Regulations Compliance Report

Approved Document L1A 2010 edition	assessed by Stroma FSAP 2	2009 program, Version: 1.4.0.39

	nt L1A 2010 edition a ember 2011 at 16:42:	-	009 program, Version: 1.4.0	.39
Project Informatio	n:			
Assessed By:	Gary Nicholls (STR	O003305)	Building Type:	End-terrace Flat
Dwelling Details:				
NEW DWELLING				
Site Reference :	Flat 1 139-147 Can	iden Road	Plot Reference:	BEC/SV/CAMDEN/0001
Address :	Flat 1, 139-147 Car	nden Road, London, NW1 9	HA	
Client Details:				
Name:	Studio V Architects			
Address :	224 West Hendon E	Broadway, Hendon, London,	NW9 7ED	
•	s items included wit te report of regulation	hin the SAP calculations. ons compliance.		
1 TER and DER				
	ng system: Natural g		40.04 her/m2	
-	xide Emission Rate (⁻ ioxide Emission Rate		19.24 kg/m² 12.76 kg/m²	ОК
2 Fabric U-value			12.7 0 kg/m	UN
Element		Average	Highest	
External v	vall	0.20 (max. 0.30)	0.20 (max. 0.70)	ОК
Party wall		0.00 (max. 0.20)	-	ОК
Floor		0.15 (max. 0.25)	0.15 (max. 0.70)	OK
Roof		0.13 (max. 0.20)	0.13 (max. 0.35)	OK
Openings 3 Design air perr		1.47 (max. 2.00)	1.50 (max. 3.30)	OK
	ermeability at 50 pas	rals	3.00	
Maximum	erneability at 50 pas		10.0	OK
4 Heating efficier	ncy			
Main Heatin		Database: (rev 315, produc	ct index 016669):	
Main Fleatin	g system.	Boiler system with radiators Brand name: Alpha Model: InTec 28X Model qualifier: (Combi boiler) Efficiency 88.2 % SEDBUK Minimum 88.0 %	s or underfloor - mains gas	ОК
Secondary h	neating system:	None		
5 Cylinder insula	ation			
Hot water St	torage:	No cylinder		N/A
Solar water	-			
	olar storage volume:			<u> </u>
Minimum:		62 litres		OK

Regulations Compliance Report

6 Controls			
Space heating controls	Time and temperature z	one control	ОК
Hot water controls: Boiler interlock:	No cylinder Yes		ок
7 Low energy lights	Yes		UK
Percentage of fixed lights with Minimum	n low-energy fittings	100.0% 75.0%	ок
8 Mechanical ventilation			
Not applicable			
9 Summertime temperature			
Overheating risk (South East Based on: Overshading: Windows facing: South East Windows facing: North East Ventilation rate: Blinds/curtains:	England):	Medium Average or unknown 17.76m², Overhang twice as wide 9.6m², Overhang twice as wide 4.00 shutter closed 100% of d	as window, ratio NaN
10 Key features			
Design air permeablility		3.0 m ³ /m ² h	
Doors U-value		1 W/m²K	
External Walls U-value		0.17 W/m²K	
Floors U-value Solar water heating		0.15 W/m²K	

SAP Input

Property Details:	Flat 1 139-147 Camc	len Road					
Address: Located in: Region: UPRN: RRN: Date of assess Date of certific Assessment typ Transaction typ Related party of Thermal Mass I	ment: ate: be: be: lisclosure: Parameter: ned to use less:	Flat 1, 139-147 Camde England South East England na 0000-0000-0000-0000- 01 November 2011 01 November 2011 New dwelling design st New dwelling No related party Indicative Value True	0000	NW1 9HA			
Property descripti	on:						
Dwelling type: Detachment: Year Completed: Floor Location: Floor 0 Living area: Front of dwelling	faces:	Flat End-terrace 2011 Floor area: 92.61 m ² 38.73 m ² (fraction 0.4 South East		torey heigh 2.8 m	t:		
Opening types:							
Name: front door SE NE	Source: Manufacturer Manufacturer Manufacturer	Type: Solid Windows Windows		0.1, soft coat 0.1, soft coat		Frame Metal PVC-U PVC-U	9:
Name: front door SE NE	Gap: mm 16mm or more 16mm or more	Frame Factor: 0.8 0.8 0.8	g-value: 0 0.8 0.8	U-valu 1 1.5 1.5	e: No. 1 1 1	of Oper	nings:
Name: front door SE NE	Type-Name:	Location: to common area external wall external wall	Orient: North West South East North East		Width: 0 0 0	Heigh 0 0 0	ıt:
Overshading:		Average or unknown					
Opaque Elements	:	<u>.</u>					
External Elements external wall to common area 3 over unheated area Internal Elements Party Elements	94.08 27.36 3.08 1.68	nings: Net area: 6 66.72 1.4	U-value: 0.2 0.2 0.15	Ru value: 0 0.82	Curtair False False		Kappa: N/A N/A N/A N/A
							1 ¥/ / 1
Thermal bridges:							
Thermal bridges:		User-defined y-value v =0.04					

y =0.04 Reference: ACD

SAP Input

Ventilation:	
Pressure test: Ventilation: Number of chimneys: Number of open flues: Number of fans: Number of sides sheltered: Design q50:	Yes (As designed) Natural ventilation (extract fans) 0 0 3 2 3
Main heating system:	
Main heating system:	Central heating systems with radiators or underfloor heating Gas boilers and oil boilers Fuel: mains gas Info Source: Boiler Database Database: (rev 315, product index 016669) SEDBUK2009 90.0% Brand name: Alpha Model: InTec 28X Model qualifier: (Combi boiler) Systems with radiators Pump in heat space: Yes
Main heating Control:	
Main heating Control:	Time and temperature zone control Control code: 2110 Boiler interlock: Yes
Secondary heating system:	
Secondary heating system:	None
Water heating:	
Water heating:	From main heating system Water code: 901 Fuel :mains gas No hot water cylinder Flue Gas Heat Recovery System: Database (rev 315, product index 060002) Brand name: Zenex Model: GasSaver Model qualifier: GS-1 Solar panel: True aperture area: 2.5 Flat plate, glazed default values: False collector zero-loss efficiency: 0.8 collector heat loss coefficient: 3.175 orientation: South, 30° pitch overshading: None or Very Little (<20%) dedicated solar store volume: 90 litres (seperate store) solar powered pump: False
Others:	
Electricity tariff: In Smoke Control Area: Conservatory: Low energy lights: Terrain type: EPC language: Wind turbine: Photovoltaics:	standard tariff Unknown No conservatory 100% Dense urban English No None

Briary energy Consultants N. Barker 0203 091 3391 info@briaryenergy.co.uk

SAP Input

Assess Zero Carbon Home:

No

		ι	Jser De	etails:						
Assessor Name:	Gary Nicholls			Stroma	a Num	ber:		STRO	003305	
Software Name:	Stroma FSAP 200	9	\$	Softwa	are Ver	sion:		Versio	n: 1.4.0.39	
		Pro	perty A	ddress:	Flat 1 1	39-147	Camden	Road		
Address :	Flat 1, 139-147 Can	nden Road	d, Lond	on, NW	1 9HA					
1. Overall dwelling dimen	isions:		_							
Ground floor			Area 92	<u> </u>	(1a) x		e ight(m) 8	(2a) =	Volume(m³) 259.31	(3a)
Total floor area TFA = (1a))+(1b)+(1c)+(1d)+(1e)+(1n)	92	2.61	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3d)+(3e)+	.(3n) =	259.31	(5)
2. Ventilation rate:				- 41		1-1-1				_
		econdary eating	(other		total			m ³ per hou	•
Number of chimneys	0 +	0	+	0	=	0	x 4	40 =	0	(6a)
Number of open flues	0 +	0	+	0] = [0	x 2	20 =	0	(6b)
Number of intermittent fan	s				- _	3	x 1	10 =	30	(7a)
Number of passive vents					Γ	0	x 1	10 =	0	(7b)
Number of flueless gas fire	es				Γ	0	x 4	40 =	0	(7c)
								Air ch	anges per ho	 ur
Infiltration due to chimney	$e_{\rm flues}$ and face - (6)	a)+(6b)+(7a)	+(7h)+(7	(c) -	Г					_
If a pressurisation test has be					ontinue fro	30 om (9) to (÷ (5) =	0.12	(8)
Number of storeys in the						., .	,		0	(9)
Additional infiltration							[(9)-	1]x0.1 =	0	(10)
Structural infiltration: 0.2					•	uction			0	(11)
if both types of wall are pre deducting areas of opening		ponding to th	ne greate	r wall area	a (after					
If suspended wooden flo		ed) or 0.1	(sealed	d), else (enter 0			[0	(12)
If no draught lobby, ente	er 0.05, else enter 0							İ	0	(13)
Percentage of windows	and doors draught st	ripped							0	(14)
Window infiltration			C).25 - [0.2	x (14) ÷ 1	= [00			0	(15)
Infiltration rate			(8) + (10) +	+ (11) + (1	2) + (13) +	+ (15) =		0	(16)
Air permeability value, q			•	•	•	etre of e	nvelope	area	3	(17)
If based on air permeabilit									0.27	(18)
Air permeability value applies Number of sides on which	•	s been done o	or a degi	ree air per	meability i	is being us	sed		_	
Shelter factor	Shellered		(20) = 1 - [0.075 x (1	9)] =			2 0.85	(19) (20)
Infiltration rate incorporatir	ng shelter factor		(21) = (18)	x (20) =			l I	0.23	(21)
Infiltration rate modified fo	0	l						l	0.20	
	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	ed from Table 7									
	5.1 4.5 4.1	3.9	3.7	3.7	4.2	4.5	4.8	5.1		
Wind Factor (22a)m = (22))m : 4									
	.27 1.12 1.02	0.98	0.92	0.92	1.05	1.12	1.2	1.27		

Adjuste	ed infiltr	ation rat	e (allow	ing for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m						
_	0.3	0.29	0.29	0.25	0.23	0.22	0.21	0.21	0.24	0.25	0.27	0.29			
		<i>ctive air</i> al ventila	•	rate for t	he appli	cable ca	se	-	-	-	-				
				endix N, (2	3b) = (23a	i) x Fmv (e	equation (N	N5)) . othei	rwise (23b) = (23a)			C		(23a) (23b)
			• • •	ciency in %	, ,	, ,				, (,					(23c)
			-	entilation	-					2b)m + (;	23b) x [*	1 – (23c)			
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0			(24a)
b) If	balance	d mech	anical ve	entilation	without	heat rec	covery (N	и ЛV) (24b)m = (22	1 2b)m + (2	23b)				
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0			(24b)
c) If	whole h	ouse ex	tract ver	ntilation of	or positiv	e input v	ventilatio	n from c	outside						
i	if (22b)n	n < 0.5 >	‹ (23b), †	then (24d	c) = (23b); otherv	wise (24	c) = (22b	o) m + 0.	5 × (23b)				
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0			(24c)
,				ole hous	•										
	, <i>,</i>		r <u>`</u>	m = (22k)	<i>.</i>	· ·	, 		· · · · · · · · · · · · · · · · · · ·	-	0.54	0.54	l		(24d)
(24d)m=		0.54	0.54	0.53	0.53	0.52	0.52	0.52	0.53	0.53	0.54	0.54			(24d)
	0.55	change 0.54	rate - ei	nter (24a 0.53) or (24t 0.53	0) or (24)	c) or (24 0.52	d) in box 0.52	0.53	0.53	0.54	0.54	l		(25)
(25)m=	0.55	0.54	0.54	0.55	0.55	0.52	0.52	0.52	0.55	0.55	0.54	0.54			(23)
3. He	at losse	s and he	eat loss	paramete	er:										
ELEN	IENT	Gros area		Openin m	•	Net Ar A ,r		U-valı W/m2		A X U (W/ł	<)	k-valu∉ kJ/m²∙l		A X kJ/ŀ	
Doors						1.68	x	1	= [1.68					(26)
Window	ws Type	e 1				17.76	ς x1/	/[1/(1.5)+	0.04] =	25.13					(27)
Window	ws Type	2				9.6	x1/	/[1/(1.5)+	0.04] =	13.58					(27)
Floor						92.61	x	0.15	=	13.8915	5		\neg		(28)
Walls -	Гуре1	94.0)8	27.36	6	66.72	<u>x</u>	0.2	=	13.34	ן ר		ĪĒ		(29)
Walls ⁻	Гуре2	3.0	8	1.68		1.4	x	0.17	=	0.24	ז ר		ΞĒ		(29)
Total a	rea of e	elements	, m²			189.7	7								(31)
Party v	vall					20.86	3 X	0		0					(32)
* for win	dows and	roof wind	ows, use e	effective wi	ndow U-va	alue calcul	ated using	formula 1,	/[(1/U-valu	ie)+0.04] a	ns given in	paragraph			-
				nternal wal	ls and part	titions									-
		ss, W/K	•	U)				(26)(30)					67.	87	(33)
		Cm = S(. ,							.(30) + (32		(32e) =	1573	33.7	(34)
		•		P = Cm ÷						tive Value:		- 1.1. 40	25	0	(35)
	0	sments wh ad of a de		etails of the rulation.	CONSTRUCT	on are not	t known pr	ecisely the	e indicative	values of	IMP IN T	adie 11			
Therm	al bridg	es : S (L	x Y) ca	culated u	using Ap	pendix ł	<						7.5	;9	(36)
			are not kr	nown (36) =	= 0.15 x (3	1)									-
	abric he									(36) =			75.	46	(37)
Ventila		r	1	d monthly						= 0.33 × (1	ì	l		
(20)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			(38)
(38)m=	46.76	46.33	46.33	45.55	45.08	44.86	44.65	44.65	45.19	45.55	45.93	46.33			(30)
			· · · · · · · · · · · · · · · · · · ·	404.04	100 51	400.00	400.40	400.40	- · ·	= (37) + (3	-	401.0	l		
(39)m=	122.23	121.8	121.8	121.01	120.54	120.32	120.12	120.12	120.66	121.01	121.39	121.8	404	07	(39)
									,	Average =	Sum(39)1	12 / 12=	121	.07	

