001     |
| Dibenzo(a,h)anthracene             | 0.00012               | mg/l           | DIV               |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | <0.001               |
| Fluoranthene                       | 0.000002              | mg/l           | FEQS              |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | 0.002                |
| Fluorene                           | nc                    | mg/l           | nc                |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | 0.002                |
| Indeno(1,2,3-c,d)pyrene            | 0.0000036             | mg/l           | DIV               |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | <0.001               |
| Naphthalene                        | 0.01                  | mg/l           | FEQS              |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | 0.13                 |
| Phenanthrene<br>Burene             | 0.03                  | mg/l           | DIV               |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | 0.006                |
| Pyrene<br>Total of 16 PAH          | 0.106<br>nc           | mg/l<br>mg/l   | DIV<br>nc         |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | 0.001 0.145          |
| Coal tars                          | nc                    | mg/l           | nc                | 11                    | < 10                  | < 10                  | 27                 | < 10                                     | 9030               | < 10              | < 10                  | < 10                  | < 10                    | < 10                    | < 10                    | < 10                    | 17                | 0.140                |
| Mineral oils                       | nc                    | mg/l           | nc                | < 10                  | < 10                  | < 10                  | < 10               | 15                                       | 1010               | 31                | < 10                  | 12                    | 13                      | 21                      | 13                      | 18                      | < 10              | 1                    |
| Hydrocarbon oils                   | nc                    | mg/l           | nc                |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   | <0.1                 |
| Toluene extractable matter         | nc                    | mg/l           | nc                | 18                    | 12                    | 12                    | 34                 | 24                                       | 11150              | 58                | < 10                  | 15                    | 14                      | 23                      | 14                      | 20                      | 21                |                      |
|                                    |                       |                |                   |                       |                       |                       |                    |                                          |                    |                   |                       |                       |                         |                         |                         |                         |                   |                      |

|                            | Concentration         |                |                   | 1                    | 1                     | 1                    | 1                     | 1                     |                       | 1                    |           |
|----------------------------|-----------------------|----------------|-------------------|----------------------|-----------------------|----------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------|
| er                         | Concentration e       | exceeds the as | sessment criteria |                      |                       |                      |                       |                       |                       |                      |           |
| nc = no criteria           |                       |                |                   |                      |                       |                      |                       |                       |                       |                      |           |
| Ground Investigation       |                       |                |                   | White Young<br>Green | White Young<br>Green  | White Young<br>Green | White Young<br>Green  | White Young<br>Green  | White Young<br>Green  | White Young<br>Green | Whit<br>G |
| Lab Ref                    |                       |                |                   | WYG11815             | WYG11809              | WYG1181              | WYG118110             | WYG118111             | WYG11808              | WYG118113            | WYC       |
| Date samples collected     |                       |                |                   | 16/07/1999           | 16/07/1999            | 20/07/1999           | 20/07/1999            | 20/07/1999            | 20/07/1999            | 20/07/1999           | 20/0      |
| Exploratory Hole Location  |                       |                |                   | BH107                | BH102                 | BH104                | BH102C                | BH103                 | BH101                 | BH105A               | SA        |
|                            |                       |                |                   | 2.4                  | 0.9                   | 1.0                  | 2.03                  | 2.5                   | 0.79                  | 0.52                 | - SA      |
| Depth (m)                  |                       |                |                   | Inside GHB           | Outside<br>gasholders | Inside GH9           | Outside<br>gasholders | Outside<br>gasholders | Outside<br>gasholders | Inside GHA           | O         |
| Location                   |                       |                |                   | B1                   | B1                    | B3                   | B5                    | Between B5 and<br>B6  | Pancras<br>Square     | Pancras Square       | Pancra    |
|                            | Screening<br>Criteria | Units          | Standard          | Historical data      | Historical data       | Historical data      | Historical data       | Historical data       | Historical data       | Historical data      | Histo     |
| Inorganics                 |                       |                |                   |                      |                       |                      |                       |                       |                       |                      |           |
| Arsenic                    | 10                    | ug/l           | UK DWS            | 0.026                | 0.023                 | 0.028                | 0.0031                | 0.032                 | 0.014                 | 0.037                | 0         |
| Cadmium                    | 5                     | ug/l           | UK DWS            | < 0.001              | < 0.001               | < 0.001              | < 0.001               | < 0.001               | <0.001                | < 0.001              | <         |
| Chromium                   | 50                    | ug/l           | UK DWS            | 0.027                | < 0.01                | < 0.01               | 0.03                  | 0.037                 | < 0.01                | <0.01                |           |
| Copper                     | 2000                  | ug/l           | UK DWS            |                      | < 0.005               | < 0.005              | 0.005                 | < 0.005               | < 0.005               | 0.005                | 0         |
| Lead                       | 25                    | ug/l           | UK DWS            | < 0.01               | < 0.01                | < 0.01               | <0.01                 | 0.013                 | <0.01                 | <0.01                | <         |
| Mercury                    | 1                     | ug/l           | UK DWS            | < 0.00005            | < 0.00005             | < 0.00005            | < 0.00005             | < 0.00005             | <0.00005              | < 0.00005            | < 0       |
| Nickel                     | 50                    | ug/l           | UK DWS            | 0.006                | < 0.005               | < 0.005              | 0.013                 | 0.011                 | <0.005                | 0.012                | <         |
| Selenium                   | 10                    | ug/l           | UK DWS            | < 0.01               | < 0.01                | < 0.01               | <0.01                 | <0.01                 | <0.01                 | <0.01                | <         |
| Zinc                       | 5000                  | ug/l           | UK DWS            | < 0.005              | < 0.005               | < 0.005              | 0.007                 | 0.015                 | 0.006                 | < 0.005              | <         |
| Miscellaneous              |                       |                |                   |                      |                       |                      |                       |                       |                       |                      |           |
| Alkalinity                 | nc                    | mg CaCO3 I-1   | nc                |                      |                       |                      |                       |                       |                       |                      |           |
| Chloride                   | nc                    | mg/l           | nc                |                      |                       |                      |                       |                       |                       |                      |           |
| Sulphate as SO4            | 250                   | mg/l           | UK DWS            | 1500                 | 250                   | 290                  | 2100                  | 2900                  | 270                   | 420                  | 1         |
| Cyanide total              | 0.5                   | mg/l           | UK DWS            | 0.19                 | 0.27                  | 1.4                  | 0.68                  | 65                    | 0.44                  | 2                    |           |
| Cyanide free               | 0.001                 | mg/l           | FEQS              |                      |                       |                      |                       |                       |                       |                      |           |
| Thiocyanate                | 0.17                  | mg/l           | DIV               |                      |                       |                      |                       |                       |                       |                      |           |
| Hardness                   | nc                    |                |                   |                      |                       |                      |                       |                       |                       |                      |           |
| Ammoniacal Nitrogen as N   | 0.39                  | mg/l           | UK DWS            |                      |                       |                      |                       |                       |                       |                      |           |
| Phenol                     | 0.03                  | Ĭ              |                   |                      |                       |                      |                       |                       |                       |                      |           |
| Total Organic Carbon       | nc                    |                |                   | 12                   | 17                    | 28                   | 20                    | 54                    | 10                    | 26                   | 1         |
| Hq                         | nc                    | pH units       | nc                | 7.2                  | 7.9                   | 7.2                  | 6.6                   | 7.2                   | 7.5                   | 7.3                  |           |
| Electrical conductivity    | nc                    | µS cm-1        | nc                | 2500                 | 1200                  | 1500                 | 3400                  | 4900                  | 1200                  | 980                  | 1         |
| Total phenol               | 0.0005                | mg/l           | UK DWS            | 0.18                 | ND                    | 0.032                | 0.315                 | 103.74                | 0.106                 | 15.704               |           |
| Sulphide (H2S)             | 0.00025               | mg/l           | FEQS              |                      |                       |                      |                       |                       |                       |                      | 1         |
| РАН                        |                       | g,:            |                   |                      |                       |                      |                       |                       |                       |                      |           |
| Acenaphthene               | 2.57                  | mg/l           | DIV               | 0.003                | 0.001                 | < 0.001              | 0.002                 | 0.05                  | 0.002                 | 0.02                 | 0         |
| Acenaphthylene             | 4.01                  | mg/l           | DIV               | 0.003                | <0.001                | <0.001               | < 0.001               | 0.3                   | <0.001                | 0.02                 | 0         |
| Anthracene                 | 0.00002               | mg/l           | FEQS              | 0.008                | <0.001                | <0.001               | 0.005                 | 0.15                  | 0.003                 | 0.031                | 0         |
| Benzo(a)anthracene         | 0.001                 | mg/l           | DIV               | < 0.001              | <0.001                | 0.002                | < 0.001               | 0.021                 | <0.001                | < 0.001              | <         |
| Benzo(a)pyrene             | 0.00001               | mg/l           | UK DWS            | < 0.001              | <0.001                | <0.001               | <0.001                | 0.059                 | <0.001                | 0.014                | <         |
| Benzo(b)fluoranthene       | 0.017                 | mg/l           | DIV               | <0.001               | <0.001                | <0.001               | < 0.001               | 0.046                 | <0.001                | 0.011                | <         |
| Benzo(k)fluoranthene       | 0.00036               | mg/l           | DIV               | < 0.001              | <0.001                | <0.001               | <0.001                | 0.032                 | <0.001                | 0.007                | <         |
| Benzo(g,h,i)perylene       | 0.00018               | mg/l           | DIV               | < 0.001              | <0.001                | < 0.001              | < 0.001               | 0.03                  | <0.001                | 0.008                | <         |
| Chrysene                   | 0.0012                | mg/l           | DIV               | <0.001               | <0.001                | <0.001               | < 0.001               | 0.067                 | <0.001                | 0.016                | <         |
| Dibenzo(a,h)anthracene     | 0.00083               | mg/l           | DIV               | < 0.001              | <0.001                | <0.001               | < 0.001               | 0.007                 | <0.001                | 0.002                | <         |
| Fluoranthene               | 0.000002              | mg/l           | FEQS              | 0.008                | <0.001                | < 0.001              | 0.004                 | 0.2                   | 0.004                 | 0.055                | 0         |
| Fluorene                   | nc                    | mg/l           | nc                | 0.011                | < 0.001               | < 0.001              | 0.008                 | 0.15                  | 0.004                 | 0.045                | 0         |
| Indeno(1,2,3-c,d)pyrene    | 0.0000036             | mg/l           | DIV               | < 0.001              | < 0.001               | < 0.001              | < 0.001               | 0.035                 | < 0.001               | 0.008                | <         |
| Naphthalene                | 0.01                  | mg/l           | FEQS              | 0.021                | 0.003                 | 0.014                | 0.039                 | 21.5                  | 0.001                 | 1.25                 | 0         |
| Phenanthrene               | 0.03                  | mg/l           | DIV               | 0.014                | < 0.001               | < 0.001              | 0.012                 | 0.39                  | 0.004                 | 0.096                | 0         |
| Pyrene                     | 0.106                 | mg/l           | DIV               | 0.005                | < 0.001               | < 0.001              | 0.002                 | 0.15                  | 0.002                 | 0.039                | 0         |
| Total of 16 PAH            | nc                    | mg/l           | nc                | 0.073                | 0.004                 | 0.016                | 0.004                 | 23.23                 | 0.02                  | 1.64                 | 0         |
| Coal tars                  | nc                    | mg/l           | nc                |                      |                       |                      |                       | -                     | -                     | -                    | 1         |
| Mineral oils               | nc                    | mg/l           | nc                |                      |                       |                      |                       |                       |                       | 1                    | 1         |
| Hydrocarbon oils           | nc                    | mg/l           | nc                | 7.2                  | 0.5                   | 0.4                  | 4.5                   | 110                   | 4.3                   | 0.8                  | 1         |
| Toluene extractable matter | nc                    | mg/l           | nc                |                      |                       |                      |                       |                       |                       |                      | 1         |
|                            |                       |                |                   |                      | •                     | •                    | •                     | •                     | •                     | •                    | +         |

Ove Arup & Partners Ltd

| Vhite Young<br>Green |
|----------------------|
| VYG118116            |
| 20/07/1999           |
| SA7322A              |
| 1 02                 |
| Outside              |
| gasholders           |
|                      |
| ncras Square         |
| istorical data       |
| 0.000                |
| 0.026                |
| < 0.001              |
| 0.27                 |
| 0.006                |
| < 0.01               |
| < 0.00005            |
| < 0.005              |
| < 0.01               |
| <0.005               |
|                      |
|                      |
| 4500                 |
| 1500                 |
| 0.19                 |
|                      |
|                      |
|                      |
|                      |
| 10                   |
| 10                   |
| 6.9                  |
| 1400<br>ND           |
| ND                   |
|                      |
| 0.003                |
| 0.003                |
| 0.003                |
| < 0.000              |
| <0.001               |
| <0.001               |
| < 0.001              |
| <0.001               |
| <0.001               |
| <0.001               |
| 0.008                |
| 0.011                |
| < 0.001              |
| 0.021                |
| 0.014                |
| 0.005                |
| 0.073                |
|                      |
|                      |
|                      |
| 3.8                  |
| 3.8                  |

|                                                                         | Concontration         | overade the      | assessment criteria | 1                    | 1                     |                       | 1                    | 1                    |                      |                      |                       |                      |                      |                      | 1                    | 1                    |                      |                      |
|-------------------------------------------------------------------------|-----------------------|------------------|---------------------|----------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| nc = no criteria                                                        | Concentration         | exceeds the a    | assessment criteria |                      |                       |                       |                      |                      |                      |                      |                       |                      |                      |                      |                      |                      |                      |                      |
| Ground Investigation                                                    |                       |                  |                     | PBA 2010/            | PBA 2010/             | PBA 2010/             | PBA 2010/            | PBA 2010/            | PBA 2010/            | PBA 2010/            | PBA 2010/             | PBA 2010/            | PBA 2010/            | PBA 2010/            | PBA 2010/            | PBA 2010/            | PBA 2010/            | PBA 2010/            |
|                                                                         |                       |                  |                     | 2011                 | 2011                  | 2011                  | 2011                 | 2011                 | 2011                 | 2011                 | 2011                  | 2011                 | 2011                 | 2011                 | 2011                 | 2011                 | 2011                 | 2011                 |
| Report Number                                                           |                       |                  |                     | 103364               | 103364                | 103364                | 103364               | 103364               | 103364               | 103364               | 103364                | 103364               | 103364               | 103364               | 103364               | 103364               | 103364               | 103364               |
| Lab Ref                                                                 |                       |                  |                     | AF79816              | AF79817               | AF79818               | AF79819              | AF79823              | AF79824              | AF79825              | AF79827               | AF79826              | AF79813              | AF79821              | AF79815              | AF79814              | AF79820              | AF79822              |
| Date samples collected                                                  |                       |                  |                     |                      |                       |                       |                      |                      |                      |                      |                       |                      |                      |                      |                      |                      |                      |                      |
|                                                                         |                       |                  |                     | 23/02/2011           | 23/02/2011            | 23/02/2011            | 23/02/2011           | 23/02/2011           | 23/02/2011           | 23/02/2011           | 23/02/2011            | 23/02/2011           | 23/02/2011           | 23/02/2011           | 23/02/2011           | 23/02/2011           | 23/02/2011           | 23/02/2011           |
| Date analysis completed<br>Exploratory Hole Location                    |                       |                  |                     | 08/03/2011<br>BH2004 | 08/03/2011<br>BH2004  | 08/03/2011<br>BH2005C | 08/03/2011<br>BH2006 | 08/03/2011<br>BH2012 | 08/03/2011<br>BH2014 | 08/03/2011<br>BH2015 | 08/03/2011<br>BH2016  | 08/03/2011<br>BH2016 | 08/03/2011<br>BH2001 | 08/03/2011<br>BH2010 | 08/03/2011<br>BH2003 | 08/03/2011<br>BH2002 | 08/03/2011<br>BH2007 | 08/03/2011<br>BH2011 |
| Depth (m)                                                               |                       |                  |                     | 1.92                 | 1.91                  | 1.23                  | 4.03                 | 4.08                 | 4.28                 | 2.95                 | 3.38                  | 3.39                 | 2.09                 | 2.56                 | 2.03                 | 2.75                 | 4.31                 | 1.13                 |
| Standpipe                                                               |                       |                  |                     | Deep<br>Inside GH9   | Shallow<br>Inside GH9 | Outside GHs           | Deep<br>Inside GH1   | Inside GH3           | Inside GH3           | Outside GHs          | Shallow<br>Inside GH9 | Deep<br>Inside GH9   | Inside GH12          | Outside GHs          | Outside GHs          | Outside GHs          | Inside GH3           | Outside GHs          |
| Location                                                                |                       |                  |                     | B1                   | B1                    |                       | B1                   |                      |                      |                      |                       |                      |                      |                      | B3                   | Between B3 &         | Pancras              | Pancras              |
|                                                                         |                       |                  |                     | ы                    | ы                     | B1                    | ы                    | B1                   | B1                   | B1                   | B3                    | B3                   | B3                   | B5                   | БЗ                   | B5                   | Square               | Square               |
|                                                                         | Screening<br>Criteria | Units            | Standard            | Round 4              | Round 4               | Round 4               | Round 4              | Round 4              | Round 4              | Round 4              | Round 4               | Round 4              | Round 4              | Round 4              | Round 4              | Round 4              | Round 4              | Round 4              |
| Inorganics                                                              |                       |                  |                     |                      |                       |                       |                      |                      |                      |                      |                       |                      |                      |                      |                      |                      |                      |                      |
| Arsenic                                                                 | 10                    | ug/l             | UK DWS              | 7.6                  | 11                    | 1.3                   | 6.9                  | 11                   | 7.7                  | 5.5                  | 8.1                   | 4.2                  | 6.4                  | 8.6                  | 2.9                  | 3.7                  | 11                   | 7.9                  |
| Cadmium<br>Chromium                                                     | 5<br>50               | ug/l<br>ug/l     | UK DWS<br>UK DWS    | < 0.08               | 0.083                 | < 0.08                | 0.089                | < 0.08               | 0.083 6.5            | < 0.08<br>9.5        | < 0.08                | < 0.08               | < 0.08               | 0.08                 | < 0.08               | < 0.08               | < 0.08<br>4.5        | 0.13                 |
| Copper                                                                  | 2000                  | ug/l             | UK DWS              | 2.1                  | 5.5                   | 2.4                   | 3.2                  | 9.1                  | 11                   | 12                   | 9.2                   | 4.8                  | 3                    | 5.6                  | 14                   | 6.8                  | 1.5                  | 3.5                  |
| Lead                                                                    | 25<br>1               | ug/l<br>ug/l     | UK DWS<br>UK DWS    | 7.1                  | 19<br>0.67            | < 1<br>0.31           | 2.9<br>0.29          | 4.1<br>0.4           | 1.1<br>0.37          | 7.5<br>0.38          | 16<br>< 0.1           | 13                   | 2.2<br>0.12          | 3.1<br>< 0.1         | < 1<br>0.18          | < 1 0.19             | < 1<br>0.46          | < 1<br>0.27          |
| Mercury<br>Nickel                                                       | 50                    | ug/i<br>ug/l     | UK DWS              | 7.3                  | 7.9                   | 5.2                   | 7                    | 0.4                  | 7.7                  | 7.5                  | < 0.1<br>9.6          | 8.1                  | 11                   | < 0.1                | 8.6                  | 11                   | 13                   | 13                   |
| Selenium                                                                | 10                    | ug/l             | UK DWS              | 4.5                  | 4.4                   | 6.3                   | 4.7                  | 3.8                  | 13                   | 9.1                  | 2.9                   | 5                    | 5.3                  | 31                   | 13                   | 9.8                  | 4.3                  | 12                   |
| Zinc<br>Miscellaneous                                                   | 5000                  | ug/l             | UK DWS              | 58                   | 78                    | 15                    | 48                   | 25                   | 56                   | 55                   | 27                    | 27                   | 30                   | 34                   | 54                   | 36                   | 20                   | 50                   |
| Alkalinity                                                              | nc                    | mg CaCO3 I-1     | nc                  | 190                  | 200                   | 220                   | 130                  | 68                   | 82                   | 270                  | 220                   | 120                  | 97                   | 180                  | 430                  | 270                  | 140                  | 150                  |
| Chloride                                                                | nc                    | mg/l             | nc                  | 56                   | 49                    | 54                    | 94                   | 55                   | 300                  | 490                  | 70                    | 110                  | 77                   | 250                  | 120                  | 430                  | 54                   | 160                  |
| Sulphate as SO4<br>Cyanide total                                        | 250<br>0.5            | mg/l<br>mg/l     | UK DWS<br>UK DWS    | 1200<br>0.19         | 1200<br>0.1           | 410<br>< 0.05         | 1100<br>0.49         | 360<br>2.1           | 1200<br>2.9          | 670<br>0.21          | 480<br>< 0.05         | 580<br>< 0.05        | 700                  | 720                  | 1200<br>0.06         | 660<br>0.26          | 340<br>3             | 1100<br>2.2          |
| Cyanide free                                                            | 0.001                 | mg/l             | FEQS                | < 0.05               | < 0.05                | < 0.05                | < 0.05               | < 0.05               | < 0.05               | < 0.05               | < 0.05                | < 0.05               | < 0.05               | < 0.05               | < 0.05               | < 0.05               | < 0.05               | < 0.05               |
| Thiocyanate                                                             | 0.17                  | mg/l             | DIV                 | < 0.5                | < 0.5                 | < 0.5                 | < 0.5                | 0.6                  | 6.2                  | < 0.5                | < 0.5                 | < 0.5                | < 0.5                | 4.9                  | < 0.5                | 3.2                  | 1                    | 5.2                  |
| Ammoniacal Nitrogen as N                                                | 0.39<br>nc            | mg/l<br>pH units | UK DWS<br>nc        | 2 7.4                | 0.78                  | 2.3<br>7.6            | 3.3<br>7.6           | 3                    | <u>55</u><br>9.3     | 7.7                  | 3.3<br>8              | 4.2<br>8.1           | 5.9<br>9.1           | 8.6<br>8.4           | 0.4                  | 3.9<br>7.5           | 3.1<br>11.6          | 13<br>8.1            |
| Electrical conductivity                                                 | nc                    | μS cm-1          | nc                  | 2300                 | 2400                  | 1200                  | 2400                 | 1600                 | 3000                 | 3000                 | 1500                  | 1600                 | 1500                 | 2300                 | 3000                 | 2900                 | 1900                 | 2700                 |
| PAH                                                                     |                       |                  |                     |                      |                       |                       | 1.0                  |                      |                      |                      |                       |                      | 1.0                  |                      |                      |                      |                      | 1.0                  |
| Acenaphthene<br>Acenaphthylene                                          | 2570<br>4010          | ug/l<br>ug/l     | DIV                 | < 0.1                | < 0.1                 | < 0.1                 | 1.3<br>0.1           | 1.4                  | 6.9<br>36            | < 0.1                | < 0.1                 | < 0.1                | 1.6<br>0.2           | 0.2                  | < 0.1                | < 0.1                | 2.1                  | 4.3<br>6.1           |
| Anthracene                                                              | 0.1                   | ug/l             | FEQS                | < 0.1                | < 0.1                 | < 0.1                 | 0.1                  | 0.2                  | 14                   | < 0.1                | < 0.1                 | < 0.1                | 0.3                  | < 0.1                | < 0.1                | < 0.1                | 0.5                  | 0.4                  |
| Benzo(a)anthracene                                                      | 1                     | ug/l             | DIV                 | < 0.1                | < 0.1                 | < 0.1                 | < 0.1                | < 0.1                | 0.9                  | < 0.1                | < 0.1                 | < 0.1                | < 0.1                | < 0.1                | < 0.1                | < 0.1                | < 0.1                | < 0.1                |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene                                  | 0.01                  | ug/l<br>ug/l     | UK DWS<br>DIV       | < 0.1                | < 0.1                 | < 0.1                 | < 0.1                | < 0.1                | < 0.1                | < 0.1                | < 0.1                 | < 0.1                | < 0.1                | < 0.1                | < 0.1                | < 0.1                | < 0.1                | < 0.1                |
| Benzo(k)fluoranthene                                                    | 0.36                  | ug/l             | DIV                 | < 0.1                | < 0.1                 | < 0.1                 | < 0.1                | < 0.1                | < 0.1                | < 0.1                | < 0.1                 | < 0.1                | < 0.1                | < 0.1                | < 0.1                | < 0.1                | < 0.1                | < 0.1                |
| Benzo(g,h,i)perylene                                                    | 0.18                  | ug/l             | DIV                 | < 0.1                | < 0.1                 | < 0.1                 | < 0.1                | < 0.1                | < 0.1<br>0.3         | < 0.1                | < 0.1                 | < 0.1                | < 0.1                | < 0.1<br>0.1         | < 0.1                | < 0.1                | < 0.1                | < 0.1<br>< 0.1       |
| Chrysene<br>Dibenzo(a,h)anthracene                                      | 0.83                  | ug/l<br>ug/l     | DIV                 | < 0.1                | < 0.1                 | < 0.1                 | < 0.1                | < 0.1                | < 0.1                | < 0.1                | < 0.1                 | < 0.1                | < 0.1                | < 0.1                | < 0.1                | < 0.1                | < 0.1                | < 0.1                |
| Fluoranthene                                                            | 0.1                   | ug/l             | FEQS                | < 0.1                | 0.3                   | < 0.1                 | 0.7                  | 0.1                  | 1.8                  | < 0.1                | < 0.1                 | < 0.1                | 0.4                  | 0.4                  | < 0.1                | < 0.1                | 0.2                  | 1.8                  |
| Fluorene<br>Indeno(1,2,3-c,d)pyrene                                     | nc<br>0.0036          | ug/l<br>ug/l     | nc<br>DIV           | < 0.1                | < 0.1                 | < 0.1                 | 0.7                  | 0.2                  | 31<br>< 0.1          | < 0.1                | < 0.1                 | < 0.1                | 0.8                  | 0.3                  | < 0.1                | < 0.1                | 0.8                  | 9.2<br>< 0.1         |
| Naphthalene                                                             | 2.4                   | ug/l             | FEQS                | < 0.1                | < 0.1                 | < 0.1                 | < 0.1                | 0.5                  | 4000                 | < 0.1                | < 0.1                 | < 0.1                | 820                  | < 0.1                | < 0.1                | < 0.1                | 98                   | 0.5                  |
| Phenanthrene                                                            | 30                    | ug/l             | DIV                 | < 0.1                | < 0.1                 | < 0.1                 | 0.1                  | 0.8                  | 26                   | < 0.1                | < 0.1                 | 0.1                  | 1.6                  | 0.1                  | < 0.1                | < 0.1                | 1.7                  | 0.5                  |
| Pyrene<br>Total of 16 PAH                                               | 106<br>nc             | ug/l<br>ug/l     | DIV                 | < 0.1                | 0.7                   | < 0.1                 | 0.2                  | 0.3                  | 9.9<br>4100          | < 0.1                | < 0.1                 | 0.1                  | 0.3 820              | 0.3                  | < 0.1                | < 0.1                | 0.7                  | 0.6<br>23            |
| Coronene                                                                | nc                    | ug/l             | nc                  |                      |                       |                       |                      |                      |                      |                      |                       |                      |                      |                      |                      |                      |                      |                      |
| Phenol                                                                  | 20                    |                  |                     | -                    |                       |                       |                      |                      |                      |                      |                       |                      |                      |                      |                      |                      |                      |                      |
| Phenol (total)<br>TPH                                                   | nc                    | ug/l             | nc                  |                      |                       |                       |                      |                      |                      |                      |                       |                      |                      |                      |                      |                      |                      |                      |
| ТРН                                                                     | 10                    | ug/l             | UK DWS              | 65                   | < 10                  | < 10                  | 150                  | 220                  | 44000                | < 10                 | < 10                  | < 10                 | 2600                 | < 10                 | < 10                 | <10                  | 1400                 | 530                  |
| BTEX<br>Benzene                                                         | 1                     | ug/l             | UK DWS              | <0.1                 | <0.1                  | <0.1                  | <0.1                 | 0.5                  | 21000                | <0.1                 | <0.1                  | <0.1                 | 25                   | <0.1                 | <0.1                 | <0.1                 | 300                  | 0.6                  |
| Ethylbenzene                                                            | 20                    | ug/l             | FEQS                | <0.1                 | <0.1                  | <0.1                  | <0.1                 | 0.5                  | 37                   | <0.1                 | <0.1                  | <0.1                 | 0.7                  | <0.1                 | <0.1                 | <0.1                 | 0.9                  | 2.1                  |
| Toluene                                                                 | 50                    | ug/l             | FEQS                | <0.1                 | <0.1                  | <0.1                  | <0.1                 | 0.4                  | 230                  | <0.1                 | <0.1                  | <0.1                 | 1.8                  | <0.1                 | <0.1                 | <0.1                 | 5.6                  | 2.6                  |
| m- & p-Xylene<br>o-Xylene                                               | nc                    | ug/l<br>ug/l     | nc                  | <0.1                 | <0.1<br><0.1          | <0.1<br><0.1          | <0.1<br><0.1         | 0.5                  | 200<br>3100          | <0.1<br><0.1         | <0.1<br><0.1          | <0.1                 | 0.7                  | <0.1                 | <0.1<br><0.1         | <0.1                 | 7.1<br>27            | 1.6<br><0.1          |
| VOC                                                                     |                       |                  |                     |                      |                       |                       |                      |                      |                      |                      |                       |                      |                      |                      |                      |                      |                      |                      |
| 2-sec-Butyl-4,6-dinitrophenol                                           | nc                    | ug/l             | nc<br>nc            | < 0.0002             | < 0.0002<br>< 0.0002  | < 0.0002<br>< 0.0002  | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002  | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002 | < 0.0002             | < 0.0002<br>< 0.0002 |
| 4-chloro-3-methylphenol<br>2-chlorophenol                               | nc<br>nc              | ug/l<br>ug/l     | nc                  | < 0.0002             | < 0.0002              | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             |
| 2,4-Dichlorophenol                                                      | nc                    | ug/l             | nc                  | < 0.0002             | < 0.0002              | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             |
| 2,6-Dichlorophenol                                                      | nc                    | ug/l             | nc                  | < 0.0002             | < 0.0002<br>< 0.0002  | < 0.0002<br>< 0.0002  | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002 | < 0.0002             | < 0.0002              | < 0.0002             | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002 | < 0.0002             | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002 |
| 2,4-Dimethylphenol<br>2,4-Dinitrophenol                                 | nc                    | ug/l<br>ug/l     | nc<br>nc            | < 0.0002             | < 0.0002              | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             |
| 2-Methyl-4,6-dinitrophenol                                              | nc                    | ug/l             | nc                  | < 0.0002             | < 0.0002              | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             |
| 2-Methylphenol<br>3-Methylphenol                                        | nc                    | ug/l<br>ug/l     | nc                  | < 0.0002             | < 0.0002              | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002<br>< 0.0002 | < 0.0002             | < 0.0002              | < 0.0002             | < 0.0002<br>< 0.0002 | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002<br>< 0.0002 |
| 4-Methylphenol                                                          | nc                    | ug/l             | nc                  | < 0.0002             | < 0.0002              | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             |
| 2-Nitrophenol                                                           | nc                    | ug/l             | nc                  | < 0.0002             | < 0.0002              | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             |
| 4-Nitrophenol<br>Pentrachlorophenol                                     | nc<br>nc              | ug/l<br>ug/l     | nc                  | < 0.0002             | < 0.0002<br>< 0.0002  | < 0.0002<br>< 0.0002  | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002 | < 0.0002             | < 0.0002              | < 0.0002             | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002 | < 0.0002             | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002 |
| Phenol                                                                  | nc                    | ug/l             | nc                  | < 0.0002             | < 0.0002              | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             |
| 2,3,4,5-Tetrachlorophenol                                               | nc                    | ug/l             | nc                  | < 0.0002             | < 0.0002              | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             |
| 2,3,4,6-Tetrachlorophenol<br>2,3,5,6-Tetrachlorophenol                  | nc                    | ug/l<br>ug/l     | nc                  | < 0.0002             | < 0.0002              | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002<br>< 0.0002 | < 0.0002             | < 0.0002              | < 0.0002             | < 0.0002<br>< 0.0002 | < 0.0002<br>< 0.0002 | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002<br>< 0.0002 |
|                                                                         |                       | ug/l             | nc                  | < 0.0002             | < 0.0002              | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             |
| 2,3,4-Trichlorophenol                                                   | nc                    |                  |                     |                      |                       |                       |                      |                      |                      |                      | 1                     | 0.0000               | 0.0000               | 0.0000               | 0.0000               |                      |                      | 0.0000               |
| 2,3,4-Trichlorophenol<br>2,3,5-Trichlorophenol                          | nc                    | ug/l             | nc                  | < 0.0002             | < 0.0002              | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             |
| 2,3,4-Trichlorophenol<br>2,3,5-Trichlorophenol<br>2,3,6-Trichlorophenol | nc<br>nc              | ug/l<br>ug/l     | nc                  | < 0.0002             | < 0.0002              | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002              | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             | < 0.0002             |
| 2,3,4-Trichlorophenol<br>2,3,5-Trichlorophenol                          | nc                    | ug/l             |                     |                      |                       |                       |                      |                      |                      |                      |                       |                      |                      |                      |                      |                      |                      |                      |

