Regulations Compliance Report

Approved Document L1A 2010 edition assessed by Stroma FSAP 2009 program, Version: 1.4.0.39

Printed on 01 November 2011 at 16:42:25

Project Information:

Assessed By: Gary Nicholls (STRO003305) **Building Type:** End-terrace Flat

Dwelling Details:

NEW DWELLING DESIGN STAGE

Site Reference: Flat 6 139-147 Camden Road Plot Reference: BEC/SV/CAMDEN/0006

Flat 6, 139-147 Camden Road, London, NW1 9HA Address:

Client Details:

Studio V Architects Name:

Address: 224 West Hendon Broadway, Hendon, London, NW9 7ED

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1 TER and DER

Fuel for main heating system: Natural gas

20.74 kg/m² Target Carbon Dioxide Emission Rate (TER)

15.49 kg/m² Dwelling Carbon Dioxide Emission Rate (DER)

2 Fabric U-values

Element Average Highest OK External wall 0.18 (max. 0.30) 0.20 (max. 0.70) Party wall 0.00 (max. 0.20) OK Floor (no floor)

0.13 (max. 0.20) OK Roof 0.13 (max. 0.35) 1.44 (max. 2.00) **Openings** 1.50 (max. 3.30) OK

3 Design air permeability

Design air permeability at 50 pascals 3.00 Maximum 10.0 OK

4 Heating efficiency

Database: (rev 315, product index 016669): Main Heating system:

Boiler system with radiators or underfloor - mains gas

Brand name: Alpha Model: InTec 28X Model qualifier: (Combi boiler)

Efficiency 88.2 % SEDBUK2009

Minimum 88.0 % OK

Secondary heating system: None

5 Cylinder insulation

Hot water Storage: No cylinder

N/A

OK

Solar water heating

Dedicated solar storage volume: 90 litres

Minimum: 61 litres OK

Regulations Compliance Report

6 Controls			
Space heating controls	Time and temperature zo	one control	OK
Hot water controls:	No cylinder		
Boiler interlock:	Yes		OK
7 Low energy lights			
Percentage of fixed lights wit	h low-energy fittings	100.0%	
Minimum		75.0%	OK
8 Mechanical ventilation			
Not applicable			
9 Summertime temperature			

Overheating risk (South East England): Based on:

Overshading: Average or unknown

Windows facing: North East 11.96m², Overhang twice as wide as window, ratio NaN

Ventilation rate: 4.00

Blinds/curtains:

shutter closed 100% of daylight hours

OK

Medium

10 Key features

Design air permeablility

3.0 m³/m²h

Doors U-value

1 W/m²K

External Walls U-value

0.17 W/m²K

Solar water heating

SAP Input

Property Details: Flat 6 139-147 Camden Road

Address: Flat 6, 139-147 Camden Road, London, NW1 9HA

Located in: England

Region: South East England

UPRN: na

RRN: 0000-0000-0000-0000

Date of assessment: 01 November 2011
Date of certificate: 01 November 2011

Assessment type: New dwelling design stage

Transaction type: New dwelling
Related party disclosure: No related party
Thermal Mass Parameter: Indicative Value

Dwelling designed to use less: True

than 125 litres per day

Property description:

Dwelling type:

Detachment: End-terrace

Year Completed: 2011

Floor Location: Floor area: Storey height:

Floor 0 51.95 m² 2.8 m

Living area: 27.31 m² (fraction 0.526)

Front of dwelling faces: North East

Opening types:

Name: Source: Type: Glazing: Argon: Frame: front door Manufacturer Solid Metal

NE Manufacturer Windows low-E, En = 0.1, soft coat Yes PVC-U

Name: Gap: Frame Factor: g-value: U-value: No. of Openings:

front door mm 0.8 0 1 1 1 NE 16mm or more 0.8 0.8 1.5 1

THE TOTALITY OF THOSE U.S U.S 1.5

Name: Type-Name: Location: Orient: Width: Height: front door west 0 0

NE external wall North East 0 0

Overshading: Average or unknown

Opaque Elements

Type: Gross area: Openings: Net area: U-value: Ru value: Curtain wall: Kappa:

External Elements

 external wall
 40
 11.96
 28.04
 0.2
 0
 False
 N/A

 to common area
 39.34
 1.68
 37.66
 0.2
 0.82
 False
 N/A

Internal Elements

Party Elements

party wall 20.16 N/A

Thermal bridges

Thermal bridges: User-defined y-value

y = 0.04

Reference: ACD

Ventilation:

Pressure test: Yes (As designed)

Briary energy Consultants

N. Barker 0203 091 3391

info@briaryenergy.co.uk

SAP Input

Ventilation: Natural ventilation (extract fans)

Number of chimneys: 0
Number of open flues: 0
Number of fans: 3
Number of sides sheltered: 2
Design q50: 3

Main heating system

Main heating system: Central heating systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 315, product index 016669) SEDBUK2009 90.0%

Brand name: Alpha Model: InTec 28X Model qualifier: (Combi boiler)

Systems with radiators Pump in heat space: Yes

Main heating Control:

Main heating Control: Time and temperature zone control

Control code: 2110
Boiler interlock: Yes

Secondary heating system:

Secondary heating system: None

Water heating

Water heating: From main heating system

Water code: 901 Fuel :mains gas No hot water cylinder

Flue Gas Heat Recovery System:

Database (rev 315, product index 060002)

Brand name: Zenex Model: GasSaver Model qualifier: GS-1 Solar panel: True aperture area: 2.5 Flat plate, glazed default values: False

collector zero-loss efficiency: 0.8 collector heat loss coefficient: 3.175

orientation: South, 30° pitch

overshading: None or Very Little (<20%)

dedicated solar store volume: 90 litres (seperate store)

solar powered pump: False

Others:

Electricity tariff: standard tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%
Terrain type: Dense urban
EPC language: English
Wind turbine: No
Photovoltaics: None
Assess Zero Carbon Home: No

				User D	etails:						
A	On michilist	alla				_ NI	h a		OTDO	000000	
Assessor Name:	Gary Nich		`			a Num				0003305	
Software Name:	Stroma F	SAP 2009	-			are Ve		O =l =		on: 1.4.0.39	
A .1.1	Flat C 420	1.17 Cam					139-147	Camder	i Road		
Address: 1. Overall dwelling dim	Flat 6, 139	-147 Came	aen Ro	ad, Lond	JON, INVV	1 9HA					
1. Overall dwelling diff	ierisioris.			Δros	a(m²)		Δνο Ησ	eight(m)		Volume(m	3\
Ground floor						(1a) x		2.8	(2a) =	145.46) (3a
Total floor area TFA = (1a) ((1b) ((1a)	ı (1d) ı (1a)	. (1r]` ′		`
	1a)+(1b)+(1c)-	r(1u)+(1e)	Ŧ(II	')5	1.95	(4)					_
Dwelling volume						(3a)+(3b))+(3c)+(3d	I)+(3e)+	.(3n) =	145.46	(5)
2. Ventilation rate:											
	main heating		condareating	ry	other		total			m³ per hou	ır
Number of chimneys	0	+	0] + [0] = [0	X 4	40 =	0	(6a
Number of open flues	0	_ + _	0	Ī + Ē	0	Ī = Ē	0	x	20 =	0	<u>=</u> (6b
Number of intermittent f	ans					 _	3	x ·	10 =	30	 (7a
Number of passive vent	†e					F	0	x	10 =	0	` (7b
•						Ļ					=
Number of flueless gas	Tires					L	0	x ·	40 =	0	(70
									Air ch	nanges per he	our
nfiltration due to chimn	ova fluos and	fono – (63))+(6b)+(7	7a)±/7b)±/	70) -	Г					_
Infiltration due to chimner If a pressurisation test has	-					continue fr	30		÷ (5) =	0.21	(8)
Number of storeys in			и, р. осос	u 10 (/), 1			o (o) to (. 3)		0	(9)
Additional infiltration	•	,						[(9)	-1]x0.1 =	0	(10
Structural infiltration:	0.25 for steel of	or timber fr	ame or	0.35 fo	r masoni	ry constr	uction			0	(11
if both types of wall are	•		onding to	the great	er wall are	a (after					<u></u>
deducting areas of oper If suspended wooden	• / .		ed) or 0	1 (seale	ed) else	enter 0				0	(12
If no draught lobby, e		,	, a, c. c.	(ooale	, a,, c.cc	ornor o				0	=\\\(\)13
Percentage of window			ipped							0	(14
Window infiltration		J			0.25 - [0.2	! x (14) ÷ 1	00] =			0	(15
Infiltration rate					(8) + (10)	+ (11) + (1	12) + (13) +	+ (15) =		0	(16
Air permeability value	, q50, express	ed in cubi	c metre	s per ho	our per s	quare m	etre of e	nvelope	area	3	(17
f based on air permeab	ility value, the	n (18) = [(17)]) ÷ 20]+(8	8), otherwi	ise (18) = ((16)				0.36	(18
Air permeability value appl		tion test has i	been dor	ne or a deg	gree air pe	rmeability	is being us	sed			_
Number of sides on whi Shelter factor	ch sheltered				(20) = 1 =	[0.075 x (1	19)1 –			2	(19
	ating chalter fo	ctor			(20) = 1 - (21) = (18)	`				0.85	(20 (21
nfiltration rate incorpora	•				(21) = (10	, ^ (ZU) =				0.3	(21
nfiltration rate modified		1 ' 1	lun	1,.1	۸۰۰۰	200	Oct	Mov	Doo	1	
Jan Feb	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	J	
Monthly average wind s	`		2.0	0.7	0.7	4.0	4.5	4.0	- ·	1	
22)m= 5.4 5.1	5.1 4.5	4.1	3.9	3.7	3.7	4.2	4.5	4.8	5.1	J	
Wind Factor (22a)m = (22)m ÷ 4										
22a)m= 1.35 1.27	1.27 1.12	1.02	0.98	0.92	0.92	1.05	1.12	1.2	1.27	1	

