Regulations Compliance Report

Approved Document L1A 2010 edition assessed by Stroma FSAP 2009 program, Version: 1.4.0.39

Printed on 01 November 2011 at 16:42:50

Project Information:

Assessed By: Gary Nicholls (STRO003305) Building Type: End-terrace Flat

Dwelling Details:

NEW DWELLING DESIGN STAGE

Site Reference: Flat 2 139-147 Camden Road Plot Reference: BEC/SV/CAMDEN/0002

Address: Flat 2, 139-147 Camden Road, London, NW1 9HA

Client Details:

Name: Studio V Architects

Address: 224 West Hendon Broadway, Hendon, London, NW9 7ED

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1 TER and DER

Fuel for main heating system: Natural gas Target Carbon Dioxide Emission Rate (TER)

22.8 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER)

17.05 kg/m²

2 Fabric U-values

Element	Average	Highest	
External wall	0.18 (max. 0.30)	0.20 (max. 0.70)	OK
Party wall	0.00 (max. 0.20)	-	OK
Floor	0.15 (max. 0.25)	0.15 (max. 0.70)	OK
Roof	0.13 (max. 0.20)	0.13 (max. 0.35)	OK
Openings	1.44 (max. 2.00)	1.50 (max. 3.30)	OK

3 Design air permeability

Design air permeability at 50 pascals

Maximum

3.00

10.0

4 Heating efficiency

Main Heating system: Database: (rev 315, product index 016669):

Boiler system with radiators or underfloor - mains gas

Brand name: Alpha Model: InTec 28X Model qualifier: (Combi boiler)

Efficiency 88.2 % SEDBUK2009

Minimum 88.0 %

Secondary heating system: None

5 Cylinder insulation

Hot water Storage: No cylinder

N/A

OK

OK

OK

Solar water heating

Dedicated solar storage volume: 90 litres

Minimum: 61 litres OK

Regulations Compliance Report

6 Controls Space heating controls	Time and temperature zo	one control	ОК
Hot water controls:	No cylinder	one control	OIX .
Boiler interlock:	Yes		ОК
7 Low energy lights			
Percentage of fixed lights wit	h low-energy fittings	100.0%	
Minimum		75.0%	OK
8 Mechanical ventilation			
Not applicable			
9 Summertime temperature			

Overheating risk (South East England):

Based on:

Overshading:

Average or unknown

Windows facing: North East 12.96m², Overhang twice as wide as window, ratio NaN

Ventilation rate: 4.00

Blinds/curtains:

shutter closed 100% of daylight hours

Medium

OK

10 Key features

Design air permeablility

3.0 m³/m²h

Doors U-value

1 W/m²K

External Walls U-value

0.17 W/m²K

Floors U-value

0.15 W/m²K

Solar water heating

SAP Input

Flat 2, 139-147 Camden Road, London, NW1 9HA Address:

England Located in:

South East England Region:

UPRN: na

0000-0000-0000-0000-0000 RRN:

01 November 2011 Date of assessment: 01 November 2011 Date of certificate:

Assessment type: New dwelling design stage

Transaction type: New dwelling No related party Related party disclosure: Indicative Value Thermal Mass Parameter:

True Dwelling designed to use less:

than 125 litres per day

Flat Dwelling type:

End-terrace Detachment:

2011 Year Completed:

Floor Location: Floor area: Storey height:

51.95 m² 2.8 m Floor 0

27.31 m² (fraction 0.526) Living area: North East

Front of dwelling faces:

Name: Source: Type: Glazing: Argon: Frame: Solid front door Manufacturer Metal

Windows low-E, En = 0.1, soft coat Yes PVC-U NE Manufacturer

Name: Frame Factor: U-value: No. of Openings: Gap: g-value:

1 front door mm 0.8 1.5 NE 16mm or more 8.0 8.0

Name: Type-Name: Location: Orient: Width: Height:

front door to common area West 0 NE external wall North East 0 0

Average or unknown Overshading:

