### **Regulations Compliance Report**

Approved Document L1A 2010 edition assessed by Stroma FSAP 2009 program, Version: 1.4.0.39

Printed on 01 November 2011 at 16:42:13

Project Information:

Assessed By: Gary Nicholls (STRO003305) Building Type: End-terrace Flat

Dwelling Details:

**NEW DWELLING DESIGN STAGE** 

Site Reference: Flat 8 139-147 Camden Road Plot Reference: BEC/SV/CAMDEN/0008

Address: Flat 8, 139-147 Camden Road, London, NW1 9HA

Client Details:

Name: Studio V Architects

Address: 224 West Hendon Broadway, Hendon, London, NW9 7ED

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1 TER and DER

Fuel for main heating system: Natural gas

Target Carbon Dioxide Emission Rate (TER) 22 kg/m<sup>2</sup>

Dwelling Carbon Dioxide Emission Rate (DER)

15.29 kg/m²

2 Fabric U-values

| Element       | Average          | Highest          |    |
|---------------|------------------|------------------|----|
| External wall | 0.20 (max. 0.30) | 0.20 (max. 0.70) | OK |
| Party wall    | 0.00 (max. 0.20) | -                | OK |
| Floor         | 0.15 (max. 0.25) | 0.15 (max. 0.70) | OK |
| Roof          | 0.13 (max. 0.20) | 0.13 (max. 0.35) | OK |
| Openings      | 1.47 (max. 2.00) | 1.50 (max. 3.30) | OK |

3 Design air permeability

Design air permeability at 50 pascals

Maximum

3.00

No.

OK

4 Heating efficiency

Main Heating system: Database: (rev 315, product index 016669):

Boiler system with radiators or underfloor - mains gas

Brand name: Alpha Model: InTec 28X Model qualifier: (Combi boiler)

Efficiency 88.2 % SEDBUK2009

Minimum 88.0 % OK

Secondary heating system: None

5 Cylinder insulation

Hot water Storage: No cylinder

N/A

OK

Solar water heating

Dedicated solar storage volume: 90 litres

Minimum: 59 litres OK

# **Regulations Compliance Report**

| 6 Controls                     |                         |                                                      |                           |  |  |  |
|--------------------------------|-------------------------|------------------------------------------------------|---------------------------|--|--|--|
| Space heating controls         | Time and temperature zo | ne control                                           | OK                        |  |  |  |
| Hot water controls:            | No cylinder             |                                                      |                           |  |  |  |
| Boiler interlock:              | Yes                     |                                                      | OK                        |  |  |  |
| 7 Low energy lights            |                         |                                                      |                           |  |  |  |
| Percentage of fixed lights wit | n low-energy fittings   | 100.0%                                               |                           |  |  |  |
| Minimum                        | <i>5, 5</i>             | 75.0%                                                | OK                        |  |  |  |
| 8 Mechanical ventilation       |                         |                                                      |                           |  |  |  |
| Not applicable                 |                         |                                                      |                           |  |  |  |
| 9 Summertime temperature       |                         |                                                      |                           |  |  |  |
| Overheating risk (South East   | England):               | Medium                                               | OK                        |  |  |  |
| Based on:                      |                         |                                                      |                           |  |  |  |
| Overshading:                   |                         | Average or unknown                                   |                           |  |  |  |
| Windows facing: South East     |                         | 11.52m², Overhang twice as wide as window, ratio NaN |                           |  |  |  |
| Windows facing: North East     |                         | 11.52m², Overhang twice as v                         | wide as window, ratio NaN |  |  |  |
| Ventilation rate:              |                         | 6.00                                                 |                           |  |  |  |
| Blinds/curtains:               |                         |                                                      |                           |  |  |  |
|                                |                         | shutter closed 100% of                               | daylight hours            |  |  |  |
|                                |                         |                                                      |                           |  |  |  |

| 40 | KOV | feati | IFOC |
|----|-----|-------|------|
|    |     |       |      |

Design air permeablility

3.0 m³/m²h

Doors U-value

1 W/m²K

External Walls U-value

0.17 W/m²K

Floors U-value

0.15 W/m²K

Solar water heating

### **SAP Input**

Flat 8, 139-147 Camden Road, London, NW1 9HA Address:

Located in: **England** 

Region: South East England

**UPRN**:

0000-0000-0000-0000-0000 RRN:

01 November 2011 Date of assessment: 01 November 2011 Date of certificate:

New dwelling design stage Assessment type:

Transaction type: New dwelling Related party disclosure: No related party Indicative Value Thermal Mass Parameter:

True Dwelling designed to use less:

than 125 litres per day

Flat Dwelling type:

**End-terrace** Detachment:

2011 Year Completed:

Floor Location: Floor area: Storey height:

Floor 0 49.69 m<sup>2</sup> 2.4 m

22.63 m<sup>2</sup> (fraction 0.455) Living area:

South East Front of dwelling faces:

| Name:      | Source:      | Туре:   | Glazing:                    | Argon:  | Frame: |
|------------|--------------|---------|-----------------------------|---------|--------|
| front door | Manufacturer | Solid   |                             |         | Metal  |
| SE         | Manufacturer | Windows | low-E, $En = 0.1$ , soft of | oat Yes | PVC-U  |
| NE         | Manufacturer | Windows | low-E, $En = 0.1$ , soft of | oat Yes | PVC-U  |

| Name:      | Gap:         | Frame Factor: | g-value: | U-value: | No. of Openings: |
|------------|--------------|---------------|----------|----------|------------------|
| front door | mm           | 0.8           | Ō        | 1        | 1                |
| SE         | 16mm or more | 0.8           | 0.8      | 1.5      | 1                |
| NE         | 16mm or more | 0.8           | 0.8      | 1.5      | 1                |

Width: Name: Type-Name: Location: Orient: Height: front door to common area South West 0 0 0 SE external wall South East 0 0 NE external wall North East