Adjusted infiltr	ation rat	e (allowi	ng for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m					
0.41	0.39	0.39	0.34	0.31	0.3	0.28	0.28	0.32	0.34	0.36	0.39]	
Calculate effe		•	rate for t	he appli	cable ca	se	!	!	<u> </u>	!	1	<u> </u>	
If mechanic				al.) (aa				. (22)	\			0	(23a
If exhaust air h) = (23a)			0	(23b)
If balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) =												0	(23c)
	a) If balanced mechanical ventilation with heat recovery (MVHR) (24a)m = (22b)m + (23b) × [1 – (23c)												(0.4
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(24a
b) If balance	1	i			1	overy (N	ЛV) (24b	i `	2b)m + (2	23b)		7	
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(24b)
,	c) If whole house extract ventilation or positive input ventilation from outside if $(22b)m < 0.5 \times (23b)$, then $(24c) = (23b)$; otherwise $(24c) = (22b)m + 0.5 \times (23b)$												
<u> </u>	1	<u> </u>	· ` `	<u> </u>	ŕ –	· ` `	É `		· ` `	ŕ		1	(0.4.)
(24c)m= 0	0	0	0	0	0	0	0	0	0	0	0	J	(24c)
d) If natural if (22b)r	ventilation $n = 1$, the				•				0.5]	_		-	
(24d)m= 0.58	0.57	0.57	0.56	0.55	0.54	0.54	0.54	0.55	0.56	0.57	0.57]	(24d
Effective air	change	rate - er	nter (24a) or (24k	o) or (24	c) or (24	d) in box	x (25)				_	
(25)m= 0.58	0.57	0.57	0.56	0.55	0.54	0.54	0.54	0.55	0.56	0.57	0.57]	(25)
3. Heat losse	es and he	at loss r	naramete	⊃r.									
ELEMENT	Gros		Openin		Net Ar	ea	U-valı	ue	AXU		k-value	e.	ΑΧk
LLLIVILIAI	area	-	m		A ,r		W/m2		(W/I	K)	kJ/m²-		kJ/K
Doors					1.68	X	1	=	1.68				(26)
Windows					11.96	x1	/[1/(1.5)+	0.04] =	16.92				(27)
Walls Type1	40		11.90	6	28.04	x x	0.2		5.61	\equiv [(29)
Walls Type2	39.3	34	1.68		37.66	x	0.17	<u> </u>	6.47	Ħ i		7 F	(29)
Total area of e	elements	, m²			79.34								(31)
Party wall					20.16	x	0		0				(32)
* for windows and	d roof wind	ows, use e	effective wi	ndow U-va						as given in	paragraph		(<-/
** include the are								- '	, -	J	, , ,		
Fabric heat lo	ss, W/K :	= S (A x	U)				(26)(30)) + (32) =				30.6	(33)
Heat capacity	Cm = S((Axk)						((28)	(30) + (32	2) + (32a).	(32e) =	13390).2 (34)
Thermal mass	parame	ter (TMF	P = Cm ÷	- TFA) ir	n kJ/m²K			Indica	tive Value	: Medium		250	(35)
For design asses				construct	ion are no	t known pr	ecisely the	e indicative	values of	TMP in T	able 1f		
can be used inste Thermal bridg				icina Ar	nendiy l							0.47	(26)
if details of therm	•	,		Ο.	•	`						3.17	(36)
Total fabric he		are not kn	OWII (30) -	- 0.70 X (0	'')			(33) +	(36) =			33.80	6 (37)
Ventilation he		alculated	l monthly	/				(38)m	= 0.33 × ([25)m x (5])		` /
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	
(38)m= 28.01	27.58	27.58	26.79	26.31	26.09	25.88	25.88	26.43	26.79	27.17	27.58	1	(38)
Heat transfer	coefficier	nt W/K						(39)m	= (37) + (37)	38)m		1	
(39)m= 61.87	61.44	61.44	60.64	60.17	59.95	59.74	59.74	60.28	60.64	61.03	61.44	1	
(-5)	I *	L *			L 55.00	L	L	<u> </u>	Average =		<u> </u>	60.7	(39)
										3 2(00)1			