U-value: Ru value: Curtain wall: Gross area: Openings: Net area: Type: Kappa: **External Elements**

external wall 26.6 12.96 13.64 0.2 0 False N/A 1.68 37.66 0.2 0.82 False N/A to common area 39.34 over unheated are a1.95 0.15 N/A

Internal Elements

Party Elements

party wall 20.16 N/A

Thermal bridges: User-defined y-value

y = 0.04

Reference: ACD

Yes (As designed) Pressure test:

Briary energy Consultants

N. Barker 0203 091 3391

info@briaryenergy.co.uk

SAP Input

Ventilation: Natural ventilation (extract fans)

Number of chimneys: 0
Number of open flues: 0
Number of fans: 3
Number of sides sheltered: 2
Design q50: 3

Main heating system

Main heating system: Central heating systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 315, product index 016669) SEDBUK2009 90.0%

Brand name: Alpha Model: InTec 28X Model qualifier: (Combi boiler)

Systems with radiators Pump in heat space: Yes

Main heating Control:

Main heating Control: Time and temperature zone control

Control code: 2110
Boiler interlock: Yes

Secondary heating system:

Secondary heating system: None

Water heating

Water heating: From main heating system

Water code: 901 Fuel :mains gas No hot water cylinder

Flue Gas Heat Recovery System:

Database (rev 315, product index 060002)

Brand name: Zenex Model: GasSaver Model qualifier: GS-1 Solar panel: True aperture area: 2.5 Flat plate, glazed default values: False

collector zero-loss efficiency: 0.8 collector heat loss coefficient: 3.175

orientation: South, 30° pitch

overshading: None or Very Little (<20%)

dedicated solar store volume: 90 litres (seperate store)

solar powered pump: False

Others:

Electricity tariff: standard tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%
Terrain type: Dense urban
EPC language: English
Wind turbine: No
Photovoltaics: None
Assess Zero Carbon Home: No

info@briaryenergy.co.u				l la ser B) o to il -						
				User D	etails:						
Assessor Name:	Gary Nich	olls			Strom	a Num	ber:		STRO	0003305	
Software Name:	Stroma F	SAP 200	9		Softwa	are Vei	rsion:		Versio	n: 1.4.0.39	
						: Flat 2 1	39-147	Camder	Road		
Address :	Flat 2, 139	-147 Cam	iden Ro	ad, Lon	don, NW	1 9HA					
1. Overall dwelling din	iensions:				<i>(</i> 0)						۰,
