Regulations Compliance Report

Approved Document L1A 2010 edition assessed by Stroma FSAP 2009 program, Version: 1.4.0.39

Printed on 01 November 2011 at 16:42:19

Project Information:

Assessed By: Gary Nicholls (STRO003305) Building Type: End-terrace Flat

Dwelling Details:

NEW DWELLING DESIGN STAGE

Site Reference: Flat 7 139-147 Camden Road Plot Reference: BEC/SV/CAMDEN/0007

Address: Flat 7, 139-147 Camden Road, London, NW1 9HA

Client Details:

Name: Studio V Architects

Address: 224 West Hendon Broadway, Hendon, London, NW9 7ED

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1 TER and DER

Fuel for main heating system: Natural gas Target Carbon Dioxide Emission Rate (TER)

23.45 kg/m²

1.50 (max. 3.30)

Dwelling Carbon Dioxide Emission Rate (DER)

14.79 kg/m² OK

2 Fabric U-values

Element	Average	Highest	
External wall	0.20 (max. 0.30)	0.20 (max. 0.70)	OK
Party wall	0.00 (max. 0.20)	-	OK
Floor	(no floor)		
Roof	0.13 (max. 0.20)	0.13 (max. 0.35)	OK

Openings
3 Design air permeability

Design air permeability at 50 pascals

Maximum

3.00

OK

4 Heating efficiency

Main Heating system: Database: (rev 315, product index 016669):

Boiler system with radiators or underfloor - mains gas

Brand name: Alpha Model: InTec 28X Model qualifier: (Combi boiler)

1.44 (max. 2.00)

Efficiency 88.2 % SEDBUK2009

Minimum 88.0 %

Secondary heating system: None

5 Cylinder insulation

Hot water Storage: No cylinder

N/A

OK

OK

Solar water heating

Dedicated solar storage volume: 90 litres

Minimum: 54 litres OK

Regulations Compliance Report

6 Controls Space heating controls	Time and temperature zo	one control	ОК
Hot water controls:	No cylinder	one control	OIX .
Boiler interlock:	Yes		ОК
7 Low energy lights			
Percentage of fixed lights wit	h low-energy fittings	100.0%	
Minimum		75.0%	OK
8 Mechanical ventilation			
Not applicable			
9 Summertime temperature			

Overheating risk (South East England):

Based on:

Overshading: Average or unknown

Windows facing: South East 11.52m², Overhang twice as wide as window, ratio NaN

Ventilation rate: 6.00

Blinds/curtains:

shutter closed 100% of daylight hours

OK

Medium

10 Key features

Design air permeablility

3.0 m³/m²h

Doors U-value

1 W/m²K

External Walls U-value

0.17 W/m²K

Solar water heating

SAP Input

Flat 7, 139-147 Camden Road, London, NW1 9HA Address:

England Located in:

South East England Region:

UPRN: na

0000-0000-0000-0000 RRN:

01 November 2011 Date of assessment: 01 November 2011 Date of certificate:

Assessment type: New dwelling design stage

Transaction type: New dwelling No related party Related party disclosure: Indicative Value Thermal Mass Parameter:

True Dwelling designed to use less:

than 125 litres per day

Flat Dwelling type:

End-terrace Detachment:

2011 Year Completed:

Floor Location: Floor area: Storey height:

38.9 m² 2.4 m Floor 0

22.63 m² (fraction 0.455) Living area: South East

Front of dwelling faces:

Name: Source: Type: Glazing: Argon: Frame: Solid front door Manufacturer Metal

low-E, En = 0.1, soft coat Yes PVC-U SE Manufacturer Windows

Name: Frame Factor: U-value: No. of Openings: Gap: g-value:

1 front door mm 0.8 1.5 SE 16mm or more 8.0 8.0

Name: Type-Name: Location: Orient: Width: Height:

front door to common area North West 0 SE external wall South East 0 0

Average or unknown Overshading:

U-value: Ru value: Curtain wall: Gross area: Openings: Type: Net area: Kappa: **External Elements** external wall 43.2 11.52 31.68 0.2 0 False N/A 4.32 0.2 0.82 False N/A to common area 6 1.68 flat roof 38.9 0 38.9 0.13 0 N/A