### Ove Arup & Partners Ltd

|                                      | Concentration         | avcoods the a | assessment criteria  | T                 | 1                 | [                 | 1                 |                   |                   | 1                 | 1                 |                   | 1                 | 1                            |                               | ·,                            |
|--------------------------------------|-----------------------|---------------|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------------|-------------------------------|-------------------------------|
| nc = no criteria                     | CONCENTRATION         |               | Coologine in Cillend |                   |                   |                   |                   |                   | <u> </u>          |                   |                   |                   |                   |                              |                               | ┝───┤                         |
| Ground Investigation                 |                       |               |                      | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011 | PBA 2010/<br>2011            | PBA 2010/<br>2011             | PBA 2010/<br>2011             |
| Report Number                        |                       |               |                      | 122478            | 122478            | 122478            | 122478            | 122478            | 122478            | 122478            | 122478            | 122478            | 122478            | 122478                       | 122478                        | 122478                        |
| Lab Ref                              |                       |               |                      | AF75878           | AF75879           | AF75880           | AF75884           | AF75885           | AF75886           | AF75875           | AF75877           | AF75876           | AF75882           | AF75881                      | AF75883                       | AF75887                       |
| Date samples collected               |                       |               |                      | 10/02/2011        | 10/02/2011        | 10/02/2011        | 10/02/2011        | 10/02/2011        | 10/02/2011        | 10/02/2011        | 10/02/2011        | 10/02/2011        | 10/02/2011        | 10/02/2011                   | 10/02/2011                    | 10/02/2011                    |
| Date analysis completed              |                       |               |                      | 24/02/2011        | 24/02/2011        | 24/02/2011        | 24/02/2011        | 24/02/2011        | 24/02/2011        | 24/02/2011        | 24/02/2011        | 24/02/2011        | 24/02/2011        | 24/02/2011                   | 24/02/2011                    | 24/02/2011                    |
| Exploratory Hole Location            |                       |               |                      | BH2004            | BH2004            | BH2006            | BH2012            | BH2014            | BH2015            | BH2001            | BH2003            | BH2002            | BH2010            | BH2007                       | BH2011                        | BH2005C                       |
| Depth (m)                            |                       |               |                      | 2.04              | 2.11              | 4.07              | 4.11              | 4.25              | 2.97              | 2.09              | 3.35              | 3.10              | 2.88              | 4.32                         | 1.20                          | 2.14                          |
| Standpipe                            |                       |               |                      |                   |                   |                   |                   |                   | 0.1.1.011         |                   |                   | 0.1.1.011         |                   |                              | 0.1.1.011                     |                               |
| Location                             |                       |               |                      | Inside GH9<br>B1  | Inside GH9<br>B1  | Inside GH1<br>B1  | Inside GH3<br>B1  | Inside GH3<br>B1  | Outside GHs<br>B1 | Inside GH12<br>B3 | Outside GHs<br>B3 | Outside GHs<br>B3 | Outside GHs<br>B5 | Inside GH3<br>Pancras Square | Outside GHs<br>Pancras Square | Outside GHs<br>Pancras Square |
|                                      | Screening<br>Criteria | Units         | Standard             | Round 3           | Round 3           | Round 3           | Round 3           | Round 3           | Round 3           | Round 3           | Round 3           | Round 3           | Round 3           | Round 3                      | Round 3                       | Round 3                       |
| Inorganics                           |                       |               |                      |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                              |                               |                               |
| Arsenic                              | 10                    | ug/l          | UK DWS               | 5.2               | 10                | 7.9               | 8.4               | 7                 | 6.8               | 6.7               | 2.9               | 6.6               | 7.9               | 9.1                          | 13                            | 2.6                           |
| Cadmium<br>Chromium                  | 5<br>50               | ug/l          | UK DWS<br>UK DWS     | 0.11              | 0.09              | 0.095<br><1.0     | <0.080<br><1.0    | <0.080<br>3.2     | <0.080            | 0.14              | <0.080            | 0.15              | <0.080<br>6.9     | <0.080<br><1.0               | 0.22 2.6                      | 0.11 3.2                      |
| Copper                               | 2000                  | ug/l<br>ug/l  | UK DWS               | 1.8               | 9.7               | 4.3               | 1.6               | <u>3.2</u><br>9.4 | 19                | <1.0<br>6.4       | 11                | 13                | 16                | 1.9                          | 4.5                           | 5.5                           |
| Lead                                 | 25                    | ug/l          | UK DWS               | 120               | 65                | 1.1               | <1.0              | <1.0              | 26                | 17                | <1.0              | 2.3               | 44                | <1.0                         | 2.7                           | 12                            |
| Mercury                              | 1                     | ug/l          | UK DWS               | <0.50             | <0.50             | <0.50             | 1.5               | 0.93              | 0.95              | <0.50             | <0.50             | <0.50             | 1.2               | 0.51                         | 1.8                           | <0.50                         |
| Nickel                               | 50                    | ug/l          | UK DWS               | 8.5               | 7.9               | 5.1               | 11                | 7.2               | 6.7               | 12                | 6.3               | 26                | 13                | 12                           | 11                            | 8.7                           |
| Selenium                             | 10                    | ug/l          | UK DWS               | 3.6               | 2.7               | 5.5               | 4.3               | 19                | 9.5               | 5.5               | 9.4               | 13                | 16                | 4.4                          | 18                            | 4.2                           |
| Zinc                                 | 5000                  | ug/l          | UK DWS               | 130               | 120               | 67                | 15                | 58                | 61                | 57                | 84                | 140               | 62                | 18                           | 48                            | 36                            |
| Miscellaneous                        |                       | mg CaCO3 I-1  |                      | 140               | 150               | 82                | 82                | 87                | 230               | 53                | 370               | 700               | 440               | 110                          | 130                           | 300                           |
| Alkalinity<br>Chloride               | nc                    | mg/l          | nc                   | 54                | 53                | 94                | 50                | 330               | 510               | 70                | 82                | 730<br>1100       | 250               | 110<br>53                    | 130                           | 300                           |
| Sulphate as SO4                      | 250                   | mg/l          | UK DWS               | 1300              | 1300              | 1100              | 350               | 1300              | 690               | 640               | 1400              | 1500              | 670               | 360                          | 1100                          | 640                           |
| Cyanide total                        | 0.5                   | mg/l          | UK DWS               | 0.37              | 0.2               | 0.59              | 2.7               | 1.9               | < 0.05            | 1.8               | 0.06              | 0.06              | 0.17              | 2.7                          | 3.6                           | < 0.05                        |
| Cyanide free                         | 0.001                 | mg/l          | FEQS                 | < 0.05            | < 0.05            | < 0.05            | < 0.05            | < 0.05            | < 0.05            | < 0.05            | < 0.05            | < 0.05            | < 0.05            | < 0.05                       | < 0.05                        | < 0.05                        |
| Thiocyanate                          | 0.17                  | mg/l          | DIV                  | < 0.5             | < 0.5             | < 0.5             | 1.1               | 6.1               | < 0.5             | < 0.5             | < 0.5             | < 0.5             | < 0.5             | 1.2                          | 15                            | < 0.5                         |
| Ammoniacal Nitrogen as N             | 0.39                  | mg/l          | UK DWS               | 2.1               | 0.65              | 3.4               | 6.1               | 64                | 2.3               | 6.8               | 0.39              | 6                 | 4.3               | 3.5                          | 19                            | 3.7                           |
| pH                                   | nc                    | pH units      | nc                   | 7.4 2500          | 7.5<br>2500       | 7.8<br>2400       | 11.7<br>1900      | 8.5               | 7.6<br>3100       | 9.3<br>1600       | 7.3<br>2900       | 7<br>5900         | 7.4<br>2700       | 11.7<br>2000                 | 7.6<br>2800                   | 7.5<br>1700                   |
| Electrical conductivity PAH          | nc                    | µS cm-1       | nc                   |                   |                   |                   |                   | 3400              |                   |                   |                   |                   |                   |                              |                               |                               |
| Acenaphthene                         | 2570                  | ug/l          | DIV                  | <0.1              | <0.1              | <0.1              | <0.1              | 7.3               | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1                         | 4.3                           | <0.1                          |
| Acenaphthylene                       | 4010                  | ug/l          | DIV                  | <0.1              | <0.1              | <0.1              | <0.1              | 36                | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1                         | 23                            | <0.1                          |
| Anthracene                           | 0.1                   | ug/l          | FEQS<br>DIV          | <0.1<br><0.1      | <0.1<br><0.1      | <0.1<br><0.1      | <0.1<br><0.1      | 7.4<br><0.1       | <0.1<br><0.1      | <0.1<br><0.1      | <0.1<br><0.1      | <0.1<br><0.1      | <0.1<br><0.1      | <0.1<br><0.1                 | 0.4<br><0.1                   | <0.1<br><0.1                  |
| Benzo(a)anthracene<br>Benzo(a)pyrene | 0.01                  | ug/l<br>ug/l  | UK DWS               | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1                         | <0.1                          | <0.1                          |
| Benzo(b)fluoranthene                 | 17                    | ug/l          | DIV                  | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1                         | <0.1                          | <0.1                          |
| Benzo(k)fluoranthene                 | 0.36                  | ug/l          | DIV                  | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1                         | <0.1                          | <0.1                          |
| Benzo(g,h,i)perylene                 | 0.18                  | ug/l          | DIV                  | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1                         | <0.1                          | <0.1                          |
| Chrysene                             | 1.2                   | ug/l          | DIV                  | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1                         | <0.1                          | <0.1                          |
| Dibenzo(a,h)anthracene               | 0.83                  | ug/l          | DIV                  | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1                         | <0.1                          | <0.1                          |
| Fluoranthene<br>Fluorene             | 0.1<br>nc             | ug/l<br>ug/l  | FEQS<br>nc           | <0.1              | <0.1<br><0.1      | <0.1<br><0.1      | <0.1<br><0.1      | 2.3<br>27         | <0.1<br><0.1      | <0.1<br><0.1      | <0.1<br><0.1      | <0.1<br><0.1      | <0.1<br><0.1      | <0.1<br><0.1                 | 0.9<br>18                     | <0.1<br><0.1                  |
| Indeno(1,2,3-c,d)pyrene              | 0.0036                | ug/l          | DIV                  | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1                         | <0.1                          | <0.1                          |
| Naphthalene                          | 2.4                   | ug/l          | FEQS                 | 200               | <0.1              | <0.1              | 220               | 3800              | 0.6               | 860               | <0.1              | <0.1              | <0.1              | 90                           | 1200                          | 1.5                           |
| Phenanthrene                         | 30                    | ug/l          | DIV                  | <0.1              | <0.1              | <0.1              | 0.8               | 26                | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1                         | 21                            | <0.1                          |
| Pyrene                               | 106                   | ug/l          | DIV                  | <0.1              | <0.1              | <0.1              | <0.1              | 0.6               | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              | <0.1                         | <0.1                          | <0.1                          |
| Total of 16 PAH                      | nc                    | ug/l          | nc                   | 200               | <2                | <2                | 220               | 3900              | <2                | 860               | <2                | <2                | <2                | 90                           | 1300                          | <2                            |
| Coronene<br>Phenol                   | nc                    | ug/l          | nc                   | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10                        | <0.10                         | <0.10                         |
| Phenol (total)                       | nc                    | ug/l          | nc                   | < 0.03            | < 0.03            | < 0.03            | 0.09              | 0.42              | < 0.03            | 0.2               | < 0.03            | < 0.03            | < 0.03            | 0.14                         | 0.05                          | < 0.03                        |
| TPH                                  | 10                    | 115.0         |                      | 400               | .10               | .10               | 1100              | 42000             | .10               | 0100              | .10               | .10               | .10               | 710                          | 2200                          | .10                           |
| TPH                                  | 10                    | ug/l          | UK DWS               | 490               | <10               | <10               | 1100              | 43000             | <10               | 2100              | <10               | <10               | <10               | 710                          | 3300                          | <10                           |
| BTEX<br>Benzene                      | 1                     | ug/l          | UK DWS               | < 1               | < 1               | < 1               | 360               | 24000             | < 1               | 170               | < 1               | <1                | <1                | 460                          | 160                           | < 1                           |
| Ethylbenzene                         | 20                    | ug/i<br>ug/l  | FEQS                 | <1                | <1                | < 1               | 2.1               | 110               | < 1               | 33                | <1                | <1                | <1                | 2.5                          | < 1                           | <1                            |
| Toluene                              | 50                    | ug/l          | FEQS                 | <1                | <1                | <1                | 61                | 4300              | <1                | 110               | <1                | <1                | <1                | 51                           | 26                            | <1                            |
| m- & p-Xylene                        | nc                    | ug/l          | nc                   | <1                | <1                | < 1               | 11                | 500               | < 1               | 33                | <1                | <1                | <1                | 6.8                          | 8.4                           | <1                            |
| o-Xylene                             | nc                    | ug/l          | nc                   | < 1               | < 1               | < 1               | 13                | 270               | < 1               | 20                | < 1               | < 1               | < 1               | 12                           | 9.3                           | < 1                           |
|                                      |                       |               |                      |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                              |                               | ·                             |

