Regulations Compliance Report

Approved Document L1A 2010 edition assessed by Stroma FSAP 2009 program, Version: 1.4.0.39

Printed on 01 November 2011 at 16:42:06

Project Information:

Assessed By: Gary Nicholls (STRO003305) **Building Type:** End-terrace Flat

Dwelling Details:

NEW DWELLING DESIGN STAGE

Site Reference: Flat 9 139-147 Camden Road Plot Reference: BEC/SV/CAMDEN/0009

Flat 9, 139-147 Camden Road, London, NW1 9HA Address:

Client Details:

Studio V Architects Name:

Address: 224 West Hendon Broadway, Hendon, London, NW9 7ED

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1 TER and DER

Fuel for main heating system: Natural gas

23.73 kg/m² Target Carbon Dioxide Emission Rate (TER)

17.55 kg/m² Dwelling Carbon Dioxide Emission Rate (DER)

2 Fabric U-values

Element Average Highest OK External wall 0.19 (max. 0.30) 0.20 (max. 0.70) Party wall 0.00 (max. 0.20) OK Floor (no floor) OK

0.13 (max. 0.20) Roof 0.13 (max. 0.35)

1.44 (max. 2.00) **Openings** 1.50 (max. 3.30) OK

3 Design air permeability

Design air permeability at 50 pascals 3.00 Maximum 10.0 OK

4 Heating efficiency

Database: (rev 315, product index 016669): Main Heating system:

Boiler system with radiators or underfloor - mains gas

Brand name: Alpha Model: InTec 28X Model qualifier: (Combi boiler)

Efficiency 88.2 % SEDBUK2009

Minimum 88.0 %

Secondary heating system: None

5 Cylinder insulation

Hot water Storage: No cylinder

N/A

OK

OK

Solar water heating

Dedicated solar storage volume: 90 litres

Minimum: 57 litres OK

Regulations Compliance Report

6 Controls			
Space heating controls	Time and temperature zo	ne control	OK
Hot water controls:	No cylinder		
Boiler interlock:	Yes		OK
7 Low energy lights			
Percentage of fixed lights wi	th low-energy fittings	100.0%	
Minimum		75.0%	OK
8 Mechanical ventilation			
Not applicable			
9 Summertime temperature			

Overheating risk (South East England):

Based on:

Overshading:

Average or unknown

Windows facing: North East 12.24m², Overhang twice as wide as window, ratio NaN

Ventilation rate: 4.00

Blinds/curtains:

shutter closed 100% of daylight hours

OK

Medium

10 Key features

Design air permeablility

3.0 m³/m²h

Doors U-value

1 W/m²K

External Walls U-value

0.17 W/m²K

Solar water heating

SAP Input

Flat 9, 139-147 Camden Road, London, NW1 9HA Address:

England Located in:

South East England Region:

UPRN: na

0000-0000-0000-0000 RRN:

01 November 2011 Date of assessment: 01 November 2011 Date of certificate:

Assessment type: New dwelling design stage

Transaction type: New dwelling No related party Related party disclosure: Indicative Value Thermal Mass Parameter:

True Dwelling designed to use less:

than 125 litres per day

Flat Dwelling type:

End-terrace Detachment:

2011 Year Completed:

Floor Location: Floor area: Storey height:

 45 m^2 2.4 m Floor 0

29.13 m² (fraction 0.74) Living area:

North East Front of dwelling faces:

Name: Source: Type: Glazing: Argon: Frame: Solid front door Manufacturer Metal

low-E, En = 0.1, soft coat Yes PVC-U NE Manufacturer Windows

Name: Frame Factor: U-value: No. of Openings: Gap: g-value:

1 front door mm 0.8 1.5 NE 16mm or more 8.0 8.0

Name: Type-Name: Location: Orient: Width: Height:

front door to common area West 0 NE external wall North East 0 0

Average or unknown Overshading:

U-value: Ru value: Curtain wall: Gross area: Openings: Type: Net area: Kappa: **External Elements** external wall 12.24 32.76 0.2 0 False N/A 27.6 0.2 0.82 False N/A to common area 29.28 1.68 39.38 0 39.38 0.13 N/A