Overshading: Average or unknown

| Type:             | Gross area: | Openings: | Net area: | U-value: | Ru value: | Curtain wall: | Kappa: |
|-------------------|-------------|-----------|-----------|----------|-----------|---------------|--------|
| External Elements | <u>S</u>    |           |           |          |           |               |        |
| external wall     | 55          | 23.04     | 31.96     | 0.2      | 0         | False         | N/A    |
| to common area    | 5.64        | 1.68      | 3.96      | 0.2      | 0.82      | False         | N/A    |
| flat roof         | 49.69       | 0         | 49.69     | 0.13     | 0         |               | N/A    |
| over terrace      | 12          |           |           | 0.15     |           |               | N/A    |
| Internal Elements | <u> </u>    |           |           |          |           |               |        |

Party Elements

28.08 N/A party wall

User-defined y-value Thermal bridges:

y = 0.04

Reference: ACD

### SAP Input

Pressure test: Yes (As designed)

Natural ventilation (extract fans) Ventilation:

Number of chimneys: Number of open flues: 0 2 Number of fans: 2 Number of sides sheltered: 3 Design q50:

Central heating systems with radiators or underfloor heating Main heating system:

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 315, product index 016669) SEDBUK2009 90.0%

Brand name: Alpha Model: InTec 28X Model qualifier: (Combi boiler) Systems with radiators Pump in heat space: Yes

Time and temperature zone control Main heating Control:

Control code: 2110 Boiler interlock: Yes

Secondary heating system: None

From main heating system Water heating:

Water code: 901 Fuel: mains gas No hot water cylinder

Flue Gas Heat Recovery System:

Database (rev 315, product index 060001)

Brand name: Zenex Model: GasSaver Model qualifier: GS-1 Solar panel: True aperture area: 2.5 Flat plate, glazed default values: False

collector zero-loss efficiency: 0.8 collector heat loss coefficient: 3.175 orientation: South, 30° pitch

overshading: None or Very Little (<20%)

dedicated solar store volume: 90 litres (seperate store)

solar powered pump: False

standard tariff Electricity tariff: In Smoke Control Area: Unknown No conservatory

Conservatory:

100% Low energy lights: Dense urban Terrain type: EPC language: English Wind turbine: No Photovoltaics: None

# **SAP Input**

Assess Zero Carbon Home: No

## **DER WorkSheet: New dwelling design stage**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                            |            | User D       | etails:      |              |             |          |           |                         |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------|------------|--------------|--------------|--------------|-------------|----------|-----------|-------------------------|----------------|
| Access Nove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O = m + NII - I        | alla                       |            |              |              | _ NI         | b a         |          | OTDO      | 000000                  |                |
| Assessor Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gary Nich<br>Stroma FS |                            |            |              |              | a Num        |             |          |           | 0003305<br>on: 1.4.0.39 |                |
| Software Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Silonia F              | SAP 2009                   |            | roporty      |              | are Ver      |             | Camdar   |           | )II. 1.4.U.39           |                |
| Address :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flat 8, 139            | -147 Camo                  |            |              |              |              | 139-147     | Carrider | INUau     |                         |                |
| 1. Overall dwelling dim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 147 Odino                  | JCII I (O  | au, Lori     | JOH, 1444    | 1 311/4      |             |          |           |                         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                            |            | Area         | a(m²)        |              | Ave He      | eight(m) |           | Volume(m                | <sup>3</sup> ) |
| Ground floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                            |            |              |              | (1a) x       |             | 2.4      | (2a) =    | 119.26                  | ,<br>(3a       |
| Total floor area TFA = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1a)+(1b)+(1c)-         | -(1d)+(1e)-                | +(1r       | n)           | 9.69         | (4)          |             |          | _         |                         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | ( - ) ( - )                | `          | ′ L          |              |              | )+(3c)+(3d  | 1)+(3e)+ | (3n) =    | 140.00                  |                |
| Dwelling volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                            |            |              |              | (50) (50)    | )1(30)1(30  | 1)1(30)1 | .(011) =  | 119.26                  | (5)            |
| 2. Ventilation rate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | main                   | Sec                        | condai     | rv           | other        |              | total       |          |           | m³ per hou              | ır             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | heating                | he                         | ating      | ·<br>        |              | , –          | totai       |          | 40        | po                      | _              |
| Number of chimneys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                      | +                          | 0          | _            | 0            | _ = _        | 0           | x -      | 40 =      | 0                       | (68            |
| Number of open flues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                      | +                          | 0          | +            | 0            | =            | 0           | x 2      | 20 =      | 0                       | (6k            |
| Number of intermittent fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ans                    |                            |            |              |              | Γ            | 2           | Χ.       | 10 =      | 20                      | (7a            |
| Number of passive vent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S                      |                            |            |              |              | Ī            | 0           | x .      | 10 =      | 0                       | (7k            |
| Number of flueless gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fires                  |                            |            |              |              | F            | 0           | X 4      | 40 =      | 0                       | <u> </u>       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                            |            |              |              |              |             |          |           |                         |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                            |            |              |              |              |             |          | Air ch    | nanges per he           | our            |
| nfiltration due to chimne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eys, flues and         | fans = ( <mark>6a</mark> ) | +(6b)+(7   | 'a)+(7b)+(   | 7c) =        | Γ            | 20          |          | ÷ (5) =   | 0.17                    | (8)            |
| If a pressurisation test has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | been carried out of    | or is intended             | , procee   | d to (17), d | otherwise (  | continue fr  | om (9) to ( | (16)     |           |                         |                |
| Number of storeys in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the dwelling (n        | ıs)                        |            |              |              |              |             |          |           | 0                       | (9)            |
| Additional infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.05 (                 |                            |            | 0.05 (-      |              |              |             | [(9)     | -1]x0.1 = | 0                       | (10            |
| Structural infiltration: (  if both types of wall are p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                            |            |              |              | •            | uction      |          |           | 0                       | (11            |
| deducting areas of open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | •                          | oriding to | rino groat   | or wan are   | a (anoi      |             |          |           |                         |                |
| If suspended wooden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | floor, enter 0.5       | 2 (unseale                 | d) or 0.   | .1 (seale    | ed), else    | enter 0      |             |          |           | 0                       | (12            |
| If no draught lobby, er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                            |            |              |              |              |             |          |           | 0                       | (13            |
| Percentage of window                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | vs and doors d         | raught stri                | pped       |              |              |              |             |          |           | 0                       | (14            |
| Window infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                            |            |              |              | 2 x (14) ÷ 1 | -           | . (45)   |           | 0                       | (15            |
| Infiltration rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | والمارية المارية           |            |              |              | + (11) + (1  |             |          |           | 0                       | (16            |
| Air permeability value f based on air permeab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                            |            |              | •            | •            | etre oi e   | envelope | area      | 3                       | (17            |
| Air permeability value appli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                      |                            |            |              |              |              | is beina us | sed      |           | 0.32                    | (18            |
| Number of sides on whi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                            |            |              | , <i>p</i> . |              |             |          |           | 2                       | (19            |
| Shelter factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                            |            |              | (20) = 1 -   | [0.075 x (1  | 9)] =       |          |           | 0.85                    | (20            |
| nfiltration rate incorpora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ating shelter fa       | ctor                       |            |              | (21) = (18   | ) x (20) =   |             |          |           | 0.27                    | (21            |
| nfiltration rate modified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for monthly wi         | nd speed                   |            |              |              |              |             |          |           |                         | _              |
| Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mar Apr                | May                        | Jun        | Jul          | Aug          | Sep          | Oct         | Nov      | Dec       |                         |                |
| Monthly average wind s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | peed from Tak          | ole 7                      |            |              |              |              |             |          |           | _                       |                |
| (22)m= 5.4 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.1 4.5                | 4.1                        | 3.9        | 3.7          | 3.7          | 4.2          | 4.5         | 4.8      | 5.1       | ]                       |                |
| Alical Factor (OC.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20) 4                  |                            |            |              |              |              |             |          |           |                         |                |
| Wind Factor $(22a)m = (2a)m =$ | <del></del>            | 1 400                      | 0.00       | 0.00         | T 0 00       |              |             | T        | T =       | 1                       |                |
| (22a)m= 1.35 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.27 1.12              | 1.02                       | 0.98       | 0.92         | 0.92         | 1.05         | 1.12        | 1.2      | 1.27      |                         |                |