Internal Elements Party Elements

12 N/A party wall

Thermal bridges: User-defined y-value

y = 0.04

Reference: ACD

Yes (As designed) Pressure test:

Briary energy Consultants

N. Barker 0203 091 3391

info@briaryenergy.co.uk

SAP Input

Ventilation: Natural ventilation (extract fans)

Number of chimneys: 0
Number of open flues: 0
Number of fans: 2
Number of sides sheltered: 2
Design q50: 3

Main heating system:

Main heating system: Central heating systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 315, product index 016669) SEDBUK2009 90.0%

Brand name: Alpha Model: InTec 28X Model qualifier: (Combi boiler)

Systems with radiators Pump in heat space: Yes

Main heating Control:

Main heating Control: Time and temperature zone control

Control code: 2110 Boiler interlock: Yes

Secondary heating system:

Secondary heating system: None

Water heating

Water heating: From main heating system

Water code: 901 Fuel: mains gas No hot water cylinder

Flue Gas Heat Recovery System:

Database (rev 315, product index 060001)

Brand name: Zenex Model: GasSaver Model qualifier: GS-1 Solar panel: True aperture area: 2.5 Flat plate, glazed default values: False

collector zero-loss efficiency: 0.8 collector heat loss coefficient: 3.175

orientation: South, 30° pitch

overshading: None or Very Little (<20%)

dedicated solar store volume: 90 litres (seperate store)

solar powered pump: False

Others:

Electricity tariff: standard tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%

Terrain type:

EPC language:

Wind turbine:

Photovoltaics:

Assess Zero Carbon Home:

Dense urban

English

No

No

None

				User D	etails: _						
A a a a a a a a a a a a a a a a a a a a	Oom : NII-I	alla.				_ NI	L		OTDO	000005	
Assessor Name:	Gary Niche Stroma FS					a Num				0003305 on: 1.4.0.39	
Software Name:	Stroma FS	SAP 2009	Di			are Ver		Camdar)II. 1.4.U.39	
Address :	Flat 7, 139-	147 Camde					39-141	Camuer	i Nuau		
1. Overall dwelling dim		TTT Garriag	7111100	aa, Eone	2011, 1444	1 0111/1					
3				Area	a(m²)		Ave He	eight(m)		Volume(m	³)
Ground floor				3	38.9	(1a) x	2	2.4	(2a) =	93.36	(3a
Total floor area TFA = (1a)+(1b)+(1c)+	(1d)+(1e)+.	(1n) 3	38.9	(4)			_		