0

Internal Elements Party Elements

flat roof

15.36 N/A party wall

Thermal bridges: User-defined y-value

> y = 0.04Reference: ACD

Yes (As designed) Pressure test:

Briary energy Consultants

N. Barker 0203 091 3391

info@briaryenergy.co.uk

SAP Input

Ventilation: Natural ventilation (extract fans)

Number of chimneys: 0
Number of open flues: 0
Number of fans: 2
Number of sides sheltered: 2
Design q50: 3

Main heating system:

Main heating system: Central heating systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 315, product index 016669) SEDBUK2009 90.0%

Brand name: Alpha Model: InTec 28X Model qualifier: (Combi boiler)

Systems with radiators Pump in heat space: Yes

Main heating Control:

Main heating Control: Time and temperature zone control

Control code: 2110 Boiler interlock: Yes

Secondary heating system:

Secondary heating system: None

Water heating

Water heating: From main heating system

Water code: 901 Fuel: mains gas No hot water cylinder

Flue Gas Heat Recovery System:

Database (rev 315, product index 060001)

Brand name: Zenex Model: GasSaver Model qualifier: GS-1 Solar panel: True aperture area: 2.5 Flat plate, glazed default values: False

collector zero-loss efficiency: 0.8 collector heat loss coefficient: 3.175

orientation: South, 30° pitch

overshading: None or Very Little (<20%)

dedicated solar store volume: 90 litres (seperate store)

solar powered pump: False

Others:

Electricity tariff: standard tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%

Terrain type:

EPC language:

Wind turbine:

Photovoltaics:

Assess Zero Carbon Home:

Dense urban

English

No

No

None

imo@briaryenergy.co.ur		User [Details:						
Assessor Name: Software Name:	Gary Nicholls Stroma FSAP 2009		Stroma Softwa	re Ve	0003305 on: 1.4.0.39				
Address :	Flat 9, 139-147 Camden Ro		Address:		39-147	Camder	n Road		
1. Overall dwelling dime	ensions:								
		Are	a(m²)		Ave He	eight(m)	<u>)</u>	Volume(m	ı ³)
Ground floor			45	(1a) x	2	2.4	(2a) =	108	(3a)
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1e)+(1	n)	45	(4)					
Dwelling volume				(3a)+(3b)+(3c)+(3d	l)+(3e)+	(3n) =	108	(5)
2. Ventilation rate:									
	main Seconda heating heating	ry	other		total			m³ per ho	ur
Number of chimneys	0 + 0	+	0] = [0	X ·	40 =	0	(6a)
Number of open flues	0 + 0	_ + _	0	Ī = Ē	0	x	20 =	0	(6b)
Number of intermittent fa	ans			, 	2	x	10 =	20	(7a)
Number of passive vents	5			F	0	x	10 =	0	(7b)
Number of flueless gas t				L	0	x	40 =	0	(7c)
				L					(, o)
							Air ch	nanges per h	our
Infiltration due to chimne	eys, flues and fans = $(6a)+(6b)+(6b)$	7a)+(7b)+	(7c) =		20		÷ (5) =	0.19	(8)
	been carried out or is intended, proceed	ed to (17),	otherwise c	ontinue fr	om (9) to ((16)			_
Number of storeys in t Additional infiltration	the dwelling (ns)					[(0)	-1]x0.1 =	0	(9)
	0.25 for steel or timber frame o	r 0 35 fo	r masonr	v consti	uction	[(9)]	-1]XU.1 =	0	(10)
	present, use the value corresponding t			•					()
deducting areas of open	0 // T	\ 4 /===1	I\ -I						— ,
If suspended wooden If no draught lobby, er	floor, enter 0.2 (unsealed) or 0).1 (seal	ea), eise (enter U				0	(12)
• •	s and doors draught stripped							0	(13)
Window infiltration	s and doors draught suipped		0.25 - [0.2	x (14) ÷ 1	00] =			0	(15)
Infiltration rate			(8) + (10) +	+ (11) + (1	12) + (13) +	+ (15) =		0	(16)
Air permeability value	, q50, expressed in cubic metro	es per h	our per so	quare m	etre of e	nvelope	area	3	(17)
If based on air permeabi	lity value, then $(18) = [(17) \div 20] +$	(8), otherw	vise (18) = (16)				0.34	(18)
	es if a pressurisation test has been do	ne or a de	gree air per	meability	is being us	sed			_
Number of sides on which Shelter factor	ch sheltered		(20) = 1 - [0.075 x (²	19)1 =			0.85	(19) (20)
Infiltration rate incorpora	ting shelter factor		(21) = (18)	•	/-			0.83	(21)
Infiltration rate modified	_		, , , ,					0.20	(=.)
Jan Feb	Mar Apr May Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
Monthly average wind sp	peed from Table 7		,		•			•	
(22)m= 5.4 5.1	5.1 4.5 4.1 3.9	3.7	3.7	4.2	4.5	4.8	5.1]	
Wind Easter (22a) m (2	22\m · 4		!				-	-	
Wind Factor (22a)m = $(22a)$ m =	1.27 1.12 1.02 0.98	0.92	0.92	1.05	1.12	1.2	1.27	1	
1.00	2 1.52 0.50	1 0.02	0.02	1.00	L ''2	L '. <u>~</u>	1.21	1	