Heat Ic	oss para	meter (H	HLP), W/	′m²K					(40)m	= (39)m ÷	(4)			
(40)m=	1.32	1.32	1.32	1.31	1.3	1.3	1.3	1.3	1.3	1.31	1.31	1.32		
Numbe	er of dav	rs in mor	nth (Tab	le 1a)			-	•	,	Average =	Sum(40)1.	₁₂ /12=	1.31	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	iter heat	ing enei	gy requi	rement:								kWh/ye	ear:	
Accum		ipancy, I	NI .											(40)
if TF		9, N = 1		[1 - exp	(-0.0003	49 x (TF	-A -13.9)2)] + 0.0	0013 x (⁻	TFA -13.		66		(42)
			ater usag	ge in litre	es per da	iy Vd,av	erage =	(25 x N)	+ 36		97	.37		(43)
Reduce	the annua	l average	hot water	usage by a	5% if the a	welling is	designed t	to achieve		se target o		-		
not more	e that 125	litres per j	person per	[.] day (all w	ater use, I	not and co	ld)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage in	n litres per	day for ea	ach month	Vd,m = fa	ctor from T	Table 1c x	(43)		-				
(44)m=	107.11	103.21	99.32	95.42	91.53	87.63	87.63	91.53	95.42	99.32	103.21	107.11		_
Energy o	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,n	n x nm x D	0Tm / 3600			m(44) ₁₁₂ = ables 1b, 1		1168.44	(44)
(45)m=	159.22	139.25	143.7	125.28	120.21	103.73	96.12	110.3	111.62	130.08	141.99	154.19		
ļ							I		-	rotal = Su	m(45) ₁₁₂ =	=	1535.67	(45)
lf instant	aneous w	ater heatii	ng at point	of use (no	hot water	[.] storage),	enter 0 in	boxes (46) to (61)					_
(46)m=	23.88	20.89	21.55	18.79	18.03	15.56	14.42	16.54	16.74	19.51	21.3	23.13		(46)
	storage													
a) If ma	anufactu	irer's de	clared lo	oss facto	r is knov	vn (kWh	/day):					0		(47)
Tempe	erature fa	actor fro	m Table	2b								0		(48)
•••			storage					(47) x (48)) =			0		(49)
			red cylir) includir									0		(50)
			no tank in	0 ,		0						0		(50)
	•	•		•			. ,	enter '0' in	box (50)					
			factor fr				,					0		(54)
		-				1/11110/08	ly)					0		(51)
		from Tal	oie ∠a m Table	2h								0		(52) (53)
•								((EO) × (E4) x (EQ) x	(50)		0		
		54) in (5	storage	, KVVII/ye	al			((50) x (51) X (52) X ((53) =		0 0		(54) (55)
	, ,	, ,	culated f	or each	month			((56)m = (55) 🗙 (41)(m		0		(00)
1							r							(50)
(56)m=	0	0 dadiaata	0 d color ato	0	0	0	0	0	0		0	0 m Append	iv Ll	(56)
				rage, (57)		x [(50) – (0), eise (5)	(30) = (30)					
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar	y circuit	loss (an	inual) fro	om Table	93							0		(58)
Primar	y circuit	loss cal	culated f	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
(mod	dified by	factor fi	om Tab	le H5 if t	here is s	olar wat	er heatii	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss cal	culated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m=	22.37	20.21	22.37	21.65	22.37	21.65	22.37	22.37	21.65	22.37	21.65	22.37		(61)

Total h	eat req	uired for	water l	hea	ating ca	alculated	d fo	r eacl	n month	(62)	m =	0.85 × (45)m +	- (46)m +	(57)m +	(59)m + (61)m	
(62)m=	181.59	159.46	166.07	'	146.93	142.58	1	25.38	118.49	132	.67	133.27	152.45	163.64	176.56		(62)
Solar DH	IW input	calculated	using Ap	pe	ndix G or	Appendix	хH	(negati	ve quantity	/) (ent	er '0'	if no solar	r contribu	ution to wate	er heating)	-	
(add ad	dditiona	I lines if	FGHR	Sa	and/or V	VWHRS	S ap	oplies	, see Ap	penc	lix G	3)			-		
(63)m=	-26.76	-43.5	-70.33		-96.18	-120.79	-1	24.29	-123.85	-106	.26	-79.9	-56.57	-31.81	-22.17		(63)
Output	from w	ater hea	ter														
(64)m=	109.24	84.19	74.02	Τ	44.92	21.79		1.09	0	26.	01	50.27	80.15	97.98	108.69		
		-									Outp	out from wa	ater heat	er (annual)	12	698.35	(64)
Heat g	ains fro	m water	heating	g, ł	kWh/ma	onth 0.2	5 ´	[0.85	× (45)m	+ (6	1)m	n] + 0.8 x	: [(46)n	n + (57)m	+ (59)m]	
(65)m=	58.53	51.35	53.37		47.07	45.56		39.9	37.55	42.	27	42.52	48.84	52.62	56.86		(65)
inclu	de (57)	m in calo	ulation	l of	f (65)m	only if c	cylii	nder i	s in the a	dwell	ing	or hot w	ater is	from com	munity h	leating	
5. Int	ernal a	ains (see	Table	5 8	and 5a):					-				-	-	
		ns (Table															
metabl	Jan	Feb	Mar		Apr	May	Γ	Jun	Jul	A	ug	Sep	Oct	Nov	Dec		
(66)m=	132.99	132.99	132.99	+	132.99	132.99	1	32.99	132.99	132	-	132.99	132.99		132.99		(66)
	n dains	i (calcula [:]		_												1	
(67)m=	21.73	19.3	15.7	T	11.89	8.88	-	7.5	8.1	10.		14.14	17.95	20.96	22.34]	(67)
		ins (calc		 in												I	
(68)m=	243.8	246.33	239.95	_	226.38	209.25	· -	93.15	182.39	179		186.24	199.81	216.94	233.04	1	(68)
				_										210.04	200.04	l	(00)
		(calcula		Αρ Τ			T		,					00.0	20.0	1	(69)
(69)m=	36.3	36.3	36.3	Ţ	36.3	36.3		36.3	36.3	36	.3	36.3	36.3	36.3	36.3		(09)
-		ns gains	·	58	-	10	-	40	10			40	10	1 40	10	1	(70)
(70)m=	10	10	10		10	10		10	10	1	J	10	10	10	10		(70)
		/aporatio	· •	-		, ,	-			i —						1	
(71)m=	-106.39		-106.39	_	-106.39	-106.39	-1	06.39	-106.39	-106	.39	-106.39	-106.39	-106.39	-106.39		(71)
	-	gains (T	able 5))			-								1	1	
(72)m=	78.67	76.42	71.74		65.37	61.24	5	5.42	50.47	56.	81	59.06	65.65	73.09	76.43		(72)
Total i	nterna	gains =						(66)	m + (67)m	1 + (68	3)m +	- (69)m + (70)m + (71)m + (72)	m		
(73)m=	417.1	414.95	400.29		376.53	352.27	3	28.96	313.87	320).1	332.33	356.31	383.88	404.7		(73)
	ar gain																
-			•	lar f			and			tions	to co		e applica	able orientat	ion.		
Orienta		Access F Table 6d	actor		Area m²			Flu Tal	x ble 6a		Т	g_ able 6b	-	FF Fable 6c		Gains (W)	
Northea	ast <mark>0.9x</mark>	0.77	:	× [9.0	6	x	1	1.51	x		0.8	x	0.8	=	49.01	(75)
Northea	ast <mark>0.9x</mark>	0.77		×	9.0	6	x	2	3.55	x		0.8	Ξ×Γ	0.8	=	100.29	(75)
Northea	ast <mark>0.9x</mark>	0.77		×	9.0	<u>a</u>	x	4	1.13	×		0.8	Ξ×Γ	0.8	=	175.11	(75)
Northea	ast <u>0.9x</u>	0.77		× [9.0	3	x	(67.8	×		0.8	k	0.8	=	288.67	(75)
Northea	ast <u>0.9x</u>	0.77		× [9.0		x		9.77	×		0.8	L	0.8	=	382.2	(75)
Northea	ast <mark>0.9x</mark> [0.77	=	۱ × [9.0		x		97.5	x		0.8	⊾ □ [0.8		415.14	(75)
Northea	Ļ	0.77		L × [9.0		x		2.98	x	i	0.8		0.8		395.89	(75)
				- 1				, č	-							-	1 1