Owelling volume)+(3c)+(3d	l)+(3e)+	.(3n) =	93.36	(5)
								, , ,		95.50	
2. Ventilation rate:	main	Seco	ondar	У	other		total			m³ per hou	ır
Number of chimneys	heating	heat		7 + □		7 = [x 4	40 =		(6a
•	0	╡. ⊨	0]	0	╛╘	0		20 =	0	=
Number of open flues	0	+	0	」 ˙ ∟	0] = [0			0	(6b
Number of intermittent fa	ans					L	2	X '	10 =	20	(7a
Number of passive vent	S						0	X '	10 =	0	(7t
Number of flueless gas	fires					Γ	0	X 4	40 =	0	(70
									Air cr	nanges per h	our —
nfiltration due to chimne	•					Ļ	20		÷ (5) =	0.21	(8)
If a pressurisation test has Number of storeys in			oroceed	d to (17), d	otherwise (continue fr	om (9) to ((16)			(9)
Additional infiltration	ine aweiling (ii	3)						[(9)	-1]x0.1 =	0	(10
Structural infiltration: (0.25 for steel o	r timber frar	ne or	0.35 for	r masoni	ry constr	uction	1(-)	.,	0	(11
if both types of wall are p			ding to	the great	er wall are	a (after					
deducting areas of open If suspended wooden	• / .		or O	1 (00010	مرار مامم	ontor O					— ,,,
If no draught lobby, e		` ,	01 0.	i (Seale	u), eise	enter 0				0	(12
Percentage of window			oed							0	= (1¢
Window infiltration		. a. a. g a			0.25 - [0.2	! x (14) ÷ 1	00] =			0	(15
Infiltration rate					(8) + (10)	+ (11) + (1	2) + (13) +	+ (15) =		0	=_(16
Air permeability value	, q50, expresse	ed in cubic r	metre	s per ho	ur per s	quare m	etre of e	nvelope	area	3	(17
f based on air permeab	ility value, ther	$(18) = [(17) \div$	20]+(8	3), otherwi	se (18) = ((16)				0.36	(18
Air permeability value appli		ion test has be	en don	e or a deg	gree air pe	rmeability	is being us	sed			
Number of sides on whi Shelter factor	ch sheltered				(20) - 1 -	[0.075 x (1	0)1 –			2	(19
	ating chalter for	otor			(20) = 1 (21) = (18)	`	J)] –			0.85	(20
nfiltration rate incorpora nfiltration rate modified	•				(21) - (10	, ^ (20) =				0.31	(21
Jan Feb	Mar Apr		Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	
	<u> </u>		Juii	Jui	_L Aug	l geb	l Oct	1100	l nec	J	
Monthly average wind s 22)m= 5.4 5.1	5.1 4.5		3.9	3.7	3.7	4.2	4.5	4.8	5.1	1	
3.7 3.1	3.1 4.0	<u> </u>	J.J	5.7	I	I 7.2	1 7.5	I 7.0	I	J	
Wind Factor (22a)m = (2	22)m ÷ 4										
(22a)m= 1.35 1.27	1.27 1.12	1.02 0	0.98	0.92	0.92	1.05	1.12	1.2	1.27]	