Adjusted infiltra	ation rate	e (allowi	na for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m						
0.38	0.36	0.36	0.32	0.29	0.28	0.26	0.26	0.3	0.32	0.34	0.36			
Calculate effec		-	rate for t	he appli	cable ca	se	!	Į.						7
If mechanica			on dia N. (O	Ol-) (OO -			(IE)) - (I) (00 -)			()	(23a)
If exhaust air he		0		, ,	,	. ,	,, .	,) = (23a)			((23b)
If balanced with		-		_					51. \	001)	4 (22)	4007)	(23c)
a) If balance						- ` ` 	- ^ `	ŕ	<u> </u>	 	' '	÷ 100] I		(24a)
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0			(24a)
b) If balance			ntilation				É Ì	``	 		1 0	l		(24b)
(24b)m= 0	0	0		0	0	0	0	0	0	0	0			(240)
c) If whole ho if (22b)m				•					5 × (23b)				
(24c)m= 0	0	0	0	0	0	0	0	0	0	0	0			(24c)
d) If natural v	entilation	on or wh	ole hous	e positiv	e input	ventilatio	on from I	oft			•			
if (22b)m	1 = 1, the	en (24d)	m = (221)			4d)m =	0.5 + [(2	2b)m² x	0.5]		1	ı		
(24d)m= 0.57	0.57	0.57	0.55	0.54	0.54	0.53	0.53	0.54	0.55	0.56	0.57			(24d)
Effective air of			<u> </u>	, <u> </u>		c) or (24		(25)				ı		
(25)m= 0.57	0.57	0.57	0.55	0.54	0.54	0.53	0.53	0.54	0.55	0.56	0.57			(25)
3. Heat losses	s and he	eat loss p	paramete	er:										
ELEMENT	Gros	-	Openin		Net Ar		U-val		AXU		k-value		АХ	
_	area	(m²)	m	l ²	A ,r	n²	W/m2	K .	(W/ł	<u><)</u>	kJ/m²-l	<	kJ/ł	
Doors					1.68	Х	1	=	1.68	_				(26)
Windows					12.24	χ1,	/[1/(1.5)+	0.04] =	17.32	╝.				(27)
Walls Type1	45		12.2	4	32.76	x	0.2	=	6.55					(29)
Walls Type2	29.2	18	1.68		27.6	X	0.17	= [4.74					(29)
Roof	39.3	8	0		39.38	3 x	0.13	=	5.12					(30)
Total area of el	lements	, m²			113.6	6								(31)
Party wall					15.36	x	0	= [0					(32)
* for windows and i						ated using	formula 1	/[(1/U-valu	re)+0.04] a	s given in	paragraph	3.2		
Fabric heat loss							(26)(30)	+ (32) =				35	41	(33)
Heat capacity (,	,					((28)	.(30) + (32	2) + (32a).	(32e) =	1251		(34)
Thermal mass			P = Cm ÷	- TFA) ir	n kJ/m²K			Indica	tive Value:	Medium		25		(35)
For design assessi	•	`									able 1f			」 ` ′
can be used instea				construct	ion are not	t known pr	ecisely the	indicative	values of	IMP In T				
Thormal bridge	ad of a dea	tailed calcu	ulation.			,	ecisely the	e indicative	values of	IMP in T				7(26)
Thermal bridge	ad of a dea es : S (L	tailed calcu x Y) calc	<i>ulation.</i> culated (using Ap	pendix ł	,	ecisely the	indicative	values of	IMP In T		4.	55	(36)
Thermal bridge if details of thermal Total fabric hea	ad of a dea es : S (L I bridging	tailed calcu x Y) calc	<i>ulation.</i> culated (using Ap	pendix ł	,	recisely the		values of (36) =	IMP In T		4.9		(36) (37)
if details of thermal	ad of a dea es:S(L I bridging at loss	tailed calcu x Y) calcu are not kn	ulation. culated (own (36) =	using Ap = 0.15 x (3	pendix ł	,	recisely the	(33) +						⊒ · · ·
if details of thermal Total fabric hea	ad of a dea es:S(L I bridging at loss	tailed calcu x Y) calcu are not kn	ulation. culated (own (36) =	using Ap = 0.15 x (3	pendix ł	,	ecisely the	(33) +	(36) =					
if details of thermal Total fabric hea Ventilation hea	es:S(L I bridging at loss t loss ca	tailed calcu x Y) calcu are not kn alculated	ulation. culated to	using Ap = 0.15 x (3	ppendix ł	` \	ŕ	(33) + (38)m	(36) = = 0.33 × (25)m x (5)			⊒ · · ·
if details of thermal Total fabric hea Ventilation hea	es : S (L I bridging at loss t loss ca Feb 20.17	x Y) calconnected x Y) calconn	ulation. culated (own (36) = monthly	using Ap = 0.15 x (3 / May	ppendix ł 1) Jun	Jul	Aug	(33) + (38)m Sep 19.41	(36) = = 0.33 × (25)m x (5 Nov 19.9	Dec			(37)
Total fabric hear Ventilation hear Jan (38)m= 20.46	es : S (L I bridging at loss t loss ca Feb 20.17	x Y) calconnected x Y) calconn	ulation. culated (own (36) = monthly	using Ap = 0.15 x (3 / May	ppendix ł 1) Jun	Jul	Aug	(33) + (38)m Sep 19.41	(36) = = 0.33 × (Oct 19.65	25)m x (5 Nov 19.9	Dec			(37)