# DER WorkSheet: New dwelling design stage

| Adjusted infiltration rate (allowing for shelter a                                                          | nd wind speed)                | = (21a) x     | (22a)m          |               |                      |                    |                 |                         |
|-------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|-----------------|---------------|----------------------|--------------------|-----------------|-------------------------|
| 0.36 0.34 0.34 0.3 0.28                                                                                     | 0.26 0.25                     | 0.25          | 0.28            | 0.3           | 0.32                 | 0.34               | ]               |                         |
| Calculate effective air change rate for the appl                                                            | 1 1                           |               |                 |               |                      |                    |                 |                         |
| If mechanical ventilation:                                                                                  |                               |               |                 |               |                      |                    | 0               | (23a)                   |
| If exhaust air heat pump using Appendix N, (23b) = (23                                                      | , , ,                         | . ,, .        | ,               | ) = (23a)     |                      |                    | 0               | (23b)                   |
| If balanced with heat recovery: efficiency in % allowing                                                    |                               |               |                 |               |                      |                    | 0               | (23c)                   |
| a) If balanced mechanical ventilation with he                                                               | eat recovery (M               | /HR) (24a     | a)m = (22)      | 2b)m + (      | 23b) × [             | 1 – (23c)          | ÷ 100]          |                         |
| (24a)m= 0 0 0 0 0                                                                                           | 0 0                           | 0             | 0               | 0             | 0                    | 0                  |                 | (24a)                   |
| b) If balanced mechanical ventilation withou                                                                | t heat recovery               | (MV) (24b     | m = (22)        | 2b)m + (      | 23b)                 | 1                  | 1               |                         |
| (24b)m = 0 0 0 0 0                                                                                          | 0 0                           | 0             | 0               | 0             | 0                    | 0                  |                 | (24b)                   |
| c) If whole house extract ventilation or positi if $(22b)m < 0.5 \times (23b)$ , then $(24c) = (23b)$       | •                             |               |                 | .5 × (23b     | o)                   |                    |                 |                         |
| (24c)m= 0 0 0 0 0                                                                                           | 0 0                           | 0             | 0               | 0             | 0                    | 0                  |                 | (24c)                   |
| d) If natural ventilation or whole house posit if (22b)m = 1, then (24d)m = (22b)m oth                      |                               |               |                 | 0.51          | -                    | -                  |                 |                         |
| (24d)m = 0.57  0.56  0.56  0.55  0.54                                                                       | 0.53 0.53                     | 0.5 + [(2     | 0.54            | 0.55          | 0.55                 | 0.56               | 1               | (24d)                   |
| ` '                                                                                                         | ļ ļ                           |               |                 | 0.55          | 0.55                 | 0.30               |                 | (214)                   |
| Effective air change rate - enter (24a) or (24<br>(25)m= 0.57 0.56 0.56 0.55 0.54                           | 0.53 0.53                     | 0.53          | 0.54            | 0.55          | 0.55                 | 0.56               | ]               | (25)                    |
| (23)111- 0.37 0.30 0.30 0.33 0.34                                                                           | 0.55                          | 0.55          | 0.54            | 0.55          | 0.55                 | 0.30               |                 | (20)                    |
| 3. Heat losses and heat loss parameter:                                                                     |                               |               |                 |               |                      |                    |                 |                         |
| <b>ELEMENT</b> Gross Openings area (m²) m²                                                                  | Net Area<br>A ,m <sup>2</sup> | U-val<br>W/m2 |                 | A X U<br>(W/l |                      | k-value<br>kJ/m²·l |                 | A X k<br>kJ/K           |
| Doors                                                                                                       | 1.68                          | 1             | = [             | 1.68          |                      |                    |                 | (26)                    |
| Windows Type 1                                                                                              | 11.52                         | 1/[1/( 1.5 )+ | 0.04] =         | 16.3          | $\equiv$             |                    |                 | (27)                    |
| Windows Type 2                                                                                              | 11.52                         | 1/[1/( 1.5 )+ | 0.04] =         | 16.3          |                      |                    |                 | (27)                    |
| Floor                                                                                                       | 12                            | 0.15          | i               | 1.8           | Ħ ſ                  |                    |                 | (28)                    |
| Walls Type1 55 23.04                                                                                        | 31.96                         | 0.2           | <u> </u>        | 6.39          | F i                  |                    | 7 H             | (29)                    |
| Walls Type2 5.64 1.68                                                                                       | 3.96                          | 0.17          | <b>=</b>        | 0.68          | <b>=</b> ;           |                    | <b>=</b>        | (29)                    |
| Roof 49.69 0                                                                                                | 49.69                         |               | <u>-</u>        | 6.46          | <b>=</b>             |                    | <b>i</b>        | (30)                    |
| Total area of elements, m <sup>2</sup>                                                                      | 122.33                        | 0.10          |                 | 0.10          |                      |                    |                 | (31)                    |
| Party wall                                                                                                  | 28.08                         | 0             |                 | 0             |                      |                    | <b>-</b>        | (32)                    |
| * for windows and roof windows, use effective window U-v                                                    |                               |               |                 |               | L<br>as aiven in     | naragranh          |                 | (32)                    |
| ** include the areas on both sides of internal walls and pa                                                 |                               | .g remma.a    | ,[( ,, o , a, a | .0, .0.0 ., 0 | g.v 0                | pa.ag.ap.          | . 0.=           |                         |
| Fabric heat loss, $W/K = S (A \times U)$                                                                    |                               | (26)(30       | ) + (32) =      |               |                      |                    | 49.62           | (33)                    |
| Heat capacity $Cm = S(A \times k)$                                                                          |                               |               | ((28)           | (30) + (32    | 2) + (32a).          | (32e) =            | 9435.61         | (34)                    |
| Thermal mass parameter (TMP = Cm ÷ TFA) i                                                                   | n kJ/m²K                      |               | Indica          | tive Value    | : Medium             |                    | 250             | (35)                    |
| For design assessments where the details of the construction can be used instead of a detailed calculation. | tion are not known            | precisely the | e indicative    | e values of   | TMP in T             | able 1f            |                 |                         |
| Thermal bridges: S (L x Y) calculated using A                                                               | ppendix K                     |               |                 |               |                      |                    | 4.89            | (36)                    |
| if details of thermal bridging are not known (36) = $0.15 x$ (                                              | 31)                           |               |                 |               |                      |                    |                 |                         |
| Total fabric heat loss                                                                                      |                               |               | (33) +          | (36) =        |                      |                    | 54.51           | (37)                    |
| Ventilation heat loss calculated monthly                                                                    | , ,                           |               | (38)m           | = 0.33 × (    | (25)m x (5)          | )                  | 1               |                         |
| Jan Feb Mar Apr May                                                                                         | Jun Jul                       | Aug           | Sep             | Oct           | Nov                  | Dec                |                 |                         |
| (38)m= 22.29 22.01 22.01 21.49 21.18                                                                        | 21.04 20.91                   | 20.91         | 21.26           | 21.49         | 21.74                | 22.01              |                 | (38)                    |
| Heat transfer coefficient, W/K                                                                              |                               |               | (39)m           | = (37) + (    | 38)m                 |                    | -               |                         |
| (39)m= 76.8 76.52 76.52 76 75.69                                                                            | 75.55 75.41                   | 75.41         | 75.77           | 76            | 76.25                | 76.52              |                 |                         |
| Stroma FSAP 2009 Version: 1.4.0.39 (SAP 9.90) - http://w                                                    | ww.stroma.com                 |               | ,               | Average =     | Sum(39) <sub>1</sub> | 12 /12=            | 76.0 <b>≱</b> a | ge 2 of <sup>39</sup> ) |