eat loss para	meter (H	HLP), W/	m²K					(40)m	= (39)m ÷	- (4)			
0)m= 1.19	1.18	1.18	1.17	1.16	1.15	1.15	1.15	1.16	1.17	1.17	1.18		
umber of day	e in moi	oth (Tabl	o 1a)			-	_	•	Average =	Sum(40) ₁ .	12 /12=	1.17	(4
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
1)m= 31	28	31	30	31	30	31	31	30	31	30	31		(4
. Water heat	ing ener	gy requi	rement:								kWh/yea	ar:	
ssumed occu if TFA > 13.9 if TFA £ 13.9	0, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (¯	TFA -13		75		(4.
nnual averag educe the annua t more that 125	l average	hot water	usage by	5% if the a	lwelling is	designed t			se target o		.71		(4
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
t water usage ii	litres per	day for ea	nch month	Vd,m = fa	ctor from	Table 1c x	(43)						
l)m= 83.28	80.25	77.22	74.19	71.16	68.13	68.13	71.16	74.19	77.22	80.25	83.28		_
ergy content of	hot water	used - cal	culated mo	onthly = 4 .	190 x Vd,r	n x nm x E	OTm / 3600			m(44) ₁₁₂ = ables 1b, 1		908.46	(4
i)m= 123.79	108.27	111.72	97.4	93.46	80.65	74.73	85.76	86.78	101.14	110.4	119.89		
						l	ı		Total = Su	m(45) ₁₁₂ =	=	1193.99	(4
nstantaneous w			•			i		, ,		i			
ater storage	16.24 loss:	16.76	14.61	14.02	12.1	11.21	12.86	13.02	15.17	16.56	17.98		(4
If manufactu		clared lo	ss facto	r is knov	vn (kWh	/day):					0		(4
mperature fa	actor fro	m Table	2b								0		(4
nergy lost fro		_	-				(47) x (48)) =			0		(4
manufacture rlinder volum		•									0		(5
If community he			-		_						<u> </u>		
Otherwise if no	stored ho	t water (thi	s includes	instantan	eous comi	oi boilers)	enter '0' in	box (50)					
ot water stora	age loss	factor fr	om Tabl	e 2 (kWl	h/litre/da	ıy)					0		(5
olume factor			01								0		(5
emperature fa									,		0		(5
nergy lost fro nter (49) or (5		_	, kWh/ye	ear			((50) x (51) x (52) x	(53) =		0		(5 (5
ater storage	, ,	•	or each	month			((56)m = (55) × (41):	m		0		(~
6)m= 0	0	0	0	0	0	0	0	0	0	0	0		(5
ylinder contains	-	-	-			ļ						Н	(-
')m= 0	0	0	0	0	0	0	0	0	0	0	0		(5
imary circuit	loss (an	nual) fro	m Table	3		-	-		-		0		(5
imary circuit	,	•			59)m = ((58) ÷ 36	65 × (41)	m					
(modified by		om Tabl	e H5 if t				ng and a	cylinde	r thermo	stat)			
9)m= 0	0	0	0	0	0	0	0	0	0	0	0		(5
ombi loss cal	culated	for each	month (61)m =	(60) ÷ 30	65 × (41))m						
)m= 22.37	20.21	22.37	21.65	22.37	21.65	22.37	22.37	21.65	22.37	21.65	22.37		(6