Adjusted infiltr	ation rat	e (allowi	na for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m					
0.42	0.39	0.39	0.35	0.32	0.3	0.29	0.29	0.33	0.35	0.37	0.39		
Calculate effec		-	rate for t	he appli	cable ca	se						ı	
If mechanica			andia N. (O	noh) (00-	· \		IT\\ _+!		\ (00-\			0	(23a)
If exhaust air he		0 11	, ,	, (, ,		,, .	`) = (23a)			0	(23b)
If balanced with		-	-	_					Na	00h) [4 (00-)	0 . 4001	(23c)
a) If balance (24a)m= 0	ea mecha 0	anicai ve	ntilation	with nea	at recove	ery (MV)	1R) (24a 0	$\frac{1}{10} = \frac{22}{10}$	0 m + (3	23b) × [1 – (23c) 0	÷ 100] 	(24a)
	<u> </u>					<u> </u>	<u> </u>				0		(244)
b) If balance		o o	nillation 0	without 0	neat rec	overy (N	0	0	0	230)	0	l	(24b)
	<u> </u>			<u> </u>		<u> </u>	<u> </u>		0				(= :~)
c) If whole h if (22b)n				•				o) m + 0.	5 × (23b	o)			
(24c)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If natural	ventilatio	on or wh	ole hous	se positiv	e input	ventilatio	on from l	oft		l		ı	
if (22b)n	n = 1, th	en (24d)	m = (22l	o)m othe	rwise (2	4d)m =	0.5 + [(2	2b)m² x	0.5]		,	•	
(24d)m = 0.59	0.58	0.58	0.56	0.55	0.55	0.54	0.54	0.55	0.56	0.57	0.58		(24d)
Effective air	change	rate - er	iter (24a) or (24b	o) or (24	c) or (24	d) in box	x (25)			•	1	
(25)m= 0.59	0.58	0.58	0.56	0.55	0.55	0.54	0.54	0.55	0.56	0.57	0.58		(25)
3. Heat losse	s and he	eat loss p	paramet	er:									
ELEMENT	Gros		Openin		Net Ar	ea	U-valı	ue	AXU		k-value	Э	ΑΧk
	area	(m²)	m	l ²	A ,r	m²	W/m2	!K	(W/I	K)	kJ/m²-l	K	kJ/K
Doors					1.68	Х	1	= [1.68				(26)
Windows					11.52	<u>x</u> 1,	/[1/(1.5)+	0.04] =	16.3				(27)
Walls Type1	43.2	2	11.5	2	31.68	3 X	0.2	= [6.34				(29)
Walls Type2	6		1.68	3	4.32	Х	0.17	=	0.74				(29)
Roof	38.9	9	0		38.9	X	0.13	= [5.06				(30)
Total area of e	lements	, m²			88.1								(31)
Party wall					12	X	0	= [0				(32)
* for windows and ** include the area						ated using	formula 1	/[(1/U-valu	e)+0.04] a	as given in	paragraph	3.2	
Fabric heat los							(26)(30)) + (32) =				30.12	(33)
Heat capacity	Cm = S((A x k)	,					((28)	.(30) + (32	2) + (32a).	(32e) =	7730.1	
Thermal mass			P = Cm +	: TFA) ir	n kJ/m²K			Indica	tive Value	: Medium		250	(35)
For design assess				construct	ion are not	t known pr	ecisely the	e indicative	values of	TMP in Ta	able 1f		
Thermal bridge				using Ap	pendix k	<						3.52	(36)
if details of therma	•	,			•							0.02	(==)
Total fabric he	at loss							(33) +	(36) =			33.64	(37)
Ventilation hea	at loss ca	alculated	monthl	У				(38)m	= 0.33 × (25)m x (5))		
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m= 18.1	17.8	17.8	17.27	16.96	16.81	16.67	16.67	17.03	17.27	17.53	17.8		(38)
Heat transfer of	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m= 51.74	51.45	51.45	50.91	50.6	50.45	50.31	50.31	50.67	50.91	51.17	51.45		
									Average =	Sum(39) ₁	12 /12=	50.95	(39)