Briary energy Consultants N. Barker 0203 091 3391 info@briaryenergy.co.uk

Northeast 0.9x	0.77	Т×	9.6	Тx	5	1.04	1 × Г	0.8	ТхГ	0.8	=	218.40	(75)
Northeast 0.9x	0.77		9.6	٦^ × ۲	<u> </u>	1.24 29.6	」^L]x「	0.8		0.8	=		(75)
Northeast 0.9x	0.77		9.6	۲ × ۲		4.52] ^ L] x [0.8	=		(75)
Northeast 0.9x	0.77	╡ ^	9.6	⊢ ^ × Г		9.36] ^ L] x [0.8	╡ ^	0.8	=		(75)
Southeast 0.9x	0.77	╡ ^	9.0	٦^ × ٦		7.39	」^L]x「	0.8	╡ ^	0.8	\exists	00.00	(73)
Southeast 0.9x	0.77	╡ ^	17.76	⊢ ^ × Г		3.74	」^L]x「	0.8	╡ ^	0.8	=		(77)
Southeast 0.9x	0.77	╡ ^ˆ	17.76	Ц х Г		4.22	」^L]x「	0.8	╡ ^	0.8	=	002.01	(77)
Southeast 0.9x	0.77		17.76	- x		03.49] ^ L] x [0.8	^	0.8	=		(77)
Southeast 0.9x	0.77	╡ ^ˆ	17.76	- x		13.34] ^ L] x [0.8	_ ^	0.8	=		(77)
Southeast 0.9x	0.77		17.76	- x		15.04	」^L lx「	0.8	- x	0.8	\dashv		(77)
Southeast 0.9x	0.77		17.76			12.79	」 ^ L l x 「	0.8		0.8	╡_	000.10	(77)
Southeast 0.9x	0.77		17.76	- x		05.34	」^L lx「	0.8		0.8	\dashv		(77)
Southeast 0.9x	0.77		17.76		<u> </u>	92.9	」 ^ L] x 「	0.8		0.8	╡_		(77)
Southeast 0.9x	0.77		17.76	- x		2.36	」^L]x「	0.8		0.8	\dashv		(77)
Southeast 0.9x	0.77		17.76		<u> </u>	4.83] ^ L] x [0.8		0.8	=		(77)
Southeast 0.9x	0.77		17.76		<u> </u>	1.95	」 ^ L] x 「	0.8		0.8	╡_		(77)
0.07	0.11	^	11.10			1.00	I ^ L	0.0		0.0		201.07	()
Solar gains in	watts. calcu	ulated	for each mo	nth			(83)m =	= Sum(74)m .	(82)m				
(83)m= 343.51	1 1	1	1103.84 1274		321.33		1150.		696.02	414.93	291.52	:	(83)
Total gains –	internal and	solar	(84)m = (73)m + ((83)m	, watts				-1			
(0.4)	1017.27 12	00 70	1480.38 1627	22 .	650.3	1500.0	1470.	98 1282.27	1052.3	3 798.81	696.23		(84)
(84)m= 760.61	1017.27 12	.38.76			1050.5	1598.2	1470.	90 1202.27	1052.5	3 790.01	000.20	·	(01)
7. Mean inte					1050.5	1596.2	1470.	90 1202.27	1052.5	3 798.81	000.20	<u>`</u>]	
	rnal tempera	ature (heating sea	son)					1002.0	5 796.61	000.20	21	(85)
7. Mean inte	rnal tempera during hea	ature (ting pe	heating sea eriods in the	son) living	area	rom Tat			1052.5	3 796.61	000.20		
7. Mean inte	rnal tempera during hea ctor for gain	ature (ting pe	heating sea priods in the ving area, h	son) living	area	rom Tat		Th1 (°C)	Oct	Nov	Dec	21	
7. Mean inte Temperature Utilisation fa	rnal tempera e during hea ctor for gain Feb	ature (ting pe s for li	heating sea priods in the ving area, h	son) living 1,m (s ay	area f	rom Tat ble 9a)	ble 9, [°]	Th1 (°C) g Sep				21	
7. Mean inte Temperature Utilisation fa Jan	rnal tempera e during hea ctor for gain Feb 0.97 (ature (ting pe s for li Mar 0.93	heating sea priods in the ving area, h Apr M 0.82 0.6	son) living 1,m (s ay	area 1 see Ta Jun 0.46	rom Tab ble 9a) Jul 0.31	ole 9, ⁻ Au 0.33	Th1 (°C) g Sep	Oct	Nov	Dec	21	(85)
7. Mean inte Temperature Utilisation fa Jan (86)m= 0.99	rnal temperation of during heat ctor for gain Feb 0.97 (c) al temperatu	ature (ting pe s for li Mar 0.93	heating sea priods in the ving area, h Apr M 0.82 0.6	son) living 1,m (s ay 4 1 (folla	area 1 see Ta Jun 0.46	rom Tab ble 9a) Jul 0.31	ole 9, ⁻ Au 0.33	Th1 (°C) g Sep	Oct	Nov	Dec	21	(85)
7. Mean internation fa Utilisation fa (86)m= 0.99 Mean interna (87)m= 19.76	rnal temperate e during hea ctor for gain Feb 0.97 (0 al temperatu 20.06 2	ature (ting pe s for li Mar 0.93 ure in li 0.43	heating sea eriods in the ving area, h Apr M 0.82 0.6 ving area T 20.73 20.	son) living 1,m (s ay 4 1 (folle 93	area f see Ta Jun 0.46 Dw ste 20.99	from Tab ble 9a) Jul 0.31 ps 3 to 7 21	ole 9, ⁻ Au 0.33 7 in Ta 21	Th1 (°C) g Sep 6 0.6 able 9c) 20.96	Oct 0.88	Nov 0.98	Dec 0.99	21	(85)
7. Mean internation fa Utilisation fa (86)m= 0.99 Mean internation	rnal tempera e during hea ctor for gain Feb 0.97 (al temperatu 20.06 2 e during hea	ature (ting pe s for li Mar 0.93 ure in li 0.43	heating sea eriods in the ving area, h Apr M 0.82 0.6 ving area T 20.73 20.	son) living 1,m (s ay 4 1 (folle 93 t of dv	area f see Ta Jun 0.46 Dw ste 20.99	from Tab ble 9a) Jul 0.31 ps 3 to 7 21	ole 9, ⁻ Au 0.33 7 in Ta 21	Th1 (°C) g Sep 5 0.6 able 9c) 20.96 Th2 (°C)	Oct 0.88	Nov 0.98 20.1	Dec 0.99	 	(85)
7. Mean inter Temperature Utilisation fa (86)m= 0.99 Mean interna (87)m= 19.76 Temperature (88)m= 19.83	rnal tempera e during hea ctor for gain Feb 0.97 (al temperatu 20.06 2 e during hea 19.83 1	ature (ting pe s for li Mar 0.93 ure in li 0.43 ting pe 9.83	heating seabriods in theving area, hAprM0.820.6ving area T20.7320.briods in res19.8419.	son) living 1,m (s ay 4 1 (follo 93 t of dv 84	area f see Ta Jun 0.46 20.99 velling 19.84	from Tab ble 9a) Jul 0.31 ps 3 to 7 21 from Ta 19.85	Au 0.33 7 in Ta 21 able 9, 19.85	Th1 (°C) g Sep 5 0.6 able 9c) 20.96 Th2 (°C)	Oct 0.88 20.69	Nov 0.98 20.1	Dec 0.99 19.75	 	(85) (86) (87)
7. Mean inter Temperature Utilisation fa (86)m= 0.99 Mean interna (87)m= 19.76 Temperature	rnal temperate e during hea ctor for gain Feb 0.97 (0 al temperatu 20.06 2 e during hea 19.83 1 ctor for gain	ature (ting pe s for li Mar 0.93 ure in li 0.43 ting pe 9.83	heating seabriods in theving area, hAprM0.820.6ving area T20.7320.briods in res19.8419.	son) living 1,m (s ay 4 1 (folle 93 t of dv 84 ng, h2	area f see Ta Jun 0.46 20.99 velling 19.84	from Tab ble 9a) Jul 0.31 ps 3 to 7 21 from Ta 19.85	Au 0.33 7 in Ta 21 able 9, 19.85	Th1 (°C) g Sep 6 0.6 able 9c) 20.96 Th2 (°C) 5 19.84	Oct 0.88 20.69	Nov 0.98 20.1	Dec 0.99 19.75	 	(85) (86) (87)