DER WorkSheet: New dwelling design stage

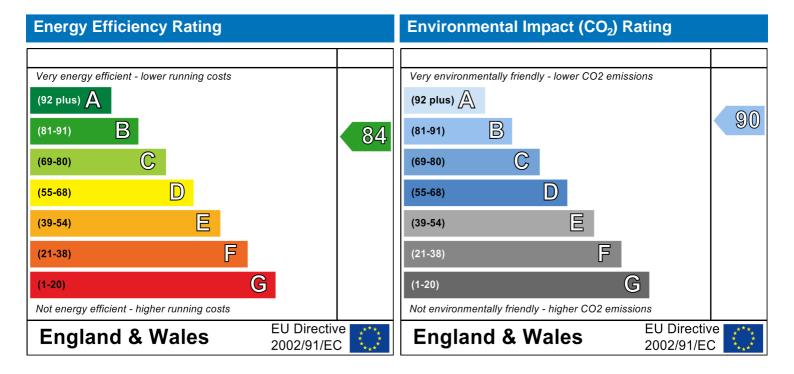
Total heat required for water heating calculated for each month $(62)m = 0.85 \times (45)m + (46)m + (57)m + (59)m + (61)m$

Total I	leat requ	uirea ioi	water n	eating Ca	diculated	i ioi eac	ii iiioniii	(62)111	= 0.00 X	(43)111 +	(40)111 +	(37)111+	(39)111 + (61)111	
(62)m=	146.16	128.47	134.09	119.05	115.83	102.3	97.1	108.13	108.43	123.51	132.05	142.26		(62)
Solar DI	HW input	calculated	using App	endix G oı	· Appendix	H (negati	ve quantity	/) (enter	'0' if no sola	r contribu	tion to wate	er heating)		
(add a	dditiona	I lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix	G)		_	_		
(63)m=	-22.7	-36.9	-59.66	-81.58	-102.46	-105.43	-105.05	-90.14	-67.78	-47.99	-26.99	-18.81		(63)
Output	from w	ater hea	ter										_	
(64)m=	94.31	70.9	61.17	34.74	13.37	0	0	17.99	38.8	65.35	82.02	94.57		_
		-		-	-			Ou	tput from w	ater heate	er (annual) ₁	12	573.22	(64)
Heat g	ains fro	m water	heating,	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)	m] + 0.8	x [(46)m	+ (57)m	+ (59)m]	
(65)m=	46.75	41.05	42.74	37.8	36.67	32.23	30.44	34.11	34.27	39.22	42.12	45.45		(65)
inclu	ide (57)	m in cald	culation (of (65)m	only if c	ylinder i	s in the	dwellin	g or hot w	ater is f	rom com	munity h	neating	
5. Int	5. Internal gains (see Table 5 and 5a):													
Metab	olic gain	ıs (Table	e 5), Wat	ts										
motab	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	87.38	87.38	87.38	87.38	87.38	87.38	87.38	87.38	87.38	87.38	87.38	87.38		(66)
Lightin	g gains	(calcula	ted in Ar	pendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5	!		ļ.	ı	
(67)m=	13.58	12.06	9.81	7.42	5.55	4.69	5.06	6.58	8.83	11.22	13.09	13.95		(67)
Applia	nces ga	ins (calc	ulated in	Append	dix L, eq	uation L	13 or L1	3a), als	so see Ta	ble 5	<u> </u>		ı	