Ground floor					a(m²)	l/4->		eight(m)	-	Volume(m	<u> </u>
					51.95	(1a) x	2	2.8	(2a) =	145.46	(3a)
Total floor area TFA = (1a)+(1b)+(1c)-	+(1d)+(1e))+(1r	n)	51.95	(4)					
Dwelling volume						(3a)+(3b)+(3c)+(3c	d)+(3e)+	.(3n) =	145.46	(5)
2. Ventilation rate:											
	main heating		econda eating	ry	other		total			m³ per hou	ır
Number of chimneys	0	,	0	7 + [0] = [0	X ·	40 =	0	(6a)
Number of open flues	0	╡ + ト	0	╡╻╞	0	- - - -	0	x	20 =	0	(6b)
Number of intermittent						J			10 =		= '
						Ļ	3			30	(7a)
Number of passive ven	ts					L	0	X	10 =	0	(7b)
Number of flueless gas	fires						0	X ·	40 =	0	(7c)
									A ! I.		
						_			Air cr	nanges per he	our —
Infiltration due to chimn	•						30		÷ (5) =	0.21	(8)
If a pressurisation test has			d, procee	ed to (17), o	otherwise (continue fr	om (9) to ((16)			— (0)
Number of storeys in Additional infiltration	the aweiling (i	15)						[(0)	-1]x0.1 =	0	(9) (10)
Structural infiltration:	0.25 for steel	or timber f	rame or	0.35 fo	r masoni	rv constr	uction	[(0)	1,0.1 -	0	(11)
if both types of wall are						•				Ů	()
deducting areas of open	• / .										_
If suspended wooder		`	ed) or 0	.1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, e			.:							0	(13)
Percentage of window Window infiltration	ws and doors o	iraugnt sti	ripped		0 25 - 10 2	2 x (14) ÷ 1	001 -			0	(14)
Infiltration rate					-	+ (11) + (1	-	+ (15) =		0	(15)
Air permeability value	a50 express	ed in cub	ic metre	es ner ho	. , , ,	. , , ,	, , ,	, ,	area	3	(16)
If based on air permeat				•	•	•		листоро	arca	0.36	(17)
Air permeability value app	-						is being u	sed		0.30	(.0)
Number of sides on wh					-		-			2	(19)
Shelter factor					(20) = 1 -	[0.075 x (1	19)] =			0.85	(20)
Infiltration rate incorpor	ating shelter fa	ctor			(21) = (18	s) x (20) =				0.3	(21)
Infiltration rate modified	for monthly w	ind speed		•	•	•	•		•		
Jan Feb	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind	speed from Tal	ole 7								_	
(22)m= 5.4 5.1	5.1 4.5	4.1	3.9	3.7	3.7	4.2	4.5	4.8	5.1		
Wind Factor (00-)	(00)m - 4		_	_	_		_	_			
Wind Factor $(22a)m = ($		1 4 00	0.00	T 0.00	T 0.00	1.05	140	1.0	4.07	1	
(22a)m= 1.35 1.27	1.27 1.12	1.02	0.98	0.92	0.92	1.05	1.12	1.2	1.27	1	