# **DER WorkSheet: New dwelling design stage**

| Heat Ic                                 | ss para     | meter (H   | HLP), W               | m²K        |                |               |             |                        | (40)m                 | = (39)m ÷   | - (4)                           |          |         |              |
|-----------------------------------------|-------------|------------|-----------------------|------------|----------------|---------------|-------------|------------------------|-----------------------|-------------|---------------------------------|----------|---------|--------------|
| (40)m=                                  | 1.55        | 1.54       | 1.54                  | 1.53       | 1.52           | 1.52          | 1.52        | 1.52                   | 1.52                  | 1.53        | 1.53                            | 1.54     |         |              |
| Numbe                                   | er of dev   | rs in mo   | nth (Tab              | <br>le 1a\ |                |               |             |                        |                       | Average =   | Sum(40) <sub>1.</sub>           | 12 /12=  | 1.53    | (40)         |
| rvaribo                                 | Jan         | Feb        | Mar                   | Apr        | May            | Jun           | Jul         | Aug                    | Sep                   | Oct         | Nov                             | Dec      |         |              |
| (41)m=                                  | 31          | 28         | 31                    | 30         | 31             | 30            | 31          | 31                     | 30                    | 31          | 30                              | 31       |         | (41)         |
| '                                       |             |            |                       |            |                |               |             |                        |                       |             |                                 |          |         |              |
| 4. Wa                                   | iter heat   | ing ene    | rgy requi             | rement:    |                |               |             |                        |                       |             |                                 | kWh/ye   | ear:    |              |
| if TF                                   |             |            |                       | [1 - exp   | 0.0003         | 349 x (TI     | FA -13.9    | )2)] + 0.0             | 0013 x ( <sup>-</sup> | ΓFA -13.    |                                 | 68       |         | (42)         |
| Reduce                                  | the annua   | al average |                       | usage by   | 5% if the $c$  | lwelling is   | designed    | (25 x N)<br>to achieve |                       | se target o |                                 | .12      |         | (43)         |
|                                         | Jan         | Feb        | Mar                   | Apr        | May            | Jun           | Jul         | Aug                    | Sep                   | Oct         | Nov                             | Dec      |         |              |
| İ                                       |             |            | r day for ea          |            |                | 1             | 1           |                        |                       |             |                                 | 1        |         |              |
| (44)m=                                  | 81.54       | 78.57      | 75.61                 | 72.64      | 69.68          | 66.71         | 66.71       | 69.68                  | 72.64                 | 75.61       | 78.57<br>m(44) <sub>112</sub> = | 81.54    | 889.48  | (44)         |
| Energy o                                | content of  | hot water  | used - cal            | culated m  | onthly $= 4$ . | 190 x Vd,ı    | m x nm x E  | OTm / 3600             |                       |             | ables 1b, 1                     |          | 009.40  | (4-1)        |
| (45)m=                                  | 121.2       | 106.01     | 109.39                | 95.37      | 91.51          | 78.96         | 73.17       | 83.97                  | 84.97                 | 99.02       | 108.09                          | 117.38   |         |              |
| If instant                              | taneous w   | ater heati | na at point           | of use (no | o hot wate     | r storage).   | enter 0 in  | boxes (46)             |                       | Total = Su  | m(45) <sub>112</sub> =          | =        | 1169.04 | (45)         |
| (46)m=                                  | 18.18       | 15.9       | 16.41                 | 14.31      | 13.73          | 11.84         | 10.98       | 12.59                  | 12.75                 | 14.85       | 16.21                           | 17.61    |         | (46)         |
| ` '                                     | storage     |            |                       |            | 1 .00          |               | 10.00       | 12.00                  |                       | 100         | 1 .0.2.                         |          |         | , ,          |
| ,                                       |             |            | clared lo             |            | r is knov      | vn (kWh       | /day):      |                        |                       |             |                                 | 0        |         | (47)         |
| •                                       |             |            | m Table               |            |                |               |             |                        |                       |             |                                 | 0        |         | (48)         |
|                                         |             |            | storage<br>ared cylir | -          |                | s not kno     |             | (47) x (48)            | ) =                   |             |                                 | 0        |         | (49)         |
|                                         |             |            | ) includir            |            |                |               |             | !                      |                       |             |                                 | 0        |         | (50)         |
|                                         | -           | -          | l no tank in          | _          |                |               |             | antar 101 in           | hov (FO)              |             |                                 |          |         |              |
|                                         |             |            | factor fr             |            |                |               |             | enter '0' in           | DOX (50)              |             |                                 |          |         | (54)         |
|                                         |             | from Ta    |                       | UIII TAD   | ie z (KVV      | i i/iiii e/ua | iy <i>)</i> |                        |                       |             |                                 | 0        |         | (51)<br>(52) |
|                                         |             |            | m Table               | 2b         |                |               |             |                        |                       |             |                                 | 0        |         | (53)         |
|                                         |             |            | storage               |            | ear            |               |             | ((50) x (51            | ) x (52) x            | (53) =      |                                 | 0        |         | (54)         |
| • • • • • • • • • • • • • • • • • • • • |             | 54) in (5  | _                     |            |                |               |             |                        |                       |             |                                 | 0        |         | (55)         |
| Water                                   | storage     | loss cal   | culated 1             | or each    | month          |               |             | ((56)m = (             | 55) × (41)ı           | m           |                                 |          |         |              |