										4				
Heat loss	 	<u> </u>			4.00	4.04	1 4 24	1 4 24	. ,	= (39)m ÷	· /	4 24		
(40)m= 1	.34	1.34	1.34	1.32	1.32	1.31	1.31	1.31	1.32	1.32	1.33	1.34	4.00	(40)
Number o	f days	in mor	nth (Tabl	le 1a)					,	4verage =	Sum(40) ₁ .	12 /12=	1.33	(40)
	lan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	31	28	31	30	31	30	31	31	30	31	30	31		(41)
							<u> </u>	<u> </u>			<u> </u>			
4. Water	heatin	ng ener	gy requi	rement:								kWh/ye	ear:	
Assumed if TFA > if TFA £	· 13.9,	N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (T	ΓFA -13.		54		(42)
Annual av Reduce the not more tha	erage annual a	hot wa average	hot water	usage by	5% if the a	lwelling is	designed t			se target o		.89		(43)
IJ	lan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water us											1.01			
(44)m= 77	7.97	75.14	72.3	69.47	66.63	63.8	63.8	66.63	69.47	72.3	75.14	77.97		
							<u> </u>	<u> </u>		Γotal = Su	m(44) ₁₁₂ =		850.63	(44)
Energy conte	ent of h	ot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	m x nm x D	OTm / 3600) kWh/mon	nth (see Ta	ables 1b, 1	c, 1d)		
(45)m= 11	5.91	101.38	104.61	91.2	87.51	75.51	69.98	80.3	81.26	94.7	103.37	112.25		
If instantane	ous wat	ter heatir	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46)		Γotal = Su	m(45) ₁₁₂ =	• [1117.97	(45)
(46)m= 17	7.39	15.21	15.69	13.68	13.13	11.33	10.5	12.04	12.19	14.2	15.51	16.84		(46)
Water sto							ļ							
a) If manu	ıfactur	er's de	clared lo	ss facto	r is knov	vn (kWh	/day):					0		(47)
Temperate	ure fac	ctor fro	m Table	2b								0		(48)
Energy los			•	-				(47) x (48)) =			0		(49)
If manufac			•											(50)
Cylinder v		,		•	enter 110	•						0		(50)
								enter '0' in	box (50)					
Hot water			•				•		,			0		(51)
Volume fa		•		om rabi	2 (1111)	1,11ti 0, de	•97							(51)
Temperati				2b							-	0		(52)
Energy los					ear			((50) x (51) x (52) x ((53) =		0		(54)
Enter (49)			•	,	Jul			(()(,, (==,	()		0		(55)
Water sto				or each	month			((56)m = (55) × (41)r	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinder co	ntains o	dedicated	d solar sto	L rage, (57)ı	m = (56)m	x [(50) – (<u>I</u> H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Appendi	ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primary ci	rcuit lo	oss (an	nual) fro	m Table	9.3		•	•				0		(58)
Primary ci		•	•			59)m = ((58) ÷ 36	65 × (41)	m					
(modifie	ed by fa	actor fr	om Tabl	le H5 if t	here is s	solar wat	ter heatii	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi los	s calc	ulated	for each	month ((61)m =	(60) ÷ 30	65 × (41))m						
_		20.21	22.37	21.65	22.37	21.65	22.37	22.37	21.65	22.37	21.65	22.37		(61)