(68)m=	152.3	153.88	149.89	141.42	130.71	120.66	113.94	112.36		124.82	135.52	145.58		(68)
Cookir	ng gains	(calcula	ated in A	ppendix	L, equat	ion L15	or L15a), also :	see Table	5	<u> </u>		l	
(69)m=	31.74	31.74	31.74	31.74	31.74	31.74	31.74	31.74	31.74	31.74	31.74	31.74		(69)
Pumps and fans gains (Table 5a)														
(70)m=	10	10	10	10	10	10	10	10	10	10	10	10		(70)
Losses	s e.g. ev	aporatio	n (nega	tive valu	es) (Tab	le 5)	•			•			l	
(71)m=	-69.9	-69.9	-69.9	-69.9	-69.9	-69.9	-69.9	-69.9	-69.9	-69.9	-69.9	-69.9		(71)
Water	heating	gains (T	rable 5)	<u> </u>	<u> </u>		!	!		!	1	<u>!</u>	ı	
(72)m=	62.84	61.09	57.45	52.5	49.29	44.76	40.92	45.84	47.59	52.72	58.5	61.09		(72)
Total i	nternal	gains =	!	Į.	Į.	(66)m + (67)m	n + (68)m	ı + (69)m +	(70)m + (1	71)m + (72)	m		
(73)m=	287.93	286.24	276.36	260.55	244.76	229.32	219.13	223.99	231.98	247.96	266.32	279.84		(73)
6. So	lar gains	S:	<u> </u>											
Solar g	gains are o	calculated	using sola	r flux from	Table 6a	and assoc	iated equa	itions to	convert to th	ne applica	ble orientat	ion.		
Orienta	ation: A	Access F	actor	Area		Flu			g _		FF		Gains	
	٦	Table 6d		m²		Ta	ble 6a		Table 6b	T	able 6c		(W)	
Northea	ast _{0.9x}	0.77	X	11.	96	X ·	11.51	x	0.8	x	0.8	=	61.05	(75)
Northea	ast _{0.9x}	0.77	x	11.	96	x 2	23.55	х	0.8	x [0.8		124.94	(75)
Northea	ast _{0.9x}	0.77	X	11.	96	X	11.13	х	0.8	x	0.8	=	218.16	(75)
Northea	ast _{0.9x}	0.77	x	11.	96	x	67.8	х	0.8	x [0.8		359.63	(75)
Northea	ast _{0.9x}	0.77	X	11.	96	x 8	39.77	x	0.8	x [0.8		476.16	(75)
Northea	ast _{0.9x}	0.77	x	11.	96	x	97.5	x	0.8	× [0.8	=	517.2	(75)
Northea	ast _{0.9x}	0.77	X	11.	96	x g	92.98	х	0.8	x [0.8	=	493.21	(75)
Northea	ast _{0.9x}	0.77	X	11.	96	x	75.42	х	0.8	x [0.8	=	400.05	(75)
	_							_						_

