# **Regulations Compliance Report**

| Approved Document L1A 2010 edition | assessed by Stroma FSAF | 2009 program. Version: 1.4.0.39 |
|------------------------------------|-------------------------|---------------------------------|
|                                    |                         |                                 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ent L1A 2010 edition a<br>ember 2011 at 16:42: |                                                                                                                                                           | 009 program, Version: 1.4.0          | .39                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------|
| Project Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                | 51                                                                                                                                                        |                                      |                    |
| Assessed By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gary Nicholls (STR                             | O003305)                                                                                                                                                  | Building Type:                       | End-terrace Flat   |
| Dwelling Details:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |                                                                                                                                                           |                                      |                    |
| NEW DWELLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DESIGN STAGE                                   |                                                                                                                                                           |                                      |                    |
| Site Reference :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flat 5 139-147 Can                             | nden Road                                                                                                                                                 | Plot Reference:                      | BEC/SV/CAMDEN/0005 |
| Address :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flat 5, 139-147 Car                            | nden Road, London, NW1 9                                                                                                                                  | HA                                   |                    |
| Client Details:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                                                                                                                                           |                                      |                    |
| Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Studio V Architects                            |                                                                                                                                                           |                                      |                    |
| Address :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 224 West Hendon I                              | Broadway, Hendon, London,                                                                                                                                 | NW9 7ED                              |                    |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rs items included wite report of regulation    | hin the SAP calculations.                                                                                                                                 |                                      |                    |
| 1 TER and DER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                                                                                                                                                           |                                      |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ting system: Natural g                         |                                                                                                                                                           |                                      |                    |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oxide Emission Rate (<br>Dioxide Emission Rate | ,                                                                                                                                                         | 17.58 kg/m²<br>11.54 kg/m²           | ОК                 |
| 2 Fabric U-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                                                                                                                                           | 11.04 kg/m                           | UN                 |
| Element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                | Average                                                                                                                                                   | Highest                              |                    |
| External                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | wall                                           | 0.20 (max. 0.30)                                                                                                                                          | 0.20 (max. 0.70)                     | ОК                 |
| Party wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                              | 0.00 (max. 0.20)                                                                                                                                          | -                                    | OK                 |
| Floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                | (no floor)                                                                                                                                                |                                      |                    |
| Roof<br>Openings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                              | 0.13 (max. 0.20)<br>1.47 (max. 2.00)                                                                                                                      | 0.13 (max. 0.35)<br>1.50 (max. 3.30) | OK<br>OK           |
| 3 Design air per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                | 1.47 (max. 2.00)                                                                                                                                          | 1.00 (max. 0.00)                     | ÖN                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | permeability at 50 pas                         | cals                                                                                                                                                      | 3.00                                 |                    |
| Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , , , , , , , , , , , , , , , , , , ,          |                                                                                                                                                           | 10.0                                 | OK                 |
| 4 Heating efficie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ency                                           |                                                                                                                                                           |                                      |                    |
| Main Heati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                | Database: (rev 315, produc                                                                                                                                | ct index 016669):                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | Boiler system with radiators<br>Brand name: Alpha<br>Model: InTec 28X<br>Model qualifier:<br>(Combi boiler)<br>Efficiency 88.2 % SEDBUK<br>Minimum 88.0 % |                                      | ОК                 |
| Secondary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | heating system:                                | None                                                                                                                                                      |                                      |                    |
| 5 Cylinder insul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ation                                          |                                                                                                                                                           |                                      |                    |
| Hot water S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                              | No cylinder                                                                                                                                               |                                      | N/A                |
| Solar water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                              |                                                                                                                                                           |                                      |                    |
| Dedicated s<br>Minimum:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | solar storage volume:                          | 90 litres<br>62 litres                                                                                                                                    |                                      | ОК                 |
| within the first state of the s |                                                |                                                                                                                                                           |                                      | ÖK                 |

Solar water heating

# **Regulations Compliance Report**

| 6 Controls                                    |                                        |                                             |                      |
|-----------------------------------------------|----------------------------------------|---------------------------------------------|----------------------|
| Space heating controls<br>Hot water controls: | Time and temperature zo<br>No cylinder | ne control                                  | ОК                   |
| Boiler interlock:                             | Yes                                    |                                             | ОК                   |
| Low energy lights                             |                                        |                                             |                      |
| Percentage of fixed lights wi                 | th low-energy fittings                 | 100.0%                                      |                      |
| Minimum                                       |                                        | 75.0%                                       | OK                   |
| 3 Mechanical ventilation                      |                                        |                                             |                      |
| Not applicable                                |                                        |                                             |                      |
| Summertime temperature                        |                                        |                                             |                      |
| Overheating risk (South Eas                   | t England):                            | Medium                                      | OK                   |
| ased on:                                      |                                        |                                             |                      |
| Overshading:                                  |                                        | Average or unknown                          |                      |
| Windows facing: South East                    |                                        | 16.8m <sup>2</sup> , Overhang twice as wide | as window, ratio NaN |
| Windows facing: North East                    |                                        | 6.56m <sup>2</sup> , Overhang twice as wide | as window, ratio NaN |
| Ventilation rate:                             |                                        | 4.00                                        |                      |
| Blinds/curtains:                              |                                        |                                             |                      |
|                                               |                                        | shutter closed 100% of da                   | ylight hours         |
| 0 Key features                                |                                        |                                             |                      |
| Design air permeablility                      |                                        | 3.0 m³/m²h                                  |                      |
| Doors U-value                                 |                                        | 1 W/m²K                                     |                      |
| External Walls U-value                        |                                        | 0.17 W/m²K                                  |                      |

## **SAP Input**

| Property Details:                                                                                                                                                                                     | Flat 5 139-147                                                  | Camden                                    | Road                                                                                                                                                                                                                                                 |                                                    |                                                   |                                  |                         |                                 |                                    |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------|-------------------------|---------------------------------|------------------------------------|--|--|--|--|
| Address:<br>Located in:<br>Region:<br>UPRN:<br>RRN:<br>Date of assess<br>Date of certific<br>Assessment ty<br>Transaction ty<br>Related party of<br>Thermal Mass<br>Dwelling desig<br>than 125 litres | ate:<br>be:<br>be:<br>lisclosure:<br>Parameter:<br>ned to use l | E<br>S<br>O<br>O<br>N<br>N<br>N<br>I<br>I | Flat 5, 139-147 Camden Road, London, NW1 9HA<br>England<br>South East England<br>na<br>0000-0000-0000-0000-0000<br>01 November 2011<br>01 November 2011<br>New dwelling design stage<br>New dwelling<br>No related party<br>Indicative Value<br>True |                                                    |                                                   |                                  |                         |                                 |                                    |  |  |  |  |
| Property descripti                                                                                                                                                                                    | on:                                                             |                                           |                                                                                                                                                                                                                                                      |                                                    |                                                   |                                  |                         |                                 |                                    |  |  |  |  |
| Dwelling type:<br>Detachment:<br>Year Completed:<br>Floor Location:<br>Floor 0<br>Living area:<br>Front of dwelling                                                                                   |                                                                 | E<br>2<br>F<br>7<br>3                     | lat<br>nd-teri<br>011<br>Ioor a<br>8.43 m<br>8.85 m<br>outh E                                                                                                                                                                                        | area:<br>1 <sup>2</sup> (fraction 0.49             |                                                   | torey heigh<br>2.8 m             | t:                      |                                 |                                    |  |  |  |  |
| Opening types:                                                                                                                                                                                        |                                                                 |                                           |                                                                                                                                                                                                                                                      |                                                    |                                                   |                                  |                         |                                 |                                    |  |  |  |  |
| Name:<br>front door<br>SE<br>NE                                                                                                                                                                       | Source:<br>Manufacture<br>Manufacture<br>Manufacture            | r                                         | Sol<br>Wir                                                                                                                                                                                                                                           | pe:<br>id<br>ndows<br>ndows                        |                                                   | 0.1, soft coat<br>0.1, soft coat |                         | Fran<br>Metal<br>PVC-U<br>PVC-U | J                                  |  |  |  |  |
| Name:<br>front door<br>SE<br>NE                                                                                                                                                                       | Gap:<br>mm<br>16mm or mo<br>16mm or mo                          |                                           | Fra<br>0.8<br>0.8<br>0.8                                                                                                                                                                                                                             |                                                    | g-value:<br>0<br>0.8<br>0.8                       | U-valu<br>1<br>1.5<br>1.5        | ie: N<br>1<br>1         |                                 | enings:                            |  |  |  |  |
| Name:<br>front door<br>SE<br>NE                                                                                                                                                                       | Type-Nam                                                        | ie:                                       | to o<br>ext                                                                                                                                                                                                                                          | cation:<br>common area<br>ernal wall<br>ernal wall | Orient:<br>North West<br>South East<br>North East |                                  | Width:<br>0<br>0<br>0   | Heig<br>0<br>0<br>0             | ht:                                |  |  |  |  |
| Overshading:                                                                                                                                                                                          |                                                                 | А                                         | veraae                                                                                                                                                                                                                                               | e or unknown                                       |                                                   |                                  |                         |                                 |                                    |  |  |  |  |
| Opaque Elements                                                                                                                                                                                       | :                                                               | , .                                       |                                                                                                                                                                                                                                                      |                                                    |                                                   |                                  |                         |                                 |                                    |  |  |  |  |
| Type:<br>External Elements<br>external wall<br>to common area<br>flat roof<br>Internal Elements<br>Party Elements                                                                                     | Gross area:<br>94.08<br>3.08<br>2.52<br>20.86                   | Openir<br>23.36<br>1.68<br>0              | ngs:                                                                                                                                                                                                                                                 | Net area:<br>70.72<br>1.4<br>2.52                  | U-value:<br>0.2<br>0.2<br>0.13                    | Ru value:<br>0<br>0.82<br>0      | Curta<br>False<br>False | ain wall:                       | Kappa:<br>N/A<br>N/A<br>N/A<br>N/A |  |  |  |  |
| Thermal bridges:                                                                                                                                                                                      |                                                                 |                                           |                                                                                                                                                                                                                                                      |                                                    |                                                   |                                  |                         |                                 |                                    |  |  |  |  |
| Thermal bridges:                                                                                                                                                                                      |                                                                 |                                           | ser-de<br>=0.04                                                                                                                                                                                                                                      | fined y-value                                      |                                                   |                                  |                         |                                 |                                    |  |  |  |  |

# **SAP Input**

| Ventilation:                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pressure test:<br>Ventilation:<br>Number of chimneys:<br>Number of open flues:<br>Number of fans:<br>Number of sides sheltered:<br>Design q50:            | Yes (As designed)<br>Natural ventilation (extract fans)<br>0<br>2<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Main heating system:                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Main heating system:                                                                                                                                      | Central heating systems with radiators or underfloor heating<br>Gas boilers and oil boilers<br>Fuel: mains gas<br>Info Source: Boiler Database<br>Database: (rev 315, product index 016669) SEDBUK2009 90.0%<br>Brand name: Alpha<br>Model: InTec 28X<br>Model qualifier:<br>(Combi boiler)<br>Systems with radiators<br>Pump in heat space: Yes                                                                                                                                                                                                                                       |
| Main heating Control:                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Main heating Control:                                                                                                                                     | Time and temperature zone control<br>Control code: 2110<br>Boiler interlock: Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Secondary heating system:                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Secondary heating system:                                                                                                                                 | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Water heating:                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Water heating:                                                                                                                                            | From main heating system<br>Water code: 901<br>Fuel :mains gas<br>No hot water cylinder<br>Flue Gas Heat Recovery System:<br>Database (rev 315, product index 060002)<br>Brand name: Zenex<br>Model: GasSaver<br>Model qualifier: GS-1<br>Solar panel: True<br>aperture area: 2.5<br>Flat plate, glazed<br>default values: False<br>collector zero-loss efficiency: 0.8<br>collector heat loss coefficient: 3.175<br>orientation: South, 30° pitch<br>overshading: None or Very Little (<20%)<br>dedicated solar store volume: 90 litres (seperate store)<br>solar powered pump: False |
| Others:                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Electricity tariff:<br>In Smoke Control Area:<br>Conservatory:<br>Low energy lights:<br>Terrain type:<br>EPC language:<br>Wind turbine:<br>Photovoltaics: | standard tariff<br>Unknown<br>No conservatory<br>100%<br>Dense urban<br>English<br>No<br>None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Briary energy Consultants N. Barker 0203 091 3391 info@briaryenergy.co.uk

## **SAP Input**

Assess Zero Carbon Home:

No

| Assessor Name:       Strom FSAP 2009       Stroma Number:       STRO003305         Software Name:       Stroma FSAP 2009       Stroma Variance Stat 5 139-147 Camden Road         Coverall dwelling dimensions:       Flat 5, 139-147 Camden Road, London, NW1 9H2         Coverall dwelling dimensions:       Are Height(m)       Volume(m)         Ground floor       Are Height(m)       Volume(m)         Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)       Tata 3       (i)         Develing volume       Cal-table(3b)+(3d)+(3d)+(3d)+(3d)+(3d)+(3d)+(3d)+(3d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                               |                                | User D              | etails:                |                        |           |                         |         |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------|------------------------|------------------------|-----------|-------------------------|---------|---|
| Address :Flat 5, 139-147 Camden Road, London, NW1 9HA1. Overall divelling dimensions:Area(m?)Ave Height(m)Volume(m?)Ground floor78.43(ia) x2.8(ia) =219.6(ia)Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)78.43(i)2.8(ia) =219.6(is)Dwelling volume(3a)+(3b)+(3c)+(3d)+(3c)+(3n) =219.6(is)(ia)(ia)+(3b)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | •                              |                     | Software Ver           | rsion:                 | Versio    |                         |         |   |
| Area(m <sup>2</sup> )       Volume(m <sup>3</sup> )         Ground floor       (2a)       (2a) <th< td=""><td></td><td></td><td></td><td></td><td>39-147 Camder</td><td>n Road</td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |                                |                     |                        | 39-147 Camder          | n Road    |                         |         |   |
| Area(m <sup>2</sup> )Ave Height(m)Volume(m <sup>2</sup> )Ground floor78.43(1a)2.8(2a)219.6(3a)Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)78.43(4)(a)(a)Dwelling volume(3a)+(3b)+(3a)+(3a)+(3a)+(3a)+(3a)+(3a)+(3a)+(3a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               | · ·                            | den Road, Lond      | don, NW1 9HA           |                        |           |                         |         |   |
| Ground floor78.43(1a) x2.19.6(3a)Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)78.43(1a) x2.19.6(3a)Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)78.43(1a) x2.19.6(3a)Output total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)78.43(4)Output total floor area TFA = (1a)+(1b)+(1c)+(1e)+(1e)+(1a)+(1a)+(2a)+(3d)+(3d)+(3d)+(3d)+(3d)+(3d)+(3d)+(3d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1. Overall dwelling dimer                                                                                     | ISIONS:                        | Aroa                | (m <sup>2</sup> )      | Ave Height(m)          |           | Valuma(m3)              |         |   |
| Developme $(3)+(3)+(3)+(3)+(3)+(3)+(3)+(3)+(3)+(3)+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ground floor                                                                                                  |                                |                     | · · ·                  |                        |           | . ,                     | (3a)    |   |
| 2. Ventilation rate:main<br>heating<br>heatingSecondary<br>heating<br>heatingothertotalm³ per hourNumber of chimneys $0$ $+$ $0$ $=$ $0$ $x40$ $0$ $(6a)$ Number of open flues $0$ $+$ $0$ $=$ $0$ $x40$ $0$ $(6a)$ Number of passive vents $0$ $+$ $0$ $=$ $0$ $x10$ $0$ $(7a)$ Number of passive vents $0$ $x10$ $0$ $(7a)$ $0$ $x40$ $0$ $(7c)$ Number of storesy as fires $0$ $x40$ $0$ $(7c)$ $0$ $(7c)$ $0$ $(7c)$ Infitration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7c)$ = $20$ $+$ $(6)$ $0$ $(7c)$ Number of storeys in the dwelling (ns)Additional infiltration $(9)$ $(9)$ $(10)$ $0$ $(11)$ Number of storeys in the dwelling (ns)Additional infiltration: $0$ $(12)$ $0$ $(11)$ Number of storeys in the dwelling (ns) $Additional infiltration(9)(14)0(14)Number of storeys and a parsen, use the value corresponding to the greater wall area (atterdeducting reas of opaning); if equal ware 0.500(12)If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(13)0(14)Percentage of windows and doors draught stripped000(13)Number of sides on which sheltered0000<$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total floor area TFA = (1a                                                                                    | )+(1b)+(1c)+(1d)+(1e)+         | +(1n) 7             | 8.43 (4)               |                        |           |                         |         |   |
| main<br>heatingSecondary<br>heatingothertotalm³ per hourNumber of chimneys0+0=0<40 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dwelling volume                                                                                               |                                |                     | (3a)+(3b)              | )+(3c)+(3d)+(3e)+      | (3n) =    | 219.6                   | (5)     |   |
| heating<br>0heating<br>0 $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ </td <td>2. Ventilation rate:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2. Ventilation rate:                                                                                          |                                |                     |                        |                        |           |                         |         |   |
| Number of chimneys $0$ + $0$ + $0$ = $0$ $x40$ $0$ $(66)$ Number of open flues $0$ + $0$ = $0$ $x20$ $0$ $(6b)$ Number of intermittent fans $2$ $x10$ = $20$ $(7a)$ Number of passive vents $0$ $x10$ $0$ $(7b)$ Number of flueless gas fires $0$ $x40$ $0$ $(7c)$ Air changes per hourInfiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7c)$ = $20$ $+(5)$ = $0.09$ $(8)$ If a presurisation test has been carried out or is intended, proceed to $(17)$ , otherwise continue from $(9)$ to $(16)$ $0.9$ $(6)$ Number of storeys in the dwelling (ns) $((9)$ $((10)$ $((10)$ $((11))$ $((10)$ Structural infiltration $0.25$ for steel or timber frame or $0.35$ for masonry construction $((10)$ $(11)$ $(10)$ Structural infiltration in $0.25$ for steel or timber frame or $0.35$ for masonry construction $(13)$ $0$ $(14)$ Percentage of windows and doors draught stripped $0.25 - [0.2 \times (14) \div 100] =$ $0$ $(13)$ Percentage of windows and doors draught stripped $0.25 - [0.2 \times (14) \div 100] =$ $0.21$ $(16)$ Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area $3$ $(17)$ If based on air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area $3$ $(17)$ Air permeability value applies if a presurisation test has be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                               |                                |                     | other                  | total                  |           | m <sup>3</sup> per hour |         |   |
| Number of intermittent fans2 $x10 =$ 20(7a)Number of passive vents0 $x10 =$ 0(7b)Number of flueless gas fires0 $x40 =$ 0(7c)Air changes per hourInfiltration due to chinneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) =20 $+(6) =$ 0.09(8)Air changes per hourInfiltration due to chinneys, flues and fans = (6a)+(6b)+(7a)+(7c) =20 $+(6) =$ 0.09(9)Additional infiltration(19)Number of storeys in the dwelling (ns)Additional infiltration:0.25 for steel or timber frame or 0.35 for masonry constructionif both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal use $0.35$ (11)If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0O(12)If no draught lobby, enter 0.05, else enter 0O(13)Percentage of windows and doors draught strippedWindow infitration0.25 - [0.2 x (14) + 100] =O(14)Window infitrationAir permeability value, q50, expressed in cubic metres per hour per square metre of envelope areaAir permeability value, q50, expressed in cubic metres per hour per square metre of envelope areaAir permeability value, q50, expressed in cubic metres per hour per square metre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Number of chimneys                                                                                            |                                |                     | 0 =                    | 0 ×                    | 40 =      | 0                       | (6a)    |   |
| Number of passive vents<br>Number of gassive vents<br>Number of flueless gas fires<br>0 x $10 = 0$ (7c)<br>At $0 = 0$ (9c)<br>At $0 = 0$ (10)<br>At $0 = 0$ (11)<br>At $0 = 0$ (12)<br>If $0 = 0$ (13)<br>Percentage of windows and doors draught stripped<br>At $0 = 0$ (14)<br>At $0 = 0$ (15)<br>Infiltration rate<br>At $0 = 0$ (16)<br>At $0 = 0$ (17)<br>At $0 = 0$ (18)<br>At $0 = 0$ (19)<br>At $0 = 0$ (19)<br>At $0 = 0$ (19)<br>At $0 = 0$ (10)<br>At $0 = 0$ (10)<br>At $0 = 0$ (10)<br>At $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Number of open flues                                                                                          | 0 +                            | 0 +                 | 0 =                    | 0 ×                    | 20 =      | 0                       | (6b)    |   |
| Number of flueless gas fires<br>$ \begin{array}{c} 0 \\ \text{Number of flueless gas fires \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Number of intermittent far                                                                                    | is                             |                     | <u> </u>               | 2 ×                    | 10 =      | 20                      | (7a)    |   |
| Air changes per hourInfiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b) = $20$ + (6) = $0.09$ (8)If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)(9)(10)Number of storeys in the dwelling (ns) $0$ $0$ (10)Additional infiltration $(9)-1)x0.1 =$ $0$ (10)Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction $0$ (11)if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 $0$ $0$ If no draught lobby, enter 0.05, else enter 0 $0$ $0$ $(12)$ Percentage of windows and doors draught stripped $0$ $0$ $(13)$ Window infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ $0$ $(15)$ Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ $0$ $(15)$ Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area $3$ $(17)$ Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area $3$ $(17)$ Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area $3$ $(17)$ Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used $0.24$ $(18)$ Number of sides on which sheltered $(20) = 1 - [0.075 \times (19)] =$ $0.25$ $(20)$ Infiltration rate incorporating shel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Number of passive vents                                                                                       |                                |                     | Γ                      | 0 ×                    | 10 =      | 0                       | (7b)    |   |
| Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7c) = 20 + (5) = 0.09$ (8)<br>If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)<br>Number of storeys in the dwelling (ns)<br>Additional infiltration (9)-1y-0.1 = 0 (10)<br>Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction<br>if both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.35<br>If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12)<br>If no draught lobby, enter 0.05, else enter 0 0 (14)<br>Window infiltration rate (8)+(10)+(11)+(12)+(13)+(15) = 0 (16)<br>Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area<br>Air permeability value, af50, expressed in cubic metres per hour per square metre of envelope area<br>Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used<br>Number of sides on which sheltered<br>Shelter factor (20) = 1 - [0.075 x (19)] = 0.22 (21)<br>Infiltration rate modified for monthly wind speed<br>Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br>Monthly average wind speed from Table 7<br>(22)m 54 5.1 5.1 4.5 4.1 3.9 3.7 3.7 4.2 4.5 4.8 5.1<br>Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number of flueless gas fir                                                                                    | es                             |                     | Γ                      | 0 ×                    | 40 =      | 0                       | (7c)    |   |
| Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7c) = 20 + (5) = 0.09$ (8)<br>If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)<br>Number of storeys in the dwelling (ns)<br>Additional infiltration (9)-1y-0.1 = 0 (10)<br>Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction<br>if both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.35<br>If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12)<br>If no draught lobby, enter 0.05, else enter 0 0 (14)<br>Window infiltration rate (8)+(10)+(11)+(12)+(13)+(15) = 0 (16)<br>Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area<br>Air permeability value, af50, expressed in cubic metres per hour per square metre of envelope area<br>Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used<br>Number of sides on which sheltered<br>Shelter factor (20) = 1 - [0.075 x (19)] = 0.22 (21)<br>Infiltration rate modified for monthly wind speed<br>Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br>Monthly average wind speed from Table 7<br>(22)m 54 5.1 5.1 4.5 4.1 3.9 3.7 3.7 4.2 4.5 4.8 5.1<br>Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               |                                |                     | _                      |                        | Air ch    | anges per hou           | _<br>ır |   |
| If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)<br>Number of storeys in the dwelling (ns)<br>Additional infiltration $[(9)-1]\times 0.1 = 0$ (10)<br>Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction<br>if both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.35<br>If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0<br>If no draught lobby, enter 0.05, else enter 0<br>Percentage of windows and doors draught stripped<br>Window infiltration $0.25 - [0.2 \times (14) + 100] =$<br>Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$<br>Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area<br><i>3</i> (17)<br>If based on air permeability value, then (18) = $(17) + 20] + (8)$ , otherwise (18) = $(16)$<br>Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used<br>Number of sides on which sheltered<br>Shelter factor $(20) = 1 - [0.075 \times (19)] =$<br>Infiltration rate modified for monthly wind speed<br>$\boxed{20} = 1 - [0.075 \times (19)] =$<br>$\boxed{21} = (35) = (22)$<br>$\boxed{22} = (21) = (35) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22) = (22)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Infiltration due to chimney                                                                                   | s, flues and fans = $(6a)$     | +(6b)+(7a)+(7b)+(7  | 7c) =                  | 20                     | r         |                         | -       |   |
| Additional infiltration[(9)-1]x0.1 =0(10)Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction<br>if both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.350(11)If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(12)If no draught lobby, enter 0.05, else enter 00(13)Percentage of windows and doors draught stripped0(14)Window infiltration0.25 - [0.2 x (14) + 100] =(15)Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =(16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area3If based on air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16)0.24Air permeability value, applies if a pressurisation test has been done or a degree air permeability is being used(19)Number of sides on which sheltered2(19)Shelter factor(20) = 1 - [0.075 x (19)] =0.25Infiltration rate incorporating shelter factor(21) = (18) x (20) =0.2Infiltration rate modified for monthly wind speed013Monthly average wind speed from Table 70.20.2(22)me5.45.15.14.13.93.73.74.24.55.1Wind Factor (22a)m = (22)m ÷ 4000.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                             |                                |                     |                        |                        | . (0) –   | 0.03                    |         |   |
| Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry constructionif both types of wall are present, use the value corresponding to the greater wall area (after<br>deducting areas of openings); if equal user 0.35If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0If no draught lobby, enter 0.05, else enter 0Percentage of windows and doors draught strippedWindow infiltration0.25 - [0.2 x (14) ± 100] =Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =(16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area(17)If based on air permeability value, then (18) = [(17) ± 20]+(8), otherwise (18) = (16)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being usedNumber of sides on which shelteredShelter factor(20) = 1 - [0.075 x (19)] =Infiltration rate modified for monthly wind speedJanJanAprMayJanFebMarAprMayJanFebMarAprMayJanFebMarAprMayJanFebMarAprMayJanFebMarAprMayJanFebMarAprMayJanFeb<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number of storeys in the                                                                                      | e dwelling (ns)                |                     |                        |                        | Γ         | 0                       | (9)     |   |
| if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35<br>If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0<br>If no draught lobby, enter 0.05, else enter 0<br>Percentage of windows and doors draught stripped<br>Window infiltration<br>nate<br>$0.25 - [0.2 \times (14) \div 100] =$<br>0  (14)<br>Window infiltration<br>$0.25 - [0.2 \times (14) \div 100] =$<br>0  (15)<br>Infiltration rate<br>(8) + (10) + (11) + (12) + (13) + (15) =<br>Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area<br>If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$<br>$Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered Shelter factor (20) = 1 - [0.075 \times (19)] =0.2$ (21)<br>Infiltration rate modified for monthly wind speed<br>$\boxed{2  (21)}$<br>1nfiltration rate modified for monthly wind speed<br>$\boxed{2  (22)} = 1 - [0.075 \times (19)] =$<br>0.2 (21)<br>$\boxed{101}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>$\boxed{102}$<br>10 | Additional infiltration                                                                                       |                                |                     |                        | [(9)                   | -1]x0.1 = | 0                       | (10)    |   |
| deducting areas of openings); if equal user 0.35If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0If no draught lobby, enter 0.05, else enter 00Percentage of windows and doors draught stripped0Window infiltration $0.25 \cdot [0.2 \times (14) \div 100] =$ Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area3If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ 0.24Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used2Number of sides on which sheltered2(19)Shelter factor(20) = 1 - [0.075 \times (19)] =0.2Infiltration rate modified for monthly wind speed0.21 = (18) × (20) =0.2Monthly average wind speed from Table 70.2(21)(22)me5.45.15.14.5Wind Factor (22a)m = (22)m ÷ 443.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Structural infiltration: 0.2                                                                                  | 25 for steel or timber fra     | ame or 0.35 for     | masonry constr         | uction                 | [         | 0                       | (11)    |   |
| If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(12)If no draught lobby, enter 0.05, else enter 00(13)Percentage of windows and doors draught stripped0(14)Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0(15)Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =0(16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area3(17)If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ 0.24(18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used2(19)Number of sides on which sheltered(20) = 1 - [0.075 x (19)] =0.2(21)Infiltration rate incorporating shelter factor(21) = (18) x (20) =0.2(21)Infiltration rate modified for monthly wind speed0(22) = (22)m + 4(22)m + 4Wind Factor (22a)m = (22)m ÷ 44.13.93.73.74.24.54.85.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |                                | onding to the great | er wall area (after    |                        |           |                         |         |   |
| If no draught lobby, enter 0.05, else enter 00Percentage of windows and doors draught stripped0Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area3If based on air permeability value, then (18) = [(17) \div 20]+(8), otherwise (18) = (16)0.24Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used2Number of sides on which sheltered2Shelter factor(20) = 1 - [0.075 x (19)] =Infiltration rate modified for monthly wind speed0.2Infiltration rate modified for monthly wind speed0.2Monthly average wind speed from Table 7(22)me5.45.1Shelter (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                                | d) or 0.1 (seale    | d), else enter 0       |                        | Г         | 0                       | 7(12)   |   |
| Percentage of windows and doors draught stripped0Window infiltration $0.25 \cdot [0.2 \times (14) \div 100] =$ 0Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ 0Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area3If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ 0.24Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used0Number of sides on which sheltered2(19)Shelter factor(20) = 1 - [0.075 \times (19)] =0.25Infiltration rate incorporating shelter factor(21) = (18) × (20) =0.2Infiltration rate modified for monthly wind speed0(21) = (18) × (20) =0.2Monthly average wind speed from Table 7(22)m = $5.4$ $5.1$ $5.1$ $4.5$ $4.1$ Wind Factor (22a)m = (22)m $\div 4$ $4.5$ $4.8$ $5.1$ $5.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                             |                                |                     | 2), 0.00 001 0         |                        | Γ         |                         | 4       |   |
| Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0(15)Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =0(16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area3(17)If based on air permeability value, then $(18) = [(17) \div 20]+(8)$ , otherwise $(18) = (16)$ 0.24(18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used0(19)Number of sides on which sheltered2(19)0.85(20)Shelter factor(20) = 1 - [0.075 x (19)] =0.25(20)Infiltration rate incorporating shelter factor(21) = (18) x (20) =0.2(21)Infiltration rate modified for monthly wind speed00.2(21)Monthly average wind speed from Table 7(22)m = $5.4$ $5.1$ $5.1$ $4.5$ $4.1$ $3.9$ $3.7$ $3.7$ $4.2$ $4.5$ $4.8$ $5.1$ Wind Factor (22a)m = (22)m $\div 4$ $4.5$ $4.8$ $5.1$ $4.5$ $4.1$ $3.9$ $3.7$ $3.7$ $4.2$ $4.5$ $4.8$ $5.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                                | pped                |                        |                        | Ĺ         |                         | 4       |   |
| Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ 0(16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area3(17)If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ 0.24(18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used0.24(18)Number of sides on which sheltered2(19)0.85(20)Shelter factor(20) = 1 - [0.075 x (19)] =0.25(20)Infiltration rate incorporating shelter factor(21) = (18) x (20) =0.2(21)Infiltration rate modified for monthly wind speed0.2(21)(21)Monthly average wind speed from Table 75.15.14.13.93.73.74.24.54.85.1Wind Factor (22a)m = (22)m ÷ 4 <td between="" column="" seco<="" second="" td="" the=""><td>-</td><td></td><td></td><td>0.25 - [0.2 x (14) ÷ 1</td><td>00] =</td><td>ľ</td><td></td><td>4</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <td>-</td> <td></td> <td></td> <td>0.25 - [0.2 x (14) ÷ 1</td> <td>00] =</td> <td>ľ</td> <td></td> <td>4</td> | -                              |                     |                        | 0.25 - [0.2 x (14) ÷ 1 | 00] =     | ľ                       |         | 4 |
| Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area3(17)If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ 0.24(18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used0.24(18)Number of sides on which sheltered2(19)Shelter factor(20) = 1 - [0.075 x (19)] =0.85(20)Infiltration rate incorporating shelter factor(21) = (18) x (20) =0.2(21)Infiltration rate modified for monthly wind speed0.20.2(21)Monthly average wind speed from Table 72.13.73.74.24.54.85.1Wind Factor (22a)m = (22)m ÷ 444.13.93.73.74.24.54.85.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Infiltration rate                                                                                             |                                |                     | (8) + (10) + (11) + (1 | 2) + (13) + (15) =     | ľ         |                         | 4       |   |
| Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Air permeability value, o                                                                                     | 50, expressed in cubic         | metres per ho       | ur per square m        | etre of envelope       | area      |                         | (17)    |   |
| Number of sides on which sheltered $2$ (19)Shelter factor $(20) = 1 - [0.075 \times (19)] =$ $0.85$ (20)Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ $0.2$ (21)Infiltration rate modified for monthly wind speed $0.2$ (21) $0.2$ (21)Infiltration rate modified for monthly wind speed $0.2$ (21) $0.2$ (21)Monthly average wind speed from Table 7 $0.2$ (22)m= $5.4$ $5.1$ $5.1$ $4.5$ $4.1$ $3.9$ $3.7$ $3.7$ $4.2$ $4.5$ $4.8$ $5.1$ Wind Factor (22a)m = (22)m ÷ 4 $0.2$ $0.2$ $0.2$ $0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | If based on air permeabilit                                                                                   | ty value, then (18) = [(17)    | ÷ 20]+(8), otherwi  | se (18) = (16)         |                        | Ì         | 0.24                    | (18)    |   |
| Shelter factor $(20) = 1 - [0.075 \times (19)] =$ $(20)$ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ $0.2$ $(21)$ Infiltration rate modified for monthly wind speed $Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov DecMonthly average wind speed from Table 7(22)m = 5.4 5.1 5.1 4.5 4.1 3.9 3.7 3.7 4.2 4.5 4.8 5.1Wind Factor (22a)m = (22)m ÷ 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Air permeability value applies                                                                                | if a pressurisation test has b | been done or a deg  | ree air permeability   | is being used          | L         |                         | -       |   |
| Infiltration rate incorporating shelter factor       (21) = (18) × (20) =       0.2       (21)         Infiltration rate modified for monthly wind speed       Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec         Monthly average wind speed from Table 7       (22)m= $5.4$ $5.1$ $5.1$ $4.5$ $4.1$ $3.9$ $3.7$ $3.7$ $4.2$ $4.5$ $4.8$ $5.1$ Wind Factor (22a)m = (22)m ÷ 4       Image: Construct on the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                               | sheltered                      |                     |                        |                        | [         | 2                       | (19)    |   |
| Infiltration rate modified for monthly wind speed<br>$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                               |                                |                     |                        | 9)] =                  | ļ         | 0.85                    | (20)    |   |
| JanFebMarAprMayJunJulAugSepOctNovDecMonthly average wind speed from Table 7 $(22)m=$ $5.4$ $5.1$ $5.1$ $4.5$ $4.1$ $3.9$ $3.7$ $3.7$ $4.2$ $4.5$ $4.8$ $5.1$ Wind Factor (22a)m = (22)m $\div 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                                             | 0                              |                     | (21) = (18) x (20) =   |                        | L         | 0.2                     | (21)    |   |
| Monthly average wind speed from Table 7 $(22)m =$ 5.4       5.1       5.1       4.5       4.1       3.9       3.7       3.7       4.2       4.5       4.8       5.1         Wind Factor (22a)m = (22)m ÷ 4       Image: Comparison of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Infiltration rate modified fo                                                                                 | r monthly wind speed           | I                   |                        | r                      | ,         |                         |         |   |
| $(22)m = \begin{bmatrix} 5.4 & 5.1 & 5.1 & 4.5 & 4.1 & 3.9 & 3.7 & 3.7 & 4.2 & 4.5 & 4.8 & 5.1 \end{bmatrix}$ Wind Factor (22a)m = (22)m ÷ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jan Feb I                                                                                                     | Mar Apr May                    | Jun Jul             | Aug Sep                | Oct Nov                | Dec       |                         |         |   |
| Wind Factor (22a)m = (22)m $\div$ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monthly average wind spe                                                                                      | ed from Table 7                | i                   | ii                     | · · · · ·              | ·         |                         |         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (22)m= 5.4 5.1 §                                                                                              | 5.1 4.5 4.1                    | 3.9 3.7             | 3.7 4.2                | 4.5 4.8                | 5.1       |                         |         |   |
| (22a)m= 1.35 1.27 1.27 1.12 1.02 0.98 0.92 0.92 1.05 1.12 1.2 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wind Factor (22a)m = (22                                                                                      | )m ÷ 4                         |                     |                        |                        |           |                         |         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (22a)m= 1.35 1.27 1                                                                                           | .27 1.12 1.02                  | 0.98 0.92           | 0.92 1.05              | 1.12 1.2               | 1.27      |                         |         |   |