| (56)m=                                  | 0           | 0          | 0                     | 0          | 0              | 0             | 0           | 0                      | 0                     | 0           | 0                               | 0        |         | (56)         |
| -                                       | er contains | dedicate   | d solar sto           | rage, (57) | m = (56)m      | x [(50) – (   | H11)] ÷ (5  | 0), else (5            | 7)m = (56)            | m where (   |                                 | m Append | ix H    |              |
| (57)m=                                  | 0           | 0          | 0                     | 0          | 0              | 0             | 0           | 0                      | 0                     | 0           | 0                               | 0        |         | (57)         |
|                                         | -           | •          | nnual) fro            |            |                | \             | (=a)        |                        |                       |             |                                 | 0        |         | (58)         |
|                                         | •           |            |                       |            |                | •             |             | $65 \times (41)$       |                       | r thormo    | octat)                          |          |         |              |
| (59)m=                                  |             | 0          | 0                     | 0          | 0              | 0             | o neath     | ng and a               | 0 0                   | 0           | 0                               | 0        |         | (59)         |
|                                         |             |            | for each              |            | <u> </u>       | <u> </u>      | <u> </u>    |                        |                       | l           | I                               |          |         |              |
| (61)m=                                  | 22.37       | 20.21      | 22.37                 | 21.65      | 22.37          | 21.65         | 22.37       | 22.37                  | 21.65                 | 22.37       | 21.65                           | 22.37    |         | (61)         |
| V 7 15                                  |             |            |                       |            | L              |               | L           |                        |                       |             |                                 | - '      |         | . ,          |

# **DER WorkSheet: New dwelling design stage**

| Total heat required for water heating calculated for each month $(62)m = 0.85 \times (45)m + (46)m + (57)m + (59)m + (61)m$         |              |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------|
| (62)m= 143.57 126.21 131.76 117.02 113.88 100.61 95.54 106.34 106.62 121.39 129.74 139.75                                           | (62)         |
| Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating) |              |
| (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)                                                                |              |
| (63)m= -22.34 -36.32 -58.72 -80.3 -100.85 -103.77 -103.4 -88.72 -66.71 -47.23 -26.56 -18.51                                         | (63)         |
| Output from water heater                                                                                                            |              |
| (64)m= 90.15 69.78 61.39 34.43 13.03 0 0 17.61 38.04 65.6 79.59 89.96                                                               |              |
| Output from water heater (annual) <sub>112</sub> 559.59                                                                             | (64)         |
| Heat gains from water heating, kWh/month 0.25 $(0.85 \times (45))$ m + $(61)$ m] + 0.8 x [(46)m + (57)m + (59)m]                    |              |
| (65)m= 45.89 40.3 41.96 37.12 36.02 31.67 29.92 33.51 33.66 38.52 41.35 44.62                                                       | (65)         |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating                    |              |
| 5. Internal gains (see Table 5 and 5a):                                                                                             |              |
| Metabolic gains (Table 5), Watts                                                                                                    |              |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                     |              |
|                                                                                                                                     | (66)         |
| Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5                                                     |              |
|                                                                                                                                     | (67)         |
| Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5                                                 | ` ,          |
|                                                                                                                                     | (68)         |
|                                                                                                                                     | (55)         |
| Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5  (69)m= 31.4 31.4 31.4 31.4 31.4 31.4 31.4 31.4    | (69)         |
|                                                                                                                                     | (09)         |
| Pumps and fans gains (Table 5a)                                                                                                     | (70)         |
|                                                                                                                                     | (70)         |
| Losses e.g. evaporation (negative values) (Table 5)                                                                                 | (74)         |
|                                                                                                                                     | (71)         |
| Water heating gains (Table 5)                                                                                                       |              |
| (72)m= 61.68 59.97 56.4 51.56 48.41 43.98 40.22 45.04 46.76 51.77 57.43 59.98                                                       | (72)         |
| Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m$                                                      |              |
| <u>` '                                   </u>                                                                                       | (73)         |
| 6. Solar gains:                                                                                                                     |              |
| Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.        |              |
| Orientation: Access Factor Area Flux g_ FF Gains Table 6d m² Table 6a Table 6b Table 6c (W)                                         |              |
|                                                                                                                                     |              |
|                                                                                                                                     | (75)         |
| Northeast 0.9x 0.77 x 11.52 x 23.55 x 0.8 x 0.8 = 120.35                                                                            | (75)         |
| Northeast 0.9x 0.77 x 11.52 x 41.13 x 0.8 x 0.8 = 210.13                                                                            | (75)         |
| Northeast 0.9x 0.77 x 11.52 x 67.8 x 0.8 x 0.8 = 346.4                                                                              | (75)         |
|                                                                                                                                     |              |
| Northeast 0.9x 0.77 x 11.52 x 89.77 x 0.8 x 0.8 = 458.65                                                                            | (75)         |
|                                                                                                                                     | (75)<br>(75) |
| Northeast 0.9x                                                                                                                      | l ` '        |