| ,                                                                 |                       |                      |                        |                      |                                                                                                                                                                                                                                                            |               |               |               |                                                                                                                                                                                          |                |                                                                                                                                                   |                                                                                                                       |               |                |               |                |                |                     |
|-------------------------------------------------------------------|-----------------------|----------------------|------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------|----------------|---------------|----------------|----------------|---------------------|
| no – no critoria                                                  | Concentrat            | tion exceeds the     | ne assessment criteria |                      |                                                                                                                                                                                                                                                            |               |               |               |                                                                                                                                                                                          |                |                                                                                                                                                   |                                                                                                                       |               |                |               |                |                |                     |
| nc = no criteria                                                  |                       |                      |                        | PBA 2010/            | PBA 2010/                                                                                                                                                                                                                                                  | PBA 2010/     | PBA 2010/     | PBA 2010/     | PBA 2010/                                                                                                                                                                                | PBA 2010/      | PBA 2010/                                                                                                                                         | PBA 2010/                                                                                                             | PBA 2010/     | PBA 2010/      | PBA 2010/     | PBA 2010/      | PBA 2010/      | PBA 2010/           |
| Ground Investigation                                              |                       |                      |                        | 2011                 | 2011                                                                                                                                                                                                                                                       | 2011          | 2011          | 2011          | 2011                                                                                                                                                                                     | 2011           | 2011                                                                                                                                              | 2011                                                                                                                  | 2011          | 2011           | 2011          | 2011           | 2011           | 2011                |
| Report Number                                                     |                       |                      |                        | 122318               | 122318                                                                                                                                                                                                                                                     | 122318        | 122318        | 122318        | 122318                                                                                                                                                                                   | 122318         | 122318                                                                                                                                            | 122318                                                                                                                | 122318        | 122318         | 122318        | 122318         | 122318         | 122318              |
| Lab Ref                                                           |                       |                      |                        | AF71315              | AF71316                                                                                                                                                                                                                                                    | AF71325       | AF71317       | AF71320       | AF71319                                                                                                                                                                                  | AF71323        | AF71324                                                                                                                                           | AF71326                                                                                                               | AF71327       | AF71313        | AF71314       | AF71318        | AF71321        | AF71322             |
| Date samples collected                                            |                       |                      |                        | 02/02/2011           | 02/02/2011                                                                                                                                                                                                                                                 | 02/02/2011    | 02/02/2011    | 02/02/2011    | 02/02/2011                                                                                                                                                                               | 02/02/2011     | 02/02/2011                                                                                                                                        | 02/02/2011                                                                                                            | 02/02/2011    | 02/02/2011     | 02/02/2011    | 02/02/2011     | 02/02/2011     | 02/02/2011          |
| Date analysis completed                                           |                       |                      |                        | 14/02/2011           | 14/02/2011                                                                                                                                                                                                                                                 | 14/02/2011    | 14/02/2011    | 14/02/2011    | 14/02/2011                                                                                                                                                                               | 14/02/2011     | 14/02/2011                                                                                                                                        | 14/02/2011                                                                                                            | 14/02/2011    | 14/02/2011     | 14/02/2011    | 14/02/2011     | 14/02/2011     | 14/02/2011          |
| Exploratory Hole Location<br>Depth (m)                            |                       |                      |                        | BH2004<br>2.0        | BH2004<br>2.0                                                                                                                                                                                                                                              | BH2006<br>4.0 | BH2012<br>4.0 | BH2014<br>4.1 | BH2015<br>3.0                                                                                                                                                                            | BH2016<br>2.80 | BH2016<br>2.78                                                                                                                                    | BH2003<br>1.4                                                                                                         | BH2001<br>2.1 | BH2002<br>3.0  | BH2010<br>2.7 | BH2011<br>1.2  | BH2007<br>4.2  | BH2005C<br>1.3      |
| Standpipe                                                         |                       |                      |                        | Deep                 | Shallow                                                                                                                                                                                                                                                    | Deep          |               |               |                                                                                                                                                                                          | Deep           | Shallow                                                                                                                                           |                                                                                                                       |               |                |               |                |                |                     |
| Location                                                          |                       |                      |                        | Inside GH9           | Inside GH9                                                                                                                                                                                                                                                 | Inside GH1    | Inside GH3    | Inside GH3    | Outside GHs                                                                                                                                                                              | Inside GH9     | Inside GH9                                                                                                                                        | Outside GHs                                                                                                           | Inside GH12   | Outside GHs    | Outside GHs   | Outside GHs    | Inside GH3     | Outside GHs         |
|                                                                   |                       |                      |                        | B1                   | B1                                                                                                                                                                                                                                                         | B1            | B1            | B1            | B1                                                                                                                                                                                       | B3             | B3                                                                                                                                                | B3                                                                                                                    | B3            | B3             | B5            | Pancras Square | Pancras Square | Pancras Square      |
|                                                                   | Screening<br>Criteria | Units                | Standard               | Round 2              | Round 2                                                                                                                                                                                                                                                    | Round 2       | Round 2       | Round 2       | Round 2                                                                                                                                                                                  | Round 2        | Round 2                                                                                                                                           | Round 2                                                                                                               | Round 2       | Round 2        | Round 2       | Round 2        | Round 2        | Round 2             |
| Inorganics                                                        |                       |                      |                        |                      |                                                                                                                                                                                                                                                            |               |               |               |                                                                                                                                                                                          |                |                                                                                                                                                   |                                                                                                                       |               |                | -             |                |                |                     |
| Arsenic<br>Cadmium                                                | 10<br>5               | ug/l<br>ug/l         | UK DWS<br>UK DWS       | 7<br>0.12            | 10<br>0.11                                                                                                                                                                                                                                                 | 6.9<br>0.19   | 15<br>0.11    | 12<br>0.14    | 7<br>0.081                                                                                                                                                                               | 6.9<br>0.089   | 9.3<br>0.13                                                                                                                                       | 3.6<br>0.1                                                                                                            | 8.6<br>0.14   | 8.1<br>0.13    | 5<br>0.08     | 20<br>0.31     | 33<br>0.13     | 2.3<br>0.084        |
| Chromium                                                          | 50                    | ug/l                 | UK DWS                 | 3.3                  | 3.8                                                                                                                                                                                                                                                        | 2.2           | 4.8           | 10            | 5.9                                                                                                                                                                                      | 2              | 2.6                                                                                                                                               | 4                                                                                                                     | 2.4           | 18             | 5.9           | 4.4            | 2.6            | 3.1                 |
| Copper                                                            | 2000                  | ug/l                 | UK DWS                 | 10                   | 8.9                                                                                                                                                                                                                                                        | 6.3           | 3.8           | 17            | 11                                                                                                                                                                                       | 6              | 17                                                                                                                                                | 15                                                                                                                    | 13            | 13             | 11            | 9              | 1.4            | 4.8                 |
| Lead<br>Mercury                                                   | 25<br>1               | ug/l<br>ug/l         | UK DWS<br>UK DWS       | 110<br><0.50         | 76<br><0.50                                                                                                                                                                                                                                                | 10<br><0.50   | 4 0.76        | 4.4           | 6.3<br>0.91                                                                                                                                                                              | 18<br><0.50    | 33<br><0.50                                                                                                                                       | <1.0<br><0.50                                                                                                         | 17<br><0.50   | 1.5<br><0.50   | 17<br><0.50   | 2.8<br><0.50   | 2.5<br>3.2     | 4.4<br><0.50        |
| Nickel                                                            | 50                    | ug/l                 | UK DWS                 | 6.3                  | 7.5                                                                                                                                                                                                                                                        | 8.3           | 14            | 8.4           | 4                                                                                                                                                                                        | 5.2            | 8.9                                                                                                                                               | 7.6                                                                                                                   | 18            | 28             | 8.4           | 11             | 13             | 5.5                 |
| Selenium                                                          | 10                    | ug/l                 | UK DWS                 | 5.4                  | 5.1                                                                                                                                                                                                                                                        | 6.7           | 4             | 38            | 9.6                                                                                                                                                                                      | 9.2            | 3.5                                                                                                                                               | 8.9                                                                                                                   | 7.4           | 15             | 11            | 17             | 4.1            | 11                  |
| Zinc<br>Miscellaneous                                             | 5000                  | ug/l                 | UK DWS                 | 130                  | 160                                                                                                                                                                                                                                                        | 120           | 41            | 100           | 59                                                                                                                                                                                       | 41             | 41                                                                                                                                                | 87                                                                                                                    | 78            | 140            | 58            | 84             | 51             | 41                  |
| Alkalinity                                                        | nc                    | mg CaCO3 I-1         | nc                     | 170                  | 180                                                                                                                                                                                                                                                        | 120           | 420           | 160           | 210                                                                                                                                                                                      | 110            | 200                                                                                                                                               | 580                                                                                                                   | 170           | 940            | 500           | 180            | 240            | 220                 |
| Chloride                                                          | nc<br>250             | mg/l                 |                        | 69                   | 55                                                                                                                                                                                                                                                         | 110           | 63            | 500           | 350                                                                                                                                                                                      | 97             | 66                                                                                                                                                | 66                                                                                                                    | 68            | 1100           | 170           | 170            | 89             | 86                  |
| Sulphate as SO4<br>Cyanide total                                  | 250<br>0.5            | mg/l<br>mg/l         | UK DWS<br>UK DWS       | 1400<br>0.49         | 1300<br>0.23                                                                                                                                                                                                                                               | 1300<br>0.73  | 360<br>15     | 1400<br>2.2   | 470<br>0.08                                                                                                                                                                              | 620<br>0.18    | 510<br>0.03                                                                                                                                       | 1300<br>0.08                                                                                                          | 680<br>3.6    | 1500<br>< 0.05 | 650<br>0.08   | 1400<br>3.1    | 540<br>3.9     | 560<br>0.13         |
| Cyanide free                                                      | 0.001                 | mg/l                 | FEQS                   | < 0.05               | < 0.05                                                                                                                                                                                                                                                     | < 0.05        | 0.01          | < 0.05        | < 0.05                                                                                                                                                                                   | < 0.05         | < 0.05                                                                                                                                            | < 0.05                                                                                                                | < 0.05        | < 0.05         | < 0.05        | < 0.05         | < 0.05         | < 0.05              |
| Thiocyanate                                                       | 0.17                  | mg/l                 | DIV<br>UK DWS          | < 0.5                | < 0.5                                                                                                                                                                                                                                                      | < 0.5         | 1.2           | 7.3           | < 0.5                                                                                                                                                                                    | < 0.5          | < 0.5                                                                                                                                             | < 0.5                                                                                                                 | 0.7           | < 0.5          | < 0.5         | 13<br>14       | 1.4<br>5.1     | < 0.5               |
| Ammoniacal Nitrogen as N<br>pH                                    | 0.39<br>nc            | mg/l<br>pH units     | nc                     | 3.4<br>7.4           | 0.61                                                                                                                                                                                                                                                       | 3.9<br>7.8    | 2.3<br>11.6   | 47<br>9.5     | 0.67                                                                                                                                                                                     | 3<br>9.1       | 3.3<br>8                                                                                                                                          | 0.16<br>9.1                                                                                                           | 6.1<br>9.3    | 5.9<br>7.2     | 3.1<br>7.6    | 14<br>8        | 5.1            | 1.6<br>8.7          |
| Electrical conductivity                                           | nc                    | μS cm-1              | nc                     | 2500                 | 2400                                                                                                                                                                                                                                                       | 2600          | 1900          | 3900          | 2200                                                                                                                                                                                     | 1600           | 1400                                                                                                                                              | 1700                                                                                                                  | 1600          | 6100           | 2000          | 3200           | 2000           | 1600                |
| PAH                                                               | 0570                  |                      |                        |                      |                                                                                                                                                                                                                                                            |               |               |               |                                                                                                                                                                                          |                |                                                                                                                                                   |                                                                                                                       |               |                |               |                |                |                     |
| Acenaphthene<br>Acenaphthylene                                    | 2570<br>4010          | ug/l<br>ug/l         | DIV                    | 1.8<br>0.4           | <0.1<br><0.1                                                                                                                                                                                                                                               | 0.2           | 2.2<br><0.1   | 6.2<br>27     | <0.1<br><0.1                                                                                                                                                                             | <0.1<br><0.1   | <0.1<br><0.1                                                                                                                                      | <0.1<br><0.1                                                                                                          | 1.9<br>0.5    | <0.1<br><0.1   | <0.1<br><0.1  | 7.3<br>25      | 0.8            | <0.1<br><0.1        |
| Anthracene                                                        | 0.1                   | ug/l                 | FEQS                   | 0.1                  | <0.1                                                                                                                                                                                                                                                       | 0.2           | 0.3           | 4.9           | <0.1                                                                                                                                                                                     | <0.1           | <0.1                                                                                                                                              | <0.1                                                                                                                  | <0.1          | <0.1           | <0.1          | 3              | 0.2            | <0.1                |
| Benzo(a)anthracene                                                | 1                     | ug/l                 | DIV                    | <0.1                 | <0.1                                                                                                                                                                                                                                                       | <0.1          | <0.1          | <0.1          | <0.1                                                                                                                                                                                     | <0.1           | <0.1                                                                                                                                              | <0.1                                                                                                                  | <0.1          | <0.1           | <0.1          | <0.1           | <0.1           | <0.1                |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene                            | 0.01                  | ug/l<br>ug/l         | UK DWS<br>DIV          | <0.1<br><0.1         | <0.1                                                                                                                                                                                                                                                       | <0.1<br><0.1  | <0.1<br><0.1  | <0.1<br><0.1  | <0.1<br><0.1                                                                                                                                                                             | <0.1<br><0.1   | <0.1<br><0.1                                                                                                                                      | <0.1<br><0.1                                                                                                          | <0.1<br><0.1  | <0.1<br><0.1   | <0.1<br><0.1  | <0.1<br><0.1   | <0.1<br><0.1   | <0.1<br><0.1        |
| Benzo(k)fluoranthene                                              | 0.36                  | ug/l                 | DIV                    | <0.1                 | <0.1                                                                                                                                                                                                                                                       | <0.1          | <0.1          | <0.1          | <0.1                                                                                                                                                                                     | <0.1           | <0.1                                                                                                                                              | <0.1                                                                                                                  | <0.1          | <0.1           | <0.1          | <0.1           | <0.1           | <0.1                |
| Benzo(g,h,i)perylene<br>Chrysene                                  | 0.18                  | ug/l<br>ug/l         | DIV                    | <0.1                 | <0.1                                                                                                                                                                                                                                                       | <0.1<br><0.1  | <0.1<br><0.1  | <0.1<br><0.1  | <0.1<br><0.1                                                                                                                                                                             | <0.1<br><0.1   | <0.1                                                                                                                                              | <0.1<br><0.1                                                                                                          | <0.1<br><0.1  | <0.1           | <0.1<br><0.1  | <0.1<br><0.1   | <0.1<br><0.1   | <0.1                |
| Dibenzo(a,h)anthracene                                            | 0.83                  | ug/l                 | DIV                    | <0.1                 | <0.1                                                                                                                                                                                                                                                       | <0.1          | <0.1          | <0.1          | <0.1                                                                                                                                                                                     | <0.1           | <0.1                                                                                                                                              | <0.1                                                                                                                  | <0.1          | <0.1           | <0.1          | <0.1           | <0.1           | <0.1                |
| Fluoranthene                                                      | 0.1                   | ug/l                 | FEQS                   | 0.6                  | <0.1                                                                                                                                                                                                                                                       | <0.1          | <0.1          | 2.3           | <0.1                                                                                                                                                                                     | <0.1           | <0.1                                                                                                                                              | <0.1                                                                                                                  | 0.6           | <0.1           | <0.1          | 4.4            | <0.1           | <0.1                |
| Fluorene<br>Indeno(1,2,3-c,d)pyrene                               | nc<br>0.0036          | ug/l<br>ug/l         | nc<br>DIV              | 0.7                  | <0.1                                                                                                                                                                                                                                                       | 0.4           | 1<br><0.1     | 16<br><0.1    | <0.1                                                                                                                                                                                     | <0.1<br><0.1   | <0.1                                                                                                                                              | <0.1<br><0.1                                                                                                          | 1<br><0.1     | <0.1           | <0.1<br><0.1  | 19<br><0.1     | 1.1            | <0.1<br><0.1        |
| Naphthalene                                                       | 2.4                   | ug/l                 | FEQS                   | 3400                 | 0.9                                                                                                                                                                                                                                                        | 380           | 510           | 3000          | <0.1                                                                                                                                                                                     | <0.1           | <0.1                                                                                                                                              | <0.1                                                                                                                  | 3600          | <0.1           | 0.5           | 1200           | 900            | <0.1                |
| Phenanthrene                                                      | 30                    | ug/l                 | DIV                    | 1.1                  | <0.1                                                                                                                                                                                                                                                       | 1.5           | 2.2           | 16            | <0.1                                                                                                                                                                                     | <0.1           | <0.1                                                                                                                                              | <0.1                                                                                                                  | 2.7           | <0.1           | <0.1          | 21             | 1.5            | <0.1                |
| Pyrene<br>Total of 16 PAH                                         | 106<br>nc             | ug/l<br>ug/l         | DIV                    | 0.6<br>3400          | <0.1                                                                                                                                                                                                                                                       | <0.1<br>380   | <0.1<br>520   | 1<br>3100     | <0.1<br><2                                                                                                                                                                               | <0.1<br><2     | <0.1<br><2                                                                                                                                        | <0.1<br><2                                                                                                            | 0.4 3600      | <0.1<br><2     | <0.1<br><2    | 2.6<br>1300    | <0.1<br>900    | <0.1<br><2          |
| Coronene                                                          | nc                    | ug/l                 | nc                     |                      |                                                                                                                                                                                                                                                            |               |               |               |                                                                                                                                                                                          |                |                                                                                                                                                   |                                                                                                                       |               |                |               |                |                |                     |
| PCB                                                               |                       |                      |                        | <1.0                 | 1.0                                                                                                                                                                                                                                                        | 10            | 10            | <1.0          | <1.0                                                                                                                                                                                     | <1.0           | <1.0                                                                                                                                              | 10                                                                                                                    | <1.0          | .1.0           | 10            | 1.0            | .1.0           | <1.0                |
| PCBs as Aroclor 1242<br>TPH                                       | nc                    | ug/l                 | nc                     | <1.0                 | <1.0                                                                                                                                                                                                                                                       | <1.0          | <1.0          | <1.0          | <1.0                                                                                                                                                                                     | <1.0           | <1.0                                                                                                                                              | <1.0                                                                                                                  | <1.0          | <1.0           | <1.0          | <1.0           | <1.0           | <1.0                |
| ТРН                                                               | 10                    | ug/l                 | UK DWS                 | 11000                | <10                                                                                                                                                                                                                                                        | 2800          | 3400          | 36000         | <10                                                                                                                                                                                      | 90             | <10                                                                                                                                               | <10                                                                                                                   | 13000         | <10            | <10           | 4000           | 6500           | <10                 |
| Total Aliphatic Hydrocarbons                                      | nc                    | ug/l                 | nc                     | 710                  | <5<br><5                                                                                                                                                                                                                                                   | <5<br>2800    | <5<br>3400    | <5<br>36000   | <5<br><5                                                                                                                                                                                 | <5<br>90       | <5<br><5                                                                                                                                          | <5<br><5                                                                                                              | 550<br>12500  | <5<br><5       | <5<br><5      | <5<br>4000     | <5<br>6500     | <5<br><5            |
| Total Aromatic Hydrocarbons<br>TPH aliphatic >C10-C12             | nc                    | ug/l<br>ug/l         | nc                     | 23                   | <0.1                                                                                                                                                                                                                                                       | <0.1          | <0.1          | <0.1          | <0.1                                                                                                                                                                                     | <0.1           | <0.1                                                                                                                                              | <0.1                                                                                                                  | 12500         | <0.1           | <0.1          | <0.1           | <0.1           | <0.1                |
| TPH aliphatic >C12-C16                                            | nc                    | ug/l                 | nc                     | 40                   | <0.1                                                                                                                                                                                                                                                       | <0.1          | <0.1          | <0.1          | <0.1                                                                                                                                                                                     | <0.1           | <0.1                                                                                                                                              | <0.1                                                                                                                  | 30            | <0.1           | <0.1          | <0.1           | <0.1           | <0.1                |
| TPH aliphatic >C16-C21<br>TPH aliphatic >C21-C35                  | nc                    | ug/l<br>ug/l         | nc<br>nc               | 330<br>320           | <0.1                                                                                                                                                                                                                                                       | <0.1<br><0.1  | <0.1<br><0.1  | <0.1<br><0.1  | <0.1<br><0.1                                                                                                                                                                             | <0.1<br><0.1   | <0.1<br><0.1                                                                                                                                      | <0.1<br><0.1                                                                                                          | 150<br>360    | <0.1<br><0.1   | <0.1<br><0.1  | <0.1<br><0.1   | <0.1<br><0.1   | <0.1<br><0.1        |
| TPH aliphatic >C35-C44                                            | nc                    | ug/i<br>ug/i         | nc                     | <0.1                 | <0.1                                                                                                                                                                                                                                                       | <0.1          | <0.1          | <0.1          | <0.1                                                                                                                                                                                     | <0.1           | <0.1                                                                                                                                              | <0.1                                                                                                                  | <0.1          | <0.1           | <0.1          | <0.1           | <0.1           | <0.1                |
| TPH aliphatic >C5-C6                                              | nc                    | ug/l                 | nc                     | <0.1                 | <0.1                                                                                                                                                                                                                                                       | <0.1          | <0.1          | <0.1          | <0.1                                                                                                                                                                                     | <0.1           | <0.1                                                                                                                                              | <0.1                                                                                                                  | <0.1          | <0.1           | <0.1          | <0.1           | <0.1           | <0.1                |
| TPH aliphatic >C6-C8<br>TPH aliphatic >C8-C10                     | nc                    | ug/l<br>ug/l         | nc<br>nc               | <0.1                 | <0.1                                                                                                                                                                                                                                                       | <0.1<br><0.1  | <0.1<br><0.1  | <0.1<br><0.1  | <0.1<br><0.1                                                                                                                                                                             | <0.1<br><0.1   | <0.1<br><0.1                                                                                                                                      | <0.1<br><0.1                                                                                                          | <0.1<br><0.1  | <0.1<br><0.1   | <0.1<br><0.1  | <0.1<br><0.1   | <0.1<br><0.1   | <0.1<br><0.1        |
| TPH aromatic >C10-C12                                             | nc                    | ug/l                 | nc                     | 8800                 | <0.1                                                                                                                                                                                                                                                       | 1100          | 1400          | 11000         | <0.1                                                                                                                                                                                     | 28             | <0.1                                                                                                                                              | <0.1                                                                                                                  | 9100          | <0.1           | <0.1          | 2500           | 2200           | <0.1                |
| TPH aromatic >C12-C16                                             | nc                    | ug/l                 | nc                     | 220                  | <0.1                                                                                                                                                                                                                                                       | 79            | 140           | 730           | <0.1                                                                                                                                                                                     | 21             | <0.1                                                                                                                                              | <0.1                                                                                                                  | 180           | <0.1           | <0.1          | 320            | 110            | <0.1                |
| TPH aromatic >C16-C21<br>TPH aromatic >C21-C35                    | nc<br>nc              | ug/l<br>ug/l         | nc                     | 27<br><0.1           | <0.1                                                                                                                                                                                                                                                       | <0.1<br><0.1  | 41<br><0.1    | 120<br><0.1   | <0.1<br><0.1                                                                                                                                                                             | <0.1<br><0.1   | <0.1<br><0.1                                                                                                                                      | <0.1<br><0.1                                                                                                          | 17<br><0.1    | <0.1<br><0.1   | <0.1<br><0.1  | 130<br>12      | 20<br><0.1     | <0.1<br><0.1        |
| TPH aromatic >C35-C44                                             | nc                    | ug/l                 | nc                     | <0.1                 | <0.1                                                                                                                                                                                                                                                       | <0.1          | <0.1          | <0.1          | <0.1                                                                                                                                                                                     | <0.1           | <0.1                                                                                                                                              | <0.1                                                                                                                  | <0.1          | <0.1           | <0.1          | <0.1           | <0.1           | <0.1                |
| TPH aromatic >C5-C7                                               | nc                    | ug/l                 | nc                     | 47                   | <0.1                                                                                                                                                                                                                                                       | 600           | 430           | 7100          | <0.1                                                                                                                                                                                     | <0.1           | <0.1                                                                                                                                              | <0.1                                                                                                                  | 250           | <0.1           | <0.1          | 290            | 2000           | <0.1                |
| TPH aromatic >C7-C8<br>TPH aromatic >C8-C10                       | nc                    | ug/l<br>ug/l         | nc<br>nc               | 130<br>1000          | <0.1                                                                                                                                                                                                                                                       | 290<br>760    | 330<br>1100   | 7900<br>9200  | <0.1<br><0.1                                                                                                                                                                             | <0.1<br>41     | <0.1<br><0.1                                                                                                                                      | <0.1<br><0.1                                                                                                          | 630<br>2400   | <0.1<br><0.1   | <0.1<br><0.1  | 160<br>630     | 440<br>1700    | <0.1<br><0.1        |
| BTEX                                                              | no                    | uyn                  | ne                     | 1000                 | <v.1< th=""><th>/00</th><th>1100</th><th>5200</th><th><v.1< th=""><th>41</th><th><v.1< th=""><th><u.1< th=""><th>2400</th><th>&lt;0.1</th><th>&lt;0.1</th><th>030</th><th>1700</th><th><v.1< th=""></v.1<></th></u.1<></th></v.1<></th></v.1<></th></v.1<> | /00           | 1100          | 5200          | <v.1< th=""><th>41</th><th><v.1< th=""><th><u.1< th=""><th>2400</th><th>&lt;0.1</th><th>&lt;0.1</th><th>030</th><th>1700</th><th><v.1< th=""></v.1<></th></u.1<></th></v.1<></th></v.1<> | 41             | <v.1< th=""><th><u.1< th=""><th>2400</th><th>&lt;0.1</th><th>&lt;0.1</th><th>030</th><th>1700</th><th><v.1< th=""></v.1<></th></u.1<></th></v.1<> | <u.1< th=""><th>2400</th><th>&lt;0.1</th><th>&lt;0.1</th><th>030</th><th>1700</th><th><v.1< th=""></v.1<></th></u.1<> | 2400          | <0.1           | <0.1          | 030            | 1700           | <v.1< th=""></v.1<> |
| Benzene                                                           | 1                     | ug/l                 | UK DWS                 | 22                   | <1.0                                                                                                                                                                                                                                                       | 510           | 630           | 6200          | <1.0                                                                                                                                                                                     | <1.0           | <1.0                                                                                                                                              | <1.0                                                                                                                  | 320           | <1.0           | <1.0          | 200            | 3000           | <1.0                |
| Ethylbenzene<br>Toluene                                           | 20<br>50              | ug/l<br>ug/l         | FEQS<br>FEQS           | <1.0<br><1.0         | <1.0                                                                                                                                                                                                                                                       | 21<br>75      | 36<br>100     | 68<br>3600    | <1.0<br><1.0                                                                                                                                                                             | <1.0<br><1.0   | <1.0<br><1.0                                                                                                                                      | <1.0<br><1.0                                                                                                          | 27<br>130     | <1.0<br><1.0   | <1.0<br><1.0  | <1.0<br>25     | 75<br>230      | <1.0<br><1.0        |
| m- & p-Xylene                                                     | nc                    | ug/l                 | nc                     | 1.1                  | <1.0                                                                                                                                                                                                                                                       | 16            | 25            | 780           | <1.0                                                                                                                                                                                     | <1.0           | <1.0                                                                                                                                              | <1.0                                                                                                                  | 21            | <1.0           | <1.0          | 9.7            | 75             | <1.0                |
| o-Xylene                                                          | nc                    | ug/l                 | nc                     | <1.0                 | <1.0                                                                                                                                                                                                                                                       | 13            | 19            | 380           | <1.0                                                                                                                                                                                     | 1.2            | <1.0                                                                                                                                              | <1.0                                                                                                                  | 10            | <1.0           | <1.0          | 8.4            | 52             | <1.0                |
| Methyl tert-butylether                                            |                       | ug/l                 | nc                     | <1.0                 | <1.0                                                                                                                                                                                                                                                       | <1.0          | <1.0          | <1.0          | <1.0                                                                                                                                                                                     | <1.0           | <1.0                                                                                                                                              | <1.0                                                                                                                  | <1.0          | <1.0           | <1.0          | <1.0           | <1.0           | <1.0                |
| · · ·                                                             | nc                    | ug/i                 |                        |                      |                                                                                                                                                                                                                                                            |               | 1             | 1             | 1                                                                                                                                                                                        |                |                                                                                                                                                   |                                                                                                                       |               |                |               |                |                |                     |
| VOC<br>Dichlorodifluoromethane                                    | nc                    | ug/l                 | nc                     | <1.0                 | <1.0                                                                                                                                                                                                                                                       | <1.0          | <1.0          | <1.0          | <1.0                                                                                                                                                                                     | <1.0           | <1.0                                                                                                                                              | <1.0                                                                                                                  | <1.0          | <1.0           | <1.0          | <1.0           | <1.0           | <1.0                |
| VOC<br>Dichlorodifluoromethane<br>Chloromethane                   | nc<br>nc              | ug/l<br>ug/l         | nc<br>nc               | <1.0<br><1.0         | <1.0                                                                                                                                                                                                                                                       | <1.0          | <1.0          | <1.0          | <1.0                                                                                                                                                                                     | <1.0           | <1.0                                                                                                                                              | <1.0                                                                                                                  | <1.0          | <1.0           | <1.0          | <1.0           | <1.0           | <1.0                |
| VOC<br>Dichlorodifluoromethane<br>Chloromethane<br>Vinyl chloride | nc<br>nc<br>nc        | ug/l<br>ug/l<br>ug/l | nc<br>nc<br>nc         | <1.0<br><1.0<br><1.0 | <1.0<br><1.0                                                                                                                                                                                                                                               | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0                                                                                                                                                                             | <1.0<br><1.0   | <1.0<br><1.0                                                                                                                                      | <1.0<br><1.0                                                                                                          | <1.0<br><1.0  | <1.0<br><1.0   | <1.0<br><1.0  | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0        |
| VOC<br>Dichlorodifluoromethane<br>Chloromethane                   | nc<br>nc              | ug/l<br>ug/l         | nc<br>nc               | <1.0<br><1.0         | <1.0                                                                                                                                                                                                                                                       | <1.0          | <1.0          | <1.0          | <1.0                                                                                                                                                                                     | <1.0           | <1.0                                                                                                                                              | <1.0                                                                                                                  | <1.0          | <1.0           | <1.0          | <1.0           | <1.0           | <1.0                |