Adjusted infiltr	ation rat	e (allowi	na for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m					
0.41	0.39	0.39	0.34	0.31	0.3	0.28	0.28	0.32	0.34	0.36	0.39]	
Calculate effec		•	rate for t	he appli	cable ca	se	Į.			<u> </u>	!		
If mechanica			andin NL (O	ah) (00-	·		IC\\		\ (00-\			0	(23a)
If exhaust air h) = (23a)			0	(23b)
If balanced with		-	-	_					SI.) (001) [4 (00.)	0	(23c)
a) If balance			i					ŕ	 		<u>`</u>	i ÷ 100] I	(24a)
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0	J	(24a)
b) If balance	ea mecha 0	anicai ve	entilation 0	without	neat red	overy (N	//V) (24b	0) m = (22)	0 m + (2	23b) 0	0	1	(24b)
(1/	<u> </u>		<u> </u>				<u> </u>		U	0	0	J	(240)
c) If whole h if (22b)n		tract ven (23b), t		•	-				5 × (23b))			
(24c)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If natural		on or wh en (24d)							0.51				
(24d)m= 0.58	0.57	0.57	0.56	0.55	0.54	0.54	0.54	0.55	0.56	0.57	0.57]	(24d)
Effective air	<u> </u>		<u> </u>		o) or (24)	c) or (24	<u> </u>	(25)				J	
(25)m= 0.58	0.57	0.57	0.56	0.55	0.54	0.54	0.54	0.55	0.56	0.57	0.57]	(25)
												l	
3. Heat losse		·			NIat A.		I I l		A 3/ LL		la combos		A V I-
ELEMENT	Gros area	-	Openin m		Net Ar A ,n		U-valı W/m2		A X U (W/I	≺)	k-value kJ/m²-l		A X k kJ/K
Doors					1.68	X	1	= [1.68				(26)
Windows					12.96	x1,	/[1/(1.5)+	0.04] =	18.34				(27)
Floor					51.95	; x	0.15	=	7.7925				(28)
Walls Type1	26.0	6	12.9	6	13.64	x	0.2	_ =	2.73			$\neg \Box$	(29)
Walls Type2	39.3	34	1.68		37.66	x	0.17	=	6.47			$\neg \vdash$	(29)
Total area of e	lements	, m²			117.89	9							(31)
Party wall					20.16	x	0		0			$\neg \vdash$	(32)
* for windows and ** include the area						ated using	formula 1	/[(1/U-valu	e)+0.04] a	ns given in	paragraph	1 3.2	
Fabric heat los				o ana pan			(26)(30)	+ (32) =				37.01	(33)
Heat capacity		•	,					((28)	.(30) + (32	2) + (32a).	(32e) =	11693.:	
Thermal mass	`	,	P = Cm -	- TFA) ir	n kJ/m²K			Indica	tive Value	: Medium	, ,	250	(35)
For design assess	· sments wh	ere the de	tails of the	,			ecisely the	indicative	values of	TMP in Ta	able 1f		(**)
Thermal bridge				usina An	nendix k	<						4.72	(36)
if details of therma	•	,			•	•						4.72	(00)
Total fabric he			, ,	,	,			(33) +	(36) =			41.73	(37)
Ventilation hea	at loss ca	alculated	monthl	<u>/</u>				(38)m	= 0.33 × (25)m x (5))		
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m= 28.01	27.58	27.58	26.79	26.31	26.09	25.88	25.88	26.43	26.79	27.17	27.58]	(38)
Heat transfer of	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m= 69.74	69.3	69.3	68.51	68.04	67.82	67.61	67.61	68.15	68.51	68.9	69.3		
								,	Average =	Sum(39) ₁	12 /12=	68.57	(39)