info@k	oriaryen	ergy.co.	uk													
Northea	st _{0.9x}	0.77	x	11.	96	X	5	51.24	x		0.8	x [0.8	=	271.83	(75)
Northea	ist _{0.9x}	0.77	x	11.	96	X	:	29.6	x		0.8	x	0.8		157.01	(75)
Northea	st _{0.9x}	0.77	х	11.	96	X	1	4.52	x		0.8	_ x [0.8		77.05	(75)
Northea	st _{0.9x}	0.77	x	11.	96	X	,	9.36	x		0.8	_ x [0.8		49.65	(75)
													_			
Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m																
(83)m=	61.05	124.94	218.16	359.63	476.16		517.2	493.21	400	.05	271.83	157.01	77.05	49.65		(83)
Total g	ains – iı	nternal a	nd solar	(84)m =	= (73)m ·	+ (83)m	, watts					•	•	•	
(84)m=	348.98	411.18	494.52	620.19	720.93	7	46.51	712.34	624	.05	503.8	404.97	343.37	329.49		(84)
7. Me	an inter	nal temr	perature	(heating	season)							•		, 	
7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C)												21	(85)			
Utilisation factor for gains for living area, h1,m (see Table 9a)												21				
Otilise	Jan	Feb	Mar	Apr	May		Jun	Jul	Α	ug	Sep	Oct	Nov	Dec	1	
(86)m=	1	0.99	0.97	0.9	0.71	\vdash	0.5	0.34	0.3		0.73	0.95	0.99	1		(86)
` '			l .			<u> </u>						0.00	1 0.00	<u> </u>	l	,
			ature in					i –					T	l	1	(07)
(87)m=	19.79	19.97	20.3	20.66	20.92		20.99	21	2	1	20.93	20.58	20.08	19.81	J	(87)
Temp	erature	during h	eating p	eriods ir	rest of	dw	elling/	from Ta	ble 9	9, Tł	n2 (°C)					
(88)m=	19.93	19.94	19.94	19.95	19.96	_1	19.96	19.96	19.	96	19.95	19.95	19.94	19.94		(88)
Utilisa	ation fac	tor for g	ains for i	rest of d	welling,	h2,	,m (se	ee Table	9a)							
(89)m=	1	0.99	0.96	0.87	0.65		0.43	0.26	0.2	29	0.64	0.93	0.99	1		(89)
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)																
(90)m=	18.33	18.59	19.07	19.57	19.88	Ť	12 (1)	19.96	19.		19.91	19.48	18.76	18.37]	(90)
` /						<u> </u>			<u> </u>		f	<u>L</u> LA = Livir	L ng area ÷ (⋅	4) =	0.53	(91)
							\ .				۸) Το					┛`
		•	ature (fo		ole dwe	$\overline{}$	-	i	r `			20.00	1 40 45	1040	1	(92)
(92)m=	19.1	19.31	19.71	20.14	<u> </u>		20.5	20.51	20.		20.45	20.06	19.45	19.13	J	(92)
(93)m=	18.95	19.16	he mean 19.56	19.99	20.28	_	20.35	20.36	20.		20.3	19.91	19.3	18.98	1	(93)
			uirement	19.99	20.20		20.00	20.30	20.	30	20.5	19.91	19.5	10.90		(00)
			ernal ter	mneratui	re ohtair	مما	l at eta	en 11 of	Tahl	Ah ما	n so tha	t Ti m-(76)m an	d re-cald	rulate	
			or gains	•		icu	i ai sii	ер 11 ог	iabi	ie si), 30 ii la	ı. 11,111—(7 Ojiii aii	u re-care	Julate	
	Jan	Feb	Mar	Apr	May		Jun	Jul	Α	ug	Sep	Oct	Nov	Dec		
Utilisa	tion fac	tor for g	ains, hm	:				•			-		•	•	ı	
(94)m=	0.99	0.99	0.96	0.87	0.67		0.46	0.29	0.3	33	0.67	0.93	0.99	0.99		(94)
Usefu	I gains,	hmGm	, W = (94	4)m x (8	4)m	_		•					•	•	•	
(95)m=	346.83	405.67	474.24	540.08	484.24	3	40.62	206.23	205	.95	338.97	377.54	339.42	327.71		(95)
Month	nly avera	age exte	rnal tem	perature	from Ta	abl	e 8						-		_	
(96)m=	4.5	5	6.8	8.7	11.7		14.6	16.9	16	.9	14.3	10.8	7	4.9		(96)
Heat	oss rate	for mea	an intern	al tempe	erature,	Lm	1 , W =	=[(39)m	x [(9	3)m-	– (96)m]				
(97)m=	894.03	870.19	784.08	684.89	516.14	3	344.5	206.52	206	.48	361.57	552.45	750.67	864.87		(97)
Space	e heatin		ement fo	r each n	nonth, k	Νh	/mon	th = 0.02	24 x	(97)	m – (95)m] x (4	1)m	_	1	
(98)m=	407.11	312.16	230.52	104.27	23.74		0	0	C)	0	130.13	296.1	399.65		
										Tota	l per year	(kWh/yea	r) = Sum(9	8)15,912 =	1903.68	(98)
Space	e heatin	g require	ement in	kWh/m²	² /year										36.64	(99)
-		-														_