| Adjust  | ed infiltr              | ation rat                       | e (allowi                 | ng for sh      | nelter an    | d wind s     | peed) =      | (21a) x      | (22a)m               |                   |              |                      |          |                |
|---------|-------------------------|---------------------------------|---------------------------|----------------|--------------|--------------|--------------|--------------|----------------------|-------------------|--------------|----------------------|----------|----------------|
|         | 0.28                    | 0.26                            | 0.26                      | 0.23           | 0.21         | 0.2          | 0.19         | 0.19         | 0.22                 | 0.23              | 0.25         | 0.26                 |          |                |
|         |                         | c <i>tive air</i><br>al ventila | change i                  | rate for t     | he appli     | cable ca     | se           |              |                      |                   |              |                      |          | (22.0)         |
|         |                         |                                 | using Appe                | endix N. (2    | 3b) = (23a   | a) x Fmv (e  | equation (N  | N5)), othe   | rwise (23b           | (23a) = (23a)     |              |                      | 0        | (23a)<br>(23b) |
|         |                         |                                 | overy: effici             |                |              |              |              |              |                      | (200)             |              |                      | 0        | (230)<br>(23c) |
|         |                         |                                 | -                         |                | -            |              |              |              |                      | 2h)m + (          | 23P) ^ [-    | 1 – (23c)            | 0        | (230)          |
| (24a)m= | r                       |                                 |                           | 0              |              |              |              | 0            | $\frac{1}{0}$        |                   |              | 1 - (230)            | - 100j   | (24a)          |
|         |                         |                                 | anical ve                 | _              | -            | -            |              |              |                      |                   | _            | Ů                    |          |                |
| (24b)m= |                         |                                 |                           | 0              |              |              |              | 0            |                      |                   | 230)         | 0                    | 1        | (24b)          |
|         |                         |                                 |                           |                |              |              |              |              |                      | 0                 | 0            | 0                    |          | (=)            |
|         |                         |                                 | tract ven<br>‹ (23b), t   |                | -            | -            |              |              |                      | 5 x (23t          | ))           |                      |          |                |
| (24c)m= | <u> </u>                | 0                               |                           | 0              | 0            |              | 0            |              | 0                    |                   | 0            | 0                    |          | (24c)          |
|         | _                       |                                 | on or wh                  | -              | -            |              |              |              |                      |                   |              |                      | l        |                |
| ,       |                         |                                 | en (24d)                  |                | •            | •            |              |              |                      | 0.5]              |              |                      |          |                |
| (24d)m= | 0.54                    | 0.53                            | 0.53                      | 0.53           | 0.52         | 0.52         | 0.52         | 0.52         | 0.52                 | 0.53              | 0.53         | 0.53                 |          | (24d)          |
| Effe    | ctive air               | change                          | rate - en                 | iter (24a      | ) or (24t    | o) or (24    | c) or (24    | d) in boy    | (25)                 |                   |              |                      | 1        |                |
| (25)m=  | 0.54                    | 0.53                            | 0.53                      | 0.53           | 0.52         | 0.52         | 0.52         | 0.52         | 0.52                 | 0.53              | 0.53         | 0.53                 |          | (25)           |
| 2 1 10  | et lesses               |                                 |                           |                | ~ **         |              |              | 1            | 1                    |                   | •            | •                    | 1        |                |
|         |                         | s and ne<br>Gros                | eat loss p                |                |              | Net Ar       | 00           | U-valı       | 10                   | AXU               |              | k-value              |          | A X k          |
| ELEN    |                         | area                            |                           | Openin<br>m    |              | A,r          |              | W/m2         |                      | (W/               | K)           | kJ/m <sup>2</sup> ·l |          | J/K            |
| Doors   |                         |                                 |                           |                |              | 1.68         | x            | 1            | =                    | 1.68              |              |                      |          | (26)           |
| Windo   | ws Type                 | e 1                             |                           |                |              | 16.8         | x1.          | /[1/( 1.5 )+ | 0.04] =              | 23.77             | =            |                      |          | (27)           |
| Windo   | ws Type                 | 2                               |                           |                |              | 6.56         | x1.          | /[1/( 1.5 )+ | 0.04] =              | 9.28              | =            |                      |          | (27)           |
| Walls - | Type1                   | 94.0                            | )8                        | 23.30          | 5            | 70.72        | 2 x          | 0.2          | =                    | 14.14             | ا آ          |                      |          | (29)           |
| Walls   |                         | 3.00                            |                           | 1.68           |              | 1.4          | x            | 0.17         |                      | 0.24              | ╡╏           |                      | $\dashv$ | (29)           |
| Roof    | . )   0 =               | 2.5                             |                           | 0              |              | 2.52         |              | 0.13         |                      | 0.24              | ╡╏           |                      |          | (30)           |
|         | aroa of c               | elements                        |                           | 0              |              |              |              | 0.13         |                      | 0.33              |              |                      |          |                |
|         |                         |                                 | , 111-                    |                |              | 99.68        |              |              |                      |                   | — , r        |                      |          | (31)           |
| Party v |                         |                                 |                           | ffa ati ya yui |              | 20.86        |              | 0            | =                    | 0                 |              |                      |          | (32)           |
|         |                         |                                 | ows, use e<br>sides of in |                |              |              | ated using   | normula 1    | /[(1/ <b>U-vai</b> t | le)+0.04j a       | as given in  | paragraph            | 1 3.2    |                |
| Fabric  | heat los                | ss, W/K :                       | = S (A x                  | U)             |              |              |              | (26)(30)     | ) + (32) =           |                   |              |                      | 49.45    | (33)           |
| Heat c  | apacity                 | Cm = S(                         | (Axk)                     |                |              |              |              |              | ((28).               | (30) + (32        | 2) + (32a).  | (32e) =              | 14664.18 | (34)           |
| Therm   | al mass                 | parame                          | ter (TMF                  | ? = Cm ÷       | - TFA) ir    | n kJ/m²K     |              |              | Indica               | tive Value        | : Medium     |                      | 250      | (35)           |
|         |                         | •                               | ere the de                |                |              |              |              | ecisely the  | e indicative         | e values of       | TMP in Ta    | able 1f              |          |                |
|         |                         |                                 | tailed calcu              |                |              |              |              |              |                      |                   |              |                      |          |                |
|         | -                       |                                 | x Y) cale                 |                | • •          | •            | <            |              |                      |                   |              |                      | 3.99     | (36)           |
|         | s of therma<br>abric he |                                 | are not kn                | own (36) =     | = 0.15 x (3  | 1)           |              |              | (22)                 | · (36) =          |              |                      |          |                |
|         |                         |                                 |                           | monthl         |              |              |              |              |                      |                   | 'OE) m v (E' |                      | 53.44    | (37)           |
| venua   |                         | 1                               | alculated                 |                |              | lun          | lul          | <u> </u>     | r                    | $= 0.33 \times ($ | <u> </u>     | i _                  | 1        |                |
| (38)m=  | Jan<br>39.01            | Feb<br>38.71                    | Mar<br>38.71              | Apr<br>38.16   | May<br>37.83 | Jun<br>37.68 | Jul<br>37.54 | Aug<br>37.54 | Sep<br>37.91         | Oct 38.16         | Nov<br>38.43 | Dec<br>38.71         |          | (38)           |
|         |                         |                                 |                           | 50.10          | 57.00        | 57.00        | 57.54        | 07.04        |                      |                   |              | 50.71                | l        |                |
|         |                         |                                 |                           | 01.0           | 04.07        | 01.10        | 00.07        | 00.07        | r                    | = (37) + (100)    | · ·          | 00.44                | 1        |                |
| (39)m=  | 92.44                   | 92.14                           | 92.14                     | 91.6           | 91.27        | 91.12        | 90.97        | 90.97        | 91.35                | 91.6              | 91.86        | 92.14                | 04.00    | (20)           |
|         |                         |                                 |                           |                |              |              |              |              |                      | Average =         | 3um(39)1     | 12 / 12=             | 91.63    | (39)           |