7. Mean interval Temperature Utilisation fa (86)m= 0.99 Mean interna (87)m= 19.76 Temperature (88)m= 19.83 Utilisation fa (89)m= 0.99	rnal temperation a during hea ctor for gain Feb 0.97 al temperatu 20.06 2 a during hea 19.83 1 ctor for gain 0.97	ature (ting pe s for li Mar 0.93 ure in li 0.43 ting pe 9.83 s for re 0.9	heating seaeriods in theving area, hAprM0.820.6ving area T20.7320.eriods in res19.8419.est of dwellin0.780.5	son) living 1,m (s ay 4 1 (folle 93 t of dv 84 ng, h2 8	area 1 see Ta Jun 0.46 20.99 velling 19.84 2,m (se 0.38	rom Tab ble 9a) Jul 0.31 ps 3 to 7 21 from Ta 19.85 ee Table 0.22	Die 9, Au 0.33 7 in Ta 21 able 9, 19.8 9a) 0.24	Th1 (°C) g Sep 6 0.6 able 9c) 20.96 Th2 (°C) 5 19.84 0.51	Oct 0.88 20.69 19.84 0.84	Nov 0.98 20.1 19.84	Dec 0.99 19.75 19.83	 	(85) (86) (87) (88)
7. Mean internation fa Temperature Utilisation fa (86)m= 0.99 Mean internat (87)m= 19.76 Temperature (88)m= 19.83 Utilisation fa (89)m= 0.99 Mean internation	rnal temperated during heat temperated at te	ature (ting pe s for li Mar 0.93 ure in li 0.43 ting pe 9.83 s for re 0.9	heating sea briods in the ving area, h Apr M 0.82 0.6 ving area T 20.73 20. briods in res 19.84 19. 0.78 0.5 he rest of dwelling	son) living 1,m (s ay 4 1 (folle 93 1 (folle 93 t of dv 84 mg, h2 18	area f see Ta Jun 0.46 20.99 velling 19.84 2,m (se 0.38 g T2 (fo	from Tab ble 9a) Jul 0.31 ps 3 to 7 21 from Ta 19.85 te Table 0.22 bllow ste	Die 9, Au 0.33 7 in Ta 21 able 9, 19.8 9a) 0.24 eps 3 t	Th1 (°C) g Sep 6 0.6 1016 9c) 20.96 Th2 (°C) 5 19.84 0.51 10 7 in Tabl	Oct 0.88 20.69 19.84 0.84 e 9c)	Nov 0.98 20.1 19.84 0.98	Dec 0.99 19.75 19.83 0.99	 	(85) (86) (87) (88) (89)
7. Mean interval Temperature Utilisation fa (86)m= 0.99 Mean interna (87)m= 19.76 Temperature (88)m= 19.83 Utilisation fa (89)m= 0.99	rnal temperated during heat temperated at te	ature (ting pe s for li Mar 0.93 ure in li 0.43 ting pe 9.83 s for re 0.9	heating seaeriods in theving area, hAprM0.820.6ving area T20.7320.eriods in res19.8419.est of dwellin0.780.5	son) living 1,m (s ay 4 1 (folle 93 1 (folle 93 t of dv 84 mg, h2 18	area 1 see Ta Jun 0.46 20.99 velling 19.84 2,m (se 0.38	rom Tab ble 9a) Jul 0.31 ps 3 to 7 21 from Ta 19.85 ee Table 0.22	Die 9, Au 0.33 7 in Ta 21 able 9, 19.8 9a) 0.24	Th1 (°C) g Sep 0.6 ble 9c) 20.96 Th2 (°C) 5 19.84 0.51 co 7 in Tabl 5 19.82	Oct 0.88 20.69 19.84 0.84 e 9c) 19.53	Nov 0.98 20.1 19.84 0.98	Dec 0.99 19.75 19.83 0.99 18.21		(85) (86) (87) (88) (89) (90)
7. Mean interval Temperature Utilisation fa (86)m= 0.99 Mean interna (87)m= 19.76 Temperature (88)m= 19.83 Utilisation fa (89)m= 0.99 Mean interna (90)m= 18.21	rnal temperation a during hea ctor for gain Feb 0.97 al temperatu 20.06 2 a during hea 19.83 1 ctor for gain 0.97 at temperatu 0.97 at temperatu 19.83 119.83 119.83 119.83 119.83 120.97 at temperatu 18.64 1	ature (ting pe s for li Mar 0.93 ure in li 0.43 ting pe 9.83 s for re 0.9 ure in ti 9.16	heating seaeriods in theving area, hAprM0.820.6ving area T20.7320.eriods in res19.8419.est of dwellin0.780.5he rest of dv19.5619.	son) living 1,m (s ay 4 1 (folle 93 t of dv 84 ng, h2 8 8 velling 78	area 1 see Ta Jun 0.46 20.99 velling 19.84 2,m (se 0.38 g T2 (fo 19.84	rom Tab ble 9a) Jul 0.31 ps 3 to 7 21 from Ta 19.85 ee Table 0.22 blow ste 19.85	Au 0.33 7 in Ta 21 able 9, 19.83 9a) 0.24 eps 3 t 19.83	Th1 (°C) g Sep 0.6 able 9c) 20.96 Th2 (°C) 5 19.84 0.51 19.82 f	Oct 0.88 20.69 19.84 0.84 e 9c) 19.53	Nov 0.98 20.1 19.84 0.98 18.71	Dec 0.99 19.75 19.83 0.99 18.21	 	(85) (86) (87) (88) (89)
7. Mean interval Temperature Utilisation fa (86)m= 0.99 Mean interna (87)m= 19.76 Temperature (88)m= 19.83 Utilisation fa (89)m= 0.99 Mean interna (90)m= 18.21 Mean interna	rnal temperate e during hea ctor for gain Feb 0.97 (1) al temperatu 20.06 2 e during hea 19.83 1 ctor for gain 0.97 al temperatu 18.64 1	ature (ting pe s for li Mar 0.93 ure in li 0.43 ting pe 9.83 s for re 0.9 ure in ti 9.16 ure (for	heating sea briods in the ving area, h Apr M 0.82 0.6 ving area T 20.73 20. briods in res 19.84 19. 0.78 0.5 he rest of dw 19.56 19. the whole c	son) living 1,m (s ay 1,m (s ay 1,m (s ay 1,m (s ay 1,m (s ay bit of dv a4 bit of dv a4 bit ag, h2 s a velling 78 lwelling	area f see Ta Jun 0.46 20.99 velling 19.84 2,m (se 0.38 g T2 (fo 19.84	rom Tab ble 9a) Jul 0.31 ps 3 to 7 21 from Ta 19.85 ee Table 0.22 bllow ste 19.85	Au 0.33 7 in Ta 21 able 9, 19.8 9a) 0.24 eps 3 t 19.83 + (1 -	Th1 (°C) g Sep 6 0.6 able 9c) 20.96 Th2 (°C) 5 19.84 0.51 5 19.82 f 6 19.82 6 19.82	Oct 0.88 20.69 19.84 0.84 e 9c) 19.53 LA = Liv	Nov 0.98 20.1 19.84 0.98 18.71 ing area ÷ (4	Dec 0.99 19.75 19.83 0.99 18.21 4) =		(85) (86) (87) (88) (89) (90) (91)
7. Mean interval Temperature Utilisation fa (86)m= 0.99 Mean interna (87)m= 19.76 Temperature (88)m= 19.83 Utilisation fa (89)m= 0.99 Mean interna (90)m= 18.21 Mean interna (92)m= 18.86	Imal temperation a during hea ctor for gain Feb 0.97 al temperatu 20.06 2 aduring hea 19.83 19.83 1 ctor for gain 0.97 al temperatu 18.64 1 al temperatu 18.64 19.23	ature (ting pe s for li Mar 0.93 ure in li 0.43 ting pe 9.83 s for re 0.9 ure in ti 9.16 ure (for 9.69	heating sea eriods in the ving area, h Apr M 0.82 0.6 ving area T 20.73 20.73 20. eriods in res 19. 19.84 19. est of dwellin 0.78 0.78 0.5 he rest of dwellin 19. * the whole of 20.05	son) living 1,m (s ay 4 1 (folle 93 t of dv 84 ng, h2 8 1 welling 78	area f see Ta Jun 0.46 20.99 velling 19.84 2,m (se 0.38 g T2 (fo 19.84	rom Tab ble 9a) Jul 0.31 ps 3 to 7 21 from Ta 19.85 ee Table 0.22 blow ste 19.85 -A × T1 20.33	Die 9, Au 0.33 7 in Ta 21 able 9, 19.8 9a) 0.24 9a) 0.24 9a) 0.24 + (1 – 20.3	Th1 (°C) g Sep 0.6 ble 9c) 20.96 Th2 (°C) 5 19.84 0.51 0 7 in Tabl 5 19.82 f • fLA) × T2 3 20.3	Oct 0.88 20.69 19.84 0.84 e 9c) 19.53 LA = Liv 20.02	Nov 0.98 20.1 19.84 0.98 18.71 ing area ÷ (4	Dec 0.99 19.75 19.83 0.99 18.21		(85) (86) (87) (88) (89) (90)