## **DER WorkSheet: New dwelling design stage**

| Northeast 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Northeast 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Northeast 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Southeast 0,9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Southeast 0.9x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Solar gains in watts, calculated for each month  (83)m = Sum(74)m(82)m  (83)m = 249.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (83)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (83)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total gains — internal and solar (84)m = (73)m + (83)m , watts  (84)m = 529.22 723.72 908.59 1128.04 1275.36 1308.68 1264.2 1141.17 961.79 761.73 561.77 482.64  7. Mean internal temperature (heating season)  Temperature during heating periods in the living area from Table 9, Th1 (°C)  Utilisation factor for gains for living area, h1,m (see Table 9a)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m = 0.98 0.95 0.86 0.72 0.53 0.37 0.24 0.27 0.51 0.81 0.96 0.99  Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)  (87)m = 19.68 20.05 20.47 20.78 20.95 20.99 21 21 20.97 20.72 20.07 19.67  Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)  (88)m = 19.66 19.66 19.66 19.67 19.67 19.68 19.68 19.68 19.67 19.67 19.67 19.66  Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)  (89)m = 0.98 0.93 0.83 0.83 0.67 0.46 0.29 0.17 0.18 0.42 0.75 0.95 0.98  Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)                                                                                                                    |
| (84)m=       529.22       723.72       908.59       1128.04       1275.36       1308.68       1264.2       1141.17       961.79       761.73       561.77       482.64         7. Mean internal temperature (heating season)         Temperature during heating periods in the living area from Table 9, Th1 (°C)         Utilisation factor for gains for living area, h1,m (see Table 9a)         Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec         (86)m=       0.98       0.95       0.86       0.72       0.53       0.37       0.24       0.27       0.51       0.81       0.96       0.99         Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)         (87)m=       19.68       20.05       20.47       20.78       20.95       20.99       21       21       20.97       20.72       20.07       19.67         Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)         (88)m=       19.66       19.66       19.67       19.67       19.68       19.68       19.67       19.67       19.66         Utilisation factor for gai |
| 7. Mean internal temperature (heating season)  Temperature during heating periods in the living area from Table 9, Th1 (°C)  Utilisation factor for gains for living area, h1,m (see Table 9a)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= 0.98 0.95 0.86 0.72 0.53 0.37 0.24 0.27 0.51 0.81 0.96 0.99  Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)  (87)m= 19.68 20.05 20.47 20.78 20.95 20.99 21 21 20.97 20.72 20.07 19.67  Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)  (88)m= 19.66 19.66 19.66 19.67 19.67 19.68 19.68 19.68 19.67 19.67 19.67 19.66  Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)  (89)m= 0.98 0.93 0.83 0.67 0.46 0.29 0.17 0.18 0.42 0.75 0.95 0.98  Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)                                                                                                                                                                                                                                                                                              |
| Temperature during heating periods in the living area from Table 9, Th1 (°C)  Utilisation factor for gains for living area, h1,m (see Table 9a)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= 0.98 0.95 0.86 0.72 0.53 0.37 0.24 0.27 0.51 0.81 0.96 0.99  Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)  (87)m= 19.68 20.05 20.47 20.78 20.95 20.99 21 21 20.97 20.72 20.07 19.67  Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)  (88)m= 19.66 19.66 19.66 19.67 19.67 19.68 19.68 19.68 19.67 19.67 19.67 19.66  Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)  (89)m= 0.98 0.93 0.83 0.67 0.46 0.29 0.17 0.18 0.42 0.75 0.95 0.98  Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)                                                                                                                                                                                                                                                                                                                                             |
| Utilisation factor for gains for living area, h1,m (see Table 9a)    Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)  (87)m= 19.68 20.05 20.47 20.78 20.95 20.99 21 21 20.97 20.72 20.07 19.67  Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)  (88)m= 19.66 19.66 19.66 19.67 19.67 19.68 19.68 19.68 19.67 19.67 19.67 19.66  Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)  (89)m= 0.98 0.93 0.83 0.67 0.46 0.29 0.17 0.18 0.42 0.75 0.95 0.98  Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (87)m=       19.68       20.05       20.47       20.78       20.95       20.99       21       21       20.97       20.72       20.07       19.67         Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)         (88)m=       19.66       19.66       19.67       19.67       19.68       19.68       19.68       19.67       19.67       19.66         Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)         (89)m=       0.98       0.93       0.83       0.67       0.46       0.29       0.17       0.18       0.42       0.75       0.95       0.98         Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (87)m=       19.68       20.05       20.47       20.78       20.95       20.99       21       21       20.97       20.72       20.07       19.67         Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)         (88)m=       19.66       19.66       19.67       19.67       19.68       19.68       19.68       19.67       19.67       19.66         Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)         (89)m=       0.98       0.93       0.83       0.67       0.46       0.29       0.17       0.18       0.42       0.75       0.95       0.98         Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)  (88)m= 19.66 19.66 19.66 19.67 19.67 19.68 19.68 19.68 19.67 19.67 19.67 19.66  Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)  (89)m= 0.98 0.93 0.83 0.67 0.46 0.29 0.17 0.18 0.42 0.75 0.95 0.98  Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (88)m=       19.66       19.66       19.67       19.67       19.68       19.68       19.68       19.67       19.67       19.66         Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)         (89)m=       0.98       0.93       0.83       0.67       0.46       0.29       0.17       0.18       0.42       0.75       0.95       0.98         Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)  (89)m= 0.98 0.93 0.83 0.67 0.46 0.29 0.17 0.18 0.42 0.75 0.95 0.98  Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (89)m= 0.98 0.93 0.83 0.67 0.46 0.29 0.17 0.18 0.42 0.75 0.95 0.98  Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (90)m= 17.99 18.5 19.07 19.46 19.63 19.67 19.68 19.68 19.65 19.4 18.55 17.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $fLA = Living area \div (4) = 0.46$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (92)m= 18.76 19.21 19.71 20.06 20.23 20.27 20.28 20.25 20 19.24 18.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Apply adjustment to the mean internal temperature from Table 4e, where appropriate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (93)m= 18.61 19.06 19.56 19.91 20.08 20.12 20.13 20.13 20.1 19.85 19.09 18.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (93)m= 18.61 19.06 19.56 19.91 20.08 20.12 20.13 20.13 20.1 19.85 19.09 18.59  8. Space heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Mar