DER WorkSheet: New dwelling design stage

Total heat required for water heating calculated for each month $(62)m = 0.85 \times (45)m + (46)m + (57)m + (59)m + (61)m$

Total I	eat requ	ulled loi	water in	eating Ca	aiculatec	i ioi eac	ii iiioniii	(62)111	= 0.65 X	(43)111 +	(40)111 +	(37)111+	(39)111 + (61)111	
(62)m=	138.28	121.58	126.98	112.85	109.88	97.16	92.35	102.67	7 102.91	117.07	125.02	134.62		(62)
Solar DI	HW input	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	/) (enter	'0' if no sola	ır contribu	tion to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix	G)		_	_		
(63)m=	-21.6	-35.11	-56.77	-77.63	-97.5	-100.32	-99.97	-85.77	-64.49	-45.66	-25.68	-17.9		(63)
Output	from w	ater hea	ter										_	
(64)m=	86.77	66.13	57.24	32.67	12.38	0	0	16.9	36.7	61.19	75.98	87.05		_
								Oı	utput from w	ater heate	er (annual) ₁	12	533.01	(64)
Heat g	ains fro	m water	heating,	, kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)	m] + 0.8	x [(46)m	+ (57)m	+ (59)m]	
(65)m=	44.13	38.76	40.38	35.74	34.69	30.52	28.86	32.29	32.43	37.08	39.78	42.92		(65)
inclu	ide (57)	m in cald	culation	of (65)m	only if c	ylinder i	s in the	dwellin	g or hot w	ater is f	rom com	munity h	neating	
5. Int	ternal ga	ains (see	e Table 5	5 and 5a):									
		,	e 5), Wat		,									
Wiotab	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	77.23	77.23	77.23	77.23	77.23	77.23	77.23	77.23	+ -	77.23	77.23	77.23		(66)
Liahtin	a gains	(calcula	ted in Ar	opendix	L. eguat	ion L9 o	r L9a). a	lso see	Table 5		1		ı	
(67)m=	11.97	10.63	8.65	6.55	4.89	4.13	4.46	5.8	7.79	9.89	11.54	12.3		(67)
Applia	nces ga	ins (calc	ulated ir	n Append	dix L, ea	uation L	13 or L1		so see Ta	ble 5	1	l	ı	
(68)m=	134.28	135.67	132.16	124.69	115.25	106.38	100.46	99.06		110.05	119.49	128.36		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L. eguat	tion L15	or L15a	L). also	see Table	· 5	1	<u> </u>	ı	
(69)m=	30.72	30.72	30.72	30.72	30.72	30.72	30.72	30.72		30.72	30.72	30.72		(69)
	and fai	ns gains	(Table	ı 5а)				l	Į		!		l	
(70)m=	10	10	10	10	10	10	10	10	10	10	10	10		(70)
Losses	s e.a. ev	aporatio	n (nega	ı tive valu	es) (Tab	le 5)		l	-1		1	l	l	
(71)m=	-61.79	-61.79	-61.79	-61.79	-61.79	-61.79	-61.79	-61.79	-61.79	-61.79	-61.79	-61.79		(71)
Water	heating	gains (T	rable 5)	<u> </u>	<u> </u>	ļ		l	ļ	<u> </u>		<u> </u>	l	
(72)m=	59.32	57.68	54.27	49.63	46.63	42.39	38.79	43.4	45.04	49.84	55.25	57.68		(72)
	nternal	gains =	! :	ļ	l .	(66)m + (67)m	1 1 + (68)n	n + (69)m +	(70)m + (_ 	m	l	
(73)m=	261.74	260.15	251.25	237.04	222.94	209.07	199.88	204.44		225.95	242.45	254.51		(73)
6. So	lar gains	S:												
			using sola	r flux from	Table 6a	and assoc	iated equa	itions to	convert to th	ne applica	ble orientat	ion.		
Orienta	ation: A	Access F	actor	Area		Flu	IX		g_		FF		Gains	
	٦	Table 6d		m²		Ta	ble 6a		Table 6b	7	able 6c		(W)	
Northea	ast _{0.9x}	0.77	X	12.	24	x .	11.51	x	0.8	х	0.8	=	62.48	(75)
Northea	ast _{0.9x}	0.77	X	12.	24	x 2	23.55	x	0.8	x	0.8		127.87	(75)
Northea	ast _{0.9x}	0.77	x	12.	24	X Z	11.13	x	0.8	×	0.8		223.26	(75)
Northea	ast _{0.9x}	0.77	x	12.	24	x	67.8	x	0.8	×	0.8	_	368.05	(75)
Northea	ast _{0.9x}	0.77	x	12.	24	x 8	39.77	x	0.8	x	0.8		487.31	(75)
Northea	ast _{0.9x}	0.77	×	12.	24	x	97.5	×	0.8	x	0.8		529.31	(75)
Northea	ast _{0.9x}	0.77	x	12.	24	x 9	92.98	×	0.8	x [0.8		504.75	(75)
Northea	ast _{0.9x}	0.77	_	12.	24	x	75.42	x	0.8	x	0.8	=	409.42	(75)
	L													_