| Heat lo        | oss para   | meter (H     | HLP), W/    | /m²K              |                          |                               |                  |              | (40)m                 | = (39)m ÷   | (4)                                   |                    |         |              |
|----------------|------------|--------------|-------------|-------------------|--------------------------|-------------------------------|------------------|--------------|-----------------------|-------------|---------------------------------------|--------------------|---------|--------------|
| (40)m=         | 1.18       | 1.17         | 1.17        | 1.17              | 1.16                     | 1.16                          | 1.16             | 1.16         | 1.16                  | 1.17        | 1.17                                  | 1.17               |         |              |
| Numbe          | er of day  | rs in mor    | nth (Tab    | le 1a)            |                          | -                             |                  |              |                       | Average =   | Sum(40)₁.                             | <sub>12</sub> /12= | 1.17    | (40)         |
|                | Jan        | Feb          | Mar         | Apr               | May                      | Jun                           | Jul              | Aug          | Sep                   | Oct         | Nov                                   | Dec                |         |              |
| (41)m=         | 31         | 28           | 31          | 30                | 31                       | 30                            | 31               | 31           | 30                    | 31          | 30                                    | 31                 |         | (41)         |
|                |            |              |             |                   |                          |                               | 1                |              |                       | 1           |                                       |                    |         |              |
| 4. Wa          | iter heat  | ing enei     | gy requi    | irement:          |                          |                               |                  |              |                       |             |                                       | kWh/ye             | ear:    |              |
| Accum          |            | ipancy, I    | NI.         |                   |                          |                               |                  |              |                       |             |                                       | 10                 |         | (40)         |
| if TF          |            | 9, N = 1     |             | [1 - exp          | (-0.0003                 | 849 x (TF                     | FA -13.9         | )2)] + 0.0   | 0013 x ( <sup>-</sup> | TFA -13.    |                                       | 43                 |         | (42)         |
|                |            |              | ater usad   | ae in litre       | es per da                | ay Vd.av                      | erage =          | (25 x N)     | + 36                  |             | 91                                    | .97                |         | (43)         |
| Reduce         | the annua  | l average    | hot water   | usage by          | 5% if the a              | lwelling is                   | designed         | to achieve   |                       | se target o |                                       |                    |         |              |
| not more       | e that 125 | litres per j | person per  | r day (all w<br>r | ater use, l              | not and co                    | ld)<br>1         | 1            | r                     | 1           | · · · · ·                             |                    |         |              |
|                | Jan        | Feb          | Mar         | Apr               | May                      | Jun                           | Jul              | Aug          | Sep                   | Oct         | Nov                                   | Dec                |         |              |
| Hot wate       | -          |              | ay for ea   | r                 | Vd,m = fa                | ctor from 1                   | i able 1c x<br>I | (43)         |                       |             |                                       |                    |         |              |
| (44)m=         | 101.17     | 97.49        | 93.81       | 90.13             | 86.45                    | 82.77                         | 82.77            | 86.45        | 90.13                 | 93.81       | 97.49                                 | 101.17             |         | <b>-</b>     |
| Energy o       | content of | hot water    | used - cal  | culated m         | onthly $= 4$ .           | 190 x Vd,r                    | m x nm x D       | 0Tm / 3600   |                       |             | m(44) <sub>112</sub> =<br>ables 1b, 1 |                    | 1103.63 | (44)         |
| (45)m=         | 150.39     | 131.53       | 135.73      | 118.33            | 113.54                   | 97.98                         | 90.79            | 104.18       | 105.43                | 122.86      | 134.12                                | 145.64             |         |              |
| lf instant     | aneous w   | ater heatii  | ng at point | of use (no        | hot water                | r storage),                   | enter 0 in       | boxes (46    |                       | Total = Su  | m(45) <sub>112</sub> =                |                    | 1450.5  | (45)         |
| (46)m=         | 22.56      | 19.73        | 20.36       | 17.75             | 17.03                    | 14.7                          | 13.62            | 15.63        | 15.81                 | 18.43       | 20.12                                 | 21.85              |         | (46)         |
| Water          | storage    | loss:        |             |                   |                          |                               |                  |              |                       |             |                                       |                    |         |              |
| a) If ma       | anufactu   | irer's de    | clared lo   | oss facto         | r is knov                | vn (kWh                       | /day):           |              |                       |             |                                       | 0                  |         | (47)         |
| Tempe          | rature fa  | actor fro    | m Table     | 2b                |                          |                               |                  |              |                       |             |                                       | 0                  |         | (48)         |
| 0,             |            |              | •           | , kWh/ye          |                          |                               |                  | (47) x (48)  | ) =                   |             |                                       | 0                  |         | (49)         |
|                |            |              | •           |                   | s factor is<br>olar stor |                               |                  |              |                       |             |                                       |                    |         | (50)         |
| ,              |            |              | ·           | 0 ,               | enter 110                | 0                             |                  |              |                       |             |                                       | 0                  |         | (50)         |
|                |            |              |             |                   |                          |                               |                  | enter '0' in | box (50)              |             |                                       |                    |         |              |
|                |            |              | ,           |                   | e 2 (kW                  |                               | ,                |              |                       |             |                                       | 0                  |         | (51)         |
|                |            | from Tal     |             |                   |                          | 1/1116/06                     | <b>( y )</b>     |              |                       |             |                                       | 0                  |         | (51)         |
|                |            |              | m Table     | 2h                |                          |                               |                  |              |                       |             |                                       | 0<br>0             |         | (52)<br>(53) |
| •              |            |              |             | _~<br>, kWh/ye    | aar                      |                               |                  | ((50) x (51  | ) y (52) y            | (53) -      |                                       |                    |         | (54)         |
| •••            |            | 54) in (5    | -           | ,, y              | 541                      |                               |                  |              | ) X (02) X            | (00) –      |                                       | 0<br>0             |         | (55)         |
|                | , ,        | , ,          |             | for each          | month                    |                               |                  | ((56)m = (   | 55) × (41)            | m           |                                       | -                  |         |              |
| (56)m=         | 0          | 0            | 0           | 0                 | 0                        | 0                             | 0                | 0            | 0                     | 0           | 0                                     | 0                  |         | (56)         |
|                | -          | -            | -           | -                 | -                        |                               | -                | -            | -                     | -           | -                                     | m Append           | ix H    | (00)         |
|                |            |              |             | - · ·             |                          |                               | 1                | r ·          | · · ·                 |             |                                       |                    |         | (57)         |
| (57)m=         | 0          | 0            | 0           | 0                 | 0                        | 0                             | 0                | 0            | 0                     | 0           | 0                                     | 0                  |         |              |
|                | •          | •            | ,           | om Table          |                          |                               | (                |              |                       |             |                                       | 0                  |         | (58)         |
|                | •          |              |             |                   |                          | ,                             | • •              | 65 × (41)    |                       | * *!= ~ *** | at at )                               |                    |         |              |
| (moc<br>(59)m= |            | 0            |             |                   |                          |                               |                  | ng and a     |                       |             | stat)<br>0                            | 0                  |         | (59)         |
| Combi          |            | culated      | for each    | month (           | (61)m =                  | (60) · 24                     | 35 - (11         | )m           |                       | 1           |                                       |                    |         |              |
| (61)m=         | 22.37      | 20.21        | 22.37       | 21.65             | 22.37                    | (60) <del>-</del> 36<br>21.65 | 22.37            | 22.37        | 21.65                 | 22.37       | 21.65                                 | 22.37              |         | (61)         |
|                | 22.31      | 20.21        | 22.31       | 21.00             | 22.31                    | 21.00                         | 22.31            | 22.31        | 21.00                 | 22.31       | 21.05                                 | 22.31              |         | (01)         |