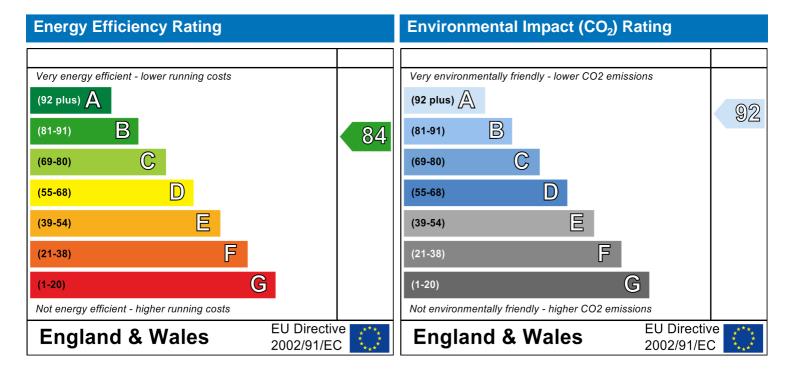
eat loss para	meter (H	HLP), W/	m²K					(40)m	= (39)m ÷	- (4)			
0)m= 1.33	1.32	1.32	1.31	1.3	1.3	1.29	1.29	1.3	1.31	1.32	1.32		
umber of day	rs in moi	nth (Tahl	le 1a)						Average =	Sum(40) ₁	12 /12=	1.31	(40
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
1)m= 31	28	31	30	31	30	31	31	30	31	30	31		(4
. Water hea	ting ene	gy requi	rement:								kWh/yea	ar:	
ssumed occu if TFA > 13.9 if TFA £ 13.9	9, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (¯	TFA -13		38		(4.
nnual averageduce the annual to more that 125	al average	hot water	usage by	5% if the d	lwelling is	designed t			se target o		5.91		(4
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
t water usage i	n litres per	day for ea	nch month	Vd,m = fa	ctor from	Table 1c x	(43)						
1)m= 73.6	70.93	68.25	65.58	62.9	60.22	60.22	62.9	65.58	68.25	70.93	73.6		_
ergy content of	hot water	used - cal	culated mo	onthly = 4 .	190 x Vd,r	n x nm x D	OTm / 3600			m(44) ₁₁₂ = ables 1b, 1		802.96	(4
i)m= 109.42	95.7	98.75	86.09	82.61	71.28	66.05	75.8	76.7	89.39	97.58	105.96		
					. ,				Total = Su	m(45) ₁₁₂ =	=	1055.33	(4
nstantaneous w			,			1	, ,	, ,		l			
6)m= 16.41 ater storage	14.35 loss:	14.81	12.91	12.39	10.69	9.91	11.37	11.51	13.41	14.64	15.89		(4
If manufactu		clared lo	ss facto	r is knov	vn (kWh	/day):					0		(4
mperature f	actor fro	m Table	2b								0		(4
nergy lost fro		_	-				(47) x (48)) =			0		(4
manufacture /linder volum		•									0		(5
If community h			-		_						<u> </u>		(0
Otherwise if no	_		_				enter '0' in	box (50)					
ot water stor	age loss	factor fr	om Tabl	e 2 (kWl	h/litre/da	ıy)					0		(5
olume factor											0		(5
emperature f	actor fro	m Table	2b								0		(5
nergy lost fro		_	, kWh/ye	ear			((50) x (51) x (52) x	(53) =		0		(5
nter (49) or (, ,	•					//EC\ /	EE) (44).			0		(5
ater storage						1	((56)m = (
i)m= 0 ylinder contains	0 s dedicate	0 d solar sto	0 rage (57)	0 m = (56)m	0 x [(50) – (0 H11)1 <i>→ (5</i> /	0 0) else (5	0 7)m = (56)	m where (0 H11) is fro	0 om Appendix	н	(5
m= 0	0	0	0	0	0	0	0	0	0	0	0		(5
´											0		` (5
imary circuit imary circuit	•	•			59)m = ((58) ÷ 36	65 × (41)	m			<u> </u>		(~
(modified by				•	,	` '	, ,		r thermo	stat)			
9)m= 0	0	0	0	0	0	0	0	0	0	0	0		(5
ombi loss ca	lculated	for each	month ((61)m =	(60) ÷ 30	65 × (41)m						
			/	· /	, ,								