7. Mean interval Temperature Utilisation fa (86)m= 0.99 Mean interna (87)m= 19.76 Temperature (88)m= 19.83 Utilisation fa (89)m= 0.99 Mean interna (90)m= 18.21 Mean interna (92)m= 18.86 Apply adjust	rnal temperate e during hea ctor for gain Feb 0.97 (1) al temperate 20.06 2 e during hea 19.83 1 ctor for gain 0.97 al temperate 18.64 1 al temperate 19.23 1 ment to the	ature (ting pe s for li Mar 0.93 ure in li 0.43 ting pe 9.83 s for re 0.9 ure in ti 9.16 ure (for 9.69 mean	heating sea briods in the ving area, h Apr M 0.82 0.6 ving area T 20.73 20. eriods in res 19.84 19. est of dwellin 0.78 0.5 he rest of dw 19.56 19. * the whole c 20.05 20.	son) living 1,m (s ay 1,m (s ay 1 (follo 93 1 (follo 94 1 (follo 93 1 (follo 94 1 (follo 9	area f see Ta Jun 0.46 20.99 velling 19.84 2,m (se 0.38 g T2 (fo 19.84 19.84 ng) = fl 20.32 ure fro	rom Tab ble 9a) Jul 0.31 ps 3 to 7 21 from Ta 19.85 ee Table 0.22 bllow ste 19.85 -A × T1 20.33 m Table	Die 9, Au 0.33 7 in Ta 21 able 9, 19.8 9a) 0.24 9a) 0.24 9a) 0.24 + (1 – 20.3	Th1 (°C) g Sep 6 0.6 able 9c) 20.96 Th2 (°C) 5 19.84 0.51 a 0.51 b 7 in Tabl 5 19.82 f fLA) × T2 3 20.3 /here approx	Oct 0.88 20.69 19.84 0.84 e 9c) 19.53 LA = Liv 20.02	Nov 0.98 20.1 19.84 0.98 18.71 ing area ÷ (4	Dec 0.99 19.75 19.83 0.99 18.21 4) =		(85) (86) (87) (88) (89) (90) (91)
7. Mean interval Temperature Utilisation fa (86)m= 0.99 Mean interna (87)m= 19.76 Temperature (88)m= 19.83 Utilisation fa (89)m= 0.99 Mean interna (90)m= 18.21 Mean interna (92)m= 18.86	Imal temperation a during hea ctor for gain Feb 0.97 al temperatu 20.06 2 aduring hea 19.83 19.83 1 ctor for gain 0.97 al temperatu 18.64 1 al temperatu 18.64 19.23 1 ment to the 19.08 1	ature (ting pe s for li Mar 0.93 ure in li 0.43 ting pe 9.83 s for re 0.9 ure in ti 9.16 ure (for 9.69 mean 9.54	heating sea eriods in the ving area, h Apr M 0.82 0.6 ving area T 20.73 20.73 20. eriods in res 19. 19.84 19. est of dwellin 0.78 0.78 0.5 he rest of dwellin 19. * the whole of 20.05	son) living 1,m (s ay 1,m (s ay 1 (follo 93 1 (follo 94 1 (follo 93 1 (follo 94 1 (follo 9	area f see Ta Jun 0.46 20.99 velling 19.84 2,m (se 0.38 g T2 (fo 19.84	rom Tab ble 9a) Jul 0.31 ps 3 to 7 21 from Ta 19.85 ee Table 0.22 blow ste 19.85 -A × T1 20.33	Au 0.33 7 in Ta 21 able 9, 19.8 9a) 0.24 eps 3 t 19.8 + (1 – 20.3 4 4e, w	Th1 (°C) g Sep 6 0.6 able 9c) 20.96 Th2 (°C) 5 19.84 0.51 a 0.51 b 7 in Tabl 5 19.82 f fLA) × T2 3 20.3 /here approx	Oct 0.88 20.69 19.84 e 9c) 19.53 LA = Liv 20.02 opriate	Nov 0.98 20.1 19.84 0.98 18.71 ing area ÷ (4 19.29	Dec 0.99 19.75 19.83 0.99 18.21 4) = 18.85		(85) (86) (87) (88) (89) (90) (91) (92)
7. Mean interval Temperature Utilisation fa (86)m= 0.99 Mean interna (87)m= 19.76 Temperature (88)m= 19.83 Utilisation fa (89)m= 0.99 Mean interna (90)m= 18.21 Mean interna (92)m= 18.86 Apply adjust (93)m= 18.71	rnal temperate e during hea ctor for gain Feb 0.97 (1) al temperate 20.06 2 e during hea 19.83 1 ctor for gain 0.97 al temperate 18.64 1 18.64 1 al temperate 19.23 1 ment to the 19.08 1 ating require	ature (ting pe s for li Mar 0.93 rre in li 0.43 ting pe 9.83 s for re 0.9 ure in ti 9.16 ure (for 9.69 mean 9.54 ement	heating sea briods in the ving area, h Apr M 0.82 0.6 ving area T 20.73 20. eriods in res 19.84 19. est of dwellin 0.78 0.5 he rest of dw 19.56 19. • the whole of 20.05 20. internal term 19.9 20.	son) living 1,m (s ay 1,m (s ay 1,m (s ay 1,m (s ay base 1,m (s a) base 1,m (s) base 1,m (s) base 1,m (s) base 1,m (s) 1,m (s)	area f see Ta Jun 0.46 20.99 velling 19.84 2,m (se 0.38 g T2 (fo 19.84 19.84 ng) = fl 20.32 ure fro 20.17	From Tab ble 9a) Jul 0.31 ps 3 to 7 21 from Ta 19.85 ee Table 0.22 ollow ste 19.85 -A × T1 20.33 m Table 20.18	Au 0.33 7 in Ta 21 able 9, 19.8 9a) 0.24 eps 3 t 19.8 + (1 - 20.33 4e, w 20.13	Th1 (°C) g Sep 6 0.6 able 9c) 20.96 Th2 (°C) 5 19.84 0.51 19.82 6 19.82 f 6 fLA) × T2 3 20.3 /here approx 8 20.15	Oct 0.88 20.69 19.84 e 9c) 19.53 LA = Liv 20.02 opriate 19.87	Nov 0.98 20.1 19.84 0.98 18.71 ing area ÷ (4 19.29	Dec 0.99 19.75 19.83 0.99 18.21 4) = 18.85 18.7	 	(85) (86) (87) (88) (89) (90) (91) (92)
7. Mean interval Temperature Utilisation fa (86)m = 0.99 Mean interna (87)m = 19.76 Temperature (88)m = 19.83 Utilisation fa (89)m = 0.99 Mean interna (90)m = 18.21 Mean interna (92)m = 18.86 Apply adjust (93)m = 18.71 8. Space hea	rnal temperate e during hea ctor for gain Feb 0.97 0 al temperatu 20.06 2 e during hea 19.83 1 ctor for gain 0.97 al temperatu 18.64 1 19.23 1 ment to the 19.08 1 ating require mean interr factor for g	ature (ting periods for line of the second	heating sea briods in the ving area, h Apr M 0.82 0.6 ving area T 20.73 20. briods in res 19.84 19. 0.78 0.5 he rest of dwellin 0.78 0.5 he rest of dwellin 19.56 19. the whole of 20.05 20. internal term 19.9 20.	son) living 1,m (s ay 1,m (s ay 1,m (s ay 1,m (s ay billing ay billing 78 lwelling 78 lwelling 78 lwelling 78 lwelling 26 lwelling 78	area f see Ta Jun 0.46 20.99 velling 19.84 2,m (se 0.38 g T2 (fo 19.84 19.84 ng) = fl 20.32 ure fro 20.17	From Tab ble 9a) Jul 0.31 ps 3 to 7 21 from Ta 19.85 ee Table 0.22 ollow ste 19.85 -A × T1 20.33 m Table 20.18	Au 0.33 7 in Ta 21 able 9, 19.8 9a) 0.24 eps 3 t 19.8 + (1 - 20.33 4e, w 20.13	Th1 (°C) g Sep 0.6 ble 9c) 20.96 Th2 (°C) 5 19.84 0.51 0 7 in Tabl 5 19.82 f fLA) × T2 3 20.3 there approx 8 20.15 9b, so tha	Oct 0.88 20.69 19.84 e 9c) 19.53 LA = Liv 20.02 opriate 19.87	Nov 0.98 20.1 19.84 0.98 18.71 ing area ÷ (4 19.29	Dec 0.99 19.75 19.83 0.99 18.21 4) = 18.85 18.7	 	(85) (86) (87) (88) (89) (90) (91) (92)