| Ove Arup & | Partners Ltd |
|------------|--------------|
|------------|--------------|

| Ground Investigation                                       |           |               |          | PBA 2010/             | PBA 2010/             | PBA 2010/             | PBA 2010/             | PBA 2010/             | PBA 2010/             | PBA 2010/             | PBA 2010/             | PBA 2010/             | PBA 2010/      | PBA 2010/             | PBA 2010/             | PBA 2010/             | PBA 2010/             | PBA 2010/             |
|------------------------------------------------------------|-----------|---------------|----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Report Number                                              |           |               |          | 2011                  | 2011                  | 2011<br>122318        | 2011                  | 2011<br>122318        | 2011                  | 2011                  | 2011<br>122318        | 2011<br>122318        | 2011<br>122318 | 2011                  | 2011<br>122318        | 2011<br>122318        | 2011<br>122318        | 2011<br>122318        |
| Lab Ref                                                    |           |               |          | AF71315               | AF71316               | AF71325               | AF71317               | AF71320               | AF71319               | AF71323               | AF71324               | AF71326               | AF71327        | AF71313               | AF71314               | AF71318               | AF71321               | AF71322               |
| Date samples collected                                     |           |               |          | 02/02/2011            | 02/02/2011            | 02/02/2011            | 02/02/2011            | 02/02/2011            | 02/02/2011            | 02/02/2011            | 02/02/2011            | 02/02/2011            | 02/02/2011     | 02/02/2011            | 02/02/2011            | 02/02/2011            | 02/02/2011            | 02/02/2011            |
| Date analysis completed                                    |           |               |          | 14/02/2011            | 14/02/2011            | 14/02/2011            | 14/02/2011            | 14/02/2011            | 14/02/2011            | 14/02/2011            | 14/02/2011            | 14/02/2011            | 14/02/2011     | 14/02/2011            | 14/02/2011            | 14/02/2011            | 14/02/2011            | 14/02/2011            |
| Exploratory Hole Location<br>Depth (m)                     |           |               |          | BH2004<br>2.0         | BH2004<br>2.0         | BH2006<br>4.0         | BH2012<br>4.0         | BH2014<br>4.1         | BH2015<br>3.0         | BH2016<br>2.80        | BH2016<br>2.78        | BH2003<br>1.4         | BH2001<br>2.1  | BH2002<br>3.0         | BH2010<br>2.7         | BH2011<br>1.2         | BH2007<br>4.2         | BH2005C<br>1.3        |
| Standpipe                                                  |           |               |          | Deep<br>Inside GH9    | Shallow<br>Inside GH9 | Deep<br>Inside GH1    | Inside GH3            | Inside GH3            | Outside GHs           | Deep<br>Inside GH9    | Shallow<br>Inside GH9 | Outside GHs           | Inside GH12    | Outside GHs           | Outside GHs           | Outside GHs           | Inside GH3            | Outside GHs           |
| Location                                                   |           |               |          | B1                    | B1                    | B1                    | B1                    | B1                    | B1                    | B3                    | B3                    | B3                    | B3             | B3                    | B5                    | Pancras Square        | Pancras Square        | Pancras Square        |
|                                                            | Screening |               |          |                       |                       |                       |                       |                       |                       | -                     |                       |                       | -              |                       |                       |                       |                       |                       |
| Styrene                                                    | Criteria  | Units<br>ug/l | Standard | Round 2               | Round 2               | Round 2               | Round 2               | Round 2               | Round 2               | Round 2               | Round 2               | Round 2               | Round 2        | Round 2               | Round 2               | Round 2               | Round 2               | Round 2 <1.0          |
| Tribromomethane                                            | nc        | ug/l          | nc       | <10                   | <10                   | <10                   | <10                   | <10                   | <10                   | <10                   | <10                   | <10                   | <10            | <10                   | <10                   | <10                   | <10                   | <10                   |
| Isopropylbenzene                                           | nc        | ug/l          | nc       | <1.0                  | <1.0                  | <1.0                  | <1.0                  | 1.3                   | <1.0                  | <1.0                  | <1.0                  | <1.0                  | 1.4            | <1.0                  | <1.0                  | <1.0                  | 1.4                   | <1.0                  |
| Bromobenzene<br>1,2,3-Trichloropropane                     | nc<br>nc  | ug/l<br>ug/l  | nc       | <1.0                  | <1.0<br><50           | <1.0<br><50           | <1.0<br><50           | <1.0<br><50           | <1.0<br><50           | <1.0<br><50           | <1.0<br><50           | <1.0<br><50           | <1.0<br><50    | <1.0<br><50           | <1.0<br><50           | <1.0<br><50           | <1.0<br><50           | <1.0<br><50           |
| n-Propylbenzene                                            | nc        | ug/l          | nc       | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0           | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  |
| 2-Chlorotoluene<br>1,2,4-Trimethylbenzene                  | nc<br>nc  | ug/l<br>ug/l  | nc       | <1.0                  | <1.0<br><1.0          | <1.0<br><1.0          | <1.0<br>2.4           | <1.0<br>50            | <1.0<br><1.0          | <1.0<br><1.0          | <1.0<br><1.0          | <1.0<br><1.0          | <1.0<br>2.4    | <1.0<br><1.0          | <1.0<br><1.0          | <1.0                  | <1.0<br>7.9           | <1.0<br><1.0          |
| 4-Chlorotoluene                                            | nc        | ug/l          | nc       | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0           | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  |
| tert-Butylbenzene                                          | nc        | ug/l          | nc       | <1.0                  | <1.0<br>1.3           | <1.0                  | <1.0                  | <1.0<br>34            | <1.0<br><1.0          | <1.0<br><1.0          | <1.0<br><1.0          | <1.0                  | <1.0           | <1.0                  | <1.0<br><1.0          | <1.0                  | <1.0                  | <1.0<br><1.0          |
| 1,3,5-Trimethylbenzene<br>sec-Butylbenzene                 | nc<br>nc  | ug/l<br>ug/l  | nc<br>nc | <1.0                  | <1.0                  | <1.0<br><1.0          | 1.2<br><1.0           | 34<br><1.0            | <1.0                  | <1.0                  | <1.0                  | <1.0<br><1.0          | 4.8<br><1.0    | <1.0<br><1.0          | <1.0                  | 1.5<br><1.0           | 2.8<br><1.0           | <1.0                  |
| 1,3-Dichlorobenzene                                        | nc        | ug/l          | nc       | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0           | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  |
| 4-Isopropyltoluene<br>1,4-Dichlorobenzene                  | nc<br>nc  | ug/l<br>ug/l  | nc       | <1.0                  | <1.0<br><1.0          | <1.0<br><1.0          | <1.0<br><1.0          | <1.0<br><1.0          | <1.0<br><1.0          | <1.0<br><1.0          | <1.0<br><1.0          | <1.0<br><1.0          | <1.0<br><1.0   | <1.0<br><1.0          | <1.0<br><1.0          | <1.0<br><1.0          | <1.0<br><1.0          | <1.0<br><1.0          |
| n-Butylbenzene                                             | nc        | ug/l          | nc       | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0           | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  |
| 1,2-Dichlorobenzene                                        | nc        | ug/l          | nc       | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0           | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  |
| 1,2-Dibromo-3-chloropropane<br>1,2,4-Trichlorobenzene      | nc<br>nc  | ug/l<br>ug/l  | nc<br>nc | <50<br><1.0           | <50<br><1.0           | <50<br><1.0           | <50<br><1.0           | <50<br><1.0           | <50<br><1.0           | <50<br><1.0           | <50<br><1.0           | <50<br><1.0           | <50<br><1.0    | <50<br><1.0           | <50<br><1.0           | <50<br><1.0           | <50<br><1.0           | <50<br><1.0           |
| Hexachlorobutadiene                                        | nc        | ug/l          | nc       | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0           | <1.0                  | <1.0                  | <1.0                  | <1.0                  | <1.0                  |
| 1,2,3-Trichlorobenzene<br>Tentatively Identified Compounds | nc<br>nc  | ug/l<br>ug/l  | nc       | <2.0<br>None Detected | <2.0<br>None Detected | <2.0<br>None Detected | <2.0<br>None Detected | <2.0<br>None Detected | <2.0<br>None Detected | <2.0<br>None Detected | <2.0<br>None Detected | <2.0<br>None Detected | <2.0           | <2.0<br>None Detected | <2.0<br>None Detected | <2.0<br>None Detected | <2.0<br>None Detected | <2.0<br>None Detected |
| Azobenzene                                                 | nc        | ug/l          | nc       | <0.50                 | <0.50                 | <0.50                 | < 0.50                | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | < 0.50         | < 0.50                | < 0.50                | <0.50                 | < 0.50                | <0.50                 |
| bis(2-Chloroethoxy)methane                                 | nc        | ug/l          | nc       | < 0.50                | <0.50                 | <0.50                 | < 0.50                | < 0.50                | <0.50                 | < 0.50                | < 0.50                | < 0.50                | < 0.50         | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 |
| bis(2-Chloroethyl)ether<br>bis(2-Chloroisopropyl)ether     | nc<br>nc  | ug/l<br>ug/l  | nc       | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50 | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        |
| bis(2-Ethylhexyl)phthalate                                 | nc        | ug/l          | nc       | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50          | < 0.50                | <0.50                 | <0.50                 | <0.50                 | <0.50                 |
| Butylbenzylphthalate<br>Carbazole                          | nc<br>nc  | ug/l<br>ug/l  | nc       | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br>1.3          | <0.50<br>53           | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br>1.5   | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br>23           | <0.50<br>1.5          | <0.50<br><0.50        |
| Di-n-butylphthalate                                        | nc        | ug/l          | nc       | <0.50                 | <0.50                 | <0.50                 | <0.50                 | < 0.50                | <0.50                 | <0.50                 | <0.50                 | <0.50                 | < 0.50         | <0.50                 | <0.50                 | < 0.50                | <0.50                 | <0.50                 |
| Di-n-octylphthalate                                        | nc        | ug/l          | nc       | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50                 | <0.50                 | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50          | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br>23           | <0.50                 | <0.50<br><0.50        |
| Dibenzofuran<br>Diethylphthalate                           | nc<br>nc  | ug/l<br>ug/l  | nc<br>nc | <0.50                 | <0.50                 | <0.50                 | <0.50                 | 18<br><0.50           | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50          | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 |
| Dimethylphthalate                                          | nc        | ug/l          | nc       | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50          | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 |
| Hexachlorobenzene<br>Hexachlorobutadiene                   | nc<br>nc  | ug/l<br>ug/l  | nc       | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50 | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        |
| Hexachlorocyclopentadiene                                  | nc        | ug/l          | nc       | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50          | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 |
| Hexachloroethane<br>Indeno[1,2,3-cd]pyrene                 | nc<br>nc  | ug/l<br>ug/l  | nc       | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50 | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        |
| Isophorone                                                 | nc        | ug/l          | nc       | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50          | <0.50                 | <0.50                 | <0.50                 | < 0.50                | <0.50                 |
| N-Nitrosodi-n-propylamine                                  | nc        | ug/l          | nc       | <0.50                 | <0.50                 | <0.50                 | < 0.50                | < 0.50                | <0.50                 | <0.50                 | < 0.50                | < 0.50                | < 0.50         | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 |
| N-Nitrosodimethylamine<br>Nitrobenzene                     | nc<br>nc  | ug/l<br>ug/l  | nc<br>nc | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50 | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        |
| Pentachlorophenol                                          | nc        | ug/l          | nc       | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50          | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 |
| Phenanthrene<br>Phenol                                     | nc<br>nc  | ug/l<br>ug/l  | nc       | 1.1                   | <0.50<br><0.50        | 1.5<br><0.50          | 2.2<br><0.50          | 16<br><0.50           | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | 2.7<br><0.50   | <0.50<br><0.50        | <0.50<br><0.50        | 21<br>0.9             | 1.5<br><0.50          | <0.50<br><0.50        |
| 1,2-Dichlorobenzene                                        | nc        | ug/l          | nc       | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50          | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 |
| 1,2,4-Trichlorobenzene<br>1,3-Dichlorobenzene              | nc<br>nc  | ug/l<br>ug/l  | nc<br>nc | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50 | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        |
| 1,4-Dichlorobenzene                                        | nc        | ug/l          | nc       | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50          | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 |
| 2-Chloronaphthalene                                        | nc        | ug/l          | nc       | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50          | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 |
| 2-Chlorophenol<br>2-Methyl-4,6-dinitrophenol               | nc<br>nc  | ug/l<br>ug/l  | nc<br>nc | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50 | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        |
| 2-Methylnaphthalene                                        | nc        | ug/l          | nc       | 63                    | <0.50                 | 13                    | 19                    | 160                   | <0.50                 | <0.50                 | <0.50                 | <0.50                 | 52             | <0.50                 | <0.50                 | 44                    | 29                    | <0.50                 |
| 2-Methylphenol<br>2-Nitroaniline                           | nc<br>nc  | ug/l<br>ug/l  | nc       | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50 | <0.50<br><0.50        | <0.50<br><0.50        | 1.8<br><0.50          | <0.50<br><0.50        | <0.50<br><0.50        |
| 2-Nitrophenol                                              | nc        | ug/l          | nc       | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50          | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 |
| 2,4-Dichlorophenol                                         | nc        | ug/l          | nc       | <0.50                 | <0.50                 | <0.50                 | <0.50                 | < 0.50                | < 0.50                | < 0.50                | <0.50                 | <0.50                 | < 0.50         | < 0.50                | < 0.50                | < 0.50                | < 0.50                | <0.50                 |
| 2,4-Dimethylphenol<br>2,4-Dinitrophenol                    | nc<br>nc  | ug/l<br>ug/l  | nc<br>nc | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50 | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        |
| 2,4,5-Trichlorophenol                                      | nc        | ug/l          | nc       | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50          | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 |
| 2,4,6-Trichlorophenol<br>2,6-Dinitrotoluene                | nc<br>nc  | ug/l<br>ug/l  | nc<br>nc | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50 | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        |
| 3-Nitroaniline                                             | nc        | ug/l          | nc       | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50          | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 |
| 4-Bromophenylphenylether                                   | nc        | ug/l          | nc       | <0.50                 | <0.50                 | <0.50                 | <0.50                 | < 0.50                | < 0.50                | < 0.50                | <0.50                 | < 0.50                | < 0.50         | < 0.50                | < 0.50                | <0.50                 | < 0.50                | < 0.50                |
| 4-Chloro-3-methylphenol<br>4-Chloroaniline                 | nc<br>nc  | ug/l<br>ug/l  | nc       | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50 | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        |
| 4-Chlorophenylphenylether                                  | nc        | ug/l          | nc       | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50          | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 |
| 4-Methylphenol<br>4-Nitroaniline                           | nc        | ug/l          | nc       | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50 | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        | <0.50<br><0.50        |
| 4-Nitrophenol                                              | nc<br>nc  | ug/l<br>ug/l  | nc<br>nc | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50          | <0.50                 | <0.50                 | <0.50                 | <0.50                 | <0.50                 |
| 2-benzothiophene                                           | nc        | ug/l          | nc       |                       |                       | 10                    |                       | 190                   |                       |                       |                       |                       | 74             |                       |                       | 67                    |                       | [ <b></b> ]           |
| benzofuran<br>indene                                       | nc<br>nc  | ug/l<br>ug/l  | nc       | 270                   |                       | 25<br>180             | 19<br>210             | 740<br>2100           |                       |                       |                       |                       | 69<br>420      |                       |                       | 60<br>170             | 56<br>320             | +                     |
| Tentatively Identified Compounds                           | nc        | ug/l          | nc       |                       | Not detected          |                       |                       |                       | Not detected          | Not detected          | Not detected          | Not detected          |                | Not detected          | Not detected          | 1                     |                       | Not detected          |

|                             | Concentrat            | tion overede th | a accompant oritoria   |            |            |            |            |             | 1           |             |                | 1              |                |            |
|-----------------------------|-----------------------|-----------------|------------------------|------------|------------|------------|------------|-------------|-------------|-------------|----------------|----------------|----------------|------------|
| nc = no criteria            | Concentrat            |                 | ne assessment criteria |            |            |            |            |             |             |             |                |                |                |            |
|                             |                       |                 |                        |            |            |            |            |             |             |             |                |                |                |            |
| Ground Investigation        |                       |                 |                        | PBA 2011   | PBA 2011   | PBA 2011   | PBA 2011   | PBA 2011    | PBA 2011    | PBA 2011    | PBA 2011       | PBA 2011       | PBA 2011       | PBA 2011   |
| Report Number               |                       |                 |                        | 122024     | 122024     | 122024     | 122024     | 122024      | 122024      | 122024      | 122024         | 122024         | 122024         | 122024     |
| Lab Ref                     |                       |                 |                        | AF64184    | AF64188    | AF64183    | AF64182    | AF64189     | AF64180     | AF64186     | AF64181        | AF64185        | AF64187        | AF64190    |
| Date                        |                       |                 |                        | 13/01/2011 | 13/01/2011 | 13/01/2011 | 13/01/2011 | 13/01/2011  | 13/01/2011  | 13/01/2011  | 13/01/2011     | 13/01/2011     | 13/01/2011     | 13/01/2011 |
| Exploratory Hole Location   |                       |                 |                        | BH2006     | BH2012     | BH2004     | BH2004     | BH2015      | BH2001      | BH2010      | BH2003         | BH2007         | BH2011         | W1         |
| Depth (mbgl)                |                       |                 |                        | 5.0        | 4.6        | 2.5        | 3.0        | 3.2         | 2.5         | 3.0         | 1.8            | 8.0            | 5.0            | 2.5        |
|                             |                       |                 |                        | Inside GH1 | Inside GH3 | Inside GH9 | Inside GH9 | Outside GHs | Inside GH12 | Outside GHs | Outside GH's   | Inside GH3     | Outside GHs    |            |
| Location                    |                       |                 |                        | B1         | B1         | B1         | B1         | B1          | B3          | B5          | Pancras Square | Pancras Square | Pancras Square |            |
|                             | Screening<br>Criteria | Units           | Standard               | Round 1    | Round 1    | Round 1    | Round 1    | Round 1     | Round 1     | Round 1     | Round 1        | Round 1        | Round 1        | Round 1    |
| Inorganics                  |                       |                 |                        |            |            |            |            |             |             |             |                |                |                |            |
| Arsenic                     | 10                    | ug/l            | UK DWS                 | 4.4        | 28         | 6.1        | 4.9        | 5.5         | 10          | 3.3         | 2.8            | 7.3            | 1.9            | 2.6        |
| Cadmium                     | 5                     | ug/l            | UK DWS                 | 0.1        | 0.16       | 0.14       | 0.11       | <0.080      | 0.14        | <0.080      | <0.080         | <0.080         | <0.080         | 0.2        |
| Chromium                    | 50                    | ug/l            | UK DWS                 | <1.0       | 6.5        | <1.0       | 2          | 6.4         | <1.0        | 13          | <1.0           | 1.2            | 2.9            | 23         |
| Copper                      | 2000                  | ug/l            | UK DWS                 | 5.2        | 7.2        | 3.6        | 5.9        | 17          | 28          | 5.4         | 13             | 20             | 3.9            | <1.0       |
| Lead                        | 25                    | ug/l            | UK DWS                 | 8.4        | 8          | 16         | 40         | 16          | 11          | <1.0        | <1.0           | 8.4            | <1.0           | <1.0       |
| Mercury                     | 1                     | ug/l            | UK DWS                 | <0.50      | 1.2        | 0.57       | <0.50      | <0.50       | <0.50       | <0.50       | <0.50          | 0.64           | <0.50          | <0.50      |
| Nickel                      | 50                    | ug/l            | UK DWS                 | 6.8        | <1.0       | 7.6        | 6.9        | 8.1         | 23          | 7.6         | 7.3            | 9.1            | 11             | 400        |
| Selenium                    | 10                    | ug/l            | UK DWS                 | 6.2        | 14         | 26         | 3.3        | 12          | 8.2         | 7.7         | 9.4            | 7.4            | 4.7            | 7          |
| Zinc                        | 5000                  | ug/l            | UK DWS                 | 77         | 32         | 82         | 100        | 67          | 46          | 32          | 80             | 62             | 63             | 7400       |
| Miscellaneous               |                       |                 |                        |            |            |            |            |             |             |             |                |                |                |            |
| Alkalinity                  | nc                    | mg CaCO3 I-1    | nc                     | 89         | 500        | 200        | 180        | 230         | 120         | 87          | 440            | 160            | 400            | 160        |
| Chloride                    | nc                    | mg/l            | nc                     | 120        | 280        | 200        | 160        | 520         | 110         | 95          | 130            | 130            | 59             | 64         |
| Sulphate as SO4             | 250                   | mg/l            | UK DWS                 | 1200       | 380        | 1300       | 1500       | 740         | 490         | 580         | 1400           | 680            | 1000           | 3100       |
| Cyanide total               | 0.5                   | mg/l            | UK DWS                 | 0.78       | 320        | 0.71       | 0.65       | 0.35        | 8           | 0.11        | 0.1            | 3.6            | 0.07           | 0.21       |
| Cyanide free                | 0.001                 | mg/l            | FEQS                   | < 0.05     | 0.34       | < 0.05     | < 0.05     | < 0.05      | < 0.05      | < 0.05      | < 0.05         | < 0.05         | < 0.05         | < 0.05     |
| Thiocyanate                 | 0.17                  | mg/l            | DIV                    | < 0.5      | 7.5        | < 0.5      | < 0.5      | < 0.5       | 1.6         | < 0.5       | < 0.5          | 2.2            | < 0.5          | 0.91       |
| Ammoniacal Nitrogen as N    | 0.39                  | mg/l            | UK DWS                 | 6.6        | 46         | 5.3        | 2.9        | 0.27        | 17          | 0.93        | 0.16           | 16             | 4.4            | < 0.01     |
| pH                          | nc                    | pH units        | nc                     | 7.7        | 11.4       | 7.5        | 7.6        | 7.6         | 8.8         | 8.9         | 7.6            | 11.8           | 8              | 5.8        |
| Electrical conductivity PAH | nc                    | µS cm-1         | nc                     | 2800       | 2400       | 3400       | 3500       | 3600        | 1700        | 1900        | 3100           | 2400           | 2600           | 4100       |
| Acenaphthene                | 2570                  | ug/l            | DIV                    | <0.1       | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        | <0.1        | <0.1           | 0.6            | 0.9            | 54         |
| Acenaphthylene              | 4010                  | ug/l            | DIV                    | <0.1       | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        | <0.1        | <0.1           | <0.1           | <0.1           | 27         |
| Anthracene                  | 0.1                   | ug/l            | FEQS                   | <0.1       | 0.1        | <0.1       | <0.1       | <0.1        | <0.1        | <0.1        | <0.1           | <0.1           | <0.1           | 22         |
| Benzo(a)anthracene          | 1                     | ug/l            | DIV                    | <0.1       | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        | <0.1        | <0.1           | <0.1           | <0.1           | 4.9        |
| Benzo(a)pyrene              | 0.01                  | ug/l            | UK DWS                 | <0.1       | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        | <0.1        | <0.1           | <0.1           | <0.1           | 1.9        |
| Benzo(b)fluoranthene        | 17                    | ug/l            | DIV                    | <0.1       | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        | <0.1        | <0.1           | <0.1           | <0.1           | 3          |
| Benzo(k)fluoranthene        | 0.36                  | ug/l            | DIV                    | <0.1       | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        | <0.1        | <0.1           | <0.1           | <0.1           | 0.9        |
| Benzo(g,h,i)perylene        | 0.18                  | ug/l            | DIV                    | <0.1       | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        | <0.1        | <0.1           | <0.1           | <0.1           | <0.1       |
| Chrysene                    | 1.2                   | ug/l            | DIV                    | <0.1       | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        | <0.1        | <0.1           | <0.1           | <0.1           | 3.1        |
| Dibenzo(a,h)anthracene      | 0.83                  | ug/l            | DIV                    | <0.1       | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        | <0.1        | <0.1           | <0.1           | <0.1           | <0.1       |
| Fluoranthene                | 0.1                   | ug/l            | FEQS                   | <0.1       | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        | <0.1        | <0.1           | <0.1           | <0.1           | 27         |
| Fluorene                    | nc                    | ug/l            | nc                     | <0.1       | 0.8        | <0.1       | <0.1       | <0.1        | <0.1        | <0.1        | <0.1           | 1              | <0.1           | 65         |
| Indeno(1,2,3-c,d)pyrene     | 0.0036                | ug/l            | DIV                    | <0.1       | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        | <0.1        | <0.1           | <0.1           | <0.1           | <0.1       |
| Naphthalene                 | 2.4                   | ug/l            | FEQS                   | 37         | 2800       | 730        | 5500       | 1.4         | 76          | <0.1        | <0.1           | 1200           | 1              | 8400       |
| Phenanthrene                | 30                    | ug/l            | DIV                    | <0.1       | 2.1        | <0.1       | <0.1       | <0.1        | <0.1        | <0.1        | <0.1           | 0.9            | <0.1           | 120        |
| Pyrene                      | 106                   | ug/l            | DIV                    | <0.1       | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        | <0.1        | <0.1           | <0.1           | <0.1           | 18         |
| Total of 16 PAH             | nc                    | ug/l            | nc                     | 37         | 2800       | 730        | 5500       | <2          | 76          | <2          | <2             | 1200           | <2             | 8700       |
| Coronene                    | nc                    | ug/l            | nc                     | <0.1       | <0.1       | <0.1       | <0.1       | <0.1        | <0.1        | <0.1        | <0.1           | <0.1           | <0.1           | <0.1       |
| PCB                         |                       |                 |                        | <u> </u>   |            |            |            |             |             |             |                |                |                | <u> </u>   |
| PCBs as Aroclor 1242 TPH    | nc                    | ug/l            | nc                     | <u> </u>   |            |            |            |             |             |             |                |                |                | <u> </u>   |
| ТРН                         | 10                    | ug/l            | UK DWS                 | 1300       | 3900       | 2800       | 310000     | <10         | 1000        | <10         | <10            | 5700           | 170            | 490000     |
| BTEX                        | 10                    | ug/i            |                        | 1300       | 2900       | 2000       | 310000     | <10         | 1000        | <10         | <10            | 5700           | 170            | 490000     |
| Benzene                     | 1                     | ug/l            | UK DWS                 | 910        | 2500       | 1500       | 440        | < 1         | 440         | < 1         | < 1            | 3700           | < 1            |            |
| Ethylbenzene                | 20                    | ug/l            | FEQS                   | 65         | 510        | 57         | 3.8        | <1          | 29          | <1          | <1             | 380            | <1             |            |
| Toluene                     | 50                    | ug/l            | FEQS                   | 110        | 970        | 300        | 190        | <1          | 140         | <1          | <1             | 620            | <1             |            |
| m- & p-Xylene               | nc                    | ug/l            | nc                     | 35         | 360        | 79         | 240        | <1          | 28          | <1          | <1             | 450            | <1             |            |
| o-Xylene                    | nc                    | ug/l            |                        | 38         | 230        | 39         | 110        | <1          | 20          | <1          | <1             | 240            | <1             |            |
| 0-Aylene                    | TIC                   | ug/i            | nc                     | 30         | 230        | 09         |            |             | 20          |             | < 1            | 240            | < 1            |            |