| Total h  | neat req              | uired for   | water h  | eating        | calculate | ed fo    | or eac      | h month     | (62)    | m =    | 0.85 × (       | 45)m -    | + (46)m +     | (57)m +     | (59)m + (61)m |      |
|----------|-----------------------|-------------|----------|---------------|-----------|----------|-------------|-------------|---------|--------|----------------|-----------|---------------|-------------|---------------|------|
| (62)m=   | 172.76                | 151.73      | 158.1    | 139.9         | 3 135.91  | 1        | 19.62       | 113.16      | 126     | .55    | 127.08         | 145.23    | 155.76        | 168.01      |               | (62) |
| Solar DI | HW input              | calculated  | using Ap | oendix G      | or Append | ix H     | (negati     | ve quantity | /) (ent | er '0' | if no solai    | r contrib | ution to wate | er heating) | -             |      |
| (add a   | dditiona              | al lines if | FGHRS    | and/o         | r WWHR    | S a      | pplies      | , see Ap    | penc    | dix C  | <del>3</del> ) |           |               | -           |               |      |
| (63)m=   | -26.02                | -42.3       | -68.39   | -93.5         | 3 -117.46 | 5 -1     | 20.86       | -120.43     | -103    | .33    | -77.7          | -55.01    | -30.94        | -21.56      |               | (63) |
| Output   | t from w              | ater hea    | ter      |               |           |          |             |             |         |        |                |           |               |             |               |      |
| (64)m=   | 111.23                | 85.04       | 74.21    | 42.8          | 18.45     |          | 0           | 0           | 23.     | 14     | 46.67          | 79.64     | 98.36         | 110.64      |               |      |
|          |                       |             |          |               |           |          |             |             | -       | Outp   | out from wa    | ater heat | er (annual)   | 12          | 690.18        | (64) |
| Heat g   | jains fro             | om water    | heating  | , kWh/        | month 0.  | 25 ´     | [0.85       | × (45)m     | + (6    | 51)m   | n] + 0.8 x     | (46)n     | n + (57)m     | + (59)m     | ]             |      |
| (65)m=   | 55.6                  | 48.78       | 50.72    | 44.76         | 43.34     | ;        | 37.99       | 35.78       | 40.     | 23     | 40.47          | 46.44     | 50.01         | 54.02       |               | (65) |
| inclu    | ude (57)              | )m in calo  | culation | of (65)       | m only if | cyli     | nder i      | s in the a  | dwell   | ing    | or hot w       | ater is   | from com      | munity h    | neating       |      |
| 5. Int   | ternal a              | ains (see   | e Table  | 5 and 5       | ia):      |          |             |             |         | -      |                |           |               | -           | -             |      |
|          |                       | ns (Table   |          |               |           |          |             |             |         |        |                |           |               |             |               |      |
| wictab   | Jan                   | Feb         | Mar      |               | May       | ,        | Jun         | Jul         | A       | ug     | Sep            | Oct       | Nov           | Dec         | ]             |      |
| (66)m=   | 121.62                | -           | 121.62   | 121.6         |           | -        | 21.62       | 121.62      | 121     | -      | 121.62         | 121.62    |               | 121.62      |               | (66) |
| Liahtin  | a dains               | (calcula    | ted in A | ppendi        | x L. equa | tior     | n L9 o      | r L9a), a   | lso s   | ee -   | Table 5        |           | -             |             | 1             |      |
| (67)m=   | 19.27                 | 17.11       | 13.92    | 10.54         |           | _        | 6.65        | 7.18        | 9.3     |        | 12.54          | 15.92     | 18.58         | 19.8        |               | (67) |
|          |                       | ins (calc   |          |               |           |          |             |             |         |        |                |           |               |             | 1             |      |
| (68)m=   | 216.13                | · ·         | 212.72   | 200.6         |           | <u> </u> | 71.23       | 161.69      | 159     |        | 165.1          | 177.13    | 192.32        | 206.59      | ]             | (68) |
|          |                       | s (calcula  |          |               | _         |          |             |             |         |        |                |           | 1             |             | I             |      |
| (69)m=   | 35.16                 | 35.16       | 35.16    | 35.16         |           | -        | 35.16       | 35.16       | 35.     |        | 35.16          | 35.16     | 35.16         | 35.16       | ]             | (69) |
|          |                       |             |          |               | 00.10     | <u> </u> | 50.10       | 00.10       |         | 10     | 00.10          | 00.10     | 00.10         | 00.10       | l             | ()   |
| (70)m=   |                       | ins gains   | 10       | 5a)<br>10     | 10        |          | 10          | 10          | 1       | 0      | 10             | 10        | 10            | 10          | 1             | (70) |
|          |                       |             |          |               |           |          |             | 10          |         | 0      | 10             | 10        | 10            | 10          | l             | (10) |
|          | s e.g. e              | vaporatio   | on (nega | -97.3         |           | _        | 5)<br>-97.3 | -97.3       | -97     |        | -97.3          | -97.3     | -97.3         | -97.3       | 1             | (71) |
| (71)m=   |                       |             |          | -97.3         | -97.5     |          | -97.5       | -97.3       | -97     | .5     | -97.3          | -97.5     | -97.5         | -97.3       |               | (11) |
|          |                       | gains (T    | r        |               | 50.00     | Т.       |             | 40.00       |         | ~~     | 50.0           | 00.40     | 00.45         | 70.04       | 1             | (70) |
| (72)m=   |                       | 72.6        | 68.17    | 62.16         | 58.26     | ;        | 52.76       | 48.09       | 54.     |        | 56.2           | 62.43     | _             | 72.61       |               | (72) |
|          |                       | l gains =   |          |               |           |          |             | · · ·       | r È     | ·      | . ,            | -         | (71)m + (72)  |             | 1             | (70) |
| (73)m=   | 379.61                | 377.57      | 364.3    | 342.8         | 7 321.12  | 3        | 00.12       | 286.45      | 292     | .35    | 303.32         | 324.96    | 349.83        | 368.49      |               | (73) |
|          | lar gain              |             |          | an fluiss fre | m Tabla G |          | 4 00000     | iotod oguo  | tiona   | •• ••  | nuart to th    |           | able orientat | ion         |               |      |
|          |                       | Access F    | 0        | Are           |           | anc      | Flu         | •           | 10115   | 10 00  |                | e applica | FF            |             | Gains         |      |
| Onenia   |                       | Table 6d    |          | m             |           |          |             | ble 6a      |         | Т      | g_<br>able 6b  |           | Table 6c      |             | (W)           |      |
| Northea  | ast <mark>0.9x</mark> | 0.77        | )        |               | 6.56      | x        | 1           | 1.51        | x       |        | 0.8            | x         | 0.8           | =           | 33.49         | (75) |
| Northea  | ast <mark>0.9x</mark> | 0.77        | >        |               | 6.56      | x        | 2           | 23.55       | x       |        | 0.8            | x         | 0.8           | =           | 68.53         | (75) |
| Northea  | ast <mark>0.9x</mark> | 0.77        | >        |               | 6.56      | x        | 4           | 1.13        | ×       |        | 0.8            | × [       | 0.8           | =           | 119.66        | (75) |
| Northea  | ast <mark>0.9x</mark> | 0.77        | >        |               | 6.56      | x        |             | 67.8        | ×       |        | 0.8            | × [       | 0.8           | =           | 197.26        | (75) |
| Northea  | ast <mark>0.9x</mark> | 0.77        | >        | :             | 6.56      | x        | 8           | 39.77       | ×       |        | 0.8            |           | 0.8           | =           | 261.17        | (75) |
| Northea  | ast <mark>0.9x</mark> | 0.77        | ,        |               | 6.56      | x        | 9           | 97.5        | ×       |        | 0.8            |           | 0.8           | =           | 283.68        | (75) |
| Northea  | ast <mark>0.9x</mark> | 0.77        | ,        |               | 6.56      | x        | g           | 92.98       | ×       |        | 0.8            |           | 0.8           | =           | 270.52        | (75) |
| Northea  | ast <mark>0.9x</mark> | 0.77        | )        |               | 6.56      | x        | 7           | 75.42       | ×       |        | 0.8            | × [       | 0.8           | =           | 219.43        | (75) |