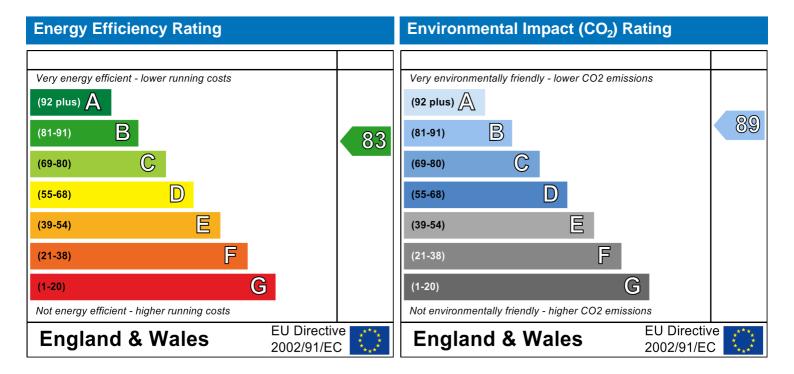
eat loss para	meter (H	HLP), W/	m²K					(40)m	= (39)m ÷	- (4)			
0)m= 1.34	1.33	1.33	1.32	1.31	1.31	1.3	1.3	1.31	1.32	1.33	1.33		
umber of day	e in moi	oth (Tabl	(د ۱ م				-	,	Average =	Sum(40) ₁ .	12 /12=	1.32	(4
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
1)m= 31	28	31	30	31	30	31	31	30	31	30	31		(4
. Water heat	ing ener	gy requi	rement:								kWh/yea	ar:	
ssumed occu if TFA > 13.9 if TFA £ 13.9	0, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (¯	TFA -13		75		(4
nnual averag duce the annua t more that 125	l average	hot water	usage by	5% if the a	lwelling is	designed t			se target c		.71		(4
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
t water usage ii	litres per	day for ea	ch month	Vd,m = fa	ctor from	Table 1c x							
83.28	80.25	77.22	74.19	71.16	68.13	68.13	71.16	74.19	77.22	80.25	83.28		
ergy content of	hot water	used - cald	culated mo	onthly = 4 .	190 x Vd,r	n x nm x E	OTm / 3600			ım(44) ₁₁₂ = ables 1b, 1		908.46	(4
i)m= 123.79	108.27	111.72	97.4	93.46	80.65	74.73	85.76	86.78	101.14	110.4	119.89		
						l	l		Total = Su	ım(45) ₁₁₂ =	=	1193.99	(4
nstantaneous w		· ·	•			i		· , ,		1			
i)m= 18.57 ater storage	16.24 loss:	16.76	14.61	14.02	12.1	11.21	12.86	13.02	15.17	16.56	17.98		(4
If manufactu		clared lo	ss facto	r is knov	vn (kWh	/day):					0		(4
mperature fa	actor fro	m Table	2b								0		(4
nergy lost fro		_	-				(47) x (48)) =			0		(4
manufacture rlinder volum		•					!				0		(5
If community he			-		_						<u> </u>		
Otherwise if no	stored ho	t water (thi	s includes	instantan	eous comi	oi boilers)	enter '0' in	box (50)					
ot water stora	age loss	factor fr	om Tabl	e 2 (kWl	h/litre/da	ıy)					0		(5
olume factor			0.1								0		(5
emperature fa											0		(5
nergy lost fro nter (49) or (5		_	, kWh/ye	ear			((50) x (51) x (52) x	(53) =		0		(5
ater storage	, ,	•	or each	month			((56)m = (55) × (41):	m		0		(5
6)m= 0	0	0	0	0	0	0	0	0	0	0	0		(5
ylinder contains	-	_	-			ļ						Н	(-
')m= 0	0	0	0	0	0	0	0	0	0	0	0		(5
mary circuit	loss (an	nual) fro	m Table	3							0		(5
imary circuit	,	•			59)m = ((58) ÷ 36	65 × (41)	m					
(modified by		om Tabl	e H5 if t				ng and a	cylinde	r thermo	stat)			
0)m= 0	0	0	0	0	0	0	0	0	0	0	0		(5
ombi loss cal	culated	for each	month (61)m =	(60) ÷ 30	65 × (41))m						
)m= 22.37	20.21	22.37	21.65	22.37	21.65	22.37	22.37	21.65	22.37	21.65	22.37		(6