(62)m= 131.79 115.9 121.12 107.74 104.98 92.93 88.43 98.17 98.35 111.76 119.23 128.33 (62) Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G) (63)m= -20.66 -33.59 -54.31 -74.27 -93.27 -95.98 -95.63 -82.06 -61.7 -43.68 -24.57 -17.12 (63) Output from water heater (64)m= 87.55 68.41 58.97 31.89 11.7 0 0 16.11 35.12 61.99 78.08 87.49 Output from water heating, kWh/month 0.25 ' [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m] (65)m= 41.97 36.87 38.43 34.04 33.06 29.11 27.56 30.8 30.92 35.32 37.86 40.83 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 (66) Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m= 10.59 9.41 7.65 5.79 4.33 3.65 3.95 5.13 6.89 8.75 10.21 10.88 (67) Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m= 118.78 120.01 116.9 110.29 101.94 94.1 88.86 87.63 90.73 97.34 105.69 113.54 (68)
(add additional lines if FGHRS and/or WWHRS applies, see Appendix G) (63)m=
(63)m=
Output from water heater (64)m= 87.55 68.41 58.97 31.89 11.7 0 0 16.11 35.12 61.99 78.08 87.49 Output from water heater (annual) 112 537.32 (64) Heat gains from water heating, kWh/month 0.25 [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m] (65)m= 41.97 36.87 38.43 34.04 33.06 29.11 27.56 30.8 30.92 35.32 37.86 40.83 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 (68) Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m= 10.59 9.41 7.65 5.79 4.33 3.65 3.95 5.13 6.89 8.75 10.21 10.88 (67) Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5
(64)m= 87.55 68.41 58.97 31.89 11.7 0 0 16.11 35.12 61.99 78.08 87.49 Output from water heater (annual) ₁₁₂ 537.32 (64) Heat gains from water heating, kWh/month 0.25 ′ [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m] (65)m= 41.97 36.87 38.43 34.04 33.06 29.11 27.56 30.8 30.92 35.32 37.86 40.83 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 68.87
Output from water heater (annual) 112 537.32 (64) Heat gains from water heating, kWh/month 0.25 ′ [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m] (65)m = 41.97 36.87 38.43 34.04 33.06 29.11 27.56 30.8 30.92 35.32 37.86 40.83 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m = 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 (66) Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m = 10.59 9.41 7.65 5.79 4.33 3.65 3.95 5.13 6.89 8.75 10.21 10.88 (67) Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m] (65)m= 41.97 36.87 38.43 34.04 33.06 29.11 27.56 30.8 30.92 35.32 37.86 40.83 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 68.87 68.
(65)m= 41.97 36.87 38.43 34.04 33.06 29.11 27.56 30.8 30.92 35.32 37.86 40.83 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m= 10.59 9.41 7.65 5.79 4.33 3.65 3.95 5.13 6.89 8.75 10.21 10.88 Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5
include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 (66) Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m= 10.59 9.41 7.65 5.79 4.33 3.65 3.95 5.13 6.89 8.75 10.21 10.88 (67) Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5
5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 68.87 (66) Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m= 10.59 9.41 7.65 5.79 4.33 3.65 3.95 5.13 6.89 8.75 10.21 10.88 (67) Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5
Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 68.87
Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 68.87
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 68.87 68.
(66)m= 68.87 <t< td=""></t<>
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m= 10.59 9.41 7.65 5.79 4.33 3.65 3.95 5.13 6.89 8.75 10.21 10.88 Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5
(67)m= 10.59 9.41 7.65 5.79 4.33 3.65 3.95 5.13 6.89 8.75 10.21 10.88 (67) Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5
Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5
(65)
Cooking going (coloulated in Apparative Laguetian L45 or L45s), also are Table 5
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 29.89 29.89 29.89 29.89 29.89 29.89 29.89 29.89 29.89 29.89 (69)
Pumps and fans gains (Table 5a)
(70)m= 10 10 10 10 10 10 10 10 10 10 10 10 10
Losses e.g. evaporation (negative values) (Table 5)
(71)m= -55.1 -55.1 -55.1 -55.1 -55.1 -55.1 -55.1 -55.1 -55.1 -55.1 (71)
Water heating gains (Table 5)
(72)m= 56.42 54.87 51.65 47.27 44.43 40.44 37.04 41.39 42.94 47.47 52.58 54.87 (72)
Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m$
(73)m= 239.44 237.94 229.86 217.02 204.37 191.85 183.51 187.81 194.22 207.22 222.14 232.95 (73)
6. Solar gains:
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.
Orientation: Access Factor Area Flux g_ FF Gains Table 6d m² Table 6a Table 6b Table 6c (W)
Southeast $0.9x$ 0.77
Southeast $0.9x$ 0.77 x 11.52 x 63.74 x 0.8 x 0.8 = 325.65 (77)
Southeast $0.9x$ 0.77 x 11.52 x 84.22 x 0.8 x 0.8 = 430.29 (77)
Southeast $0.9x$ 0.77 x 11.52 x 103.49 x 0.8 x 0.8 = 528.76 (77)
Southeast 0.9x 0.77 x 11.52 x 113.34 x 0.8 x 0.8 = 579.08 (77)
Southeast 0.9x 0.77 x 11.52 x 115.04 x 0.8 x 0.8 = 587.8 (77)
Southeast 0.9x 0.77 x 11.52 x 112.79 x 0.8 x 0.8 = 576.29 (77)
Southeast 0.9x 0.77 x 11.52 x 105.34 x 0.8 x 0.8 = 538.22 (77)