#### Briary energy Consultants N. Barker 0203 091 3391 info@briaryenergy.co.uk

| Northeast 0.9x                                                                                                                                                                                                                                                      | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Тх                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.5                                                                                                                                                                   | 6                                                                                                                                                           | x                                                                                                                                                 | 5                                                                                                                                 | 1.24                                                                                                                                           | ×                                                                                             | 0.8                                                                                                                                                                                                                     | x                                                                                       | 0.8                                                                          |                                                                    | 149.1                                     | (75)                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|
| Northeast 0.9x                                                                                                                                                                                                                                                      | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.5                                                                                                                                                                   |                                                                                                                                                             | x                                                                                                                                                 |                                                                                                                                   | 29.6                                                                                                                                           | x                                                                                             | 0.8                                                                                                                                                                                                                     |                                                                                         | 0.8                                                                          | ╡_                                                                 | 86.12                                     | (75)                                                 |
| Northeast 0.9x                                                                                                                                                                                                                                                      | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.5                                                                                                                                                                   |                                                                                                                                                             | x                                                                                                                                                 |                                                                                                                                   | 4.52                                                                                                                                           | x                                                                                             | 0.8                                                                                                                                                                                                                     | x                                                                                       | 0.8                                                                          |                                                                    | 42.26                                     | (75)                                                 |
| Northeast 0.9x                                                                                                                                                                                                                                                      | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.5                                                                                                                                                                   |                                                                                                                                                             | x                                                                                                                                                 |                                                                                                                                   | 9.36                                                                                                                                           | l x                                                                                           | 0.8                                                                                                                                                                                                                     |                                                                                         | 0.8                                                                          | <b>-</b>   _                                                       | 27.23                                     | (75)                                                 |
| Southeast 0.9x                                                                                                                                                                                                                                                      | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.                                                                                                                                                                   |                                                                                                                                                             | x                                                                                                                                                 |                                                                                                                                   | 7.39                                                                                                                                           | x                                                                                             | 0.8                                                                                                                                                                                                                     |                                                                                         | 0.8                                                                          | <b>-</b>                                                           | 278.58                                    | (77)                                                 |
| Southeast 0.9x                                                                                                                                                                                                                                                      | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.                                                                                                                                                                   |                                                                                                                                                             | x                                                                                                                                                 |                                                                                                                                   | 3.74                                                                                                                                           | ×                                                                                             | 0.8                                                                                                                                                                                                                     |                                                                                         | 0.8                                                                          |                                                                    | 474.9                                     | (77)                                                 |
| Southeast 0.9x                                                                                                                                                                                                                                                      | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۲<br>× ۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.                                                                                                                                                                   |                                                                                                                                                             | x                                                                                                                                                 |                                                                                                                                   | 4.22                                                                                                                                           | <br>  x                                                                                       | 0.8                                                                                                                                                                                                                     | ۲<br>× ۲                                                                                | 0.8                                                                          |                                                                    | 627.5                                     | (77)                                                 |
| Southeast 0.9x                                                                                                                                                                                                                                                      | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۲<br>× آ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.                                                                                                                                                                   |                                                                                                                                                             | x                                                                                                                                                 |                                                                                                                                   | )3.49                                                                                                                                          | <br>  x                                                                                       | 0.8                                                                                                                                                                                                                     | _<br>_ x                                                                                | 0.8                                                                          | =                                                                  | 771.11                                    | (77)                                                 |
| Southeast 0.9x                                                                                                                                                                                                                                                      | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۲<br>× ۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.                                                                                                                                                                   |                                                                                                                                                             | x                                                                                                                                                 |                                                                                                                                   | 13.34                                                                                                                                          | x                                                                                             | 0.8                                                                                                                                                                                                                     | - x                                                                                     | 0.8                                                                          |                                                                    | 844.49                                    | (77)                                                 |
| Southeast 0.9x                                                                                                                                                                                                                                                      | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۲<br>× ۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.                                                                                                                                                                   |                                                                                                                                                             | x                                                                                                                                                 |                                                                                                                                   | 15.04                                                                                                                                          | <br>  x                                                                                       | 0.8                                                                                                                                                                                                                     | ۲<br>× آ                                                                                | 0.8                                                                          | =                                                                  | 857.21                                    | (77)                                                 |
| Southeast 0.9x                                                                                                                                                                                                                                                      | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۲<br>×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.                                                                                                                                                                   |                                                                                                                                                             | x                                                                                                                                                 |                                                                                                                                   | 12.79                                                                                                                                          | x                                                                                             | 0.8                                                                                                                                                                                                                     | -<br>  x                                                                                | 0.8                                                                          |                                                                    | 840.42                                    | (77)                                                 |
| Southeast 0.9x                                                                                                                                                                                                                                                      | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۲<br>× ۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.                                                                                                                                                                   |                                                                                                                                                             | x                                                                                                                                                 |                                                                                                                                   | )5.34                                                                                                                                          | x                                                                                             | 0.8                                                                                                                                                                                                                     | -<br>  x                                                                                | 0.8                                                                          | =                                                                  | 784.91                                    | (77)                                                 |
| Southeast 0.9x                                                                                                                                                                                                                                                      | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۲<br>× ۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.                                                                                                                                                                   |                                                                                                                                                             | x                                                                                                                                                 |                                                                                                                                   | )2.9                                                                                                                                           | x                                                                                             | 0.8                                                                                                                                                                                                                     | ۲<br>× آ                                                                                | 0.8                                                                          | =                                                                  | 692.19                                    | (77)                                                 |
| Southeast 0.9x                                                                                                                                                                                                                                                      | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۲<br>×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.                                                                                                                                                                   |                                                                                                                                                             | x                                                                                                                                                 |                                                                                                                                   | 2.36                                                                                                                                           | x                                                                                             | 0.8                                                                                                                                                                                                                     | -<br>  x                                                                                | 0.8                                                                          |                                                                    | 539.19                                    | (77)                                                 |
| Southeast 0.9x                                                                                                                                                                                                                                                      | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۲<br>× ۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.                                                                                                                                                                   |                                                                                                                                                             | x                                                                                                                                                 |                                                                                                                                   | 4.83                                                                                                                                           | l<br>X                                                                                        | 0.8                                                                                                                                                                                                                     | -<br>X                                                                                  | 0.8                                                                          |                                                                    | 334                                       | (77)                                                 |
| Southeast 0.9x                                                                                                                                                                                                                                                      | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۲<br>× آ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.                                                                                                                                                                   |                                                                                                                                                             | x                                                                                                                                                 |                                                                                                                                   | 1.95                                                                                                                                           | <br>  x                                                                                       | 0.8                                                                                                                                                                                                                     | _<br>_ x                                                                                | 0.8                                                                          | =                                                                  | 238.06                                    | (77)                                                 |
| L                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                   |                                                                                                                                   |                                                                                                                                                | J                                                                                             | 010                                                                                                                                                                                                                     |                                                                                         | 0.0                                                                          |                                                                    |                                           |                                                      |
| Solar gains in                                                                                                                                                                                                                                                      | watts, calcu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | for each                                                                                                                                                              | h mont                                                                                                                                                      | h                                                                                                                                                 |                                                                                                                                   |                                                                                                                                                | (83)m                                                                                         | i = Sum(74)m .                                                                                                                                                                                                          | .(82)m                                                                                  |                                                                              |                                                                    |                                           |                                                      |
| (83)m= 312.07                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 968.37                                                                                                                                                                | 1105.6                                                                                                                                                      |                                                                                                                                                   | 40.89                                                                                                                             | 1110.94                                                                                                                                        | 1004                                                                                          | 1.33 841.29                                                                                                                                                                                                             | 625.3                                                                                   | 376.26                                                                       | 265.3                                                              |                                           | (83)                                                 |
| Total gains – ir                                                                                                                                                                                                                                                    | nternal and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (84)m =                                                                                                                                                               | = (73)m                                                                                                                                                     | י<br>ו + (מ                                                                                                                                       | 83)m                                                                                                                              | , watts                                                                                                                                        | 1                                                                                             |                                                                                                                                                                                                                         |                                                                                         | - <b>!</b>                                                                   |                                                                    | 1                                         |                                                      |
| (84)m= 691.68                                                                                                                                                                                                                                                       | 921 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1311.24                                                                                                                                                               | 1426.7                                                                                                                                                      | 8 14                                                                                                                                              | 441.01                                                                                                                            | 1397.39                                                                                                                                        | 1296                                                                                          | 6.68 1144.61                                                                                                                                                                                                            | 950.2                                                                                   | 6 726.09                                                                     | 633.78                                                             |                                           | (84)                                                 |
|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                   |                                                                                                                                   |                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                         |                                                                                         |                                                                              |                                                                    |                                           |                                                      |
| 7. Mean inter                                                                                                                                                                                                                                                       | nal tempera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ature (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heating                                                                                                                                                               | seaso                                                                                                                                                       | n)                                                                                                                                                |                                                                                                                                   |                                                                                                                                                |                                                                                               |                                                                                                                                                                                                                         |                                                                                         |                                                                              |                                                                    |                                           |                                                      |
| 7. Mean inter<br>Temperature                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ŭ                                                                                                                                                                     |                                                                                                                                                             | <i>.</i>                                                                                                                                          | area f                                                                                                                            | rom Tat                                                                                                                                        | ole 9                                                                                         | , Th1 (°C)                                                                                                                                                                                                              |                                                                                         |                                                                              |                                                                    | 21                                        | (85)                                                 |