Total heat r	equired for	water h	eating ca	alculated	l for	each month	(62)	m =	0.85 × (45)m +	- (46)m +	(57)m +	(59)m + (61)m	
(62)m= 146.		134.09	119.05	115.83	_	2.3 97.1	108		108.43	123.51	`	142.26		(62)
Solar DHW inp	ut calculated	using App	endix G o	r Appendix	 :Н (n	egative quantity	y) (ent	ter '0'	if no solar	contribu	ution to wate	er heating)	1	
(add additio	nal lines if	FGHRS	and/or \	NWHRS	app	olies, see Ap	pend	dix G	S)					
(63)m= -22.	7 -36.9	-59.66	-81.58	-102.46	-10	5.43 -105.05	-90	.14	-67.78	-47.99	-26.99	-18.81		(63)
Output from water heater													•	
(64)m= 91.8	3 69.18	60.05	34.35	13.37		0 0	17.	99	38.8	64.02	80.15	92.14]	
	•	•	•	•		•	•	Outp	ut from wa	ater heat	er (annual)₁	12	561.87	(64)
Heat gains	from water	heating	, kWh/m	onth 0.2	5 ´[(0.85 × (45)m	+ (6	31)m] + 0.8 x	[(46)n	n + (57)m	+ (59)m]	
(65)m= 46.7	5 41.05	42.74	37.8	36.67	32	.23 30.44	34.	.11	34.27	39.22	42.12	45.45		(65)
include (5	57)m in cal	culation	of (65)m	only if c	ylind	der is in the	dwell	ling (or hot w	ater is	from com	munity h	neating	
include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a):														
Metabolic g				,										
Ja		Mar	Apr	May	J	un Jul	Α	ug	Sep	Oct	Nov	Dec]	
(66)m= 87.3	8 87.38	87.38	87.38	87.38	87	.38 87.38	87.	38	87.38	87.38	87.38	87.38		(66)
Lighting gai	ns (calcula	ted in A	ppendix	L, equat	ion l	 _9 or L9a), a	lso s	ee 7	Table 5		- !		1	
(67)m= 13.5	_`	9.81	7.42	5.55	_	69 5.06	6.5	_	8.83	11.22	13.09	13.95]	(67)
Appliances	gains (calc	ulated ir	n Append	dix L, ea	uatio	on L13 or L1	3a),	also	see Tal	ole 5		1	1	
(68)m= 152		149.89	141.42	130.71	_	0.66 113.94	112		116.34	124.82	135.52	145.58]	(68)
Cooking ga	ins (calcula	ated in A	ppendix	L. eguat	tion	L L15 or L15a). als	o se	e Table	5	-1	<u> </u>	ı	
(69)m= 31.7	<u>`</u>	31.74	31.74	31.74	_	.74 31.74	31.		31.74	31.74	31.74	31.74	1	(69)
Pumps and	fans gains	(Table !	ı 5a)			<u>!</u>		!			_!		J	
(70)m= 10		10	10	10	1	0 10	1	0	10	10	10	10]	(70)
Losses e.g.	evaporatio	n (nega	tive valu	es) (Tah	le 5	I	<u> </u>	I					J	
(71)m= -69.		-69.9	-69.9	-69.9	_	9.9 -69.9	-69	9.9	-69.9	-69.9	-69.9	-69.9]	(71)
Water heati	ng gains (1	rable 5)		<u> </u>	!		!	!			<u>.</u> !		J	
(72)m= 62.8	<u>`</u> `	· '	52.5	49.29	44	.76 40.92	45.	84	47.59	52.72	58.5	61.09]	(72)
Total interr			.	l .	<u> </u>	(66)m + (67)m				70)m + (J	
(73)m= 287.		276.36	260.55	244.76	229	0.32 219.13	223	.99	231.98	247.96	266.32	279.84]	(73)
6. Solar ga	nins:													
Solar gains a	re calculated	using sola	ır flux from	Table 6a	and a	ssociated equa	tions	to co	nvert to th	e applica	able orientat	tion.		
Orientation:			Area			Flux			g_		FF		Gains	
	Table 6d		m²			Table 6a		T	able 6b	-	Table 6c		(W)	
Northeast 0.9	0.77	Х	12.	96	x	11.51	X		0.8	x [0.8	=	66.16	(75)
Northeast 0.9	0.77	х	12.	96	x	23.55	x		0.8	x	0.8	=	135.39	(75)
Northeast 0.9	0.77	x	12.	96	x T	41.13	x		0.8	= x [0.8	-	236.4	(75)
Northeast 0.9	0.77	х	12.	96	x	67.8	x		0.8	_ x	0.8		389.7	(75)
Northeast 0.9	0.77	х	12.	96	x	89.77	x		0.8	= x	0.8	=	515.98	(75)
Northeast 0.9	0.77	x	12.	96	x [97.5	x		0.8	_ x [0.8	=	560.44	(75)
Northeast 0.9	0.77	х	12.	96	x [92.98	x		0.8	x	0.8	=	534.45	(75)
Northeast 0.9	0.77	х	12.	96	x [75.42	x		0.8	x [0.8	=	433.5	(75)