Jan

Feb

## **DER WorkSheet: New dwelling design stage**

| l Itilisatio                                                                      | n factor for             | nains hn    | ٦٠         |          |          |           |           |             |                       |                         |            |         |         |
|-----------------------------------------------------------------------------------|--------------------------|-------------|------------|----------|----------|-----------|-----------|-------------|-----------------------|-------------------------|------------|---------|---------|
|                                                                                   | 0.92                     | 0.83        | 0.68       | 0.48     | 0.32     | 0.19      | 0.21      | 0.45        | 0.76                  | 0.94                    | 0.98       |         | (94)    |
| ` '                                                                               | ains, hmGr               |             |            |          |          | 1 0.10    | 1 0.21    | 1 0.10      |                       | 0.01                    | 0.00       |         | (- )    |
|                                                                                   | 13.31 667.6              | <del></del> | 762.93     | 614.83   | 414.39   | 243.29    | 243.14    | 429.25      | 577.62                | 529.04                  | 470.73     |         | (95)    |
| Monthly                                                                           | average ex               | ternal ten  | nperatur   | e from T | able 8   |           |           |             |                       |                         |            |         |         |
| (96)m=                                                                            | 4.5 5                    | 6.8         | 8.7        | 11.7     | 14.6     | 16.9      | 16.9      | 14.3        | 10.8                  | 7                       | 4.9        |         | (96)    |
| Heat los                                                                          | s rate for m             | ean interr  | nal temp   | erature, | Lm , W = | =[(39)m   | x [(93)m  | – (96)m     | ]                     |                         |            |         |         |
| (97)m= 10                                                                         | 83.53 1075.6             | 3 976.13    | 852        | 634.41   | 417.18   | 243.54    | 243.51    | 439.57      | 687.91                | 921.91                  | 1047.53    |         | (97)    |
| Space h                                                                           | eating requ              | irement fo  | or each r  | nonth, k | Wh/mon   | th = 0.02 | 24 x [(97 | )m – (95    | <u>)m] x (4</u>       | 1)m                     |            |         |         |
| (98)m= 42                                                                         | 24.24 274.2              | 166.61      | 64.13      | 14.56    | 0        | 0         | 0         | 0           | 82.06                 | 282.86                  | 429.14     |         | _       |
|                                                                                   |                          |             |            |          |          |           | Tota      | al per year | (kWh/yea              | r) = Sum(9              | 8)15,912 = | 1737.8  | (98)    |
| Space h                                                                           | eating requ              | irement ir  | kWh/m      | ²/year   |          |           |           |             |                       |                         |            | 34.97   | (99)    |
| 9a. Energ                                                                         | y requirem               | ents – Inc  | lividual h | eating s | ystems i | ncluding  | g micro-C | CHP)        |                       |                         |            |         |         |
| Space h                                                                           | _                        |             |            |          |          |           |           |             |                       |                         |            |         | _       |
| Fraction                                                                          | of space h               | eat from s  | econdar    | y/supple | ementary | system    |           |             |                       |                         |            | 0       | (201)   |
| Fraction                                                                          | of space h               | eat from r  | nain sys   | tem(s)   |          |           | (202) = 1 | - (201) =   |                       |                         |            | 1       | (202)   |
| Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$ |                          |             |            |          |          |           |           |             |                       |                         | 1          | (204)   |         |
| Efficiency of main space heating system 1                                         |                          |             |            |          |          |           |           |             |                       | 89.1                    | (206)      |         |         |
| Efficienc                                                                         | y of second              | lary/supp   | ementar    | y heatin | g systen | n, %      |           |             |                       |                         | Ì          | 0       | (208)   |
| Г                                                                                 | Jan Feb                  | Mar         | Apr        | May      | Jun      | Jul       | Aug       | Sep         | Oct                   | Nov                     | Dec        | kWh/ye  | <br>ear |
| Space h                                                                           | eating requ              | irement (d  | <u> </u>   | d above  | )        |           |           | · · ·       |                       | l                       | <u> </u>   | •       |         |
| 42                                                                                | 24.24 274.2              | 166.61      | 64.13      | 14.56    | 0        | 0         | 0         | 0           | 82.06                 | 282.86                  | 429.14     |         |         |
| (211)m =                                                                          | {[(98)m x (2             | 204)] + (2  | 10)m } x   | 100 ÷ (2 | 206)     | -         | -         | -           | -                     | -                       |            |         | (211)   |
| 47                                                                                | 76.14 307.7              | 186.99      | 71.97      | 16.34    | 0        | 0         | 0         | 0           | 92.1                  | 317.47                  | 481.64     |         |         |
|                                                                                   | •                        | •           |            | •        | •        | •         | Tota      | al (kWh/yea | ar) =Sum(             | 211),15,1012            | 2=         | 1950.39 | (211)   |
| Space h                                                                           | eating fuel              | (seconda    | y), kWh    | /month   |          |           |           |             |                       |                         | •          |         |         |
| = {[(98 <u>)</u> m                                                                | x (201)] + (             | 214) m } :  | x 100 ÷ (  | (208)    |          |           |           |             |                       |                         |            |         |         |
| (215)m=                                                                           | 0 0                      | 0           | 0          | 0        | 0        | 0         | 0         | 0           | 0                     | 0                       | 0          |         | _       |
|                                                                                   |                          |             |            |          |          |           | Tota      | al (kWh/yea | ar) =Sum(             | 215) <sub>15,1012</sub> | =          | 0       | (215)   |
| Water he                                                                          | •                        |             |            |          |          |           |           |             |                       |                         |            |         |         |
|                                                                                   | om water he              |             |            |          | Ι ,      | Ι ,       | 17.04     | T 00 04     | 05.0                  | 70.50                   |            |         |         |
|                                                                                   | 0.15 69.78               | _           | 34.43      | 13.03    | 0        | 0         | 17.61     | 38.04       | 65.6                  | 79.59                   | 89.96      |         | 7(040)  |
|                                                                                   | of water h               | <del></del> | 1          | 1        | · -      | · -       | 1         | T           | T                     | l                       |            | 86.9    | (216)   |
| ` '                                                                               | 8.71 88.64               |             | 88.32      | 88.05    | 0        | 0         | 86.9      | 86.9        | 88.11                 | 88.61                   | 88.71      |         | (217)   |
|                                                                                   | ater heatin<br>(64)m x 1 | •           |            |          |          |           |           |             |                       |                         |            |         |         |
| (219)III = $(219)$ m= $10$                                                        |                          |             | 38.99      | 14.8     | 0        | 0         | 20.27     | 43.77       | 74.46                 | 89.82                   | 101.41     |         |         |
| · · ·                                                                             |                          |             | 1          | 1        |          | 1         |           | al = Sum(2  | 19a) <sub>112</sub> = | ·                       |            | 633.23  | (219)   |
| Annual to                                                                         | otals                    |             |            |          |          |           |           |             |                       | Wh/year                 | r<br>r     | kWh/yea |         |
|                                                                                   | ating fuel u             | sed, main   | system     | 1        |          |           |           |             |                       | . ,                     | [          | 1950.39 |         |
| Water hea                                                                         | ating fuel u             | sed         |            |          |          |           |           |             |                       |                         | [          | 633.23  | Ħ       |
|                                                                                   | <b>J</b>                 |             |            |          |          |           |           |             |                       |                         | L          |         |         |