**Gas Monitoring Data D4** 

REP002 | Issue 4 | 13 July 2011

J/218000/216066 KXC B3 REMEDIATION SERVICES/4 INTERNAL PROJECT DATA(4-03 ARUP REPORTS)02 B3 ERP-03 ISSUE 4/ISSUE4 REP002 ZONE B ERP B3 AMENDMENT REPORT 13JUL11.DOCX

King's Cross Central Zones B and E Earthworks & Remediation Plan

| Location                                                                  | Date     | Atmospheric<br>pressure<br>(mbar) | Methane (%) | Carbon<br>dioxide (%) | Gas flow (l/hr) |
|---------------------------------------------------------------------------|----------|-----------------------------------|-------------|-----------------------|-----------------|
| Oscar Faber                                                               |          |                                   | 1           |                       |                 |
| BH3 located<br>inside GH9<br>on B1 B3<br>boundary<br>(initial<br>reading) | 10/04/91 | Not reported                      | 4           | 0.04                  | Not reported    |
| BH3<br>(dissipated<br>reading)                                            | 10/04/91 | Not reported                      | 0.5         | 0.04                  | Not reported    |
| BH5<br>(GH1, initial<br>reading)                                          | 10/04/91 | Not reported                      | 1.3         | 0.05                  | Not reported    |
| BH5 (GH1,<br>dissipate<br>reading                                         | 10/04/91 | Not reported                      | 0.5         | 0.05                  | Not reported    |
| White Young                                                               | Green    | -                                 |             |                       | -               |
| BH104                                                                     | 21/07/99 | 1009                              | 0.1         | 0.1                   | -1.0            |
| located<br>inside GH9                                                     | 10/08/99 | 1008                              | 0.0         | 0.1                   | -1.5            |
| on B1 plot                                                                | 07/09/99 | 1008                              | 0.1         | 0.0                   | 0.1             |
| BH106                                                                     | 21/07/99 | 1009                              | 0.1         | 0.2                   | 0.05            |
| located<br>inside GH1                                                     | 10/08/99 | 1009                              | 0.1         | 0.3                   | 3.4             |
| on B1 plot                                                                | 07/09/99 | 1010                              | 0.0         | 1.2                   | 0.5             |
| BH107                                                                     | 21/07/99 | 1009                              | 1.0         | 0.2                   | 0.03            |
| located inside GHB                                                        | 10/08/99 | 1006                              | >150        | 5.0                   | 0.0             |
| on B1 plot                                                                | 07/09/99 | 1009                              | 47.6        | 1.0                   | 0.2             |
| BH102                                                                     | 21/07/99 | 1010                              | 5.0         | 0.0                   | 0.05            |
| located outside                                                           | 10/08/99 | 1007                              | 49.6        | 0.2                   | >4.8            |
| gasholders<br>on B1 plot                                                  | 07/09/99 | 1010                              | 16          | 0.1                   | 0.02            |
| BH102C                                                                    | 21/07/99 | 1009                              | 0.0         | 0.0                   | -0.3            |
| located<br>outside<br>gasholders                                          | 10/08/99 | 1008                              | 0.0         | 9.2                   | 0.56            |
| on B5 plot                                                                | 07/09/99 | 1009                              | 0.0         | 9.7                   | 0.1             |

| Location                                 | Date               | Atmospheric<br>pressure<br>(mbar) | Methane (%)      | Carbon<br>dioxide (%) | Gas flow (l/hr) |
|------------------------------------------|--------------------|-----------------------------------|------------------|-----------------------|-----------------|
| BH103                                    | 21/07/99           | 1009                              | 0.0              | 0.7                   | -0.9            |
| located<br>outside                       | 10/08/99           | 1008                              | 0.0              | 2.2                   | -0.16           |
| gasholders<br>between B5<br>and B6 plots | 07/09/99           | 1010                              | 0.0              | 2.3                   | 0.1             |
| BH101                                    | 21/07/99           | 1009                              | 0.0              | 0.6                   | -1.8            |
| located outside                          | 10/08/99           | 1009                              | 0.0              | 0.1                   | -0.4            |
| gasholders<br>in Pancras<br>Square       | 07/09/99           | 1010                              | 0.0              | 0.0                   | 0.0             |
| BH105A                                   | 21/07/99           | 1009                              | 0.2              | 0.0                   | -1.0            |
| located inside                           | 10/08/99           | 1009                              | 0.3              | 0.6                   | -24.0           |
| gasholder A<br>in Pancras<br>Square      | 07/09/99           | 1009                              | 0.3              | 0.5                   | 0.2             |
| Peter Brett A                            | ssociates (monitor | ring undertaken b                 | y Norwest Holst) |                       |                 |
| BH1007                                   | 25/09/2008         | 1026                              | <0.1             | 0.0                   | <0.1            |
| located outside                          | 01/10/2008         | 999                               | <0.1             | 0.0                   | <0.1            |
| gasholders                               | 09/10/2008         | 1028                              | <0.1             | 0.0                   | <0.1            |
| in plot B6                               | 16/10/2008         | 1010                              | <0.1             | 0.0                   | <0.1            |
|                                          | 23/10/2008         | 1019                              | <0.1             | 0.0                   | <0.1            |
|                                          | 29/10/2008         | 1009                              | <0.1             | 0.0                   | <0.1            |
| BH1010                                   | 25/09/2008         | 1026                              | <0.1             | 0.0                   | <0.1            |
| located outside                          | 01/10/2008         | 999                               | <0.1             | 0.0                   | <0.1            |
| gasholders<br>in Pancras                 | 09/10/2008         | 1028                              | <0.1             | 0.0                   | <0.1            |
| Square                                   | 16/10/2008         | 1010                              | <0.1             | 0.0                   | <0.1            |
|                                          | 23/10/2008         | 1019                              | <0.1             | 0.0                   | <0.1            |
|                                          | 29/10/2008         | 1009                              | <0.1             | 0.0                   | <0.1            |
| BH1019                                   | 25/09/2008         | 1026                              | <0.1             | 0.0                   | <0.1            |
| located outside                          | 01/10/2008         | 999                               | <0.1             | 0.0                   | <0.1            |
| gasholders                               | 09/10/2008         | 1028                              | <0.1             | 0.0                   | <0.1            |
| in plot B2                               | 16/10/2008         | 1010                              | <0.1             | 0.0                   | <0.1            |
|                                          | 23/10/2008         | 1019                              | <0.1             | 0.0                   | <0.1            |
|                                          | 30/10/2008         | 996                               | <0.1             | 0.0                   | <0.1            |

Historical Gas Monitoring Data Zone B

## Historical Gas Monitoring Data Zone B

| Location                 | Date     | Atmospheric<br>pressure<br>(mbar) | Methane<br>(%) | Carbon<br>dioxide<br>(%) | Gas flow<br>(l/hr) | Characteristic situation |
|--------------------------|----------|-----------------------------------|----------------|--------------------------|--------------------|--------------------------|
| BH2005C                  | 09/12/10 | 1029                              | 0.1            | < 0.01                   | < 0.01             | CS1                      |
| located outside the      | 14/12/10 | 1032                              | 0.1            | 0.0                      | < 0.01             | CS1                      |
| gasholders               | 16/12/10 | 1004                              | 0.1            | 0.0                      | < 0.01             | CS1                      |
| on B1 plot               | 06/01/11 | 997                               | 0.0            | 0.0                      | < 0.01             | CS1                      |
|                          | 11/01/11 | 1002                              | 0.0            | 0.2                      | < 0.01             | CS1                      |
|                          | 25/01/11 | 1016                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                          | 09/02/11 | 1016                              | 0.1            | 0.0                      | 0.0                | CS1                      |
|                          | 24/02/11 | 1020                              | 0.0            | 0.1                      | 0.0                | CS1                      |
|                          | 10/03/11 | 1009                              | 0.0            | 0.2                      | 0.0                | CS1                      |
|                          | 24/03/11 | 1034                              | 0.0            | 0.0                      | 0.1                | CS1                      |
| BH2004                   | 14/12/10 | 1032                              | 0.1            | 0.0                      | <0.01              | CS1                      |
| shallow<br>standpipe     | 16/12/10 | 1004                              | 0.1            | 0.0                      | <0.01              | CS1                      |
| located                  | 06/01/11 | 997                               | 0.0            | 0.0                      | <0.01              | CS1                      |
| inside GH9<br>on B1 plot | 11/01/11 | 1003                              | 0.1            | 0.2                      | <0.01              | CS1                      |
| Ĩ                        | 02/02/11 | 1006                              | 0.0            | 0.1                      | 0.0                | CS1                      |
|                          | 09/02/11 | 1016                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                          | 24/02/11 | 1018                              | 0.0            | 0.3                      | 0.0                | CS1                      |
|                          | 10/03/11 | 1006                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                          | 24/03/11 | 1034                              | 0.0            | 0.0                      | 0.0                | CS1                      |
| BH2004                   | 14/12/10 | 1032                              | 0.2            | 0.0                      | <0.01              | CS1                      |
| deep<br>standpipe        | 16/12/10 | 1004                              | 0.1            | 0.0                      | <0.01              | CS1                      |
| located                  | 06/01/11 | 997                               | 0.0            | 0.0                      | <0.01              | CS1                      |
| inside GH9<br>on B1 plot | 11/01/11 | 1003                              | 0.0            | 0.1                      | <0.01              | CS1                      |
| -                        | 02/02/11 | 1006                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                          | 09/02/11 | 1016                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                          | 24/02/11 | 1018                              | 0.0            | 0.2                      | 0.0                | CS1                      |
|                          | 10/03/11 | 1006                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                          | 24/03/11 | 1032                              | 0.0            | 0.0                      | 0.0                | CS1                      |
| BH2006                   | 14/12/10 | 1033                              | 0.1            | 0.0                      | < 0.01             | CS1                      |
| shallow<br>standpipe     | 16/12/10 | 999                               | 0.1            | 0.1                      | < 0.01             | CS1                      |
| located                  | 07/01/11 | 998                               | 0.0            | 0.1                      | < 0.01             | CS1                      |
| inside<br>gasholder 1    | 11/01/11 | 1003                              | 0.0            | 0.1                      | < 0.01             | CS1                      |
| on B1 plot               | 02/02/11 | 1006                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                          | 09/02/11 | 1016                              | 0.0            | 0.0                      | 0.2                | CS1                      |
|                          | 24/02/11 | 1018                              | 0.0            | 0.0                      | 0.0                | CS1                      |

| Location              | Date     | Atmospheric<br>pressure<br>(mbar) | Methane<br>(%) | Carbon<br>dioxide<br>(%) | Gas flow<br>(l/hr) | Characteristic situation |
|-----------------------|----------|-----------------------------------|----------------|--------------------------|--------------------|--------------------------|
|                       | 10/03/11 | 1006                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                       | 24/03/11 | 1032                              | 0.0            | 0.0                      | 0.0                | CS1                      |
| BH2006                | 14/12/10 | 1033                              | 0.1            | 0.0                      | < 0.01             | CS1                      |
| deep<br>standpipe     | 16/12/10 | 999                               | 0.1            | 0.1                      | < 0.01             | CS1                      |
| located               | 07/01/11 | 998                               | 0.0            | 0.1                      | < 0.01             | CS1                      |
| inside<br>gasholder 1 | 11/01/11 | 1003                              | 0.0            | 0.0                      | < 0.01             | CS1                      |
| on B1 plot            | 02/02/11 | 1006                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                       | 09/02/11 | 1016                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                       | 24/02/11 | 1018                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                       | 10/03/11 | 1006                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                       | 24/03/11 | 1034                              | 0.0            | 0.0                      | 0.0                | CS1                      |
| BH2012                | 16/12/10 | 1006                              | 0.1            | 0.0                      | < 0.01             | CS1                      |
| located inside        | 06/01/11 | 998                               | 0.0            | 0.0                      | < 0.01             | CS1                      |
| gasholder 3           | 11/01/11 | 1000                              | 0.0            | 0.0                      | < 0.01             | CS1                      |
| on B1 plot            | 24/01/11 | 1029                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                       | 09/02/11 | 1016                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                       | 24/02/11 | 1020                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                       | 10/03/11 | 1009                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                       | 24/03/11 | 1034                              | 0.0            | 0.0                      | 0.0                | CS1                      |
| BH2014                | 24/01/11 | 1029                              | 0.0            | 0.0                      | 0.0                | CS1                      |
| located inside        | 09/02/11 | 1016                              | 0.7            | 0.0                      | -0.5               | CS1                      |
| gasholder 3           | 24/02/11 | 1020                              | 0.0            | 0.0                      | 0.0                | CS1                      |
| on B1 plot            | 10/03/11 | 1009                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                       | 24/03/11 | 1034                              | 0.0            | 0.0                      | 0.0                | CS1                      |
| BH2009                | 11/01/11 | 1001                              | 0.1            | 0.1                      | < 0.01             | CS1                      |
| located outside       | 26/01/11 | 1006                              | 0.0            | 0.0                      | 0.0                | CS1                      |
| gasholders            | 09/02/11 | 1016                              | 0.0            | 0.0                      | 0.0                | CS1                      |
| on B1plot             | 24/02/11 | 1020                              | 0.0            | 0.2                      | 0.0                | CS1                      |
|                       | 10/03/11 | 1006                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                       | 24/03/11 | 1034                              | 0.0            | 0.0                      | 0.0                | CS1                      |
| BH2001                | 16/12/10 | 999                               | 0.1            | 0.1                      | <0.01              | CS1                      |
| located inside GH12   | 07/01/11 | 998                               | 0.0            | 0.1                      | <0.01              | CS1                      |
| on B3 plot            | 11/01/11 | 1003                              | 0.2            | 0.0                      | <0.01              | CS1                      |
|                       | 25/01/11 | 1016                              | 0.0            | 0.0                      | <0.01              | CS1                      |
|                       | 09/02/11 | 1013                              | 0.0            | 0.0                      | <0.01              | CS1                      |

BAM Ritchie Gas Monitoring Data 2010/2011

## BAM Ritchie Gas Monitoring Data 2010/2011

| Location               | Date     | Atmospheric<br>pressure<br>(mbar) | Methane<br>(%) | Carbon<br>dioxide<br>(%) | Gas flow<br>(l/hr) | Characteristic situation |
|------------------------|----------|-----------------------------------|----------------|--------------------------|--------------------|--------------------------|
|                        | 24/02/11 | 1018                              | 0.0            | 0.0                      | <0.01              | CS1                      |
|                        | 10/03/11 | 1006                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                        | 24/03/11 | 1032                              | 0.0            | 0.1                      | 0.0                | CS1                      |
| BH2003                 | 14/12/10 | 1033                              | 0.1            | 0.1                      | <0.01              | CS1                      |
| located outside the    | 16/12/10 | 999                               | 0.1            | 0.1                      | <0.01              | CS1                      |
| gasholders             | 07/01/11 | 998                               | 0.0            | 0.1                      | <0.01              | CS1                      |
| on B3 plot             | 11/01/11 | 1003                              | 0.2            | 0.0                      | <0.01              | CS1                      |
|                        | 24/01/11 | 1029                              | 0.0            | 0.0                      | <0.01              | CS1                      |
|                        | 09/02/11 | 1013                              | 0.7            | 0.7                      | <0.01              | CS1                      |
|                        | 24/02/11 | 1018                              | 0.0            | 0.0                      | <0.01              | CS1                      |
|                        | 10/03/11 | 1006                              | 0.0            | 0.1                      | 0.0                | CS1                      |
|                        | 24/03/11 | 1032                              | 0.0            | 0.0                      | 0.0                | CS1                      |
| BH2002                 | 26/01/11 | 1006                              | 0.0            | 0.0                      | 0.0                | CS1                      |
| located outside the    | 09/02/11 | 1013                              | 0.0            | 0.9                      | 0.0                | CS1                      |
| gasholders             | 24/02/11 | 1020                              | 0.0            | 0.1                      | 0.0                | CS1                      |
| on B3 plot             | 10/03/11 | 1006                              | 0.0            | 0.0                      | 0.0                | CS1                      |
|                        | 24/03/11 | 1032                              | 0.0            | 0.0                      | 0.0                | CS1                      |
| BH2016                 | 02/02/11 | 1006                              | 0.0            | 0.4                      | 0.0                | CS1                      |
| shallow<br>standpipe   | 24/02/11 | 1018                              | 0.0            | 0.0                      | 0.0                | CS1                      |
| located outside the    | 10/03/11 | 1006                              | 0.0            | 0.2                      | 0.0                | CS1                      |
| gasholders on B3 plot  | 24/03/11 | 1032                              | 0.0            | 0.5                      | 0.1                | CS1                      |
| BH2016<br>deep         | 02/02/11 | 1006                              | 0.0            | 0.0                      | 0.0                | CS1                      |
| standpipe<br>located   | 24/02/11 | 1018                              | 0.0            | 0.3                      | 0.0                | CS1                      |
| outside the gasholders | 10/03/11 | 1006                              | -0.3           | 0.0                      | 0.0                | CS1                      |
| on B3 plot             | 24/03/11 | 1032                              | 0.0            | 0.0                      | 0.0                | CS1                      |

### BAM Ritchie Gas Monitoring Data 2010/2011

# **APPENDIX B**

**Archaeological Specification & Written Scheme of Investigation for Zones B/E** dated February 2010

IHCM Ltd 45 crescent Lane, London SW4 9PT Tel +44 (0)20 7636 1531 Fax +44 (0)20 7755 2121 www.arup.com

## Argent (King's Cross) Ltd

### King's Cross Central -Southern Area

Archaeological Specification for Development Zones B and E

February 2010

This report takes into account the particular instructions and requirements of our client.