, 3,									
9a. Energy requirements – Individual heati	ng systems i	ncluding	micro-C	HP)					
Space heating: Fraction of space heat from secondary/su	pplementary	system						0	(201)
Fraction of space heat from main system((s)		(202) = 1 -	- (201) =				1	(202)
Fraction of total heating from main system	า 1		(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficiency of main space heating system	1							89.1	(206)
Efficiency of secondary/supplementary he	eating system	ո, %						0	(208)
Jan Feb Mar Apr M	May Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	⊐ ar
Space heating requirement (calculated ab	ove)							1	
407.11 312.16 230.52 104.27 23	3.74 0	0	0	0	130.13	296.1	399.65		
(211)m = {[(98)m x (204)] + (210)m } x 100	÷ (206)	-				-		1	(211)
456.92 350.35 258.72 117.02 26	5.64 0	0	0	0	146.05	332.32	448.54		_
			Tota	I (kWh/yea	ar) =Sum(2	211) _{15,1012}	F	2136.56	(211)
Space heating fuel (secondary), kWh/mor									
$= \{ [(98) \text{m x } (201)] + (214) \text{ m} \} \text{ x } 100 \div (208) $ $(215) \text{m} = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$) 0 0	0	0	0	0	0	0		
	0 0	U		I (kWh/yea				0	(215)
Water heating			7010	i (kwii you	ar) =0am(2	- 1 0/15,1012		U	(213)
Water heating Output from water heater (calculated above	e)								
	3.37 0	0	17.99	38.8	65.35	82.02	94.57		
Efficiency of water heater							!	86.9	(216)
(217)m= 88.68 88.68 88.63 88.54 88	3.29 0	0	86.9	86.9	88.35	88.61	88.67		(217)
Fuel for water heating, kWh/month									
(219) m = (64) m x $100 \div (217)$ m (219)m = 106.35 79.95 69.02 39.23 15	5.14 0	0	20.7	44.65	73.97	92.56	106.65		
(219)111= 106.35 79.95 69.02 39.23 13	0.14	0		I = Sum(2:		92.30	100.00	648.22	(219)
Annual totals						Wh/year		kWh/year	」
Space heating fuel used, main system 1						. viin y cai		2136.56	
Water heating fuel used								648.22	1
Electricity for pumps, fans and electric kee	p-hot						!		
central heating pump:							130		(230c)
boiler with a fan-assisted flue							45		(230e)
pump for solar water heating							75		(230g)
Total electricity for the above, kWh/year			sum	of (230a).	(230g) =			250	(231)
Electricity for lighting								239.78	
12a. CO2 emissions – Individual heating s	systems inclu	uding mi	cro-CHP						
		ergy /h/year			Emiss kg CO	ion fac	tor	Emissions	
Space heating (main system 1)		1) x			0.19		=	423.04	(261)
Space heating (secondary)		´ 5) x			0.13		=	0	
Water heating		9) x					=		$\frac{1}{264}$
water neating	(210	.,			0.19	90		128.35	(204)

Space and water heating	(261) + (262) + (263) + (264) =	=	551.39	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.517 =	129.25	(267)
Electricity for lighting	(232) x	0.517	123.97	(268)
Total CO2, kg/year	su	ım of (265)(271) =	804.6	(272)
Dwelling CO2 Emission Rate	(2	72) ÷ (4) =	15.49	(273)
El rating (section 14)			89	(274)


Predicted Energy Assessment

Flat 6 139-147 Camden Road London NW1 9HA Dwelling type:
Date of assessment:
Produced by:
Total floor area:

End-terrace Mid floor Flat 01 November 2011 Gary Nicholls 51.95 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.