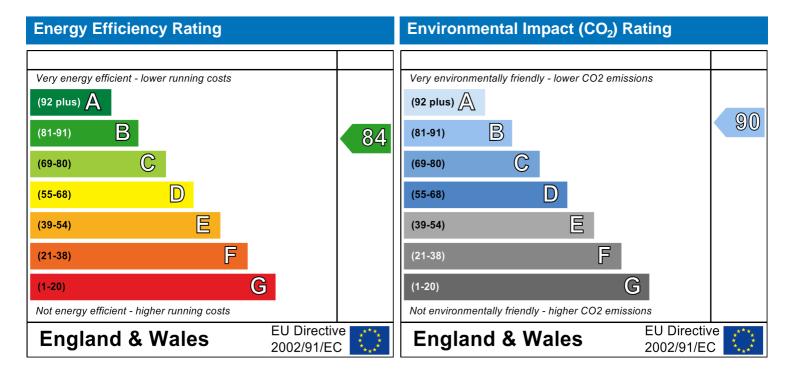
Electricity for pumps, fans and electric keep-hot

El rating (section 14)

# **DER WorkSheet: New dwelling design stage**

| IIIIO @priaryeriergy.co.uk                                          |                                 |                               |     |                                 |        |
|---------------------------------------------------------------------|---------------------------------|-------------------------------|-----|---------------------------------|--------|
| central heating pump:                                               |                                 |                               | 130 |                                 | (230c) |
| boiler with a fan-assisted flue                                     |                                 |                               | 45  |                                 | (230e) |
| pump for solar water heating                                        |                                 |                               | 75  |                                 | (230g) |
| Total electricity for the above, kWh/year                           | sum of (230a)(230g) =           |                               |     | 250                             | (231)  |
| Electricity for lighting                                            |                                 |                               |     | 230.54                          | (232)  |
| 12a. CO2 emissions – Individual heating systems including micro-CHP |                                 |                               |     |                                 |        |
|                                                                     | <b>Energy</b><br>kWh/year       | Emission factor<br>kg CO2/kWh |     | <b>Emissions</b><br>kg CO2/year |        |
| Space heating (main system 1)                                       | (211) x                         | 0.198                         | =   | 386.18                          | (261)  |
| Space heating (secondary)                                           | (215) x                         | 0                             | =   | 0                               | (263)  |
| Water heating                                                       | (219) x                         | 0.198                         | =   | 125.38                          | (264)  |
| Space and water heating                                             | (261) + (262) + (263) + (264) = |                               |     | 511.56                          | (265)  |
| Electricity for pumps, fans and electric keep-hot                   | (231) x                         | 0.517                         | =   | 129.25                          | (267)  |
| Electricity for lighting                                            | (232) x                         | 0.517                         | =   | 119.19                          | (268)  |
| Total CO2, kg/year                                                  | sum of (265)(271) =             |                               |     | 760                             | (272)  |
| Dwelling CO2 Emission Rate                                          | (272) ÷ (4) =                   |                               |     | 15.29                           | (273)  |

(274)


## **Predicted Energy Assessment**

Flat 8 139-147 Camden Road London NW1 9HA Dwelling type:
Date of assessment:
Produced by:
Total floor area:

End-terrace Top floor Flat 01 November 2011 Gary Nicholls 49.69 m<sup>2</sup>

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.



The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.