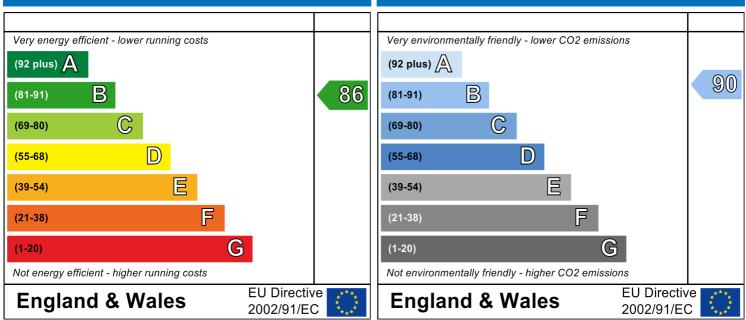
Utilisation factor for gains, hm:

Useful gains, hmGm, W = (94)m x (84)m (95)m $\frac{750.16}{730.6}$ 975.96 1111.87 1157.08 966.23 663.44 393.22 392.97 683.63 879.98 775.23 688.58 (95) Monthly average external temperature from Table 8 (96)m $\frac{4.5}{5}$ 5 6.8 8.7 11.7 14.6 16.9 16.9 16.9 16.3 10.8 7 4.9 (96)m Heat loss rate for mean internal temperature, Lm, W = [(39)m × [(93)m - (96)m] (97)m $\frac{1736.81}{1715.5}$ 1551.47 1355.18 1013.95 669.99 393.71 393.66 705.28 1097.06 1473.91 1681 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m $\frac{734.07}{496.97}$ 327.06 142.63 35.5 0 0 0 0 0 161.5 503.06 738.36 (98) Space heating requirement in kWh/m ² /year 333.9 (99) 9a. Energy requirements - Individual heating systems including micro-CHP) Space heating: Fraction of space heat from secondary/supplementary system Fraction of space heat from main system 1 (204) = (202) × [1 - (201)] = 1 (200) Fraction of space heating system 1 (204) = (202) × [1 - (203)] = 1 (200) Efficiency of main space heating system 1 (204) = (202) × [1 - (203)] = 1 (200) Efficiency of secondary/supplementary heating system, % 0 (201) = 1 (200) (201) $\frac{1}{327.06}$ 142.63 35.5 0 0 0 0 0 0 161.5 503.06 738.36 (202) = 1 - (201) = 1 (
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Heat loss rate for mean internal temperature, Lm , W =[(39)m × [(93)m – (96)m] (97)m= 1736.81 1715.5 1551.47 1335.18 1013.95 669.99 393.71 393.66 705.28 1097.06 1473.91 1681 (97) (98)m= 1736.01 1715.5 1551.47 1335.18 1013.95 669.99 393.71 393.66 705.28 1097.06 1473.91 1681 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m= 734.07 496.97 327.06 142.63 35.5 0 0 0 161.5 503.06 738.36 Total per year (kWh/year) = Sum(98)ss.re 3139.15 (98) Space heating requirement in kWh/m²/year 33.9 (99) Space heating: 733.9 (99) Fraction of space heat from secondary/supplementary system 0 (20) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) Efficiency of secondary/supplementary heating system, % 0 0 0 1 (204)<
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Space heating requirement for each month, kWh/month = $0.024 \times [(97)m - (95)m] \times (41)m$ (98)m= 734.07 496.97 327.06 142.63 35.5 0 0 0 161.5 503.06 738.36 Total per year (kWh/year) = Sum(98)str = 3139.15 (98) Space heating requirement in kWh/m²/year 33.9 (99) 92. Energy requirements - Individual heating systems including micro-CHP) Space heating: Fraction of space heat from secondary/supplementary system 0 (20) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) Efficiency of main space heating system 1 89.1 (204) Efficiency of secondary/supplementary heating system, % 0 (204) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 734.07 496.97 327.06 142.63 35.5 0 0 0 161.5 503.06 738.36
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Total per year (kWh/year) = Sum(98):
Space heating requirement in kWh/m²/year 9991929399939994959595969797989999999999999999999091919292939494959595959595959595959595100100110110110111
9a. Energy requirements – Individual heating systems including micro-CHP)Space heating: Fraction of space heat from secondary/supplementary system0Fraction of space heat from main system(s) $(202) = 1 - (201) =$ Fraction of space heating from main system 1 $(204) = (202) \times [1 - (203)] =$ Efficiency of main space heating system 1 89.1 Efficiency of secondary/supplementary heating system, %0 $\boxed{Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec}$ kWh/yearSpace heating requirement (calculated above) 734.07 496.97 $\boxed{734.07}$ 496.97 327.06 142.63 35.5 0 0 $\boxed{823.87}$ 557.77 367.07 160.08 39.84 0 0 0 181.26 564.6 828.69 Total (kWh/year) =Sum(211) _{1.5.1017} = 3523.18 (211)
Space heating: Fraction of space heat from secondary/supplementary system0(20)Fraction of space heat from main system(s) $(202) = 1 - (201) =$ 1(20)Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$ 1(20)Efficiency of main space heating system 1 $(204) = (202) \times [1 - (203)] =$ 1(20)Efficiency of secondary/supplementary heating system, %0(20)JanFebMarAprMayJunJulAugSepOctNovDeckWh/yearSpace heating requirement (calculated above) $\overline{734.07}$ 496.97 327.06 142.63 35.5 000161.5 503.06 738.36 (21)(211)m = {[[(98)m x (204)] + (210)m } x 100 ÷ (206) $(211)m = (210)m + (200)m + (20$
Fraction of space heat from secondary/supplementary system0(20)Fraction of space heat from main system(s)(202) = 1 - (201) =1(202)Fraction of total heating from main system 1(204) = (202) $\times [1 - (203)] =$ 1(204)Efficiency of main space heating system 1(204) = (202) $\times [1 - (203)] =$ 1(204)Efficiency of main space heating system 1(204) = (202) $\times [1 - (203)] =$ 1(204)Efficiency of main space heating system 1(204)(204)Efficiency of secondary/supplementary heating system, %0(204)JanFebMarAprMayJunJun(204)Space heating requirement (calculated above)(211)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206)(211)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206)(211)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206)(211)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206)(211)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206)(211)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206)(211)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206)(211)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206)(211)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206)Total (kWh/year) =Sum(211)_{1.5,10
Fraction of space heat from main system(s) $(202) = 1 - (201) =$ 1 $(202) = 1 - (201) =$ Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$ 1 $(204) = (202) \times [1 - (203)] =$ Efficiency of main space heating system 1 $(204) = (202) \times [1 - (203)] =$ 1 $(204) = (202) \times [1 - (203)] =$ Efficiency of main space heating system 1 $(204) = (202) \times [1 - (203)] =$ 0 0 Efficiency of secondary/supplementary heating system, % 0 0 0 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 734.07 496.97 327.06 142.63 35.5 0 0 0 161.5 503.06 738.36 (211)m = {[[(98)m x (204)] + (210)m } x 100 ÷ (206) Total (kWh/year) =Sum(211) _{1.550-12} = 3523.18 (21*)
Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$ 1 $(204) = (202) \times [1 - (203)] =$ Efficiency of main space heating system 1 89.1 $(204) = (202) \times [1 - (203)] =$ 0 0 Efficiency of secondary/supplementary heating system, % 0 0 0 (204) Space heating requirement (calculated above) 734.07 496.97 327.06 142.63 35.5 0 0 0 161.5 503.06 738.36 (211)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (211)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (212)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (212)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (212)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (212)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (212)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (212)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (212)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (212)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (212)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (212)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (212)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (212)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (212)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (212)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (212)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (212)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206)
Efficiency of main space heating system 1 89.1 (206) Efficiency of secondary/supplementary heating system, % 0 (206) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 734.07 496.97 327.06 142.63 35.5 0 0 0 161.5 503.06 738.36 (211)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (214) 823.87 557.77 367.07 160.08 39.84 0 0 0 181.26 564.6 828.69 Total (kWh/year) =Sum(211) ₁₅₁₀₁₂ 3523.18 (214)
Efficiency of secondary/supplementary heating system, % 0 (208 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) $\overline{734.07}$ 496.97 327.06 142.63 35.5 0 0 0 161.5 503.06 738.36 (217) (211)m = {[(98)m x (204)] + (210)m } x 100 ÷ (206) (217) 823.87 557.77 367.07 160.08 39.84 0 0 0 181.26 564.6 828.69 (217) Total (kWh/year) =Sum(211) ₁₅₁₀₁₂
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Space heating requirement (calculated above) 734.07 496.97 327.06 142.63 35.5 0 0 0 161.5 503.06 738.36 (211)m = {[[(98)m x (204)] + (210)m } x 100 ÷ (206) (217 823.87 557.77 367.07 160.08 39.84 0 0 0 181.26 564.6 828.69 (217) Total (kWh/year) =Sum(211) (217)
Space heating requirement (calculated above) 734.07 496.97 327.06 142.63 35.5 0 0 0 161.5 503.06 738.36 (211)m = {[[(98)m x (204)] + (210)m } x 100 ÷ (206) (217 823.87 557.77 367.07 160.08 39.84 0 0 0 181.26 564.6 828.69 (217) Total (kWh/year) =Sum(211) (217)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Space heating fuel (secondary), kWh/month
$= \{[(98)m \times (201)] + (214)m \} \times 100 \div (208)$
(215)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total (kWh/year) =Sum(215) _{15,1012} = 0 (215)
Water heating
Output from water heater (calculated above)
109.24 84.19 74.02 44.92 21.79 1.09 0 26.01 50.27 80.15 97.98 108.69
Efficiency of water heater 86.9 (216
(217)m= 88.81 88.77 88.69 88.56 88.25 86.9 0 86.9 86.9 88.36 88.73 88.81 (217)
Fuel for water heating, kWh/month
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$Total = Sum(219a)_{112} = 789.26$ (215)
Annual totals kWh/year kWh/year
Space heating fuel used, main system 1 3523.18
Water heating fuel used 789.26