|                                                                                                                                                                                                                                                                     | during heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ting pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eriods ir                                                                                                                                                             | n the liv                                                                                                                                                   | /ing                                                                                                                                              |                                                                                                                                   |                                                                                                                                                | ole 9                                                                                         | . Th1 (°C)                                                                                                                                                                                                              |                                                                                         |                                                                              |                                                                    | 21                                        | (85)                                                 |
| Temperature                                                                                                                                                                                                                                                         | during heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ting pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eriods ir                                                                                                                                                             | n the liv                                                                                                                                                   | /ing<br>m (s                                                                                                                                      |                                                                                                                                   |                                                                                                                                                | <u> </u>                                                                                      | Th1 (°C)<br>ug Sep                                                                                                                                                                                                      | Oct                                                                                     | Nov                                                                          | Dec                                                                | 21                                        | (85)                                                 |
| Temperature<br>Utilisation fac                                                                                                                                                                                                                                      | during hea<br>tor for gain:<br>Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ting pe<br>s for li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eriods in ving are                                                                                                                                                    | h the live<br>a, h1,i                                                                                                                                       | /ing<br>m (s<br>/                                                                                                                                 | ee Ta                                                                                                                             | ble 9a)                                                                                                                                        | <u> </u>                                                                                      | ug Sep                                                                                                                                                                                                                  | Oct<br>0.83                                                                             | Nov<br>0.97                                                                  | Dec<br>0.99                                                        | 21                                        | (85)                                                 |
| Temperature<br>Utilisation fac<br>Jan                                                                                                                                                                                                                               | during heat<br>tor for gain<br>Feb<br>0.96 C                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ting pe<br>s for li<br>Mar<br>0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eriods in<br>ving are<br>Apr<br>0.76                                                                                                                                  | n the livea, h1,i<br>May<br>0.58                                                                                                                            | /ing<br>m (s<br>/                                                                                                                                 | ee Ta<br>Jun<br><sup>0.4</sup>                                                                                                    | ble 9a)<br>Jul<br>0.27                                                                                                                         | A<br>0.2                                                                                      | ug Sep<br>9 0.52                                                                                                                                                                                                        |                                                                                         |                                                                              |                                                                    | 21                                        |                                                      |
| Temperature<br>Utilisation fac<br>Jan<br>(86)m= 0.99                                                                                                                                                                                                                | during hea<br>tor for gain:<br>Feb<br>0.96 C<br>I temperatu                                                                                                                                                                                                                                                                                                                                                                                                                                          | ting pe<br>s for li<br>Mar<br>0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eriods in<br>ving are<br>Apr<br>0.76                                                                                                                                  | n the livea, h1,i<br>May<br>0.58                                                                                                                            | /ing<br>m (s<br>/                                                                                                                                 | ee Ta<br>Jun<br><sup>0.4</sup>                                                                                                    | ble 9a)<br>Jul<br>0.27                                                                                                                         | A<br>0.2                                                                                      | ug Sep<br>9 0.52<br>able 9c)                                                                                                                                                                                            |                                                                                         | 0.97                                                                         |                                                                    | 21                                        |                                                      |
| Temperature<br>Utilisation fac<br>Jan<br>(86)m= 0.99<br>Mean interna<br>(87)m= 20                                                                                                                                                                                   | during hear<br>tor for gains<br>Feb 0.96 0<br>I temperatu<br>20.3 2                                                                                                                                                                                                                                                                                                                                                                                                                                  | ting pe<br>s for li<br>Mar<br>0.89<br>re in li<br>0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eriods in<br>ving are<br>Apr<br>0.76<br>iving are<br>20.85                                                                                                            | n the liv<br>ea, h1,i<br>May<br>0.58<br>ea T1 (<br>20.97                                                                                                    | /ing<br>m (s<br>/                                                                                                                                 | ee Ta<br>Jun<br>0.4<br>w ste<br>21                                                                                                | ble 9a)<br>Jul<br>0.27<br>ps 3 to 7<br>21                                                                                                      | A<br>0.2<br>7 in T<br>2                                                                       | ug Sep<br>9 0.52<br>fable 9c)<br>1 20.98                                                                                                                                                                                | 0.83                                                                                    | 0.97                                                                         | 0.99                                                               | 21                                        | (86)                                                 |
| Temperature<br>Utilisation fac<br>Jan<br>(86)m= 0.99<br>Mean interna                                                                                                                                                                                                | during heat<br>tor for gains<br>Feb<br>0.96 c<br>I temperatu<br>20.3 2<br>during heat                                                                                                                                                                                                                                                                                                                                                                                                                | ting pe<br>s for li<br>Mar<br>0.89<br>re in li<br>0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eriods in<br>ving are<br>Apr<br>0.76<br>iving are<br>20.85                                                                                                            | n the liv<br>ea, h1,i<br>May<br>0.58<br>ea T1 (<br>20.97                                                                                                    | /ing<br>m (s<br>/<br>(follo                                                                                                                       | ee Ta<br>Jun<br>0.4<br>w ste<br>21                                                                                                | ble 9a)<br>Jul<br>0.27<br>ps 3 to 7<br>21                                                                                                      | A<br>0.2<br>7 in T<br>2                                                                       | ug Sep<br>9 0.52<br>able 9c)<br>1 20.98<br>9, Th2 (°C)                                                                                                                                                                  | 0.83                                                                                    | 0.97<br>20.31                                                                | 0.99                                                               | 21                                        | (86)                                                 |
| Temperature<br>Utilisation fac<br>Jan<br>(86)m= 0.99<br>Mean interna<br>(87)m= 20<br>Temperature<br>(88)m= 19.94                                                                                                                                                    | during hear<br>tor for gains<br>Feb 0.96 0<br>I temperatu<br>20.3 20<br>during hear<br>19.94 19                                                                                                                                                                                                                                                                                                                                                                                                      | ting personance of the second  | eriods in<br>ving are<br>Apr<br>0.76<br>iving are<br>20.85<br>eriods in<br>19.95                                                                                      | n the liv<br>ea, h1,i<br>May<br>0.58<br>ea T1 (<br>20.97<br>n rest c<br>19.95                                                                               | /ing<br>m (s<br>/<br>/<br>(follo<br>f dw<br>1                                                                                                     | ee Ta<br>Jun<br>0.4<br>ww ste<br>21<br>velling<br>9.95                                                                            | ble 9a)<br>Jul<br>0.27<br>ps 3 to 7<br>21<br>from Ta<br>19.95                                                                                  | Ai<br>0.2<br>7 in T<br>2<br>able 9<br>19.                                                     | ug Sep<br>9 0.52<br>able 9c)<br>1 20.98<br>9, Th2 (°C)                                                                                                                                                                  | 0.83                                                                                    | 0.97<br>20.31                                                                | 0.99                                                               | 21<br>]<br>]                              | (86)<br>(87)                                         |
| Temperature<br>Utilisation fac<br>Jan<br>(86)m= 0.99<br>Mean interna<br>(87)m= 20<br>Temperature<br>(88)m= 19.94<br>Utilisation fac                                                                                                                                 | during hear<br>tor for gains<br>Feb 0.96 0<br>I temperatu<br>20.3 2<br>during hear<br>19.94 1                                                                                                                                                                                                                                                                                                                                                                                                        | ting personance of the second  | eriods in<br>ving are<br>Apr<br>0.76<br>iving are<br>20.85<br>eriods in<br>19.95                                                                                      | n the liv<br>ea, h1,i<br>May<br>0.58<br>ea T1 (<br>20.97<br>n rest c<br>19.95                                                                               | /ing<br>m (s<br>/<br>/<br>(follo<br>of dw<br>1<br>, h2,                                                                                           | ee Ta<br>Jun<br>0.4<br>ww ste<br>21<br>velling<br>9.95                                                                            | ble 9a)<br>Jul<br>0.27<br>ps 3 to 7<br>21<br>from Ta<br>19.95                                                                                  | Ai<br>0.2<br>7 in T<br>2<br>able 9<br>19.                                                     | ug Sep<br>29 0.52<br>Table 9c)<br>1 20.98<br>0, Th2 (°C)<br>95 19.95                                                                                                                                                    | 0.83                                                                                    | 0.97<br>20.31                                                                | 0.99                                                               | <br>]<br>]                                | (86)<br>(87)                                         |
| Temperature<br>Utilisation fac<br>Jan<br>(86)m= $0.99$<br>Mean interna<br>(87)m= $20$<br>Temperature<br>(88)m= $19.94$<br>Utilisation fac<br>(89)m= $0.99$                                                                                                          | during hear<br>tor for gains<br>Feb 0.96 0<br>I temperatu<br>20.3 2<br>during hear<br>19.94 1<br>tor for gains<br>0.95 0                                                                                                                                                                                                                                                                                                                                                                             | ting personal strain st | eriods in<br>ving are<br>Apr<br>0.76<br>iving are<br>20.85<br>eriods in<br>19.95<br>est of dv<br>0.72                                                                 | a the lives, h1, 1<br>May<br>0.58<br>ea T1 (<br>20.97<br>a rest o<br>19.95<br>welling<br>0.52                                                               | /ing<br>m (s<br>/<br>/<br>ifollo<br>f dw<br>, h2,<br>, h2,                                                                                        | ee Ta<br>Jun<br>0.4<br>ww ste<br>21<br>velling<br>9.95<br>,m (se<br>0.34                                                          | ble 9a)<br>Jul<br>0.27<br>ps 3 to 7<br>21<br>from Ta<br>19.95<br>re Table<br>0.2                                                               | A<br>0.2<br>7 in T<br>2<br>19.<br>9a)<br>0.2                                                  | ug Sep<br>29 0.52<br>Table 9c)<br>1 20.98<br>0, Th2 (°C)<br>95 19.95<br>1 0.45                                                                                                                                          | 0.83                                                                                    | 0.97<br>2 20.31<br>5 19.95                                                   | 0.99 19.98 19.94                                                   | <br>]<br>]                                | (86)<br>(87)<br>(88)                                 |
| Temperature<br>Utilisation fac<br>Jan<br>(86)m= 0.99<br>Mean interna<br>(87)m= 20<br>Temperature<br>(88)m= 19.94<br>Utilisation fac<br>(89)m= 0.99<br>Mean interna                                                                                                  | during hear<br>tor for gains<br>Feb 0.96 0<br>I temperatu<br>20.3 2<br>during hear<br>19.94 1<br>tor for gains<br>0.95 0<br>I temperatu                                                                                                                                                                                                                                                                                                                                                              | ting personal strain st | eriods ir<br>ving are<br>Apr<br>0.76<br>iving are<br>20.85<br>eriods ir<br>19.95<br>est of dv<br>0.72<br>he rest of                                                   | a the liv<br>ea, h1,i<br>May<br>0.58<br>ea T1 (<br>20.97<br>a rest c<br>19.95<br>welling<br>0.52<br>of dwe                                                  | m (s<br>/<br>/<br>follo<br>of dw<br>1<br>, h2,<br>(<br>lling                                                                                      | ee Ta<br>Jun<br>0.4<br>ww ste<br>21<br>velling<br>9.95<br>,m (se<br>0.34<br>T2 (fo                                                | ble 9a)<br>Jul<br>0.27<br>ps 3 to 7<br>21<br>from Ta<br>19.95<br>te Table<br>0.2<br>bllow ste                                                  | A<br>0.2<br>7 in T<br>2<br>19.<br>9a)<br>0.2<br>eps 3                                         | ug Sep<br>9 0.52<br>able 9c)<br>1 20.98<br>9, Th2 (°C)<br>95 19.95<br>1 0.45<br>to 7 in Table                                                                                                                           | 0.83<br>20.82<br>19.95<br>0.78<br>e 9c)                                                 | 0.97<br>20.31<br>19.95<br>0.96                                               | 0.99 19.98 19.94 0.99                                              | ]<br>]<br>]                               | (86)<br>(87)<br>(88)<br>(89)                         |
| Temperature<br>Utilisation fac<br>Jan<br>(86)m= $0.99$<br>Mean interna<br>(87)m= $20$<br>Temperature<br>(88)m= $19.94$<br>Utilisation fac<br>(89)m= $0.99$                                                                                                          | during hear<br>tor for gains<br>Feb 0.96 0<br>I temperatu<br>20.3 2<br>during hear<br>19.94 1<br>tor for gains<br>0.95 0<br>I temperatu                                                                                                                                                                                                                                                                                                                                                              | ting personal strain st | eriods in<br>ving are<br>Apr<br>0.76<br>iving are<br>20.85<br>eriods in<br>19.95<br>est of dv<br>0.72                                                                 | a the lives, h1, 1<br>May<br>0.58<br>ea T1 (<br>20.97<br>a rest o<br>19.95<br>welling<br>0.52                                                               | m (s<br>/<br>/<br>follo<br>of dw<br>1<br>, h2,<br>(<br>lling                                                                                      | ee Ta<br>Jun<br>0.4<br>ww ste<br>21<br>velling<br>9.95<br>,m (se<br>0.34                                                          | ble 9a)<br>Jul<br>0.27<br>ps 3 to 7<br>21<br>from Ta<br>19.95<br>re Table<br>0.2                                                               | A<br>0.2<br>7 in T<br>2<br>19.<br>9a)<br>0.2                                                  | ug         Sep           1         0.52           1         20.98           20, Th2 (°C)           95         19.95           1         0.45           1         0.45           1         0.45           1         0.45 | 0.83<br>20.82<br>19.95<br>0.78<br>9 9c)<br>19.77                                        | 0.97<br>20.31<br>19.95<br>0.96                                               | 0.99<br>19.98<br>19.94<br>0.99<br>18.62                            | <br> <br> <br> <br>                       | (86)<br>(87)<br>(88)<br>(89)<br>(90)                 |
| Temperature<br>Utilisation fac<br>Jan<br>(86)m= 0.99<br>Mean interna<br>(87)m= 20<br>Temperature<br>(88)m= 19.94<br>Utilisation fac<br>(89)m= 0.99<br>Mean interna<br>(90)m= 18.64                                                                                  | during hear<br>tor for gains<br>Feb 0.96 0<br>I temperatu<br>20.3 2<br>during hear<br>19.94 1<br>tor for gains<br>0.95 0<br>I temperatu<br>19.07 1                                                                                                                                                                                                                                                                                                                                                   | ting personality of the second | eriods in<br>ving are<br>Apr<br>0.76<br>iving are<br>20.85<br>eriods in<br>19.95<br>est of dv<br>0.72<br>he rest of<br>19.8                                           | a the lives, h1, 1<br>May<br>0.58<br>ea T1 (<br>20.97<br>a rest of<br>19.95<br>welling<br>0.52<br>of dwe<br>19.92                                           | /ing<br>m (s<br>/<br>/<br>follo<br>                                                                                                               | ee Ta<br>Jun<br>0.4<br>w ste<br>21<br>velling<br>9.95<br>,m (se<br>0.34<br>T2 (fo<br>9.95                                         | ble 9a)<br>Jul<br>0.27<br>ps 3 to 7<br>21<br>from Ta<br>19.95<br>re Table<br>0.2<br>ollow ste<br>19.95                                         | A<br>0.2<br>1 in T<br>2<br>bble §<br>19.<br>9a)<br>0.2<br>eps 3<br>19.                        | ug Sep<br>9 0.52<br>able 9c)<br>1 20.98<br>9, Th2 (°C)<br>95 19.95<br>1 0.45<br>to 7 in Table<br>95 19.94                                                                                                               | 0.83<br>20.82<br>19.95<br>0.78<br>9 9c)<br>19.77                                        | 0.97<br>20.31<br>19.95<br>0.96                                               | 0.99<br>19.98<br>19.94<br>0.99<br>18.62                            | 21<br> <br> <br> <br> <br> <br> <br> <br> | (86)<br>(87)<br>(88)<br>(89)                         |
| Temperature<br>Utilisation fac<br>Jan<br>(86)m= $0.99$<br>Mean interna<br>(87)m= $20$<br>Temperature<br>(88)m= $19.94$<br>Utilisation fac<br>(89)m= $0.99$<br>Mean interna<br>(90)m= $18.64$<br>Mean interna                                                        | during hear<br>tor for gains<br>Feb 1<br>0.96 0<br>I temperatu<br>20.3 2<br>during hear<br>19.94 1<br>tor for gains<br>0.95 0<br>I temperatu<br>19.07 1<br>I temperatu                                                                                                                                                                                                                                                                                                                               | ting pe<br>s for li<br>Mar<br>0.89<br>re in li<br>0.62<br>ting pe<br>9.94<br>s for re<br>0.87<br>re in t<br>9.51<br>re (for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eriods in<br>ving are<br>Apr<br>0.76<br>iving are<br>20.85<br>eriods in<br>19.95<br>est of dv<br>0.72<br>he rest of<br>19.8                                           | a the lives<br>ea, h1, 1<br>May<br>0.58<br>ea T1 (<br>20.97<br>a rest of<br>19.95<br>of dwe<br>19.92<br>ole dw                                              | ving<br>m (s<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/                                       | ee Ta<br>Jun<br>0.4<br>ww ste<br>21<br>velling<br>9.95<br>m (se<br>0.34<br>T2 (fc<br>9.95<br>g) = fl                              | ble 9a)<br>Jul<br>0.27<br>ps 3 to 7<br>21<br>from Ta<br>19.95<br>ee Table<br>0.2<br>bllow ste<br>19.95                                         | A<br>0.2<br>7 in T<br>2<br>ble §<br>19.<br>0.2<br>9a)<br>0.2<br>9a)<br>19.<br>+ (1            | ug Sep<br>9 0.52<br>able 9c)<br>1 20.98<br>9, Th2 (°C)<br>95 19.95<br>1 0.45<br>to 7 in Table<br>95 19.94<br>f<br>- fLA) × T2                                                                                           | 0.83<br>20.82<br>19.95<br>0.78<br>e 9c)<br>19.77<br>A = Liv                             | 0.97<br>2 20.31<br>5 19.95<br>0.96<br>7 19.09<br>ving area ÷ (4              | 0.99<br>19.98<br>19.94<br>0.99<br>18.62                            | <br> <br> <br> <br>                       | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)         |
| Temperature<br>Utilisation fac<br>Jan<br>(86)m= 0.99<br>Mean interna<br>(87)m= 20<br>Temperature<br>(88)m= 19.94<br>Utilisation fac<br>(89)m= 0.99<br>Mean interna<br>(90)m= 18.64<br>Mean interna<br>(92)m= 19.31                                                  | during heat         tor for gains         Feb         0.96         1         20.3         20.3         20.3         20         during heat         19.94         19.94         19.95         0.95         1         tor for gains         0.95         1         19.07         1         19.68         2                                                                                                                                                                                             | ting pe<br>s for li<br>Mar<br>0.89<br>re in li<br>0.62<br>ting pe<br>9.94<br>s for re<br>0.87<br>re in t<br>9.51<br>re (for<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eriods in<br>ving are<br>Apr<br>0.76<br>iving are<br>20.85<br>eriods in<br>19.95<br>est of dv<br>0.72<br>he rest of<br>19.8                                           | a the lives, h1, 1<br>May<br>0.58<br>ea T1 (<br>20.97<br>a rest of<br>19.95<br>welling<br>0.52<br>of dwe<br>19.92<br>ole dw<br>20.44                        | ving<br>m (s<br>/<br>follo<br>f dw<br>1<br>, h2,<br>0<br>lling<br>1<br>rellin<br>2                                                                | ee Ta<br>Jun<br>0.4<br>w ste<br>21<br>velling<br>9.95<br>,m (se<br>0.34<br>T2 (fc<br>9.95<br>g) = fl<br>20.47                     | ble 9a)<br>Jul<br>0.27<br>ps 3 to 7<br>21<br>from Ta<br>19.95<br>re Table<br>0.2<br>bllow ste<br>19.95<br>-A × T1<br>20.47                     | A<br>0.2<br>1 in T<br>2<br>ible §<br>19.<br>0.2<br>9a)<br>0.2<br>eps 3<br>19.<br>+ (1<br>20.  | ug Sep<br>9 0.52<br>able 9c)<br>1 20.98<br>0, Th2 (°C)<br>95 19.95<br>1 0.45<br>to 7 in Table<br>95 19.94<br>f<br>- fLA) × T2<br>47 20.46                                                                               | 0.83<br>20.82<br>19.95<br>0.78<br>e 9c)<br>19.77<br>A = Li <sup>1</sup><br>20.25        | 0.97<br>20.31<br>19.95<br>0.96<br>/ 19.09<br>/ing area ÷ (4                  | 0.99<br>19.98<br>19.94<br>0.99<br>18.62                            | <br> <br> <br> <br>                       | (86)<br>(87)<br>(88)<br>(89)<br>(90)                 |
| Temperature<br>Utilisation fac<br>Jan<br>(86)m= $0.99$<br>Mean interna<br>(87)m= $20$<br>Temperature<br>(88)m= $19.94$<br>Utilisation fac<br>(89)m= $0.99$<br>Mean interna<br>(90)m= $18.64$<br>Mean interna<br>(92)m= $19.31$<br>Apply adjustn                     | during heat         tor for gains         Feb         0.96         0.96         1         20.3         2         during heat         19.94         1         tor for gains         0.95         0         1         tor for gains         0.95         1         19.94         1         19.95         1         19.07         1         19.07         1         19.08         2         nent to the                                                                                                 | ting pe<br>s for li<br>Mar<br>0.89<br>re in li<br>0.62<br>ting pe<br>9.94<br>s for re<br>0.87<br>re in t<br>9.51<br>re (for<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eriods in<br>ving are<br>Apr<br>0.76<br>iving are<br>20.85<br>eriods in<br>19.95<br>est of dv<br>0.72<br>he rest of<br>19.8                                           | the lives<br>a, h1, i<br>May<br>0.58<br>ea T1 (<br>20.97<br>n rest c<br>19.95<br>welling<br>0.52<br>of dwe<br>19.92<br>ole dw<br>20.44                      | ving<br>m (s<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/                                       | ee Ta<br>Jun<br>0.4<br>ww ste<br>21<br>velling<br>9.95<br>m (se<br>0.34<br>T2 (fc<br>9.95<br>g) = fl<br>20.47<br>ure fro          | ble 9a)<br>Jul<br>0.27<br>ps 3 to 7<br>21<br>from Ta<br>19.95<br>e Table<br>0.2<br>bllow ste<br>19.95<br>_A × T1<br>20.47<br>m Table           | A<br>0.2<br>7 in T<br>2<br>ble (<br>19.<br>9a)<br>0.2<br>eps 3<br>19.<br>+ (1<br>20.<br>+ 4e, | ug Sep<br>9 0.52<br>able 9c)<br>1 20.98<br>9, Th2 (°C)<br>95 19.95<br>1 0.45<br>to 7 in Table<br>95 19.94<br>f<br>- fLA) × T2<br>47 20.46<br>where approx                                                               | 0.83<br>20.82<br>19.95<br>0.78<br>e 9c)<br>19.77<br>A = Li <sup>1</sup><br>20.25        | 0.97<br>20.31<br>19.95<br>0.96<br>7 19.09<br>7 19.09<br>7 19.69              | 0.99<br>19.98<br>19.94<br>0.99<br>18.62<br>+) =                    | <br> <br> <br> <br>                       | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)         |
| Temperature<br>Utilisation fac<br>Jan<br>(86)m= 0.99<br>Mean interna<br>(87)m= 20<br>Temperature<br>(88)m= 19.94<br>Utilisation fac<br>(89)m= 0.99<br>Mean interna<br>(90)m= 18.64<br>Mean interna<br>(92)m= 19.31<br>Apply adjustn<br>(93)m= 19.16                 | during heat         tor for gains         Feb       1         0.96       0         I temperatu         20.3       2         during heat         19.94       1         tor for gains         0.95       0         I temperatu         19.94       1         tor for gains         0.95       0         I temperatu         19.07       1         I temperatu       1         19.68       2         nent to the       1         19.53       1                                                          | ting pe<br>s for li<br>Mar<br>0.89<br>re in li<br>0.62<br>ting pe<br>9.94<br>s for re<br>0.87<br>re in t<br>9.51<br>re (for<br>0.06<br>mean<br>9.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eriods in<br>ving are<br>Apr<br>0.76<br>iving are<br>20.85<br>eriods in<br>19.95<br>est of dv<br>0.72<br>he rest<br>19.8<br>r the wh<br>20.32<br>internal             | a the lives, h1, 1<br>May<br>0.58<br>ea T1 (<br>20.97<br>a rest of<br>19.95<br>welling<br>0.52<br>of dwe<br>19.92<br>ole dw<br>20.44                        | ving<br>m (s<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/                                       | ee Ta<br>Jun<br>0.4<br>w ste<br>21<br>velling<br>9.95<br>,m (se<br>0.34<br>T2 (fc<br>9.95<br>g) = fl<br>20.47                     | ble 9a)<br>Jul<br>0.27<br>ps 3 to 7<br>21<br>from Ta<br>19.95<br>re Table<br>0.2<br>bllow ste<br>19.95<br>-A × T1<br>20.47                     | A<br>0.2<br>1 in T<br>2<br>ible §<br>19.<br>0.2<br>9a)<br>0.2<br>eps 3<br>19.<br>+ (1<br>20.  | ug Sep<br>9 0.52<br>able 9c)<br>1 20.98<br>9, Th2 (°C)<br>95 19.95<br>1 0.45<br>to 7 in Table<br>95 19.94<br>f<br>- fLA) × T2<br>47 20.46<br>where approx                                                               | 0.83<br>20.82<br>19.95<br>0.78<br>e 9c)<br>19.77<br>A = Liv<br>20.29<br>priate          | 0.97<br>20.31<br>19.95<br>0.96<br>7 19.09<br>7 19.09<br>7 19.69              | 0.99<br>19.98<br>19.94<br>0.99<br>18.62<br>+) =<br>19.29           | <br> <br> <br> <br>                       | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)<br>(92) |
| Temperature<br>Utilisation fac<br>Jan<br>(86)m= $0.99$<br>Mean interna<br>(87)m= $20$<br>Temperature<br>(88)m= $19.94$<br>Utilisation fac<br>(89)m= $0.99$<br>Mean interna<br>(90)m= $18.64$<br>Mean interna<br>(92)m= $19.31$<br>Apply adjustn                     | during heat         tor for gains         Feb       1         0.96       0         I temperatu         20.3       2         during heat         19.94       1         tor for gains         0.95       0         I temperatu         19.94       1         tor for gains         0.95       0         I temperatu         19.07       1         I temperatu       1         19.68       2         nent to the       1         19.53       1         ting require       1                             | ting personal strain st | eriods in<br>ving are<br>Apr<br>0.76<br>iving are<br>20.85<br>eriods in<br>19.95<br>est of dv<br>0.72<br>he rest<br>19.8<br>r the wh<br>20.32<br>internal<br>20.17    | a the live<br>ea, h1, 1<br>May<br>0.58<br>ea T1 (<br>20.97<br>a rest of<br>19.95<br>welling<br>0.52<br>of dwe<br>19.92<br>ole dw<br>20.44<br>tempe<br>20.29 | ving<br>m (s<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/                                       | ee Ta<br>Jun<br>0.4<br>ww ste<br>21<br>velling<br>9.95<br>m (se<br>0.34<br>T2 (fc<br>9.95<br>g) = fl<br>20.47<br>ire fro<br>20.32 | ble 9a)<br>Jul<br>0.27<br>ps 3 to 7<br>21<br>from Ta<br>19.95<br>re Table<br>0.2<br>bllow ste<br>19.95<br>_A × T1<br>20.47<br>m Table<br>20.32 | A<br>0.2<br>7 in T<br>2<br>ble §<br>19.<br>0.2<br>eps 3<br>19.<br>+ (1<br>20.<br>4e,<br>20.   | ug Sep<br>9 0.52<br>able 9c)<br>1 20.98<br>9, Th2 (°C)<br>95 19.95<br>1 0.45<br>to 7 in Table<br>95 19.94<br>ft<br>- fLA) × T2<br>47 20.46<br>where approx<br>32 20.31                                                  | 0.83<br>20.82<br>19.95<br>0.78<br>e 9c)<br>19.77<br>A = Liv<br>20.25<br>priate<br>20.14 | 0.97<br>20.31<br>3 19.95<br>0.96<br>7 19.09<br>7 19.09<br>7 19.69<br>9 19.69 | 0.99<br>19.98<br>19.94<br>0.99<br>18.62<br>19.29<br>19.29<br>19.14 | 0.5                                       | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)<br>(92) |
| Temperature<br>Utilisation fac<br>Jan<br>(86)m= 0.99<br>Mean interna<br>(87)m= 20<br>Temperature<br>(88)m= 19.94<br>Utilisation fac<br>(89)m= 0.99<br>Mean interna<br>(90)m= 18.64<br>Mean interna<br>(92)m= 19.31<br>Apply adjustn<br>(93)m= 19.16<br>8. Space hea | during heat         tor for gains         Feb       1         0.96       0         I temperatu         20.3       2         during heat         19.94       1         tor for gains         0.95       0         I temperatu         19.94       1         tor for gains         0.95       0         I temperatu         19.07       1         I temperatu       1         19.68       2         nent to the       1         19.53       1         ting require       1         mean intern       1 | ting personal strain st | eriods in<br>ving are<br>Apr<br>0.76<br>iving are<br>20.85<br>eriods in<br>19.95<br>est of dv<br>0.72<br>he rest of<br>19.8<br>r the wh<br>20.32<br>internal<br>20.17 | a the live<br>ea, h1, 1<br>May<br>0.58<br>ea T1 (<br>20.97<br>a rest of<br>19.95<br>welling<br>0.52<br>of dwe<br>19.92<br>ole dw<br>20.44<br>tempe<br>20.29 | ving<br>m (s<br>/<br>/<br>follo<br>ffollo<br>f dw<br>1<br>1<br>, h2,<br>(<br>1<br>1<br>1<br>1<br>2<br>elling<br>2<br>2<br>eratu<br>2<br>2<br>ined | ee Ta<br>Jun<br>0.4<br>ww ste<br>21<br>velling<br>9.95<br>m (se<br>0.34<br>T2 (fc<br>9.95<br>g) = fl<br>20.47<br>ire fro<br>20.32 | ble 9a)<br>Jul<br>0.27<br>ps 3 to 7<br>21<br>from Ta<br>19.95<br>re Table<br>0.2<br>bllow ste<br>19.95<br>_A × T1<br>20.47<br>m Table<br>20.32 | A<br>0.2<br>7 in T<br>2<br>ble §<br>19.<br>0.2<br>eps 3<br>19.<br>+ (1<br>20.<br>4e,<br>20.   | ug Sep<br>9 0.52<br>able 9c)<br>1 20.98<br>9, Th2 (°C)<br>95 19.95<br>1 0.45<br>to 7 in Table<br>95 19.94<br>ft<br>- fLA) × T2<br>47 20.46<br>where approx<br>32 20.31                                                  | 0.83<br>20.82<br>19.95<br>0.78<br>e 9c)<br>19.77<br>A = Liv<br>20.25<br>priate<br>20.14 | 0.97<br>20.31<br>3 19.95<br>0.96<br>7 19.09<br>7 19.09<br>7 19.69<br>9 19.69 | 0.99<br>19.98<br>19.94<br>0.99<br>18.62<br>19.29<br>19.29<br>19.14 | 0.5                                       | (86)<br>(87)<br>(88)<br>(89)<br>(90)<br>(91)<br>(92) |