It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party

Job number

King's Cross Central - Southern Area Archaeological Specification for Development Zones B and E

### Contents

| 1 | Introdu | ction                                                                               | Page<br>1      |
|---|---------|-------------------------------------------------------------------------------------|----------------|
|   | 1.1     | Objective of this Specification                                                     | 1              |
|   | 1.2     | Outline Planning Conditions                                                         | 1              |
|   | 1.3     | Summary History of King's Cross Central                                             | 2              |
|   | 1.4     | Background History of Plot B and E                                                  | 2              |
|   | 1.4.1   | Summary                                                                             | 2              |
|   | 1.4.2   | General Gas Industry Site History                                                   | 3              |
|   | 1.4.3   | Immediate Archaeological Features Associated with Gasholder No. 8                   | 4              |
|   | 1.4.4   | Other Gas Industry Facilities Associated with the Gasholder No. 8 in Devel Zones B  | opment<br>4    |
|   | 1.4.5   | Urban History and Other Heritage Resources within Blocks B and E                    | 5              |
|   | 1.5     | Potential Archaeological Resources South of Regent's Canal                          | 6              |
|   | 1.6     | Previous Archaeological Works                                                       | 6              |
|   | 1.7     | The General Character of the Engineering Construction Works in the S Area           | outhern<br>10  |
|   | 1.8     | Archaeological Watching Brief Process                                               | 10             |
| 2 | Details | of Enabling Works                                                                   | 12             |
|   | 2.1     | Trial Pitting and Borehole Investigations                                           | 12             |
|   | 2.2     | Site Preparation and Removal of Old Foundations and Obstructions                    | 12             |
|   | 2.3     | Construction of Temporary Works                                                     | 12             |
|   | 2.4     | Cut and Fill Earthworks and Including the Treatment and Removal Contamination       | of Soil<br>12  |
|   | 2.5     | Excavation of Basements, Sumps, Pits and other Small 'Area' Excavation<br>Buildings | s within<br>13 |
|   | 2.6     | Piling, including forming of Pile Caps and Ground Beams                             | 13             |
|   | 2.7     | External Shallow and Deep Buried Services                                           | 13             |
|   | 2.8     | Hard and Soft Landscaping                                                           | 13             |
| 3 | Archae  | ological Objectives of the Watching Brief                                           | 14             |
|   | 3.1     | Definitions                                                                         | 14             |
|   | 3.1.1   | Archaeological Watching Brief                                                       | 14             |
| 4 | Archae  | ological Programme of Works                                                         | 15             |
|   | 4.1     | General Archaeological Watching Brief Objectives at King's Cross Central            | 15             |
|   | 4.2     | General Archaeological Objectives Prior to Construction                             | 15             |
|   | 4.3     | Archaeology During Constuction                                                      | 15             |
|   | 4.4     | Other General Archaeological Undertakings                                           | 16             |
|   | 4.5     | Specific Archaeological Research Objectives Related to Blocks B and E               | 16             |
| 5 |         | by the Archaeological Contractor Prior to and During the Development Proc<br>h Zone | ramme<br>17    |

| 6                                                                                                                        | Salvage   |                                                                                                         | 18        |  |  |
|--------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------|-----------|--|--|
| <ul> <li>Provisions to be Made by the Archaeological Contractor after the Site Works on Each Zone</li> <li>19</li> </ul> |           |                                                                                                         |           |  |  |
| 8                                                                                                                        |           | ns by the Principal Engineering Contractors and Developer in Support of logical Site Works on Each Plot | the<br>20 |  |  |
|                                                                                                                          | 8.1       | General Developer Provisions                                                                            | 20        |  |  |
|                                                                                                                          | 8.2       | General Contractor Provisions                                                                           | 20        |  |  |
|                                                                                                                          | 8.3       | Technical Contractor Provisions                                                                         | 20        |  |  |
| 9                                                                                                                        | The Arch  | naeological Contractor Nominated for the Watching Brief on Each Plot                                    | 22        |  |  |
| 10                                                                                                                       | Reference | ces                                                                                                     | 23        |  |  |
|                                                                                                                          |           |                                                                                                         |           |  |  |

### Figures

3

- General Location Plan showing Development Zones and Plots 1 2

Zone B Site Superimposed on the Ordnance Survey Plan of 1896 Test pit locations for previous PBA archaeological investigations

#### 1 Introduction

#### **Objective of this Specification** 1.1

Enabling and construction works in the ground are being brought forward as part of the development of Development Zones B and E, which lie in the southern area of the King's Cross Central (KXC) site. Zone B is broken down into 6 separate plots referred to as B1, B2, B3, B4, B5 and B6, which sit around a new piece of principal public realm referred to as Pancras Square. Zone E includes one new building, E1, which will wrap around the existing Grade II listed Stanley Building South. The buildings in Zone B will share a common basement. The basement for Building E1, although separate to the shared Zone B basement, will be accessed via the same. Details of these works will be submitted as reserved matters pursuant to conditions attached to the KXC outline planning permission dated 22 December 2006 (ref: 2004/2307/P), (the 'Outline Planning Permission'). Figure 1 shows the location of the Development Zones and plots.

This Archaeological Specification relates to archaeological mitigation works for Development Zones B and E. The mitigation proposed for these zones is consistent with that proposed for all of the plots south and north of Regent's Canal, in order to achieve a holistic approach and ensure the implementation of consistent sets of archaeologicxal investigation objectives and methods, with combined post-site documentation outputs.

The other KXC Development Zones will be separately addressed as buildings in these zones are brought forward for Reserved Matters Approval.

The KXC Environmental Statement submitted with the outline planning application characterizes the Southern Area prior to first phase urban development and then through the many episodes of change and adaptation during the 19th and first half of the 20th centuries - as a dynamic hub of activity between King's Cross and St Pancras Stations, and economic and social decline in the latter decades of the 20th century.

Heritage documentation and mitigation objectives related to the existing Gasholder No. 8 guide frame, are addressed in a Specification and Written Scheme of Investigation for Building Recording and Analysis for the Gasholder No.8 Guide Frame, submitted and approved (application ref. 2008/5668/L) pursuant to Condition 3 of Listed Building Consent 2004/2315/L for the dismantling of the same structure. The recording standards set out in the documents are stated to include the bell and the tank as and when works to these elements are undertaken.

A Specification and Written Scheme of Investigation for Building Recording and Analysis was also submitted and approved in relation to the now demolished Stanley Building North (application ref. 2007/0769/L) pursuant to Condition 3 of Listed Building Consent 2004/2313/L for the demolition of the same building. A separate Specification and Written Scheme of Investigation will be submitted for building recording works relating to Stanley Building South as part of any Reserved Matters submission relating to the same.

#### 1.2 **Outline Planning Conditions**

Conditions 56 of the Outline Planning Permission requires a programme of 'Archaeological Investigation and Mitigation' to be carried out during the implementation of the scheme. Condition 56 requires:

"the implementation of a programme of archaeological work in accordance with a written scheme of investigation"

For the Southern Area, an Archaeological Watching Brief process was determined to be the appropriate mitigation measure, as identified within the Environmental Statement. This specification sets out the strategy to ensure archaeological objectives are achieved to satisfy Condition 56 and implement the Environmental Statement.

In summary, the developmental history of the KXC site, including Zones B and E, is outlined below. It is to be noted that the Sites and Monuments Records and research undertaken for the KXC Environmental Statement do not allow a precise characterisation of the pre-Industrial period archaeological history:

- increasing small clearance for farming from Neolithic times onwards.
- the Fleet Valley.

- and a little light industry, with replacement with some blocks of flats.
- involving the following activities in the Northern Area of KXC:
  - horizontal ground surface.

  - the south.
- after World War II.
- 9. Early 20th century decline of the gas making industry.
- 10. Some damage in World War II as a result of German bombing.
- North and Culross Buildings and upgrading of the German Gym.
- of Pancras Way.

To assist in relating the present-day site topography to its former railway and other uses, Figure 2 is included in this Specification. It shows the site in 1896, at a time when it had reached maximum development and after which changes are relatively minor.

#### 1.4 **Background History of Development Zones B and E**

### 1.4.1 Summary

Development Zone B is substantially the former gas works.

1. Wooded landscape in prehistoric times generally used for ad hoc activities with

2. Agricultural landscape in Roman to Post-Medieval times on the eastern flanking slope of

3. 17th and 18th century shallow quarrying for weathered clayey soils for brick making.

4. Construction of the Regent's Canal in the opening decades of the 19th century.

5. Early 19th century establishment of a gas industry south of Regent's Canal.

6. Phased urban development comprising terraced housing with some areas of commerce

7. The mid 19th century creation of the Great Northern Railway Goods Depot then

In the north, the terracing back of the gentle south facing slopes to create a sub-

 In the south, the raising of the ground level with spoil from the north end of KXC, to complete the level landscape as it approaches the Regent's Canal.

Construction of an arrangement of buildings servicing the railway industry sited to

Construction of a vast network of railway tracks throughout the North Area of KXC.

8. A period of stability of railway, and urban functions from the late 19th century through to

11. Decline of the railway functions in the 1960s -1980s with phased demolition of the more major buildings in the Northern Area and removal of many areas of railway sidings.

12. A series of temporary uses in the surviving buildings and open areas. Removal in 2001-3 of all residual railway related buildings and infrastructure. Removal of Stanley Building

13. Large-scale ground disturbances associated with the construction of the Channel Tunnel Rail Link out of St Pancras Station, the LUL Northern Ticket Hall and the KXC Shared Service Yard. Removal of the Triplet Gasholder guide frame. Some remodelling The start of the industrial development of the area was initiated by the insertion of the Regent's Canal in the first quarter of the 19th century (opened 1820). This permitted the immediate development of the Pancras Works south of the canal, roughly opposite the Eastern Goods Yard. Further south, generally between King's Cross Station and St Pancras Station, mixed residential and commercial development occurred at this time. As the gas industry expanded and the great railway works were inserted so there was piecemeal changes then some major removal of the residential and light commercial urban fabric.

The gas works ceased making coal gas in 1904, with a brief revival in 1907, and its manufacturing plant was demolished in 1911. The gasholders remained in use, linked to trunk mains.

Zone E and the south west corner of Zone B formerly comprised an area of residential development. Today, only Stanley Building South and the immediate hard landscaping survives. The Stanley Buildings originally included five blocks of approximately 20 m by 12 m. They were purpose-built in 1864-5 as low-rental 'philanthropic' housing by the Improved Industrial Dwellings Co. One five-storey block remains, identified here as Stanley Building South.

Four of the former blocks have been demolished pursuant to Listed Building Consent 2004/2313/L, in order to accommodate the extension of St Pancras Station for the Channel Tunnel Rail Link terminal and for the realignment of Pancras Way.

Stanley Building South is currently unoccupied. It is listed Grade II and lies within the King's Cross St. Pancras Conservation Area.

The Stanley buildings had no basements. Consequently, earlier made ground survives here and forms part of the infill of the historic River Fleet valley.

### **1.4.2 General Gas Industry Site History**

The former gasworks within the KXC site, locally known as the Imperial Gasworks or Pancras Works, was built as the principal works of the Imperial Gas Light and Coke Company. When opened in 1824 this was the largest gasworks in the world. The works was sited alongside the Regent's Canal. It used coal initially delivered to the works by the canal and then later via a viaduct across the Regent's Canal from the Goods Yard. The gas was produced in large retort houses. This was then stored in the gasholders on the site, which acted as reservoirs so that an adequate supply of gas was always available when required. The Gas Light and Coke Co. acquired the Imperial Gas Light and Coke Company in 1876.

The consumption of gas was steadily climbing throughout the second half of the 19th century, in response to London's rising population and prosperity and falling costs in the making of gas. Proportionate increases in gas storage capacity were needed to meet peak demands at all the company's works. With connection by trunk mains to the company's huge Beckton gas works supplementing local production, several of the Pancras gasholders came to be enlarged in the 1880s. By 1900 the works occupied 11 acres (4.6 hectares), of which more than half was devoted to gas storage.

Gasholder No. 8, centrally placed in Zone B, was designed by John Clark, the engineer of the Pancras Works, and its ironwork was built by Westwood and Wrights in 1883. Both they and Clark had been responsible for the 'telescoping' of the three 'Siamese Triplet' Gasholders Nos. 10, 11, and 12, completed in 1880 and located to the north west of Zone B, where the modern canopy of St Pancras Station is now sited. The brick tank of No. 8, set deeply into in the ground, had been constructed c.1853 for a previous gasholder, and was now deepened by 2 feet to 28 feet (8.5 m), still considerably less than the exceptional 55 feet (16.8 m) depth of the tanks of the triplet group. So the new bell of No 8 was given three telescopic 'lifts', within a guide frame some 83 feet (25.3 m) tall, compared with the two lifts. within guide frames 108 feet (32.9 m) tall, of the reconstructed triplet group. With different proportions, the guide frame of No. 8 has only two tiers of columns and girders compared with the three tiers of the triplet group.

All of these guide frames were based stylistically on those of John Clark's father, Joseph, some of whose work may be seen at the Bethnal Green and Bromley-by-Bow gasholder stations.

Although No. 8 is the only gasholder guide frame still standing today on the gasworks site, it may be noted here that in 1886-7 two other gasholders were enlarged and two more were added, with a new style of guide frame in lattice girder construction (with resemblance to the wind girders of St Pancras Station trainshed). There were then no fewer than nine substantial gasholders on the site, seven of which remained until the commencement of the CTRL works in 2001. Several of the gasholder tanks are still found within the ground of Zone B, founded at various depth and backfilled. Developed piecemeal on a constricted site, the holders were smaller and more attuned to the urban setting than some other London gasholders of the period. They presented a remarkable townscape - and landmark for people approaching St Pancras Station by train.

The Pancras Works ceased to make gas in 1904, but the gasholders continued in use. storing town gas piped from other gasworks. In the 1970s town gas was replaced by natural gas brought ashore from the North Sea, although again the gasholders continued in use.

The high-pressure national gas grid established first in the 1960s for the distribution of natural gas has an inherent storage capacity and flexibility, allowing a considerable and ongoing reduction in the national stock of gasholders. However, high-pressure mains cannot be used in built-up areas, and meeting the peaks of demand in large cities remains a problem. The removal of several of the gasholders, necessitated by the alignment of the CTRL and sanctioned by the CTRL Act of 1996, required an augmentation of the regional gas supply network. With that achieved, all of the Pancras Works gasholders were decommissioned and purged of gas in 2000.

### **1.4.3** Immediate Archaeological Features Associated with Gasholder No. 8

The depth of the brick tank, recorded at 28 feet (8.5 m), is one-third of the full height of the bell, which is some 25 m. To reduce the amount of excavation, it was normal to leave the soil in the central portion of the tank in place, in the form of an inverted cone or "dumpling" to ensure stability of the soil. The bottom of the tank and the sloped sides of this 'dumpling' would be sealed with a layer of puddled clay or concrete if necessary, to prevent leakage of water out of the tank. On this site, the tank will assuredly cut into the underlying impermeable London Clay, and so these surfaces are likely to have received only a thin 'blinding' of concrete.

The wall of the tank will increase in thickness with depth, stepping out several times on the outer face to provide adequate resistance as a compressive ring against earth pressure, which would otherwise tend to force the walls inwards. Vertical piers to support the guide columns will project behind the wall, probably capped with a massive padstone. The inner face of the wall will be a uniform cylinder with vertical iron guides attached to the face. A central pillar in the tank provides support to the bell trusses when the tank is empty.

Immediately adjoining the tank on its south-west side, there is a circular brick well for the pipes that descend beneath the bottom of the tank wall to convey gas into and out of the gasholder bell. This had until 2001 a traditional hand-operated pump, with flywheel, for removing any accumulated water.

### 1.4.4 Other Gas Industry Facilities Associated with Gasholder No. 8 in **Development Zone B**

According to Ordnance Survey mapping dated 1871, Development Zone B included the following elements of the gasworks, remnants of which may still be in the ground on site and along the proposed Boulevard and the present day Goods Way:

- 1. A significant portion of one of the major Retort Houses.
- 2. Sets of Condensers and Tar Wells.
- 3. Sets of Boilers and Pumps and Hydraulic Mains.

It was accompanied by a mission hall, Culross Hall, one of three provided by the company for it's employees spiritual needs. The Culross Buildings were totally unrelated to the few remaining earlier buildings in the area, such as the German Gymnasium (1864/5) and the Stanley Buildings (1864/5), and were demolished in 2008 pursuant to Conservation Area Consent 2004/2317/C.

# 1.5 Potential Archaeological Resources in Development Zones B and E

Related to the two Development Zones are identified the following potential industrial and earlier aged remains, generally noted from north to south:

| Block/Plot Reference    | Potential In                             |
|-------------------------|------------------------------------------|
| B3 and B5               | Foundation                               |
| B5                      | Gasholder                                |
| B3, B4, B5, B6          | Gasholder<br>above grou                  |
| B1, B3, B4, B5, B6      | Foundation<br>gasholders<br>tanks and le |
| Mostly B5 and B6        | Buildings<br>manufactur                  |
| Whole of Zone B         | Soil format<br>may be cor                |
| B3 and B5               | Surface set                              |
| B1, B2 and B4           | Basement a                               |
| Zone E and Plot B1      | Foundation<br>Stanley Bui                |
| Generally Zones B and E | Made grou<br>developme                   |
| Generally Zone B and E  | Natural soil and genera                  |

### 1.6 Previous Archaeological Works

Associated with the construction of the CTRL there have been some archaeological investigations. The archaeological fieldwork data resulting from these works has not been made available to IHCM for the purpose of supporting mitigation objectives in the southern development plots. It is understood that reports on these investigations have not yet been issued by the Archaeological Contractor for LCR.

There has been some archaeological works in the Southern Area for KXC, associated with the design and procurement of the Boulevard to be located to the east of Zone B and where the Pancras Works was also located, and Pancras Road to the west where Stanley Building North was once sited. Further, as part of earlier submissions to discharge Condition 3 of Listed Building Consent 2004/2313/L and Condition 3 of Conservation Area Consent 2004/2317/C, there has been phased recording of Stanley Building North and the Culross Buildings (both now demolished). All the field work was carried out by Pre Construct

- 4. Sets of Scrubbers.
- 5. Sets of Purifiers.
- 6. Store House.
- 7. Crushing House.
- 8. Gas delivery pipes and machinery.
- 9. Wells and pumps for topping up the Gasholder tanks.
- 10. Coal, clinker and coal waste holding pens.
- 11. A large variety of small cylindrical tanks
- 12. Offices/stores
- 13. Associated hard landscaping.

### 1.4.5 Urban History and Other Heritage Resources within Blocks B and E

Limited development on the southern part of the KXC site took place in the late 18th century, stimulated by 'The New Road', to the south of KXC. The development was substantially one of low quality two storey terraced housing, the layout of which responded to field and property boundaries, the somewhat ad-hoc exploitation of soils for brick/tile making, the Fleet Sewer, and the Small Pox Hospital grounds (under King's Cross Station). Today, the orientations of the German Gymnasium and Stanley Building South, and their surrounding local roads, are based on this first phase development pattern.

There was further piecemeal expansion of the King's Cross residential area in the second and third decades of the 19th century, including the areas of terraced housing bordering Suffolk Street, Cheney Street, Ashby Street, Northampton Street and Norfolk Street south of the gas works, with Upper Edmond Street to the east. These streets were generally located towards the southern end of Development Zone B. This street pattern was diagonally placed across the previous agricultural field pattern.

The housing was typified by 2 storey structures and those on Suffolk Street West possibly having half basements. The houses generally fronted the roads and had rear extension kitchens and with 'privies' set at the bottom of small yards/gardens.

The existing housing between the two stations remained for a few more years. The erection in 1864-5 of the original five blocks of Stanley Buildings, an early project of Sir Sidney Waterlow's philanthropic and profit-restricted Improved Industrial Dwellings Company, responded to existing poor local housing conditions and the imminent dispossession of sites by the Midland Railway. The German Gymnasium, part of a contemporaneous redevelopment on Pancras Road, reflected other aspects of mid-Victorian Society.

Further platforms and sidings were added to the west of King's Cross Station before 1894 including new "docks" for express milk traffic and for horses and carriages (which subsequently became a Motor rail terminal). This facility was within Zone B at the south end. To improve road traffic circulation around the station, a new bridge was built across the enlarged "throat" of the station, with a western approach along the southern edge of the gas works. This was officially named Battle Bridge Road in 1873, possibly in advance of its construction. These works, set at a lower level related to rail tracks entering from the north where joining with the main rail routes passing under the Regent's Canal. The Milk Dock displaced the remaining pocket of back-street houses so that the railway extended west as far as Cheney Street.

By 1894 most of the residential streets had been swept away leaving the Stanley Buildings to the west and the German Gymnasium at the south end of this KXC development area.

Pressure on land made it more difficult for railway workers to find decent affordable housing close to their place of work, and to that end, the Great Northern Railway in 1891-2 erected a tenement-style block of flats along the new Battle Bridge Road called the Culross Buildings.

### Industrial Remains

ns of the Gasholder No. 8 - brick wall to the north.

No. 8 foundations.

No. 8 buried infrastructure (with some connections to und features including an upstanding pump).

ns and complex Infrastructure associated with the other s, notably, wells for water used within the gasholder lots of interconnecting metal pipes.

and related artefacts associated with the gas ring process (see Section 1.4.4 above).

ations associated with the gas works, some of which intaminated.

etts and sub surface make up of Battle Bridge Road.

and foundations of Culross Buildings.

ns and surrounding infrastructure to demolished uildings.

ound soil formations predating first phase urban ent.

il formations associated with the Fleet river and valley ally of prehistoric times, back to the last glaciation.

Archaeology Ltd. The table below provides an initial summary of PCA's findings, illustrating the character of the discoveries located in the position shown on Figure 3. The findings are still being evaluated and analysed through the post-excavation programme of archaeological work.

| Test Pit Reference | <b>Brief Description</b>                                                                                                                         |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Trial Pit 1        | A red brick wall and poss<br>south, and was 2.64m deep<br>and extended beyond the line                                                           |
| Trial Pit 2        | A red brick wall and possil<br>wall was observed at 19.54<br>north of the pit. The surface<br>limits of excavation in the so                     |
| Trial Pit 3        | A modern brick inspection observed in this pit. The cor                                                                                          |
| Trial Pit 4        | Five, probably associated,<br>surface were observed in t<br>continued to a depth of 17.0<br>and was 0.1m deep.                                   |
| Trial Pit 5        | A dark brownish red brick s was 0.1m thick and extended                                                                                          |
| Trial Pit 6        | Two concrete surfaces wer<br>19.16mOD was 0.3m deep<br>and had dark staining from                                                                |
| Trial Pit 7        | Was abandoned                                                                                                                                    |
| Trial Pit 8        | Two metal pipes were obse<br>at 19.57mOD and was alig<br>0.45m in diameter at 19.15r                                                             |
| Trial Pit 9        | A curved brick wall was ob<br>on a concrete footing in the<br>at 17.49mOD and was 1.5m                                                           |
| Trial Pit 10       | A yellow stock brick wall v<br>south, 0.22m east to west.<br>diameter was observed at<br>not possible to ascertain a<br>scope of the excavations |
| Trial Pit 11       | A concrete wall and its foo<br>17.56mOD respectively. Th<br>found to be 2.84m deep bu<br>least 1.0m wide and of unce                             |
| Trial Pit 12       | The wall of the gasholde<br>sandstone blocks capping<br>18.21mOD and was 0.2n<br>hampered by the presence<br>to a depth of 4.5m.                 |
| Trial Pit 13       | The wall of the gasholder w<br>3.2m. Excavations inside th<br>giving the wall an overall wi                                                      |
| Trial Pit 14       | A cobbled surface was obs<br>the pit. No other structures                                                                                        |
| Trial Pit 15       | Modern reinforced concrete<br>possibly the base of the atte                                                                                      |
| Trial Pit 16       | The cobbled road surfa                                                                                                                           |

sible footing was observed at 20.15mOD, aligned north to ep. This wall was only visible on the eastern excavation limit imits of excavation.

ible associated brick surface were observed in this pit. The 54mOD and extended beyond the limits of excavation in the ace was observed at 18.29mOD and extended beyond the south of the pit.

chamber and what appeared to be a concrete pad were oncrete was observed at 17.44mOD and was 0.52m thick.

red brick walls and the remnants of a paved sandstone this pit. The masonry was first observed at 19.28mOD and .68mOD. The sandstone paving was observed at 18.53mOD

surface was observed between 18.48mOD and 18.08mOD. It led beyond the limit of excavation.

ere observed in this test pit. The upper surface observed at . The lower surface observed at 18.56mOD was 0.4m deep the ground contaminants.

served in this pit. One pipe, 0.2m in diameter, was observed igned northeast southwest. The other pipe was found to be mOD and was aligned northwest southeast.

bserved at 19.29mOD. The wall was 1.8m high and located he eastern part of this pit. The concrete footing was observed im deep.

was observed at 20.17mOD and measured 1.44m north to It was of uncertain depth. A metal pipe measuring 0.30m in 18.93mOD and was aligned northwest to southeast. It was relationship between the wall and the pipe due to the limited

oting aligned east to west were observed at 20.40mOD and hese extended beyond the limits of excavation. The wall was out of uncertain thickness and the footing was found to be at certain depth.

er was observed at 18.96mOD, this was found to have the brickwork. An interior brick surface was recorded at Im deep. Further excavations inside the gasholder were e of contaminated ground water. The trial pit was excavated

was observed at 18.94mOD, this was excavated to a depth of he gasholder revealed that the brickwork stepped in by 0.8m idth of 1.42m.

served at 19.15mOD, this had been truncated in the east of were observed.

te was observed at 18.04mOD and was 0.1m thick. This is tenuation tank. No other structures were observed.

face was observed at 19.14mOD (ground level). At

King's Cross Central - Southern Area Archaeological Specification for Development Zones B and E

|                                                                                                                    | 16.34mOD what appeared to be a thin concrete surface extending beyond the limit of excavation was observed                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trial Pit 17                                                                                                       | The cobbled road surface was observed at 19.04mOD (ground level). At 18.64mOD a patchy reddish brown brick surface was found to be 0.1m deep. This extended beyond the excavation limits.                                                                                                                                                                                                               |
| Trial Pit 18                                                                                                       | No structures were observed in this pit. Made ground deposits were observed to depth of 4.3m.                                                                                                                                                                                                                                                                                                           |
| Trial Pit 19                                                                                                       | No structures were observed in this pit. Made ground deposits were observed to depth of 3.2m                                                                                                                                                                                                                                                                                                            |
| Trial Pit 20                                                                                                       | No structures were observed in this pit. Made ground deposits were observed to depth of 1.2m.                                                                                                                                                                                                                                                                                                           |
| Trial Pit 21                                                                                                       | Modern services were observed at 17.96mOD. The trial pit was abandoned.                                                                                                                                                                                                                                                                                                                                 |
| Trial Pit 21a                                                                                                      | No structures were observed in this pit. Made ground deposits were observed to depth of 4.5m.                                                                                                                                                                                                                                                                                                           |
| Trial Pit 22                                                                                                       | A pipe was observed at 14.20mOD. The excavation was abandoned at a depth of 4.5m.                                                                                                                                                                                                                                                                                                                       |
| Trial Pit 23                                                                                                       | A cobbled surface was observed at 15.58mOD, this extended beyond the excavation limits. No further structures were observed.                                                                                                                                                                                                                                                                            |
| Trial Pit 24                                                                                                       | An east-west aligned red brick wall was observed at 14.86mOD, measuring 0.5m in width, 1.04m in height. The wall extended beyond the excavation limits.                                                                                                                                                                                                                                                 |
| Trial Pits 25, 26                                                                                                  | These were not excavated.                                                                                                                                                                                                                                                                                                                                                                               |
| Trial Pit 27                                                                                                       | Only modern backfill was observed. The trial pit was not surveyed due to access problems.                                                                                                                                                                                                                                                                                                               |
| Trial Pit 28                                                                                                       | No structures were observed in this pit. Made ground deposits were observed to a depth of 4.5m.                                                                                                                                                                                                                                                                                                         |
| Trial Pit 29                                                                                                       | No structures were observed in this pit. Made ground deposits were observed to a depth of 4.5m.                                                                                                                                                                                                                                                                                                         |
| Trial Pit 30                                                                                                       | No structures were observed in this pit. Made ground deposits were observed to a depth of 4.5m.                                                                                                                                                                                                                                                                                                         |
| Trial Pit 31                                                                                                       | This exposed more of the gasholder's curved wall. This was recorded with a total station due to the presence of contaminants.                                                                                                                                                                                                                                                                           |
| Pancras Road                                                                                                       | Brief Description                                                                                                                                                                                                                                                                                                                                                                                       |
| General ground<br>reduction to road<br>formation level for the<br>recreation of Pancras<br>Road - to the south and | Natural clay observed at 15.77 m OD overlain by 19th century made ground<br>including structural remains of the foundation of the original western end of the<br>German Gymnasium. Culvert and footings of 19th century variously found to<br>the south and north of the Gym including of Stanley Building North. The 19th<br>century features found heavily truncated by 20th century ground works. No |

| north of the German | formations found of Pre |
|---------------------|-------------------------|
| Gymnasium.          | considered to have been |

### 1.7 The General Character of the Engineering Construction Works in the Southern Area

The engineering works (enabling and construction works) will be phased and submitted to the London Borough of Camden as part of the planning process. There is to be a holistic approach to the ground works in Zones B and E, basically comprising the construction of a piled retaining wall, the creation of a double-height basement and piling for each proposed structure.

undertakings will likely include:

- 1. Trial pitting to visually inspect the shallow ground conditions and establish the precise location of obstructions buried in the ground.
- 2. Sinking of bore holes to provide design data in respect of deep ground conditions and foundation designs.
- 3. Site preparation including the removal of present ground surfaces, any surviving upstanding features and obstructions in the way of proposed ground works.
- 4. Construction and forming of temporary works.
- 5. Cut and fill earthworks to new formation level including the treatment of any contaminated soils encountered.
- 6. Excavation for shallow and deep buried services.
- 7. Excavation of basements and sumps, pits and other small area excavations.
- 8. Piling including forming of pile caps and ground beams.
- 9. Hard and soft landscaping around the proposed buildings, where a large number of known and evaluated heritage features will be removed.

plans and other documents provided in the individual plot submissions.

archaeological mitigation, related to the above types of engineering works.