Electricity for pumps, fans and electric keep-hot

Briary energy Consultants N. Barker 0203 091 3391 info@briaryenergy.co.uk	eet: New dwelling	g design stage	9		
central heating pump:			130]	(230c)
boiler with a fan-assisted flue			45]	(230e)
pump for solar water heating			75]	(230g)
Total electricity for the above, kWh/year	sum of (2	230a)(230g) =		250	(231)
Electricity for lighting				383.84	(232)
12a. CO2 emissions – Individual heating systems	s including micro-CHP				
	Energy kWh/year	Emission fac kg CO2/kWh	ctor	Emissions kg CO2/yea	
Space heating (main system 1)	(211) x	0.198	=	697.59	(261)
Space heating (secondary)	(215) x	0	=	0	(263)
Water heating	(219) x	0.198	=	156.27	(264)
Space and water heating	(261) + (262) + (263) + (264)) =		853.86	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.517	=	129.25	(267)
Electricity for lighting	(232) x	0.517	=	198.45	(268)
Total CO2, kg/year		sum of (265)(271) =		1181.56	(272)
Dwelling CO2 Emission Rate		(272) ÷ (4) =		12.76	(273)
El rating (section 14)				88	(274)

Predicted Energy Assessment


Flat 1 139-147 Camden Road London NW1 9HA Dwelling type: Date of assessment: Produced by: Total floor area: End-terrace Mid floor Flat 01 November 2011 Gary Nicholls 92.61 m²

Environmental Impact (CO₂) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

Energy Efficiency Rating

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.