info@b	riaryenerg	gy.co.ul	K														
Northea	st _{0.9x}	0.77	x	12.	24	x	5	1.24	x		0.8	x	0.8	3	=	278.19	(75)
Northea	st _{0.9x}	0.77	x	12.	24	x	2	29.6	х		0.8	X	0.0	3		160.68	(75)
Northea	st _{0.9x}	0.77	х	12.	24	x	1	4.52	х		0.8	×	0.0	3	=	78.85	(75)
Northea	st _{0.9x}	0.77	x	12.	24	x	9	9.36	х		0.8	×	0.8	3	<u> </u>	50.82	(75)
Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m																	
(83)m=	62.48 1	27.87	223.26	368.05	487.31	52	29.31	504.75	409.	.42	278.19	160.6	8 78.8	5	50.82		(83)
Total ga	ains – inte	ernal an	d solar	(84)m =	= (73)m ·	+ (8	33)m	, watts		·						' -	
(84)m=	324.22 3	88.02	474.51	605.09	710.25	73	38.38	704.64	613.	.86	489.77	386.6	3 321.	3	305.33		(84)
7. Mea	an interna	l tempe	erature	(heating	season)											
							area f	from Tab	ole 9,	Th	1 (°C)					21	(85)
Temperature during heating periods in the living area from Table 9, Th1 (°C) Utilisation factor for gains for living area, h1,m (see Table 9a) (85)																	
	Jan	Feb	Mar	Apr	May	È	Jun	Jul	Αι	Jg	Sep	Oc	t No	v	Dec		
(86)m=	1	0.99	0.97	0.89	0.7		0.5	0.34	0.3	9	0.72	0.95	0.99	,	1		(86)
Mean	internal te	mnera	tura in l	living ar	22 T1 (fc	مالد	w sta	ne 3 to 7	in T	ahla	2 0c)					I	
(87)m=		19.83	20.2	20.6	20.89		0.98	21	21	-	20.91	20.5	19.9	5 T	19.66		(87)
L			!			<u> </u>		(T.				<u> </u>	_			l	, ,
(88)m=	erature du 19.81 1	171ng ne	19.82	19.82	19.83		9.83	19.83	19.8	-	12 (°C) 19.83	19.8	19.8	<u>, T</u>	19.82	l	(88)
L			!			<u> </u>				33	19.03	19.0	19.0		19.02	İ	(00)
г	tion factor								<u> </u>			1		_		1	(22)
(89)m=	0.99	0.99	0.95	0.85	0.64).41	0.25	0.2	8	0.63	0.92	0.99)	0.99		(89)
Mean	internal te	empera	ture in t	the rest	of dwelli	ng	T2 (f	ollow ste	ps 3	to 7	in Tabl	e 9c)				1	