info@b	oriaryen	ergy.co.l	JK												
Northea	st _{0.9x}	0.77)	x 12.	96	x	5	51.24	x	0.8	x	0.8	=	294.55	(75)
Northea	ist _{0.9x}	0.77	 ;	x 12.	96	x	2	29.6	х	0.8	_ x [0.8		170.13	(75)
Northea	st _{0.9x}	0.77	 ;	x 12.	96	x	1	4.52	х	0.8	x	0.8		83.49	(75)
Northea	ıst _{0.9x}	0.77		x 12.	96	X		9.36	x	0.8	_ × _	0.8	=	53.8	(75)
	L														
Solar o	ains in	watts. ca	alculate	ed for eac	h month	1			(83)m =	Sum(74)m .	(82)m				
(83)m=	66.16	135.39	236.4	389.7	515.98	1	60.44	534.45	433.5	294.55	170.13	83.49	53.8		(83)
Total g	ains – ir	nternal a	nd sola	ar (84)m =	= (73)m	+ (83)m	, watts		!			!	l	
(84)m=	354.09	421.63	512.76	650.26	760.74	7	89.76	753.58	657.49	526.53	418.1	349.81	333.64		(84)
7 Me	an inter	nal temn	erature	e (heating	seasor))				,			,		
		•		periods in			area f	from Tak	nle 9 T	h1 (°C)				21	(85)
-		_	_	· living are)ic 5, 1	III (O)				21	(00)
Otilisa	Jan	Feb	Mar		May	T (3	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(86)m=	1	0.99	0.97	0.91	0.74	╁	0.53	0.37	0.42	0.76	0.96	0.99	1		(86)
			<u> </u>					<u>l</u>	l	<u> </u>	0.30	0.99	<u>'</u>		(00)
ı				living ar		$\overline{}$		i –		T				1	4
(87)m=	19.61	19.79	20.15	20.56	20.87	2	20.98	21	20.99	20.9	20.48	19.92	19.63		(87)
Temp	erature	during h	eating	periods i	n rest of	dw	/elling	from Ta	ble 9,	Th2 (°C)				_	
(88)m=	19.81	19.82	19.82	19.83	19.84	1	19.84	19.84	19.84	19.83	19.83	19.82	19.82		(88)
Utilisa	tion fac	tor for a	ains for	rest of d	wellina.	h2	.m (se	e Table	9a)	-	-	-			
(89)m=	1	0.99	0.96	0.88	0.67	$\overline{}$	0.44	0.26	0.3	0.66	0.94	0.99	1		(89)
Maan	intorno	Ltompor	oturo ir	the rest	of dwall	ina	T2 /f	ollow oto	no 2 to	7 in Tob	lo ()o)				
(90)m=	17.98	18.25	18.77	19.34	19.73	T	12 (10	19.84	19.84	19.76	19.25	18.45	18.02		(90)
(00)=	17.00	10.20	10.77	1 10.01	10.70		.0.00	10.01	10.01		L . G.Z.G fLA = Livin		ļ	0.53	(91)
												J (,	0.00	(0.7
Г		· ·	· `	or the wh	1	_	-	i	<u> </u>	- 	1	1	1	Ī	(20)
(92)m=	18.84	19.06	19.5	19.98	20.33		20.43	20.45	20.45	20.36	19.89	19.22	18.87		(92)
			1	ın interna		т —		r			·	1,007	T 40.70	1	(02)
(93)m=	18.69	18.91	19.35	19.83	20.18	<u> </u>	20.28	20.3	20.3	20.21	19.74	19.07	18.72		(93)
•		ting requ					1 -4 -4	an 11 af	Table (4 T: /	7C\m an	ما سم مماد	vulata	
				emperatu s using Ta		nec	atste	ер 11 от	i abie s	ob, so tha	it 11,m=(76)m an	a re-caic	culate	
	Jan	Feb	Mar		May	Τ	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
เ Utilisa		tor for g			1		.		19	1 004				l	
(94)m=	0.99	0.99	0.96	0.88	0.69	Γ	0.48	0.3	0.35	0.7	0.94	0.99	0.99		(94)
ı Usefu	l gains,	hmGm ,	W = (9	94)m x (8	4)m				<u> </u>	1					
(95)m=			491.75		526.15	3	77.57	229.09	228.45	366.33	391.13	345.63	331.69		(95)
Month	nly avera	age exte	rnal ter	mperature	from T	abl	e 8						!	ı	
(96)m=	4.5	5	6.8	8.7	11.7		14.6	16.9	16.9	14.3	10.8	7	4.9		(96)
Heat I	oss rate	for mea	an inter	nal temp	erature,	Lm	າ , W =	=[(39)m	x [(93)r	n– (96)m]	•	•		
(97)m=	989.26	964.22	869.59	762.35	576.89	3	85.27	229.8	229.7	402.72	612.73	831.6	957.53		(97)
Space	heatin	g require	ement f	or each n	nonth, k	Wr	/mont	th = 0.02	24 x [(9	7)m – (95)m] x (4	1)m			
(98)m=	474.32	368.61	281.11	138.27	37.75		0	0	0	0	164.88	349.9	465.63		
									To	al ner vear	(kWh/vear	r) = Sum(9	18)1 59 12 =	2280.46	(98)
										ai poi youi	(, J a(5	- / 10,012		``
Space	e heatin	g require	ement i	n kWh/m²	²/year					iai poi youi	(, , ca.	,, Gamillo	7,,	43.9	(99)