info@bri	iaryenergy.co	.uk													
Southeas	st 0.9x 0.77	7 X	11.	.52	X	9	92.9	x		0.8	×	0.8	=	474.64	(77)
Southeas	st 0.9x 0.77	7 X	11.	.52	x	7	2.36	x		0.8	x	0.8		369.73	(77)
Southeas	st _{0.9x} 0.77	7 X	11.	.52	X	4	4.83	x		0.8		0.8		229.03	(77)
Southeas	st _{0.9x} 0.77	7 X	11.	.52	X	3	1.95	X		0.8		0.8	-	163.24	(77)
Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m															
(83)m= 1	191.03 325.65	430.29	528.76	579.08	5	87.8	576.29	538.	.22	474.64	369.73	229.03	163.24		(83)
Total gai	ins – internal	and sola	r (84)m =	= (73)m	+ (8	83)m	, watts		•			_		•	
(84)m=	430.47 563.59	660.15	745.78	783.45	7	79.65	759.79	726.	.04	668.87	576.95	451.17	396.2		(84)
7. Mean internal temperature (heating season)															
												(85)			
•	on factor for	• .			-					, ,					
	Jan Feb	Mar	Apr	May	Ť	Jun	Jul	Αι	ug	Sep	Oct	Nov	Dec	1	
(86)m=	0.98 0.93	0.86	0.74	0.58	(0.41	0.27	0.2	28	0.5	0.77	0.95	0.98	1	(86)
∟ Mean ir	nternal tempe	rature in	living ar	ea T1 (fo	مالد	w ste	ns 3 to 7	in T	ahle	2 9c)				1	
	19.99 20.31	20.61	20.83	20.95	_	20.99	21	2		20.98	20.83	20.33	19.97]	(87)
` '	!			<u> </u>	_		(T.							l	. ,
· -	rature during	19.83	19.84	19.84	_	eiiing 9.85	19.85	19.8		12 (°C)	19.84	19.83	19.83	1	(88)
	!			<u> </u>	_		<u> </u>		00	19.04	19.04	19.03	19.03	J	(00)
	on factor for o	<u> </u>	1		_							_		1	(22)
(89)m=	0.97 0.92	0.82	0.69	0.51	L	0.34	0.2	0.2	2	0.42	0.72	0.93	0.97]	(89)
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)															
(90)m=	18.54 18.98	19.39	19.66	19.81	1	9.84	19.85	19.8	85	19.83	19.68	19.02	18.52		(90)
$fLA = Living area \div (4) = 0.58$ (91)															
Mean ir	nternal tempe	rature (fo	or the wh	ole dwe	llin	g) = fl	LA × T1	+ (1	– fL	A) × T2					
(92)m=	19.38 19.75	20.1	20.34	20.47	2	20.51	20.52	20.	52	20.5	20.35	19.78	19.36		(92)
Apply a	djustment to	the mear	n interna	l temper	atu	ire fro	m Table	4e, v	whe	re appro	priate	•		<u>.</u>	
(93)m=	19.23 19.6	19.95	20.19	20.32	2	20.36	20.37	20.3	37	20.35	20.2	19.63	19.21		(93)
8. Spac	ce heating rec	quiremen	t												
	o the mean in				ned	at ste	ep 11 of	Tabl	e 9b	o, so tha	t Ti,m=	(76)m an	id re-cald	culate	
the utilis	sation factor f				Г	lun	lul	Ι		Con	Oct	Nov	Doo	1	
_ Itilisati	Jan Feb on factor for g	Mar Mains hm	Apr 	May	<u> </u>	Jun	Jul	A	ug	Sep	Oct	Nov	Dec	J	
	0.96 0.91	0.83	0.71	0.54	Π	0.37	0.23	0.2	4	0.45	0.74	0.93	0.97]	(94)
_	gains, hmGm			ļ								1 3.33	1	J	` ,
	415.32 514.97		528.36	422.4	2	88.62	174.31	174.	.27	301.77	424.31	420.06	384.56]	(95)
ے Monthly	y average ext	ernal tem	nperature	e from Ta	abl	e 8	<u> </u>	!					Į	1	
(96)m=	4.5 5	6.8	8.7	11.7	Γ.	14.6	16.9	16.	.9	14.3	10.8	7	4.9]	(96)
Heat lo	ss rate for me	ean interr	nal temp	erature,	Lm	ı , W =	=[(39)m :	x [(93	3)m-	– (96)m]		1		
(97)m= 7	762.06 751.27	676.72	585.07	436.35	2	90.63	174.47	174.	.46	306.59	478.43	646.38	736.34		(97)
Space I	heating requi	rement fo	r each n	nonth, k	Wh	/mont	th = 0.02	24 x [(97)	m – (95)m] x (4	11)m			
(98)m= 2	257.98 158.79	96.71	40.83	10.38		0	0	0		0	40.27	162.95	261.72		
									Total	l per year	(kWh/yea	ar) = Sum(9	98) _{15,912} =	1029.63	(98)
Space I	heating requi	rement ir	kWh/m²	²/year										26.47	(99)
														I	