(90)m=	18.03	18.31	18.84	19.39	19.74	1	9.82	19.83	19.8	33	19.77	19.2			18.06		(90)
											f	LA = Li	ving area	÷ (4)) =	0.65	(91)
Mean	internal te	empera	ture (fo	r the wh	ole dwe	lling	g) = fl	_A × T1	+ (1 -	– fL	A) x T2						
(92)m=	19.07	19.3	19.72	20.17	20.49	2	0.57	20.59	20.5	59	20.51	20.0	3 19.4	3	19.1		(92)
Apply	adjustme	nt to the	e mean	internal	temper	atu	re fro	m Table	4e, \	whe	re appro	opriate)				
(93)m=	18.92 1	19.15	19.57	20.02	20.34	2	0.42	20.44	20.4	14	20.36	19.9	19.2	8	18.95		(93)
8. Spa	ace heatin	g requi	rement														
	to the me					ed	at ste	ep 11 of	Table	e 9b	o, so tha	t Ti,m	=(76)m	and	l re-calc	culate	
the uti	lisation fa						مبيا	lid	۸.		Con	00	l No	,,	Doo	1	
] L Itiliea	Jan tion factor	Feb	Mar ins. hm	Apr	May		Jun	Jul	Αι	ug	Sep	Oc	t No	V	Dec	İ	
(94)m=	1	0.98	0.95	0.86	0.67	7	0.46	0.3	0.3	4	0.68	0.93	0.99	, [0.99		(94)
L	l gains, hr									!						l	` '
(95)m=			451.75	520.23	473.06	3	38.5	208.16	207.	.63	330.71	358.2	2 316.8	33	303.25		(95)
Month	lly average	e exterr	nal tem	perature	from Ta	able	e 8					<u> </u>	!			ı	
(96)m=	4.5	5	6.8	8.7	11.7	1	14.6	16.9	16.	9	14.3	10.8	7		4.9		(96)
Heat lo	oss rate fo	or mear	n intern	al tempe	erature,	Lm	, W =	=[(39)m :	x [(93	3)m-	– (96)m]				I	
(97)m=	871.39 8	50.68	768.02	675.09	512.16	34	14.43	208.76	208.	.68	359.8	544.2	8 735.4	11	844.62		(97)
Space	heating r	equirer	ment fo	r each n	nonth, k\	Nh	/mont	h = 0.02	24 x [(97)	m – (95)m] x	(41)m			•	
(98)m=	408.96 3	15.23	235.31	111.5	29.09		0	0	0		0	138.4	3 301.3	38	402.79		
									-	Total	l per year	(kWh/y	ear) = Sun	n(98)15,912 =	1942.68	(98)
Space	heating r	equirer	ment in	kWh/m²	?/year											43.17	(99)
																	