			21.12)					
9a. Energy requirements – Individual heating	systems includ	ling micro-(CHP)					
Space heating: Fraction of space heat from secondary/supp	ementary syst	em					0	(201)
Fraction of space heat from main system(s)	, ,		- (201) =				1	(202)
Fraction of total heating from main system 1		(204) = (2	202) × [1 –	(203)] =			1	(204)
Efficiency of main space heating system 1							89.1	(206)
Efficiency of secondary/supplementary heati	ng system, %						0	(208)
Jan Feb Mar Apr May	Jun Ju	ıl Aug	Sep	Oct	Nov	Dec	kWh/ye	⊐ ar
Space heating requirement (calculated abov	e)		•				1	
474.32 368.61 281.11 138.27 37.75	0 0	0	0	164.88	349.9	465.63		
(211) m = {[(98)m x (204)] + (210)m} x 100 ÷	(206)		_					(211)
532.35 413.71 315.5 155.18 42.37	0 0		0	185.05	392.7	522.59		_
		Tota	al (kWh/ye	ar) =Sum(211) _{15,101}	2=	2559.44	(211)
Space heating fuel (secondary), kWh/month								
$= \{[(98)m \times (201)] + (214) m \} \times 100 \div (208)$			Ι ,	Ι ,	Ι ,	Ι ,	1	
(215)m= 0 0 0 0 0	0 0		0 al (kWh/yea	ar) =Sum(215)	0		7(245)
		100	ai (KVVII/ye	ai) =Suiii(2 13) _{15,101}	2	0	(215)
Water heating Output from water heater (calculated above)								
91.83 69.18 60.05 34.35 13.37	0 0	17.99	38.8	64.02	80.15	92.14]	
Efficiency of water heater	1	I	<u>I</u>	!	!	ļ.	86.9	(216)
(217)m= 88.74 88.74 88.7 88.65 88.51	0 0	86.9	86.9	88.47	88.68	88.73		(217)
Fuel for water heating, kWh/month	-!	<u>!</u>					1	
(219) m = (64) m x $100 \div (217)$ m		1 00 7	14.05	T 70.00	T 00 00	1,00,04	1	
(219)m= 103.49 77.95 67.69 38.75 15.11	0 0		44.65 al = Sum(2	72.36	90.38	103.84	204.04	7(0,40)
Amount totals		100	ai = Suili(2		\A/ls /		634.91	(219)
Annual totals Space heating fuel used, main system 1				K	Wh/yea	[kWh/year 2559.44	7
Water heating fuel used							634.91	╡
Electricity for pumps, fans and electric keep-h	ot						004.01	
	Οί					400	1	(2300
central heating pump:						130] 1	
boiler with a fan-assisted flue						45]	(230€
pump for solar water heating						75		(230g
Total electricity for the above, kWh/year		sun	of (230a)	(230g) =	:		250	(231)
Electricity for lighting							239.78	(232)
12a. CO2 emissions – Individual heating sys	tems including	micro-CHI)					
	Energy kWh/ye			Emiss kg CO	ion fac 2/kWh	tor	Emissions kg CO2/ye	
Space heating (main system 1)	(211) x			0.1	98	=	506.77	(261)
Space heating (secondary)	(215) x)	=	0	(263)
Water heating	(219) x			0.1	98	=	125.71	
J				L 0.1			120.71	

Space and water heating	(261) + (262) + (263) + (264) =		632.48	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.517 =	129.25	(267)
Electricity for lighting	(232) x	0.517 =	123.97	(268)
Total CO2, kg/year	sum	n of (265)(271) =	885.7	(272)
Dwelling CO2 Emission Rate	(272	2) ÷ (4) =	17.05	(273)
El rating (section 14)			88	(274)


Predicted Energy Assessment

Flat 2 139-147 Camden Road London NW1 9HA Dwelling type:
Date of assessment:
Produced by:
Total floor area:

End-terrace Mid floor Flat 01 November 2011 Gary Nicholls 51.95 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.