#### 1.8 **Archaeological Watching Brief Process**

A series of Archaeological Watching Briefs will accompany the engineering works in the two Development Zones, providing archaeological information to satisfy the aforementioned Planning Condition 56. Section 3 of this specification defines an Archaeological Watching Brief. The Archaeological Watching Briefs will occur wherever there are to be ground works, unless designed out and approved in writing with the London Borough of Camden and English Heritage.

Paragraph 10.8.1 and Table 10.8 of the KXC Environmental Statement sets out the mitigation measures proposed. It confirms that Archaeological Watching Briefs would be in place where any engineering ground works would occur which would encounter made ground from the 19th Century or earlier, or River Fleet Alluvium.

The Watching Brief will conform to standards required by the Institute of Field Archaeologists and the guidelines of the Greater London Archaeological Advisory Service of

rehistoric to 18th century date were identified and truncated.

The relevant works affecting the potential archaeological resources and mitigation

- The nature of those works most relevant to archaeology are described in greater detail in Section 2 of this Specification. This is to be read with the engineering and architectural
- It is likely that there will be design development prior to construction but not affecting the

English Heritage. The Archaeological Contractor shall be a member of the Institute of Field Archaeologists.

The archaeological officer of English Heritage for the London Borough of Camden, will be given access to monitor the archaeological site and post-site works on behalf of English Heritage and for the London Borough of Camden.

IHCM (International Heritage Conservation and Management) is the Archaeological Consultant to the Employer for this work, Argent (King's Cross) Limited.

The phasing of developments, and thus archaeological works, will allow for a process of adapting and modifying archaeological watching brief objectives.

### Note

This specification is one of a series prepared for undertaking Archaeological Watching Briefs in the King's Cross Central scheme. They have common content in regard to general requirements for site and post-site works, together with specific requirements for each development site, based on the nature of the site, the archaeological potential and the works proposed.

#### **Details of Enabling Works** 2

The design for the construction of the many buildings and associated hard/soft landscaping within the Southern Area will be detailed within submission documents for each plot scheme. The schemes will include those undertakings referred to in Section 1.7 above. The main processes are explained further below.

#### 2.1 **Trial Pitting and Borehole Investigations**

The engineering designs for the new construction requires there to be programmes of further geotechnical investigations. These aim to investigate the shallow and deep ground conditions (made-ground, alluvium and London Clay), with observation trial pits and bore holes respectively.

The location of the pits will result from further assessment of the engineering findings and of the planned insertion of temporary and permanent new works and ground obstructions. Many of the pits will be 1 to 5m deep and shored so the pit faces can be hand logged. Some deeper probing may occur, at levels unsafe for general trial pitting excavations. The engineering investigations will also address ground contamination and the need for remediation.

### 2.2 Site Preparation and Removal of Old Foundations and Obstructions

Each scheme in the Southern Area is to be built in an area of complex ground conditions resulting from more than 200 years of development and change, the latest (modern) phase of which can be presently observed and relates to completion of the CTRL scheme and early KXC works. Section 1.7 above indicates where development related ground works are likely to be located.

#### 2.3 **Construction of Temporary Works**

Given the scale and scope of the developments within the site, it is likely that the engineering contractors and sub-contractors would need to undertake temporary works. Such works may involve local excavation into the ground for:

- Connections to services.
- Fences. .
- Crane bases. •
- Foundations for huts.
- Forming hard standing for cars and construction plant.

#### 2.4 Cut and Fill Earthworks and Including the Treatment and Removal of Soil Contamination

Given the industrial and commercial history of King's Cross, it is likely that there are still localities of 'hot-spots' of soil contamination. The contamination, if it is related to 19th century industrial processes, may have a heritage interest, especially where such contamination is associated with structural remains and industrial processes and where the contamination needs treatment or disposal.

It is likely that contamination would be found during earthworks, shallow remodelling of the ground to a new formation level, and at times of excavation associated with basement and infrastructure construction.

#### 2.5 Excavation of Basements, Sumps, Pits and other Small 'Area' **Excavations within Buildings**

The development proposal includes for permanent spaces set in the ground and includes:

- A shared double-height Zone B basement and single-level basement for Building E1. The latter basement will be accessed via the Zone B basement. Some basements may be formed within a piled retaining wall and / or within temporary works. Some construction may also occur within open excavations with battered faces.
- Duct chambers.
- Lift sumps.
- Headings.

It is the excavation of basements that would provide the greatest opportunity for archaeologically investigating any surviving historic ground conditions and structural remains.

#### 2.6 **Piling, including forming of Pile Caps and Ground Beams**

The type of buildings being constructed favours piled foundations and a substructure of pile caps/pile rafts and ground beams. The piling may occur before the forming of basements and other below-ground sump structures. For archaeological objectives, piling would allow for assessing ground conditions before larger-scale ground works occur. If basements are formed first, the piling would have no archaeological interest requiring the Archaeological Contractor to monitor their construction.

#### 2.7 **External Shallow and Deep Buried Services**

The construction works may necessitate diversion of existing buried services and definitely the insertion of new ones. Shallow infrastructure works may be located above soil formations of archaeological interest. Services inserted in trenches below 0.5 m deep, and in areas where there may be physical obstructions and ground contamination, could traverse through or below archaeologically interesting ground conditions.

#### 2.8 Hard and Soft Landscaping

The formation of roads, squares and other open areas will variously replace the presentlyfound modern and surviving older surfaces, following the insertion of new services.

To achieve the new hard and soft landscaping will also require surface and shallow (0 - 0.5 m below ground level) and deep (0.5 - 2.5 m below ground level) buried archaeological remains to be locally removed.

### **Archaeological Objectives of the Watching Brief** 3

#### Definitions 3.1

3.1.1 **Archaeological Watching Brief** An Archaeological Watching Brief, as recommended by the Institute of Field Archaeologists (IFA, 1994), refers to:

> "A formal programme of observation and investigation conducted during any operation carried out for non-archaeological reasons within a specified area or site on land or underwater where there is the possibility that archaeological deposits may be disturbed or destroyed. The programme will result in the preparation of a report and ordered archive."

In all cases, the watching brief is intended:

"to allow, within the resources available, the preservation by record of archaeological deposits, the presence and nature of which could not be established (or established with sufficient accuracy) in advance of development or other potentially disruptive works."

"to provide an opportunity, if needed, for the watching archaeologist to signal to all interested parties, before the destruction of the material in question, that an archaeological find has been made for which the resources allocated to the watching brief itself are not sufficient to support a treatment to a satisfactory and proper standard."

existing on a site."

The Institute stresses that an Archaeological Watching Brief is not intended to reduce the requirement for excavation or preservation of known or probable deposits, and is intended only to guide, not to replace, any requirement for contingent excavation or preservation of possible deposits.

"to establish and make available information about the archaeological resource

#### 4 **Archaeological Programme of Works**

#### 4.1 General Archaeological Watching Brief Objectives at King's Cross Central

The Archaeological Watching Briefs will collect and interpret data from the many site-based engineering components of the development scheme for Zones B and E in the Southern Area of KXC.

The archaeological objectives will be related to:

- 1. Determining the character of the site and landscape prior to first-phase industrial development, including information about the rural topography with evidence of Prehistoric to Post-Medieval land use: the exploitation of soils for brick making: early commercial development as part of the rapidly expanding early to mid 19th century industrial fabric of London.
- 2. The mid 18th to early 19th century 'early' urban and commercial land uses, prior to the insertion of the great mid 19th century railway buildings and associated railway facilities.
- 3. The character of foundations and soils of mid to late 19th century, specifically related to the existing gas and railway related buildings and associated landscaping.
- 4. Adding archaeological data to that obtained for CTRL and LUL development works that have been taking place for the last few years at King's Cross and St. Pancras.
- 5. The Archaeological Watching Briefs will also provide specialist advice to the Development Manager (Argent) and the Engineer and the Principal Engineering Contractor for each plot on made-ground and historic engineering features during the site works, if and when discoveries are made. The Archaeological Watching Brief will monitor site works to reduce the chance of accidental damage occurring to retained heritage buildings.
- 6. Updating Archaeological Watching Brief objectives (project design) from time to time as plots are developed and new schemes arise, responding to findings and interpretation discussions between all concerned parties.
- 7. For Development Zones B and E, providing one or more interim reports on the findings, planned to be issued during the ground works development programme and a draft final report within six months following the completion of site works in each zone.

#### 4.2 **General Archaeological Objectives Prior to Construction**

Prior to the start of engineering site works in each zone the opportunity will be taken to investigate a set of archaeological objectives. Some works will be 'archaeologically 'driven', providing an opportunity to undertake archaeological investigation by 'excavation' and 'strip and map' techniques. These investigations will then be taken off the agenda for being undertaken as Watching Briefs during the construction phase of the scheme.

#### 4.3 **Archaeology During Constuction**

During the engineering ground works for the scheme a programme of archaeology will be undertaken. The programme will be developed related to the engineering undertakings and works.

#### **Other General Archaeological Undertakings** 4.4

It is likely that other archaeological mitigation will be required during the engineering programme of ground works but it is not possible to precisely forecast all of these. This will be subject to discussion with the London Borough of Camden and English Heritage at the time.

### 4.5 and E

The following investigation objectives have been formulated for Development Zones B and E:

- 1) Determining of the internal layout arrangements of buildings, and how these relate to map and other contemporary documentation.
- 2) Understanding and documenting construction techniques of the many former buildings on site, especially those associated with the gas production and storage. Examination of any surviving foundations related to the former Stanley buildings and Culross Buildings.
- 3) The finding of any evidence of how the gas industry buildings and structures functioned.
- 4) The detailed examination of the infrastructure.
- 5) Documenting of any surviving evidence of the hard landscape on and around the development footprint.
- 6) The understanding of site preparation of the site ready for first phase urban uses.
- 7) Identification and examination of pre-railway development made-ground and site conditions, including of the possible occupation on the east side of the Fleet valley channel. This may include soil sampling for investigation of the hisitoric environment.

temporary and permanent new ground works.

- Future engineering site investigations.
- Safety regarding access and ground contamination.
- The engineering sequence and programme of works.
- 4) Site discussions with the London Borough of Camden and English Heritage.
- 5) Evaluation of findings where the works shall occur in phases potentially spanning several years.

modified to respond to findings made during the pre-development archaeological evaluation

### Specific Archaeological Research Objectives Related to Blocks B

- It is not possible to show on a plan where the archaeologial programme of works will occur but it is assumed that it would be throughout Zones B and E, where ever there are to be
- It is not intended to investigate the whole of Development Zone B given the industrial character of the site. The locations for investigation will be determined as a result of:

### 5 Actions by the Archaeological Contractor Prior to and During the Development Programme on Each Zone

To satisfy Archaeological investigation requirements, the appointed Archaeological Contractor shall:

- 1. Provide a Written Scheme of Investigation (WSI) for IHCM, for onward submission to the London Borough of Camden and English Heritage. This shall be approved in writing prior to development work starting on site.
- 2. Provide a Health & Safety Plan under CDM Regulations and work to it.
- 3. Obtain an archaeological site code.
- 4. Be fully familiar with the heritage documentation undertaken by IHCM in the Environmental Statement produced for Argent (King's Cross) Limited - to be provided at tender.
- 5. Be familiar with archaeological site works carried out for CTRL.
- 6. Be familiar with the conditions attached to the Planning, Listed Building and Conservation Area Consents associated with the King's Cross Central development.
- 7. Coordinate the fieldwork programme with Argent, the Engineer, IHCM and the English Heritage archaeological officer representing the London Borough of Camden.
- 8. Attend, unless otherwise agreed, all works that are on and that penetrate below the present hard landscape surfaces.
- 9. Generally advise the Principal Engineering Contractor on made-ground and structural features within it, related to the site history potentially spanning Prehistoric to Modern times. Advise on archaeological value of the heritage assets, with an assumption that only remains (including building fabric) of no and low value may be penetrated/removed without the agreement of IHCM and/or Camden/English Heritage.
- 10. Observe and document, from ground level, machine excavation without shoring and hand digging undertaken by the Principal Engineering Contractor.
- 11. Descend at agreed times pits and areas less than 1.2 m deep without shoring, and deeper pits with shoring, to observe, explore, photograph and document made ground and alluvial soil formations, structural remains of the various buildings and other archaeological remains.
- 12. Provide advice to the Principal Engineering Contractor on backfilling and reinstatement, ensuring protection of archaeological features and accurate historic reinstatement respectively.
- 13. Provide within one week of the end of a watching brief episode a brief 'Initial Summary' of results of the watching Brief, indicating the suspected significance of any observed remains, together with a simplified diagram illustrating the location, depth and adjacent features. The 'Initial Summary' will be submitted by e-mail to IHCM and London Borough of Camden and English Heritage within the one week period from the end of the watching brief. As comprehensive archaeological and geotechnical reports become available from site works in nearby development plots, these will be made available as soon as possible to all relevant parties (and in any event within the timescales specified in Section 7.0), to inform evaluation and mitigation objectives and methods for the development processes being addressed in this Specification.

#### 6 Salvage

The Archaeological Contractor will identify and retain where appropriate archaeological artefacts to determine those with a potential for archaeological archiving; those for reuse within the plot scheme: materials with a potential to be reused within KXC: materials with a potential for reuse on heritage projects elsewhere; and material that can be disposed of. The Archaeological Contractor will ensure appropriate heritage documentation is complete.

IHCM will coordinate archaeological salvage particularly of Hydraulic artefacts that may have an important museum use in London and nationally.

be:

- value.
- 3. Typically lodged as part of the archaeological archive.
- considered for a disposal strategy.

No architectural salvage will be necessary within the terms of this archaeological specification, given that a programme of heritage activities related to Gasholder No. 8 has already been approved pursuant to an earlier Reserved Matters submission.

In summary, moveable artefacts found during the archaeological programme of works will

Recovered and documented by standard archaeological methods.

2. Evaluated for conservation, interest to the development objectives and for heritage

4. Considered as architectural salvage for reuse within the scheme and KXC, or,

8

### 7 Provisions to be Made by the Archaeological **Contractor after the Site Works on Each Zone**

The following requirements are to be satisfied by the Archaeological Contractor:

- 1. Provision of a factual and interpretive report on the site works in respect of made ground and alluvial soil formations, structural remains, artefacts and ecofacts. The report shall conform to methods prescribed by 'MAP2', Management of Archaeological Projects Draft 2 (English Heritage, 1991) and by English Heritage Greater London Division (English Heritage, 1998, Archaeological Guidance Papers 3 and 4). The report shall contain text, drawings and photographs as appropriate.
- 2. Provision of each agreed report in draft one month following the completion of site works, and the final reports one month after receiving comments on the drafts from IHCM.
- 3. Provision of a completed 'Online Access to the Index of Archaeological Investigation' form (OASIS form) to English Heritage.
- 4. Lodging of the site paper archive with the Museum of London. Artefacts are to be retained by the landowners or their nominated agency pending consideration of the potential for museum displays.
- 5. The documents and archive from Plot B and E shall be used with similar from the other development plots to result in an holistic analysis and publication/report on the heritage of KXC.

# **Provisions by the Principal Engineering Contractors** and Developer in Support of the Archaeological Site **Works on Each Plot**

#### 8.1 **General Developer Provisions**

- 1. Office and temporary accommodation for the Archaeological Contractor.
- 2. Male and female washing and lavatory facilities for the Archaeological Contractor.
- 3. Secure storage for the Archaeological Contractor.
- CDM Co-ordinator role for CDM Regulations. 4.
- Contract Manager. 5.

#### 8.2 **General Contractor Provisions**

- 1. Production of investigation and construction method statements that reference the integration of archaeological site works.
- attendance.
- conditions.
- 4. Site induction to ensure safe working methods by archaeologists and approved visitors.

#### 8.3 **Technical Contractor Provisions**

- 1. Allow inspection of and provide technical advice on services drawings.
- 2. With the Engineer or other client representative define all possible constraints that have to be taken into account and including those related to:
- Nearby Listed Buildings.
  - Conservation Areas.
  - Working near to active railway corridors.
  - Locations where archaeological salvage is required.
- 3. Dispose of the spoil from the agreed archaeological working areas, if and when necessary.
- interpretation programme.
- 5. Prepare and undertake break-out of 20th century structures and soils agreed with the Archaeological Consultant.
- 6. Provide all supportive works to excavations deeper than 1.2 m, where access is required and the excavation faces are not battered.
- 7. Break out all unnatural obstructions impeding archaeological works when requested by the Archaeological Contractor.
- 8. Provide, if necessary, tent covers over evaluation areas to be dug in winter conditions where very sensitive archaeological resources are encountered.

- 2. Right of legal entry to the plot and preparation of the site ready for archaeological
- 3. All electricity and lighting necessary for archaeological equipment and working

4. Provide geotechnical advice and information to aid archaeological works and

- 9. Provide labour for moving spoil away from investigation areas, pits and trenches being used for approved archaeological purposes.
- 10. Provide labour for protecting archaeological surfaces when temporary works are being set in place.
- 11. Undertake any required reinstatement of the excavation areas incorporating as necessary special protective materials over important/fragile archaeological resources (Terram and / or sand). In practice, little or no reinstatement will be required here, as the excavations will be continued down to formation level.

### The Archaeological Contractor Nominated for the 9 **Watching Brief on Each Plot**

The Archaeological Contractor proposed for the Archaeological Watching Brief is:

### Gary Brown and Helen Hawkins

Pre-Construct Archaeology Ltd Unit 54 Brockley Cross Business Centre 96 Endwell Road Brockley London SE4 2PD Tel: 020 7732 3925

Fax: 020 7732 7896

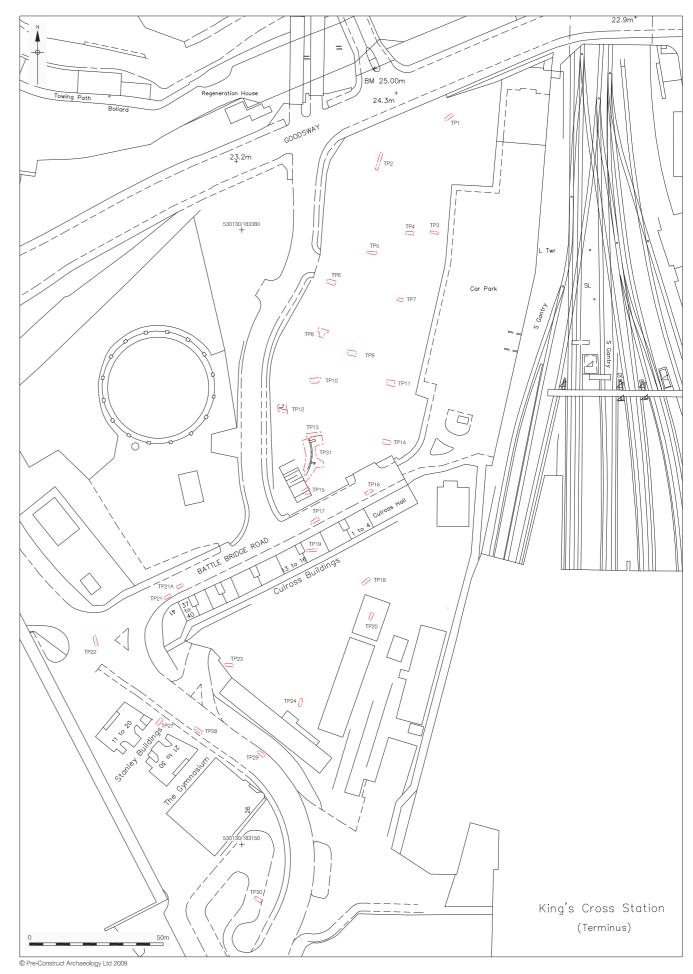
requirements.

Or, alternatively, the Watching Brief may be undertaken by IHCM to satisfy special client

### **10 References**

English Heritage. Management of Archaeological Projects. 1991.

English Heritage. Standards and Practices in Archaeological Fieldwork in London, Archaeological Guidance Paper 3. June 1998.


English Heritage. Archaeological Reports, Archaeological Guidance Paper 4. June 1998.

Institute of Field Archaeologists. Standards for Archaeological Watching Briefs. 1994.









### WRITTEN SCHEME OF INVESTIGATION

### FOR AN

### ARCHAEOLOGICAL WATCHING BRIEF AT DEVELOPMENT ZONES B AND E KING'S CROSS CENTRAL LONDON BOROUGH OF CAMDEN

FOR

Argent (King's Cross) Limited

Helen Hawkins

Pre-Construct Archaeology Unit 54 Brockley Cross Business Centre 96 Endwell Road Brockley London SE4 2PD

February 2010

### CONTENTS

- 1 INTRODUCTION .....
- 2 THE WATCHING BRIEF AND LOCA
- 3 GROUNDWORKS .....
- 4 RESOURCES AND PROGRAMMING
- 5 TIMETABLE.....

| 3               |  |
|-----------------|--|
| AL EXCAVATIONS9 |  |
|                 |  |
| G13             |  |
| 14              |  |

#### INTRODUCTION 1

#### Objective of this Written scheme of Investigation 1.1

Enabling and construction works in the ground are being brought forward as part of the development of Development Zones B and E, which lie in the southern area of the King's Cross Central ('KXC') site. Zone B is broken down into 6 separate plots referred to as B1, B2, B3, B4, B5 and B6, which sit around a new piece of principal public realm referred to as Pancras Square. Zone E includes one new building, E1, which will wrap around the existing Grade II listed Stanley Building South. The buildings in Zone B will share a common basement. The basement for building E1, although separate to the shared Zone B basement, will be accessed via the same. Details of these works will be submitted as Reserved Matters pursuant to conditions attached to the KXC outline planning permission dated 22 December 2006 (ref: 2004/2307/P), (the 'Outline Planning Permission'). Figure 1 shows the location of the Development Zones and plots.