DER WorkSheet: New dwelling design stage

a =					1)					
9a. Energy requiremen Space heating:	its – Indiv	idual he	eating sy	/stems i	ncluding	micro-C	CHP)					
Fraction of space hea	t from sec	condary	//supple	mentary	system						0	(201
Fraction of space hea	t from ma	ain syste	em(s)			(202) = 1	- (201) =				1	(202)
Fraction of total heating	ng from m	nain sys	tem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficiency of main spa	•	•									89.1	(206
Efficiency of secondar		•		a svstem	າ. %						0	` (208
Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	┛`
Space heating require					Jul	Aug	ОСР	001	1400	Dec] Kvvii/yC	ai
408.96 315.23	` _	111.5	29.09	0	0	0	0	138.43	301.38	402.79		
(211)m = {[(98)m x (20	4)] + (210))m } x ′	100 ÷ (2	06)				<u> </u>			1	(211
458.99 353.79		125.14	32.65	0	0	0	0	155.36	338.25	452.06		
	•	•				Tota	l (kWh/yea	ar) =Sum(2	211),15,1012		2180.34	(211
Space heating fuel (se	econdary)), kWh/ı	month									
$= \{[(98)m \times (201)] + (21)\}$		Ì			ı		i	i	1	1	1	
(215)m= 0 0	0	0	0	0	0	0 	0	0	0	0		٦
						rota	ı (KVVN/yea	ar) =Sum(2	215) _{15,1012}	=	0	(215
Water heating Output from water heat	tor (coloud	latad ak	201/0/									
86.77 66.13		32.67	12.38	0	0	16.9	36.7	61.19	75.98	87.05		
Efficiency of water hea	ter										86.9	(216
(217)m= 88.71 88.71	88.66	88.59	88.43	0	0	86.9	86.9	88.41	88.65	88.7		 (217
Fuel for water heating,	kWh/mor	nth									ı	
(219)m = (64) m x 100			44			40.44	40.00	00.04	05.74		1	
(219)m= 97.82 74.55	64.56	36.88	14	0	0	19.44	42.23 I = Sum(2	69.21	85.71	98.13	000.50	7,040
Annual totals						Tota	ii – Ouiii(2		Wh/year		602.53 kWh/year	(219
Space heating fuel use	ed, main s	system	1					N.	vvii/yeai		2180.34	7
Water heating fuel use											602.53	╡
Electricity for pumps, fa		Joetrie I	koon ho								002.00	
		ilectric r	reep-no	L							1	(
central heating pump:										130		(230
boiler with a fan-assis	ted flue									45		(230
pump for solar water l	neating									75		(230
Total electricity for the	above, kV	Nh/yea	r			sum	of (230a).	(230g) =			250	(231
Electricity for lighting											211.42	
12a. CO2 emissions -	- Individua	al heati	ng syste	ems inclu	uding mi	cro-CHF)					
				En	ergy /h/year			Emiss kg CO	ion fac 2/kWh	tor	Emissions kg CO2/yea	
Space heating (main s	ystem 1)			(21	1) x			0.1	98	=	431.71	(261
Space heating (second				(21	5) x					=	0	` (263)
Water heating	· , /			(210								

(219) x

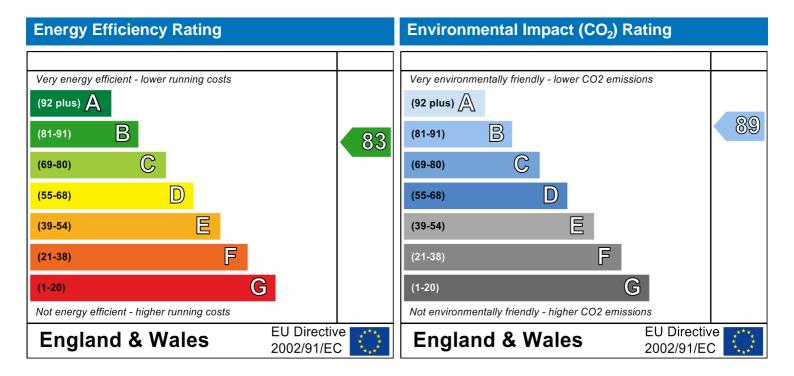
0.198

Water heating

119.3

(264)

Space and water heating	(261) + (262) + (263) + (264) =		551.01	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.517 =	129.25	(267)
Electricity for lighting	(232) x	0.517 =	109.3	(268)
Total CO2, kg/year	sur	m of (265)(271) =	789.56	(272)
Dwelling CO2 Emission Rate	(27	72) ÷ (4) =	17.55	(273)
El rating (section 14)			88	(274)


Predicted Energy Assessment

Flat 9 139-147 Camden Road London NW1 9HA Dwelling type:
Date of assessment:
Produced by:
Total floor area:

End-terrace Top floor Flat 01 November 2011 Gary Nicholls 45 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.