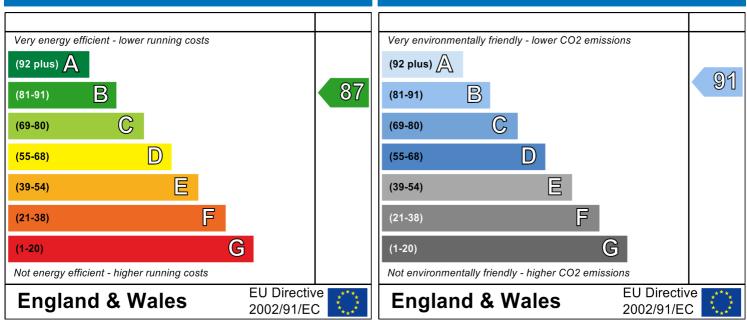
#### Utilisation factor for gains, hm:

| (94)m=   | 0.98                         | 0.94      | 0.86       | 0.73      | 0.54      | 0.36     | 0.22      | 0.24       | 0.47                | 0.79       | 0.96                    | 0.99       |                    | (94)  |
|----------|------------------------------|-----------|------------|-----------|-----------|----------|-----------|------------|---------------------|------------|-------------------------|------------|--------------------|-------|
| Usefu    | ıl gains,                    | hmGm      | , W = (94  | 4)m x (84 | 4)m       |          |           |            |                     |            |                         |            |                    |       |
| (95)m=   | 679.14                       | 870.18    | 960.63     | 955.7     | 765.68    | 518.92   | 311.18    | 311.11     | 541.35              | 746.81     | 696.96                  | 624.67     |                    | (95)  |
| Month    | nly aver                     | age exte  | ernal tem  | perature  | e from Ta | able 8   | -         | -          | _                   |            | -                       |            |                    |       |
| (96)m=   | 4.5                          | 5         | 6.8        | 8.7       | 11.7      | 14.6     | 16.9      | 16.9       | 14.3                | 10.8       | 7                       | 4.9        |                    | (96)  |
| Heat     | loss rate                    | e for mea | an intern  | al tempe  | erature,  | Lm , W = | =[(39)m : | x [(93)m   | — (96)m             | ]          | -                       |            |                    |       |
| (97)m=   | 1355.37                      | 1338.49   | 1207.93    | 1050.41   | 784.13    | 521.01   | 311.31    | 311.3      | 548.81              | 855.66     | 1152.34                 | 1312.32    |                    | (97)  |
| Space    | e heatin                     | g require | ement fo   | r each n  | nonth, k  | Wh/mon   | th = 0.02 | 24 x [(97  | )m – (95            | )m] x (4   | 1)m                     |            |                    |       |
| (98)m=   | 503.12                       | 314.71    | 183.99     | 68.19     | 13.73     | 0        | 0         | 0          | 0                   | 80.99      | 327.87                  | 511.61     |                    |       |
|          |                              |           |            |           |           |          |           | Tota       | al per year         | (kWh/yea   | r) = Sum(9              | 8)15,912 = | 2004.22            | (98)  |
| Space    | e heatin                     | g require | ement in   | kWh/m²    | /year     |          |           |            |                     |            |                         |            | 25.55              | (99)  |
| 9a. En   | ergy rec                     | luiremer  | nts – Indi | ividual h | eating s  | ystems i | ncluding  | j micro-C  | CHP)                |            |                         |            |                    |       |
| •        | e heatir                     | -         |            |           |           |          |           |            |                     |            |                         |            |                    | _     |
| Fracti   | on of sp                     | ace hea   | at from s  | econdar   | y/supple  | mentary  | y system  |            |                     |            |                         |            | 0                  | (201) |
| Fracti   | on of sp                     | ace hea   | at from m  | nain syst | em(s)     |          |           | (202) = 1  | – (201) =           |            |                         |            | 1                  | (202) |
| Fracti   | on of to                     | tal heati | ng from    | main sys  | stem 1    |          |           | (204) = (2 | 02) × [1 –          | (203)] =   |                         |            | 1                  | (204) |
| Efficie  | ency of r                    | main spa  | ace heat   | ing syste | em 1      |          |           |            |                     |            |                         |            | 89.1               | (206) |
| Efficie  | ency of s                    | seconda   | ry/suppl   | ementar   | y heatin  | g system | n, %      |            |                     |            |                         |            | 0                  | (208) |
|          | Jan                          | Feb       | Mar        | Apr       | May       | Jun      | Jul       | Aug        | Sep                 | Oct        | Nov                     | Dec        | kWh/yea            | ar    |
| Space    |                              | g require | ement (c   |           | ,         |          | 1         |            |                     |            |                         |            | ,                  |       |
|          | 503.12                       | 314.71    | 183.99     | 68.19     | 13.73     | 0        | 0         | 0          | 0                   | 80.99      | 327.87                  | 511.61     |                    |       |
| (211)m   | n = {[(98                    | )m x (20  | 94)] + (21 | l0)m } x  | 100 ÷ (2  |          |           |            |                     |            | <u>.</u>                |            |                    | (211) |
|          | 564.67                       | 353.21    | 206.5      | 76.53     | 15.41     | 0        | 0         | 0          | 0                   | 90.9       | 367.98                  | 574.2      |                    |       |
| I        |                              |           |            |           |           |          |           | Tota       | al (kWh/yea         | ar) =Sum(2 | 211) <sub>15,1012</sub> |            | 2249.4             | (211) |
| Space    | e heatin                     | g fuel (s | econdar    | y), kWh/  | month     |          |           |            |                     |            |                         |            |                    | _     |
| •        |                              |           | 14) m } x  | • •       |           |          |           |            |                     |            |                         |            |                    |       |
| (215)m=  | 0                            | 0         | 0          | 0         | 0         | 0        | 0         | 0          | 0                   | 0          | 0                       | 0          |                    |       |
| I        |                              |           |            |           |           |          |           | Tota       | al (kWh/yea         | ar) =Sum(2 | 215) <sub>15,1012</sub> |            | 0                  | (215) |
| Water    | heating                      | 1         |            |           |           |          |           |            |                     |            |                         |            |                    | _     |
|          |                              | •         | ter (calc  | ulated a  | bove)     | -        | -         | -          | -                   |            | -                       |            |                    |       |
| -        | 111.23                       | 85.04     | 74.21      | 42.81     | 18.45     | 0        | 0         | 23.14      | 46.67               | 79.64      | 98.36                   | 110.64     |                    |       |
| Efficier | ncy of w                     | ater hea  | iter       |           |           |          |           | -          | -                   |            | -                       |            | 86.9               | (216) |
| (217)m=  | 88.69                        | 88.62     | 88.46      | 88.24     | 87.83     | 0        | 0         | 86.9       | 86.9                | 88         | 88.58                   | 88.7       |                    | (217) |
|          |                              | -         | kWh/mo     |           |           |          |           |            |                     |            |                         |            |                    |       |
| . ,      |                              |           | ) ÷ (217)  |           | 21.01     | 0        |           | 26.62      | E2 71               | 00.51      | 111.04                  | 104 70     |                    |       |
| (219)m=  | 125.4                        | 95.95     | 83.89      | 48.52     | 21.01     | 0        | 0         | 26.62      | 53.71<br>al = Sum(2 | 90.51      | 111.04                  | 124.73     | 704.00             |       |
| A        | 1404-1                       |           |            |           |           |          |           | TUL        | – Sun(2             |            |                         |            | 781.39             | (219) |
|          | I <b>l totals</b><br>heating |           | ed, main   | system    | 1         |          |           |            |                     | K          | Wh/year                 |            | kWh/year<br>2249.4 | 7     |
| •        | -                            |           |            | 5,50011   | •         |          |           |            |                     |            |                         |            |                    | 4     |
| water    | neating                      | fuel use  | d          |           |           |          |           |            |                     |            |                         |            | 781.39             |       |

Electricity for pumps, fans and electric keep-hot

| Briary energy Consultants<br>N. Barker<br>0203 091 3391<br>info@briaryenergy.co.uk | eet: New dwelling             | g design stage             | 9    |                                |        |
|------------------------------------------------------------------------------------|-------------------------------|----------------------------|------|--------------------------------|--------|
| central heating pump:                                                              |                               |                            | 130  | ]                              | (230c) |
| boiler with a fan-assisted flue                                                    |                               |                            | 45   | ]                              | (230e) |
| pump for solar water heating                                                       |                               |                            | 75   | ]                              | (230g) |
| Total electricity for the above, kWh/year                                          | sum of (                      | 230a)(230g) =              |      | 250                            | (231)  |
| Electricity for lighting                                                           |                               |                            |      | 340.28                         | (232)  |
| 12a. CO2 emissions – Individual heating systems                                    | s including micro-CHP         |                            |      |                                |        |
|                                                                                    | <b>Energy</b><br>kWh/year     | Emission fac<br>kg CO2/kWh | ctor | <b>Emissions</b><br>kg CO2/yea |        |
| Space heating (main system 1)                                                      | (211) x                       | 0.198                      | =    | 445.38                         | (261)  |
| Space heating (secondary)                                                          | (215) x                       | 0                          | =    | 0                              | (263)  |
| Water heating                                                                      | (219) x                       | 0.198                      | =    | 154.72                         | (264)  |
| Space and water heating                                                            | (261) + (262) + (263) + (264) | ) =                        |      | 600.1                          | (265)  |
| Electricity for pumps, fans and electric keep-hot                                  | (231) x                       | 0.517                      | =    | 129.25                         | (267)  |
| Electricity for lighting                                                           | (232) x                       | 0.517                      | =    | 175.92                         | (268)  |
| Total CO2, kg/year                                                                 |                               | sum of (265)(271) =        |      | 905.27                         | (272)  |
| Dwelling CO2 Emission Rate                                                         |                               | (272) ÷ (4) =              |      | 11.54                          | (273)  |
| El rating (section 14)                                                             |                               |                            |      | 90                             | (274)  |

# **Predicted Energy Assessment**


Flat 5 139-147 Camden Road London NW1 9HA Dwelling type: Date of assessment: Produced by: Total floor area: End-terrace Mid floor Flat 01 November 2011 Gary Nicholls 78.43 m<sup>2</sup>

Environmental Impact (CO<sub>2</sub>) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

#### **Energy Efficiency Rating**



The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.