anno Conary errorgy.co.an				1	,						
9a. Energy requirements –	Individual h	eating sy	/stems i	ncluding	micro-C	THP)					
Space heating: Fraction of space heat from	n secondaı	y/supple	mentary	system					ĺ	0	(201)
Fraction of space heat from	Fraction of space heat from main system(s) (202) = 1 - (201) =									1	(202)
Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$									1	(204)	
Efficiency of main space h	eating syst	em 1								89.1	(206)
Efficiency of secondary/su	pplementa	ry heating	g systen	ո, %					İ	0	(208)
Jan Feb Ma	ar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	 ear
Space heating requiremen	`	d above)		1	1						
257.98 158.79 96.7		10.38	0	0	0	0	40.27	162.95	261.72		
(211) m = {[(98)m x (204)] +		1		ī	ī	I	I	Г	I 1		(211)
289.54 178.22 108.	54 45.83	11.65	0	0	O Tota	0	45.2	182.89	293.74		٦,,,,
On an bankan first (accoun	-1	/ 4l-			Tota	ii (Kwii/yea	ar) =Surii(211) _{15,1012}	<u>₹</u>	1155.59	(211)
Space heating fuel (secone = $\{[(98)m \times (201)] + (214)m\}$	• ,										
(215)m =	0	0	0	0	0	0	0	0	0		
	<u> </u>			!	Tota	l (kWh/yea	ar) =Sum(215) _{15,1012}	=	0	(215)
Water heating									•		_
Output from water heater (c					1011	05.40	04.00	T 70.00	07.40		
87.55 68.41 58.9 Efficiency of water heater	31.89	11.7	0	0	16.11	35.12	61.99	78.08	87.49	00.0	(216)
(217)m= 88.53 88.43 88.2	25 88.12	87.92	0	0	86.9	86.9	87.75	88.38	88.54	86.9	(217)
Fuel for water heating, kWh		07.92	0		00.9	00.9	67.73	00.30	00.54		(217)
(219) m = (64) m x $100 \div (2)$				_							
(219)m= 98.89 77.36 66.8	36.19	13.31	0	0	18.54	40.41	70.64	88.36	98.82		_
					Tota	I = Sum(2				609.34	(219)
Annual totals Space heating fuel used, m	ain system	1					k	Wh/year	, I	kWh/yea 1155.59	
Water heating fuel used	ani oyotom	•							[[609.34	╡
G	and algoria	kaan ha								009.34	
Electricity for pumps, fans a	na electric	keep-no	Į.								
central heating pump:									130		(2300
boiler with a fan-assisted f	ue								45		(230
pump for solar water heati	ng								75		(230
Total electricity for the abov	e, kWh/yea	ar			sum	of (230a).	(230g) =	•		250	(231)
Electricity for lighting										187.01	(232)
12a. CO2 emissions – Indi	vidual heat	ing syste	ms incl	uding mi	cro-CHF						
				ergy /h/year			Emiss kg CO	i on fac 2/kWh	tor	Emissions kg CO2/ye	
Space heating (main syster	n 1)		(21	1) x			0.1	98	=	228.81	(261)
Space heating (secondary)			(21	5) x)	=	0	
Water heating			(219	9) x			0.1		=	120.65	(264)
			`	•			L 0.1	50	l	120.00	(204)

Space and water heating	(261) + (262) + (263) + (264) =	349.46	265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.517	129.25 (2	267)
Electricity for lighting	(232) x	0.517	96.68 (2	268)
Total CO2, kg/year		sum of (265)(271) =	575.39 (2	272)
Dwelling CO2 Emission Rate		(272) ÷ (4) =	14.79 (2	273)
El rating (section 14)			91 (2	274)


Predicted Energy Assessment

Flat 7 139-147 Camden Road London NW1 9HA Dwelling type:
Date of assessment:
Produced by:
Total floor area:

End-terrace Top floor Flat 01 November 2011 Gary Nicholls 38.9 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.