This Written Scheme of Investigation (WSI) relates to archaeological investigation works for Development Zones B and E.

Condition 56 of the outline planning permission 2004/2307/P requires a programme of archaeological Investigation and recording be prepared and implemented. Pre-Construct Archaeology Ltd is nominated as the archaeological contractor to undertake these works.

For the Development Zones B and E, an Archaeological Watching Brief process was determined to be the appropriate mitigation measure, as identified within the Environmental Statement. This Written Scheme of Investigation sets out the strategy to ensure archaeological objectives are achieved to satisfy Condition 56 and implement the Environmental Statement.

In preparing this document full reference has been made to the Specification as prepared by International Heritage Conservation and Management Ltd. ('IHCM') which provides the strategy for archaeological investigation and mitigation of the potential effects on Development Zones B and E, as reported in the Environmental Statement. It commits to undertaking appropriate works and directs the contents of the Written Scheme of Investigation provided by the commissioned archaeological contractor. As such, the specification fulfils the requirements of Condition 56 of the Outline Planning Permission.

The 'Archaeological Watching Brief(s)' will be applied to the engineering and construction works within Development Zones B and E, for example:

- 1. Trial pitting to visually inspect the shallow ground conditions and establish the precise location of obstructions buried in the ground.
- 2. Sinking of bore holes to provide design data in respect of deep ground conditions and foundation designs.
- 3. Site preparation including the removing of present ground surfaces, the removal of any surviving upstanding features and removal of obstructions in the way of proposed ground works.
- 4. Construction and forming of temporary works.
- 5. Cut and fill earthworks to new formation level including the treatment of any contaminated soils encountered.
- 6. Excavation for shallow and deep buried services.
- 7. Excavation of basements and sumps, pits and other small area excavations.
- 8. Piling including forming of pile caps and ground beams.
- 9. Hard and soft landscaping around the proposed buildings, where a large number of known and evaluated heritage features will be removed.

The locations of the archaeological works are generally wherever there are to be ground works. Specific undertakings are defined in Section 1.8 above and other locations, but presently not yet determined, can be anticipated.

#### 1.2 Background History of Plot B and E

1.2.1 Summary

Development Zone B is substantially the former gas works.

The start of the industrial development of the area was initiated by the insertion of the Regent's Canal in the first guarter of the 19th century (opened 1820). This permitted the immediate development of the Pancras Works south of the canal, roughly opposite the Eastern Goods Yard. Further south, generally between King's Cross Station and St Pancras Station, mixed residential and commercial development occurred at this time. As the gas industry expanded and the great railway works were inserted so there were piecemeal changes then some major removal of the residential and light commercial urban fabric.

The gas works ceased making coal gas in 1904, with a brief revival in 1907, and its manufacturing plant was demolished in 1911. The gasholders remained in use, linked to trunk mains.

Zone E and the south west corner of Zone B formerly comprised an area of residential development. Today, only Stanley Building South and the immediate hard landscaping survive. The Stanley Buildings originally included five blocks of approximately 20 m by 12 m. They were purpose-built in 1864-5 as low-rental 'philanthropic' housing by the Improved Industrial Dwellings Co. One five-storey block remains, identified here as Stanley Building South.

Four of the former blocks have been demolished pursuant to Listed Building Consent 2004/2313/L in order to accommodate the extension of St. Pancras Station for the Channel Tunnel Rail Link terminal and for the realignment of Pancras Way.

Stanley Building South is currently unoccupied. It is listed Grade II and lies within the King's Cross St. Pancras Conservation Area.

The Stanley Buildings had no basements. Consequently, earlier made ground survives here and forms part of the infill of the historic River Fleet valley.

1.2.2 General Gas Industry Site History

The former gasworks within the KXC site, known as the Imperial Gasworks or Pancras Works, was built as the principal works of the Imperial Gas Light and Coke Company. When opened in 1824 this was the largest gasworks in the world. The works was sited alongside the Regent's Canal. It used coal initially delivered to the works by the canal and then later via a viaduct across the Regent's Canal from the Goods Yard. The gas was produced in large retort houses. This was then stored in the gasholders on the site, which acted as reservoirs so that an adequate supply of gas was always available when required. The Gas Light and Coke Co. acquired the Imperial Gas Light and Coke Company in 1876.

The consumption of gas was steadily climbing throughout the second half of the 19th century, in response to London's rising population and prosperity and falling costs in the making of gas. Proportionate increases in gas storage capacity were needed to meet peak demands at all the company's works. With connection by trunk mains to the company's huge Beckton gas works supplementing local production, several of the Pancras gasholders came to be enlarged in the 1880s. By 1900 the works occupied 11 acres (4.6 hectares), of which more than half was devoted to gas storage.

Gasholder No. 8, centrally placed in Zone B, was designed by John Clark, the engineer of the Pancras Works, and its ironwork was built by Westwood and Wrights in 1883. Both they and Clark had been responsible for the 'telescoping' of the three 'Siamese Triplet' gasholders Nos. 10, 11, and 12, completed in 1880 and located to the north west of Zone B, where the modern canopy of St Pancras Station is now

©Pre-Construct Archaeology Ltd, February 2010

sited. The brick tank of No. 8, set deeply into in the ground, had been constructed c.1853 for a previous gasholder, and was now deepened by 2 feet to 28 feet (8.5 m), still considerably less than the exceptional 55 feet (16.8 m) depth of the tanks of the triplet group. So the new bell of No 8 was given three telescopic 'lifts', within a guide frame some 83 feet (25.3 m) tall, compared with the two lifts, within guide frames 108 feet (32.9 m) tall, of the reconstructed triplet group. With different proportions, the guide frame of No. 8 has only two tiers of columns and girders compared with the three tiers of the triplet group.

All of these guide frames were based stylistically on those of John Clark's father, Joseph, some of whose work may be seen at the Bethnal Green and Bromley-by-Bow aasholder stations.

Although No. 8 is the only gasholder guide frame still standing today on the gasworks site, it may be noted here that in 1886-7 two other gasholders were enlarged and two more were added, with a new style of guide frame in lattice girder construction (with resemblance to the wind girders of St Pancras Station trainshed). There were then no fewer than nine substantial gasholders on the site, seven of which remained until the commencement of the CTRL works in 2001. Several of the gasholder tanks are still found within the ground of Zone B, founded at various depth and backfilled. Developed piecemeal on a constricted site, the holders were smaller and more attuned to the urban setting than some other London gasholders of the period. They presented a remarkable townscape - and landmark for people approaching St Pancras Station by train.

The Pancras Works ceased to make gas in 1904, but the gasholders continued in use, storing town gas piped from other gasworks. In the 1970s town gas was replaced by natural gas brought ashore from the North Sea, although again the gasholders continued in use.

The high-pressure national gas grid established first in the 1960s for the distribution of natural gas has an inherent storage capacity and flexibility, allowing a considerable and ongoing reduction in the national stock of gasholders. However, high-pressure mains cannot be used in built-up areas, and meeting the peaks of demand in large cities remains a problem. The removal of several of the gasholders, necessitated by the alignment of the CTRL and sanctioned by the CTRL Act of 1996, required an augmentation of the regional gas supply network. With that achieved all of the Pancras Works gasholders were decommissioned and purged of gas in 2000.

### 1.2.3 Immediate Archaeological Features Associated with Gasholder No. 8

The depth of the brick tank, recorded at 28 feet (8.5 m), is one-third of the full height of the bell, which is some 25 m. To reduce the amount of excavation, it was normal to leave the soil in the central portion of the tank in place, in the form of an inverted cone or "dumpling" to ensure stability of the soil. The bottom of the tank and the sloped sides of this 'dumpling' would be sealed with a layer of puddled clay or concrete if necessary, to prevent leakage of water out of the tank. On this site, the tank will assuredly cut into the underlying impermeable London Clay, and so these surfaces are likely to have received only a thin 'blinding' of concrete.

The wall of the tank will increase in thickness with depth, stepping out several times on the outer face to provide adequate resistance as a compressive ring against earth pressure, which would otherwise tend to force the walls inwards. Vertical piers to support the guide columns will project behind the wall, probably capped with a massive padstone. The inner face of the wall will be a uniform cylinder with vertical iron guides attached to the face. A central pillar in the tank provides support to the bell trusses when the tank is empty.

Immediately adjoining the tank on its south-west side, there is a circular brick well for the pipes that descend beneath the bottom of the tank wall to convey gas into and out of the gasholder bell. This had until 2001 a traditional hand-operated pump, with flywheel, for removing any accumulated water.

Written Scheme of Investigation for an Archaeological Watching Brief at Development Zones B and E King's Cross Central, London Borough of Camden ©Pre-Construct Archaeology Ltd, February 2010

1.2.4 Zones B.

> According to Ordnance Survey mapping dated 1871 Development Zone B included the following elements of the gasworks, remnants of which may still be in the ground on site and along the proposed Boulevard and the present day Goods Way:

- 2. Sets of Condensers and Tar Wells.
- 4. Sets of Scrubbers.
- 5. Sets of Purifiers.
- 6. Store House.
- 7. Crushing House.
- 8. Gas delivery pipes and machinery.
- 10. Coal, clinker and coal waste holding pens.
- 11. A large variety of small cylindrical tanks
- 12. Offices/stores
- 13. Associated hard landscaping.
- 1.2.5 Urban History and Other Heritage Resources within Blocks B and E

Limited development on the southern part of the KXC site took place in the late 18<sup>th</sup> century, stimulated by 'The New Road', to the south of KXC. The development was substantially one of low quality two storey terraced housing, the layout of which responded to field and property boundaries, the somewhat ad-hoc exploitation of soils for brick/tile making, the Fleet Sewer, and the Small Pox Hospital grounds (under King's Cross Station). Today, the orientations of the German Gymnasium and Stanley Building South, and their surrounding local roads, are based on this first phase development pattern.

There was further piecemeal expansion of the King's Cross residential area in the second and third decades of the 19th century, including the areas of terraced housing bordering Suffolk Street, Cheney Street, Ashby Street, Northampton Street and Norfolk Street south of the gas works, with Upper Edmond Street to the east. These streets were generally located towards the southern end of Development Zone B. This street pattern was diagonally placed across the previous agricultural field pattern.

The housing was typified by two storey structures and those on Suffolk Street West possibly having half basements. The houses generally fronted the roads and had rear extension kitchens and with 'privies' set at the bottom of small yards/gardens.

The existing housing between the two stations remained for a few more years. The erection in 1864-5 of the original five blocks of Stanley Buildings, an early project of Sir Sidney Waterlow's philanthropic and profit-restricted Improved Industrial Dwellings Company, responded to existing poor local housing conditions and the imminent dispossession of sites by the Midland Railway. The German Gymnasium, part of a contemporaneous redevelopment on Pancras Road, reflected other aspects of mid-Victorian Society.

Further platforms and sidings were added to the west of King's Cross Station before 1894 including new "docks" for express milk traffic and for horses and carriages (which subsequently became a Motor rail terminal). This facility was within Zone B at the south end. To improve road traffic circulation around the station, a new bridge

Other Gas Industry Facilities Associated with the Gasholder No. 8 in Development

A significant portion of one of the major Retort Houses.

3. Sets of Boilers and Pumps and Hydraulic Mains.

Wells and pumps for topping up the gasholder tanks.

was built across the enlarged "throat" of the station, with a western approach along the southern edge of the gas works. This was officially named Battle Bridge Road in 1873, possibly in advance of its construction. These works, set at a lower level related to rail tracks entering from the north where joining with the main rail routes passing under the Regent's Canal. The Milk Dock displaced the remaining pocket of backstreet houses so that the railway extended west as far as Cheney Street

By 1894 most of the residential streets had been swept away leaving the Stanley Buildings to the west and the German Gymnasium at the south end of this KXC development area.

Pressure on land made it more difficult for railway workers to find decent affordable housing close to their place of work, and to that end the Great Northern Railway in 1891-2 erected a tenement-style block of flats along the new Battle Bridge Road called the Culross Buildings. It was accompanied by a mission hall, Culross Hall, one of three provided by the company for its employees' spiritual needs. The Culross Buildings were totally unrelated to the few remaining earlier buildings in the area, such as the German Gymnasium (1864/5) and the Stanley Buildings (1864/5), and were demolished in 2008 pursuant to Conservation Area Consent 2004/2317/C.

#### Potential Archaeological Resources in Development Zones B and E 1.3

Potential archaeological resources related to the site are listed below:

| Block/Plot Reference    | Potential Industrial Remains                                                                                                                 |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| B3 and B5               | Foundations of the Gasholder No 8<br>Brick wall to the north                                                                                 |
| В5                      | Gasholder No 8 foundations.                                                                                                                  |
| B3, B4, B5, B6          | Gasholder No 8 buried infrastructure<br>(with some connections to above<br>ground features including an<br>upstanding pump)                  |
| B1, B3, B4, B5, B6      | Foundations and Infrastructure associated with the other gasholders – of particular not are wells for water used within the gasholder tanks. |
| Mostly B5 and B6        | Buildings and related artefacts associated with the gas manufacturing process                                                                |
| Whole of Zone B         | Soil formations associated with the gas works, some of which may be contaminated.                                                            |
| B3 and B5               | Surface setts and sub surface make up of Battle Bridge Road                                                                                  |
| B1, B2 and B4           | Basement and foundations of Culross<br>Buildings                                                                                             |
| Zone E and Plot B1      | Foundations and surrounding<br>infrastructure to demolished Stanley<br>Buildings                                                             |
| Generally Zones B and E | Made ground soil formations predating first phase urban development.                                                                         |

Generally Zone B and E

#### **Archaeological Objectives** 1.4

The strategy defined by IHCM (February 2010) outlines the Archaeological Watching Brief process and references a series of archaeological objectives and these are set out below:

The Archaeological Watching Briefs will collect and interpret data from the many sitebased engineering components of the redevelopment scheme. The archaeological objectives shall be related to:

- of London.
- associated railway facilities.
- at King's Cross and St. Pancras.

The watching brief/s and local excavations will follow both Institute of Field Archaeologists guidelines and the methodologies set out in English Heritage (GLAAS) Guidance Papers<sup>1</sup>. All archaeological works will be monitored by GLAAS on behalf of London Borough of Camden and by IHCM on behalf of the developers.

©Pre-Construct Archaeology Ltd, February 2010

Natural soil formations associated with the Fleet river and valley and generally of prehistoric times, back to the last glaciation.

1. Determining the character of the site and landscape prior to first-phase industrial development, including information about the rural topography with evidence of prehistoric to post-medieval land use; the exploitation of soils for brick making; early commercial development as part of the rapidly expanding early to mid 19th century industrial fabric

2. The mid 18th to early 19th century 'early' urban and commercial land uses, prior to the insertion of the mid 19th century railway buildings and

3. The character of foundations and soils of mid 19th to early 20<sup>th</sup> century.

4. Adding archaeological data to that obtained for CTRL and LUL development works that have been taking place for the last few years

5. The Archaeological Watching Briefs will also provide specialist advice to the Developer (Argent), the Engineer, and the Principal Engineering Contractor on made ground and historic engineering features during the site works, if and when discoveries are made. The Archaeological Watching Brief will monitor site works to reduce the chance of accidental damage occurring to retained heritage buildings.

6. Updating Archaeological Watching Brief and local Excavation objectives (project design) from time to time, responding to findings and interpretation discussions between all concerned parties.

7. One or more interim reports on the findings are planned to be issued during the ground works development programme and a draft final report within six months following the completion of site works.

<sup>&</sup>lt;sup>1</sup> English Heritage, Greater London Archaeology Advisory Service, "Archaeological Guidance Papers: 1 Written Schemes of Investigation: 2 Desk-Based Assessments: 3 Standards and Practices in Archaeological Fieldwork in London; 4 Archaeological Reports; 5 Evaluations", revised June 1998.

Written Scheme of Investigation for an Archaeological Watching Brief at Development Zones B and E King's Cross Central, London Borough of Camden ©Pre-Construct Archaeology Ltd, February 2010

#### 2 THE WATCHING BRIEF AND LOCAL EXCAVATIONS

All necessary site investigations and earthworks will be monitored by a suitably experienced archaeologist or archaeologists. The archaeologists will ensure that any archaeologically sensitive remains are recorded, and the relevant parties notified.

Pre-Construct Archaeology Ltd. is a Registered Archaeological Organisation with the Institute of Field Archaeologists.

The attending archaeologist will be provided with additional staff should the workload require it. The implementation of all groundworks will show due consideration for potential archaeological remains and the need to excavate/monitor them.

On completion of the fieldwork proper provision will be made for a full report on the results of the watching brief.

### GROUNDWORKS

#### Method Statement 3.1

3

Areas of groundworks will be broken out by the engineering contractor, whereupon the attending archaeologist will monitor, identify, record and retrieve (as far as possible) archaeological remains that may be uncovered during the course of the invasive works, or, archaeologically excavate them should they be proved to be of high and moderate archaeological significance. Notification of progress will be made to all relevant parties (IHCM, Argent, the London Borough of Camden and GLAAS).

All methodologies set out here are understood as being possible given the likelihood that some contamination is present. This will be confirmed by the results of existing and ongoing site investigations. Prior to commencement PCA will be provided with copies of all ground soil contamination reports and any other appropriate reports in order to determine the level of PPE to be worn.

All gold and silver will be removed to a safe place and reported to the local coroner according to the procedures relating to Treasure Act 1996. Where removal cannot be effected on the same working day as the discovery suitable security measures will be taken to protect the finds from theft.

If significant archaeological remains are accidentally encountered during the course of the investigations, or other groundworks, with the agreement of relevant parties, diaging will locally stop to allow the archaeological remains to be investigated and recorded by the archaeologist, if not to be preserved in situ. Further engineering excavation will then proceed until the desired formation level is achieved. Necessary horizontal and vertical trench faces will be cleaned before recording.

#### Access and Safety 3.2

Reasonable access to archaeological areas will be arranged for representatives of the London Borough of Camden and other representatives of English Heritage who wish to be satisfied, through site inspections, that the archaeological works are being conducted to proper professional standards and in accordance with the agreements made.

All relevant health and safety legislation, regulations and codes of practice will be respected. The groundworks contractor will be responsible for overall health and safety on the site.

It is assumed that there will be contaminants present at the site and therefore requiring appropriate level of PPE. The engineering contractor shall provide any additional protection for archaeological undertakings should more severe contamination be encountered. A gas monitor should also be provided. Some of the work may be located within the area of the former gasworks. Work in these areas will be undertaken wearing appropriate extra PPE as required. If the archaeologist believes the trench to be contaminated, they will not enter the trench and will seek a second opinion from PCA's health and safety officer.

If the site is considered to be 'confined space' then appropriately qualified staff must be employed as must the appropriate associated equipment.

#### **Recording Systems** 3.3

A unique-number site code system will be agreed with the Museum of London.

The recording systems adopted during the investigations will be broadly compatible with those most widely used elsewhere in the Borough. Where there is any doubt as to the appropriate recording technique the Museum of London recording manual will be used.

The site archive will be organised so as to be compatible with the other archaeological archives produced in the Borough. Individual descriptions of all archaeological strata and features excavated and exposed will be entered onto prepared pro-forma, for example, Test Pit Recording Sheets. If complex stratigraphy or structures are encountered pro-forma Single Context Recording Sheets will be

©Pre-Construct Archaeology Ltd, February 2010

used. Sample recording sheets, sample registers, findings recording sheets, accession catalogues, and the photography record cards will follow the Museum of London equivalents. This requirement for archival compatibility extends to the use of computerised databases.

A 'site location plan' indicating the site north and based on current Ordnance Survey data (reproduced with the permission of the Controller of HMSO) will be prepared. The location of the OS bench marks used and the site TBM will also be indicated.

Some record of the full extent in plan of any archaeological deposits encountered will be made; these plans will be on polyester based drawing film, will be related to the site grid and at a scale of 1:10 or 1:20. 'Single context planning' will be used on deeply stratified sites. The results will be digitised.

Sections will be drawn to scale or measured sketches will be made according to the relative safety of individual test pits.

The OD height of all principal strata and features will be calculated and indicated on the appropriate plans and sections, following transfer of information from the engineering contractor.

If the site complexity is such as to justify its use the 'Harris Matrix' stratification diagram will be used to record stratigraphic relationships. This record will be compiled and fully checked during the course of the excavations.

A photographic record of the investigations will be prepared. This will include black and white prints and colour transparencies (on 35mm film), illustrating in both detail and general context the principal features and finds discovered. The photographic record will also include 'working shots' to illustrate more generally the nature of the archaeological operation mounted.

#### 3.4 **Treatment of Finds**

Different sampling strategies may be employed according to the perceived importance of the deposit or feature under investigation. Close attention will be given to sampling for date and structure. Sample size will take into account the frequency with which material is likely to occur.

All finds retrieval policies of the Museum of London will be adopted and all identified finds and artefacts will be retained unless the Museum of London policy states otherwise.

All finds will be treated in a proper manner and will be exposed, lifted, cleaned, conserved, marked, bagged and boxed in accordance with the guidelines set out in the United Kingdom Institute for Conservation's 'Conservation Guidelines No.2' and the Museum of London's 'Standards for the Preparation of Finds to be Permanently Retained by the Museum of London'. All metal objects will be x-rayed and then selected for conservation.

Lodging of the site paper archive with the Museum of London. Artefacts are to be retained by the landowners or their nominated agency pending consideration of the potential for museum displays on and off site.

#### 3.5 **Reports and archives**

A report will be written up summarising the results of the archaeological watching brief on the investigation and earthworks, incorporating the data from the one or more phases of watching brief. The site and area historical, archaeological and geological background, site methodologies, results and any recommendations for further work will be set out and illustrated as appropriate. Copies of the report will be submitted via IHCM to English Heritage, the Borough's Planning Department, the Camden Local Studies Library and Argent.

The integrity of the site archive will be maintained. The finds and records will be available for public consultation. Appropriate guidance set out in the Museum and Galleries Commission's 'Standards in the Museum Care of Archaeological Collections' (1992) and the Society of Museum archaeologist's draft 'Selection and Written Scheme of Investigation for an Archaeological Watching Brief at Development Zones B and E King's Cross Central, London Borough of Camden ©Pre-Construct Archaeology Ltd, February 2010

# all circumstances.

If the finds are not to be donated to the appropriate Museum, arrangements will be made for a comprehensive record of all relevant materials (including detailed drawings, photographs and descriptions of individual finds), which can instead constitute the archaeological archive, but see 3.4.4 above.

The minimum acceptable standard for the site archive is defined in the 'Management of Archaeological Projects 5.4' and 'Appendix 3'. It will include all materials recovered, (or the comprehensive records of such materials as referred to above) and all written, drawn, and photographic records relating directly to the investigations. It will be quantified, ordered, indexed, and internally consistent before transfer to the Museum of London. It will also contain a site matrix, a site summary and brief written observations on the artefactual and environmental data.

United Kingdom Institute for Conservation guidelines for the preparation of excavation archives for long-term storage (1990) will be followed.

A short summary of the results of the work, even if negative, will be submitted to the Greater London SMR and NAR (using the appropriate archaeological report forms), and for publication in the appropriate academic journals including the 'Excavation Round-Up' of the London Archaeologist. Such publications will meet the minimum requirements set out in Appendix 7, 'Management of Archaeological Projects' 1991, and derive from a 'phase 2 review' as defined in the same document.

Retention and Dispersal of Archaeological Collections' (1992), will be followed in

Written Scheme of Investigation for an Archaeological Watching Brief at Development Zones B and E King's Cross Central, London Borough of Camden ©Pre-Construct Archaeology Ltd, February 2010

#### 4 **RESOURCES AND PROGRAMMING**

It is imperative that all soil excavation be undertaken under the supervision of an archaeologist in order not to cause unnecessary damage to identified archaeological deposits.

Accommodation, as well as welfare facilities and tool storage, will be required for the watching brief archaeologist and excavation team. It is assumed that these will be provided by the groundworks contractor at or near the site.

The site works will be inspected and monitored by Richard Hughes, IHCM, on behalf of Argent and Kim Stabler, English Heritage (GLAAS), on behalf of English Heritage and the London Borough of Camden.

The Health and Safety policies of Pre-Construct Archaeology Limited will be followed and in accordance with all statutory regulations. Full acknowledgement will be made to existing site policies and procedures.

The archaeological works will be supervised by a member of staff who has undertaken similar exercises.

Written Scheme of Investigation for an Archaeological Watching Brief at Development Zones B and E King's Cross Central, London Borough of Camden ©Pre-Construct Archaeology Ltd, February 2010

#### 5 TIMETABLE

parties prior to commencement.

### Once confirmed, IHCM will advise Pre-Construct Archaeology Ltd and other relevant



5 Albany Courtyard London W1J OHF

T +44 (0)20 7339 0400 www.kingscrosscentral.com